]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/gvt/gtt.c
scsi: qedf: Fix a potential NULL pointer dereference
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / gvt / gtt.c
1 /*
2 * GTT virtualization
3 *
4 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 * SOFTWARE.
24 *
25 * Authors:
26 * Zhi Wang <zhi.a.wang@intel.com>
27 * Zhenyu Wang <zhenyuw@linux.intel.com>
28 * Xiao Zheng <xiao.zheng@intel.com>
29 *
30 * Contributors:
31 * Min He <min.he@intel.com>
32 * Bing Niu <bing.niu@intel.com>
33 *
34 */
35
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40
41 static bool enable_out_of_sync = false;
42 static int preallocated_oos_pages = 8192;
43
44 /*
45 * validate a gm address and related range size,
46 * translate it to host gm address
47 */
48 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
49 {
50 if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
51 && !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
52 gvt_vgpu_err("invalid range gmadr 0x%llx size 0x%x\n",
53 addr, size);
54 return false;
55 }
56 return true;
57 }
58
59 /* translate a guest gmadr to host gmadr */
60 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
61 {
62 if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
63 "invalid guest gmadr %llx\n", g_addr))
64 return -EACCES;
65
66 if (vgpu_gmadr_is_aperture(vgpu, g_addr))
67 *h_addr = vgpu_aperture_gmadr_base(vgpu)
68 + (g_addr - vgpu_aperture_offset(vgpu));
69 else
70 *h_addr = vgpu_hidden_gmadr_base(vgpu)
71 + (g_addr - vgpu_hidden_offset(vgpu));
72 return 0;
73 }
74
75 /* translate a host gmadr to guest gmadr */
76 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
77 {
78 if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
79 "invalid host gmadr %llx\n", h_addr))
80 return -EACCES;
81
82 if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
83 *g_addr = vgpu_aperture_gmadr_base(vgpu)
84 + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
85 else
86 *g_addr = vgpu_hidden_gmadr_base(vgpu)
87 + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
88 return 0;
89 }
90
91 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
92 unsigned long *h_index)
93 {
94 u64 h_addr;
95 int ret;
96
97 ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << GTT_PAGE_SHIFT,
98 &h_addr);
99 if (ret)
100 return ret;
101
102 *h_index = h_addr >> GTT_PAGE_SHIFT;
103 return 0;
104 }
105
106 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
107 unsigned long *g_index)
108 {
109 u64 g_addr;
110 int ret;
111
112 ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << GTT_PAGE_SHIFT,
113 &g_addr);
114 if (ret)
115 return ret;
116
117 *g_index = g_addr >> GTT_PAGE_SHIFT;
118 return 0;
119 }
120
121 #define gtt_type_is_entry(type) \
122 (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
123 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
124 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
125
126 #define gtt_type_is_pt(type) \
127 (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
128
129 #define gtt_type_is_pte_pt(type) \
130 (type == GTT_TYPE_PPGTT_PTE_PT)
131
132 #define gtt_type_is_root_pointer(type) \
133 (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
134
135 #define gtt_init_entry(e, t, p, v) do { \
136 (e)->type = t; \
137 (e)->pdev = p; \
138 memcpy(&(e)->val64, &v, sizeof(v)); \
139 } while (0)
140
141 /*
142 * Mappings between GTT_TYPE* enumerations.
143 * Following information can be found according to the given type:
144 * - type of next level page table
145 * - type of entry inside this level page table
146 * - type of entry with PSE set
147 *
148 * If the given type doesn't have such a kind of information,
149 * e.g. give a l4 root entry type, then request to get its PSE type,
150 * give a PTE page table type, then request to get its next level page
151 * table type, as we know l4 root entry doesn't have a PSE bit,
152 * and a PTE page table doesn't have a next level page table type,
153 * GTT_TYPE_INVALID will be returned. This is useful when traversing a
154 * page table.
155 */
156
157 struct gtt_type_table_entry {
158 int entry_type;
159 int next_pt_type;
160 int pse_entry_type;
161 };
162
163 #define GTT_TYPE_TABLE_ENTRY(type, e_type, npt_type, pse_type) \
164 [type] = { \
165 .entry_type = e_type, \
166 .next_pt_type = npt_type, \
167 .pse_entry_type = pse_type, \
168 }
169
170 static struct gtt_type_table_entry gtt_type_table[] = {
171 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
172 GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
173 GTT_TYPE_PPGTT_PML4_PT,
174 GTT_TYPE_INVALID),
175 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
176 GTT_TYPE_PPGTT_PML4_ENTRY,
177 GTT_TYPE_PPGTT_PDP_PT,
178 GTT_TYPE_INVALID),
179 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
180 GTT_TYPE_PPGTT_PML4_ENTRY,
181 GTT_TYPE_PPGTT_PDP_PT,
182 GTT_TYPE_INVALID),
183 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
184 GTT_TYPE_PPGTT_PDP_ENTRY,
185 GTT_TYPE_PPGTT_PDE_PT,
186 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
187 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
188 GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
189 GTT_TYPE_PPGTT_PDE_PT,
190 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
191 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
192 GTT_TYPE_PPGTT_PDP_ENTRY,
193 GTT_TYPE_PPGTT_PDE_PT,
194 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
195 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
196 GTT_TYPE_PPGTT_PDE_ENTRY,
197 GTT_TYPE_PPGTT_PTE_PT,
198 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
199 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
200 GTT_TYPE_PPGTT_PDE_ENTRY,
201 GTT_TYPE_PPGTT_PTE_PT,
202 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
203 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
204 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
205 GTT_TYPE_INVALID,
206 GTT_TYPE_INVALID),
207 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
208 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
209 GTT_TYPE_INVALID,
210 GTT_TYPE_INVALID),
211 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
212 GTT_TYPE_PPGTT_PDE_ENTRY,
213 GTT_TYPE_INVALID,
214 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
215 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
216 GTT_TYPE_PPGTT_PDP_ENTRY,
217 GTT_TYPE_INVALID,
218 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
219 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
220 GTT_TYPE_GGTT_PTE,
221 GTT_TYPE_INVALID,
222 GTT_TYPE_INVALID),
223 };
224
225 static inline int get_next_pt_type(int type)
226 {
227 return gtt_type_table[type].next_pt_type;
228 }
229
230 static inline int get_entry_type(int type)
231 {
232 return gtt_type_table[type].entry_type;
233 }
234
235 static inline int get_pse_type(int type)
236 {
237 return gtt_type_table[type].pse_entry_type;
238 }
239
240 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
241 {
242 void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
243
244 return readq(addr);
245 }
246
247 static void gtt_invalidate(struct drm_i915_private *dev_priv)
248 {
249 mmio_hw_access_pre(dev_priv);
250 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
251 mmio_hw_access_post(dev_priv);
252 }
253
254 static void write_pte64(struct drm_i915_private *dev_priv,
255 unsigned long index, u64 pte)
256 {
257 void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
258
259 writeq(pte, addr);
260 }
261
262 static inline struct intel_gvt_gtt_entry *gtt_get_entry64(void *pt,
263 struct intel_gvt_gtt_entry *e,
264 unsigned long index, bool hypervisor_access, unsigned long gpa,
265 struct intel_vgpu *vgpu)
266 {
267 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
268 int ret;
269
270 if (WARN_ON(info->gtt_entry_size != 8))
271 return e;
272
273 if (hypervisor_access) {
274 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
275 (index << info->gtt_entry_size_shift),
276 &e->val64, 8);
277 WARN_ON(ret);
278 } else if (!pt) {
279 e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
280 } else {
281 e->val64 = *((u64 *)pt + index);
282 }
283 return e;
284 }
285
286 static inline struct intel_gvt_gtt_entry *gtt_set_entry64(void *pt,
287 struct intel_gvt_gtt_entry *e,
288 unsigned long index, bool hypervisor_access, unsigned long gpa,
289 struct intel_vgpu *vgpu)
290 {
291 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
292 int ret;
293
294 if (WARN_ON(info->gtt_entry_size != 8))
295 return e;
296
297 if (hypervisor_access) {
298 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
299 (index << info->gtt_entry_size_shift),
300 &e->val64, 8);
301 WARN_ON(ret);
302 } else if (!pt) {
303 write_pte64(vgpu->gvt->dev_priv, index, e->val64);
304 } else {
305 *((u64 *)pt + index) = e->val64;
306 }
307 return e;
308 }
309
310 #define GTT_HAW 46
311
312 #define ADDR_1G_MASK (((1UL << (GTT_HAW - 30 + 1)) - 1) << 30)
313 #define ADDR_2M_MASK (((1UL << (GTT_HAW - 21 + 1)) - 1) << 21)
314 #define ADDR_4K_MASK (((1UL << (GTT_HAW - 12 + 1)) - 1) << 12)
315
316 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
317 {
318 unsigned long pfn;
319
320 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
321 pfn = (e->val64 & ADDR_1G_MASK) >> 12;
322 else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
323 pfn = (e->val64 & ADDR_2M_MASK) >> 12;
324 else
325 pfn = (e->val64 & ADDR_4K_MASK) >> 12;
326 return pfn;
327 }
328
329 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
330 {
331 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
332 e->val64 &= ~ADDR_1G_MASK;
333 pfn &= (ADDR_1G_MASK >> 12);
334 } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
335 e->val64 &= ~ADDR_2M_MASK;
336 pfn &= (ADDR_2M_MASK >> 12);
337 } else {
338 e->val64 &= ~ADDR_4K_MASK;
339 pfn &= (ADDR_4K_MASK >> 12);
340 }
341
342 e->val64 |= (pfn << 12);
343 }
344
345 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
346 {
347 /* Entry doesn't have PSE bit. */
348 if (get_pse_type(e->type) == GTT_TYPE_INVALID)
349 return false;
350
351 e->type = get_entry_type(e->type);
352 if (!(e->val64 & (1 << 7)))
353 return false;
354
355 e->type = get_pse_type(e->type);
356 return true;
357 }
358
359 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
360 {
361 /*
362 * i915 writes PDP root pointer registers without present bit,
363 * it also works, so we need to treat root pointer entry
364 * specifically.
365 */
366 if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
367 || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
368 return (e->val64 != 0);
369 else
370 return (e->val64 & (1 << 0));
371 }
372
373 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
374 {
375 e->val64 &= ~(1 << 0);
376 }
377
378 /*
379 * Per-platform GMA routines.
380 */
381 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
382 {
383 unsigned long x = (gma >> GTT_PAGE_SHIFT);
384
385 trace_gma_index(__func__, gma, x);
386 return x;
387 }
388
389 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
390 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
391 { \
392 unsigned long x = (exp); \
393 trace_gma_index(__func__, gma, x); \
394 return x; \
395 }
396
397 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
398 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
399 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
400 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
401 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
402
403 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
404 .get_entry = gtt_get_entry64,
405 .set_entry = gtt_set_entry64,
406 .clear_present = gtt_entry_clear_present,
407 .test_present = gen8_gtt_test_present,
408 .test_pse = gen8_gtt_test_pse,
409 .get_pfn = gen8_gtt_get_pfn,
410 .set_pfn = gen8_gtt_set_pfn,
411 };
412
413 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
414 .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
415 .gma_to_pte_index = gen8_gma_to_pte_index,
416 .gma_to_pde_index = gen8_gma_to_pde_index,
417 .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
418 .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
419 .gma_to_pml4_index = gen8_gma_to_pml4_index,
420 };
421
422 static int gtt_entry_p2m(struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *p,
423 struct intel_gvt_gtt_entry *m)
424 {
425 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
426 unsigned long gfn, mfn;
427
428 *m = *p;
429
430 if (!ops->test_present(p))
431 return 0;
432
433 gfn = ops->get_pfn(p);
434
435 mfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, gfn);
436 if (mfn == INTEL_GVT_INVALID_ADDR) {
437 gvt_vgpu_err("fail to translate gfn: 0x%lx\n", gfn);
438 return -ENXIO;
439 }
440
441 ops->set_pfn(m, mfn);
442 return 0;
443 }
444
445 /*
446 * MM helpers.
447 */
448 struct intel_gvt_gtt_entry *intel_vgpu_mm_get_entry(struct intel_vgpu_mm *mm,
449 void *page_table, struct intel_gvt_gtt_entry *e,
450 unsigned long index)
451 {
452 struct intel_gvt *gvt = mm->vgpu->gvt;
453 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
454
455 e->type = mm->page_table_entry_type;
456
457 ops->get_entry(page_table, e, index, false, 0, mm->vgpu);
458 ops->test_pse(e);
459 return e;
460 }
461
462 struct intel_gvt_gtt_entry *intel_vgpu_mm_set_entry(struct intel_vgpu_mm *mm,
463 void *page_table, struct intel_gvt_gtt_entry *e,
464 unsigned long index)
465 {
466 struct intel_gvt *gvt = mm->vgpu->gvt;
467 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
468
469 return ops->set_entry(page_table, e, index, false, 0, mm->vgpu);
470 }
471
472 /*
473 * PPGTT shadow page table helpers.
474 */
475 static inline struct intel_gvt_gtt_entry *ppgtt_spt_get_entry(
476 struct intel_vgpu_ppgtt_spt *spt,
477 void *page_table, int type,
478 struct intel_gvt_gtt_entry *e, unsigned long index,
479 bool guest)
480 {
481 struct intel_gvt *gvt = spt->vgpu->gvt;
482 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
483
484 e->type = get_entry_type(type);
485
486 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
487 return e;
488
489 ops->get_entry(page_table, e, index, guest,
490 spt->guest_page.gfn << GTT_PAGE_SHIFT,
491 spt->vgpu);
492 ops->test_pse(e);
493 return e;
494 }
495
496 static inline struct intel_gvt_gtt_entry *ppgtt_spt_set_entry(
497 struct intel_vgpu_ppgtt_spt *spt,
498 void *page_table, int type,
499 struct intel_gvt_gtt_entry *e, unsigned long index,
500 bool guest)
501 {
502 struct intel_gvt *gvt = spt->vgpu->gvt;
503 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
504
505 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
506 return e;
507
508 return ops->set_entry(page_table, e, index, guest,
509 spt->guest_page.gfn << GTT_PAGE_SHIFT,
510 spt->vgpu);
511 }
512
513 #define ppgtt_get_guest_entry(spt, e, index) \
514 ppgtt_spt_get_entry(spt, NULL, \
515 spt->guest_page_type, e, index, true)
516
517 #define ppgtt_set_guest_entry(spt, e, index) \
518 ppgtt_spt_set_entry(spt, NULL, \
519 spt->guest_page_type, e, index, true)
520
521 #define ppgtt_get_shadow_entry(spt, e, index) \
522 ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
523 spt->shadow_page.type, e, index, false)
524
525 #define ppgtt_set_shadow_entry(spt, e, index) \
526 ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
527 spt->shadow_page.type, e, index, false)
528
529 /**
530 * intel_vgpu_init_guest_page - init a guest page data structure
531 * @vgpu: a vGPU
532 * @p: a guest page data structure
533 * @gfn: guest memory page frame number
534 * @handler: function will be called when target guest memory page has
535 * been modified.
536 *
537 * This function is called when user wants to track a guest memory page.
538 *
539 * Returns:
540 * Zero on success, negative error code if failed.
541 */
542 int intel_vgpu_init_guest_page(struct intel_vgpu *vgpu,
543 struct intel_vgpu_guest_page *p,
544 unsigned long gfn,
545 int (*handler)(void *, u64, void *, int),
546 void *data)
547 {
548 INIT_HLIST_NODE(&p->node);
549
550 p->writeprotection = false;
551 p->gfn = gfn;
552 p->handler = handler;
553 p->data = data;
554 p->oos_page = NULL;
555 p->write_cnt = 0;
556
557 hash_add(vgpu->gtt.guest_page_hash_table, &p->node, p->gfn);
558 return 0;
559 }
560
561 static int detach_oos_page(struct intel_vgpu *vgpu,
562 struct intel_vgpu_oos_page *oos_page);
563
564 /**
565 * intel_vgpu_clean_guest_page - release the resource owned by guest page data
566 * structure
567 * @vgpu: a vGPU
568 * @p: a tracked guest page
569 *
570 * This function is called when user tries to stop tracking a guest memory
571 * page.
572 */
573 void intel_vgpu_clean_guest_page(struct intel_vgpu *vgpu,
574 struct intel_vgpu_guest_page *p)
575 {
576 if (!hlist_unhashed(&p->node))
577 hash_del(&p->node);
578
579 if (p->oos_page)
580 detach_oos_page(vgpu, p->oos_page);
581
582 if (p->writeprotection)
583 intel_gvt_hypervisor_unset_wp_page(vgpu, p);
584 }
585
586 /**
587 * intel_vgpu_find_guest_page - find a guest page data structure by GFN.
588 * @vgpu: a vGPU
589 * @gfn: guest memory page frame number
590 *
591 * This function is called when emulation logic wants to know if a trapped GFN
592 * is a tracked guest page.
593 *
594 * Returns:
595 * Pointer to guest page data structure, NULL if failed.
596 */
597 struct intel_vgpu_guest_page *intel_vgpu_find_guest_page(
598 struct intel_vgpu *vgpu, unsigned long gfn)
599 {
600 struct intel_vgpu_guest_page *p;
601
602 hash_for_each_possible(vgpu->gtt.guest_page_hash_table,
603 p, node, gfn) {
604 if (p->gfn == gfn)
605 return p;
606 }
607 return NULL;
608 }
609
610 static inline int init_shadow_page(struct intel_vgpu *vgpu,
611 struct intel_vgpu_shadow_page *p, int type)
612 {
613 struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
614 dma_addr_t daddr;
615
616 daddr = dma_map_page(kdev, p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
617 if (dma_mapping_error(kdev, daddr)) {
618 gvt_vgpu_err("fail to map dma addr\n");
619 return -EINVAL;
620 }
621
622 p->vaddr = page_address(p->page);
623 p->type = type;
624
625 INIT_HLIST_NODE(&p->node);
626
627 p->mfn = daddr >> GTT_PAGE_SHIFT;
628 hash_add(vgpu->gtt.shadow_page_hash_table, &p->node, p->mfn);
629 return 0;
630 }
631
632 static inline void clean_shadow_page(struct intel_vgpu *vgpu,
633 struct intel_vgpu_shadow_page *p)
634 {
635 struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
636
637 dma_unmap_page(kdev, p->mfn << GTT_PAGE_SHIFT, 4096,
638 PCI_DMA_BIDIRECTIONAL);
639
640 if (!hlist_unhashed(&p->node))
641 hash_del(&p->node);
642 }
643
644 static inline struct intel_vgpu_shadow_page *find_shadow_page(
645 struct intel_vgpu *vgpu, unsigned long mfn)
646 {
647 struct intel_vgpu_shadow_page *p;
648
649 hash_for_each_possible(vgpu->gtt.shadow_page_hash_table,
650 p, node, mfn) {
651 if (p->mfn == mfn)
652 return p;
653 }
654 return NULL;
655 }
656
657 #define guest_page_to_ppgtt_spt(ptr) \
658 container_of(ptr, struct intel_vgpu_ppgtt_spt, guest_page)
659
660 #define shadow_page_to_ppgtt_spt(ptr) \
661 container_of(ptr, struct intel_vgpu_ppgtt_spt, shadow_page)
662
663 static void *alloc_spt(gfp_t gfp_mask)
664 {
665 struct intel_vgpu_ppgtt_spt *spt;
666
667 spt = kzalloc(sizeof(*spt), gfp_mask);
668 if (!spt)
669 return NULL;
670
671 spt->shadow_page.page = alloc_page(gfp_mask);
672 if (!spt->shadow_page.page) {
673 kfree(spt);
674 return NULL;
675 }
676 return spt;
677 }
678
679 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
680 {
681 __free_page(spt->shadow_page.page);
682 kfree(spt);
683 }
684
685 static void ppgtt_free_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
686 {
687 trace_spt_free(spt->vgpu->id, spt, spt->shadow_page.type);
688
689 clean_shadow_page(spt->vgpu, &spt->shadow_page);
690 intel_vgpu_clean_guest_page(spt->vgpu, &spt->guest_page);
691 list_del_init(&spt->post_shadow_list);
692
693 free_spt(spt);
694 }
695
696 static void ppgtt_free_all_shadow_page(struct intel_vgpu *vgpu)
697 {
698 struct hlist_node *n;
699 struct intel_vgpu_shadow_page *sp;
700 int i;
701
702 hash_for_each_safe(vgpu->gtt.shadow_page_hash_table, i, n, sp, node)
703 ppgtt_free_shadow_page(shadow_page_to_ppgtt_spt(sp));
704 }
705
706 static int ppgtt_handle_guest_write_page_table_bytes(void *gp,
707 u64 pa, void *p_data, int bytes);
708
709 static int ppgtt_write_protection_handler(void *gp, u64 pa,
710 void *p_data, int bytes)
711 {
712 struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp;
713 int ret;
714
715 if (bytes != 4 && bytes != 8)
716 return -EINVAL;
717
718 if (!gpt->writeprotection)
719 return -EINVAL;
720
721 ret = ppgtt_handle_guest_write_page_table_bytes(gp,
722 pa, p_data, bytes);
723 if (ret)
724 return ret;
725 return ret;
726 }
727
728 static int reclaim_one_mm(struct intel_gvt *gvt);
729
730 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_shadow_page(
731 struct intel_vgpu *vgpu, int type, unsigned long gfn)
732 {
733 struct intel_vgpu_ppgtt_spt *spt = NULL;
734 int ret;
735
736 retry:
737 spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
738 if (!spt) {
739 if (reclaim_one_mm(vgpu->gvt))
740 goto retry;
741
742 gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
743 return ERR_PTR(-ENOMEM);
744 }
745
746 spt->vgpu = vgpu;
747 spt->guest_page_type = type;
748 atomic_set(&spt->refcount, 1);
749 INIT_LIST_HEAD(&spt->post_shadow_list);
750
751 /*
752 * TODO: guest page type may be different with shadow page type,
753 * when we support PSE page in future.
754 */
755 ret = init_shadow_page(vgpu, &spt->shadow_page, type);
756 if (ret) {
757 gvt_vgpu_err("fail to initialize shadow page for spt\n");
758 goto err;
759 }
760
761 ret = intel_vgpu_init_guest_page(vgpu, &spt->guest_page,
762 gfn, ppgtt_write_protection_handler, NULL);
763 if (ret) {
764 gvt_vgpu_err("fail to initialize guest page for spt\n");
765 goto err;
766 }
767
768 trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
769 return spt;
770 err:
771 ppgtt_free_shadow_page(spt);
772 return ERR_PTR(ret);
773 }
774
775 static struct intel_vgpu_ppgtt_spt *ppgtt_find_shadow_page(
776 struct intel_vgpu *vgpu, unsigned long mfn)
777 {
778 struct intel_vgpu_shadow_page *p = find_shadow_page(vgpu, mfn);
779
780 if (p)
781 return shadow_page_to_ppgtt_spt(p);
782
783 gvt_vgpu_err("fail to find ppgtt shadow page: 0x%lx\n", mfn);
784 return NULL;
785 }
786
787 #define pt_entry_size_shift(spt) \
788 ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
789
790 #define pt_entries(spt) \
791 (GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
792
793 #define for_each_present_guest_entry(spt, e, i) \
794 for (i = 0; i < pt_entries(spt); i++) \
795 if (spt->vgpu->gvt->gtt.pte_ops->test_present( \
796 ppgtt_get_guest_entry(spt, e, i)))
797
798 #define for_each_present_shadow_entry(spt, e, i) \
799 for (i = 0; i < pt_entries(spt); i++) \
800 if (spt->vgpu->gvt->gtt.pte_ops->test_present( \
801 ppgtt_get_shadow_entry(spt, e, i)))
802
803 static void ppgtt_get_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
804 {
805 int v = atomic_read(&spt->refcount);
806
807 trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
808
809 atomic_inc(&spt->refcount);
810 }
811
812 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
813
814 static int ppgtt_invalidate_shadow_page_by_shadow_entry(struct intel_vgpu *vgpu,
815 struct intel_gvt_gtt_entry *e)
816 {
817 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
818 struct intel_vgpu_ppgtt_spt *s;
819 intel_gvt_gtt_type_t cur_pt_type;
820
821 if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(e->type))))
822 return -EINVAL;
823
824 if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
825 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
826 cur_pt_type = get_next_pt_type(e->type) + 1;
827 if (ops->get_pfn(e) ==
828 vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
829 return 0;
830 }
831 s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
832 if (!s) {
833 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
834 ops->get_pfn(e));
835 return -ENXIO;
836 }
837 return ppgtt_invalidate_shadow_page(s);
838 }
839
840 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
841 {
842 struct intel_vgpu *vgpu = spt->vgpu;
843 struct intel_gvt_gtt_entry e;
844 unsigned long index;
845 int ret;
846 int v = atomic_read(&spt->refcount);
847
848 trace_spt_change(spt->vgpu->id, "die", spt,
849 spt->guest_page.gfn, spt->shadow_page.type);
850
851 trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
852
853 if (atomic_dec_return(&spt->refcount) > 0)
854 return 0;
855
856 if (gtt_type_is_pte_pt(spt->shadow_page.type))
857 goto release;
858
859 for_each_present_shadow_entry(spt, &e, index) {
860 if (!gtt_type_is_pt(get_next_pt_type(e.type))) {
861 gvt_vgpu_err("GVT doesn't support pse bit for now\n");
862 return -EINVAL;
863 }
864 ret = ppgtt_invalidate_shadow_page_by_shadow_entry(
865 spt->vgpu, &e);
866 if (ret)
867 goto fail;
868 }
869 release:
870 trace_spt_change(spt->vgpu->id, "release", spt,
871 spt->guest_page.gfn, spt->shadow_page.type);
872 ppgtt_free_shadow_page(spt);
873 return 0;
874 fail:
875 gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
876 spt, e.val64, e.type);
877 return ret;
878 }
879
880 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
881
882 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_shadow_page_by_guest_entry(
883 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
884 {
885 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
886 struct intel_vgpu_ppgtt_spt *s = NULL;
887 struct intel_vgpu_guest_page *g;
888 int ret;
889
890 if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(we->type)))) {
891 ret = -EINVAL;
892 goto fail;
893 }
894
895 g = intel_vgpu_find_guest_page(vgpu, ops->get_pfn(we));
896 if (g) {
897 s = guest_page_to_ppgtt_spt(g);
898 ppgtt_get_shadow_page(s);
899 } else {
900 int type = get_next_pt_type(we->type);
901
902 s = ppgtt_alloc_shadow_page(vgpu, type, ops->get_pfn(we));
903 if (IS_ERR(s)) {
904 ret = PTR_ERR(s);
905 goto fail;
906 }
907
908 ret = intel_gvt_hypervisor_set_wp_page(vgpu, &s->guest_page);
909 if (ret)
910 goto fail;
911
912 ret = ppgtt_populate_shadow_page(s);
913 if (ret)
914 goto fail;
915
916 trace_spt_change(vgpu->id, "new", s, s->guest_page.gfn,
917 s->shadow_page.type);
918 }
919 return s;
920 fail:
921 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
922 s, we->val64, we->type);
923 return ERR_PTR(ret);
924 }
925
926 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
927 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
928 {
929 struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
930
931 se->type = ge->type;
932 se->val64 = ge->val64;
933
934 ops->set_pfn(se, s->shadow_page.mfn);
935 }
936
937 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
938 {
939 struct intel_vgpu *vgpu = spt->vgpu;
940 struct intel_vgpu_ppgtt_spt *s;
941 struct intel_gvt_gtt_entry se, ge;
942 unsigned long i;
943 int ret;
944
945 trace_spt_change(spt->vgpu->id, "born", spt,
946 spt->guest_page.gfn, spt->shadow_page.type);
947
948 if (gtt_type_is_pte_pt(spt->shadow_page.type)) {
949 for_each_present_guest_entry(spt, &ge, i) {
950 ret = gtt_entry_p2m(vgpu, &ge, &se);
951 if (ret)
952 goto fail;
953 ppgtt_set_shadow_entry(spt, &se, i);
954 }
955 return 0;
956 }
957
958 for_each_present_guest_entry(spt, &ge, i) {
959 if (!gtt_type_is_pt(get_next_pt_type(ge.type))) {
960 gvt_vgpu_err("GVT doesn't support pse bit now\n");
961 ret = -EINVAL;
962 goto fail;
963 }
964
965 s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
966 if (IS_ERR(s)) {
967 ret = PTR_ERR(s);
968 goto fail;
969 }
970 ppgtt_get_shadow_entry(spt, &se, i);
971 ppgtt_generate_shadow_entry(&se, s, &ge);
972 ppgtt_set_shadow_entry(spt, &se, i);
973 }
974 return 0;
975 fail:
976 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
977 spt, ge.val64, ge.type);
978 return ret;
979 }
980
981 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_guest_page *gpt,
982 unsigned long index)
983 {
984 struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
985 struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
986 struct intel_vgpu *vgpu = spt->vgpu;
987 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
988 struct intel_gvt_gtt_entry e;
989 int ret;
990
991 ppgtt_get_shadow_entry(spt, &e, index);
992
993 trace_gpt_change(spt->vgpu->id, "remove", spt, sp->type, e.val64,
994 index);
995
996 if (!ops->test_present(&e))
997 return 0;
998
999 if (ops->get_pfn(&e) == vgpu->gtt.scratch_pt[sp->type].page_mfn)
1000 return 0;
1001
1002 if (gtt_type_is_pt(get_next_pt_type(e.type))) {
1003 struct intel_vgpu_ppgtt_spt *s =
1004 ppgtt_find_shadow_page(vgpu, ops->get_pfn(&e));
1005 if (!s) {
1006 gvt_vgpu_err("fail to find guest page\n");
1007 ret = -ENXIO;
1008 goto fail;
1009 }
1010 ret = ppgtt_invalidate_shadow_page(s);
1011 if (ret)
1012 goto fail;
1013 }
1014 ops->set_pfn(&e, vgpu->gtt.scratch_pt[sp->type].page_mfn);
1015 ppgtt_set_shadow_entry(spt, &e, index);
1016 return 0;
1017 fail:
1018 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1019 spt, e.val64, e.type);
1020 return ret;
1021 }
1022
1023 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_guest_page *gpt,
1024 struct intel_gvt_gtt_entry *we, unsigned long index)
1025 {
1026 struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1027 struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
1028 struct intel_vgpu *vgpu = spt->vgpu;
1029 struct intel_gvt_gtt_entry m;
1030 struct intel_vgpu_ppgtt_spt *s;
1031 int ret;
1032
1033 trace_gpt_change(spt->vgpu->id, "add", spt, sp->type,
1034 we->val64, index);
1035
1036 if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1037 s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, we);
1038 if (IS_ERR(s)) {
1039 ret = PTR_ERR(s);
1040 goto fail;
1041 }
1042 ppgtt_get_shadow_entry(spt, &m, index);
1043 ppgtt_generate_shadow_entry(&m, s, we);
1044 ppgtt_set_shadow_entry(spt, &m, index);
1045 } else {
1046 ret = gtt_entry_p2m(vgpu, we, &m);
1047 if (ret)
1048 goto fail;
1049 ppgtt_set_shadow_entry(spt, &m, index);
1050 }
1051 return 0;
1052 fail:
1053 gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1054 spt, we->val64, we->type);
1055 return ret;
1056 }
1057
1058 static int sync_oos_page(struct intel_vgpu *vgpu,
1059 struct intel_vgpu_oos_page *oos_page)
1060 {
1061 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1062 struct intel_gvt *gvt = vgpu->gvt;
1063 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1064 struct intel_vgpu_ppgtt_spt *spt =
1065 guest_page_to_ppgtt_spt(oos_page->guest_page);
1066 struct intel_gvt_gtt_entry old, new, m;
1067 int index;
1068 int ret;
1069
1070 trace_oos_change(vgpu->id, "sync", oos_page->id,
1071 oos_page->guest_page, spt->guest_page_type);
1072
1073 old.type = new.type = get_entry_type(spt->guest_page_type);
1074 old.val64 = new.val64 = 0;
1075
1076 for (index = 0; index < (GTT_PAGE_SIZE >> info->gtt_entry_size_shift);
1077 index++) {
1078 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1079 ops->get_entry(NULL, &new, index, true,
1080 oos_page->guest_page->gfn << PAGE_SHIFT, vgpu);
1081
1082 if (old.val64 == new.val64
1083 && !test_and_clear_bit(index, spt->post_shadow_bitmap))
1084 continue;
1085
1086 trace_oos_sync(vgpu->id, oos_page->id,
1087 oos_page->guest_page, spt->guest_page_type,
1088 new.val64, index);
1089
1090 ret = gtt_entry_p2m(vgpu, &new, &m);
1091 if (ret)
1092 return ret;
1093
1094 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1095 ppgtt_set_shadow_entry(spt, &m, index);
1096 }
1097
1098 oos_page->guest_page->write_cnt = 0;
1099 list_del_init(&spt->post_shadow_list);
1100 return 0;
1101 }
1102
1103 static int detach_oos_page(struct intel_vgpu *vgpu,
1104 struct intel_vgpu_oos_page *oos_page)
1105 {
1106 struct intel_gvt *gvt = vgpu->gvt;
1107 struct intel_vgpu_ppgtt_spt *spt =
1108 guest_page_to_ppgtt_spt(oos_page->guest_page);
1109
1110 trace_oos_change(vgpu->id, "detach", oos_page->id,
1111 oos_page->guest_page, spt->guest_page_type);
1112
1113 oos_page->guest_page->write_cnt = 0;
1114 oos_page->guest_page->oos_page = NULL;
1115 oos_page->guest_page = NULL;
1116
1117 list_del_init(&oos_page->vm_list);
1118 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1119
1120 return 0;
1121 }
1122
1123 static int attach_oos_page(struct intel_vgpu *vgpu,
1124 struct intel_vgpu_oos_page *oos_page,
1125 struct intel_vgpu_guest_page *gpt)
1126 {
1127 struct intel_gvt *gvt = vgpu->gvt;
1128 int ret;
1129
1130 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpt->gfn << GTT_PAGE_SHIFT,
1131 oos_page->mem, GTT_PAGE_SIZE);
1132 if (ret)
1133 return ret;
1134
1135 oos_page->guest_page = gpt;
1136 gpt->oos_page = oos_page;
1137
1138 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1139
1140 trace_oos_change(vgpu->id, "attach", gpt->oos_page->id,
1141 gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1142 return 0;
1143 }
1144
1145 static int ppgtt_set_guest_page_sync(struct intel_vgpu *vgpu,
1146 struct intel_vgpu_guest_page *gpt)
1147 {
1148 int ret;
1149
1150 ret = intel_gvt_hypervisor_set_wp_page(vgpu, gpt);
1151 if (ret)
1152 return ret;
1153
1154 trace_oos_change(vgpu->id, "set page sync", gpt->oos_page->id,
1155 gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1156
1157 list_del_init(&gpt->oos_page->vm_list);
1158 return sync_oos_page(vgpu, gpt->oos_page);
1159 }
1160
1161 static int ppgtt_allocate_oos_page(struct intel_vgpu *vgpu,
1162 struct intel_vgpu_guest_page *gpt)
1163 {
1164 struct intel_gvt *gvt = vgpu->gvt;
1165 struct intel_gvt_gtt *gtt = &gvt->gtt;
1166 struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1167 int ret;
1168
1169 WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1170
1171 if (list_empty(&gtt->oos_page_free_list_head)) {
1172 oos_page = container_of(gtt->oos_page_use_list_head.next,
1173 struct intel_vgpu_oos_page, list);
1174 ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1175 if (ret)
1176 return ret;
1177 ret = detach_oos_page(vgpu, oos_page);
1178 if (ret)
1179 return ret;
1180 } else
1181 oos_page = container_of(gtt->oos_page_free_list_head.next,
1182 struct intel_vgpu_oos_page, list);
1183 return attach_oos_page(vgpu, oos_page, gpt);
1184 }
1185
1186 static int ppgtt_set_guest_page_oos(struct intel_vgpu *vgpu,
1187 struct intel_vgpu_guest_page *gpt)
1188 {
1189 struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1190
1191 if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1192 return -EINVAL;
1193
1194 trace_oos_change(vgpu->id, "set page out of sync", gpt->oos_page->id,
1195 gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1196
1197 list_add_tail(&oos_page->vm_list, &vgpu->gtt.oos_page_list_head);
1198 return intel_gvt_hypervisor_unset_wp_page(vgpu, gpt);
1199 }
1200
1201 /**
1202 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1203 * @vgpu: a vGPU
1204 *
1205 * This function is called before submitting a guest workload to host,
1206 * to sync all the out-of-synced shadow for vGPU
1207 *
1208 * Returns:
1209 * Zero on success, negative error code if failed.
1210 */
1211 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1212 {
1213 struct list_head *pos, *n;
1214 struct intel_vgpu_oos_page *oos_page;
1215 int ret;
1216
1217 if (!enable_out_of_sync)
1218 return 0;
1219
1220 list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1221 oos_page = container_of(pos,
1222 struct intel_vgpu_oos_page, vm_list);
1223 ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1224 if (ret)
1225 return ret;
1226 }
1227 return 0;
1228 }
1229
1230 /*
1231 * The heart of PPGTT shadow page table.
1232 */
1233 static int ppgtt_handle_guest_write_page_table(
1234 struct intel_vgpu_guest_page *gpt,
1235 struct intel_gvt_gtt_entry *we, unsigned long index)
1236 {
1237 struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1238 struct intel_vgpu *vgpu = spt->vgpu;
1239 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1240
1241 int ret;
1242 int new_present;
1243
1244 new_present = ops->test_present(we);
1245
1246 ret = ppgtt_handle_guest_entry_removal(gpt, index);
1247 if (ret)
1248 goto fail;
1249
1250 if (new_present) {
1251 ret = ppgtt_handle_guest_entry_add(gpt, we, index);
1252 if (ret)
1253 goto fail;
1254 }
1255 return 0;
1256 fail:
1257 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1258 spt, we->val64, we->type);
1259 return ret;
1260 }
1261
1262 static inline bool can_do_out_of_sync(struct intel_vgpu_guest_page *gpt)
1263 {
1264 return enable_out_of_sync
1265 && gtt_type_is_pte_pt(
1266 guest_page_to_ppgtt_spt(gpt)->guest_page_type)
1267 && gpt->write_cnt >= 2;
1268 }
1269
1270 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1271 unsigned long index)
1272 {
1273 set_bit(index, spt->post_shadow_bitmap);
1274 if (!list_empty(&spt->post_shadow_list))
1275 return;
1276
1277 list_add_tail(&spt->post_shadow_list,
1278 &spt->vgpu->gtt.post_shadow_list_head);
1279 }
1280
1281 /**
1282 * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1283 * @vgpu: a vGPU
1284 *
1285 * This function is called before submitting a guest workload to host,
1286 * to flush all the post shadows for a vGPU.
1287 *
1288 * Returns:
1289 * Zero on success, negative error code if failed.
1290 */
1291 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1292 {
1293 struct list_head *pos, *n;
1294 struct intel_vgpu_ppgtt_spt *spt;
1295 struct intel_gvt_gtt_entry ge;
1296 unsigned long index;
1297 int ret;
1298
1299 list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1300 spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1301 post_shadow_list);
1302
1303 for_each_set_bit(index, spt->post_shadow_bitmap,
1304 GTT_ENTRY_NUM_IN_ONE_PAGE) {
1305 ppgtt_get_guest_entry(spt, &ge, index);
1306
1307 ret = ppgtt_handle_guest_write_page_table(
1308 &spt->guest_page, &ge, index);
1309 if (ret)
1310 return ret;
1311 clear_bit(index, spt->post_shadow_bitmap);
1312 }
1313 list_del_init(&spt->post_shadow_list);
1314 }
1315 return 0;
1316 }
1317
1318 static int ppgtt_handle_guest_write_page_table_bytes(void *gp,
1319 u64 pa, void *p_data, int bytes)
1320 {
1321 struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp;
1322 struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1323 struct intel_vgpu *vgpu = spt->vgpu;
1324 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1325 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1326 struct intel_gvt_gtt_entry we;
1327 unsigned long index;
1328 int ret;
1329
1330 index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1331
1332 ppgtt_get_guest_entry(spt, &we, index);
1333
1334 ops->test_pse(&we);
1335
1336 if (bytes == info->gtt_entry_size) {
1337 ret = ppgtt_handle_guest_write_page_table(gpt, &we, index);
1338 if (ret)
1339 return ret;
1340 } else {
1341 if (!test_bit(index, spt->post_shadow_bitmap)) {
1342 ret = ppgtt_handle_guest_entry_removal(gpt, index);
1343 if (ret)
1344 return ret;
1345 }
1346
1347 ppgtt_set_post_shadow(spt, index);
1348 }
1349
1350 if (!enable_out_of_sync)
1351 return 0;
1352
1353 gpt->write_cnt++;
1354
1355 if (gpt->oos_page)
1356 ops->set_entry(gpt->oos_page->mem, &we, index,
1357 false, 0, vgpu);
1358
1359 if (can_do_out_of_sync(gpt)) {
1360 if (!gpt->oos_page)
1361 ppgtt_allocate_oos_page(vgpu, gpt);
1362
1363 ret = ppgtt_set_guest_page_oos(vgpu, gpt);
1364 if (ret < 0)
1365 return ret;
1366 }
1367 return 0;
1368 }
1369
1370 /*
1371 * mm page table allocation policy for bdw+
1372 * - for ggtt, only virtual page table will be allocated.
1373 * - for ppgtt, dedicated virtual/shadow page table will be allocated.
1374 */
1375 static int gen8_mm_alloc_page_table(struct intel_vgpu_mm *mm)
1376 {
1377 struct intel_vgpu *vgpu = mm->vgpu;
1378 struct intel_gvt *gvt = vgpu->gvt;
1379 const struct intel_gvt_device_info *info = &gvt->device_info;
1380 void *mem;
1381
1382 if (mm->type == INTEL_GVT_MM_PPGTT) {
1383 mm->page_table_entry_cnt = 4;
1384 mm->page_table_entry_size = mm->page_table_entry_cnt *
1385 info->gtt_entry_size;
1386 mem = kzalloc(mm->has_shadow_page_table ?
1387 mm->page_table_entry_size * 2
1388 : mm->page_table_entry_size, GFP_KERNEL);
1389 if (!mem)
1390 return -ENOMEM;
1391 mm->virtual_page_table = mem;
1392 if (!mm->has_shadow_page_table)
1393 return 0;
1394 mm->shadow_page_table = mem + mm->page_table_entry_size;
1395 } else if (mm->type == INTEL_GVT_MM_GGTT) {
1396 mm->page_table_entry_cnt =
1397 (gvt_ggtt_gm_sz(gvt) >> GTT_PAGE_SHIFT);
1398 mm->page_table_entry_size = mm->page_table_entry_cnt *
1399 info->gtt_entry_size;
1400 mem = vzalloc(mm->page_table_entry_size);
1401 if (!mem)
1402 return -ENOMEM;
1403 mm->virtual_page_table = mem;
1404 }
1405 return 0;
1406 }
1407
1408 static void gen8_mm_free_page_table(struct intel_vgpu_mm *mm)
1409 {
1410 if (mm->type == INTEL_GVT_MM_PPGTT) {
1411 kfree(mm->virtual_page_table);
1412 } else if (mm->type == INTEL_GVT_MM_GGTT) {
1413 if (mm->virtual_page_table)
1414 vfree(mm->virtual_page_table);
1415 }
1416 mm->virtual_page_table = mm->shadow_page_table = NULL;
1417 }
1418
1419 static void invalidate_mm(struct intel_vgpu_mm *mm)
1420 {
1421 struct intel_vgpu *vgpu = mm->vgpu;
1422 struct intel_gvt *gvt = vgpu->gvt;
1423 struct intel_gvt_gtt *gtt = &gvt->gtt;
1424 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1425 struct intel_gvt_gtt_entry se;
1426 int i;
1427
1428 if (WARN_ON(!mm->has_shadow_page_table || !mm->shadowed))
1429 return;
1430
1431 for (i = 0; i < mm->page_table_entry_cnt; i++) {
1432 ppgtt_get_shadow_root_entry(mm, &se, i);
1433 if (!ops->test_present(&se))
1434 continue;
1435 ppgtt_invalidate_shadow_page_by_shadow_entry(
1436 vgpu, &se);
1437 se.val64 = 0;
1438 ppgtt_set_shadow_root_entry(mm, &se, i);
1439
1440 trace_gpt_change(vgpu->id, "destroy root pointer",
1441 NULL, se.type, se.val64, i);
1442 }
1443 mm->shadowed = false;
1444 }
1445
1446 /**
1447 * intel_vgpu_destroy_mm - destroy a mm object
1448 * @mm: a kref object
1449 *
1450 * This function is used to destroy a mm object for vGPU
1451 *
1452 */
1453 void intel_vgpu_destroy_mm(struct kref *mm_ref)
1454 {
1455 struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1456 struct intel_vgpu *vgpu = mm->vgpu;
1457 struct intel_gvt *gvt = vgpu->gvt;
1458 struct intel_gvt_gtt *gtt = &gvt->gtt;
1459
1460 if (!mm->initialized)
1461 goto out;
1462
1463 list_del(&mm->list);
1464 list_del(&mm->lru_list);
1465
1466 if (mm->has_shadow_page_table)
1467 invalidate_mm(mm);
1468
1469 gtt->mm_free_page_table(mm);
1470 out:
1471 kfree(mm);
1472 }
1473
1474 static int shadow_mm(struct intel_vgpu_mm *mm)
1475 {
1476 struct intel_vgpu *vgpu = mm->vgpu;
1477 struct intel_gvt *gvt = vgpu->gvt;
1478 struct intel_gvt_gtt *gtt = &gvt->gtt;
1479 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1480 struct intel_vgpu_ppgtt_spt *spt;
1481 struct intel_gvt_gtt_entry ge, se;
1482 int i;
1483 int ret;
1484
1485 if (WARN_ON(!mm->has_shadow_page_table || mm->shadowed))
1486 return 0;
1487
1488 mm->shadowed = true;
1489
1490 for (i = 0; i < mm->page_table_entry_cnt; i++) {
1491 ppgtt_get_guest_root_entry(mm, &ge, i);
1492 if (!ops->test_present(&ge))
1493 continue;
1494
1495 trace_gpt_change(vgpu->id, __func__, NULL,
1496 ge.type, ge.val64, i);
1497
1498 spt = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
1499 if (IS_ERR(spt)) {
1500 gvt_vgpu_err("fail to populate guest root pointer\n");
1501 ret = PTR_ERR(spt);
1502 goto fail;
1503 }
1504 ppgtt_generate_shadow_entry(&se, spt, &ge);
1505 ppgtt_set_shadow_root_entry(mm, &se, i);
1506
1507 trace_gpt_change(vgpu->id, "populate root pointer",
1508 NULL, se.type, se.val64, i);
1509 }
1510 return 0;
1511 fail:
1512 invalidate_mm(mm);
1513 return ret;
1514 }
1515
1516 /**
1517 * intel_vgpu_create_mm - create a mm object for a vGPU
1518 * @vgpu: a vGPU
1519 * @mm_type: mm object type, should be PPGTT or GGTT
1520 * @virtual_page_table: page table root pointers. Could be NULL if user wants
1521 * to populate shadow later.
1522 * @page_table_level: describe the page table level of the mm object
1523 * @pde_base_index: pde root pointer base in GGTT MMIO.
1524 *
1525 * This function is used to create a mm object for a vGPU.
1526 *
1527 * Returns:
1528 * Zero on success, negative error code in pointer if failed.
1529 */
1530 struct intel_vgpu_mm *intel_vgpu_create_mm(struct intel_vgpu *vgpu,
1531 int mm_type, void *virtual_page_table, int page_table_level,
1532 u32 pde_base_index)
1533 {
1534 struct intel_gvt *gvt = vgpu->gvt;
1535 struct intel_gvt_gtt *gtt = &gvt->gtt;
1536 struct intel_vgpu_mm *mm;
1537 int ret;
1538
1539 mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1540 if (!mm) {
1541 ret = -ENOMEM;
1542 goto fail;
1543 }
1544
1545 mm->type = mm_type;
1546
1547 if (page_table_level == 1)
1548 mm->page_table_entry_type = GTT_TYPE_GGTT_PTE;
1549 else if (page_table_level == 3)
1550 mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1551 else if (page_table_level == 4)
1552 mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1553 else {
1554 WARN_ON(1);
1555 ret = -EINVAL;
1556 goto fail;
1557 }
1558
1559 mm->page_table_level = page_table_level;
1560 mm->pde_base_index = pde_base_index;
1561
1562 mm->vgpu = vgpu;
1563 mm->has_shadow_page_table = !!(mm_type == INTEL_GVT_MM_PPGTT);
1564
1565 kref_init(&mm->ref);
1566 atomic_set(&mm->pincount, 0);
1567 INIT_LIST_HEAD(&mm->list);
1568 INIT_LIST_HEAD(&mm->lru_list);
1569 list_add_tail(&mm->list, &vgpu->gtt.mm_list_head);
1570
1571 ret = gtt->mm_alloc_page_table(mm);
1572 if (ret) {
1573 gvt_vgpu_err("fail to allocate page table for mm\n");
1574 goto fail;
1575 }
1576
1577 mm->initialized = true;
1578
1579 if (virtual_page_table)
1580 memcpy(mm->virtual_page_table, virtual_page_table,
1581 mm->page_table_entry_size);
1582
1583 if (mm->has_shadow_page_table) {
1584 ret = shadow_mm(mm);
1585 if (ret)
1586 goto fail;
1587 list_add_tail(&mm->lru_list, &gvt->gtt.mm_lru_list_head);
1588 }
1589 return mm;
1590 fail:
1591 gvt_vgpu_err("fail to create mm\n");
1592 if (mm)
1593 intel_gvt_mm_unreference(mm);
1594 return ERR_PTR(ret);
1595 }
1596
1597 /**
1598 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1599 * @mm: a vGPU mm object
1600 *
1601 * This function is called when user doesn't want to use a vGPU mm object
1602 */
1603 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1604 {
1605 if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1606 return;
1607
1608 atomic_dec(&mm->pincount);
1609 }
1610
1611 /**
1612 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1613 * @vgpu: a vGPU
1614 *
1615 * This function is called when user wants to use a vGPU mm object. If this
1616 * mm object hasn't been shadowed yet, the shadow will be populated at this
1617 * time.
1618 *
1619 * Returns:
1620 * Zero on success, negative error code if failed.
1621 */
1622 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1623 {
1624 int ret;
1625
1626 if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1627 return 0;
1628
1629 atomic_inc(&mm->pincount);
1630
1631 if (!mm->shadowed) {
1632 ret = shadow_mm(mm);
1633 if (ret)
1634 return ret;
1635 }
1636
1637 list_del_init(&mm->lru_list);
1638 list_add_tail(&mm->lru_list, &mm->vgpu->gvt->gtt.mm_lru_list_head);
1639 return 0;
1640 }
1641
1642 static int reclaim_one_mm(struct intel_gvt *gvt)
1643 {
1644 struct intel_vgpu_mm *mm;
1645 struct list_head *pos, *n;
1646
1647 list_for_each_safe(pos, n, &gvt->gtt.mm_lru_list_head) {
1648 mm = container_of(pos, struct intel_vgpu_mm, lru_list);
1649
1650 if (mm->type != INTEL_GVT_MM_PPGTT)
1651 continue;
1652 if (atomic_read(&mm->pincount))
1653 continue;
1654
1655 list_del_init(&mm->lru_list);
1656 invalidate_mm(mm);
1657 return 1;
1658 }
1659 return 0;
1660 }
1661
1662 /*
1663 * GMA translation APIs.
1664 */
1665 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
1666 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
1667 {
1668 struct intel_vgpu *vgpu = mm->vgpu;
1669 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1670 struct intel_vgpu_ppgtt_spt *s;
1671
1672 if (WARN_ON(!mm->has_shadow_page_table))
1673 return -EINVAL;
1674
1675 s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
1676 if (!s)
1677 return -ENXIO;
1678
1679 if (!guest)
1680 ppgtt_get_shadow_entry(s, e, index);
1681 else
1682 ppgtt_get_guest_entry(s, e, index);
1683 return 0;
1684 }
1685
1686 /**
1687 * intel_vgpu_gma_to_gpa - translate a gma to GPA
1688 * @mm: mm object. could be a PPGTT or GGTT mm object
1689 * @gma: graphics memory address in this mm object
1690 *
1691 * This function is used to translate a graphics memory address in specific
1692 * graphics memory space to guest physical address.
1693 *
1694 * Returns:
1695 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
1696 */
1697 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
1698 {
1699 struct intel_vgpu *vgpu = mm->vgpu;
1700 struct intel_gvt *gvt = vgpu->gvt;
1701 struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
1702 struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
1703 unsigned long gpa = INTEL_GVT_INVALID_ADDR;
1704 unsigned long gma_index[4];
1705 struct intel_gvt_gtt_entry e;
1706 int i, index;
1707 int ret;
1708
1709 if (mm->type != INTEL_GVT_MM_GGTT && mm->type != INTEL_GVT_MM_PPGTT)
1710 return INTEL_GVT_INVALID_ADDR;
1711
1712 if (mm->type == INTEL_GVT_MM_GGTT) {
1713 if (!vgpu_gmadr_is_valid(vgpu, gma))
1714 goto err;
1715
1716 ggtt_get_guest_entry(mm, &e,
1717 gma_ops->gma_to_ggtt_pte_index(gma));
1718 gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT)
1719 + (gma & ~GTT_PAGE_MASK);
1720
1721 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
1722 return gpa;
1723 }
1724
1725 switch (mm->page_table_level) {
1726 case 4:
1727 ppgtt_get_shadow_root_entry(mm, &e, 0);
1728 gma_index[0] = gma_ops->gma_to_pml4_index(gma);
1729 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
1730 gma_index[2] = gma_ops->gma_to_pde_index(gma);
1731 gma_index[3] = gma_ops->gma_to_pte_index(gma);
1732 index = 4;
1733 break;
1734 case 3:
1735 ppgtt_get_shadow_root_entry(mm, &e,
1736 gma_ops->gma_to_l3_pdp_index(gma));
1737 gma_index[0] = gma_ops->gma_to_pde_index(gma);
1738 gma_index[1] = gma_ops->gma_to_pte_index(gma);
1739 index = 2;
1740 break;
1741 case 2:
1742 ppgtt_get_shadow_root_entry(mm, &e,
1743 gma_ops->gma_to_pde_index(gma));
1744 gma_index[0] = gma_ops->gma_to_pte_index(gma);
1745 index = 1;
1746 break;
1747 default:
1748 WARN_ON(1);
1749 goto err;
1750 }
1751
1752 /* walk into the shadow page table and get gpa from guest entry */
1753 for (i = 0; i < index; i++) {
1754 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
1755 (i == index - 1));
1756 if (ret)
1757 goto err;
1758 }
1759
1760 gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT)
1761 + (gma & ~GTT_PAGE_MASK);
1762
1763 trace_gma_translate(vgpu->id, "ppgtt", 0,
1764 mm->page_table_level, gma, gpa);
1765 return gpa;
1766 err:
1767 gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
1768 return INTEL_GVT_INVALID_ADDR;
1769 }
1770
1771 static int emulate_gtt_mmio_read(struct intel_vgpu *vgpu,
1772 unsigned int off, void *p_data, unsigned int bytes)
1773 {
1774 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1775 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1776 unsigned long index = off >> info->gtt_entry_size_shift;
1777 struct intel_gvt_gtt_entry e;
1778
1779 if (bytes != 4 && bytes != 8)
1780 return -EINVAL;
1781
1782 ggtt_get_guest_entry(ggtt_mm, &e, index);
1783 memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
1784 bytes);
1785 return 0;
1786 }
1787
1788 /**
1789 * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
1790 * @vgpu: a vGPU
1791 * @off: register offset
1792 * @p_data: data will be returned to guest
1793 * @bytes: data length
1794 *
1795 * This function is used to emulate the GTT MMIO register read
1796 *
1797 * Returns:
1798 * Zero on success, error code if failed.
1799 */
1800 int intel_vgpu_emulate_gtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
1801 void *p_data, unsigned int bytes)
1802 {
1803 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1804 int ret;
1805
1806 if (bytes != 4 && bytes != 8)
1807 return -EINVAL;
1808
1809 off -= info->gtt_start_offset;
1810 ret = emulate_gtt_mmio_read(vgpu, off, p_data, bytes);
1811 return ret;
1812 }
1813
1814 static int emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1815 void *p_data, unsigned int bytes)
1816 {
1817 struct intel_gvt *gvt = vgpu->gvt;
1818 const struct intel_gvt_device_info *info = &gvt->device_info;
1819 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1820 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1821 unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
1822 unsigned long gma;
1823 struct intel_gvt_gtt_entry e, m;
1824 int ret;
1825
1826 if (bytes != 4 && bytes != 8)
1827 return -EINVAL;
1828
1829 gma = g_gtt_index << GTT_PAGE_SHIFT;
1830
1831 /* the VM may configure the whole GM space when ballooning is used */
1832 if (!vgpu_gmadr_is_valid(vgpu, gma))
1833 return 0;
1834
1835 ggtt_get_guest_entry(ggtt_mm, &e, g_gtt_index);
1836
1837 memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
1838 bytes);
1839
1840 if (ops->test_present(&e)) {
1841 ret = gtt_entry_p2m(vgpu, &e, &m);
1842 if (ret) {
1843 gvt_vgpu_err("fail to translate guest gtt entry\n");
1844 /* guest driver may read/write the entry when partial
1845 * update the entry in this situation p2m will fail
1846 * settting the shadow entry to point to a scratch page
1847 */
1848 ops->set_pfn(&m, gvt->gtt.scratch_ggtt_mfn);
1849 }
1850 } else {
1851 m = e;
1852 ops->set_pfn(&m, gvt->gtt.scratch_ggtt_mfn);
1853 }
1854
1855 ggtt_set_shadow_entry(ggtt_mm, &m, g_gtt_index);
1856 gtt_invalidate(gvt->dev_priv);
1857 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
1858 return 0;
1859 }
1860
1861 /*
1862 * intel_vgpu_emulate_gtt_mmio_write - emulate GTT MMIO register write
1863 * @vgpu: a vGPU
1864 * @off: register offset
1865 * @p_data: data from guest write
1866 * @bytes: data length
1867 *
1868 * This function is used to emulate the GTT MMIO register write
1869 *
1870 * Returns:
1871 * Zero on success, error code if failed.
1872 */
1873 int intel_vgpu_emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1874 void *p_data, unsigned int bytes)
1875 {
1876 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1877 int ret;
1878
1879 if (bytes != 4 && bytes != 8)
1880 return -EINVAL;
1881
1882 off -= info->gtt_start_offset;
1883 ret = emulate_gtt_mmio_write(vgpu, off, p_data, bytes);
1884 return ret;
1885 }
1886
1887 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
1888 intel_gvt_gtt_type_t type)
1889 {
1890 struct intel_vgpu_gtt *gtt = &vgpu->gtt;
1891 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1892 int page_entry_num = GTT_PAGE_SIZE >>
1893 vgpu->gvt->device_info.gtt_entry_size_shift;
1894 void *scratch_pt;
1895 int i;
1896 struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
1897 dma_addr_t daddr;
1898
1899 if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
1900 return -EINVAL;
1901
1902 scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
1903 if (!scratch_pt) {
1904 gvt_vgpu_err("fail to allocate scratch page\n");
1905 return -ENOMEM;
1906 }
1907
1908 daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
1909 4096, PCI_DMA_BIDIRECTIONAL);
1910 if (dma_mapping_error(dev, daddr)) {
1911 gvt_vgpu_err("fail to dmamap scratch_pt\n");
1912 __free_page(virt_to_page(scratch_pt));
1913 return -ENOMEM;
1914 }
1915 gtt->scratch_pt[type].page_mfn =
1916 (unsigned long)(daddr >> GTT_PAGE_SHIFT);
1917 gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
1918 gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
1919 vgpu->id, type, gtt->scratch_pt[type].page_mfn);
1920
1921 /* Build the tree by full filled the scratch pt with the entries which
1922 * point to the next level scratch pt or scratch page. The
1923 * scratch_pt[type] indicate the scratch pt/scratch page used by the
1924 * 'type' pt.
1925 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
1926 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
1927 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
1928 */
1929 if (type > GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) {
1930 struct intel_gvt_gtt_entry se;
1931
1932 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
1933 se.type = get_entry_type(type - 1);
1934 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
1935
1936 /* The entry parameters like present/writeable/cache type
1937 * set to the same as i915's scratch page tree.
1938 */
1939 se.val64 |= _PAGE_PRESENT | _PAGE_RW;
1940 if (type == GTT_TYPE_PPGTT_PDE_PT)
1941 se.val64 |= PPAT_CACHED_INDEX;
1942
1943 for (i = 0; i < page_entry_num; i++)
1944 ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
1945 }
1946
1947 return 0;
1948 }
1949
1950 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
1951 {
1952 int i;
1953 struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
1954 dma_addr_t daddr;
1955
1956 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
1957 if (vgpu->gtt.scratch_pt[i].page != NULL) {
1958 daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
1959 GTT_PAGE_SHIFT);
1960 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
1961 __free_page(vgpu->gtt.scratch_pt[i].page);
1962 vgpu->gtt.scratch_pt[i].page = NULL;
1963 vgpu->gtt.scratch_pt[i].page_mfn = 0;
1964 }
1965 }
1966
1967 return 0;
1968 }
1969
1970 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
1971 {
1972 int i, ret;
1973
1974 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
1975 ret = alloc_scratch_pages(vgpu, i);
1976 if (ret)
1977 goto err;
1978 }
1979
1980 return 0;
1981
1982 err:
1983 release_scratch_page_tree(vgpu);
1984 return ret;
1985 }
1986
1987 /**
1988 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
1989 * @vgpu: a vGPU
1990 *
1991 * This function is used to initialize per-vGPU graphics memory virtualization
1992 * components.
1993 *
1994 * Returns:
1995 * Zero on success, error code if failed.
1996 */
1997 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
1998 {
1999 struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2000 struct intel_vgpu_mm *ggtt_mm;
2001
2002 hash_init(gtt->guest_page_hash_table);
2003 hash_init(gtt->shadow_page_hash_table);
2004
2005 INIT_LIST_HEAD(&gtt->mm_list_head);
2006 INIT_LIST_HEAD(&gtt->oos_page_list_head);
2007 INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2008
2009 intel_vgpu_reset_ggtt(vgpu);
2010
2011 ggtt_mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_GGTT,
2012 NULL, 1, 0);
2013 if (IS_ERR(ggtt_mm)) {
2014 gvt_vgpu_err("fail to create mm for ggtt.\n");
2015 return PTR_ERR(ggtt_mm);
2016 }
2017
2018 gtt->ggtt_mm = ggtt_mm;
2019
2020 return create_scratch_page_tree(vgpu);
2021 }
2022
2023 static void intel_vgpu_free_mm(struct intel_vgpu *vgpu, int type)
2024 {
2025 struct list_head *pos, *n;
2026 struct intel_vgpu_mm *mm;
2027
2028 list_for_each_safe(pos, n, &vgpu->gtt.mm_list_head) {
2029 mm = container_of(pos, struct intel_vgpu_mm, list);
2030 if (mm->type == type) {
2031 vgpu->gvt->gtt.mm_free_page_table(mm);
2032 list_del(&mm->list);
2033 list_del(&mm->lru_list);
2034 kfree(mm);
2035 }
2036 }
2037 }
2038
2039 /**
2040 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2041 * @vgpu: a vGPU
2042 *
2043 * This function is used to clean up per-vGPU graphics memory virtualization
2044 * components.
2045 *
2046 * Returns:
2047 * Zero on success, error code if failed.
2048 */
2049 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2050 {
2051 ppgtt_free_all_shadow_page(vgpu);
2052 release_scratch_page_tree(vgpu);
2053
2054 intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_PPGTT);
2055 intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_GGTT);
2056 }
2057
2058 static void clean_spt_oos(struct intel_gvt *gvt)
2059 {
2060 struct intel_gvt_gtt *gtt = &gvt->gtt;
2061 struct list_head *pos, *n;
2062 struct intel_vgpu_oos_page *oos_page;
2063
2064 WARN(!list_empty(&gtt->oos_page_use_list_head),
2065 "someone is still using oos page\n");
2066
2067 list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2068 oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2069 list_del(&oos_page->list);
2070 kfree(oos_page);
2071 }
2072 }
2073
2074 static int setup_spt_oos(struct intel_gvt *gvt)
2075 {
2076 struct intel_gvt_gtt *gtt = &gvt->gtt;
2077 struct intel_vgpu_oos_page *oos_page;
2078 int i;
2079 int ret;
2080
2081 INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2082 INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2083
2084 for (i = 0; i < preallocated_oos_pages; i++) {
2085 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2086 if (!oos_page) {
2087 ret = -ENOMEM;
2088 goto fail;
2089 }
2090
2091 INIT_LIST_HEAD(&oos_page->list);
2092 INIT_LIST_HEAD(&oos_page->vm_list);
2093 oos_page->id = i;
2094 list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2095 }
2096
2097 gvt_dbg_mm("%d oos pages preallocated\n", i);
2098
2099 return 0;
2100 fail:
2101 clean_spt_oos(gvt);
2102 return ret;
2103 }
2104
2105 /**
2106 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2107 * @vgpu: a vGPU
2108 * @page_table_level: PPGTT page table level
2109 * @root_entry: PPGTT page table root pointers
2110 *
2111 * This function is used to find a PPGTT mm object from mm object pool
2112 *
2113 * Returns:
2114 * pointer to mm object on success, NULL if failed.
2115 */
2116 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2117 int page_table_level, void *root_entry)
2118 {
2119 struct list_head *pos;
2120 struct intel_vgpu_mm *mm;
2121 u64 *src, *dst;
2122
2123 list_for_each(pos, &vgpu->gtt.mm_list_head) {
2124 mm = container_of(pos, struct intel_vgpu_mm, list);
2125 if (mm->type != INTEL_GVT_MM_PPGTT)
2126 continue;
2127
2128 if (mm->page_table_level != page_table_level)
2129 continue;
2130
2131 src = root_entry;
2132 dst = mm->virtual_page_table;
2133
2134 if (page_table_level == 3) {
2135 if (src[0] == dst[0]
2136 && src[1] == dst[1]
2137 && src[2] == dst[2]
2138 && src[3] == dst[3])
2139 return mm;
2140 } else {
2141 if (src[0] == dst[0])
2142 return mm;
2143 }
2144 }
2145 return NULL;
2146 }
2147
2148 /**
2149 * intel_vgpu_g2v_create_ppgtt_mm - create a PPGTT mm object from
2150 * g2v notification
2151 * @vgpu: a vGPU
2152 * @page_table_level: PPGTT page table level
2153 *
2154 * This function is used to create a PPGTT mm object from a guest to GVT-g
2155 * notification.
2156 *
2157 * Returns:
2158 * Zero on success, negative error code if failed.
2159 */
2160 int intel_vgpu_g2v_create_ppgtt_mm(struct intel_vgpu *vgpu,
2161 int page_table_level)
2162 {
2163 u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0]));
2164 struct intel_vgpu_mm *mm;
2165
2166 if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2167 return -EINVAL;
2168
2169 mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2170 if (mm) {
2171 intel_gvt_mm_reference(mm);
2172 } else {
2173 mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_PPGTT,
2174 pdp, page_table_level, 0);
2175 if (IS_ERR(mm)) {
2176 gvt_vgpu_err("fail to create mm\n");
2177 return PTR_ERR(mm);
2178 }
2179 }
2180 return 0;
2181 }
2182
2183 /**
2184 * intel_vgpu_g2v_destroy_ppgtt_mm - destroy a PPGTT mm object from
2185 * g2v notification
2186 * @vgpu: a vGPU
2187 * @page_table_level: PPGTT page table level
2188 *
2189 * This function is used to create a PPGTT mm object from a guest to GVT-g
2190 * notification.
2191 *
2192 * Returns:
2193 * Zero on success, negative error code if failed.
2194 */
2195 int intel_vgpu_g2v_destroy_ppgtt_mm(struct intel_vgpu *vgpu,
2196 int page_table_level)
2197 {
2198 u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0]));
2199 struct intel_vgpu_mm *mm;
2200
2201 if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2202 return -EINVAL;
2203
2204 mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2205 if (!mm) {
2206 gvt_vgpu_err("fail to find ppgtt instance.\n");
2207 return -EINVAL;
2208 }
2209 intel_gvt_mm_unreference(mm);
2210 return 0;
2211 }
2212
2213 /**
2214 * intel_gvt_init_gtt - initialize mm components of a GVT device
2215 * @gvt: GVT device
2216 *
2217 * This function is called at the initialization stage, to initialize
2218 * the mm components of a GVT device.
2219 *
2220 * Returns:
2221 * zero on success, negative error code if failed.
2222 */
2223 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2224 {
2225 int ret;
2226 void *page;
2227 struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2228 dma_addr_t daddr;
2229
2230 gvt_dbg_core("init gtt\n");
2231
2232 if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)
2233 || IS_KABYLAKE(gvt->dev_priv)) {
2234 gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2235 gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2236 gvt->gtt.mm_alloc_page_table = gen8_mm_alloc_page_table;
2237 gvt->gtt.mm_free_page_table = gen8_mm_free_page_table;
2238 } else {
2239 return -ENODEV;
2240 }
2241
2242 page = (void *)get_zeroed_page(GFP_KERNEL);
2243 if (!page) {
2244 gvt_err("fail to allocate scratch ggtt page\n");
2245 return -ENOMEM;
2246 }
2247
2248 daddr = dma_map_page(dev, virt_to_page(page), 0,
2249 4096, PCI_DMA_BIDIRECTIONAL);
2250 if (dma_mapping_error(dev, daddr)) {
2251 gvt_err("fail to dmamap scratch ggtt page\n");
2252 __free_page(virt_to_page(page));
2253 return -ENOMEM;
2254 }
2255 gvt->gtt.scratch_ggtt_page = virt_to_page(page);
2256 gvt->gtt.scratch_ggtt_mfn = (unsigned long)(daddr >> GTT_PAGE_SHIFT);
2257
2258 if (enable_out_of_sync) {
2259 ret = setup_spt_oos(gvt);
2260 if (ret) {
2261 gvt_err("fail to initialize SPT oos\n");
2262 return ret;
2263 }
2264 }
2265 INIT_LIST_HEAD(&gvt->gtt.mm_lru_list_head);
2266 return 0;
2267 }
2268
2269 /**
2270 * intel_gvt_clean_gtt - clean up mm components of a GVT device
2271 * @gvt: GVT device
2272 *
2273 * This function is called at the driver unloading stage, to clean up the
2274 * the mm components of a GVT device.
2275 *
2276 */
2277 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2278 {
2279 struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2280 dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_ggtt_mfn <<
2281 GTT_PAGE_SHIFT);
2282
2283 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2284
2285 __free_page(gvt->gtt.scratch_ggtt_page);
2286
2287 if (enable_out_of_sync)
2288 clean_spt_oos(gvt);
2289 }
2290
2291 /**
2292 * intel_vgpu_reset_ggtt - reset the GGTT entry
2293 * @vgpu: a vGPU
2294 *
2295 * This function is called at the vGPU create stage
2296 * to reset all the GGTT entries.
2297 *
2298 */
2299 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu)
2300 {
2301 struct intel_gvt *gvt = vgpu->gvt;
2302 struct drm_i915_private *dev_priv = gvt->dev_priv;
2303 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2304 u32 index;
2305 u32 offset;
2306 u32 num_entries;
2307 struct intel_gvt_gtt_entry e;
2308
2309 memset(&e, 0, sizeof(struct intel_gvt_gtt_entry));
2310 e.type = GTT_TYPE_GGTT_PTE;
2311 ops->set_pfn(&e, gvt->gtt.scratch_ggtt_mfn);
2312 e.val64 |= _PAGE_PRESENT;
2313
2314 index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2315 num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2316 for (offset = 0; offset < num_entries; offset++)
2317 ops->set_entry(NULL, &e, index + offset, false, 0, vgpu);
2318
2319 index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2320 num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2321 for (offset = 0; offset < num_entries; offset++)
2322 ops->set_entry(NULL, &e, index + offset, false, 0, vgpu);
2323
2324 gtt_invalidate(dev_priv);
2325 }
2326
2327 /**
2328 * intel_vgpu_reset_gtt - reset the all GTT related status
2329 * @vgpu: a vGPU
2330 * @dmlr: true for vGPU Device Model Level Reset, false for GT Reset
2331 *
2332 * This function is called from vfio core to reset reset all
2333 * GTT related status, including GGTT, PPGTT, scratch page.
2334 *
2335 */
2336 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu, bool dmlr)
2337 {
2338 int i;
2339
2340 ppgtt_free_all_shadow_page(vgpu);
2341
2342 /* Shadow pages are only created when there is no page
2343 * table tracking data, so remove page tracking data after
2344 * removing the shadow pages.
2345 */
2346 intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_PPGTT);
2347
2348 if (!dmlr)
2349 return;
2350
2351 intel_vgpu_reset_ggtt(vgpu);
2352
2353 /* clear scratch page for security */
2354 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2355 if (vgpu->gtt.scratch_pt[i].page != NULL)
2356 memset(page_address(vgpu->gtt.scratch_pt[i].page),
2357 0, PAGE_SIZE);
2358 }
2359 }