]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/gpu/drm/i915/gem/i915_gem_mman.c
Merge tag 'usb-5.6-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / gem / i915_gem_mman.c
1 /*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright © 2014-2016 Intel Corporation
5 */
6
7 #include <linux/anon_inodes.h>
8 #include <linux/mman.h>
9 #include <linux/pfn_t.h>
10 #include <linux/sizes.h>
11
12 #include "gt/intel_gt.h"
13 #include "gt/intel_gt_requests.h"
14
15 #include "i915_drv.h"
16 #include "i915_gem_gtt.h"
17 #include "i915_gem_ioctls.h"
18 #include "i915_gem_object.h"
19 #include "i915_gem_mman.h"
20 #include "i915_trace.h"
21 #include "i915_user_extensions.h"
22 #include "i915_vma.h"
23
24 static inline bool
25 __vma_matches(struct vm_area_struct *vma, struct file *filp,
26 unsigned long addr, unsigned long size)
27 {
28 if (vma->vm_file != filp)
29 return false;
30
31 return vma->vm_start == addr &&
32 (vma->vm_end - vma->vm_start) == PAGE_ALIGN(size);
33 }
34
35 /**
36 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
37 * it is mapped to.
38 * @dev: drm device
39 * @data: ioctl data blob
40 * @file: drm file
41 *
42 * While the mapping holds a reference on the contents of the object, it doesn't
43 * imply a ref on the object itself.
44 *
45 * IMPORTANT:
46 *
47 * DRM driver writers who look a this function as an example for how to do GEM
48 * mmap support, please don't implement mmap support like here. The modern way
49 * to implement DRM mmap support is with an mmap offset ioctl (like
50 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
51 * That way debug tooling like valgrind will understand what's going on, hiding
52 * the mmap call in a driver private ioctl will break that. The i915 driver only
53 * does cpu mmaps this way because we didn't know better.
54 */
55 int
56 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
57 struct drm_file *file)
58 {
59 struct drm_i915_gem_mmap *args = data;
60 struct drm_i915_gem_object *obj;
61 unsigned long addr;
62
63 if (args->flags & ~(I915_MMAP_WC))
64 return -EINVAL;
65
66 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
67 return -ENODEV;
68
69 obj = i915_gem_object_lookup(file, args->handle);
70 if (!obj)
71 return -ENOENT;
72
73 /* prime objects have no backing filp to GEM mmap
74 * pages from.
75 */
76 if (!obj->base.filp) {
77 addr = -ENXIO;
78 goto err;
79 }
80
81 if (range_overflows(args->offset, args->size, (u64)obj->base.size)) {
82 addr = -EINVAL;
83 goto err;
84 }
85
86 addr = vm_mmap(obj->base.filp, 0, args->size,
87 PROT_READ | PROT_WRITE, MAP_SHARED,
88 args->offset);
89 if (IS_ERR_VALUE(addr))
90 goto err;
91
92 if (args->flags & I915_MMAP_WC) {
93 struct mm_struct *mm = current->mm;
94 struct vm_area_struct *vma;
95
96 if (down_write_killable(&mm->mmap_sem)) {
97 addr = -EINTR;
98 goto err;
99 }
100 vma = find_vma(mm, addr);
101 if (vma && __vma_matches(vma, obj->base.filp, addr, args->size))
102 vma->vm_page_prot =
103 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
104 else
105 addr = -ENOMEM;
106 up_write(&mm->mmap_sem);
107 if (IS_ERR_VALUE(addr))
108 goto err;
109 }
110 i915_gem_object_put(obj);
111
112 args->addr_ptr = (u64)addr;
113 return 0;
114
115 err:
116 i915_gem_object_put(obj);
117 return addr;
118 }
119
120 static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
121 {
122 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
123 }
124
125 /**
126 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
127 *
128 * A history of the GTT mmap interface:
129 *
130 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
131 * aligned and suitable for fencing, and still fit into the available
132 * mappable space left by the pinned display objects. A classic problem
133 * we called the page-fault-of-doom where we would ping-pong between
134 * two objects that could not fit inside the GTT and so the memcpy
135 * would page one object in at the expense of the other between every
136 * single byte.
137 *
138 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
139 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
140 * object is too large for the available space (or simply too large
141 * for the mappable aperture!), a view is created instead and faulted
142 * into userspace. (This view is aligned and sized appropriately for
143 * fenced access.)
144 *
145 * 2 - Recognise WC as a separate cache domain so that we can flush the
146 * delayed writes via GTT before performing direct access via WC.
147 *
148 * 3 - Remove implicit set-domain(GTT) and synchronisation on initial
149 * pagefault; swapin remains transparent.
150 *
151 * 4 - Support multiple fault handlers per object depending on object's
152 * backing storage (a.k.a. MMAP_OFFSET).
153 *
154 * Restrictions:
155 *
156 * * snoopable objects cannot be accessed via the GTT. It can cause machine
157 * hangs on some architectures, corruption on others. An attempt to service
158 * a GTT page fault from a snoopable object will generate a SIGBUS.
159 *
160 * * the object must be able to fit into RAM (physical memory, though no
161 * limited to the mappable aperture).
162 *
163 *
164 * Caveats:
165 *
166 * * a new GTT page fault will synchronize rendering from the GPU and flush
167 * all data to system memory. Subsequent access will not be synchronized.
168 *
169 * * all mappings are revoked on runtime device suspend.
170 *
171 * * there are only 8, 16 or 32 fence registers to share between all users
172 * (older machines require fence register for display and blitter access
173 * as well). Contention of the fence registers will cause the previous users
174 * to be unmapped and any new access will generate new page faults.
175 *
176 * * running out of memory while servicing a fault may generate a SIGBUS,
177 * rather than the expected SIGSEGV.
178 */
179 int i915_gem_mmap_gtt_version(void)
180 {
181 return 4;
182 }
183
184 static inline struct i915_ggtt_view
185 compute_partial_view(const struct drm_i915_gem_object *obj,
186 pgoff_t page_offset,
187 unsigned int chunk)
188 {
189 struct i915_ggtt_view view;
190
191 if (i915_gem_object_is_tiled(obj))
192 chunk = roundup(chunk, tile_row_pages(obj));
193
194 view.type = I915_GGTT_VIEW_PARTIAL;
195 view.partial.offset = rounddown(page_offset, chunk);
196 view.partial.size =
197 min_t(unsigned int, chunk,
198 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
199
200 /* If the partial covers the entire object, just create a normal VMA. */
201 if (chunk >= obj->base.size >> PAGE_SHIFT)
202 view.type = I915_GGTT_VIEW_NORMAL;
203
204 return view;
205 }
206
207 static vm_fault_t i915_error_to_vmf_fault(int err)
208 {
209 switch (err) {
210 default:
211 WARN_ONCE(err, "unhandled error in %s: %i\n", __func__, err);
212 /* fallthrough */
213 case -EIO: /* shmemfs failure from swap device */
214 case -EFAULT: /* purged object */
215 case -ENODEV: /* bad object, how did you get here! */
216 case -ENXIO: /* unable to access backing store (on device) */
217 return VM_FAULT_SIGBUS;
218
219 case -ENOSPC: /* shmemfs allocation failure */
220 case -ENOMEM: /* our allocation failure */
221 return VM_FAULT_OOM;
222
223 case 0:
224 case -EAGAIN:
225 case -ERESTARTSYS:
226 case -EINTR:
227 case -EBUSY:
228 /*
229 * EBUSY is ok: this just means that another thread
230 * already did the job.
231 */
232 return VM_FAULT_NOPAGE;
233 }
234 }
235
236 static vm_fault_t vm_fault_cpu(struct vm_fault *vmf)
237 {
238 struct vm_area_struct *area = vmf->vma;
239 struct i915_mmap_offset *mmo = area->vm_private_data;
240 struct drm_i915_gem_object *obj = mmo->obj;
241 resource_size_t iomap;
242 int err;
243
244 /* Sanity check that we allow writing into this object */
245 if (unlikely(i915_gem_object_is_readonly(obj) &&
246 area->vm_flags & VM_WRITE))
247 return VM_FAULT_SIGBUS;
248
249 err = i915_gem_object_pin_pages(obj);
250 if (err)
251 goto out;
252
253 iomap = -1;
254 if (!i915_gem_object_type_has(obj, I915_GEM_OBJECT_HAS_STRUCT_PAGE)) {
255 iomap = obj->mm.region->iomap.base;
256 iomap -= obj->mm.region->region.start;
257 }
258
259 /* PTEs are revoked in obj->ops->put_pages() */
260 err = remap_io_sg(area,
261 area->vm_start, area->vm_end - area->vm_start,
262 obj->mm.pages->sgl, iomap);
263
264 if (area->vm_flags & VM_WRITE) {
265 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
266 obj->mm.dirty = true;
267 }
268
269 i915_gem_object_unpin_pages(obj);
270
271 out:
272 return i915_error_to_vmf_fault(err);
273 }
274
275 static vm_fault_t vm_fault_gtt(struct vm_fault *vmf)
276 {
277 #define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
278 struct vm_area_struct *area = vmf->vma;
279 struct i915_mmap_offset *mmo = area->vm_private_data;
280 struct drm_i915_gem_object *obj = mmo->obj;
281 struct drm_device *dev = obj->base.dev;
282 struct drm_i915_private *i915 = to_i915(dev);
283 struct intel_runtime_pm *rpm = &i915->runtime_pm;
284 struct i915_ggtt *ggtt = &i915->ggtt;
285 bool write = area->vm_flags & VM_WRITE;
286 intel_wakeref_t wakeref;
287 struct i915_vma *vma;
288 pgoff_t page_offset;
289 int srcu;
290 int ret;
291
292 /* Sanity check that we allow writing into this object */
293 if (i915_gem_object_is_readonly(obj) && write)
294 return VM_FAULT_SIGBUS;
295
296 /* We don't use vmf->pgoff since that has the fake offset */
297 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
298
299 trace_i915_gem_object_fault(obj, page_offset, true, write);
300
301 ret = i915_gem_object_pin_pages(obj);
302 if (ret)
303 goto err;
304
305 wakeref = intel_runtime_pm_get(rpm);
306
307 ret = intel_gt_reset_trylock(ggtt->vm.gt, &srcu);
308 if (ret)
309 goto err_rpm;
310
311 /* Now pin it into the GTT as needed */
312 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
313 PIN_MAPPABLE |
314 PIN_NONBLOCK /* NOWARN */ |
315 PIN_NOEVICT);
316 if (IS_ERR(vma)) {
317 /* Use a partial view if it is bigger than available space */
318 struct i915_ggtt_view view =
319 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
320 unsigned int flags;
321
322 flags = PIN_MAPPABLE | PIN_NOSEARCH;
323 if (view.type == I915_GGTT_VIEW_NORMAL)
324 flags |= PIN_NONBLOCK; /* avoid warnings for pinned */
325
326 /*
327 * Userspace is now writing through an untracked VMA, abandon
328 * all hope that the hardware is able to track future writes.
329 */
330
331 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
332 if (IS_ERR(vma)) {
333 flags = PIN_MAPPABLE;
334 view.type = I915_GGTT_VIEW_PARTIAL;
335 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
336 }
337
338 /* The entire mappable GGTT is pinned? Unexpected! */
339 GEM_BUG_ON(vma == ERR_PTR(-ENOSPC));
340 }
341 if (IS_ERR(vma)) {
342 ret = PTR_ERR(vma);
343 goto err_reset;
344 }
345
346 /* Access to snoopable pages through the GTT is incoherent. */
347 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(i915)) {
348 ret = -EFAULT;
349 goto err_unpin;
350 }
351
352 ret = i915_vma_pin_fence(vma);
353 if (ret)
354 goto err_unpin;
355
356 /* Finally, remap it using the new GTT offset */
357 ret = remap_io_mapping(area,
358 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
359 (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
360 min_t(u64, vma->size, area->vm_end - area->vm_start),
361 &ggtt->iomap);
362 if (ret)
363 goto err_fence;
364
365 assert_rpm_wakelock_held(rpm);
366
367 /* Mark as being mmapped into userspace for later revocation */
368 mutex_lock(&i915->ggtt.vm.mutex);
369 if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
370 list_add(&obj->userfault_link, &i915->ggtt.userfault_list);
371 mutex_unlock(&i915->ggtt.vm.mutex);
372
373 /* Track the mmo associated with the fenced vma */
374 vma->mmo = mmo;
375
376 if (IS_ACTIVE(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND))
377 intel_wakeref_auto(&i915->ggtt.userfault_wakeref,
378 msecs_to_jiffies_timeout(CONFIG_DRM_I915_USERFAULT_AUTOSUSPEND));
379
380 if (write) {
381 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
382 i915_vma_set_ggtt_write(vma);
383 obj->mm.dirty = true;
384 }
385
386 err_fence:
387 i915_vma_unpin_fence(vma);
388 err_unpin:
389 __i915_vma_unpin(vma);
390 err_reset:
391 intel_gt_reset_unlock(ggtt->vm.gt, srcu);
392 err_rpm:
393 intel_runtime_pm_put(rpm, wakeref);
394 i915_gem_object_unpin_pages(obj);
395 err:
396 return i915_error_to_vmf_fault(ret);
397 }
398
399 void __i915_gem_object_release_mmap_gtt(struct drm_i915_gem_object *obj)
400 {
401 struct i915_vma *vma;
402
403 GEM_BUG_ON(!obj->userfault_count);
404
405 for_each_ggtt_vma(vma, obj)
406 i915_vma_revoke_mmap(vma);
407
408 GEM_BUG_ON(obj->userfault_count);
409 }
410
411 /*
412 * It is vital that we remove the page mapping if we have mapped a tiled
413 * object through the GTT and then lose the fence register due to
414 * resource pressure. Similarly if the object has been moved out of the
415 * aperture, than pages mapped into userspace must be revoked. Removing the
416 * mapping will then trigger a page fault on the next user access, allowing
417 * fixup by vm_fault_gtt().
418 */
419 static void i915_gem_object_release_mmap_gtt(struct drm_i915_gem_object *obj)
420 {
421 struct drm_i915_private *i915 = to_i915(obj->base.dev);
422 intel_wakeref_t wakeref;
423
424 /*
425 * Serialisation between user GTT access and our code depends upon
426 * revoking the CPU's PTE whilst the mutex is held. The next user
427 * pagefault then has to wait until we release the mutex.
428 *
429 * Note that RPM complicates somewhat by adding an additional
430 * requirement that operations to the GGTT be made holding the RPM
431 * wakeref.
432 */
433 wakeref = intel_runtime_pm_get(&i915->runtime_pm);
434 mutex_lock(&i915->ggtt.vm.mutex);
435
436 if (!obj->userfault_count)
437 goto out;
438
439 __i915_gem_object_release_mmap_gtt(obj);
440
441 /*
442 * Ensure that the CPU's PTE are revoked and there are not outstanding
443 * memory transactions from userspace before we return. The TLB
444 * flushing implied above by changing the PTE above *should* be
445 * sufficient, an extra barrier here just provides us with a bit
446 * of paranoid documentation about our requirement to serialise
447 * memory writes before touching registers / GSM.
448 */
449 wmb();
450
451 out:
452 mutex_unlock(&i915->ggtt.vm.mutex);
453 intel_runtime_pm_put(&i915->runtime_pm, wakeref);
454 }
455
456 void i915_gem_object_release_mmap_offset(struct drm_i915_gem_object *obj)
457 {
458 struct i915_mmap_offset *mmo, *mn;
459
460 spin_lock(&obj->mmo.lock);
461 rbtree_postorder_for_each_entry_safe(mmo, mn,
462 &obj->mmo.offsets, offset) {
463 /*
464 * vma_node_unmap for GTT mmaps handled already in
465 * __i915_gem_object_release_mmap_gtt
466 */
467 if (mmo->mmap_type == I915_MMAP_TYPE_GTT)
468 continue;
469
470 spin_unlock(&obj->mmo.lock);
471 drm_vma_node_unmap(&mmo->vma_node,
472 obj->base.dev->anon_inode->i_mapping);
473 spin_lock(&obj->mmo.lock);
474 }
475 spin_unlock(&obj->mmo.lock);
476 }
477
478 /**
479 * i915_gem_object_release_mmap - remove physical page mappings
480 * @obj: obj in question
481 *
482 * Preserve the reservation of the mmapping with the DRM core code, but
483 * relinquish ownership of the pages back to the system.
484 */
485 void i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
486 {
487 i915_gem_object_release_mmap_gtt(obj);
488 i915_gem_object_release_mmap_offset(obj);
489 }
490
491 static struct i915_mmap_offset *
492 lookup_mmo(struct drm_i915_gem_object *obj,
493 enum i915_mmap_type mmap_type)
494 {
495 struct rb_node *rb;
496
497 spin_lock(&obj->mmo.lock);
498 rb = obj->mmo.offsets.rb_node;
499 while (rb) {
500 struct i915_mmap_offset *mmo =
501 rb_entry(rb, typeof(*mmo), offset);
502
503 if (mmo->mmap_type == mmap_type) {
504 spin_unlock(&obj->mmo.lock);
505 return mmo;
506 }
507
508 if (mmo->mmap_type < mmap_type)
509 rb = rb->rb_right;
510 else
511 rb = rb->rb_left;
512 }
513 spin_unlock(&obj->mmo.lock);
514
515 return NULL;
516 }
517
518 static struct i915_mmap_offset *
519 insert_mmo(struct drm_i915_gem_object *obj, struct i915_mmap_offset *mmo)
520 {
521 struct rb_node *rb, **p;
522
523 spin_lock(&obj->mmo.lock);
524 rb = NULL;
525 p = &obj->mmo.offsets.rb_node;
526 while (*p) {
527 struct i915_mmap_offset *pos;
528
529 rb = *p;
530 pos = rb_entry(rb, typeof(*pos), offset);
531
532 if (pos->mmap_type == mmo->mmap_type) {
533 spin_unlock(&obj->mmo.lock);
534 drm_vma_offset_remove(obj->base.dev->vma_offset_manager,
535 &mmo->vma_node);
536 kfree(mmo);
537 return pos;
538 }
539
540 if (pos->mmap_type < mmo->mmap_type)
541 p = &rb->rb_right;
542 else
543 p = &rb->rb_left;
544 }
545 rb_link_node(&mmo->offset, rb, p);
546 rb_insert_color(&mmo->offset, &obj->mmo.offsets);
547 spin_unlock(&obj->mmo.lock);
548
549 return mmo;
550 }
551
552 static struct i915_mmap_offset *
553 mmap_offset_attach(struct drm_i915_gem_object *obj,
554 enum i915_mmap_type mmap_type,
555 struct drm_file *file)
556 {
557 struct drm_i915_private *i915 = to_i915(obj->base.dev);
558 struct i915_mmap_offset *mmo;
559 int err;
560
561 mmo = lookup_mmo(obj, mmap_type);
562 if (mmo)
563 goto out;
564
565 mmo = kmalloc(sizeof(*mmo), GFP_KERNEL);
566 if (!mmo)
567 return ERR_PTR(-ENOMEM);
568
569 mmo->obj = obj;
570 mmo->mmap_type = mmap_type;
571 drm_vma_node_reset(&mmo->vma_node);
572
573 err = drm_vma_offset_add(obj->base.dev->vma_offset_manager,
574 &mmo->vma_node, obj->base.size / PAGE_SIZE);
575 if (likely(!err))
576 goto insert;
577
578 /* Attempt to reap some mmap space from dead objects */
579 err = intel_gt_retire_requests_timeout(&i915->gt, MAX_SCHEDULE_TIMEOUT);
580 if (err)
581 goto err;
582
583 i915_gem_drain_freed_objects(i915);
584 err = drm_vma_offset_add(obj->base.dev->vma_offset_manager,
585 &mmo->vma_node, obj->base.size / PAGE_SIZE);
586 if (err)
587 goto err;
588
589 insert:
590 mmo = insert_mmo(obj, mmo);
591 GEM_BUG_ON(lookup_mmo(obj, mmap_type) != mmo);
592 out:
593 if (file)
594 drm_vma_node_allow(&mmo->vma_node, file);
595 return mmo;
596
597 err:
598 kfree(mmo);
599 return ERR_PTR(err);
600 }
601
602 static int
603 __assign_mmap_offset(struct drm_file *file,
604 u32 handle,
605 enum i915_mmap_type mmap_type,
606 u64 *offset)
607 {
608 struct drm_i915_gem_object *obj;
609 struct i915_mmap_offset *mmo;
610 int err;
611
612 obj = i915_gem_object_lookup(file, handle);
613 if (!obj)
614 return -ENOENT;
615
616 if (mmap_type == I915_MMAP_TYPE_GTT &&
617 i915_gem_object_never_bind_ggtt(obj)) {
618 err = -ENODEV;
619 goto out;
620 }
621
622 if (mmap_type != I915_MMAP_TYPE_GTT &&
623 !i915_gem_object_type_has(obj,
624 I915_GEM_OBJECT_HAS_STRUCT_PAGE |
625 I915_GEM_OBJECT_HAS_IOMEM)) {
626 err = -ENODEV;
627 goto out;
628 }
629
630 mmo = mmap_offset_attach(obj, mmap_type, file);
631 if (IS_ERR(mmo)) {
632 err = PTR_ERR(mmo);
633 goto out;
634 }
635
636 *offset = drm_vma_node_offset_addr(&mmo->vma_node);
637 err = 0;
638 out:
639 i915_gem_object_put(obj);
640 return err;
641 }
642
643 int
644 i915_gem_dumb_mmap_offset(struct drm_file *file,
645 struct drm_device *dev,
646 u32 handle,
647 u64 *offset)
648 {
649 enum i915_mmap_type mmap_type;
650
651 if (boot_cpu_has(X86_FEATURE_PAT))
652 mmap_type = I915_MMAP_TYPE_WC;
653 else if (!i915_ggtt_has_aperture(&to_i915(dev)->ggtt))
654 return -ENODEV;
655 else
656 mmap_type = I915_MMAP_TYPE_GTT;
657
658 return __assign_mmap_offset(file, handle, mmap_type, offset);
659 }
660
661 /**
662 * i915_gem_mmap_offset_ioctl - prepare an object for GTT mmap'ing
663 * @dev: DRM device
664 * @data: GTT mapping ioctl data
665 * @file: GEM object info
666 *
667 * Simply returns the fake offset to userspace so it can mmap it.
668 * The mmap call will end up in drm_gem_mmap(), which will set things
669 * up so we can get faults in the handler above.
670 *
671 * The fault handler will take care of binding the object into the GTT
672 * (since it may have been evicted to make room for something), allocating
673 * a fence register, and mapping the appropriate aperture address into
674 * userspace.
675 */
676 int
677 i915_gem_mmap_offset_ioctl(struct drm_device *dev, void *data,
678 struct drm_file *file)
679 {
680 struct drm_i915_private *i915 = to_i915(dev);
681 struct drm_i915_gem_mmap_offset *args = data;
682 enum i915_mmap_type type;
683 int err;
684
685 /*
686 * Historically we failed to check args.pad and args.offset
687 * and so we cannot use those fields for user input and we cannot
688 * add -EINVAL for them as the ABI is fixed, i.e. old userspace
689 * may be feeding in garbage in those fields.
690 *
691 * if (args->pad) return -EINVAL; is verbotten!
692 */
693
694 err = i915_user_extensions(u64_to_user_ptr(args->extensions),
695 NULL, 0, NULL);
696 if (err)
697 return err;
698
699 switch (args->flags) {
700 case I915_MMAP_OFFSET_GTT:
701 if (!i915_ggtt_has_aperture(&i915->ggtt))
702 return -ENODEV;
703 type = I915_MMAP_TYPE_GTT;
704 break;
705
706 case I915_MMAP_OFFSET_WC:
707 if (!boot_cpu_has(X86_FEATURE_PAT))
708 return -ENODEV;
709 type = I915_MMAP_TYPE_WC;
710 break;
711
712 case I915_MMAP_OFFSET_WB:
713 type = I915_MMAP_TYPE_WB;
714 break;
715
716 case I915_MMAP_OFFSET_UC:
717 if (!boot_cpu_has(X86_FEATURE_PAT))
718 return -ENODEV;
719 type = I915_MMAP_TYPE_UC;
720 break;
721
722 default:
723 return -EINVAL;
724 }
725
726 return __assign_mmap_offset(file, args->handle, type, &args->offset);
727 }
728
729 static void vm_open(struct vm_area_struct *vma)
730 {
731 struct i915_mmap_offset *mmo = vma->vm_private_data;
732 struct drm_i915_gem_object *obj = mmo->obj;
733
734 GEM_BUG_ON(!obj);
735 i915_gem_object_get(obj);
736 }
737
738 static void vm_close(struct vm_area_struct *vma)
739 {
740 struct i915_mmap_offset *mmo = vma->vm_private_data;
741 struct drm_i915_gem_object *obj = mmo->obj;
742
743 GEM_BUG_ON(!obj);
744 i915_gem_object_put(obj);
745 }
746
747 static const struct vm_operations_struct vm_ops_gtt = {
748 .fault = vm_fault_gtt,
749 .open = vm_open,
750 .close = vm_close,
751 };
752
753 static const struct vm_operations_struct vm_ops_cpu = {
754 .fault = vm_fault_cpu,
755 .open = vm_open,
756 .close = vm_close,
757 };
758
759 static int singleton_release(struct inode *inode, struct file *file)
760 {
761 struct drm_i915_private *i915 = file->private_data;
762
763 cmpxchg(&i915->gem.mmap_singleton, file, NULL);
764 drm_dev_put(&i915->drm);
765
766 return 0;
767 }
768
769 static const struct file_operations singleton_fops = {
770 .owner = THIS_MODULE,
771 .release = singleton_release,
772 };
773
774 static struct file *mmap_singleton(struct drm_i915_private *i915)
775 {
776 struct file *file;
777
778 rcu_read_lock();
779 file = i915->gem.mmap_singleton;
780 if (file && !get_file_rcu(file))
781 file = NULL;
782 rcu_read_unlock();
783 if (file)
784 return file;
785
786 file = anon_inode_getfile("i915.gem", &singleton_fops, i915, O_RDWR);
787 if (IS_ERR(file))
788 return file;
789
790 /* Everyone shares a single global address space */
791 file->f_mapping = i915->drm.anon_inode->i_mapping;
792
793 smp_store_mb(i915->gem.mmap_singleton, file);
794 drm_dev_get(&i915->drm);
795
796 return file;
797 }
798
799 /*
800 * This overcomes the limitation in drm_gem_mmap's assignment of a
801 * drm_gem_object as the vma->vm_private_data. Since we need to
802 * be able to resolve multiple mmap offsets which could be tied
803 * to a single gem object.
804 */
805 int i915_gem_mmap(struct file *filp, struct vm_area_struct *vma)
806 {
807 struct drm_vma_offset_node *node;
808 struct drm_file *priv = filp->private_data;
809 struct drm_device *dev = priv->minor->dev;
810 struct drm_i915_gem_object *obj = NULL;
811 struct i915_mmap_offset *mmo = NULL;
812 struct file *anon;
813
814 if (drm_dev_is_unplugged(dev))
815 return -ENODEV;
816
817 rcu_read_lock();
818 drm_vma_offset_lock_lookup(dev->vma_offset_manager);
819 node = drm_vma_offset_exact_lookup_locked(dev->vma_offset_manager,
820 vma->vm_pgoff,
821 vma_pages(vma));
822 if (node && drm_vma_node_is_allowed(node, priv)) {
823 /*
824 * Skip 0-refcnted objects as it is in the process of being
825 * destroyed and will be invalid when the vma manager lock
826 * is released.
827 */
828 mmo = container_of(node, struct i915_mmap_offset, vma_node);
829 obj = i915_gem_object_get_rcu(mmo->obj);
830 }
831 drm_vma_offset_unlock_lookup(dev->vma_offset_manager);
832 rcu_read_unlock();
833 if (!obj)
834 return node ? -EACCES : -EINVAL;
835
836 if (i915_gem_object_is_readonly(obj)) {
837 if (vma->vm_flags & VM_WRITE) {
838 i915_gem_object_put(obj);
839 return -EINVAL;
840 }
841 vma->vm_flags &= ~VM_MAYWRITE;
842 }
843
844 anon = mmap_singleton(to_i915(dev));
845 if (IS_ERR(anon)) {
846 i915_gem_object_put(obj);
847 return PTR_ERR(anon);
848 }
849
850 vma->vm_flags |= VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
851 vma->vm_private_data = mmo;
852
853 /*
854 * We keep the ref on mmo->obj, not vm_file, but we require
855 * vma->vm_file->f_mapping, see vma_link(), for later revocation.
856 * Our userspace is accustomed to having per-file resource cleanup
857 * (i.e. contexts, objects and requests) on their close(fd), which
858 * requires avoiding extraneous references to their filp, hence why
859 * we prefer to use an anonymous file for their mmaps.
860 */
861 fput(vma->vm_file);
862 vma->vm_file = anon;
863
864 switch (mmo->mmap_type) {
865 case I915_MMAP_TYPE_WC:
866 vma->vm_page_prot =
867 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
868 vma->vm_ops = &vm_ops_cpu;
869 break;
870
871 case I915_MMAP_TYPE_WB:
872 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
873 vma->vm_ops = &vm_ops_cpu;
874 break;
875
876 case I915_MMAP_TYPE_UC:
877 vma->vm_page_prot =
878 pgprot_noncached(vm_get_page_prot(vma->vm_flags));
879 vma->vm_ops = &vm_ops_cpu;
880 break;
881
882 case I915_MMAP_TYPE_GTT:
883 vma->vm_page_prot =
884 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
885 vma->vm_ops = &vm_ops_gtt;
886 break;
887 }
888 vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
889
890 return 0;
891 }
892
893 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
894 #include "selftests/i915_gem_mman.c"
895 #endif