]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/gvt/gtt.c
Merge tag 'mmc-v4.15-2' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / gvt / gtt.c
1 /*
2 * GTT virtualization
3 *
4 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 * SOFTWARE.
24 *
25 * Authors:
26 * Zhi Wang <zhi.a.wang@intel.com>
27 * Zhenyu Wang <zhenyuw@linux.intel.com>
28 * Xiao Zheng <xiao.zheng@intel.com>
29 *
30 * Contributors:
31 * Min He <min.he@intel.com>
32 * Bing Niu <bing.niu@intel.com>
33 *
34 */
35
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40
41 static bool enable_out_of_sync = false;
42 static int preallocated_oos_pages = 8192;
43
44 /*
45 * validate a gm address and related range size,
46 * translate it to host gm address
47 */
48 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
49 {
50 if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
51 && !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
52 gvt_vgpu_err("invalid range gmadr 0x%llx size 0x%x\n",
53 addr, size);
54 return false;
55 }
56 return true;
57 }
58
59 /* translate a guest gmadr to host gmadr */
60 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
61 {
62 if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
63 "invalid guest gmadr %llx\n", g_addr))
64 return -EACCES;
65
66 if (vgpu_gmadr_is_aperture(vgpu, g_addr))
67 *h_addr = vgpu_aperture_gmadr_base(vgpu)
68 + (g_addr - vgpu_aperture_offset(vgpu));
69 else
70 *h_addr = vgpu_hidden_gmadr_base(vgpu)
71 + (g_addr - vgpu_hidden_offset(vgpu));
72 return 0;
73 }
74
75 /* translate a host gmadr to guest gmadr */
76 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
77 {
78 if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
79 "invalid host gmadr %llx\n", h_addr))
80 return -EACCES;
81
82 if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
83 *g_addr = vgpu_aperture_gmadr_base(vgpu)
84 + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
85 else
86 *g_addr = vgpu_hidden_gmadr_base(vgpu)
87 + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
88 return 0;
89 }
90
91 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
92 unsigned long *h_index)
93 {
94 u64 h_addr;
95 int ret;
96
97 ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << GTT_PAGE_SHIFT,
98 &h_addr);
99 if (ret)
100 return ret;
101
102 *h_index = h_addr >> GTT_PAGE_SHIFT;
103 return 0;
104 }
105
106 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
107 unsigned long *g_index)
108 {
109 u64 g_addr;
110 int ret;
111
112 ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << GTT_PAGE_SHIFT,
113 &g_addr);
114 if (ret)
115 return ret;
116
117 *g_index = g_addr >> GTT_PAGE_SHIFT;
118 return 0;
119 }
120
121 #define gtt_type_is_entry(type) \
122 (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
123 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
124 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
125
126 #define gtt_type_is_pt(type) \
127 (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
128
129 #define gtt_type_is_pte_pt(type) \
130 (type == GTT_TYPE_PPGTT_PTE_PT)
131
132 #define gtt_type_is_root_pointer(type) \
133 (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
134
135 #define gtt_init_entry(e, t, p, v) do { \
136 (e)->type = t; \
137 (e)->pdev = p; \
138 memcpy(&(e)->val64, &v, sizeof(v)); \
139 } while (0)
140
141 /*
142 * Mappings between GTT_TYPE* enumerations.
143 * Following information can be found according to the given type:
144 * - type of next level page table
145 * - type of entry inside this level page table
146 * - type of entry with PSE set
147 *
148 * If the given type doesn't have such a kind of information,
149 * e.g. give a l4 root entry type, then request to get its PSE type,
150 * give a PTE page table type, then request to get its next level page
151 * table type, as we know l4 root entry doesn't have a PSE bit,
152 * and a PTE page table doesn't have a next level page table type,
153 * GTT_TYPE_INVALID will be returned. This is useful when traversing a
154 * page table.
155 */
156
157 struct gtt_type_table_entry {
158 int entry_type;
159 int next_pt_type;
160 int pse_entry_type;
161 };
162
163 #define GTT_TYPE_TABLE_ENTRY(type, e_type, npt_type, pse_type) \
164 [type] = { \
165 .entry_type = e_type, \
166 .next_pt_type = npt_type, \
167 .pse_entry_type = pse_type, \
168 }
169
170 static struct gtt_type_table_entry gtt_type_table[] = {
171 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
172 GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
173 GTT_TYPE_PPGTT_PML4_PT,
174 GTT_TYPE_INVALID),
175 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
176 GTT_TYPE_PPGTT_PML4_ENTRY,
177 GTT_TYPE_PPGTT_PDP_PT,
178 GTT_TYPE_INVALID),
179 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
180 GTT_TYPE_PPGTT_PML4_ENTRY,
181 GTT_TYPE_PPGTT_PDP_PT,
182 GTT_TYPE_INVALID),
183 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
184 GTT_TYPE_PPGTT_PDP_ENTRY,
185 GTT_TYPE_PPGTT_PDE_PT,
186 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
187 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
188 GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
189 GTT_TYPE_PPGTT_PDE_PT,
190 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
191 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
192 GTT_TYPE_PPGTT_PDP_ENTRY,
193 GTT_TYPE_PPGTT_PDE_PT,
194 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
195 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
196 GTT_TYPE_PPGTT_PDE_ENTRY,
197 GTT_TYPE_PPGTT_PTE_PT,
198 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
199 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
200 GTT_TYPE_PPGTT_PDE_ENTRY,
201 GTT_TYPE_PPGTT_PTE_PT,
202 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
203 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
204 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
205 GTT_TYPE_INVALID,
206 GTT_TYPE_INVALID),
207 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
208 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
209 GTT_TYPE_INVALID,
210 GTT_TYPE_INVALID),
211 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
212 GTT_TYPE_PPGTT_PDE_ENTRY,
213 GTT_TYPE_INVALID,
214 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
215 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
216 GTT_TYPE_PPGTT_PDP_ENTRY,
217 GTT_TYPE_INVALID,
218 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
219 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
220 GTT_TYPE_GGTT_PTE,
221 GTT_TYPE_INVALID,
222 GTT_TYPE_INVALID),
223 };
224
225 static inline int get_next_pt_type(int type)
226 {
227 return gtt_type_table[type].next_pt_type;
228 }
229
230 static inline int get_entry_type(int type)
231 {
232 return gtt_type_table[type].entry_type;
233 }
234
235 static inline int get_pse_type(int type)
236 {
237 return gtt_type_table[type].pse_entry_type;
238 }
239
240 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
241 {
242 void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
243
244 return readq(addr);
245 }
246
247 static void gtt_invalidate(struct drm_i915_private *dev_priv)
248 {
249 mmio_hw_access_pre(dev_priv);
250 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
251 mmio_hw_access_post(dev_priv);
252 }
253
254 static void write_pte64(struct drm_i915_private *dev_priv,
255 unsigned long index, u64 pte)
256 {
257 void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
258
259 writeq(pte, addr);
260 }
261
262 static inline int gtt_get_entry64(void *pt,
263 struct intel_gvt_gtt_entry *e,
264 unsigned long index, bool hypervisor_access, unsigned long gpa,
265 struct intel_vgpu *vgpu)
266 {
267 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
268 int ret;
269
270 if (WARN_ON(info->gtt_entry_size != 8))
271 return -EINVAL;
272
273 if (hypervisor_access) {
274 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
275 (index << info->gtt_entry_size_shift),
276 &e->val64, 8);
277 if (WARN_ON(ret))
278 return ret;
279 } else if (!pt) {
280 e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
281 } else {
282 e->val64 = *((u64 *)pt + index);
283 }
284 return 0;
285 }
286
287 static inline int gtt_set_entry64(void *pt,
288 struct intel_gvt_gtt_entry *e,
289 unsigned long index, bool hypervisor_access, unsigned long gpa,
290 struct intel_vgpu *vgpu)
291 {
292 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
293 int ret;
294
295 if (WARN_ON(info->gtt_entry_size != 8))
296 return -EINVAL;
297
298 if (hypervisor_access) {
299 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
300 (index << info->gtt_entry_size_shift),
301 &e->val64, 8);
302 if (WARN_ON(ret))
303 return ret;
304 } else if (!pt) {
305 write_pte64(vgpu->gvt->dev_priv, index, e->val64);
306 } else {
307 *((u64 *)pt + index) = e->val64;
308 }
309 return 0;
310 }
311
312 #define GTT_HAW 46
313
314 #define ADDR_1G_MASK (((1UL << (GTT_HAW - 30)) - 1) << 30)
315 #define ADDR_2M_MASK (((1UL << (GTT_HAW - 21)) - 1) << 21)
316 #define ADDR_4K_MASK (((1UL << (GTT_HAW - 12)) - 1) << 12)
317
318 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
319 {
320 unsigned long pfn;
321
322 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
323 pfn = (e->val64 & ADDR_1G_MASK) >> 12;
324 else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
325 pfn = (e->val64 & ADDR_2M_MASK) >> 12;
326 else
327 pfn = (e->val64 & ADDR_4K_MASK) >> 12;
328 return pfn;
329 }
330
331 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
332 {
333 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
334 e->val64 &= ~ADDR_1G_MASK;
335 pfn &= (ADDR_1G_MASK >> 12);
336 } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
337 e->val64 &= ~ADDR_2M_MASK;
338 pfn &= (ADDR_2M_MASK >> 12);
339 } else {
340 e->val64 &= ~ADDR_4K_MASK;
341 pfn &= (ADDR_4K_MASK >> 12);
342 }
343
344 e->val64 |= (pfn << 12);
345 }
346
347 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
348 {
349 /* Entry doesn't have PSE bit. */
350 if (get_pse_type(e->type) == GTT_TYPE_INVALID)
351 return false;
352
353 e->type = get_entry_type(e->type);
354 if (!(e->val64 & (1 << 7)))
355 return false;
356
357 e->type = get_pse_type(e->type);
358 return true;
359 }
360
361 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
362 {
363 /*
364 * i915 writes PDP root pointer registers without present bit,
365 * it also works, so we need to treat root pointer entry
366 * specifically.
367 */
368 if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
369 || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
370 return (e->val64 != 0);
371 else
372 return (e->val64 & (1 << 0));
373 }
374
375 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
376 {
377 e->val64 &= ~(1 << 0);
378 }
379
380 /*
381 * Per-platform GMA routines.
382 */
383 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
384 {
385 unsigned long x = (gma >> GTT_PAGE_SHIFT);
386
387 trace_gma_index(__func__, gma, x);
388 return x;
389 }
390
391 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
392 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
393 { \
394 unsigned long x = (exp); \
395 trace_gma_index(__func__, gma, x); \
396 return x; \
397 }
398
399 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
400 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
401 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
402 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
403 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
404
405 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
406 .get_entry = gtt_get_entry64,
407 .set_entry = gtt_set_entry64,
408 .clear_present = gtt_entry_clear_present,
409 .test_present = gen8_gtt_test_present,
410 .test_pse = gen8_gtt_test_pse,
411 .get_pfn = gen8_gtt_get_pfn,
412 .set_pfn = gen8_gtt_set_pfn,
413 };
414
415 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
416 .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
417 .gma_to_pte_index = gen8_gma_to_pte_index,
418 .gma_to_pde_index = gen8_gma_to_pde_index,
419 .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
420 .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
421 .gma_to_pml4_index = gen8_gma_to_pml4_index,
422 };
423
424 static int gtt_entry_p2m(struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *p,
425 struct intel_gvt_gtt_entry *m)
426 {
427 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
428 unsigned long gfn, mfn;
429
430 *m = *p;
431
432 if (!ops->test_present(p))
433 return 0;
434
435 gfn = ops->get_pfn(p);
436
437 mfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, gfn);
438 if (mfn == INTEL_GVT_INVALID_ADDR) {
439 gvt_vgpu_err("fail to translate gfn: 0x%lx\n", gfn);
440 return -ENXIO;
441 }
442
443 ops->set_pfn(m, mfn);
444 return 0;
445 }
446
447 /*
448 * MM helpers.
449 */
450 int intel_vgpu_mm_get_entry(struct intel_vgpu_mm *mm,
451 void *page_table, struct intel_gvt_gtt_entry *e,
452 unsigned long index)
453 {
454 struct intel_gvt *gvt = mm->vgpu->gvt;
455 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
456 int ret;
457
458 e->type = mm->page_table_entry_type;
459
460 ret = ops->get_entry(page_table, e, index, false, 0, mm->vgpu);
461 if (ret)
462 return ret;
463
464 ops->test_pse(e);
465 return 0;
466 }
467
468 int intel_vgpu_mm_set_entry(struct intel_vgpu_mm *mm,
469 void *page_table, struct intel_gvt_gtt_entry *e,
470 unsigned long index)
471 {
472 struct intel_gvt *gvt = mm->vgpu->gvt;
473 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
474
475 return ops->set_entry(page_table, e, index, false, 0, mm->vgpu);
476 }
477
478 /*
479 * PPGTT shadow page table helpers.
480 */
481 static inline int ppgtt_spt_get_entry(
482 struct intel_vgpu_ppgtt_spt *spt,
483 void *page_table, int type,
484 struct intel_gvt_gtt_entry *e, unsigned long index,
485 bool guest)
486 {
487 struct intel_gvt *gvt = spt->vgpu->gvt;
488 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
489 int ret;
490
491 e->type = get_entry_type(type);
492
493 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
494 return -EINVAL;
495
496 ret = ops->get_entry(page_table, e, index, guest,
497 spt->guest_page.gfn << GTT_PAGE_SHIFT,
498 spt->vgpu);
499 if (ret)
500 return ret;
501
502 ops->test_pse(e);
503 return 0;
504 }
505
506 static inline int ppgtt_spt_set_entry(
507 struct intel_vgpu_ppgtt_spt *spt,
508 void *page_table, int type,
509 struct intel_gvt_gtt_entry *e, unsigned long index,
510 bool guest)
511 {
512 struct intel_gvt *gvt = spt->vgpu->gvt;
513 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
514
515 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
516 return -EINVAL;
517
518 return ops->set_entry(page_table, e, index, guest,
519 spt->guest_page.gfn << GTT_PAGE_SHIFT,
520 spt->vgpu);
521 }
522
523 #define ppgtt_get_guest_entry(spt, e, index) \
524 ppgtt_spt_get_entry(spt, NULL, \
525 spt->guest_page_type, e, index, true)
526
527 #define ppgtt_set_guest_entry(spt, e, index) \
528 ppgtt_spt_set_entry(spt, NULL, \
529 spt->guest_page_type, e, index, true)
530
531 #define ppgtt_get_shadow_entry(spt, e, index) \
532 ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
533 spt->shadow_page.type, e, index, false)
534
535 #define ppgtt_set_shadow_entry(spt, e, index) \
536 ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
537 spt->shadow_page.type, e, index, false)
538
539 /**
540 * intel_vgpu_init_guest_page - init a guest page data structure
541 * @vgpu: a vGPU
542 * @p: a guest page data structure
543 * @gfn: guest memory page frame number
544 * @handler: function will be called when target guest memory page has
545 * been modified.
546 *
547 * This function is called when user wants to track a guest memory page.
548 *
549 * Returns:
550 * Zero on success, negative error code if failed.
551 */
552 int intel_vgpu_init_guest_page(struct intel_vgpu *vgpu,
553 struct intel_vgpu_guest_page *p,
554 unsigned long gfn,
555 int (*handler)(void *, u64, void *, int),
556 void *data)
557 {
558 INIT_HLIST_NODE(&p->node);
559
560 p->writeprotection = false;
561 p->gfn = gfn;
562 p->handler = handler;
563 p->data = data;
564 p->oos_page = NULL;
565 p->write_cnt = 0;
566
567 hash_add(vgpu->gtt.guest_page_hash_table, &p->node, p->gfn);
568 return 0;
569 }
570
571 static int detach_oos_page(struct intel_vgpu *vgpu,
572 struct intel_vgpu_oos_page *oos_page);
573
574 /**
575 * intel_vgpu_clean_guest_page - release the resource owned by guest page data
576 * structure
577 * @vgpu: a vGPU
578 * @p: a tracked guest page
579 *
580 * This function is called when user tries to stop tracking a guest memory
581 * page.
582 */
583 void intel_vgpu_clean_guest_page(struct intel_vgpu *vgpu,
584 struct intel_vgpu_guest_page *p)
585 {
586 if (!hlist_unhashed(&p->node))
587 hash_del(&p->node);
588
589 if (p->oos_page)
590 detach_oos_page(vgpu, p->oos_page);
591
592 if (p->writeprotection)
593 intel_gvt_hypervisor_unset_wp_page(vgpu, p);
594 }
595
596 /**
597 * intel_vgpu_find_guest_page - find a guest page data structure by GFN.
598 * @vgpu: a vGPU
599 * @gfn: guest memory page frame number
600 *
601 * This function is called when emulation logic wants to know if a trapped GFN
602 * is a tracked guest page.
603 *
604 * Returns:
605 * Pointer to guest page data structure, NULL if failed.
606 */
607 struct intel_vgpu_guest_page *intel_vgpu_find_guest_page(
608 struct intel_vgpu *vgpu, unsigned long gfn)
609 {
610 struct intel_vgpu_guest_page *p;
611
612 hash_for_each_possible(vgpu->gtt.guest_page_hash_table,
613 p, node, gfn) {
614 if (p->gfn == gfn)
615 return p;
616 }
617 return NULL;
618 }
619
620 static inline int init_shadow_page(struct intel_vgpu *vgpu,
621 struct intel_vgpu_shadow_page *p, int type)
622 {
623 struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
624 dma_addr_t daddr;
625
626 daddr = dma_map_page(kdev, p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
627 if (dma_mapping_error(kdev, daddr)) {
628 gvt_vgpu_err("fail to map dma addr\n");
629 return -EINVAL;
630 }
631
632 p->vaddr = page_address(p->page);
633 p->type = type;
634
635 INIT_HLIST_NODE(&p->node);
636
637 p->mfn = daddr >> GTT_PAGE_SHIFT;
638 hash_add(vgpu->gtt.shadow_page_hash_table, &p->node, p->mfn);
639 return 0;
640 }
641
642 static inline void clean_shadow_page(struct intel_vgpu *vgpu,
643 struct intel_vgpu_shadow_page *p)
644 {
645 struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
646
647 dma_unmap_page(kdev, p->mfn << GTT_PAGE_SHIFT, 4096,
648 PCI_DMA_BIDIRECTIONAL);
649
650 if (!hlist_unhashed(&p->node))
651 hash_del(&p->node);
652 }
653
654 static inline struct intel_vgpu_shadow_page *find_shadow_page(
655 struct intel_vgpu *vgpu, unsigned long mfn)
656 {
657 struct intel_vgpu_shadow_page *p;
658
659 hash_for_each_possible(vgpu->gtt.shadow_page_hash_table,
660 p, node, mfn) {
661 if (p->mfn == mfn)
662 return p;
663 }
664 return NULL;
665 }
666
667 #define guest_page_to_ppgtt_spt(ptr) \
668 container_of(ptr, struct intel_vgpu_ppgtt_spt, guest_page)
669
670 #define shadow_page_to_ppgtt_spt(ptr) \
671 container_of(ptr, struct intel_vgpu_ppgtt_spt, shadow_page)
672
673 static void *alloc_spt(gfp_t gfp_mask)
674 {
675 struct intel_vgpu_ppgtt_spt *spt;
676
677 spt = kzalloc(sizeof(*spt), gfp_mask);
678 if (!spt)
679 return NULL;
680
681 spt->shadow_page.page = alloc_page(gfp_mask);
682 if (!spt->shadow_page.page) {
683 kfree(spt);
684 return NULL;
685 }
686 return spt;
687 }
688
689 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
690 {
691 __free_page(spt->shadow_page.page);
692 kfree(spt);
693 }
694
695 static void ppgtt_free_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
696 {
697 trace_spt_free(spt->vgpu->id, spt, spt->shadow_page.type);
698
699 clean_shadow_page(spt->vgpu, &spt->shadow_page);
700 intel_vgpu_clean_guest_page(spt->vgpu, &spt->guest_page);
701 list_del_init(&spt->post_shadow_list);
702
703 free_spt(spt);
704 }
705
706 static void ppgtt_free_all_shadow_page(struct intel_vgpu *vgpu)
707 {
708 struct hlist_node *n;
709 struct intel_vgpu_shadow_page *sp;
710 int i;
711
712 hash_for_each_safe(vgpu->gtt.shadow_page_hash_table, i, n, sp, node)
713 ppgtt_free_shadow_page(shadow_page_to_ppgtt_spt(sp));
714 }
715
716 static int ppgtt_handle_guest_write_page_table_bytes(void *gp,
717 u64 pa, void *p_data, int bytes);
718
719 static int ppgtt_write_protection_handler(void *gp, u64 pa,
720 void *p_data, int bytes)
721 {
722 struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp;
723 int ret;
724
725 if (bytes != 4 && bytes != 8)
726 return -EINVAL;
727
728 if (!gpt->writeprotection)
729 return -EINVAL;
730
731 ret = ppgtt_handle_guest_write_page_table_bytes(gp,
732 pa, p_data, bytes);
733 if (ret)
734 return ret;
735 return ret;
736 }
737
738 static int reclaim_one_mm(struct intel_gvt *gvt);
739
740 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_shadow_page(
741 struct intel_vgpu *vgpu, int type, unsigned long gfn)
742 {
743 struct intel_vgpu_ppgtt_spt *spt = NULL;
744 int ret;
745
746 retry:
747 spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
748 if (!spt) {
749 if (reclaim_one_mm(vgpu->gvt))
750 goto retry;
751
752 gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
753 return ERR_PTR(-ENOMEM);
754 }
755
756 spt->vgpu = vgpu;
757 spt->guest_page_type = type;
758 atomic_set(&spt->refcount, 1);
759 INIT_LIST_HEAD(&spt->post_shadow_list);
760
761 /*
762 * TODO: guest page type may be different with shadow page type,
763 * when we support PSE page in future.
764 */
765 ret = init_shadow_page(vgpu, &spt->shadow_page, type);
766 if (ret) {
767 gvt_vgpu_err("fail to initialize shadow page for spt\n");
768 goto err;
769 }
770
771 ret = intel_vgpu_init_guest_page(vgpu, &spt->guest_page,
772 gfn, ppgtt_write_protection_handler, NULL);
773 if (ret) {
774 gvt_vgpu_err("fail to initialize guest page for spt\n");
775 goto err;
776 }
777
778 trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
779 return spt;
780 err:
781 ppgtt_free_shadow_page(spt);
782 return ERR_PTR(ret);
783 }
784
785 static struct intel_vgpu_ppgtt_spt *ppgtt_find_shadow_page(
786 struct intel_vgpu *vgpu, unsigned long mfn)
787 {
788 struct intel_vgpu_shadow_page *p = find_shadow_page(vgpu, mfn);
789
790 if (p)
791 return shadow_page_to_ppgtt_spt(p);
792
793 gvt_vgpu_err("fail to find ppgtt shadow page: 0x%lx\n", mfn);
794 return NULL;
795 }
796
797 #define pt_entry_size_shift(spt) \
798 ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
799
800 #define pt_entries(spt) \
801 (GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
802
803 #define for_each_present_guest_entry(spt, e, i) \
804 for (i = 0; i < pt_entries(spt); i++) \
805 if (!ppgtt_get_guest_entry(spt, e, i) && \
806 spt->vgpu->gvt->gtt.pte_ops->test_present(e))
807
808 #define for_each_present_shadow_entry(spt, e, i) \
809 for (i = 0; i < pt_entries(spt); i++) \
810 if (!ppgtt_get_shadow_entry(spt, e, i) && \
811 spt->vgpu->gvt->gtt.pte_ops->test_present(e))
812
813 static void ppgtt_get_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
814 {
815 int v = atomic_read(&spt->refcount);
816
817 trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
818
819 atomic_inc(&spt->refcount);
820 }
821
822 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
823
824 static int ppgtt_invalidate_shadow_page_by_shadow_entry(struct intel_vgpu *vgpu,
825 struct intel_gvt_gtt_entry *e)
826 {
827 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
828 struct intel_vgpu_ppgtt_spt *s;
829 intel_gvt_gtt_type_t cur_pt_type;
830
831 if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(e->type))))
832 return -EINVAL;
833
834 if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
835 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
836 cur_pt_type = get_next_pt_type(e->type) + 1;
837 if (ops->get_pfn(e) ==
838 vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
839 return 0;
840 }
841 s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
842 if (!s) {
843 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
844 ops->get_pfn(e));
845 return -ENXIO;
846 }
847 return ppgtt_invalidate_shadow_page(s);
848 }
849
850 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
851 {
852 struct intel_vgpu *vgpu = spt->vgpu;
853 struct intel_gvt_gtt_entry e;
854 unsigned long index;
855 int ret;
856 int v = atomic_read(&spt->refcount);
857
858 trace_spt_change(spt->vgpu->id, "die", spt,
859 spt->guest_page.gfn, spt->shadow_page.type);
860
861 trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
862
863 if (atomic_dec_return(&spt->refcount) > 0)
864 return 0;
865
866 if (gtt_type_is_pte_pt(spt->shadow_page.type))
867 goto release;
868
869 for_each_present_shadow_entry(spt, &e, index) {
870 if (!gtt_type_is_pt(get_next_pt_type(e.type))) {
871 gvt_vgpu_err("GVT doesn't support pse bit for now\n");
872 return -EINVAL;
873 }
874 ret = ppgtt_invalidate_shadow_page_by_shadow_entry(
875 spt->vgpu, &e);
876 if (ret)
877 goto fail;
878 }
879 release:
880 trace_spt_change(spt->vgpu->id, "release", spt,
881 spt->guest_page.gfn, spt->shadow_page.type);
882 ppgtt_free_shadow_page(spt);
883 return 0;
884 fail:
885 gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
886 spt, e.val64, e.type);
887 return ret;
888 }
889
890 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
891
892 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_shadow_page_by_guest_entry(
893 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
894 {
895 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
896 struct intel_vgpu_ppgtt_spt *s = NULL;
897 struct intel_vgpu_guest_page *g;
898 int ret;
899
900 if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(we->type)))) {
901 ret = -EINVAL;
902 goto fail;
903 }
904
905 g = intel_vgpu_find_guest_page(vgpu, ops->get_pfn(we));
906 if (g) {
907 s = guest_page_to_ppgtt_spt(g);
908 ppgtt_get_shadow_page(s);
909 } else {
910 int type = get_next_pt_type(we->type);
911
912 s = ppgtt_alloc_shadow_page(vgpu, type, ops->get_pfn(we));
913 if (IS_ERR(s)) {
914 ret = PTR_ERR(s);
915 goto fail;
916 }
917
918 ret = intel_gvt_hypervisor_set_wp_page(vgpu, &s->guest_page);
919 if (ret)
920 goto fail;
921
922 ret = ppgtt_populate_shadow_page(s);
923 if (ret)
924 goto fail;
925
926 trace_spt_change(vgpu->id, "new", s, s->guest_page.gfn,
927 s->shadow_page.type);
928 }
929 return s;
930 fail:
931 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
932 s, we->val64, we->type);
933 return ERR_PTR(ret);
934 }
935
936 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
937 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
938 {
939 struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
940
941 se->type = ge->type;
942 se->val64 = ge->val64;
943
944 ops->set_pfn(se, s->shadow_page.mfn);
945 }
946
947 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
948 {
949 struct intel_vgpu *vgpu = spt->vgpu;
950 struct intel_vgpu_ppgtt_spt *s;
951 struct intel_gvt_gtt_entry se, ge;
952 unsigned long i;
953 int ret;
954
955 trace_spt_change(spt->vgpu->id, "born", spt,
956 spt->guest_page.gfn, spt->shadow_page.type);
957
958 if (gtt_type_is_pte_pt(spt->shadow_page.type)) {
959 for_each_present_guest_entry(spt, &ge, i) {
960 ret = gtt_entry_p2m(vgpu, &ge, &se);
961 if (ret)
962 goto fail;
963 ppgtt_set_shadow_entry(spt, &se, i);
964 }
965 return 0;
966 }
967
968 for_each_present_guest_entry(spt, &ge, i) {
969 if (!gtt_type_is_pt(get_next_pt_type(ge.type))) {
970 gvt_vgpu_err("GVT doesn't support pse bit now\n");
971 ret = -EINVAL;
972 goto fail;
973 }
974
975 s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
976 if (IS_ERR(s)) {
977 ret = PTR_ERR(s);
978 goto fail;
979 }
980 ppgtt_get_shadow_entry(spt, &se, i);
981 ppgtt_generate_shadow_entry(&se, s, &ge);
982 ppgtt_set_shadow_entry(spt, &se, i);
983 }
984 return 0;
985 fail:
986 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
987 spt, ge.val64, ge.type);
988 return ret;
989 }
990
991 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_guest_page *gpt,
992 struct intel_gvt_gtt_entry *se, unsigned long index)
993 {
994 struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
995 struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
996 struct intel_vgpu *vgpu = spt->vgpu;
997 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
998 int ret;
999
1000 trace_gpt_change(spt->vgpu->id, "remove", spt, sp->type, se->val64,
1001 index);
1002
1003 if (!ops->test_present(se))
1004 return 0;
1005
1006 if (ops->get_pfn(se) == vgpu->gtt.scratch_pt[sp->type].page_mfn)
1007 return 0;
1008
1009 if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1010 struct intel_vgpu_ppgtt_spt *s =
1011 ppgtt_find_shadow_page(vgpu, ops->get_pfn(se));
1012 if (!s) {
1013 gvt_vgpu_err("fail to find guest page\n");
1014 ret = -ENXIO;
1015 goto fail;
1016 }
1017 ret = ppgtt_invalidate_shadow_page(s);
1018 if (ret)
1019 goto fail;
1020 }
1021 return 0;
1022 fail:
1023 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1024 spt, se->val64, se->type);
1025 return ret;
1026 }
1027
1028 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_guest_page *gpt,
1029 struct intel_gvt_gtt_entry *we, unsigned long index)
1030 {
1031 struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1032 struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
1033 struct intel_vgpu *vgpu = spt->vgpu;
1034 struct intel_gvt_gtt_entry m;
1035 struct intel_vgpu_ppgtt_spt *s;
1036 int ret;
1037
1038 trace_gpt_change(spt->vgpu->id, "add", spt, sp->type,
1039 we->val64, index);
1040
1041 if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1042 s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, we);
1043 if (IS_ERR(s)) {
1044 ret = PTR_ERR(s);
1045 goto fail;
1046 }
1047 ppgtt_get_shadow_entry(spt, &m, index);
1048 ppgtt_generate_shadow_entry(&m, s, we);
1049 ppgtt_set_shadow_entry(spt, &m, index);
1050 } else {
1051 ret = gtt_entry_p2m(vgpu, we, &m);
1052 if (ret)
1053 goto fail;
1054 ppgtt_set_shadow_entry(spt, &m, index);
1055 }
1056 return 0;
1057 fail:
1058 gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1059 spt, we->val64, we->type);
1060 return ret;
1061 }
1062
1063 static int sync_oos_page(struct intel_vgpu *vgpu,
1064 struct intel_vgpu_oos_page *oos_page)
1065 {
1066 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1067 struct intel_gvt *gvt = vgpu->gvt;
1068 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1069 struct intel_vgpu_ppgtt_spt *spt =
1070 guest_page_to_ppgtt_spt(oos_page->guest_page);
1071 struct intel_gvt_gtt_entry old, new, m;
1072 int index;
1073 int ret;
1074
1075 trace_oos_change(vgpu->id, "sync", oos_page->id,
1076 oos_page->guest_page, spt->guest_page_type);
1077
1078 old.type = new.type = get_entry_type(spt->guest_page_type);
1079 old.val64 = new.val64 = 0;
1080
1081 for (index = 0; index < (GTT_PAGE_SIZE >> info->gtt_entry_size_shift);
1082 index++) {
1083 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1084 ops->get_entry(NULL, &new, index, true,
1085 oos_page->guest_page->gfn << PAGE_SHIFT, vgpu);
1086
1087 if (old.val64 == new.val64
1088 && !test_and_clear_bit(index, spt->post_shadow_bitmap))
1089 continue;
1090
1091 trace_oos_sync(vgpu->id, oos_page->id,
1092 oos_page->guest_page, spt->guest_page_type,
1093 new.val64, index);
1094
1095 ret = gtt_entry_p2m(vgpu, &new, &m);
1096 if (ret)
1097 return ret;
1098
1099 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1100 ppgtt_set_shadow_entry(spt, &m, index);
1101 }
1102
1103 oos_page->guest_page->write_cnt = 0;
1104 list_del_init(&spt->post_shadow_list);
1105 return 0;
1106 }
1107
1108 static int detach_oos_page(struct intel_vgpu *vgpu,
1109 struct intel_vgpu_oos_page *oos_page)
1110 {
1111 struct intel_gvt *gvt = vgpu->gvt;
1112 struct intel_vgpu_ppgtt_spt *spt =
1113 guest_page_to_ppgtt_spt(oos_page->guest_page);
1114
1115 trace_oos_change(vgpu->id, "detach", oos_page->id,
1116 oos_page->guest_page, spt->guest_page_type);
1117
1118 oos_page->guest_page->write_cnt = 0;
1119 oos_page->guest_page->oos_page = NULL;
1120 oos_page->guest_page = NULL;
1121
1122 list_del_init(&oos_page->vm_list);
1123 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1124
1125 return 0;
1126 }
1127
1128 static int attach_oos_page(struct intel_vgpu *vgpu,
1129 struct intel_vgpu_oos_page *oos_page,
1130 struct intel_vgpu_guest_page *gpt)
1131 {
1132 struct intel_gvt *gvt = vgpu->gvt;
1133 int ret;
1134
1135 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpt->gfn << GTT_PAGE_SHIFT,
1136 oos_page->mem, GTT_PAGE_SIZE);
1137 if (ret)
1138 return ret;
1139
1140 oos_page->guest_page = gpt;
1141 gpt->oos_page = oos_page;
1142
1143 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1144
1145 trace_oos_change(vgpu->id, "attach", gpt->oos_page->id,
1146 gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1147 return 0;
1148 }
1149
1150 static int ppgtt_set_guest_page_sync(struct intel_vgpu *vgpu,
1151 struct intel_vgpu_guest_page *gpt)
1152 {
1153 int ret;
1154
1155 ret = intel_gvt_hypervisor_set_wp_page(vgpu, gpt);
1156 if (ret)
1157 return ret;
1158
1159 trace_oos_change(vgpu->id, "set page sync", gpt->oos_page->id,
1160 gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1161
1162 list_del_init(&gpt->oos_page->vm_list);
1163 return sync_oos_page(vgpu, gpt->oos_page);
1164 }
1165
1166 static int ppgtt_allocate_oos_page(struct intel_vgpu *vgpu,
1167 struct intel_vgpu_guest_page *gpt)
1168 {
1169 struct intel_gvt *gvt = vgpu->gvt;
1170 struct intel_gvt_gtt *gtt = &gvt->gtt;
1171 struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1172 int ret;
1173
1174 WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1175
1176 if (list_empty(&gtt->oos_page_free_list_head)) {
1177 oos_page = container_of(gtt->oos_page_use_list_head.next,
1178 struct intel_vgpu_oos_page, list);
1179 ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1180 if (ret)
1181 return ret;
1182 ret = detach_oos_page(vgpu, oos_page);
1183 if (ret)
1184 return ret;
1185 } else
1186 oos_page = container_of(gtt->oos_page_free_list_head.next,
1187 struct intel_vgpu_oos_page, list);
1188 return attach_oos_page(vgpu, oos_page, gpt);
1189 }
1190
1191 static int ppgtt_set_guest_page_oos(struct intel_vgpu *vgpu,
1192 struct intel_vgpu_guest_page *gpt)
1193 {
1194 struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1195
1196 if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1197 return -EINVAL;
1198
1199 trace_oos_change(vgpu->id, "set page out of sync", gpt->oos_page->id,
1200 gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1201
1202 list_add_tail(&oos_page->vm_list, &vgpu->gtt.oos_page_list_head);
1203 return intel_gvt_hypervisor_unset_wp_page(vgpu, gpt);
1204 }
1205
1206 /**
1207 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1208 * @vgpu: a vGPU
1209 *
1210 * This function is called before submitting a guest workload to host,
1211 * to sync all the out-of-synced shadow for vGPU
1212 *
1213 * Returns:
1214 * Zero on success, negative error code if failed.
1215 */
1216 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1217 {
1218 struct list_head *pos, *n;
1219 struct intel_vgpu_oos_page *oos_page;
1220 int ret;
1221
1222 if (!enable_out_of_sync)
1223 return 0;
1224
1225 list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1226 oos_page = container_of(pos,
1227 struct intel_vgpu_oos_page, vm_list);
1228 ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1229 if (ret)
1230 return ret;
1231 }
1232 return 0;
1233 }
1234
1235 /*
1236 * The heart of PPGTT shadow page table.
1237 */
1238 static int ppgtt_handle_guest_write_page_table(
1239 struct intel_vgpu_guest_page *gpt,
1240 struct intel_gvt_gtt_entry *we, unsigned long index)
1241 {
1242 struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1243 struct intel_vgpu *vgpu = spt->vgpu;
1244 int type = spt->shadow_page.type;
1245 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1246 struct intel_gvt_gtt_entry se;
1247
1248 int ret;
1249 int new_present;
1250
1251 new_present = ops->test_present(we);
1252
1253 /*
1254 * Adding the new entry first and then removing the old one, that can
1255 * guarantee the ppgtt table is validated during the window between
1256 * adding and removal.
1257 */
1258 ppgtt_get_shadow_entry(spt, &se, index);
1259
1260 if (new_present) {
1261 ret = ppgtt_handle_guest_entry_add(gpt, we, index);
1262 if (ret)
1263 goto fail;
1264 }
1265
1266 ret = ppgtt_handle_guest_entry_removal(gpt, &se, index);
1267 if (ret)
1268 goto fail;
1269
1270 if (!new_present) {
1271 ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1272 ppgtt_set_shadow_entry(spt, &se, index);
1273 }
1274
1275 return 0;
1276 fail:
1277 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1278 spt, we->val64, we->type);
1279 return ret;
1280 }
1281
1282 static inline bool can_do_out_of_sync(struct intel_vgpu_guest_page *gpt)
1283 {
1284 return enable_out_of_sync
1285 && gtt_type_is_pte_pt(
1286 guest_page_to_ppgtt_spt(gpt)->guest_page_type)
1287 && gpt->write_cnt >= 2;
1288 }
1289
1290 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1291 unsigned long index)
1292 {
1293 set_bit(index, spt->post_shadow_bitmap);
1294 if (!list_empty(&spt->post_shadow_list))
1295 return;
1296
1297 list_add_tail(&spt->post_shadow_list,
1298 &spt->vgpu->gtt.post_shadow_list_head);
1299 }
1300
1301 /**
1302 * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1303 * @vgpu: a vGPU
1304 *
1305 * This function is called before submitting a guest workload to host,
1306 * to flush all the post shadows for a vGPU.
1307 *
1308 * Returns:
1309 * Zero on success, negative error code if failed.
1310 */
1311 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1312 {
1313 struct list_head *pos, *n;
1314 struct intel_vgpu_ppgtt_spt *spt;
1315 struct intel_gvt_gtt_entry ge;
1316 unsigned long index;
1317 int ret;
1318
1319 list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1320 spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1321 post_shadow_list);
1322
1323 for_each_set_bit(index, spt->post_shadow_bitmap,
1324 GTT_ENTRY_NUM_IN_ONE_PAGE) {
1325 ppgtt_get_guest_entry(spt, &ge, index);
1326
1327 ret = ppgtt_handle_guest_write_page_table(
1328 &spt->guest_page, &ge, index);
1329 if (ret)
1330 return ret;
1331 clear_bit(index, spt->post_shadow_bitmap);
1332 }
1333 list_del_init(&spt->post_shadow_list);
1334 }
1335 return 0;
1336 }
1337
1338 static int ppgtt_handle_guest_write_page_table_bytes(void *gp,
1339 u64 pa, void *p_data, int bytes)
1340 {
1341 struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp;
1342 struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1343 struct intel_vgpu *vgpu = spt->vgpu;
1344 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1345 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1346 struct intel_gvt_gtt_entry we, se;
1347 unsigned long index;
1348 int ret;
1349
1350 index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1351
1352 ppgtt_get_guest_entry(spt, &we, index);
1353
1354 ops->test_pse(&we);
1355
1356 if (bytes == info->gtt_entry_size) {
1357 ret = ppgtt_handle_guest_write_page_table(gpt, &we, index);
1358 if (ret)
1359 return ret;
1360 } else {
1361 if (!test_bit(index, spt->post_shadow_bitmap)) {
1362 ppgtt_get_shadow_entry(spt, &se, index);
1363 ret = ppgtt_handle_guest_entry_removal(gpt, &se, index);
1364 if (ret)
1365 return ret;
1366 }
1367
1368 ppgtt_set_post_shadow(spt, index);
1369 }
1370
1371 if (!enable_out_of_sync)
1372 return 0;
1373
1374 gpt->write_cnt++;
1375
1376 if (gpt->oos_page)
1377 ops->set_entry(gpt->oos_page->mem, &we, index,
1378 false, 0, vgpu);
1379
1380 if (can_do_out_of_sync(gpt)) {
1381 if (!gpt->oos_page)
1382 ppgtt_allocate_oos_page(vgpu, gpt);
1383
1384 ret = ppgtt_set_guest_page_oos(vgpu, gpt);
1385 if (ret < 0)
1386 return ret;
1387 }
1388 return 0;
1389 }
1390
1391 /*
1392 * mm page table allocation policy for bdw+
1393 * - for ggtt, only virtual page table will be allocated.
1394 * - for ppgtt, dedicated virtual/shadow page table will be allocated.
1395 */
1396 static int gen8_mm_alloc_page_table(struct intel_vgpu_mm *mm)
1397 {
1398 struct intel_vgpu *vgpu = mm->vgpu;
1399 struct intel_gvt *gvt = vgpu->gvt;
1400 const struct intel_gvt_device_info *info = &gvt->device_info;
1401 void *mem;
1402
1403 if (mm->type == INTEL_GVT_MM_PPGTT) {
1404 mm->page_table_entry_cnt = 4;
1405 mm->page_table_entry_size = mm->page_table_entry_cnt *
1406 info->gtt_entry_size;
1407 mem = kzalloc(mm->has_shadow_page_table ?
1408 mm->page_table_entry_size * 2
1409 : mm->page_table_entry_size, GFP_KERNEL);
1410 if (!mem)
1411 return -ENOMEM;
1412 mm->virtual_page_table = mem;
1413 if (!mm->has_shadow_page_table)
1414 return 0;
1415 mm->shadow_page_table = mem + mm->page_table_entry_size;
1416 } else if (mm->type == INTEL_GVT_MM_GGTT) {
1417 mm->page_table_entry_cnt =
1418 (gvt_ggtt_gm_sz(gvt) >> GTT_PAGE_SHIFT);
1419 mm->page_table_entry_size = mm->page_table_entry_cnt *
1420 info->gtt_entry_size;
1421 mem = vzalloc(mm->page_table_entry_size);
1422 if (!mem)
1423 return -ENOMEM;
1424 mm->virtual_page_table = mem;
1425 }
1426 return 0;
1427 }
1428
1429 static void gen8_mm_free_page_table(struct intel_vgpu_mm *mm)
1430 {
1431 if (mm->type == INTEL_GVT_MM_PPGTT) {
1432 kfree(mm->virtual_page_table);
1433 } else if (mm->type == INTEL_GVT_MM_GGTT) {
1434 if (mm->virtual_page_table)
1435 vfree(mm->virtual_page_table);
1436 }
1437 mm->virtual_page_table = mm->shadow_page_table = NULL;
1438 }
1439
1440 static void invalidate_mm(struct intel_vgpu_mm *mm)
1441 {
1442 struct intel_vgpu *vgpu = mm->vgpu;
1443 struct intel_gvt *gvt = vgpu->gvt;
1444 struct intel_gvt_gtt *gtt = &gvt->gtt;
1445 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1446 struct intel_gvt_gtt_entry se;
1447 int i;
1448
1449 if (WARN_ON(!mm->has_shadow_page_table || !mm->shadowed))
1450 return;
1451
1452 for (i = 0; i < mm->page_table_entry_cnt; i++) {
1453 ppgtt_get_shadow_root_entry(mm, &se, i);
1454 if (!ops->test_present(&se))
1455 continue;
1456 ppgtt_invalidate_shadow_page_by_shadow_entry(
1457 vgpu, &se);
1458 se.val64 = 0;
1459 ppgtt_set_shadow_root_entry(mm, &se, i);
1460
1461 trace_gpt_change(vgpu->id, "destroy root pointer",
1462 NULL, se.type, se.val64, i);
1463 }
1464 mm->shadowed = false;
1465 }
1466
1467 /**
1468 * intel_vgpu_destroy_mm - destroy a mm object
1469 * @mm: a kref object
1470 *
1471 * This function is used to destroy a mm object for vGPU
1472 *
1473 */
1474 void intel_vgpu_destroy_mm(struct kref *mm_ref)
1475 {
1476 struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1477 struct intel_vgpu *vgpu = mm->vgpu;
1478 struct intel_gvt *gvt = vgpu->gvt;
1479 struct intel_gvt_gtt *gtt = &gvt->gtt;
1480
1481 if (!mm->initialized)
1482 goto out;
1483
1484 list_del(&mm->list);
1485 list_del(&mm->lru_list);
1486
1487 if (mm->has_shadow_page_table)
1488 invalidate_mm(mm);
1489
1490 gtt->mm_free_page_table(mm);
1491 out:
1492 kfree(mm);
1493 }
1494
1495 static int shadow_mm(struct intel_vgpu_mm *mm)
1496 {
1497 struct intel_vgpu *vgpu = mm->vgpu;
1498 struct intel_gvt *gvt = vgpu->gvt;
1499 struct intel_gvt_gtt *gtt = &gvt->gtt;
1500 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1501 struct intel_vgpu_ppgtt_spt *spt;
1502 struct intel_gvt_gtt_entry ge, se;
1503 int i;
1504 int ret;
1505
1506 if (WARN_ON(!mm->has_shadow_page_table || mm->shadowed))
1507 return 0;
1508
1509 mm->shadowed = true;
1510
1511 for (i = 0; i < mm->page_table_entry_cnt; i++) {
1512 ppgtt_get_guest_root_entry(mm, &ge, i);
1513 if (!ops->test_present(&ge))
1514 continue;
1515
1516 trace_gpt_change(vgpu->id, __func__, NULL,
1517 ge.type, ge.val64, i);
1518
1519 spt = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
1520 if (IS_ERR(spt)) {
1521 gvt_vgpu_err("fail to populate guest root pointer\n");
1522 ret = PTR_ERR(spt);
1523 goto fail;
1524 }
1525 ppgtt_generate_shadow_entry(&se, spt, &ge);
1526 ppgtt_set_shadow_root_entry(mm, &se, i);
1527
1528 trace_gpt_change(vgpu->id, "populate root pointer",
1529 NULL, se.type, se.val64, i);
1530 }
1531 return 0;
1532 fail:
1533 invalidate_mm(mm);
1534 return ret;
1535 }
1536
1537 /**
1538 * intel_vgpu_create_mm - create a mm object for a vGPU
1539 * @vgpu: a vGPU
1540 * @mm_type: mm object type, should be PPGTT or GGTT
1541 * @virtual_page_table: page table root pointers. Could be NULL if user wants
1542 * to populate shadow later.
1543 * @page_table_level: describe the page table level of the mm object
1544 * @pde_base_index: pde root pointer base in GGTT MMIO.
1545 *
1546 * This function is used to create a mm object for a vGPU.
1547 *
1548 * Returns:
1549 * Zero on success, negative error code in pointer if failed.
1550 */
1551 struct intel_vgpu_mm *intel_vgpu_create_mm(struct intel_vgpu *vgpu,
1552 int mm_type, void *virtual_page_table, int page_table_level,
1553 u32 pde_base_index)
1554 {
1555 struct intel_gvt *gvt = vgpu->gvt;
1556 struct intel_gvt_gtt *gtt = &gvt->gtt;
1557 struct intel_vgpu_mm *mm;
1558 int ret;
1559
1560 mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1561 if (!mm) {
1562 ret = -ENOMEM;
1563 goto fail;
1564 }
1565
1566 mm->type = mm_type;
1567
1568 if (page_table_level == 1)
1569 mm->page_table_entry_type = GTT_TYPE_GGTT_PTE;
1570 else if (page_table_level == 3)
1571 mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1572 else if (page_table_level == 4)
1573 mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1574 else {
1575 WARN_ON(1);
1576 ret = -EINVAL;
1577 goto fail;
1578 }
1579
1580 mm->page_table_level = page_table_level;
1581 mm->pde_base_index = pde_base_index;
1582
1583 mm->vgpu = vgpu;
1584 mm->has_shadow_page_table = !!(mm_type == INTEL_GVT_MM_PPGTT);
1585
1586 kref_init(&mm->ref);
1587 atomic_set(&mm->pincount, 0);
1588 INIT_LIST_HEAD(&mm->list);
1589 INIT_LIST_HEAD(&mm->lru_list);
1590 list_add_tail(&mm->list, &vgpu->gtt.mm_list_head);
1591
1592 ret = gtt->mm_alloc_page_table(mm);
1593 if (ret) {
1594 gvt_vgpu_err("fail to allocate page table for mm\n");
1595 goto fail;
1596 }
1597
1598 mm->initialized = true;
1599
1600 if (virtual_page_table)
1601 memcpy(mm->virtual_page_table, virtual_page_table,
1602 mm->page_table_entry_size);
1603
1604 if (mm->has_shadow_page_table) {
1605 ret = shadow_mm(mm);
1606 if (ret)
1607 goto fail;
1608 list_add_tail(&mm->lru_list, &gvt->gtt.mm_lru_list_head);
1609 }
1610 return mm;
1611 fail:
1612 gvt_vgpu_err("fail to create mm\n");
1613 if (mm)
1614 intel_gvt_mm_unreference(mm);
1615 return ERR_PTR(ret);
1616 }
1617
1618 /**
1619 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1620 * @mm: a vGPU mm object
1621 *
1622 * This function is called when user doesn't want to use a vGPU mm object
1623 */
1624 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1625 {
1626 if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1627 return;
1628
1629 atomic_dec(&mm->pincount);
1630 }
1631
1632 /**
1633 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1634 * @vgpu: a vGPU
1635 *
1636 * This function is called when user wants to use a vGPU mm object. If this
1637 * mm object hasn't been shadowed yet, the shadow will be populated at this
1638 * time.
1639 *
1640 * Returns:
1641 * Zero on success, negative error code if failed.
1642 */
1643 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1644 {
1645 int ret;
1646
1647 if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1648 return 0;
1649
1650 if (!mm->shadowed) {
1651 ret = shadow_mm(mm);
1652 if (ret)
1653 return ret;
1654 }
1655
1656 atomic_inc(&mm->pincount);
1657 list_del_init(&mm->lru_list);
1658 list_add_tail(&mm->lru_list, &mm->vgpu->gvt->gtt.mm_lru_list_head);
1659 return 0;
1660 }
1661
1662 static int reclaim_one_mm(struct intel_gvt *gvt)
1663 {
1664 struct intel_vgpu_mm *mm;
1665 struct list_head *pos, *n;
1666
1667 list_for_each_safe(pos, n, &gvt->gtt.mm_lru_list_head) {
1668 mm = container_of(pos, struct intel_vgpu_mm, lru_list);
1669
1670 if (mm->type != INTEL_GVT_MM_PPGTT)
1671 continue;
1672 if (atomic_read(&mm->pincount))
1673 continue;
1674
1675 list_del_init(&mm->lru_list);
1676 invalidate_mm(mm);
1677 return 1;
1678 }
1679 return 0;
1680 }
1681
1682 /*
1683 * GMA translation APIs.
1684 */
1685 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
1686 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
1687 {
1688 struct intel_vgpu *vgpu = mm->vgpu;
1689 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1690 struct intel_vgpu_ppgtt_spt *s;
1691
1692 if (WARN_ON(!mm->has_shadow_page_table))
1693 return -EINVAL;
1694
1695 s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
1696 if (!s)
1697 return -ENXIO;
1698
1699 if (!guest)
1700 ppgtt_get_shadow_entry(s, e, index);
1701 else
1702 ppgtt_get_guest_entry(s, e, index);
1703 return 0;
1704 }
1705
1706 /**
1707 * intel_vgpu_gma_to_gpa - translate a gma to GPA
1708 * @mm: mm object. could be a PPGTT or GGTT mm object
1709 * @gma: graphics memory address in this mm object
1710 *
1711 * This function is used to translate a graphics memory address in specific
1712 * graphics memory space to guest physical address.
1713 *
1714 * Returns:
1715 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
1716 */
1717 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
1718 {
1719 struct intel_vgpu *vgpu = mm->vgpu;
1720 struct intel_gvt *gvt = vgpu->gvt;
1721 struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
1722 struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
1723 unsigned long gpa = INTEL_GVT_INVALID_ADDR;
1724 unsigned long gma_index[4];
1725 struct intel_gvt_gtt_entry e;
1726 int i, index;
1727 int ret;
1728
1729 if (mm->type != INTEL_GVT_MM_GGTT && mm->type != INTEL_GVT_MM_PPGTT)
1730 return INTEL_GVT_INVALID_ADDR;
1731
1732 if (mm->type == INTEL_GVT_MM_GGTT) {
1733 if (!vgpu_gmadr_is_valid(vgpu, gma))
1734 goto err;
1735
1736 ret = ggtt_get_guest_entry(mm, &e,
1737 gma_ops->gma_to_ggtt_pte_index(gma));
1738 if (ret)
1739 goto err;
1740 gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT)
1741 + (gma & ~GTT_PAGE_MASK);
1742
1743 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
1744 return gpa;
1745 }
1746
1747 switch (mm->page_table_level) {
1748 case 4:
1749 ret = ppgtt_get_shadow_root_entry(mm, &e, 0);
1750 if (ret)
1751 goto err;
1752 gma_index[0] = gma_ops->gma_to_pml4_index(gma);
1753 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
1754 gma_index[2] = gma_ops->gma_to_pde_index(gma);
1755 gma_index[3] = gma_ops->gma_to_pte_index(gma);
1756 index = 4;
1757 break;
1758 case 3:
1759 ret = ppgtt_get_shadow_root_entry(mm, &e,
1760 gma_ops->gma_to_l3_pdp_index(gma));
1761 if (ret)
1762 goto err;
1763 gma_index[0] = gma_ops->gma_to_pde_index(gma);
1764 gma_index[1] = gma_ops->gma_to_pte_index(gma);
1765 index = 2;
1766 break;
1767 case 2:
1768 ret = ppgtt_get_shadow_root_entry(mm, &e,
1769 gma_ops->gma_to_pde_index(gma));
1770 if (ret)
1771 goto err;
1772 gma_index[0] = gma_ops->gma_to_pte_index(gma);
1773 index = 1;
1774 break;
1775 default:
1776 WARN_ON(1);
1777 goto err;
1778 }
1779
1780 /* walk into the shadow page table and get gpa from guest entry */
1781 for (i = 0; i < index; i++) {
1782 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
1783 (i == index - 1));
1784 if (ret)
1785 goto err;
1786
1787 if (!pte_ops->test_present(&e)) {
1788 gvt_dbg_core("GMA 0x%lx is not present\n", gma);
1789 goto err;
1790 }
1791 }
1792
1793 gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT)
1794 + (gma & ~GTT_PAGE_MASK);
1795
1796 trace_gma_translate(vgpu->id, "ppgtt", 0,
1797 mm->page_table_level, gma, gpa);
1798 return gpa;
1799 err:
1800 gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
1801 return INTEL_GVT_INVALID_ADDR;
1802 }
1803
1804 static int emulate_gtt_mmio_read(struct intel_vgpu *vgpu,
1805 unsigned int off, void *p_data, unsigned int bytes)
1806 {
1807 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1808 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1809 unsigned long index = off >> info->gtt_entry_size_shift;
1810 struct intel_gvt_gtt_entry e;
1811
1812 if (bytes != 4 && bytes != 8)
1813 return -EINVAL;
1814
1815 ggtt_get_guest_entry(ggtt_mm, &e, index);
1816 memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
1817 bytes);
1818 return 0;
1819 }
1820
1821 /**
1822 * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
1823 * @vgpu: a vGPU
1824 * @off: register offset
1825 * @p_data: data will be returned to guest
1826 * @bytes: data length
1827 *
1828 * This function is used to emulate the GTT MMIO register read
1829 *
1830 * Returns:
1831 * Zero on success, error code if failed.
1832 */
1833 int intel_vgpu_emulate_gtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
1834 void *p_data, unsigned int bytes)
1835 {
1836 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1837 int ret;
1838
1839 if (bytes != 4 && bytes != 8)
1840 return -EINVAL;
1841
1842 off -= info->gtt_start_offset;
1843 ret = emulate_gtt_mmio_read(vgpu, off, p_data, bytes);
1844 return ret;
1845 }
1846
1847 static int emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1848 void *p_data, unsigned int bytes)
1849 {
1850 struct intel_gvt *gvt = vgpu->gvt;
1851 const struct intel_gvt_device_info *info = &gvt->device_info;
1852 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1853 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1854 unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
1855 unsigned long gma;
1856 struct intel_gvt_gtt_entry e, m;
1857 int ret;
1858
1859 if (bytes != 4 && bytes != 8)
1860 return -EINVAL;
1861
1862 gma = g_gtt_index << GTT_PAGE_SHIFT;
1863
1864 /* the VM may configure the whole GM space when ballooning is used */
1865 if (!vgpu_gmadr_is_valid(vgpu, gma))
1866 return 0;
1867
1868 ggtt_get_guest_entry(ggtt_mm, &e, g_gtt_index);
1869
1870 memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
1871 bytes);
1872
1873 if (ops->test_present(&e)) {
1874 ret = gtt_entry_p2m(vgpu, &e, &m);
1875 if (ret) {
1876 gvt_vgpu_err("fail to translate guest gtt entry\n");
1877 /* guest driver may read/write the entry when partial
1878 * update the entry in this situation p2m will fail
1879 * settting the shadow entry to point to a scratch page
1880 */
1881 ops->set_pfn(&m, gvt->gtt.scratch_ggtt_mfn);
1882 }
1883 } else {
1884 m = e;
1885 ops->set_pfn(&m, gvt->gtt.scratch_ggtt_mfn);
1886 }
1887
1888 ggtt_set_shadow_entry(ggtt_mm, &m, g_gtt_index);
1889 gtt_invalidate(gvt->dev_priv);
1890 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
1891 return 0;
1892 }
1893
1894 /*
1895 * intel_vgpu_emulate_gtt_mmio_write - emulate GTT MMIO register write
1896 * @vgpu: a vGPU
1897 * @off: register offset
1898 * @p_data: data from guest write
1899 * @bytes: data length
1900 *
1901 * This function is used to emulate the GTT MMIO register write
1902 *
1903 * Returns:
1904 * Zero on success, error code if failed.
1905 */
1906 int intel_vgpu_emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1907 void *p_data, unsigned int bytes)
1908 {
1909 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1910 int ret;
1911
1912 if (bytes != 4 && bytes != 8)
1913 return -EINVAL;
1914
1915 off -= info->gtt_start_offset;
1916 ret = emulate_gtt_mmio_write(vgpu, off, p_data, bytes);
1917 return ret;
1918 }
1919
1920 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
1921 intel_gvt_gtt_type_t type)
1922 {
1923 struct intel_vgpu_gtt *gtt = &vgpu->gtt;
1924 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1925 int page_entry_num = GTT_PAGE_SIZE >>
1926 vgpu->gvt->device_info.gtt_entry_size_shift;
1927 void *scratch_pt;
1928 int i;
1929 struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
1930 dma_addr_t daddr;
1931
1932 if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
1933 return -EINVAL;
1934
1935 scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
1936 if (!scratch_pt) {
1937 gvt_vgpu_err("fail to allocate scratch page\n");
1938 return -ENOMEM;
1939 }
1940
1941 daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
1942 4096, PCI_DMA_BIDIRECTIONAL);
1943 if (dma_mapping_error(dev, daddr)) {
1944 gvt_vgpu_err("fail to dmamap scratch_pt\n");
1945 __free_page(virt_to_page(scratch_pt));
1946 return -ENOMEM;
1947 }
1948 gtt->scratch_pt[type].page_mfn =
1949 (unsigned long)(daddr >> GTT_PAGE_SHIFT);
1950 gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
1951 gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
1952 vgpu->id, type, gtt->scratch_pt[type].page_mfn);
1953
1954 /* Build the tree by full filled the scratch pt with the entries which
1955 * point to the next level scratch pt or scratch page. The
1956 * scratch_pt[type] indicate the scratch pt/scratch page used by the
1957 * 'type' pt.
1958 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
1959 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
1960 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
1961 */
1962 if (type > GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) {
1963 struct intel_gvt_gtt_entry se;
1964
1965 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
1966 se.type = get_entry_type(type - 1);
1967 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
1968
1969 /* The entry parameters like present/writeable/cache type
1970 * set to the same as i915's scratch page tree.
1971 */
1972 se.val64 |= _PAGE_PRESENT | _PAGE_RW;
1973 if (type == GTT_TYPE_PPGTT_PDE_PT)
1974 se.val64 |= PPAT_CACHED;
1975
1976 for (i = 0; i < page_entry_num; i++)
1977 ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
1978 }
1979
1980 return 0;
1981 }
1982
1983 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
1984 {
1985 int i;
1986 struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
1987 dma_addr_t daddr;
1988
1989 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
1990 if (vgpu->gtt.scratch_pt[i].page != NULL) {
1991 daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
1992 GTT_PAGE_SHIFT);
1993 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
1994 __free_page(vgpu->gtt.scratch_pt[i].page);
1995 vgpu->gtt.scratch_pt[i].page = NULL;
1996 vgpu->gtt.scratch_pt[i].page_mfn = 0;
1997 }
1998 }
1999
2000 return 0;
2001 }
2002
2003 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2004 {
2005 int i, ret;
2006
2007 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2008 ret = alloc_scratch_pages(vgpu, i);
2009 if (ret)
2010 goto err;
2011 }
2012
2013 return 0;
2014
2015 err:
2016 release_scratch_page_tree(vgpu);
2017 return ret;
2018 }
2019
2020 /**
2021 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2022 * @vgpu: a vGPU
2023 *
2024 * This function is used to initialize per-vGPU graphics memory virtualization
2025 * components.
2026 *
2027 * Returns:
2028 * Zero on success, error code if failed.
2029 */
2030 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2031 {
2032 struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2033 struct intel_vgpu_mm *ggtt_mm;
2034
2035 hash_init(gtt->guest_page_hash_table);
2036 hash_init(gtt->shadow_page_hash_table);
2037
2038 INIT_LIST_HEAD(&gtt->mm_list_head);
2039 INIT_LIST_HEAD(&gtt->oos_page_list_head);
2040 INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2041
2042 intel_vgpu_reset_ggtt(vgpu);
2043
2044 ggtt_mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_GGTT,
2045 NULL, 1, 0);
2046 if (IS_ERR(ggtt_mm)) {
2047 gvt_vgpu_err("fail to create mm for ggtt.\n");
2048 return PTR_ERR(ggtt_mm);
2049 }
2050
2051 gtt->ggtt_mm = ggtt_mm;
2052
2053 return create_scratch_page_tree(vgpu);
2054 }
2055
2056 static void intel_vgpu_free_mm(struct intel_vgpu *vgpu, int type)
2057 {
2058 struct list_head *pos, *n;
2059 struct intel_vgpu_mm *mm;
2060
2061 list_for_each_safe(pos, n, &vgpu->gtt.mm_list_head) {
2062 mm = container_of(pos, struct intel_vgpu_mm, list);
2063 if (mm->type == type) {
2064 vgpu->gvt->gtt.mm_free_page_table(mm);
2065 list_del(&mm->list);
2066 list_del(&mm->lru_list);
2067 kfree(mm);
2068 }
2069 }
2070 }
2071
2072 /**
2073 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2074 * @vgpu: a vGPU
2075 *
2076 * This function is used to clean up per-vGPU graphics memory virtualization
2077 * components.
2078 *
2079 * Returns:
2080 * Zero on success, error code if failed.
2081 */
2082 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2083 {
2084 ppgtt_free_all_shadow_page(vgpu);
2085 release_scratch_page_tree(vgpu);
2086
2087 intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_PPGTT);
2088 intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_GGTT);
2089 }
2090
2091 static void clean_spt_oos(struct intel_gvt *gvt)
2092 {
2093 struct intel_gvt_gtt *gtt = &gvt->gtt;
2094 struct list_head *pos, *n;
2095 struct intel_vgpu_oos_page *oos_page;
2096
2097 WARN(!list_empty(&gtt->oos_page_use_list_head),
2098 "someone is still using oos page\n");
2099
2100 list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2101 oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2102 list_del(&oos_page->list);
2103 kfree(oos_page);
2104 }
2105 }
2106
2107 static int setup_spt_oos(struct intel_gvt *gvt)
2108 {
2109 struct intel_gvt_gtt *gtt = &gvt->gtt;
2110 struct intel_vgpu_oos_page *oos_page;
2111 int i;
2112 int ret;
2113
2114 INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2115 INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2116
2117 for (i = 0; i < preallocated_oos_pages; i++) {
2118 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2119 if (!oos_page) {
2120 ret = -ENOMEM;
2121 goto fail;
2122 }
2123
2124 INIT_LIST_HEAD(&oos_page->list);
2125 INIT_LIST_HEAD(&oos_page->vm_list);
2126 oos_page->id = i;
2127 list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2128 }
2129
2130 gvt_dbg_mm("%d oos pages preallocated\n", i);
2131
2132 return 0;
2133 fail:
2134 clean_spt_oos(gvt);
2135 return ret;
2136 }
2137
2138 /**
2139 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2140 * @vgpu: a vGPU
2141 * @page_table_level: PPGTT page table level
2142 * @root_entry: PPGTT page table root pointers
2143 *
2144 * This function is used to find a PPGTT mm object from mm object pool
2145 *
2146 * Returns:
2147 * pointer to mm object on success, NULL if failed.
2148 */
2149 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2150 int page_table_level, void *root_entry)
2151 {
2152 struct list_head *pos;
2153 struct intel_vgpu_mm *mm;
2154 u64 *src, *dst;
2155
2156 list_for_each(pos, &vgpu->gtt.mm_list_head) {
2157 mm = container_of(pos, struct intel_vgpu_mm, list);
2158 if (mm->type != INTEL_GVT_MM_PPGTT)
2159 continue;
2160
2161 if (mm->page_table_level != page_table_level)
2162 continue;
2163
2164 src = root_entry;
2165 dst = mm->virtual_page_table;
2166
2167 if (page_table_level == 3) {
2168 if (src[0] == dst[0]
2169 && src[1] == dst[1]
2170 && src[2] == dst[2]
2171 && src[3] == dst[3])
2172 return mm;
2173 } else {
2174 if (src[0] == dst[0])
2175 return mm;
2176 }
2177 }
2178 return NULL;
2179 }
2180
2181 /**
2182 * intel_vgpu_g2v_create_ppgtt_mm - create a PPGTT mm object from
2183 * g2v notification
2184 * @vgpu: a vGPU
2185 * @page_table_level: PPGTT page table level
2186 *
2187 * This function is used to create a PPGTT mm object from a guest to GVT-g
2188 * notification.
2189 *
2190 * Returns:
2191 * Zero on success, negative error code if failed.
2192 */
2193 int intel_vgpu_g2v_create_ppgtt_mm(struct intel_vgpu *vgpu,
2194 int page_table_level)
2195 {
2196 u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0]));
2197 struct intel_vgpu_mm *mm;
2198
2199 if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2200 return -EINVAL;
2201
2202 mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2203 if (mm) {
2204 intel_gvt_mm_reference(mm);
2205 } else {
2206 mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_PPGTT,
2207 pdp, page_table_level, 0);
2208 if (IS_ERR(mm)) {
2209 gvt_vgpu_err("fail to create mm\n");
2210 return PTR_ERR(mm);
2211 }
2212 }
2213 return 0;
2214 }
2215
2216 /**
2217 * intel_vgpu_g2v_destroy_ppgtt_mm - destroy a PPGTT mm object from
2218 * g2v notification
2219 * @vgpu: a vGPU
2220 * @page_table_level: PPGTT page table level
2221 *
2222 * This function is used to create a PPGTT mm object from a guest to GVT-g
2223 * notification.
2224 *
2225 * Returns:
2226 * Zero on success, negative error code if failed.
2227 */
2228 int intel_vgpu_g2v_destroy_ppgtt_mm(struct intel_vgpu *vgpu,
2229 int page_table_level)
2230 {
2231 u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0]));
2232 struct intel_vgpu_mm *mm;
2233
2234 if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2235 return -EINVAL;
2236
2237 mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2238 if (!mm) {
2239 gvt_vgpu_err("fail to find ppgtt instance.\n");
2240 return -EINVAL;
2241 }
2242 intel_gvt_mm_unreference(mm);
2243 return 0;
2244 }
2245
2246 /**
2247 * intel_gvt_init_gtt - initialize mm components of a GVT device
2248 * @gvt: GVT device
2249 *
2250 * This function is called at the initialization stage, to initialize
2251 * the mm components of a GVT device.
2252 *
2253 * Returns:
2254 * zero on success, negative error code if failed.
2255 */
2256 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2257 {
2258 int ret;
2259 void *page;
2260 struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2261 dma_addr_t daddr;
2262
2263 gvt_dbg_core("init gtt\n");
2264
2265 if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)
2266 || IS_KABYLAKE(gvt->dev_priv)) {
2267 gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2268 gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2269 gvt->gtt.mm_alloc_page_table = gen8_mm_alloc_page_table;
2270 gvt->gtt.mm_free_page_table = gen8_mm_free_page_table;
2271 } else {
2272 return -ENODEV;
2273 }
2274
2275 page = (void *)get_zeroed_page(GFP_KERNEL);
2276 if (!page) {
2277 gvt_err("fail to allocate scratch ggtt page\n");
2278 return -ENOMEM;
2279 }
2280
2281 daddr = dma_map_page(dev, virt_to_page(page), 0,
2282 4096, PCI_DMA_BIDIRECTIONAL);
2283 if (dma_mapping_error(dev, daddr)) {
2284 gvt_err("fail to dmamap scratch ggtt page\n");
2285 __free_page(virt_to_page(page));
2286 return -ENOMEM;
2287 }
2288 gvt->gtt.scratch_ggtt_page = virt_to_page(page);
2289 gvt->gtt.scratch_ggtt_mfn = (unsigned long)(daddr >> GTT_PAGE_SHIFT);
2290
2291 if (enable_out_of_sync) {
2292 ret = setup_spt_oos(gvt);
2293 if (ret) {
2294 gvt_err("fail to initialize SPT oos\n");
2295 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2296 __free_page(gvt->gtt.scratch_ggtt_page);
2297 return ret;
2298 }
2299 }
2300 INIT_LIST_HEAD(&gvt->gtt.mm_lru_list_head);
2301 return 0;
2302 }
2303
2304 /**
2305 * intel_gvt_clean_gtt - clean up mm components of a GVT device
2306 * @gvt: GVT device
2307 *
2308 * This function is called at the driver unloading stage, to clean up the
2309 * the mm components of a GVT device.
2310 *
2311 */
2312 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2313 {
2314 struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2315 dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_ggtt_mfn <<
2316 GTT_PAGE_SHIFT);
2317
2318 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2319
2320 __free_page(gvt->gtt.scratch_ggtt_page);
2321
2322 if (enable_out_of_sync)
2323 clean_spt_oos(gvt);
2324 }
2325
2326 /**
2327 * intel_vgpu_reset_ggtt - reset the GGTT entry
2328 * @vgpu: a vGPU
2329 *
2330 * This function is called at the vGPU create stage
2331 * to reset all the GGTT entries.
2332 *
2333 */
2334 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu)
2335 {
2336 struct intel_gvt *gvt = vgpu->gvt;
2337 struct drm_i915_private *dev_priv = gvt->dev_priv;
2338 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2339 u32 index;
2340 u32 offset;
2341 u32 num_entries;
2342 struct intel_gvt_gtt_entry e;
2343
2344 memset(&e, 0, sizeof(struct intel_gvt_gtt_entry));
2345 e.type = GTT_TYPE_GGTT_PTE;
2346 ops->set_pfn(&e, gvt->gtt.scratch_ggtt_mfn);
2347 e.val64 |= _PAGE_PRESENT;
2348
2349 index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2350 num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2351 for (offset = 0; offset < num_entries; offset++)
2352 ops->set_entry(NULL, &e, index + offset, false, 0, vgpu);
2353
2354 index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2355 num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2356 for (offset = 0; offset < num_entries; offset++)
2357 ops->set_entry(NULL, &e, index + offset, false, 0, vgpu);
2358
2359 gtt_invalidate(dev_priv);
2360 }
2361
2362 /**
2363 * intel_vgpu_reset_gtt - reset the all GTT related status
2364 * @vgpu: a vGPU
2365 *
2366 * This function is called from vfio core to reset reset all
2367 * GTT related status, including GGTT, PPGTT, scratch page.
2368 *
2369 */
2370 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2371 {
2372 int i;
2373
2374 ppgtt_free_all_shadow_page(vgpu);
2375
2376 /* Shadow pages are only created when there is no page
2377 * table tracking data, so remove page tracking data after
2378 * removing the shadow pages.
2379 */
2380 intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_PPGTT);
2381
2382 intel_vgpu_reset_ggtt(vgpu);
2383
2384 /* clear scratch page for security */
2385 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2386 if (vgpu->gtt.scratch_pt[i].page != NULL)
2387 memset(page_address(vgpu->gtt.scratch_pt[i].page),
2388 0, PAGE_SIZE);
2389 }
2390 }