]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/gvt/cmd_parser.c
drm/i915/gvt: fix error return check for copy_gma_to_hva()
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / gvt / cmd_parser.c
1 /*
2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Ke Yu
25 * Kevin Tian <kevin.tian@intel.com>
26 * Zhiyuan Lv <zhiyuan.lv@intel.com>
27 *
28 * Contributors:
29 * Min He <min.he@intel.com>
30 * Ping Gao <ping.a.gao@intel.com>
31 * Tina Zhang <tina.zhang@intel.com>
32 * Yulei Zhang <yulei.zhang@intel.com>
33 * Zhi Wang <zhi.a.wang@intel.com>
34 *
35 */
36
37 #include <linux/slab.h>
38 #include "i915_drv.h"
39 #include "gvt.h"
40 #include "i915_pvinfo.h"
41 #include "trace.h"
42
43 #define INVALID_OP (~0U)
44
45 #define OP_LEN_MI 9
46 #define OP_LEN_2D 10
47 #define OP_LEN_3D_MEDIA 16
48 #define OP_LEN_MFX_VC 16
49 #define OP_LEN_VEBOX 16
50
51 #define CMD_TYPE(cmd) (((cmd) >> 29) & 7)
52
53 struct sub_op_bits {
54 int hi;
55 int low;
56 };
57 struct decode_info {
58 char *name;
59 int op_len;
60 int nr_sub_op;
61 struct sub_op_bits *sub_op;
62 };
63
64 #define MAX_CMD_BUDGET 0x7fffffff
65 #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15)
66 #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9)
67 #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1)
68
69 #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20)
70 #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10)
71 #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2)
72
73 /* Render Command Map */
74
75 /* MI_* command Opcode (28:23) */
76 #define OP_MI_NOOP 0x0
77 #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */
78 #define OP_MI_USER_INTERRUPT 0x2
79 #define OP_MI_WAIT_FOR_EVENT 0x3
80 #define OP_MI_FLUSH 0x4
81 #define OP_MI_ARB_CHECK 0x5
82 #define OP_MI_RS_CONTROL 0x6 /* HSW+ */
83 #define OP_MI_REPORT_HEAD 0x7
84 #define OP_MI_ARB_ON_OFF 0x8
85 #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */
86 #define OP_MI_BATCH_BUFFER_END 0xA
87 #define OP_MI_SUSPEND_FLUSH 0xB
88 #define OP_MI_PREDICATE 0xC /* IVB+ */
89 #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */
90 #define OP_MI_SET_APPID 0xE /* IVB+ */
91 #define OP_MI_RS_CONTEXT 0xF /* HSW+ */
92 #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */
93 #define OP_MI_DISPLAY_FLIP 0x14
94 #define OP_MI_SEMAPHORE_MBOX 0x16
95 #define OP_MI_SET_CONTEXT 0x18
96 #define OP_MI_MATH 0x1A
97 #define OP_MI_URB_CLEAR 0x19
98 #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */
99 #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */
100
101 #define OP_MI_STORE_DATA_IMM 0x20
102 #define OP_MI_STORE_DATA_INDEX 0x21
103 #define OP_MI_LOAD_REGISTER_IMM 0x22
104 #define OP_MI_UPDATE_GTT 0x23
105 #define OP_MI_STORE_REGISTER_MEM 0x24
106 #define OP_MI_FLUSH_DW 0x26
107 #define OP_MI_CLFLUSH 0x27
108 #define OP_MI_REPORT_PERF_COUNT 0x28
109 #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */
110 #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */
111 #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */
112 #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */
113 #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */
114 #define OP_MI_2E 0x2E /* BDW+ */
115 #define OP_MI_2F 0x2F /* BDW+ */
116 #define OP_MI_BATCH_BUFFER_START 0x31
117
118 /* Bit definition for dword 0 */
119 #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8)
120
121 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36
122
123 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
124 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
125 #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U)
126 #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U)
127
128 /* 2D command: Opcode (28:22) */
129 #define OP_2D(x) ((2<<7) | x)
130
131 #define OP_XY_SETUP_BLT OP_2D(0x1)
132 #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3)
133 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11)
134 #define OP_XY_PIXEL_BLT OP_2D(0x24)
135 #define OP_XY_SCANLINES_BLT OP_2D(0x25)
136 #define OP_XY_TEXT_BLT OP_2D(0x26)
137 #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31)
138 #define OP_XY_COLOR_BLT OP_2D(0x50)
139 #define OP_XY_PAT_BLT OP_2D(0x51)
140 #define OP_XY_MONO_PAT_BLT OP_2D(0x52)
141 #define OP_XY_SRC_COPY_BLT OP_2D(0x53)
142 #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54)
143 #define OP_XY_FULL_BLT OP_2D(0x55)
144 #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56)
145 #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57)
146 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58)
147 #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59)
148 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71)
149 #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72)
150 #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73)
151 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74)
152 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75)
153 #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76)
154 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77)
155
156 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
157 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
158 ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
159
160 #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03)
161
162 #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01)
163 #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02)
164 #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04)
165
166 #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B)
167
168 #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04)
169
170 #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0)
171 #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1)
172 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2)
173 #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3)
174 #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4)
175
176 #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0)
177 #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2)
178 #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3)
179 #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5)
180
181 #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
182 #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
183 #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
184 #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
185 #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08)
186 #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09)
187 #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A)
188 #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B)
189 #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */
190 #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E)
191 #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F)
192 #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10)
193 #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11)
194 #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12)
195 #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13)
196 #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14)
197 #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15)
198 #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16)
199 #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17)
200 #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18)
201 #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
202 #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
203 #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
204 #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
205 #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
206 #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
207 #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
208 #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
209 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
210 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
211 #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
212 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
213 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
214 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
215 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
216 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
218 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
219 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
220 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
221 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
223 #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
224 #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
225 #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
226 #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
227 #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
228 #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
229 #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
230 #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
231 #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
232 #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
233 #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
234 #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
235 #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
236 #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
237 #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
238 #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
239 #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
240 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
241 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
242 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
243 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
244 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
245 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
246 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
247
248 #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
249 #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
250 #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
251 #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
252 #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
253 #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
254 #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
255 #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
256 #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
257 #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
258 #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
259
260 #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00)
261 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02)
262 #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04)
263 #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05)
264 #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06)
265 #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07)
266 #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08)
267 #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A)
268 #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B)
269 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C)
270 #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D)
271 #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E)
272 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F)
273 #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10)
274 #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11)
275 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
276 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
277 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
278 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
280 #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17)
281 #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18)
282 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
283 #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
284 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
285 #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C)
286 #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00)
287 #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00)
288
289 /* VCCP Command Parser */
290
291 /*
292 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
293 * git://anongit.freedesktop.org/vaapi/intel-driver
294 * src/i965_defines.h
295 *
296 */
297
298 #define OP_MFX(pipeline, op, sub_opa, sub_opb) \
299 (3 << 13 | \
300 (pipeline) << 11 | \
301 (op) << 8 | \
302 (sub_opa) << 5 | \
303 (sub_opb))
304
305 #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */
306 #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */
307 #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */
308 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */
309 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */
310 #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */
311 #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */
312 #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */
313 #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */
314 #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */
315 #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */
316
317 #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */
318
319 #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */
320 #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */
321 #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */
322 #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */
323 #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */
324 #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */
325 #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */
326 #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */
327 #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */
328 #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */
329 #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */
330 #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */
331
332 #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */
333 #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */
334 #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */
335 #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */
336 #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */
337
338 #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */
339 #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */
340 #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */
341 #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */
342 #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */
343
344 #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */
345 #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */
346 #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */
347
348 #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0)
349 #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2)
350 #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8)
351
352 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
353 (3 << 13 | \
354 (pipeline) << 11 | \
355 (op) << 8 | \
356 (sub_opa) << 5 | \
357 (sub_opb))
358
359 #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0)
360 #define OP_VEB_STATE OP_VEB(2, 4, 0, 2)
361 #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3)
362
363 struct parser_exec_state;
364
365 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
366
367 #define GVT_CMD_HASH_BITS 7
368
369 /* which DWords need address fix */
370 #define ADDR_FIX_1(x1) (1 << (x1))
371 #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
372 #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
373 #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
374 #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
375
376 struct cmd_info {
377 char *name;
378 u32 opcode;
379
380 #define F_LEN_MASK (1U<<0)
381 #define F_LEN_CONST 1U
382 #define F_LEN_VAR 0U
383
384 /*
385 * command has its own ip advance logic
386 * e.g. MI_BATCH_START, MI_BATCH_END
387 */
388 #define F_IP_ADVANCE_CUSTOM (1<<1)
389
390 #define F_POST_HANDLE (1<<2)
391 u32 flag;
392
393 #define R_RCS (1 << RCS)
394 #define R_VCS1 (1 << VCS)
395 #define R_VCS2 (1 << VCS2)
396 #define R_VCS (R_VCS1 | R_VCS2)
397 #define R_BCS (1 << BCS)
398 #define R_VECS (1 << VECS)
399 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
400 /* rings that support this cmd: BLT/RCS/VCS/VECS */
401 uint16_t rings;
402
403 /* devices that support this cmd: SNB/IVB/HSW/... */
404 uint16_t devices;
405
406 /* which DWords are address that need fix up.
407 * bit 0 means a 32-bit non address operand in command
408 * bit 1 means address operand, which could be 32-bit
409 * or 64-bit depending on different architectures.(
410 * defined by "gmadr_bytes_in_cmd" in intel_gvt.
411 * No matter the address length, each address only takes
412 * one bit in the bitmap.
413 */
414 uint16_t addr_bitmap;
415
416 /* flag == F_LEN_CONST : command length
417 * flag == F_LEN_VAR : length bias bits
418 * Note: length is in DWord
419 */
420 uint8_t len;
421
422 parser_cmd_handler handler;
423 };
424
425 struct cmd_entry {
426 struct hlist_node hlist;
427 struct cmd_info *info;
428 };
429
430 enum {
431 RING_BUFFER_INSTRUCTION,
432 BATCH_BUFFER_INSTRUCTION,
433 BATCH_BUFFER_2ND_LEVEL,
434 };
435
436 enum {
437 GTT_BUFFER,
438 PPGTT_BUFFER
439 };
440
441 struct parser_exec_state {
442 struct intel_vgpu *vgpu;
443 int ring_id;
444
445 int buf_type;
446
447 /* batch buffer address type */
448 int buf_addr_type;
449
450 /* graphics memory address of ring buffer start */
451 unsigned long ring_start;
452 unsigned long ring_size;
453 unsigned long ring_head;
454 unsigned long ring_tail;
455
456 /* instruction graphics memory address */
457 unsigned long ip_gma;
458
459 /* mapped va of the instr_gma */
460 void *ip_va;
461 void *rb_va;
462
463 void *ret_bb_va;
464 /* next instruction when return from batch buffer to ring buffer */
465 unsigned long ret_ip_gma_ring;
466
467 /* next instruction when return from 2nd batch buffer to batch buffer */
468 unsigned long ret_ip_gma_bb;
469
470 /* batch buffer address type (GTT or PPGTT)
471 * used when ret from 2nd level batch buffer
472 */
473 int saved_buf_addr_type;
474
475 struct cmd_info *info;
476
477 struct intel_vgpu_workload *workload;
478 };
479
480 #define gmadr_dw_number(s) \
481 (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
482
483 static unsigned long bypass_scan_mask = 0;
484
485 /* ring ALL, type = 0 */
486 static struct sub_op_bits sub_op_mi[] = {
487 {31, 29},
488 {28, 23},
489 };
490
491 static struct decode_info decode_info_mi = {
492 "MI",
493 OP_LEN_MI,
494 ARRAY_SIZE(sub_op_mi),
495 sub_op_mi,
496 };
497
498 /* ring RCS, command type 2 */
499 static struct sub_op_bits sub_op_2d[] = {
500 {31, 29},
501 {28, 22},
502 };
503
504 static struct decode_info decode_info_2d = {
505 "2D",
506 OP_LEN_2D,
507 ARRAY_SIZE(sub_op_2d),
508 sub_op_2d,
509 };
510
511 /* ring RCS, command type 3 */
512 static struct sub_op_bits sub_op_3d_media[] = {
513 {31, 29},
514 {28, 27},
515 {26, 24},
516 {23, 16},
517 };
518
519 static struct decode_info decode_info_3d_media = {
520 "3D_Media",
521 OP_LEN_3D_MEDIA,
522 ARRAY_SIZE(sub_op_3d_media),
523 sub_op_3d_media,
524 };
525
526 /* ring VCS, command type 3 */
527 static struct sub_op_bits sub_op_mfx_vc[] = {
528 {31, 29},
529 {28, 27},
530 {26, 24},
531 {23, 21},
532 {20, 16},
533 };
534
535 static struct decode_info decode_info_mfx_vc = {
536 "MFX_VC",
537 OP_LEN_MFX_VC,
538 ARRAY_SIZE(sub_op_mfx_vc),
539 sub_op_mfx_vc,
540 };
541
542 /* ring VECS, command type 3 */
543 static struct sub_op_bits sub_op_vebox[] = {
544 {31, 29},
545 {28, 27},
546 {26, 24},
547 {23, 21},
548 {20, 16},
549 };
550
551 static struct decode_info decode_info_vebox = {
552 "VEBOX",
553 OP_LEN_VEBOX,
554 ARRAY_SIZE(sub_op_vebox),
555 sub_op_vebox,
556 };
557
558 static struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
559 [RCS] = {
560 &decode_info_mi,
561 NULL,
562 NULL,
563 &decode_info_3d_media,
564 NULL,
565 NULL,
566 NULL,
567 NULL,
568 },
569
570 [VCS] = {
571 &decode_info_mi,
572 NULL,
573 NULL,
574 &decode_info_mfx_vc,
575 NULL,
576 NULL,
577 NULL,
578 NULL,
579 },
580
581 [BCS] = {
582 &decode_info_mi,
583 NULL,
584 &decode_info_2d,
585 NULL,
586 NULL,
587 NULL,
588 NULL,
589 NULL,
590 },
591
592 [VECS] = {
593 &decode_info_mi,
594 NULL,
595 NULL,
596 &decode_info_vebox,
597 NULL,
598 NULL,
599 NULL,
600 NULL,
601 },
602
603 [VCS2] = {
604 &decode_info_mi,
605 NULL,
606 NULL,
607 &decode_info_mfx_vc,
608 NULL,
609 NULL,
610 NULL,
611 NULL,
612 },
613 };
614
615 static inline u32 get_opcode(u32 cmd, int ring_id)
616 {
617 struct decode_info *d_info;
618
619 if (ring_id >= I915_NUM_ENGINES)
620 return INVALID_OP;
621
622 d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
623 if (d_info == NULL)
624 return INVALID_OP;
625
626 return cmd >> (32 - d_info->op_len);
627 }
628
629 static inline struct cmd_info *find_cmd_entry(struct intel_gvt *gvt,
630 unsigned int opcode, int ring_id)
631 {
632 struct cmd_entry *e;
633
634 hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
635 if ((opcode == e->info->opcode) &&
636 (e->info->rings & (1 << ring_id)))
637 return e->info;
638 }
639 return NULL;
640 }
641
642 static inline struct cmd_info *get_cmd_info(struct intel_gvt *gvt,
643 u32 cmd, int ring_id)
644 {
645 u32 opcode;
646
647 opcode = get_opcode(cmd, ring_id);
648 if (opcode == INVALID_OP)
649 return NULL;
650
651 return find_cmd_entry(gvt, opcode, ring_id);
652 }
653
654 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
655 {
656 return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
657 }
658
659 static inline void print_opcode(u32 cmd, int ring_id)
660 {
661 struct decode_info *d_info;
662 int i;
663
664 if (ring_id >= I915_NUM_ENGINES)
665 return;
666
667 d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
668 if (d_info == NULL)
669 return;
670
671 gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
672 cmd >> (32 - d_info->op_len), d_info->name);
673
674 for (i = 0; i < d_info->nr_sub_op; i++)
675 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
676 d_info->sub_op[i].low));
677
678 pr_err("\n");
679 }
680
681 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
682 {
683 return s->ip_va + (index << 2);
684 }
685
686 static inline u32 cmd_val(struct parser_exec_state *s, int index)
687 {
688 return *cmd_ptr(s, index);
689 }
690
691 static void parser_exec_state_dump(struct parser_exec_state *s)
692 {
693 int cnt = 0;
694 int i;
695
696 gvt_dbg_cmd(" vgpu%d RING%d: ring_start(%08lx) ring_end(%08lx)"
697 " ring_head(%08lx) ring_tail(%08lx)\n", s->vgpu->id,
698 s->ring_id, s->ring_start, s->ring_start + s->ring_size,
699 s->ring_head, s->ring_tail);
700
701 gvt_dbg_cmd(" %s %s ip_gma(%08lx) ",
702 s->buf_type == RING_BUFFER_INSTRUCTION ?
703 "RING_BUFFER" : "BATCH_BUFFER",
704 s->buf_addr_type == GTT_BUFFER ?
705 "GTT" : "PPGTT", s->ip_gma);
706
707 if (s->ip_va == NULL) {
708 gvt_dbg_cmd(" ip_va(NULL)");
709 return;
710 }
711
712 gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n",
713 s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
714 cmd_val(s, 2), cmd_val(s, 3));
715
716 print_opcode(cmd_val(s, 0), s->ring_id);
717
718 /* print the whole page to trace */
719 pr_err(" ip_va=%p: %08x %08x %08x %08x\n",
720 s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
721 cmd_val(s, 2), cmd_val(s, 3));
722
723 s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
724
725 while (cnt < 1024) {
726 pr_err("ip_va=%p: ", s->ip_va);
727 for (i = 0; i < 8; i++)
728 pr_err("%08x ", cmd_val(s, i));
729 pr_err("\n");
730
731 s->ip_va += 8 * sizeof(u32);
732 cnt += 8;
733 }
734 }
735
736 static inline void update_ip_va(struct parser_exec_state *s)
737 {
738 unsigned long len = 0;
739
740 if (WARN_ON(s->ring_head == s->ring_tail))
741 return;
742
743 if (s->buf_type == RING_BUFFER_INSTRUCTION) {
744 unsigned long ring_top = s->ring_start + s->ring_size;
745
746 if (s->ring_head > s->ring_tail) {
747 if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
748 len = (s->ip_gma - s->ring_head);
749 else if (s->ip_gma >= s->ring_start &&
750 s->ip_gma <= s->ring_tail)
751 len = (ring_top - s->ring_head) +
752 (s->ip_gma - s->ring_start);
753 } else
754 len = (s->ip_gma - s->ring_head);
755
756 s->ip_va = s->rb_va + len;
757 } else {/* shadow batch buffer */
758 s->ip_va = s->ret_bb_va;
759 }
760 }
761
762 static inline int ip_gma_set(struct parser_exec_state *s,
763 unsigned long ip_gma)
764 {
765 WARN_ON(!IS_ALIGNED(ip_gma, 4));
766
767 s->ip_gma = ip_gma;
768 update_ip_va(s);
769 return 0;
770 }
771
772 static inline int ip_gma_advance(struct parser_exec_state *s,
773 unsigned int dw_len)
774 {
775 s->ip_gma += (dw_len << 2);
776
777 if (s->buf_type == RING_BUFFER_INSTRUCTION) {
778 if (s->ip_gma >= s->ring_start + s->ring_size)
779 s->ip_gma -= s->ring_size;
780 update_ip_va(s);
781 } else {
782 s->ip_va += (dw_len << 2);
783 }
784
785 return 0;
786 }
787
788 static inline int get_cmd_length(struct cmd_info *info, u32 cmd)
789 {
790 if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
791 return info->len;
792 else
793 return (cmd & ((1U << info->len) - 1)) + 2;
794 return 0;
795 }
796
797 static inline int cmd_length(struct parser_exec_state *s)
798 {
799 return get_cmd_length(s->info, cmd_val(s, 0));
800 }
801
802 /* do not remove this, some platform may need clflush here */
803 #define patch_value(s, addr, val) do { \
804 *addr = val; \
805 } while (0)
806
807 static bool is_shadowed_mmio(unsigned int offset)
808 {
809 bool ret = false;
810
811 if ((offset == 0x2168) || /*BB current head register UDW */
812 (offset == 0x2140) || /*BB current header register */
813 (offset == 0x211c) || /*second BB header register UDW */
814 (offset == 0x2114)) { /*second BB header register UDW */
815 ret = true;
816 }
817 return ret;
818 }
819
820 static inline bool is_force_nonpriv_mmio(unsigned int offset)
821 {
822 return (offset >= 0x24d0 && offset < 0x2500);
823 }
824
825 static int force_nonpriv_reg_handler(struct parser_exec_state *s,
826 unsigned int offset, unsigned int index)
827 {
828 struct intel_gvt *gvt = s->vgpu->gvt;
829 unsigned int data = cmd_val(s, index + 1);
830
831 if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data)) {
832 gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n",
833 offset, data);
834 return -EINVAL;
835 }
836 return 0;
837 }
838
839 static int cmd_reg_handler(struct parser_exec_state *s,
840 unsigned int offset, unsigned int index, char *cmd)
841 {
842 struct intel_vgpu *vgpu = s->vgpu;
843 struct intel_gvt *gvt = vgpu->gvt;
844
845 if (offset + 4 > gvt->device_info.mmio_size) {
846 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
847 cmd, offset);
848 return -EINVAL;
849 }
850
851 if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) {
852 gvt_vgpu_err("%s access to non-render register (%x)\n",
853 cmd, offset);
854 return 0;
855 }
856
857 if (is_shadowed_mmio(offset)) {
858 gvt_vgpu_err("found access of shadowed MMIO %x\n", offset);
859 return 0;
860 }
861
862 if (is_force_nonpriv_mmio(offset) &&
863 force_nonpriv_reg_handler(s, offset, index))
864 return -EINVAL;
865
866 if (offset == i915_mmio_reg_offset(DERRMR) ||
867 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
868 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
869 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
870 }
871
872 /* TODO: Update the global mask if this MMIO is a masked-MMIO */
873 intel_gvt_mmio_set_cmd_accessed(gvt, offset);
874 return 0;
875 }
876
877 #define cmd_reg(s, i) \
878 (cmd_val(s, i) & GENMASK(22, 2))
879
880 #define cmd_reg_inhibit(s, i) \
881 (cmd_val(s, i) & GENMASK(22, 18))
882
883 #define cmd_gma(s, i) \
884 (cmd_val(s, i) & GENMASK(31, 2))
885
886 #define cmd_gma_hi(s, i) \
887 (cmd_val(s, i) & GENMASK(15, 0))
888
889 static int cmd_handler_lri(struct parser_exec_state *s)
890 {
891 int i, ret = 0;
892 int cmd_len = cmd_length(s);
893 struct intel_gvt *gvt = s->vgpu->gvt;
894
895 for (i = 1; i < cmd_len; i += 2) {
896 if (IS_BROADWELL(gvt->dev_priv) &&
897 (s->ring_id != RCS)) {
898 if (s->ring_id == BCS &&
899 cmd_reg(s, i) ==
900 i915_mmio_reg_offset(DERRMR))
901 ret |= 0;
902 else
903 ret |= (cmd_reg_inhibit(s, i)) ? -EINVAL : 0;
904 }
905 if (ret)
906 break;
907 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
908 }
909 return ret;
910 }
911
912 static int cmd_handler_lrr(struct parser_exec_state *s)
913 {
914 int i, ret = 0;
915 int cmd_len = cmd_length(s);
916
917 for (i = 1; i < cmd_len; i += 2) {
918 if (IS_BROADWELL(s->vgpu->gvt->dev_priv))
919 ret |= ((cmd_reg_inhibit(s, i) ||
920 (cmd_reg_inhibit(s, i + 1)))) ?
921 -EINVAL : 0;
922 if (ret)
923 break;
924 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
925 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
926 }
927 return ret;
928 }
929
930 static inline int cmd_address_audit(struct parser_exec_state *s,
931 unsigned long guest_gma, int op_size, bool index_mode);
932
933 static int cmd_handler_lrm(struct parser_exec_state *s)
934 {
935 struct intel_gvt *gvt = s->vgpu->gvt;
936 int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
937 unsigned long gma;
938 int i, ret = 0;
939 int cmd_len = cmd_length(s);
940
941 for (i = 1; i < cmd_len;) {
942 if (IS_BROADWELL(gvt->dev_priv))
943 ret |= (cmd_reg_inhibit(s, i)) ? -EINVAL : 0;
944 if (ret)
945 break;
946 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
947 if (cmd_val(s, 0) & (1 << 22)) {
948 gma = cmd_gma(s, i + 1);
949 if (gmadr_bytes == 8)
950 gma |= (cmd_gma_hi(s, i + 2)) << 32;
951 ret |= cmd_address_audit(s, gma, sizeof(u32), false);
952 }
953 i += gmadr_dw_number(s) + 1;
954 }
955 return ret;
956 }
957
958 static int cmd_handler_srm(struct parser_exec_state *s)
959 {
960 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
961 unsigned long gma;
962 int i, ret = 0;
963 int cmd_len = cmd_length(s);
964
965 for (i = 1; i < cmd_len;) {
966 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
967 if (cmd_val(s, 0) & (1 << 22)) {
968 gma = cmd_gma(s, i + 1);
969 if (gmadr_bytes == 8)
970 gma |= (cmd_gma_hi(s, i + 2)) << 32;
971 ret |= cmd_address_audit(s, gma, sizeof(u32), false);
972 }
973 i += gmadr_dw_number(s) + 1;
974 }
975 return ret;
976 }
977
978 struct cmd_interrupt_event {
979 int pipe_control_notify;
980 int mi_flush_dw;
981 int mi_user_interrupt;
982 };
983
984 static struct cmd_interrupt_event cmd_interrupt_events[] = {
985 [RCS] = {
986 .pipe_control_notify = RCS_PIPE_CONTROL,
987 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
988 .mi_user_interrupt = RCS_MI_USER_INTERRUPT,
989 },
990 [BCS] = {
991 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
992 .mi_flush_dw = BCS_MI_FLUSH_DW,
993 .mi_user_interrupt = BCS_MI_USER_INTERRUPT,
994 },
995 [VCS] = {
996 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
997 .mi_flush_dw = VCS_MI_FLUSH_DW,
998 .mi_user_interrupt = VCS_MI_USER_INTERRUPT,
999 },
1000 [VCS2] = {
1001 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1002 .mi_flush_dw = VCS2_MI_FLUSH_DW,
1003 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1004 },
1005 [VECS] = {
1006 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1007 .mi_flush_dw = VECS_MI_FLUSH_DW,
1008 .mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1009 },
1010 };
1011
1012 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1013 {
1014 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1015 unsigned long gma;
1016 bool index_mode = false;
1017 unsigned int post_sync;
1018 int ret = 0;
1019
1020 post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1021
1022 /* LRI post sync */
1023 if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1024 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1025 /* post sync */
1026 else if (post_sync) {
1027 if (post_sync == 2)
1028 ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1029 else if (post_sync == 3)
1030 ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1031 else if (post_sync == 1) {
1032 /* check ggtt*/
1033 if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1034 gma = cmd_val(s, 2) & GENMASK(31, 3);
1035 if (gmadr_bytes == 8)
1036 gma |= (cmd_gma_hi(s, 3)) << 32;
1037 /* Store Data Index */
1038 if (cmd_val(s, 1) & (1 << 21))
1039 index_mode = true;
1040 ret |= cmd_address_audit(s, gma, sizeof(u64),
1041 index_mode);
1042 }
1043 }
1044 }
1045
1046 if (ret)
1047 return ret;
1048
1049 if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1050 set_bit(cmd_interrupt_events[s->ring_id].pipe_control_notify,
1051 s->workload->pending_events);
1052 return 0;
1053 }
1054
1055 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1056 {
1057 set_bit(cmd_interrupt_events[s->ring_id].mi_user_interrupt,
1058 s->workload->pending_events);
1059 return 0;
1060 }
1061
1062 static int cmd_advance_default(struct parser_exec_state *s)
1063 {
1064 return ip_gma_advance(s, cmd_length(s));
1065 }
1066
1067 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1068 {
1069 int ret;
1070
1071 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1072 s->buf_type = BATCH_BUFFER_INSTRUCTION;
1073 ret = ip_gma_set(s, s->ret_ip_gma_bb);
1074 s->buf_addr_type = s->saved_buf_addr_type;
1075 } else {
1076 s->buf_type = RING_BUFFER_INSTRUCTION;
1077 s->buf_addr_type = GTT_BUFFER;
1078 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1079 s->ret_ip_gma_ring -= s->ring_size;
1080 ret = ip_gma_set(s, s->ret_ip_gma_ring);
1081 }
1082 return ret;
1083 }
1084
1085 struct mi_display_flip_command_info {
1086 int pipe;
1087 int plane;
1088 int event;
1089 i915_reg_t stride_reg;
1090 i915_reg_t ctrl_reg;
1091 i915_reg_t surf_reg;
1092 u64 stride_val;
1093 u64 tile_val;
1094 u64 surf_val;
1095 bool async_flip;
1096 };
1097
1098 struct plane_code_mapping {
1099 int pipe;
1100 int plane;
1101 int event;
1102 };
1103
1104 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1105 struct mi_display_flip_command_info *info)
1106 {
1107 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1108 struct plane_code_mapping gen8_plane_code[] = {
1109 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1110 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1111 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1112 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1113 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1114 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1115 };
1116 u32 dword0, dword1, dword2;
1117 u32 v;
1118
1119 dword0 = cmd_val(s, 0);
1120 dword1 = cmd_val(s, 1);
1121 dword2 = cmd_val(s, 2);
1122
1123 v = (dword0 & GENMASK(21, 19)) >> 19;
1124 if (WARN_ON(v >= ARRAY_SIZE(gen8_plane_code)))
1125 return -EINVAL;
1126
1127 info->pipe = gen8_plane_code[v].pipe;
1128 info->plane = gen8_plane_code[v].plane;
1129 info->event = gen8_plane_code[v].event;
1130 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1131 info->tile_val = (dword1 & 0x1);
1132 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1133 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1134
1135 if (info->plane == PLANE_A) {
1136 info->ctrl_reg = DSPCNTR(info->pipe);
1137 info->stride_reg = DSPSTRIDE(info->pipe);
1138 info->surf_reg = DSPSURF(info->pipe);
1139 } else if (info->plane == PLANE_B) {
1140 info->ctrl_reg = SPRCTL(info->pipe);
1141 info->stride_reg = SPRSTRIDE(info->pipe);
1142 info->surf_reg = SPRSURF(info->pipe);
1143 } else {
1144 WARN_ON(1);
1145 return -EINVAL;
1146 }
1147 return 0;
1148 }
1149
1150 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1151 struct mi_display_flip_command_info *info)
1152 {
1153 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1154 struct intel_vgpu *vgpu = s->vgpu;
1155 u32 dword0 = cmd_val(s, 0);
1156 u32 dword1 = cmd_val(s, 1);
1157 u32 dword2 = cmd_val(s, 2);
1158 u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1159
1160 info->plane = PRIMARY_PLANE;
1161
1162 switch (plane) {
1163 case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1164 info->pipe = PIPE_A;
1165 info->event = PRIMARY_A_FLIP_DONE;
1166 break;
1167 case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1168 info->pipe = PIPE_B;
1169 info->event = PRIMARY_B_FLIP_DONE;
1170 break;
1171 case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1172 info->pipe = PIPE_C;
1173 info->event = PRIMARY_C_FLIP_DONE;
1174 break;
1175
1176 case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1177 info->pipe = PIPE_A;
1178 info->event = SPRITE_A_FLIP_DONE;
1179 info->plane = SPRITE_PLANE;
1180 break;
1181 case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1182 info->pipe = PIPE_B;
1183 info->event = SPRITE_B_FLIP_DONE;
1184 info->plane = SPRITE_PLANE;
1185 break;
1186 case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1187 info->pipe = PIPE_C;
1188 info->event = SPRITE_C_FLIP_DONE;
1189 info->plane = SPRITE_PLANE;
1190 break;
1191
1192 default:
1193 gvt_vgpu_err("unknown plane code %d\n", plane);
1194 return -EINVAL;
1195 }
1196
1197 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1198 info->tile_val = (dword1 & GENMASK(2, 0));
1199 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1200 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1201
1202 info->ctrl_reg = DSPCNTR(info->pipe);
1203 info->stride_reg = DSPSTRIDE(info->pipe);
1204 info->surf_reg = DSPSURF(info->pipe);
1205
1206 return 0;
1207 }
1208
1209 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1210 struct mi_display_flip_command_info *info)
1211 {
1212 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1213 u32 stride, tile;
1214
1215 if (!info->async_flip)
1216 return 0;
1217
1218 if (IS_SKYLAKE(dev_priv)) {
1219 stride = vgpu_vreg(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1220 tile = (vgpu_vreg(s->vgpu, info->ctrl_reg) &
1221 GENMASK(12, 10)) >> 10;
1222 } else {
1223 stride = (vgpu_vreg(s->vgpu, info->stride_reg) &
1224 GENMASK(15, 6)) >> 6;
1225 tile = (vgpu_vreg(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1226 }
1227
1228 if (stride != info->stride_val)
1229 gvt_dbg_cmd("cannot change stride during async flip\n");
1230
1231 if (tile != info->tile_val)
1232 gvt_dbg_cmd("cannot change tile during async flip\n");
1233
1234 return 0;
1235 }
1236
1237 static int gen8_update_plane_mmio_from_mi_display_flip(
1238 struct parser_exec_state *s,
1239 struct mi_display_flip_command_info *info)
1240 {
1241 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1242 struct intel_vgpu *vgpu = s->vgpu;
1243
1244 set_mask_bits(&vgpu_vreg(vgpu, info->surf_reg), GENMASK(31, 12),
1245 info->surf_val << 12);
1246 if (IS_SKYLAKE(dev_priv)) {
1247 set_mask_bits(&vgpu_vreg(vgpu, info->stride_reg), GENMASK(9, 0),
1248 info->stride_val);
1249 set_mask_bits(&vgpu_vreg(vgpu, info->ctrl_reg), GENMASK(12, 10),
1250 info->tile_val << 10);
1251 } else {
1252 set_mask_bits(&vgpu_vreg(vgpu, info->stride_reg), GENMASK(15, 6),
1253 info->stride_val << 6);
1254 set_mask_bits(&vgpu_vreg(vgpu, info->ctrl_reg), GENMASK(10, 10),
1255 info->tile_val << 10);
1256 }
1257
1258 vgpu_vreg(vgpu, PIPE_FRMCOUNT_G4X(info->pipe))++;
1259 intel_vgpu_trigger_virtual_event(vgpu, info->event);
1260 return 0;
1261 }
1262
1263 static int decode_mi_display_flip(struct parser_exec_state *s,
1264 struct mi_display_flip_command_info *info)
1265 {
1266 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1267
1268 if (IS_BROADWELL(dev_priv))
1269 return gen8_decode_mi_display_flip(s, info);
1270 if (IS_SKYLAKE(dev_priv))
1271 return skl_decode_mi_display_flip(s, info);
1272
1273 return -ENODEV;
1274 }
1275
1276 static int check_mi_display_flip(struct parser_exec_state *s,
1277 struct mi_display_flip_command_info *info)
1278 {
1279 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1280
1281 if (IS_BROADWELL(dev_priv) || IS_SKYLAKE(dev_priv))
1282 return gen8_check_mi_display_flip(s, info);
1283 return -ENODEV;
1284 }
1285
1286 static int update_plane_mmio_from_mi_display_flip(
1287 struct parser_exec_state *s,
1288 struct mi_display_flip_command_info *info)
1289 {
1290 struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1291
1292 if (IS_BROADWELL(dev_priv) || IS_SKYLAKE(dev_priv))
1293 return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1294 return -ENODEV;
1295 }
1296
1297 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1298 {
1299 struct mi_display_flip_command_info info;
1300 struct intel_vgpu *vgpu = s->vgpu;
1301 int ret;
1302 int i;
1303 int len = cmd_length(s);
1304
1305 ret = decode_mi_display_flip(s, &info);
1306 if (ret) {
1307 gvt_vgpu_err("fail to decode MI display flip command\n");
1308 return ret;
1309 }
1310
1311 ret = check_mi_display_flip(s, &info);
1312 if (ret) {
1313 gvt_vgpu_err("invalid MI display flip command\n");
1314 return ret;
1315 }
1316
1317 ret = update_plane_mmio_from_mi_display_flip(s, &info);
1318 if (ret) {
1319 gvt_vgpu_err("fail to update plane mmio\n");
1320 return ret;
1321 }
1322
1323 for (i = 0; i < len; i++)
1324 patch_value(s, cmd_ptr(s, i), MI_NOOP);
1325 return 0;
1326 }
1327
1328 static bool is_wait_for_flip_pending(u32 cmd)
1329 {
1330 return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1331 MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1332 MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1333 MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1334 MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1335 MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1336 }
1337
1338 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1339 {
1340 u32 cmd = cmd_val(s, 0);
1341
1342 if (!is_wait_for_flip_pending(cmd))
1343 return 0;
1344
1345 patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1346 return 0;
1347 }
1348
1349 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1350 {
1351 unsigned long addr;
1352 unsigned long gma_high, gma_low;
1353 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1354
1355 if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8))
1356 return INTEL_GVT_INVALID_ADDR;
1357
1358 gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1359 if (gmadr_bytes == 4) {
1360 addr = gma_low;
1361 } else {
1362 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1363 addr = (((unsigned long)gma_high) << 32) | gma_low;
1364 }
1365 return addr;
1366 }
1367
1368 static inline int cmd_address_audit(struct parser_exec_state *s,
1369 unsigned long guest_gma, int op_size, bool index_mode)
1370 {
1371 struct intel_vgpu *vgpu = s->vgpu;
1372 u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1373 int i;
1374 int ret;
1375
1376 if (op_size > max_surface_size) {
1377 gvt_vgpu_err("command address audit fail name %s\n",
1378 s->info->name);
1379 return -EINVAL;
1380 }
1381
1382 if (index_mode) {
1383 if (guest_gma >= GTT_PAGE_SIZE / sizeof(u64)) {
1384 ret = -EINVAL;
1385 goto err;
1386 }
1387 } else if ((!vgpu_gmadr_is_valid(s->vgpu, guest_gma)) ||
1388 (!vgpu_gmadr_is_valid(s->vgpu,
1389 guest_gma + op_size - 1))) {
1390 ret = -EINVAL;
1391 goto err;
1392 }
1393 return 0;
1394 err:
1395 gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1396 s->info->name, guest_gma, op_size);
1397
1398 pr_err("cmd dump: ");
1399 for (i = 0; i < cmd_length(s); i++) {
1400 if (!(i % 4))
1401 pr_err("\n%08x ", cmd_val(s, i));
1402 else
1403 pr_err("%08x ", cmd_val(s, i));
1404 }
1405 pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1406 vgpu->id,
1407 vgpu_aperture_gmadr_base(vgpu),
1408 vgpu_aperture_gmadr_end(vgpu),
1409 vgpu_hidden_gmadr_base(vgpu),
1410 vgpu_hidden_gmadr_end(vgpu));
1411 return ret;
1412 }
1413
1414 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1415 {
1416 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1417 int op_size = (cmd_length(s) - 3) * sizeof(u32);
1418 int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1419 unsigned long gma, gma_low, gma_high;
1420 int ret = 0;
1421
1422 /* check ppggt */
1423 if (!(cmd_val(s, 0) & (1 << 22)))
1424 return 0;
1425
1426 gma = cmd_val(s, 2) & GENMASK(31, 2);
1427
1428 if (gmadr_bytes == 8) {
1429 gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1430 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1431 gma = (gma_high << 32) | gma_low;
1432 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1433 }
1434 ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1435 return ret;
1436 }
1437
1438 static inline int unexpected_cmd(struct parser_exec_state *s)
1439 {
1440 struct intel_vgpu *vgpu = s->vgpu;
1441
1442 gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1443
1444 return -EINVAL;
1445 }
1446
1447 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1448 {
1449 return unexpected_cmd(s);
1450 }
1451
1452 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1453 {
1454 return unexpected_cmd(s);
1455 }
1456
1457 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1458 {
1459 return unexpected_cmd(s);
1460 }
1461
1462 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1463 {
1464 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1465 int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1466 sizeof(u32);
1467 unsigned long gma, gma_high;
1468 int ret = 0;
1469
1470 if (!(cmd_val(s, 0) & (1 << 22)))
1471 return ret;
1472
1473 gma = cmd_val(s, 1) & GENMASK(31, 2);
1474 if (gmadr_bytes == 8) {
1475 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1476 gma = (gma_high << 32) | gma;
1477 }
1478 ret = cmd_address_audit(s, gma, op_size, false);
1479 return ret;
1480 }
1481
1482 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1483 {
1484 return unexpected_cmd(s);
1485 }
1486
1487 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1488 {
1489 return unexpected_cmd(s);
1490 }
1491
1492 static int cmd_handler_mi_conditional_batch_buffer_end(
1493 struct parser_exec_state *s)
1494 {
1495 return unexpected_cmd(s);
1496 }
1497
1498 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1499 {
1500 return unexpected_cmd(s);
1501 }
1502
1503 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1504 {
1505 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1506 unsigned long gma;
1507 bool index_mode = false;
1508 int ret = 0;
1509
1510 /* Check post-sync and ppgtt bit */
1511 if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1512 gma = cmd_val(s, 1) & GENMASK(31, 3);
1513 if (gmadr_bytes == 8)
1514 gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1515 /* Store Data Index */
1516 if (cmd_val(s, 0) & (1 << 21))
1517 index_mode = true;
1518 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1519 }
1520 /* Check notify bit */
1521 if ((cmd_val(s, 0) & (1 << 8)))
1522 set_bit(cmd_interrupt_events[s->ring_id].mi_flush_dw,
1523 s->workload->pending_events);
1524 return ret;
1525 }
1526
1527 static void addr_type_update_snb(struct parser_exec_state *s)
1528 {
1529 if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1530 (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1531 s->buf_addr_type = PPGTT_BUFFER;
1532 }
1533 }
1534
1535
1536 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1537 unsigned long gma, unsigned long end_gma, void *va)
1538 {
1539 unsigned long copy_len, offset;
1540 unsigned long len = 0;
1541 unsigned long gpa;
1542
1543 while (gma != end_gma) {
1544 gpa = intel_vgpu_gma_to_gpa(mm, gma);
1545 if (gpa == INTEL_GVT_INVALID_ADDR) {
1546 gvt_vgpu_err("invalid gma address: %lx\n", gma);
1547 return -EFAULT;
1548 }
1549
1550 offset = gma & (GTT_PAGE_SIZE - 1);
1551
1552 copy_len = (end_gma - gma) >= (GTT_PAGE_SIZE - offset) ?
1553 GTT_PAGE_SIZE - offset : end_gma - gma;
1554
1555 intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len);
1556
1557 len += copy_len;
1558 gma += copy_len;
1559 }
1560 return len;
1561 }
1562
1563
1564 /*
1565 * Check whether a batch buffer needs to be scanned. Currently
1566 * the only criteria is based on privilege.
1567 */
1568 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1569 {
1570 struct intel_gvt *gvt = s->vgpu->gvt;
1571
1572 if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)) {
1573 /* BDW decides privilege based on address space */
1574 if (cmd_val(s, 0) & (1 << 8))
1575 return 0;
1576 }
1577 return 1;
1578 }
1579
1580 static uint32_t find_bb_size(struct parser_exec_state *s)
1581 {
1582 unsigned long gma = 0;
1583 struct cmd_info *info;
1584 uint32_t bb_size = 0;
1585 uint32_t cmd_len = 0;
1586 bool met_bb_end = false;
1587 struct intel_vgpu *vgpu = s->vgpu;
1588 u32 cmd;
1589
1590 /* get the start gm address of the batch buffer */
1591 gma = get_gma_bb_from_cmd(s, 1);
1592 cmd = cmd_val(s, 0);
1593
1594 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1595 if (info == NULL) {
1596 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x\n",
1597 cmd, get_opcode(cmd, s->ring_id));
1598 return -EINVAL;
1599 }
1600 do {
1601 copy_gma_to_hva(s->vgpu, s->vgpu->gtt.ggtt_mm,
1602 gma, gma + 4, &cmd);
1603 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1604 if (info == NULL) {
1605 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x\n",
1606 cmd, get_opcode(cmd, s->ring_id));
1607 return -EINVAL;
1608 }
1609
1610 if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1611 met_bb_end = true;
1612 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1613 if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0) {
1614 /* chained batch buffer */
1615 met_bb_end = true;
1616 }
1617 }
1618 cmd_len = get_cmd_length(info, cmd) << 2;
1619 bb_size += cmd_len;
1620 gma += cmd_len;
1621
1622 } while (!met_bb_end);
1623
1624 return bb_size;
1625 }
1626
1627 static int perform_bb_shadow(struct parser_exec_state *s)
1628 {
1629 struct intel_shadow_bb_entry *entry_obj;
1630 struct intel_vgpu *vgpu = s->vgpu;
1631 unsigned long gma = 0;
1632 uint32_t bb_size;
1633 void *dst = NULL;
1634 int ret = 0;
1635
1636 /* get the start gm address of the batch buffer */
1637 gma = get_gma_bb_from_cmd(s, 1);
1638
1639 /* get the size of the batch buffer */
1640 bb_size = find_bb_size(s);
1641
1642 /* allocate shadow batch buffer */
1643 entry_obj = kmalloc(sizeof(*entry_obj), GFP_KERNEL);
1644 if (entry_obj == NULL)
1645 return -ENOMEM;
1646
1647 entry_obj->obj =
1648 i915_gem_object_create(s->vgpu->gvt->dev_priv,
1649 roundup(bb_size, PAGE_SIZE));
1650 if (IS_ERR(entry_obj->obj)) {
1651 ret = PTR_ERR(entry_obj->obj);
1652 goto free_entry;
1653 }
1654 entry_obj->len = bb_size;
1655 INIT_LIST_HEAD(&entry_obj->list);
1656
1657 dst = i915_gem_object_pin_map(entry_obj->obj, I915_MAP_WB);
1658 if (IS_ERR(dst)) {
1659 ret = PTR_ERR(dst);
1660 goto put_obj;
1661 }
1662
1663 ret = i915_gem_object_set_to_cpu_domain(entry_obj->obj, false);
1664 if (ret) {
1665 gvt_vgpu_err("failed to set shadow batch to CPU\n");
1666 goto unmap_src;
1667 }
1668
1669 entry_obj->va = dst;
1670 entry_obj->bb_start_cmd_va = s->ip_va;
1671
1672 /* copy batch buffer to shadow batch buffer*/
1673 ret = copy_gma_to_hva(s->vgpu, s->vgpu->gtt.ggtt_mm,
1674 gma, gma + bb_size,
1675 dst);
1676 if (ret < 0) {
1677 gvt_vgpu_err("fail to copy guest ring buffer\n");
1678 goto unmap_src;
1679 }
1680
1681 list_add(&entry_obj->list, &s->workload->shadow_bb);
1682 /*
1683 * ip_va saves the virtual address of the shadow batch buffer, while
1684 * ip_gma saves the graphics address of the original batch buffer.
1685 * As the shadow batch buffer is just a copy from the originial one,
1686 * it should be right to use shadow batch buffer'va and original batch
1687 * buffer's gma in pair. After all, we don't want to pin the shadow
1688 * buffer here (too early).
1689 */
1690 s->ip_va = dst;
1691 s->ip_gma = gma;
1692
1693 return 0;
1694
1695 unmap_src:
1696 i915_gem_object_unpin_map(entry_obj->obj);
1697 put_obj:
1698 i915_gem_object_put(entry_obj->obj);
1699 free_entry:
1700 kfree(entry_obj);
1701 return ret;
1702 }
1703
1704 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1705 {
1706 bool second_level;
1707 int ret = 0;
1708 struct intel_vgpu *vgpu = s->vgpu;
1709
1710 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1711 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1712 return -EINVAL;
1713 }
1714
1715 second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
1716 if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
1717 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
1718 return -EINVAL;
1719 }
1720
1721 s->saved_buf_addr_type = s->buf_addr_type;
1722 addr_type_update_snb(s);
1723 if (s->buf_type == RING_BUFFER_INSTRUCTION) {
1724 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
1725 s->buf_type = BATCH_BUFFER_INSTRUCTION;
1726 } else if (second_level) {
1727 s->buf_type = BATCH_BUFFER_2ND_LEVEL;
1728 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
1729 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
1730 }
1731
1732 if (batch_buffer_needs_scan(s)) {
1733 ret = perform_bb_shadow(s);
1734 if (ret < 0)
1735 gvt_vgpu_err("invalid shadow batch buffer\n");
1736 } else {
1737 /* emulate a batch buffer end to do return right */
1738 ret = cmd_handler_mi_batch_buffer_end(s);
1739 if (ret < 0)
1740 return ret;
1741 }
1742
1743 return ret;
1744 }
1745
1746 static struct cmd_info cmd_info[] = {
1747 {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1748
1749 {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
1750 0, 1, NULL},
1751
1752 {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
1753 0, 1, cmd_handler_mi_user_interrupt},
1754
1755 {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
1756 D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
1757
1758 {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1759
1760 {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1761 NULL},
1762
1763 {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1764 NULL},
1765
1766 {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1767 NULL},
1768
1769 {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1770 NULL},
1771
1772 {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
1773 D_ALL, 0, 1, NULL},
1774
1775 {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
1776 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1777 cmd_handler_mi_batch_buffer_end},
1778
1779 {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
1780 0, 1, NULL},
1781
1782 {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1783 NULL},
1784
1785 {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
1786 D_ALL, 0, 1, NULL},
1787
1788 {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1789 NULL},
1790
1791 {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1792 NULL},
1793
1794 {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR | F_POST_HANDLE,
1795 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
1796
1797 {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR, R_ALL, D_ALL,
1798 0, 8, NULL},
1799
1800 {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
1801
1802 {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1803
1804 {"ME_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, F_LEN_VAR, R_ALL,
1805 D_BDW_PLUS, 0, 8, NULL},
1806
1807 {"ME_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, F_LEN_VAR, R_ALL, D_BDW_PLUS,
1808 ADDR_FIX_1(2), 8, cmd_handler_mi_semaphore_wait},
1809
1810 {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
1811 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
1812
1813 {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
1814 0, 8, cmd_handler_mi_store_data_index},
1815
1816 {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
1817 D_ALL, 0, 8, cmd_handler_lri},
1818
1819 {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
1820 cmd_handler_mi_update_gtt},
1821
1822 {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, F_LEN_VAR, R_ALL,
1823 D_ALL, ADDR_FIX_1(2), 8, cmd_handler_srm},
1824
1825 {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
1826 cmd_handler_mi_flush_dw},
1827
1828 {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
1829 10, cmd_handler_mi_clflush},
1830
1831 {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, F_LEN_VAR, R_ALL,
1832 D_ALL, ADDR_FIX_1(1), 6, cmd_handler_mi_report_perf_count},
1833
1834 {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, F_LEN_VAR, R_ALL,
1835 D_ALL, ADDR_FIX_1(2), 8, cmd_handler_lrm},
1836
1837 {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, F_LEN_VAR, R_ALL,
1838 D_ALL, 0, 8, cmd_handler_lrr},
1839
1840 {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, F_LEN_VAR, R_RCS,
1841 D_ALL, 0, 8, NULL},
1842
1843 {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR, R_RCS, D_ALL,
1844 ADDR_FIX_1(2), 8, NULL},
1845
1846 {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
1847 ADDR_FIX_1(2), 8, NULL},
1848
1849 {"MI_OP_2E", OP_MI_2E, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_2(1, 2),
1850 8, cmd_handler_mi_op_2e},
1851
1852 {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
1853 8, cmd_handler_mi_op_2f},
1854
1855 {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
1856 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
1857 cmd_handler_mi_batch_buffer_start},
1858
1859 {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
1860 F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
1861 cmd_handler_mi_conditional_batch_buffer_end},
1862
1863 {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
1864 R_RCS | R_BCS, D_ALL, 0, 2, NULL},
1865
1866 {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
1867 ADDR_FIX_2(4, 7), 8, NULL},
1868
1869 {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
1870 0, 8, NULL},
1871
1872 {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
1873 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
1874
1875 {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
1876
1877 {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
1878 0, 8, NULL},
1879
1880 {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1881 ADDR_FIX_1(3), 8, NULL},
1882
1883 {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
1884 D_ALL, 0, 8, NULL},
1885
1886 {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
1887 ADDR_FIX_1(4), 8, NULL},
1888
1889 {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1890 ADDR_FIX_2(4, 5), 8, NULL},
1891
1892 {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1893 ADDR_FIX_1(4), 8, NULL},
1894
1895 {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
1896 ADDR_FIX_2(4, 7), 8, NULL},
1897
1898 {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
1899 D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
1900
1901 {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
1902
1903 {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
1904 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
1905
1906 {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
1907 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
1908
1909 {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
1910 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
1911 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
1912
1913 {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
1914 D_ALL, ADDR_FIX_1(4), 8, NULL},
1915
1916 {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
1917 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
1918
1919 {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
1920 D_ALL, ADDR_FIX_1(4), 8, NULL},
1921
1922 {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
1923 D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
1924
1925 {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
1926 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
1927
1928 {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
1929 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
1930 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
1931
1932 {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
1933 ADDR_FIX_2(4, 5), 8, NULL},
1934
1935 {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
1936 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
1937
1938 {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
1939 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
1940 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1941
1942 {"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
1943 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
1944 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1945
1946 {"3DSTATE_BLEND_STATE_POINTERS",
1947 OP_3DSTATE_BLEND_STATE_POINTERS,
1948 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1949
1950 {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
1951 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
1952 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1953
1954 {"3DSTATE_BINDING_TABLE_POINTERS_VS",
1955 OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
1956 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1957
1958 {"3DSTATE_BINDING_TABLE_POINTERS_HS",
1959 OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
1960 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1961
1962 {"3DSTATE_BINDING_TABLE_POINTERS_DS",
1963 OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
1964 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1965
1966 {"3DSTATE_BINDING_TABLE_POINTERS_GS",
1967 OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
1968 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1969
1970 {"3DSTATE_BINDING_TABLE_POINTERS_PS",
1971 OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
1972 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1973
1974 {"3DSTATE_SAMPLER_STATE_POINTERS_VS",
1975 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
1976 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1977
1978 {"3DSTATE_SAMPLER_STATE_POINTERS_HS",
1979 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
1980 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1981
1982 {"3DSTATE_SAMPLER_STATE_POINTERS_DS",
1983 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
1984 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1985
1986 {"3DSTATE_SAMPLER_STATE_POINTERS_GS",
1987 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
1988 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1989
1990 {"3DSTATE_SAMPLER_STATE_POINTERS_PS",
1991 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
1992 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1993
1994 {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
1995 0, 8, NULL},
1996
1997 {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
1998 0, 8, NULL},
1999
2000 {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2001 0, 8, NULL},
2002
2003 {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2004 0, 8, NULL},
2005
2006 {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2007 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2008
2009 {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2010 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2011
2012 {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2013 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2014
2015 {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2016 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2017
2018 {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2019 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2020
2021 {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2022 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2023
2024 {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2025 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2026
2027 {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2028 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2029
2030 {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2031 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2032
2033 {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2034 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2035
2036 {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2037 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2038
2039 {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2040 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2041
2042 {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2043 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2044
2045 {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2046 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2047
2048 {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2049 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2050
2051 {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2052 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2053
2054 {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2055 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2056
2057 {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2058 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2059
2060 {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2061 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2062
2063 {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2064 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2065
2066 {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2067 D_BDW_PLUS, 0, 8, NULL},
2068
2069 {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2070 NULL},
2071
2072 {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2073 D_BDW_PLUS, 0, 8, NULL},
2074
2075 {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2076 D_BDW_PLUS, 0, 8, NULL},
2077
2078 {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2079 8, NULL},
2080
2081 {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2082 R_RCS, D_BDW_PLUS, 0, 8, NULL},
2083
2084 {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2085 8, NULL},
2086
2087 {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2088 NULL},
2089
2090 {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2091 NULL},
2092
2093 {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2094 NULL},
2095
2096 {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2097 D_BDW_PLUS, 0, 8, NULL},
2098
2099 {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2100 R_RCS, D_ALL, 0, 8, NULL},
2101
2102 {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2103 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2104
2105 {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2106 R_RCS, D_ALL, 0, 1, NULL},
2107
2108 {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2109
2110 {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2111 R_RCS, D_ALL, 0, 8, NULL},
2112
2113 {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2114 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2115
2116 {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2117
2118 {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2119
2120 {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2121
2122 {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2123 D_BDW_PLUS, 0, 8, NULL},
2124
2125 {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2126 D_BDW_PLUS, 0, 8, NULL},
2127
2128 {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2129 D_ALL, 0, 8, NULL},
2130
2131 {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2132 D_BDW_PLUS, 0, 8, NULL},
2133
2134 {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2135 D_BDW_PLUS, 0, 8, NULL},
2136
2137 {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2138
2139 {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2140
2141 {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2142
2143 {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2144 D_ALL, 0, 8, NULL},
2145
2146 {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2147
2148 {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2149
2150 {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2151 R_RCS, D_ALL, 0, 8, NULL},
2152
2153 {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2154 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2155
2156 {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2157 0, 8, NULL},
2158
2159 {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2160 D_ALL, ADDR_FIX_1(2), 8, NULL},
2161
2162 {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2163 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2164
2165 {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2166 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2167
2168 {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2169 D_ALL, 0, 8, NULL},
2170
2171 {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2172 D_ALL, 0, 8, NULL},
2173
2174 {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2175 D_ALL, 0, 8, NULL},
2176
2177 {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2178 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2179
2180 {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2181 D_BDW_PLUS, 0, 8, NULL},
2182
2183 {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2184 D_ALL, ADDR_FIX_1(2), 8, NULL},
2185
2186 {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2187 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2188
2189 {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2190 R_RCS, D_ALL, 0, 8, NULL},
2191
2192 {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2193 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2194
2195 {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2196 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2197
2198 {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2199 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2200
2201 {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2202 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2203
2204 {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2205 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2206
2207 {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2208 R_RCS, D_ALL, 0, 8, NULL},
2209
2210 {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2211 D_ALL, 0, 9, NULL},
2212
2213 {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2214 ADDR_FIX_2(2, 4), 8, NULL},
2215
2216 {"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2217 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2218 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2219
2220 {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2221 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2222
2223 {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2224 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2225 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2226
2227 {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2228 D_BDW_PLUS, 0, 8, NULL},
2229
2230 {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2231 ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2232
2233 {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2234
2235 {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2236 1, NULL},
2237
2238 {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2239 ADDR_FIX_1(1), 8, NULL},
2240
2241 {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2242
2243 {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2244 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2245
2246 {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2247 ADDR_FIX_1(1), 8, NULL},
2248
2249 {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2250
2251 {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2252
2253 {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2254 0, 8, NULL},
2255
2256 {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2257 D_SKL_PLUS, 0, 8, NULL},
2258
2259 {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2260 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2261
2262 {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2263 0, 16, NULL},
2264
2265 {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2266 0, 16, NULL},
2267
2268 {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2269
2270 {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2271 0, 16, NULL},
2272
2273 {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2274 0, 16, NULL},
2275
2276 {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2277 0, 16, NULL},
2278
2279 {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2280 0, 8, NULL},
2281
2282 {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2283 NULL},
2284
2285 {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2286 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2287
2288 {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2289 R_VCS, D_ALL, 0, 12, NULL},
2290
2291 {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2292 R_VCS, D_ALL, 0, 12, NULL},
2293
2294 {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2295 R_VCS, D_BDW_PLUS, 0, 12, NULL},
2296
2297 {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2298 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2299
2300 {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2301 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2302
2303 {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2304
2305 {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2306 R_VCS, D_ALL, 0, 12, NULL},
2307
2308 {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2309 R_VCS, D_ALL, 0, 12, NULL},
2310
2311 {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2312 R_VCS, D_ALL, 0, 12, NULL},
2313
2314 {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2315 R_VCS, D_ALL, 0, 12, NULL},
2316
2317 {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2318 R_VCS, D_ALL, 0, 12, NULL},
2319
2320 {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2321 R_VCS, D_ALL, 0, 12, NULL},
2322
2323 {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2324 R_VCS, D_ALL, 0, 6, NULL},
2325
2326 {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2327 R_VCS, D_ALL, 0, 12, NULL},
2328
2329 {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2330 R_VCS, D_ALL, 0, 12, NULL},
2331
2332 {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2333 R_VCS, D_ALL, 0, 12, NULL},
2334
2335 {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2336 R_VCS, D_ALL, 0, 12, NULL},
2337
2338 {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2339 R_VCS, D_ALL, 0, 12, NULL},
2340
2341 {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2342 R_VCS, D_ALL, 0, 12, NULL},
2343
2344 {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2345 R_VCS, D_ALL, 0, 12, NULL},
2346 {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2347 R_VCS, D_ALL, 0, 12, NULL},
2348
2349 {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2350 R_VCS, D_ALL, 0, 12, NULL},
2351
2352 {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2353 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2354
2355 {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2356 R_VCS, D_ALL, 0, 12, NULL},
2357
2358 {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2359 R_VCS, D_ALL, 0, 12, NULL},
2360
2361 {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2362 R_VCS, D_ALL, 0, 12, NULL},
2363
2364 {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2365 R_VCS, D_ALL, 0, 12, NULL},
2366
2367 {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2368 R_VCS, D_ALL, 0, 12, NULL},
2369
2370 {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2371 R_VCS, D_ALL, 0, 12, NULL},
2372
2373 {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2374 R_VCS, D_ALL, 0, 12, NULL},
2375
2376 {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2377 R_VCS, D_ALL, 0, 12, NULL},
2378
2379 {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2380 R_VCS, D_ALL, 0, 12, NULL},
2381
2382 {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2383 R_VCS, D_ALL, 0, 12, NULL},
2384
2385 {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2386 R_VCS, D_ALL, 0, 12, NULL},
2387
2388 {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2389 0, 16, NULL},
2390
2391 {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2392
2393 {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2394
2395 {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2396 R_VCS, D_ALL, 0, 12, NULL},
2397
2398 {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2399 R_VCS, D_ALL, 0, 12, NULL},
2400
2401 {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2402 R_VCS, D_ALL, 0, 12, NULL},
2403
2404 {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2405
2406 {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2407 0, 12, NULL},
2408
2409 {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2410 0, 20, NULL},
2411 };
2412
2413 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2414 {
2415 hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2416 }
2417
2418 #define GVT_MAX_CMD_LENGTH 20 /* In Dword */
2419
2420 static void trace_cs_command(struct parser_exec_state *s,
2421 cycles_t cost_pre_cmd_handler, cycles_t cost_cmd_handler)
2422 {
2423 /* This buffer is used by ftrace to store all commands copied from
2424 * guest gma space. Sometimes commands can cross pages, this should
2425 * not be handled in ftrace logic. So this is just used as a
2426 * 'bounce buffer'
2427 */
2428 u32 cmd_trace_buf[GVT_MAX_CMD_LENGTH];
2429 int i;
2430 u32 cmd_len = cmd_length(s);
2431 /* The chosen value of GVT_MAX_CMD_LENGTH are just based on
2432 * following two considerations:
2433 * 1) From observation, most common ring commands is not that long.
2434 * But there are execeptions. So it indeed makes sence to observe
2435 * longer commands.
2436 * 2) From the performance and debugging point of view, dumping all
2437 * contents of very commands is not necessary.
2438 * We mgith shrink GVT_MAX_CMD_LENGTH or remove this trace event in
2439 * future for performance considerations.
2440 */
2441 if (unlikely(cmd_len > GVT_MAX_CMD_LENGTH)) {
2442 gvt_dbg_cmd("cmd length exceed tracing limitation!\n");
2443 cmd_len = GVT_MAX_CMD_LENGTH;
2444 }
2445
2446 for (i = 0; i < cmd_len; i++)
2447 cmd_trace_buf[i] = cmd_val(s, i);
2448
2449 trace_gvt_command(s->vgpu->id, s->ring_id, s->ip_gma, cmd_trace_buf,
2450 cmd_len, s->buf_type == RING_BUFFER_INSTRUCTION,
2451 cost_pre_cmd_handler, cost_cmd_handler);
2452 }
2453
2454 /* call the cmd handler, and advance ip */
2455 static int cmd_parser_exec(struct parser_exec_state *s)
2456 {
2457 struct cmd_info *info;
2458 u32 cmd;
2459 int ret = 0;
2460 cycles_t t0, t1, t2;
2461 struct parser_exec_state s_before_advance_custom;
2462 struct intel_vgpu *vgpu = s->vgpu;
2463
2464 t0 = get_cycles();
2465
2466 cmd = cmd_val(s, 0);
2467
2468 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
2469 if (info == NULL) {
2470 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x\n",
2471 cmd, get_opcode(cmd, s->ring_id));
2472 return -EINVAL;
2473 }
2474
2475 gvt_dbg_cmd("%s\n", info->name);
2476
2477 s->info = info;
2478
2479 t1 = get_cycles();
2480
2481 memcpy(&s_before_advance_custom, s, sizeof(struct parser_exec_state));
2482
2483 if (info->handler) {
2484 ret = info->handler(s);
2485 if (ret < 0) {
2486 gvt_vgpu_err("%s handler error\n", info->name);
2487 return ret;
2488 }
2489 }
2490 t2 = get_cycles();
2491
2492 trace_cs_command(&s_before_advance_custom, t1 - t0, t2 - t1);
2493
2494 if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2495 ret = cmd_advance_default(s);
2496 if (ret) {
2497 gvt_vgpu_err("%s IP advance error\n", info->name);
2498 return ret;
2499 }
2500 }
2501 return 0;
2502 }
2503
2504 static inline bool gma_out_of_range(unsigned long gma,
2505 unsigned long gma_head, unsigned int gma_tail)
2506 {
2507 if (gma_tail >= gma_head)
2508 return (gma < gma_head) || (gma > gma_tail);
2509 else
2510 return (gma > gma_tail) && (gma < gma_head);
2511 }
2512
2513 static int command_scan(struct parser_exec_state *s,
2514 unsigned long rb_head, unsigned long rb_tail,
2515 unsigned long rb_start, unsigned long rb_len)
2516 {
2517
2518 unsigned long gma_head, gma_tail, gma_bottom;
2519 int ret = 0;
2520 struct intel_vgpu *vgpu = s->vgpu;
2521
2522 gma_head = rb_start + rb_head;
2523 gma_tail = rb_start + rb_tail;
2524 gma_bottom = rb_start + rb_len;
2525
2526 gvt_dbg_cmd("scan_start: start=%lx end=%lx\n", gma_head, gma_tail);
2527
2528 while (s->ip_gma != gma_tail) {
2529 if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2530 if (!(s->ip_gma >= rb_start) ||
2531 !(s->ip_gma < gma_bottom)) {
2532 gvt_vgpu_err("ip_gma %lx out of ring scope."
2533 "(base:0x%lx, bottom: 0x%lx)\n",
2534 s->ip_gma, rb_start,
2535 gma_bottom);
2536 parser_exec_state_dump(s);
2537 return -EINVAL;
2538 }
2539 if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2540 gvt_vgpu_err("ip_gma %lx out of range."
2541 "base 0x%lx head 0x%lx tail 0x%lx\n",
2542 s->ip_gma, rb_start,
2543 rb_head, rb_tail);
2544 parser_exec_state_dump(s);
2545 break;
2546 }
2547 }
2548 ret = cmd_parser_exec(s);
2549 if (ret) {
2550 gvt_vgpu_err("cmd parser error\n");
2551 parser_exec_state_dump(s);
2552 break;
2553 }
2554 }
2555
2556 gvt_dbg_cmd("scan_end\n");
2557
2558 return ret;
2559 }
2560
2561 static int scan_workload(struct intel_vgpu_workload *workload)
2562 {
2563 unsigned long gma_head, gma_tail, gma_bottom;
2564 struct parser_exec_state s;
2565 int ret = 0;
2566
2567 /* ring base is page aligned */
2568 if (WARN_ON(!IS_ALIGNED(workload->rb_start, GTT_PAGE_SIZE)))
2569 return -EINVAL;
2570
2571 gma_head = workload->rb_start + workload->rb_head;
2572 gma_tail = workload->rb_start + workload->rb_tail;
2573 gma_bottom = workload->rb_start + _RING_CTL_BUF_SIZE(workload->rb_ctl);
2574
2575 s.buf_type = RING_BUFFER_INSTRUCTION;
2576 s.buf_addr_type = GTT_BUFFER;
2577 s.vgpu = workload->vgpu;
2578 s.ring_id = workload->ring_id;
2579 s.ring_start = workload->rb_start;
2580 s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2581 s.ring_head = gma_head;
2582 s.ring_tail = gma_tail;
2583 s.rb_va = workload->shadow_ring_buffer_va;
2584 s.workload = workload;
2585
2586 if ((bypass_scan_mask & (1 << workload->ring_id)) ||
2587 gma_head == gma_tail)
2588 return 0;
2589
2590 ret = ip_gma_set(&s, gma_head);
2591 if (ret)
2592 goto out;
2593
2594 ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2595 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2596
2597 out:
2598 return ret;
2599 }
2600
2601 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2602 {
2603
2604 unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
2605 struct parser_exec_state s;
2606 int ret = 0;
2607
2608 /* ring base is page aligned */
2609 if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma, GTT_PAGE_SIZE)))
2610 return -EINVAL;
2611
2612 ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(uint32_t);
2613 ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2614 PAGE_SIZE);
2615 gma_head = wa_ctx->indirect_ctx.guest_gma;
2616 gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2617 gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
2618
2619 s.buf_type = RING_BUFFER_INSTRUCTION;
2620 s.buf_addr_type = GTT_BUFFER;
2621 s.vgpu = wa_ctx->workload->vgpu;
2622 s.ring_id = wa_ctx->workload->ring_id;
2623 s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2624 s.ring_size = ring_size;
2625 s.ring_head = gma_head;
2626 s.ring_tail = gma_tail;
2627 s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2628 s.workload = wa_ctx->workload;
2629
2630 ret = ip_gma_set(&s, gma_head);
2631 if (ret)
2632 goto out;
2633
2634 ret = command_scan(&s, 0, ring_tail,
2635 wa_ctx->indirect_ctx.guest_gma, ring_size);
2636 out:
2637 return ret;
2638 }
2639
2640 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2641 {
2642 struct intel_vgpu *vgpu = workload->vgpu;
2643 unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2644 u32 *cs;
2645 int ret;
2646
2647 guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2648
2649 /* calculate workload ring buffer size */
2650 workload->rb_len = (workload->rb_tail + guest_rb_size -
2651 workload->rb_head) % guest_rb_size;
2652
2653 gma_head = workload->rb_start + workload->rb_head;
2654 gma_tail = workload->rb_start + workload->rb_tail;
2655 gma_top = workload->rb_start + guest_rb_size;
2656
2657 /* allocate shadow ring buffer */
2658 cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
2659 if (IS_ERR(cs))
2660 return PTR_ERR(cs);
2661
2662 /* get shadow ring buffer va */
2663 workload->shadow_ring_buffer_va = cs;
2664
2665 /* head > tail --> copy head <-> top */
2666 if (gma_head > gma_tail) {
2667 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2668 gma_head, gma_top, cs);
2669 if (ret < 0) {
2670 gvt_vgpu_err("fail to copy guest ring buffer\n");
2671 return ret;
2672 }
2673 cs += ret / sizeof(u32);
2674 gma_head = workload->rb_start;
2675 }
2676
2677 /* copy head or start <-> tail */
2678 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail, cs);
2679 if (ret < 0) {
2680 gvt_vgpu_err("fail to copy guest ring buffer\n");
2681 return ret;
2682 }
2683 cs += ret / sizeof(u32);
2684 intel_ring_advance(workload->req, cs);
2685 return 0;
2686 }
2687
2688 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
2689 {
2690 int ret;
2691 struct intel_vgpu *vgpu = workload->vgpu;
2692
2693 ret = shadow_workload_ring_buffer(workload);
2694 if (ret) {
2695 gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2696 return ret;
2697 }
2698
2699 ret = scan_workload(workload);
2700 if (ret) {
2701 gvt_vgpu_err("scan workload error\n");
2702 return ret;
2703 }
2704 return 0;
2705 }
2706
2707 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2708 {
2709 int ctx_size = wa_ctx->indirect_ctx.size;
2710 unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2711 struct intel_vgpu *vgpu = wa_ctx->workload->vgpu;
2712 struct drm_i915_gem_object *obj;
2713 int ret = 0;
2714 void *map;
2715
2716 obj = i915_gem_object_create(wa_ctx->workload->vgpu->gvt->dev_priv,
2717 roundup(ctx_size + CACHELINE_BYTES,
2718 PAGE_SIZE));
2719 if (IS_ERR(obj))
2720 return PTR_ERR(obj);
2721
2722 /* get the va of the shadow batch buffer */
2723 map = i915_gem_object_pin_map(obj, I915_MAP_WB);
2724 if (IS_ERR(map)) {
2725 gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
2726 ret = PTR_ERR(map);
2727 goto put_obj;
2728 }
2729
2730 ret = i915_gem_object_set_to_cpu_domain(obj, false);
2731 if (ret) {
2732 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
2733 goto unmap_src;
2734 }
2735
2736 ret = copy_gma_to_hva(wa_ctx->workload->vgpu,
2737 wa_ctx->workload->vgpu->gtt.ggtt_mm,
2738 guest_gma, guest_gma + ctx_size,
2739 map);
2740 if (ret < 0) {
2741 gvt_vgpu_err("fail to copy guest indirect ctx\n");
2742 goto unmap_src;
2743 }
2744
2745 wa_ctx->indirect_ctx.obj = obj;
2746 wa_ctx->indirect_ctx.shadow_va = map;
2747 return 0;
2748
2749 unmap_src:
2750 i915_gem_object_unpin_map(obj);
2751 put_obj:
2752 i915_gem_object_put(wa_ctx->indirect_ctx.obj);
2753 return ret;
2754 }
2755
2756 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2757 {
2758 uint32_t per_ctx_start[CACHELINE_DWORDS] = {0};
2759 unsigned char *bb_start_sva;
2760
2761 per_ctx_start[0] = 0x18800001;
2762 per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
2763
2764 bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
2765 wa_ctx->indirect_ctx.size;
2766
2767 memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
2768
2769 return 0;
2770 }
2771
2772 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2773 {
2774 int ret;
2775 struct intel_vgpu *vgpu = wa_ctx->workload->vgpu;
2776
2777 if (wa_ctx->indirect_ctx.size == 0)
2778 return 0;
2779
2780 ret = shadow_indirect_ctx(wa_ctx);
2781 if (ret) {
2782 gvt_vgpu_err("fail to shadow indirect ctx\n");
2783 return ret;
2784 }
2785
2786 combine_wa_ctx(wa_ctx);
2787
2788 ret = scan_wa_ctx(wa_ctx);
2789 if (ret) {
2790 gvt_vgpu_err("scan wa ctx error\n");
2791 return ret;
2792 }
2793
2794 return 0;
2795 }
2796
2797 static struct cmd_info *find_cmd_entry_any_ring(struct intel_gvt *gvt,
2798 unsigned int opcode, int rings)
2799 {
2800 struct cmd_info *info = NULL;
2801 unsigned int ring;
2802
2803 for_each_set_bit(ring, (unsigned long *)&rings, I915_NUM_ENGINES) {
2804 info = find_cmd_entry(gvt, opcode, ring);
2805 if (info)
2806 break;
2807 }
2808 return info;
2809 }
2810
2811 static int init_cmd_table(struct intel_gvt *gvt)
2812 {
2813 int i;
2814 struct cmd_entry *e;
2815 struct cmd_info *info;
2816 unsigned int gen_type;
2817
2818 gen_type = intel_gvt_get_device_type(gvt);
2819
2820 for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
2821 if (!(cmd_info[i].devices & gen_type))
2822 continue;
2823
2824 e = kzalloc(sizeof(*e), GFP_KERNEL);
2825 if (!e)
2826 return -ENOMEM;
2827
2828 e->info = &cmd_info[i];
2829 info = find_cmd_entry_any_ring(gvt,
2830 e->info->opcode, e->info->rings);
2831 if (info) {
2832 gvt_err("%s %s duplicated\n", e->info->name,
2833 info->name);
2834 return -EEXIST;
2835 }
2836
2837 INIT_HLIST_NODE(&e->hlist);
2838 add_cmd_entry(gvt, e);
2839 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
2840 e->info->name, e->info->opcode, e->info->flag,
2841 e->info->devices, e->info->rings);
2842 }
2843 return 0;
2844 }
2845
2846 static void clean_cmd_table(struct intel_gvt *gvt)
2847 {
2848 struct hlist_node *tmp;
2849 struct cmd_entry *e;
2850 int i;
2851
2852 hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
2853 kfree(e);
2854
2855 hash_init(gvt->cmd_table);
2856 }
2857
2858 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
2859 {
2860 clean_cmd_table(gvt);
2861 }
2862
2863 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
2864 {
2865 int ret;
2866
2867 ret = init_cmd_table(gvt);
2868 if (ret) {
2869 intel_gvt_clean_cmd_parser(gvt);
2870 return ret;
2871 }
2872 return 0;
2873 }