]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/gpu/drm/i915/display/intel_psr.c
Merge tag 'tag-chrome-platform-for-v5.11' of git://git.kernel.org/pub/scm/linux/kerne...
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / display / intel_psr.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <drm/drm_atomic_helper.h>
25
26 #include "display/intel_dp.h"
27
28 #include "i915_drv.h"
29 #include "intel_atomic.h"
30 #include "intel_display_types.h"
31 #include "intel_psr.h"
32 #include "intel_sprite.h"
33 #include "intel_hdmi.h"
34
35 /**
36 * DOC: Panel Self Refresh (PSR/SRD)
37 *
38 * Since Haswell Display controller supports Panel Self-Refresh on display
39 * panels witch have a remote frame buffer (RFB) implemented according to PSR
40 * spec in eDP1.3. PSR feature allows the display to go to lower standby states
41 * when system is idle but display is on as it eliminates display refresh
42 * request to DDR memory completely as long as the frame buffer for that
43 * display is unchanged.
44 *
45 * Panel Self Refresh must be supported by both Hardware (source) and
46 * Panel (sink).
47 *
48 * PSR saves power by caching the framebuffer in the panel RFB, which allows us
49 * to power down the link and memory controller. For DSI panels the same idea
50 * is called "manual mode".
51 *
52 * The implementation uses the hardware-based PSR support which automatically
53 * enters/exits self-refresh mode. The hardware takes care of sending the
54 * required DP aux message and could even retrain the link (that part isn't
55 * enabled yet though). The hardware also keeps track of any frontbuffer
56 * changes to know when to exit self-refresh mode again. Unfortunately that
57 * part doesn't work too well, hence why the i915 PSR support uses the
58 * software frontbuffer tracking to make sure it doesn't miss a screen
59 * update. For this integration intel_psr_invalidate() and intel_psr_flush()
60 * get called by the frontbuffer tracking code. Note that because of locking
61 * issues the self-refresh re-enable code is done from a work queue, which
62 * must be correctly synchronized/cancelled when shutting down the pipe."
63 *
64 * DC3CO (DC3 clock off)
65 *
66 * On top of PSR2, GEN12 adds a intermediate power savings state that turns
67 * clock off automatically during PSR2 idle state.
68 * The smaller overhead of DC3co entry/exit vs. the overhead of PSR2 deep sleep
69 * entry/exit allows the HW to enter a low-power state even when page flipping
70 * periodically (for instance a 30fps video playback scenario).
71 *
72 * Every time a flips occurs PSR2 will get out of deep sleep state(if it was),
73 * so DC3CO is enabled and tgl_dc3co_disable_work is schedule to run after 6
74 * frames, if no other flip occurs and the function above is executed, DC3CO is
75 * disabled and PSR2 is configured to enter deep sleep, resetting again in case
76 * of another flip.
77 * Front buffer modifications do not trigger DC3CO activation on purpose as it
78 * would bring a lot of complexity and most of the moderns systems will only
79 * use page flips.
80 */
81
82 static bool psr_global_enabled(struct drm_i915_private *i915)
83 {
84 switch (i915->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
85 case I915_PSR_DEBUG_DEFAULT:
86 return i915->params.enable_psr;
87 case I915_PSR_DEBUG_DISABLE:
88 return false;
89 default:
90 return true;
91 }
92 }
93
94 static bool psr2_global_enabled(struct drm_i915_private *dev_priv)
95 {
96 switch (dev_priv->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
97 case I915_PSR_DEBUG_DISABLE:
98 case I915_PSR_DEBUG_FORCE_PSR1:
99 return false;
100 default:
101 return true;
102 }
103 }
104
105 static void psr_irq_control(struct drm_i915_private *dev_priv)
106 {
107 enum transcoder trans_shift;
108 u32 mask, val;
109 i915_reg_t imr_reg;
110
111 /*
112 * gen12+ has registers relative to transcoder and one per transcoder
113 * using the same bit definition: handle it as TRANSCODER_EDP to force
114 * 0 shift in bit definition
115 */
116 if (INTEL_GEN(dev_priv) >= 12) {
117 trans_shift = 0;
118 imr_reg = TRANS_PSR_IMR(dev_priv->psr.transcoder);
119 } else {
120 trans_shift = dev_priv->psr.transcoder;
121 imr_reg = EDP_PSR_IMR;
122 }
123
124 mask = EDP_PSR_ERROR(trans_shift);
125 if (dev_priv->psr.debug & I915_PSR_DEBUG_IRQ)
126 mask |= EDP_PSR_POST_EXIT(trans_shift) |
127 EDP_PSR_PRE_ENTRY(trans_shift);
128
129 /* Warning: it is masking/setting reserved bits too */
130 val = intel_de_read(dev_priv, imr_reg);
131 val &= ~EDP_PSR_TRANS_MASK(trans_shift);
132 val |= ~mask;
133 intel_de_write(dev_priv, imr_reg, val);
134 }
135
136 static void psr_event_print(struct drm_i915_private *i915,
137 u32 val, bool psr2_enabled)
138 {
139 drm_dbg_kms(&i915->drm, "PSR exit events: 0x%x\n", val);
140 if (val & PSR_EVENT_PSR2_WD_TIMER_EXPIRE)
141 drm_dbg_kms(&i915->drm, "\tPSR2 watchdog timer expired\n");
142 if ((val & PSR_EVENT_PSR2_DISABLED) && psr2_enabled)
143 drm_dbg_kms(&i915->drm, "\tPSR2 disabled\n");
144 if (val & PSR_EVENT_SU_DIRTY_FIFO_UNDERRUN)
145 drm_dbg_kms(&i915->drm, "\tSU dirty FIFO underrun\n");
146 if (val & PSR_EVENT_SU_CRC_FIFO_UNDERRUN)
147 drm_dbg_kms(&i915->drm, "\tSU CRC FIFO underrun\n");
148 if (val & PSR_EVENT_GRAPHICS_RESET)
149 drm_dbg_kms(&i915->drm, "\tGraphics reset\n");
150 if (val & PSR_EVENT_PCH_INTERRUPT)
151 drm_dbg_kms(&i915->drm, "\tPCH interrupt\n");
152 if (val & PSR_EVENT_MEMORY_UP)
153 drm_dbg_kms(&i915->drm, "\tMemory up\n");
154 if (val & PSR_EVENT_FRONT_BUFFER_MODIFY)
155 drm_dbg_kms(&i915->drm, "\tFront buffer modification\n");
156 if (val & PSR_EVENT_WD_TIMER_EXPIRE)
157 drm_dbg_kms(&i915->drm, "\tPSR watchdog timer expired\n");
158 if (val & PSR_EVENT_PIPE_REGISTERS_UPDATE)
159 drm_dbg_kms(&i915->drm, "\tPIPE registers updated\n");
160 if (val & PSR_EVENT_REGISTER_UPDATE)
161 drm_dbg_kms(&i915->drm, "\tRegister updated\n");
162 if (val & PSR_EVENT_HDCP_ENABLE)
163 drm_dbg_kms(&i915->drm, "\tHDCP enabled\n");
164 if (val & PSR_EVENT_KVMR_SESSION_ENABLE)
165 drm_dbg_kms(&i915->drm, "\tKVMR session enabled\n");
166 if (val & PSR_EVENT_VBI_ENABLE)
167 drm_dbg_kms(&i915->drm, "\tVBI enabled\n");
168 if (val & PSR_EVENT_LPSP_MODE_EXIT)
169 drm_dbg_kms(&i915->drm, "\tLPSP mode exited\n");
170 if ((val & PSR_EVENT_PSR_DISABLE) && !psr2_enabled)
171 drm_dbg_kms(&i915->drm, "\tPSR disabled\n");
172 }
173
174 void intel_psr_irq_handler(struct drm_i915_private *dev_priv, u32 psr_iir)
175 {
176 enum transcoder cpu_transcoder = dev_priv->psr.transcoder;
177 enum transcoder trans_shift;
178 i915_reg_t imr_reg;
179 ktime_t time_ns = ktime_get();
180
181 if (INTEL_GEN(dev_priv) >= 12) {
182 trans_shift = 0;
183 imr_reg = TRANS_PSR_IMR(dev_priv->psr.transcoder);
184 } else {
185 trans_shift = dev_priv->psr.transcoder;
186 imr_reg = EDP_PSR_IMR;
187 }
188
189 if (psr_iir & EDP_PSR_PRE_ENTRY(trans_shift)) {
190 dev_priv->psr.last_entry_attempt = time_ns;
191 drm_dbg_kms(&dev_priv->drm,
192 "[transcoder %s] PSR entry attempt in 2 vblanks\n",
193 transcoder_name(cpu_transcoder));
194 }
195
196 if (psr_iir & EDP_PSR_POST_EXIT(trans_shift)) {
197 dev_priv->psr.last_exit = time_ns;
198 drm_dbg_kms(&dev_priv->drm,
199 "[transcoder %s] PSR exit completed\n",
200 transcoder_name(cpu_transcoder));
201
202 if (INTEL_GEN(dev_priv) >= 9) {
203 u32 val = intel_de_read(dev_priv,
204 PSR_EVENT(cpu_transcoder));
205 bool psr2_enabled = dev_priv->psr.psr2_enabled;
206
207 intel_de_write(dev_priv, PSR_EVENT(cpu_transcoder),
208 val);
209 psr_event_print(dev_priv, val, psr2_enabled);
210 }
211 }
212
213 if (psr_iir & EDP_PSR_ERROR(trans_shift)) {
214 u32 val;
215
216 drm_warn(&dev_priv->drm, "[transcoder %s] PSR aux error\n",
217 transcoder_name(cpu_transcoder));
218
219 dev_priv->psr.irq_aux_error = true;
220
221 /*
222 * If this interruption is not masked it will keep
223 * interrupting so fast that it prevents the scheduled
224 * work to run.
225 * Also after a PSR error, we don't want to arm PSR
226 * again so we don't care about unmask the interruption
227 * or unset irq_aux_error.
228 */
229 val = intel_de_read(dev_priv, imr_reg);
230 val |= EDP_PSR_ERROR(trans_shift);
231 intel_de_write(dev_priv, imr_reg, val);
232
233 schedule_work(&dev_priv->psr.work);
234 }
235 }
236
237 static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp)
238 {
239 u8 alpm_caps = 0;
240
241 if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP,
242 &alpm_caps) != 1)
243 return false;
244 return alpm_caps & DP_ALPM_CAP;
245 }
246
247 static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp)
248 {
249 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
250 u8 val = 8; /* assume the worst if we can't read the value */
251
252 if (drm_dp_dpcd_readb(&intel_dp->aux,
253 DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1)
254 val &= DP_MAX_RESYNC_FRAME_COUNT_MASK;
255 else
256 drm_dbg_kms(&i915->drm,
257 "Unable to get sink synchronization latency, assuming 8 frames\n");
258 return val;
259 }
260
261 static u16 intel_dp_get_su_x_granulartiy(struct intel_dp *intel_dp)
262 {
263 struct drm_i915_private *i915 = dp_to_i915(intel_dp);
264 u16 val;
265 ssize_t r;
266
267 /*
268 * Returning the default X granularity if granularity not required or
269 * if DPCD read fails
270 */
271 if (!(intel_dp->psr_dpcd[1] & DP_PSR2_SU_GRANULARITY_REQUIRED))
272 return 4;
273
274 r = drm_dp_dpcd_read(&intel_dp->aux, DP_PSR2_SU_X_GRANULARITY, &val, 2);
275 if (r != 2)
276 drm_dbg_kms(&i915->drm,
277 "Unable to read DP_PSR2_SU_X_GRANULARITY\n");
278
279 /*
280 * Spec says that if the value read is 0 the default granularity should
281 * be used instead.
282 */
283 if (r != 2 || val == 0)
284 val = 4;
285
286 return val;
287 }
288
289 void intel_psr_init_dpcd(struct intel_dp *intel_dp)
290 {
291 struct drm_i915_private *dev_priv =
292 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
293
294 if (dev_priv->psr.dp) {
295 drm_warn(&dev_priv->drm,
296 "More than one eDP panel found, PSR support should be extended\n");
297 return;
298 }
299
300 drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd,
301 sizeof(intel_dp->psr_dpcd));
302
303 if (!intel_dp->psr_dpcd[0])
304 return;
305 drm_dbg_kms(&dev_priv->drm, "eDP panel supports PSR version %x\n",
306 intel_dp->psr_dpcd[0]);
307
308 if (drm_dp_has_quirk(&intel_dp->desc, 0, DP_DPCD_QUIRK_NO_PSR)) {
309 drm_dbg_kms(&dev_priv->drm,
310 "PSR support not currently available for this panel\n");
311 return;
312 }
313
314 if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) {
315 drm_dbg_kms(&dev_priv->drm,
316 "Panel lacks power state control, PSR cannot be enabled\n");
317 return;
318 }
319
320 dev_priv->psr.sink_support = true;
321 dev_priv->psr.sink_sync_latency =
322 intel_dp_get_sink_sync_latency(intel_dp);
323
324 dev_priv->psr.dp = intel_dp;
325
326 if (INTEL_GEN(dev_priv) >= 9 &&
327 (intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_IS_SUPPORTED)) {
328 bool y_req = intel_dp->psr_dpcd[1] &
329 DP_PSR2_SU_Y_COORDINATE_REQUIRED;
330 bool alpm = intel_dp_get_alpm_status(intel_dp);
331
332 /*
333 * All panels that supports PSR version 03h (PSR2 +
334 * Y-coordinate) can handle Y-coordinates in VSC but we are
335 * only sure that it is going to be used when required by the
336 * panel. This way panel is capable to do selective update
337 * without a aux frame sync.
338 *
339 * To support PSR version 02h and PSR version 03h without
340 * Y-coordinate requirement panels we would need to enable
341 * GTC first.
342 */
343 dev_priv->psr.sink_psr2_support = y_req && alpm;
344 drm_dbg_kms(&dev_priv->drm, "PSR2 %ssupported\n",
345 dev_priv->psr.sink_psr2_support ? "" : "not ");
346
347 if (dev_priv->psr.sink_psr2_support) {
348 dev_priv->psr.colorimetry_support =
349 intel_dp_get_colorimetry_status(intel_dp);
350 dev_priv->psr.su_x_granularity =
351 intel_dp_get_su_x_granulartiy(intel_dp);
352 }
353 }
354 }
355
356 static void hsw_psr_setup_aux(struct intel_dp *intel_dp)
357 {
358 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
359 u32 aux_clock_divider, aux_ctl;
360 int i;
361 static const u8 aux_msg[] = {
362 [0] = DP_AUX_NATIVE_WRITE << 4,
363 [1] = DP_SET_POWER >> 8,
364 [2] = DP_SET_POWER & 0xff,
365 [3] = 1 - 1,
366 [4] = DP_SET_POWER_D0,
367 };
368 u32 psr_aux_mask = EDP_PSR_AUX_CTL_TIME_OUT_MASK |
369 EDP_PSR_AUX_CTL_MESSAGE_SIZE_MASK |
370 EDP_PSR_AUX_CTL_PRECHARGE_2US_MASK |
371 EDP_PSR_AUX_CTL_BIT_CLOCK_2X_MASK;
372
373 BUILD_BUG_ON(sizeof(aux_msg) > 20);
374 for (i = 0; i < sizeof(aux_msg); i += 4)
375 intel_de_write(dev_priv,
376 EDP_PSR_AUX_DATA(dev_priv->psr.transcoder, i >> 2),
377 intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
378
379 aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
380
381 /* Start with bits set for DDI_AUX_CTL register */
382 aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, sizeof(aux_msg),
383 aux_clock_divider);
384
385 /* Select only valid bits for SRD_AUX_CTL */
386 aux_ctl &= psr_aux_mask;
387 intel_de_write(dev_priv, EDP_PSR_AUX_CTL(dev_priv->psr.transcoder),
388 aux_ctl);
389 }
390
391 static void intel_psr_enable_sink(struct intel_dp *intel_dp)
392 {
393 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
394 u8 dpcd_val = DP_PSR_ENABLE;
395
396 /* Enable ALPM at sink for psr2 */
397 if (dev_priv->psr.psr2_enabled) {
398 drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG,
399 DP_ALPM_ENABLE |
400 DP_ALPM_LOCK_ERROR_IRQ_HPD_ENABLE);
401
402 dpcd_val |= DP_PSR_ENABLE_PSR2 | DP_PSR_IRQ_HPD_WITH_CRC_ERRORS;
403 } else {
404 if (dev_priv->psr.link_standby)
405 dpcd_val |= DP_PSR_MAIN_LINK_ACTIVE;
406
407 if (INTEL_GEN(dev_priv) >= 8)
408 dpcd_val |= DP_PSR_CRC_VERIFICATION;
409 }
410
411 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, dpcd_val);
412
413 drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
414 }
415
416 static u32 intel_psr1_get_tp_time(struct intel_dp *intel_dp)
417 {
418 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
419 u32 val = 0;
420
421 if (INTEL_GEN(dev_priv) >= 11)
422 val |= EDP_PSR_TP4_TIME_0US;
423
424 if (dev_priv->params.psr_safest_params) {
425 val |= EDP_PSR_TP1_TIME_2500us;
426 val |= EDP_PSR_TP2_TP3_TIME_2500us;
427 goto check_tp3_sel;
428 }
429
430 if (dev_priv->vbt.psr.tp1_wakeup_time_us == 0)
431 val |= EDP_PSR_TP1_TIME_0us;
432 else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 100)
433 val |= EDP_PSR_TP1_TIME_100us;
434 else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 500)
435 val |= EDP_PSR_TP1_TIME_500us;
436 else
437 val |= EDP_PSR_TP1_TIME_2500us;
438
439 if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us == 0)
440 val |= EDP_PSR_TP2_TP3_TIME_0us;
441 else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 100)
442 val |= EDP_PSR_TP2_TP3_TIME_100us;
443 else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 500)
444 val |= EDP_PSR_TP2_TP3_TIME_500us;
445 else
446 val |= EDP_PSR_TP2_TP3_TIME_2500us;
447
448 check_tp3_sel:
449 if (intel_dp_source_supports_hbr2(intel_dp) &&
450 drm_dp_tps3_supported(intel_dp->dpcd))
451 val |= EDP_PSR_TP1_TP3_SEL;
452 else
453 val |= EDP_PSR_TP1_TP2_SEL;
454
455 return val;
456 }
457
458 static u8 psr_compute_idle_frames(struct intel_dp *intel_dp)
459 {
460 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
461 int idle_frames;
462
463 /* Let's use 6 as the minimum to cover all known cases including the
464 * off-by-one issue that HW has in some cases.
465 */
466 idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
467 idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
468
469 if (drm_WARN_ON(&dev_priv->drm, idle_frames > 0xf))
470 idle_frames = 0xf;
471
472 return idle_frames;
473 }
474
475 static void hsw_activate_psr1(struct intel_dp *intel_dp)
476 {
477 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
478 u32 max_sleep_time = 0x1f;
479 u32 val = EDP_PSR_ENABLE;
480
481 val |= psr_compute_idle_frames(intel_dp) << EDP_PSR_IDLE_FRAME_SHIFT;
482
483 val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT;
484 if (IS_HASWELL(dev_priv))
485 val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
486
487 if (dev_priv->psr.link_standby)
488 val |= EDP_PSR_LINK_STANDBY;
489
490 val |= intel_psr1_get_tp_time(intel_dp);
491
492 if (INTEL_GEN(dev_priv) >= 8)
493 val |= EDP_PSR_CRC_ENABLE;
494
495 val |= (intel_de_read(dev_priv, EDP_PSR_CTL(dev_priv->psr.transcoder)) &
496 EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK);
497 intel_de_write(dev_priv, EDP_PSR_CTL(dev_priv->psr.transcoder), val);
498 }
499
500 static u32 intel_psr2_get_tp_time(struct intel_dp *intel_dp)
501 {
502 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
503 u32 val = 0;
504
505 if (dev_priv->params.psr_safest_params)
506 return EDP_PSR2_TP2_TIME_2500us;
507
508 if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us >= 0 &&
509 dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 50)
510 val |= EDP_PSR2_TP2_TIME_50us;
511 else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 100)
512 val |= EDP_PSR2_TP2_TIME_100us;
513 else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 500)
514 val |= EDP_PSR2_TP2_TIME_500us;
515 else
516 val |= EDP_PSR2_TP2_TIME_2500us;
517
518 return val;
519 }
520
521 static void hsw_activate_psr2(struct intel_dp *intel_dp)
522 {
523 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
524 u32 val;
525
526 val = psr_compute_idle_frames(intel_dp) << EDP_PSR2_IDLE_FRAME_SHIFT;
527
528 val |= EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE;
529 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
530 val |= EDP_Y_COORDINATE_ENABLE;
531
532 val |= EDP_PSR2_FRAME_BEFORE_SU(dev_priv->psr.sink_sync_latency + 1);
533 val |= intel_psr2_get_tp_time(intel_dp);
534
535 if (INTEL_GEN(dev_priv) >= 12) {
536 /*
537 * TODO: 7 lines of IO_BUFFER_WAKE and FAST_WAKE are default
538 * values from BSpec. In order to setting an optimal power
539 * consumption, lower than 4k resoluition mode needs to decrese
540 * IO_BUFFER_WAKE and FAST_WAKE. And higher than 4K resolution
541 * mode needs to increase IO_BUFFER_WAKE and FAST_WAKE.
542 */
543 val |= TGL_EDP_PSR2_BLOCK_COUNT_NUM_2;
544 val |= TGL_EDP_PSR2_IO_BUFFER_WAKE(7);
545 val |= TGL_EDP_PSR2_FAST_WAKE(7);
546 } else if (INTEL_GEN(dev_priv) >= 9) {
547 val |= EDP_PSR2_IO_BUFFER_WAKE(7);
548 val |= EDP_PSR2_FAST_WAKE(7);
549 }
550
551 if (dev_priv->psr.psr2_sel_fetch_enabled) {
552 /* WA 1408330847 */
553 if (IS_TGL_DISP_REVID(dev_priv, TGL_REVID_A0, TGL_REVID_A0) ||
554 IS_RKL_REVID(dev_priv, RKL_REVID_A0, RKL_REVID_A0))
555 intel_de_rmw(dev_priv, CHICKEN_PAR1_1,
556 DIS_RAM_BYPASS_PSR2_MAN_TRACK,
557 DIS_RAM_BYPASS_PSR2_MAN_TRACK);
558
559 intel_de_write(dev_priv,
560 PSR2_MAN_TRK_CTL(dev_priv->psr.transcoder),
561 PSR2_MAN_TRK_CTL_ENABLE);
562 } else if (HAS_PSR2_SEL_FETCH(dev_priv)) {
563 intel_de_write(dev_priv,
564 PSR2_MAN_TRK_CTL(dev_priv->psr.transcoder), 0);
565 }
566
567 /*
568 * PSR2 HW is incorrectly using EDP_PSR_TP1_TP3_SEL and BSpec is
569 * recommending keep this bit unset while PSR2 is enabled.
570 */
571 intel_de_write(dev_priv, EDP_PSR_CTL(dev_priv->psr.transcoder), 0);
572
573 intel_de_write(dev_priv, EDP_PSR2_CTL(dev_priv->psr.transcoder), val);
574 }
575
576 static bool
577 transcoder_has_psr2(struct drm_i915_private *dev_priv, enum transcoder trans)
578 {
579 if (INTEL_GEN(dev_priv) < 9)
580 return false;
581 else if (INTEL_GEN(dev_priv) >= 12)
582 return trans == TRANSCODER_A;
583 else
584 return trans == TRANSCODER_EDP;
585 }
586
587 static u32 intel_get_frame_time_us(const struct intel_crtc_state *cstate)
588 {
589 if (!cstate || !cstate->hw.active)
590 return 0;
591
592 return DIV_ROUND_UP(1000 * 1000,
593 drm_mode_vrefresh(&cstate->hw.adjusted_mode));
594 }
595
596 static void psr2_program_idle_frames(struct drm_i915_private *dev_priv,
597 u32 idle_frames)
598 {
599 u32 val;
600
601 idle_frames <<= EDP_PSR2_IDLE_FRAME_SHIFT;
602 val = intel_de_read(dev_priv, EDP_PSR2_CTL(dev_priv->psr.transcoder));
603 val &= ~EDP_PSR2_IDLE_FRAME_MASK;
604 val |= idle_frames;
605 intel_de_write(dev_priv, EDP_PSR2_CTL(dev_priv->psr.transcoder), val);
606 }
607
608 static void tgl_psr2_enable_dc3co(struct drm_i915_private *dev_priv)
609 {
610 psr2_program_idle_frames(dev_priv, 0);
611 intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_DC3CO);
612 }
613
614 static void tgl_psr2_disable_dc3co(struct drm_i915_private *dev_priv)
615 {
616 struct intel_dp *intel_dp = dev_priv->psr.dp;
617
618 intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
619 psr2_program_idle_frames(dev_priv, psr_compute_idle_frames(intel_dp));
620 }
621
622 static void tgl_dc3co_disable_work(struct work_struct *work)
623 {
624 struct drm_i915_private *dev_priv =
625 container_of(work, typeof(*dev_priv), psr.dc3co_work.work);
626
627 mutex_lock(&dev_priv->psr.lock);
628 /* If delayed work is pending, it is not idle */
629 if (delayed_work_pending(&dev_priv->psr.dc3co_work))
630 goto unlock;
631
632 tgl_psr2_disable_dc3co(dev_priv);
633 unlock:
634 mutex_unlock(&dev_priv->psr.lock);
635 }
636
637 static void tgl_disallow_dc3co_on_psr2_exit(struct drm_i915_private *dev_priv)
638 {
639 if (!dev_priv->psr.dc3co_enabled)
640 return;
641
642 cancel_delayed_work(&dev_priv->psr.dc3co_work);
643 /* Before PSR2 exit disallow dc3co*/
644 tgl_psr2_disable_dc3co(dev_priv);
645 }
646
647 static void
648 tgl_dc3co_exitline_compute_config(struct intel_dp *intel_dp,
649 struct intel_crtc_state *crtc_state)
650 {
651 const u32 crtc_vdisplay = crtc_state->uapi.adjusted_mode.crtc_vdisplay;
652 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
653 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
654 u32 exit_scanlines;
655
656 if (!(dev_priv->csr.allowed_dc_mask & DC_STATE_EN_DC3CO))
657 return;
658
659 /* B.Specs:49196 DC3CO only works with pipeA and DDIA.*/
660 if (to_intel_crtc(crtc_state->uapi.crtc)->pipe != PIPE_A ||
661 dig_port->base.port != PORT_A)
662 return;
663
664 /*
665 * DC3CO Exit time 200us B.Spec 49196
666 * PSR2 transcoder Early Exit scanlines = ROUNDUP(200 / line time) + 1
667 */
668 exit_scanlines =
669 intel_usecs_to_scanlines(&crtc_state->uapi.adjusted_mode, 200) + 1;
670
671 if (drm_WARN_ON(&dev_priv->drm, exit_scanlines > crtc_vdisplay))
672 return;
673
674 crtc_state->dc3co_exitline = crtc_vdisplay - exit_scanlines;
675 }
676
677 static bool intel_psr2_sel_fetch_config_valid(struct intel_dp *intel_dp,
678 struct intel_crtc_state *crtc_state)
679 {
680 struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->uapi.state);
681 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
682 struct intel_plane_state *plane_state;
683 struct intel_plane *plane;
684 int i;
685
686 if (!dev_priv->params.enable_psr2_sel_fetch) {
687 drm_dbg_kms(&dev_priv->drm,
688 "PSR2 sel fetch not enabled, disabled by parameter\n");
689 return false;
690 }
691
692 if (crtc_state->uapi.async_flip) {
693 drm_dbg_kms(&dev_priv->drm,
694 "PSR2 sel fetch not enabled, async flip enabled\n");
695 return false;
696 }
697
698 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
699 if (plane_state->uapi.rotation != DRM_MODE_ROTATE_0) {
700 drm_dbg_kms(&dev_priv->drm,
701 "PSR2 sel fetch not enabled, plane rotated\n");
702 return false;
703 }
704 }
705
706 return crtc_state->enable_psr2_sel_fetch = true;
707 }
708
709 static bool intel_psr2_config_valid(struct intel_dp *intel_dp,
710 struct intel_crtc_state *crtc_state)
711 {
712 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
713 int crtc_hdisplay = crtc_state->hw.adjusted_mode.crtc_hdisplay;
714 int crtc_vdisplay = crtc_state->hw.adjusted_mode.crtc_vdisplay;
715 int psr_max_h = 0, psr_max_v = 0, max_bpp = 0;
716
717 if (!dev_priv->psr.sink_psr2_support)
718 return false;
719
720 if (!transcoder_has_psr2(dev_priv, crtc_state->cpu_transcoder)) {
721 drm_dbg_kms(&dev_priv->drm,
722 "PSR2 not supported in transcoder %s\n",
723 transcoder_name(crtc_state->cpu_transcoder));
724 return false;
725 }
726
727 if (!psr2_global_enabled(dev_priv)) {
728 drm_dbg_kms(&dev_priv->drm, "PSR2 disabled by flag\n");
729 return false;
730 }
731
732 /*
733 * DSC and PSR2 cannot be enabled simultaneously. If a requested
734 * resolution requires DSC to be enabled, priority is given to DSC
735 * over PSR2.
736 */
737 if (crtc_state->dsc.compression_enable) {
738 drm_dbg_kms(&dev_priv->drm,
739 "PSR2 cannot be enabled since DSC is enabled\n");
740 return false;
741 }
742
743 if (crtc_state->crc_enabled) {
744 drm_dbg_kms(&dev_priv->drm,
745 "PSR2 not enabled because it would inhibit pipe CRC calculation\n");
746 return false;
747 }
748
749 if (INTEL_GEN(dev_priv) >= 12) {
750 psr_max_h = 5120;
751 psr_max_v = 3200;
752 max_bpp = 30;
753 } else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
754 psr_max_h = 4096;
755 psr_max_v = 2304;
756 max_bpp = 24;
757 } else if (IS_GEN(dev_priv, 9)) {
758 psr_max_h = 3640;
759 psr_max_v = 2304;
760 max_bpp = 24;
761 }
762
763 if (crtc_state->pipe_bpp > max_bpp) {
764 drm_dbg_kms(&dev_priv->drm,
765 "PSR2 not enabled, pipe bpp %d > max supported %d\n",
766 crtc_state->pipe_bpp, max_bpp);
767 return false;
768 }
769
770 /*
771 * HW sends SU blocks of size four scan lines, which means the starting
772 * X coordinate and Y granularity requirements will always be met. We
773 * only need to validate the SU block width is a multiple of
774 * x granularity.
775 */
776 if (crtc_hdisplay % dev_priv->psr.su_x_granularity) {
777 drm_dbg_kms(&dev_priv->drm,
778 "PSR2 not enabled, hdisplay(%d) not multiple of %d\n",
779 crtc_hdisplay, dev_priv->psr.su_x_granularity);
780 return false;
781 }
782
783 if (HAS_PSR2_SEL_FETCH(dev_priv)) {
784 if (!intel_psr2_sel_fetch_config_valid(intel_dp, crtc_state) &&
785 !HAS_PSR_HW_TRACKING(dev_priv)) {
786 drm_dbg_kms(&dev_priv->drm,
787 "PSR2 not enabled, selective fetch not valid and no HW tracking available\n");
788 return false;
789 }
790 }
791
792 if (!crtc_state->enable_psr2_sel_fetch &&
793 (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v)) {
794 drm_dbg_kms(&dev_priv->drm,
795 "PSR2 not enabled, resolution %dx%d > max supported %dx%d\n",
796 crtc_hdisplay, crtc_vdisplay,
797 psr_max_h, psr_max_v);
798 return false;
799 }
800
801 tgl_dc3co_exitline_compute_config(intel_dp, crtc_state);
802 return true;
803 }
804
805 void intel_psr_compute_config(struct intel_dp *intel_dp,
806 struct intel_crtc_state *crtc_state)
807 {
808 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
809 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
810 const struct drm_display_mode *adjusted_mode =
811 &crtc_state->hw.adjusted_mode;
812 int psr_setup_time;
813
814 if (!CAN_PSR(dev_priv))
815 return;
816
817 if (intel_dp != dev_priv->psr.dp)
818 return;
819
820 if (!psr_global_enabled(dev_priv)) {
821 drm_dbg_kms(&dev_priv->drm, "PSR disabled by flag\n");
822 return;
823 }
824
825 /*
826 * HSW spec explicitly says PSR is tied to port A.
827 * BDW+ platforms have a instance of PSR registers per transcoder but
828 * for now it only supports one instance of PSR, so lets keep it
829 * hardcoded to PORT_A
830 */
831 if (dig_port->base.port != PORT_A) {
832 drm_dbg_kms(&dev_priv->drm,
833 "PSR condition failed: Port not supported\n");
834 return;
835 }
836
837 if (dev_priv->psr.sink_not_reliable) {
838 drm_dbg_kms(&dev_priv->drm,
839 "PSR sink implementation is not reliable\n");
840 return;
841 }
842
843 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
844 drm_dbg_kms(&dev_priv->drm,
845 "PSR condition failed: Interlaced mode enabled\n");
846 return;
847 }
848
849 psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd);
850 if (psr_setup_time < 0) {
851 drm_dbg_kms(&dev_priv->drm,
852 "PSR condition failed: Invalid PSR setup time (0x%02x)\n",
853 intel_dp->psr_dpcd[1]);
854 return;
855 }
856
857 if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) >
858 adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) {
859 drm_dbg_kms(&dev_priv->drm,
860 "PSR condition failed: PSR setup time (%d us) too long\n",
861 psr_setup_time);
862 return;
863 }
864
865 crtc_state->has_psr = true;
866 crtc_state->has_psr2 = intel_psr2_config_valid(intel_dp, crtc_state);
867 crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
868 }
869
870 static void intel_psr_activate(struct intel_dp *intel_dp)
871 {
872 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
873
874 if (transcoder_has_psr2(dev_priv, dev_priv->psr.transcoder))
875 drm_WARN_ON(&dev_priv->drm,
876 intel_de_read(dev_priv, EDP_PSR2_CTL(dev_priv->psr.transcoder)) & EDP_PSR2_ENABLE);
877
878 drm_WARN_ON(&dev_priv->drm,
879 intel_de_read(dev_priv, EDP_PSR_CTL(dev_priv->psr.transcoder)) & EDP_PSR_ENABLE);
880 drm_WARN_ON(&dev_priv->drm, dev_priv->psr.active);
881 lockdep_assert_held(&dev_priv->psr.lock);
882
883 /* psr1 and psr2 are mutually exclusive.*/
884 if (dev_priv->psr.psr2_enabled)
885 hsw_activate_psr2(intel_dp);
886 else
887 hsw_activate_psr1(intel_dp);
888
889 dev_priv->psr.active = true;
890 }
891
892 static void intel_psr_enable_source(struct intel_dp *intel_dp,
893 const struct intel_crtc_state *crtc_state)
894 {
895 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
896 enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
897 u32 mask;
898
899 /* Only HSW and BDW have PSR AUX registers that need to be setup. SKL+
900 * use hardcoded values PSR AUX transactions
901 */
902 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
903 hsw_psr_setup_aux(intel_dp);
904
905 if (dev_priv->psr.psr2_enabled && (IS_GEN(dev_priv, 9) &&
906 !IS_GEMINILAKE(dev_priv))) {
907 i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder);
908 u32 chicken = intel_de_read(dev_priv, reg);
909
910 chicken |= PSR2_VSC_ENABLE_PROG_HEADER |
911 PSR2_ADD_VERTICAL_LINE_COUNT;
912 intel_de_write(dev_priv, reg, chicken);
913 }
914
915 /*
916 * Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD also
917 * mask LPSP to avoid dependency on other drivers that might block
918 * runtime_pm besides preventing other hw tracking issues now we
919 * can rely on frontbuffer tracking.
920 */
921 mask = EDP_PSR_DEBUG_MASK_MEMUP |
922 EDP_PSR_DEBUG_MASK_HPD |
923 EDP_PSR_DEBUG_MASK_LPSP |
924 EDP_PSR_DEBUG_MASK_MAX_SLEEP;
925
926 if (INTEL_GEN(dev_priv) < 11)
927 mask |= EDP_PSR_DEBUG_MASK_DISP_REG_WRITE;
928
929 intel_de_write(dev_priv, EDP_PSR_DEBUG(dev_priv->psr.transcoder),
930 mask);
931
932 psr_irq_control(dev_priv);
933
934 if (crtc_state->dc3co_exitline) {
935 u32 val;
936
937 /*
938 * TODO: if future platforms supports DC3CO in more than one
939 * transcoder, EXITLINE will need to be unset when disabling PSR
940 */
941 val = intel_de_read(dev_priv, EXITLINE(cpu_transcoder));
942 val &= ~EXITLINE_MASK;
943 val |= crtc_state->dc3co_exitline << EXITLINE_SHIFT;
944 val |= EXITLINE_ENABLE;
945 intel_de_write(dev_priv, EXITLINE(cpu_transcoder), val);
946 }
947
948 if (HAS_PSR_HW_TRACKING(dev_priv) && HAS_PSR2_SEL_FETCH(dev_priv))
949 intel_de_rmw(dev_priv, CHICKEN_PAR1_1, IGNORE_PSR2_HW_TRACKING,
950 dev_priv->psr.psr2_sel_fetch_enabled ?
951 IGNORE_PSR2_HW_TRACKING : 0);
952 }
953
954 static void intel_psr_enable_locked(struct drm_i915_private *dev_priv,
955 const struct intel_crtc_state *crtc_state,
956 const struct drm_connector_state *conn_state)
957 {
958 struct intel_dp *intel_dp = dev_priv->psr.dp;
959 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
960 struct intel_encoder *encoder = &dig_port->base;
961 u32 val;
962
963 drm_WARN_ON(&dev_priv->drm, dev_priv->psr.enabled);
964
965 dev_priv->psr.psr2_enabled = crtc_state->has_psr2;
966 dev_priv->psr.busy_frontbuffer_bits = 0;
967 dev_priv->psr.pipe = to_intel_crtc(crtc_state->uapi.crtc)->pipe;
968 dev_priv->psr.dc3co_enabled = !!crtc_state->dc3co_exitline;
969 dev_priv->psr.transcoder = crtc_state->cpu_transcoder;
970 /* DC5/DC6 requires at least 6 idle frames */
971 val = usecs_to_jiffies(intel_get_frame_time_us(crtc_state) * 6);
972 dev_priv->psr.dc3co_exit_delay = val;
973 dev_priv->psr.psr2_sel_fetch_enabled = crtc_state->enable_psr2_sel_fetch;
974
975 /*
976 * If a PSR error happened and the driver is reloaded, the EDP_PSR_IIR
977 * will still keep the error set even after the reset done in the
978 * irq_preinstall and irq_uninstall hooks.
979 * And enabling in this situation cause the screen to freeze in the
980 * first time that PSR HW tries to activate so lets keep PSR disabled
981 * to avoid any rendering problems.
982 */
983 if (INTEL_GEN(dev_priv) >= 12) {
984 val = intel_de_read(dev_priv,
985 TRANS_PSR_IIR(dev_priv->psr.transcoder));
986 val &= EDP_PSR_ERROR(0);
987 } else {
988 val = intel_de_read(dev_priv, EDP_PSR_IIR);
989 val &= EDP_PSR_ERROR(dev_priv->psr.transcoder);
990 }
991 if (val) {
992 dev_priv->psr.sink_not_reliable = true;
993 drm_dbg_kms(&dev_priv->drm,
994 "PSR interruption error set, not enabling PSR\n");
995 return;
996 }
997
998 drm_dbg_kms(&dev_priv->drm, "Enabling PSR%s\n",
999 dev_priv->psr.psr2_enabled ? "2" : "1");
1000 intel_dp_compute_psr_vsc_sdp(intel_dp, crtc_state, conn_state,
1001 &dev_priv->psr.vsc);
1002 intel_write_dp_vsc_sdp(encoder, crtc_state, &dev_priv->psr.vsc);
1003 intel_psr_enable_sink(intel_dp);
1004 intel_psr_enable_source(intel_dp, crtc_state);
1005 dev_priv->psr.enabled = true;
1006
1007 intel_psr_activate(intel_dp);
1008 }
1009
1010 /**
1011 * intel_psr_enable - Enable PSR
1012 * @intel_dp: Intel DP
1013 * @crtc_state: new CRTC state
1014 * @conn_state: new CONNECTOR state
1015 *
1016 * This function can only be called after the pipe is fully trained and enabled.
1017 */
1018 void intel_psr_enable(struct intel_dp *intel_dp,
1019 const struct intel_crtc_state *crtc_state,
1020 const struct drm_connector_state *conn_state)
1021 {
1022 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1023
1024 if (!CAN_PSR(dev_priv) || dev_priv->psr.dp != intel_dp)
1025 return;
1026
1027 if (!crtc_state->has_psr)
1028 return;
1029
1030 drm_WARN_ON(&dev_priv->drm, dev_priv->drrs.dp);
1031
1032 mutex_lock(&dev_priv->psr.lock);
1033 intel_psr_enable_locked(dev_priv, crtc_state, conn_state);
1034 mutex_unlock(&dev_priv->psr.lock);
1035 }
1036
1037 static void intel_psr_exit(struct drm_i915_private *dev_priv)
1038 {
1039 u32 val;
1040
1041 if (!dev_priv->psr.active) {
1042 if (transcoder_has_psr2(dev_priv, dev_priv->psr.transcoder)) {
1043 val = intel_de_read(dev_priv,
1044 EDP_PSR2_CTL(dev_priv->psr.transcoder));
1045 drm_WARN_ON(&dev_priv->drm, val & EDP_PSR2_ENABLE);
1046 }
1047
1048 val = intel_de_read(dev_priv,
1049 EDP_PSR_CTL(dev_priv->psr.transcoder));
1050 drm_WARN_ON(&dev_priv->drm, val & EDP_PSR_ENABLE);
1051
1052 return;
1053 }
1054
1055 if (dev_priv->psr.psr2_enabled) {
1056 tgl_disallow_dc3co_on_psr2_exit(dev_priv);
1057 val = intel_de_read(dev_priv,
1058 EDP_PSR2_CTL(dev_priv->psr.transcoder));
1059 drm_WARN_ON(&dev_priv->drm, !(val & EDP_PSR2_ENABLE));
1060 val &= ~EDP_PSR2_ENABLE;
1061 intel_de_write(dev_priv,
1062 EDP_PSR2_CTL(dev_priv->psr.transcoder), val);
1063 } else {
1064 val = intel_de_read(dev_priv,
1065 EDP_PSR_CTL(dev_priv->psr.transcoder));
1066 drm_WARN_ON(&dev_priv->drm, !(val & EDP_PSR_ENABLE));
1067 val &= ~EDP_PSR_ENABLE;
1068 intel_de_write(dev_priv,
1069 EDP_PSR_CTL(dev_priv->psr.transcoder), val);
1070 }
1071 dev_priv->psr.active = false;
1072 }
1073
1074 static void intel_psr_disable_locked(struct intel_dp *intel_dp)
1075 {
1076 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1077 i915_reg_t psr_status;
1078 u32 psr_status_mask;
1079
1080 lockdep_assert_held(&dev_priv->psr.lock);
1081
1082 if (!dev_priv->psr.enabled)
1083 return;
1084
1085 drm_dbg_kms(&dev_priv->drm, "Disabling PSR%s\n",
1086 dev_priv->psr.psr2_enabled ? "2" : "1");
1087
1088 intel_psr_exit(dev_priv);
1089
1090 if (dev_priv->psr.psr2_enabled) {
1091 psr_status = EDP_PSR2_STATUS(dev_priv->psr.transcoder);
1092 psr_status_mask = EDP_PSR2_STATUS_STATE_MASK;
1093 } else {
1094 psr_status = EDP_PSR_STATUS(dev_priv->psr.transcoder);
1095 psr_status_mask = EDP_PSR_STATUS_STATE_MASK;
1096 }
1097
1098 /* Wait till PSR is idle */
1099 if (intel_de_wait_for_clear(dev_priv, psr_status,
1100 psr_status_mask, 2000))
1101 drm_err(&dev_priv->drm, "Timed out waiting PSR idle state\n");
1102
1103 /* WA 1408330847 */
1104 if (dev_priv->psr.psr2_sel_fetch_enabled &&
1105 (IS_TGL_DISP_REVID(dev_priv, TGL_REVID_A0, TGL_REVID_A0) ||
1106 IS_RKL_REVID(dev_priv, RKL_REVID_A0, RKL_REVID_A0)))
1107 intel_de_rmw(dev_priv, CHICKEN_PAR1_1,
1108 DIS_RAM_BYPASS_PSR2_MAN_TRACK, 0);
1109
1110 /* Disable PSR on Sink */
1111 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
1112
1113 if (dev_priv->psr.psr2_enabled)
1114 drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG, 0);
1115
1116 dev_priv->psr.enabled = false;
1117 }
1118
1119 /**
1120 * intel_psr_disable - Disable PSR
1121 * @intel_dp: Intel DP
1122 * @old_crtc_state: old CRTC state
1123 *
1124 * This function needs to be called before disabling pipe.
1125 */
1126 void intel_psr_disable(struct intel_dp *intel_dp,
1127 const struct intel_crtc_state *old_crtc_state)
1128 {
1129 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1130
1131 if (!old_crtc_state->has_psr)
1132 return;
1133
1134 if (drm_WARN_ON(&dev_priv->drm, !CAN_PSR(dev_priv)))
1135 return;
1136
1137 mutex_lock(&dev_priv->psr.lock);
1138
1139 intel_psr_disable_locked(intel_dp);
1140
1141 mutex_unlock(&dev_priv->psr.lock);
1142 cancel_work_sync(&dev_priv->psr.work);
1143 cancel_delayed_work_sync(&dev_priv->psr.dc3co_work);
1144 }
1145
1146 static void psr_force_hw_tracking_exit(struct drm_i915_private *dev_priv)
1147 {
1148 if (IS_TIGERLAKE(dev_priv))
1149 /*
1150 * Writes to CURSURFLIVE in TGL are causing IOMMU errors and
1151 * visual glitches that are often reproduced when executing
1152 * CPU intensive workloads while a eDP 4K panel is attached.
1153 *
1154 * Manually exiting PSR causes the frontbuffer to be updated
1155 * without glitches and the IOMMU errors are also gone but
1156 * this comes at the cost of less time with PSR active.
1157 *
1158 * So using this workaround until this issue is root caused
1159 * and a better fix is found.
1160 */
1161 intel_psr_exit(dev_priv);
1162 else if (INTEL_GEN(dev_priv) >= 9)
1163 /*
1164 * Display WA #0884: skl+
1165 * This documented WA for bxt can be safely applied
1166 * broadly so we can force HW tracking to exit PSR
1167 * instead of disabling and re-enabling.
1168 * Workaround tells us to write 0 to CUR_SURFLIVE_A,
1169 * but it makes more sense write to the current active
1170 * pipe.
1171 */
1172 intel_de_write(dev_priv, CURSURFLIVE(dev_priv->psr.pipe), 0);
1173 else
1174 /*
1175 * A write to CURSURFLIVE do not cause HW tracking to exit PSR
1176 * on older gens so doing the manual exit instead.
1177 */
1178 intel_psr_exit(dev_priv);
1179 }
1180
1181 void intel_psr2_program_plane_sel_fetch(struct intel_plane *plane,
1182 const struct intel_crtc_state *crtc_state,
1183 const struct intel_plane_state *plane_state,
1184 int color_plane)
1185 {
1186 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1187 enum pipe pipe = plane->pipe;
1188 u32 val;
1189
1190 if (!crtc_state->enable_psr2_sel_fetch)
1191 return;
1192
1193 val = plane_state ? plane_state->ctl : 0;
1194 val &= plane->id == PLANE_CURSOR ? val : PLANE_SEL_FETCH_CTL_ENABLE;
1195 intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_CTL(pipe, plane->id), val);
1196 if (!val || plane->id == PLANE_CURSOR)
1197 return;
1198
1199 val = plane_state->uapi.dst.y1 << 16 | plane_state->uapi.dst.x1;
1200 intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_POS(pipe, plane->id), val);
1201
1202 val = plane_state->color_plane[color_plane].y << 16;
1203 val |= plane_state->color_plane[color_plane].x;
1204 intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_OFFSET(pipe, plane->id),
1205 val);
1206
1207 /* Sizes are 0 based */
1208 val = ((drm_rect_height(&plane_state->uapi.src) >> 16) - 1) << 16;
1209 val |= (drm_rect_width(&plane_state->uapi.src) >> 16) - 1;
1210 intel_de_write_fw(dev_priv, PLANE_SEL_FETCH_SIZE(pipe, plane->id), val);
1211 }
1212
1213 void intel_psr2_program_trans_man_trk_ctl(const struct intel_crtc_state *crtc_state)
1214 {
1215 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1216 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1217 struct i915_psr *psr = &dev_priv->psr;
1218
1219 if (!HAS_PSR2_SEL_FETCH(dev_priv) ||
1220 !crtc_state->enable_psr2_sel_fetch)
1221 return;
1222
1223 intel_de_write(dev_priv, PSR2_MAN_TRK_CTL(psr->transcoder),
1224 crtc_state->psr2_man_track_ctl);
1225 }
1226
1227 static void psr2_man_trk_ctl_calc(struct intel_crtc_state *crtc_state,
1228 struct drm_rect *clip, bool full_update)
1229 {
1230 u32 val = PSR2_MAN_TRK_CTL_ENABLE;
1231
1232 if (full_update) {
1233 val |= PSR2_MAN_TRK_CTL_SF_SINGLE_FULL_FRAME;
1234 goto exit;
1235 }
1236
1237 if (clip->y1 == -1)
1238 goto exit;
1239
1240 val |= PSR2_MAN_TRK_CTL_SF_PARTIAL_FRAME_UPDATE;
1241 val |= PSR2_MAN_TRK_CTL_SU_REGION_START_ADDR(clip->y1 / 4 + 1);
1242 val |= PSR2_MAN_TRK_CTL_SU_REGION_END_ADDR(DIV_ROUND_UP(clip->y2, 4) + 1);
1243 exit:
1244 crtc_state->psr2_man_track_ctl = val;
1245 }
1246
1247 static void clip_area_update(struct drm_rect *overlap_damage_area,
1248 struct drm_rect *damage_area)
1249 {
1250 if (overlap_damage_area->y1 == -1) {
1251 overlap_damage_area->y1 = damage_area->y1;
1252 overlap_damage_area->y2 = damage_area->y2;
1253 return;
1254 }
1255
1256 if (damage_area->y1 < overlap_damage_area->y1)
1257 overlap_damage_area->y1 = damage_area->y1;
1258
1259 if (damage_area->y2 > overlap_damage_area->y2)
1260 overlap_damage_area->y2 = damage_area->y2;
1261 }
1262
1263 int intel_psr2_sel_fetch_update(struct intel_atomic_state *state,
1264 struct intel_crtc *crtc)
1265 {
1266 struct intel_crtc_state *crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
1267 struct intel_plane_state *new_plane_state, *old_plane_state;
1268 struct drm_rect pipe_clip = { .y1 = -1 };
1269 struct intel_plane *plane;
1270 bool full_update = false;
1271 int i, ret;
1272
1273 if (!crtc_state->enable_psr2_sel_fetch)
1274 return 0;
1275
1276 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
1277 if (ret)
1278 return ret;
1279
1280 for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
1281 new_plane_state, i) {
1282 struct drm_rect temp;
1283
1284 if (new_plane_state->uapi.crtc != crtc_state->uapi.crtc)
1285 continue;
1286
1287 /*
1288 * TODO: Not clear how to handle planes with negative position,
1289 * also planes are not updated if they have a negative X
1290 * position so for now doing a full update in this cases
1291 */
1292 if (new_plane_state->uapi.dst.y1 < 0 ||
1293 new_plane_state->uapi.dst.x1 < 0) {
1294 full_update = true;
1295 break;
1296 }
1297
1298 if (!new_plane_state->uapi.visible)
1299 continue;
1300
1301 /*
1302 * For now doing a selective fetch in the whole plane area,
1303 * optimizations will come in the future.
1304 */
1305 temp.y1 = new_plane_state->uapi.dst.y1;
1306 temp.y2 = new_plane_state->uapi.dst.y2;
1307 clip_area_update(&pipe_clip, &temp);
1308 }
1309
1310 psr2_man_trk_ctl_calc(crtc_state, &pipe_clip, full_update);
1311 return 0;
1312 }
1313
1314 /**
1315 * intel_psr_update - Update PSR state
1316 * @intel_dp: Intel DP
1317 * @crtc_state: new CRTC state
1318 * @conn_state: new CONNECTOR state
1319 *
1320 * This functions will update PSR states, disabling, enabling or switching PSR
1321 * version when executing fastsets. For full modeset, intel_psr_disable() and
1322 * intel_psr_enable() should be called instead.
1323 */
1324 void intel_psr_update(struct intel_dp *intel_dp,
1325 const struct intel_crtc_state *crtc_state,
1326 const struct drm_connector_state *conn_state)
1327 {
1328 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1329 struct i915_psr *psr = &dev_priv->psr;
1330 bool enable, psr2_enable;
1331
1332 if (!CAN_PSR(dev_priv) || READ_ONCE(psr->dp) != intel_dp)
1333 return;
1334
1335 mutex_lock(&dev_priv->psr.lock);
1336
1337 enable = crtc_state->has_psr;
1338 psr2_enable = crtc_state->has_psr2;
1339
1340 if (enable == psr->enabled && psr2_enable == psr->psr2_enabled) {
1341 /* Force a PSR exit when enabling CRC to avoid CRC timeouts */
1342 if (crtc_state->crc_enabled && psr->enabled)
1343 psr_force_hw_tracking_exit(dev_priv);
1344 else if (INTEL_GEN(dev_priv) < 9 && psr->enabled) {
1345 /*
1346 * Activate PSR again after a force exit when enabling
1347 * CRC in older gens
1348 */
1349 if (!dev_priv->psr.active &&
1350 !dev_priv->psr.busy_frontbuffer_bits)
1351 schedule_work(&dev_priv->psr.work);
1352 }
1353
1354 goto unlock;
1355 }
1356
1357 if (psr->enabled)
1358 intel_psr_disable_locked(intel_dp);
1359
1360 if (enable)
1361 intel_psr_enable_locked(dev_priv, crtc_state, conn_state);
1362
1363 unlock:
1364 mutex_unlock(&dev_priv->psr.lock);
1365 }
1366
1367 /**
1368 * intel_psr_wait_for_idle - wait for PSR1 to idle
1369 * @new_crtc_state: new CRTC state
1370 * @out_value: PSR status in case of failure
1371 *
1372 * This function is expected to be called from pipe_update_start() where it is
1373 * not expected to race with PSR enable or disable.
1374 *
1375 * Returns: 0 on success or -ETIMEOUT if PSR status does not idle.
1376 */
1377 int intel_psr_wait_for_idle(const struct intel_crtc_state *new_crtc_state,
1378 u32 *out_value)
1379 {
1380 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1381 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1382
1383 if (!dev_priv->psr.enabled || !new_crtc_state->has_psr)
1384 return 0;
1385
1386 /* FIXME: Update this for PSR2 if we need to wait for idle */
1387 if (READ_ONCE(dev_priv->psr.psr2_enabled))
1388 return 0;
1389
1390 /*
1391 * From bspec: Panel Self Refresh (BDW+)
1392 * Max. time for PSR to idle = Inverse of the refresh rate + 6 ms of
1393 * exit training time + 1.5 ms of aux channel handshake. 50 ms is
1394 * defensive enough to cover everything.
1395 */
1396
1397 return __intel_wait_for_register(&dev_priv->uncore,
1398 EDP_PSR_STATUS(dev_priv->psr.transcoder),
1399 EDP_PSR_STATUS_STATE_MASK,
1400 EDP_PSR_STATUS_STATE_IDLE, 2, 50,
1401 out_value);
1402 }
1403
1404 static bool __psr_wait_for_idle_locked(struct drm_i915_private *dev_priv)
1405 {
1406 i915_reg_t reg;
1407 u32 mask;
1408 int err;
1409
1410 if (!dev_priv->psr.enabled)
1411 return false;
1412
1413 if (dev_priv->psr.psr2_enabled) {
1414 reg = EDP_PSR2_STATUS(dev_priv->psr.transcoder);
1415 mask = EDP_PSR2_STATUS_STATE_MASK;
1416 } else {
1417 reg = EDP_PSR_STATUS(dev_priv->psr.transcoder);
1418 mask = EDP_PSR_STATUS_STATE_MASK;
1419 }
1420
1421 mutex_unlock(&dev_priv->psr.lock);
1422
1423 err = intel_de_wait_for_clear(dev_priv, reg, mask, 50);
1424 if (err)
1425 drm_err(&dev_priv->drm,
1426 "Timed out waiting for PSR Idle for re-enable\n");
1427
1428 /* After the unlocked wait, verify that PSR is still wanted! */
1429 mutex_lock(&dev_priv->psr.lock);
1430 return err == 0 && dev_priv->psr.enabled;
1431 }
1432
1433 static int intel_psr_fastset_force(struct drm_i915_private *dev_priv)
1434 {
1435 struct drm_connector_list_iter conn_iter;
1436 struct drm_device *dev = &dev_priv->drm;
1437 struct drm_modeset_acquire_ctx ctx;
1438 struct drm_atomic_state *state;
1439 struct drm_connector *conn;
1440 int err = 0;
1441
1442 state = drm_atomic_state_alloc(dev);
1443 if (!state)
1444 return -ENOMEM;
1445
1446 drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE);
1447 state->acquire_ctx = &ctx;
1448
1449 retry:
1450
1451 drm_connector_list_iter_begin(dev, &conn_iter);
1452 drm_for_each_connector_iter(conn, &conn_iter) {
1453 struct drm_connector_state *conn_state;
1454 struct drm_crtc_state *crtc_state;
1455
1456 if (conn->connector_type != DRM_MODE_CONNECTOR_eDP)
1457 continue;
1458
1459 conn_state = drm_atomic_get_connector_state(state, conn);
1460 if (IS_ERR(conn_state)) {
1461 err = PTR_ERR(conn_state);
1462 break;
1463 }
1464
1465 if (!conn_state->crtc)
1466 continue;
1467
1468 crtc_state = drm_atomic_get_crtc_state(state, conn_state->crtc);
1469 if (IS_ERR(crtc_state)) {
1470 err = PTR_ERR(crtc_state);
1471 break;
1472 }
1473
1474 /* Mark mode as changed to trigger a pipe->update() */
1475 crtc_state->mode_changed = true;
1476 }
1477 drm_connector_list_iter_end(&conn_iter);
1478
1479 if (err == 0)
1480 err = drm_atomic_commit(state);
1481
1482 if (err == -EDEADLK) {
1483 drm_atomic_state_clear(state);
1484 err = drm_modeset_backoff(&ctx);
1485 if (!err)
1486 goto retry;
1487 }
1488
1489 drm_modeset_drop_locks(&ctx);
1490 drm_modeset_acquire_fini(&ctx);
1491 drm_atomic_state_put(state);
1492
1493 return err;
1494 }
1495
1496 int intel_psr_debug_set(struct drm_i915_private *dev_priv, u64 val)
1497 {
1498 const u32 mode = val & I915_PSR_DEBUG_MODE_MASK;
1499 u32 old_mode;
1500 int ret;
1501
1502 if (val & ~(I915_PSR_DEBUG_IRQ | I915_PSR_DEBUG_MODE_MASK) ||
1503 mode > I915_PSR_DEBUG_FORCE_PSR1) {
1504 drm_dbg_kms(&dev_priv->drm, "Invalid debug mask %llx\n", val);
1505 return -EINVAL;
1506 }
1507
1508 ret = mutex_lock_interruptible(&dev_priv->psr.lock);
1509 if (ret)
1510 return ret;
1511
1512 old_mode = dev_priv->psr.debug & I915_PSR_DEBUG_MODE_MASK;
1513 dev_priv->psr.debug = val;
1514
1515 /*
1516 * Do it right away if it's already enabled, otherwise it will be done
1517 * when enabling the source.
1518 */
1519 if (dev_priv->psr.enabled)
1520 psr_irq_control(dev_priv);
1521
1522 mutex_unlock(&dev_priv->psr.lock);
1523
1524 if (old_mode != mode)
1525 ret = intel_psr_fastset_force(dev_priv);
1526
1527 return ret;
1528 }
1529
1530 static void intel_psr_handle_irq(struct drm_i915_private *dev_priv)
1531 {
1532 struct i915_psr *psr = &dev_priv->psr;
1533
1534 intel_psr_disable_locked(psr->dp);
1535 psr->sink_not_reliable = true;
1536 /* let's make sure that sink is awaken */
1537 drm_dp_dpcd_writeb(&psr->dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
1538 }
1539
1540 static void intel_psr_work(struct work_struct *work)
1541 {
1542 struct drm_i915_private *dev_priv =
1543 container_of(work, typeof(*dev_priv), psr.work);
1544
1545 mutex_lock(&dev_priv->psr.lock);
1546
1547 if (!dev_priv->psr.enabled)
1548 goto unlock;
1549
1550 if (READ_ONCE(dev_priv->psr.irq_aux_error))
1551 intel_psr_handle_irq(dev_priv);
1552
1553 /*
1554 * We have to make sure PSR is ready for re-enable
1555 * otherwise it keeps disabled until next full enable/disable cycle.
1556 * PSR might take some time to get fully disabled
1557 * and be ready for re-enable.
1558 */
1559 if (!__psr_wait_for_idle_locked(dev_priv))
1560 goto unlock;
1561
1562 /*
1563 * The delayed work can race with an invalidate hence we need to
1564 * recheck. Since psr_flush first clears this and then reschedules we
1565 * won't ever miss a flush when bailing out here.
1566 */
1567 if (dev_priv->psr.busy_frontbuffer_bits || dev_priv->psr.active)
1568 goto unlock;
1569
1570 intel_psr_activate(dev_priv->psr.dp);
1571 unlock:
1572 mutex_unlock(&dev_priv->psr.lock);
1573 }
1574
1575 /**
1576 * intel_psr_invalidate - Invalidade PSR
1577 * @dev_priv: i915 device
1578 * @frontbuffer_bits: frontbuffer plane tracking bits
1579 * @origin: which operation caused the invalidate
1580 *
1581 * Since the hardware frontbuffer tracking has gaps we need to integrate
1582 * with the software frontbuffer tracking. This function gets called every
1583 * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
1584 * disabled if the frontbuffer mask contains a buffer relevant to PSR.
1585 *
1586 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
1587 */
1588 void intel_psr_invalidate(struct drm_i915_private *dev_priv,
1589 unsigned frontbuffer_bits, enum fb_op_origin origin)
1590 {
1591 if (!CAN_PSR(dev_priv))
1592 return;
1593
1594 if (origin == ORIGIN_FLIP)
1595 return;
1596
1597 mutex_lock(&dev_priv->psr.lock);
1598 if (!dev_priv->psr.enabled) {
1599 mutex_unlock(&dev_priv->psr.lock);
1600 return;
1601 }
1602
1603 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe);
1604 dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
1605
1606 if (frontbuffer_bits)
1607 intel_psr_exit(dev_priv);
1608
1609 mutex_unlock(&dev_priv->psr.lock);
1610 }
1611
1612 /*
1613 * When we will be completely rely on PSR2 S/W tracking in future,
1614 * intel_psr_flush() will invalidate and flush the PSR for ORIGIN_FLIP
1615 * event also therefore tgl_dc3co_flush() require to be changed
1616 * accordingly in future.
1617 */
1618 static void
1619 tgl_dc3co_flush(struct drm_i915_private *dev_priv,
1620 unsigned int frontbuffer_bits, enum fb_op_origin origin)
1621 {
1622 mutex_lock(&dev_priv->psr.lock);
1623
1624 if (!dev_priv->psr.dc3co_enabled)
1625 goto unlock;
1626
1627 if (!dev_priv->psr.psr2_enabled || !dev_priv->psr.active)
1628 goto unlock;
1629
1630 /*
1631 * At every frontbuffer flush flip event modified delay of delayed work,
1632 * when delayed work schedules that means display has been idle.
1633 */
1634 if (!(frontbuffer_bits &
1635 INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe)))
1636 goto unlock;
1637
1638 tgl_psr2_enable_dc3co(dev_priv);
1639 mod_delayed_work(system_wq, &dev_priv->psr.dc3co_work,
1640 dev_priv->psr.dc3co_exit_delay);
1641
1642 unlock:
1643 mutex_unlock(&dev_priv->psr.lock);
1644 }
1645
1646 /**
1647 * intel_psr_flush - Flush PSR
1648 * @dev_priv: i915 device
1649 * @frontbuffer_bits: frontbuffer plane tracking bits
1650 * @origin: which operation caused the flush
1651 *
1652 * Since the hardware frontbuffer tracking has gaps we need to integrate
1653 * with the software frontbuffer tracking. This function gets called every
1654 * time frontbuffer rendering has completed and flushed out to memory. PSR
1655 * can be enabled again if no other frontbuffer relevant to PSR is dirty.
1656 *
1657 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
1658 */
1659 void intel_psr_flush(struct drm_i915_private *dev_priv,
1660 unsigned frontbuffer_bits, enum fb_op_origin origin)
1661 {
1662 if (!CAN_PSR(dev_priv))
1663 return;
1664
1665 if (origin == ORIGIN_FLIP) {
1666 tgl_dc3co_flush(dev_priv, frontbuffer_bits, origin);
1667 return;
1668 }
1669
1670 mutex_lock(&dev_priv->psr.lock);
1671 if (!dev_priv->psr.enabled) {
1672 mutex_unlock(&dev_priv->psr.lock);
1673 return;
1674 }
1675
1676 frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe);
1677 dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
1678
1679 /* By definition flush = invalidate + flush */
1680 if (frontbuffer_bits)
1681 psr_force_hw_tracking_exit(dev_priv);
1682
1683 if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
1684 schedule_work(&dev_priv->psr.work);
1685 mutex_unlock(&dev_priv->psr.lock);
1686 }
1687
1688 /**
1689 * intel_psr_init - Init basic PSR work and mutex.
1690 * @dev_priv: i915 device private
1691 *
1692 * This function is called only once at driver load to initialize basic
1693 * PSR stuff.
1694 */
1695 void intel_psr_init(struct drm_i915_private *dev_priv)
1696 {
1697 if (!HAS_PSR(dev_priv))
1698 return;
1699
1700 if (!dev_priv->psr.sink_support)
1701 return;
1702
1703 if (IS_HASWELL(dev_priv))
1704 /*
1705 * HSW don't have PSR registers on the same space as transcoder
1706 * so set this to a value that when subtract to the register
1707 * in transcoder space results in the right offset for HSW
1708 */
1709 dev_priv->hsw_psr_mmio_adjust = _SRD_CTL_EDP - _HSW_EDP_PSR_BASE;
1710
1711 if (dev_priv->params.enable_psr == -1)
1712 if (INTEL_GEN(dev_priv) < 9 || !dev_priv->vbt.psr.enable)
1713 dev_priv->params.enable_psr = 0;
1714
1715 /* Set link_standby x link_off defaults */
1716 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1717 /* HSW and BDW require workarounds that we don't implement. */
1718 dev_priv->psr.link_standby = false;
1719 else if (INTEL_GEN(dev_priv) < 12)
1720 /* For new platforms up to TGL let's respect VBT back again */
1721 dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link;
1722
1723 INIT_WORK(&dev_priv->psr.work, intel_psr_work);
1724 INIT_DELAYED_WORK(&dev_priv->psr.dc3co_work, tgl_dc3co_disable_work);
1725 mutex_init(&dev_priv->psr.lock);
1726 }
1727
1728 static int psr_get_status_and_error_status(struct intel_dp *intel_dp,
1729 u8 *status, u8 *error_status)
1730 {
1731 struct drm_dp_aux *aux = &intel_dp->aux;
1732 int ret;
1733
1734 ret = drm_dp_dpcd_readb(aux, DP_PSR_STATUS, status);
1735 if (ret != 1)
1736 return ret;
1737
1738 ret = drm_dp_dpcd_readb(aux, DP_PSR_ERROR_STATUS, error_status);
1739 if (ret != 1)
1740 return ret;
1741
1742 *status = *status & DP_PSR_SINK_STATE_MASK;
1743
1744 return 0;
1745 }
1746
1747 static void psr_alpm_check(struct intel_dp *intel_dp)
1748 {
1749 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1750 struct drm_dp_aux *aux = &intel_dp->aux;
1751 struct i915_psr *psr = &dev_priv->psr;
1752 u8 val;
1753 int r;
1754
1755 if (!psr->psr2_enabled)
1756 return;
1757
1758 r = drm_dp_dpcd_readb(aux, DP_RECEIVER_ALPM_STATUS, &val);
1759 if (r != 1) {
1760 drm_err(&dev_priv->drm, "Error reading ALPM status\n");
1761 return;
1762 }
1763
1764 if (val & DP_ALPM_LOCK_TIMEOUT_ERROR) {
1765 intel_psr_disable_locked(intel_dp);
1766 psr->sink_not_reliable = true;
1767 drm_dbg_kms(&dev_priv->drm,
1768 "ALPM lock timeout error, disabling PSR\n");
1769
1770 /* Clearing error */
1771 drm_dp_dpcd_writeb(aux, DP_RECEIVER_ALPM_STATUS, val);
1772 }
1773 }
1774
1775 static void psr_capability_changed_check(struct intel_dp *intel_dp)
1776 {
1777 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1778 struct i915_psr *psr = &dev_priv->psr;
1779 u8 val;
1780 int r;
1781
1782 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_ESI, &val);
1783 if (r != 1) {
1784 drm_err(&dev_priv->drm, "Error reading DP_PSR_ESI\n");
1785 return;
1786 }
1787
1788 if (val & DP_PSR_CAPS_CHANGE) {
1789 intel_psr_disable_locked(intel_dp);
1790 psr->sink_not_reliable = true;
1791 drm_dbg_kms(&dev_priv->drm,
1792 "Sink PSR capability changed, disabling PSR\n");
1793
1794 /* Clearing it */
1795 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ESI, val);
1796 }
1797 }
1798
1799 void intel_psr_short_pulse(struct intel_dp *intel_dp)
1800 {
1801 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1802 struct i915_psr *psr = &dev_priv->psr;
1803 u8 status, error_status;
1804 const u8 errors = DP_PSR_RFB_STORAGE_ERROR |
1805 DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR |
1806 DP_PSR_LINK_CRC_ERROR;
1807
1808 if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp))
1809 return;
1810
1811 mutex_lock(&psr->lock);
1812
1813 if (!psr->enabled || psr->dp != intel_dp)
1814 goto exit;
1815
1816 if (psr_get_status_and_error_status(intel_dp, &status, &error_status)) {
1817 drm_err(&dev_priv->drm,
1818 "Error reading PSR status or error status\n");
1819 goto exit;
1820 }
1821
1822 if (status == DP_PSR_SINK_INTERNAL_ERROR || (error_status & errors)) {
1823 intel_psr_disable_locked(intel_dp);
1824 psr->sink_not_reliable = true;
1825 }
1826
1827 if (status == DP_PSR_SINK_INTERNAL_ERROR && !error_status)
1828 drm_dbg_kms(&dev_priv->drm,
1829 "PSR sink internal error, disabling PSR\n");
1830 if (error_status & DP_PSR_RFB_STORAGE_ERROR)
1831 drm_dbg_kms(&dev_priv->drm,
1832 "PSR RFB storage error, disabling PSR\n");
1833 if (error_status & DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR)
1834 drm_dbg_kms(&dev_priv->drm,
1835 "PSR VSC SDP uncorrectable error, disabling PSR\n");
1836 if (error_status & DP_PSR_LINK_CRC_ERROR)
1837 drm_dbg_kms(&dev_priv->drm,
1838 "PSR Link CRC error, disabling PSR\n");
1839
1840 if (error_status & ~errors)
1841 drm_err(&dev_priv->drm,
1842 "PSR_ERROR_STATUS unhandled errors %x\n",
1843 error_status & ~errors);
1844 /* clear status register */
1845 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ERROR_STATUS, error_status);
1846
1847 psr_alpm_check(intel_dp);
1848 psr_capability_changed_check(intel_dp);
1849
1850 exit:
1851 mutex_unlock(&psr->lock);
1852 }
1853
1854 bool intel_psr_enabled(struct intel_dp *intel_dp)
1855 {
1856 struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1857 bool ret;
1858
1859 if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp))
1860 return false;
1861
1862 mutex_lock(&dev_priv->psr.lock);
1863 ret = (dev_priv->psr.dp == intel_dp && dev_priv->psr.enabled);
1864 mutex_unlock(&dev_priv->psr.lock);
1865
1866 return ret;
1867 }