]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/gpu/drm/i915/gvt/gtt.c
9814773882ec2b875ae2db00a22768deed72c618
[mirror_ubuntu-eoan-kernel.git] / drivers / gpu / drm / i915 / gvt / gtt.c
1 /*
2 * GTT virtualization
3 *
4 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 * SOFTWARE.
24 *
25 * Authors:
26 * Zhi Wang <zhi.a.wang@intel.com>
27 * Zhenyu Wang <zhenyuw@linux.intel.com>
28 * Xiao Zheng <xiao.zheng@intel.com>
29 *
30 * Contributors:
31 * Min He <min.he@intel.com>
32 * Bing Niu <bing.niu@intel.com>
33 *
34 */
35
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40
41 #if defined(VERBOSE_DEBUG)
42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
43 #else
44 #define gvt_vdbg_mm(fmt, args...)
45 #endif
46
47 static bool enable_out_of_sync = false;
48 static int preallocated_oos_pages = 8192;
49
50 /*
51 * validate a gm address and related range size,
52 * translate it to host gm address
53 */
54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
55 {
56 if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
57 && !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
58 gvt_vgpu_err("invalid range gmadr 0x%llx size 0x%x\n",
59 addr, size);
60 return false;
61 }
62 return true;
63 }
64
65 /* translate a guest gmadr to host gmadr */
66 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
67 {
68 if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
69 "invalid guest gmadr %llx\n", g_addr))
70 return -EACCES;
71
72 if (vgpu_gmadr_is_aperture(vgpu, g_addr))
73 *h_addr = vgpu_aperture_gmadr_base(vgpu)
74 + (g_addr - vgpu_aperture_offset(vgpu));
75 else
76 *h_addr = vgpu_hidden_gmadr_base(vgpu)
77 + (g_addr - vgpu_hidden_offset(vgpu));
78 return 0;
79 }
80
81 /* translate a host gmadr to guest gmadr */
82 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
83 {
84 if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
85 "invalid host gmadr %llx\n", h_addr))
86 return -EACCES;
87
88 if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
89 *g_addr = vgpu_aperture_gmadr_base(vgpu)
90 + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
91 else
92 *g_addr = vgpu_hidden_gmadr_base(vgpu)
93 + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
94 return 0;
95 }
96
97 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
98 unsigned long *h_index)
99 {
100 u64 h_addr;
101 int ret;
102
103 ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
104 &h_addr);
105 if (ret)
106 return ret;
107
108 *h_index = h_addr >> I915_GTT_PAGE_SHIFT;
109 return 0;
110 }
111
112 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
113 unsigned long *g_index)
114 {
115 u64 g_addr;
116 int ret;
117
118 ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
119 &g_addr);
120 if (ret)
121 return ret;
122
123 *g_index = g_addr >> I915_GTT_PAGE_SHIFT;
124 return 0;
125 }
126
127 #define gtt_type_is_entry(type) \
128 (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
129 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
130 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
131
132 #define gtt_type_is_pt(type) \
133 (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
134
135 #define gtt_type_is_pte_pt(type) \
136 (type == GTT_TYPE_PPGTT_PTE_PT)
137
138 #define gtt_type_is_root_pointer(type) \
139 (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
140
141 #define gtt_init_entry(e, t, p, v) do { \
142 (e)->type = t; \
143 (e)->pdev = p; \
144 memcpy(&(e)->val64, &v, sizeof(v)); \
145 } while (0)
146
147 /*
148 * Mappings between GTT_TYPE* enumerations.
149 * Following information can be found according to the given type:
150 * - type of next level page table
151 * - type of entry inside this level page table
152 * - type of entry with PSE set
153 *
154 * If the given type doesn't have such a kind of information,
155 * e.g. give a l4 root entry type, then request to get its PSE type,
156 * give a PTE page table type, then request to get its next level page
157 * table type, as we know l4 root entry doesn't have a PSE bit,
158 * and a PTE page table doesn't have a next level page table type,
159 * GTT_TYPE_INVALID will be returned. This is useful when traversing a
160 * page table.
161 */
162
163 struct gtt_type_table_entry {
164 int entry_type;
165 int pt_type;
166 int next_pt_type;
167 int pse_entry_type;
168 };
169
170 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
171 [type] = { \
172 .entry_type = e_type, \
173 .pt_type = cpt_type, \
174 .next_pt_type = npt_type, \
175 .pse_entry_type = pse_type, \
176 }
177
178 static struct gtt_type_table_entry gtt_type_table[] = {
179 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
180 GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
181 GTT_TYPE_INVALID,
182 GTT_TYPE_PPGTT_PML4_PT,
183 GTT_TYPE_INVALID),
184 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
185 GTT_TYPE_PPGTT_PML4_ENTRY,
186 GTT_TYPE_PPGTT_PML4_PT,
187 GTT_TYPE_PPGTT_PDP_PT,
188 GTT_TYPE_INVALID),
189 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
190 GTT_TYPE_PPGTT_PML4_ENTRY,
191 GTT_TYPE_PPGTT_PML4_PT,
192 GTT_TYPE_PPGTT_PDP_PT,
193 GTT_TYPE_INVALID),
194 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
195 GTT_TYPE_PPGTT_PDP_ENTRY,
196 GTT_TYPE_PPGTT_PDP_PT,
197 GTT_TYPE_PPGTT_PDE_PT,
198 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
199 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
200 GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
201 GTT_TYPE_INVALID,
202 GTT_TYPE_PPGTT_PDE_PT,
203 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
204 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
205 GTT_TYPE_PPGTT_PDP_ENTRY,
206 GTT_TYPE_PPGTT_PDP_PT,
207 GTT_TYPE_PPGTT_PDE_PT,
208 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
209 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
210 GTT_TYPE_PPGTT_PDE_ENTRY,
211 GTT_TYPE_PPGTT_PDE_PT,
212 GTT_TYPE_PPGTT_PTE_PT,
213 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
214 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
215 GTT_TYPE_PPGTT_PDE_ENTRY,
216 GTT_TYPE_PPGTT_PDE_PT,
217 GTT_TYPE_PPGTT_PTE_PT,
218 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
219 /* We take IPS bit as 'PSE' for PTE level. */
220 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
221 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
222 GTT_TYPE_PPGTT_PTE_PT,
223 GTT_TYPE_INVALID,
224 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
225 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
226 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
227 GTT_TYPE_PPGTT_PTE_PT,
228 GTT_TYPE_INVALID,
229 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
230 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
231 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
232 GTT_TYPE_PPGTT_PTE_PT,
233 GTT_TYPE_INVALID,
234 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
235 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
236 GTT_TYPE_PPGTT_PDE_ENTRY,
237 GTT_TYPE_PPGTT_PDE_PT,
238 GTT_TYPE_INVALID,
239 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
240 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
241 GTT_TYPE_PPGTT_PDP_ENTRY,
242 GTT_TYPE_PPGTT_PDP_PT,
243 GTT_TYPE_INVALID,
244 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
245 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
246 GTT_TYPE_GGTT_PTE,
247 GTT_TYPE_INVALID,
248 GTT_TYPE_INVALID,
249 GTT_TYPE_INVALID),
250 };
251
252 static inline int get_next_pt_type(int type)
253 {
254 return gtt_type_table[type].next_pt_type;
255 }
256
257 static inline int get_pt_type(int type)
258 {
259 return gtt_type_table[type].pt_type;
260 }
261
262 static inline int get_entry_type(int type)
263 {
264 return gtt_type_table[type].entry_type;
265 }
266
267 static inline int get_pse_type(int type)
268 {
269 return gtt_type_table[type].pse_entry_type;
270 }
271
272 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
273 {
274 void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
275
276 return readq(addr);
277 }
278
279 static void ggtt_invalidate(struct drm_i915_private *dev_priv)
280 {
281 mmio_hw_access_pre(dev_priv);
282 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
283 mmio_hw_access_post(dev_priv);
284 }
285
286 static void write_pte64(struct drm_i915_private *dev_priv,
287 unsigned long index, u64 pte)
288 {
289 void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
290
291 writeq(pte, addr);
292 }
293
294 static inline int gtt_get_entry64(void *pt,
295 struct intel_gvt_gtt_entry *e,
296 unsigned long index, bool hypervisor_access, unsigned long gpa,
297 struct intel_vgpu *vgpu)
298 {
299 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
300 int ret;
301
302 if (WARN_ON(info->gtt_entry_size != 8))
303 return -EINVAL;
304
305 if (hypervisor_access) {
306 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
307 (index << info->gtt_entry_size_shift),
308 &e->val64, 8);
309 if (WARN_ON(ret))
310 return ret;
311 } else if (!pt) {
312 e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
313 } else {
314 e->val64 = *((u64 *)pt + index);
315 }
316 return 0;
317 }
318
319 static inline int gtt_set_entry64(void *pt,
320 struct intel_gvt_gtt_entry *e,
321 unsigned long index, bool hypervisor_access, unsigned long gpa,
322 struct intel_vgpu *vgpu)
323 {
324 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
325 int ret;
326
327 if (WARN_ON(info->gtt_entry_size != 8))
328 return -EINVAL;
329
330 if (hypervisor_access) {
331 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
332 (index << info->gtt_entry_size_shift),
333 &e->val64, 8);
334 if (WARN_ON(ret))
335 return ret;
336 } else if (!pt) {
337 write_pte64(vgpu->gvt->dev_priv, index, e->val64);
338 } else {
339 *((u64 *)pt + index) = e->val64;
340 }
341 return 0;
342 }
343
344 #define GTT_HAW 46
345
346 #define ADDR_1G_MASK GENMASK_ULL(GTT_HAW - 1, 30)
347 #define ADDR_2M_MASK GENMASK_ULL(GTT_HAW - 1, 21)
348 #define ADDR_64K_MASK GENMASK_ULL(GTT_HAW - 1, 16)
349 #define ADDR_4K_MASK GENMASK_ULL(GTT_HAW - 1, 12)
350
351 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
352 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
353
354 #define GTT_64K_PTE_STRIDE 16
355
356 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
357 {
358 unsigned long pfn;
359
360 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
361 pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
362 else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
363 pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
364 else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
365 pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
366 else
367 pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
368 return pfn;
369 }
370
371 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
372 {
373 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
374 e->val64 &= ~ADDR_1G_MASK;
375 pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
376 } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
377 e->val64 &= ~ADDR_2M_MASK;
378 pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
379 } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
380 e->val64 &= ~ADDR_64K_MASK;
381 pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
382 } else {
383 e->val64 &= ~ADDR_4K_MASK;
384 pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
385 }
386
387 e->val64 |= (pfn << PAGE_SHIFT);
388 }
389
390 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
391 {
392 return !!(e->val64 & _PAGE_PSE);
393 }
394
395 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
396 {
397 if (gen8_gtt_test_pse(e)) {
398 switch (e->type) {
399 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
400 e->val64 &= ~_PAGE_PSE;
401 e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
402 break;
403 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
404 e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
405 e->val64 &= ~_PAGE_PSE;
406 break;
407 default:
408 WARN_ON(1);
409 }
410 }
411 }
412
413 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
414 {
415 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
416 return false;
417
418 return !!(e->val64 & GEN8_PDE_IPS_64K);
419 }
420
421 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
422 {
423 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
424 return;
425
426 e->val64 &= ~GEN8_PDE_IPS_64K;
427 }
428
429 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
430 {
431 /*
432 * i915 writes PDP root pointer registers without present bit,
433 * it also works, so we need to treat root pointer entry
434 * specifically.
435 */
436 if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
437 || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
438 return (e->val64 != 0);
439 else
440 return (e->val64 & _PAGE_PRESENT);
441 }
442
443 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
444 {
445 e->val64 &= ~_PAGE_PRESENT;
446 }
447
448 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
449 {
450 e->val64 |= _PAGE_PRESENT;
451 }
452
453 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
454 {
455 return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
456 }
457
458 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
459 {
460 e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
461 }
462
463 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
464 {
465 e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
466 }
467
468 /*
469 * Per-platform GMA routines.
470 */
471 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
472 {
473 unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
474
475 trace_gma_index(__func__, gma, x);
476 return x;
477 }
478
479 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
480 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
481 { \
482 unsigned long x = (exp); \
483 trace_gma_index(__func__, gma, x); \
484 return x; \
485 }
486
487 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
488 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
489 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
490 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
491 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
492
493 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
494 .get_entry = gtt_get_entry64,
495 .set_entry = gtt_set_entry64,
496 .clear_present = gtt_entry_clear_present,
497 .set_present = gtt_entry_set_present,
498 .test_present = gen8_gtt_test_present,
499 .test_pse = gen8_gtt_test_pse,
500 .clear_pse = gen8_gtt_clear_pse,
501 .clear_ips = gen8_gtt_clear_ips,
502 .test_ips = gen8_gtt_test_ips,
503 .clear_64k_splited = gen8_gtt_clear_64k_splited,
504 .set_64k_splited = gen8_gtt_set_64k_splited,
505 .test_64k_splited = gen8_gtt_test_64k_splited,
506 .get_pfn = gen8_gtt_get_pfn,
507 .set_pfn = gen8_gtt_set_pfn,
508 };
509
510 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
511 .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
512 .gma_to_pte_index = gen8_gma_to_pte_index,
513 .gma_to_pde_index = gen8_gma_to_pde_index,
514 .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
515 .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
516 .gma_to_pml4_index = gen8_gma_to_pml4_index,
517 };
518
519 /* Update entry type per pse and ips bit. */
520 static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops,
521 struct intel_gvt_gtt_entry *entry, bool ips)
522 {
523 switch (entry->type) {
524 case GTT_TYPE_PPGTT_PDE_ENTRY:
525 case GTT_TYPE_PPGTT_PDP_ENTRY:
526 if (pte_ops->test_pse(entry))
527 entry->type = get_pse_type(entry->type);
528 break;
529 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
530 if (ips)
531 entry->type = get_pse_type(entry->type);
532 break;
533 default:
534 GEM_BUG_ON(!gtt_type_is_entry(entry->type));
535 }
536
537 GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
538 }
539
540 /*
541 * MM helpers.
542 */
543 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
544 struct intel_gvt_gtt_entry *entry, unsigned long index,
545 bool guest)
546 {
547 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
548
549 GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
550
551 entry->type = mm->ppgtt_mm.root_entry_type;
552 pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
553 mm->ppgtt_mm.shadow_pdps,
554 entry, index, false, 0, mm->vgpu);
555 update_entry_type_for_real(pte_ops, entry, false);
556 }
557
558 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
559 struct intel_gvt_gtt_entry *entry, unsigned long index)
560 {
561 _ppgtt_get_root_entry(mm, entry, index, true);
562 }
563
564 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
565 struct intel_gvt_gtt_entry *entry, unsigned long index)
566 {
567 _ppgtt_get_root_entry(mm, entry, index, false);
568 }
569
570 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
571 struct intel_gvt_gtt_entry *entry, unsigned long index,
572 bool guest)
573 {
574 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
575
576 pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
577 mm->ppgtt_mm.shadow_pdps,
578 entry, index, false, 0, mm->vgpu);
579 }
580
581 static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm,
582 struct intel_gvt_gtt_entry *entry, unsigned long index)
583 {
584 _ppgtt_set_root_entry(mm, entry, index, true);
585 }
586
587 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
588 struct intel_gvt_gtt_entry *entry, unsigned long index)
589 {
590 _ppgtt_set_root_entry(mm, entry, index, false);
591 }
592
593 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
594 struct intel_gvt_gtt_entry *entry, unsigned long index)
595 {
596 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
597
598 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
599
600 entry->type = GTT_TYPE_GGTT_PTE;
601 pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
602 false, 0, mm->vgpu);
603 }
604
605 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
606 struct intel_gvt_gtt_entry *entry, unsigned long index)
607 {
608 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
609
610 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
611
612 pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
613 false, 0, mm->vgpu);
614 }
615
616 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
617 struct intel_gvt_gtt_entry *entry, unsigned long index)
618 {
619 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
620
621 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
622
623 pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
624 }
625
626 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
627 struct intel_gvt_gtt_entry *entry, unsigned long index)
628 {
629 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
630
631 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
632
633 pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
634 }
635
636 /*
637 * PPGTT shadow page table helpers.
638 */
639 static inline int ppgtt_spt_get_entry(
640 struct intel_vgpu_ppgtt_spt *spt,
641 void *page_table, int type,
642 struct intel_gvt_gtt_entry *e, unsigned long index,
643 bool guest)
644 {
645 struct intel_gvt *gvt = spt->vgpu->gvt;
646 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
647 int ret;
648
649 e->type = get_entry_type(type);
650
651 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
652 return -EINVAL;
653
654 ret = ops->get_entry(page_table, e, index, guest,
655 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
656 spt->vgpu);
657 if (ret)
658 return ret;
659
660 update_entry_type_for_real(ops, e, guest ?
661 spt->guest_page.pde_ips : false);
662
663 gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
664 type, e->type, index, e->val64);
665 return 0;
666 }
667
668 static inline int ppgtt_spt_set_entry(
669 struct intel_vgpu_ppgtt_spt *spt,
670 void *page_table, int type,
671 struct intel_gvt_gtt_entry *e, unsigned long index,
672 bool guest)
673 {
674 struct intel_gvt *gvt = spt->vgpu->gvt;
675 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
676
677 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
678 return -EINVAL;
679
680 gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
681 type, e->type, index, e->val64);
682
683 return ops->set_entry(page_table, e, index, guest,
684 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
685 spt->vgpu);
686 }
687
688 #define ppgtt_get_guest_entry(spt, e, index) \
689 ppgtt_spt_get_entry(spt, NULL, \
690 spt->guest_page.type, e, index, true)
691
692 #define ppgtt_set_guest_entry(spt, e, index) \
693 ppgtt_spt_set_entry(spt, NULL, \
694 spt->guest_page.type, e, index, true)
695
696 #define ppgtt_get_shadow_entry(spt, e, index) \
697 ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
698 spt->shadow_page.type, e, index, false)
699
700 #define ppgtt_set_shadow_entry(spt, e, index) \
701 ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
702 spt->shadow_page.type, e, index, false)
703
704 static void *alloc_spt(gfp_t gfp_mask)
705 {
706 struct intel_vgpu_ppgtt_spt *spt;
707
708 spt = kzalloc(sizeof(*spt), gfp_mask);
709 if (!spt)
710 return NULL;
711
712 spt->shadow_page.page = alloc_page(gfp_mask);
713 if (!spt->shadow_page.page) {
714 kfree(spt);
715 return NULL;
716 }
717 return spt;
718 }
719
720 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
721 {
722 __free_page(spt->shadow_page.page);
723 kfree(spt);
724 }
725
726 static int detach_oos_page(struct intel_vgpu *vgpu,
727 struct intel_vgpu_oos_page *oos_page);
728
729 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
730 {
731 struct device *kdev = &spt->vgpu->gvt->dev_priv->drm.pdev->dev;
732
733 trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
734
735 dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
736 PCI_DMA_BIDIRECTIONAL);
737
738 radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
739
740 if (spt->guest_page.gfn) {
741 if (spt->guest_page.oos_page)
742 detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
743
744 intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
745 }
746
747 list_del_init(&spt->post_shadow_list);
748 free_spt(spt);
749 }
750
751 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
752 {
753 struct intel_vgpu_ppgtt_spt *spt, *spn;
754 struct radix_tree_iter iter;
755 LIST_HEAD(all_spt);
756 void __rcu **slot;
757
758 rcu_read_lock();
759 radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
760 spt = radix_tree_deref_slot(slot);
761 list_move(&spt->post_shadow_list, &all_spt);
762 }
763 rcu_read_unlock();
764
765 list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
766 ppgtt_free_spt(spt);
767 }
768
769 static int ppgtt_handle_guest_write_page_table_bytes(
770 struct intel_vgpu_ppgtt_spt *spt,
771 u64 pa, void *p_data, int bytes);
772
773 static int ppgtt_write_protection_handler(
774 struct intel_vgpu_page_track *page_track,
775 u64 gpa, void *data, int bytes)
776 {
777 struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
778
779 int ret;
780
781 if (bytes != 4 && bytes != 8)
782 return -EINVAL;
783
784 ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
785 if (ret)
786 return ret;
787 return ret;
788 }
789
790 /* Find a spt by guest gfn. */
791 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
792 struct intel_vgpu *vgpu, unsigned long gfn)
793 {
794 struct intel_vgpu_page_track *track;
795
796 track = intel_vgpu_find_page_track(vgpu, gfn);
797 if (track && track->handler == ppgtt_write_protection_handler)
798 return track->priv_data;
799
800 return NULL;
801 }
802
803 /* Find the spt by shadow page mfn. */
804 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
805 struct intel_vgpu *vgpu, unsigned long mfn)
806 {
807 return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
808 }
809
810 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
811
812 /* Allocate shadow page table without guest page. */
813 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
814 struct intel_vgpu *vgpu, intel_gvt_gtt_type_t type)
815 {
816 struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
817 struct intel_vgpu_ppgtt_spt *spt = NULL;
818 dma_addr_t daddr;
819 int ret;
820
821 retry:
822 spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
823 if (!spt) {
824 if (reclaim_one_ppgtt_mm(vgpu->gvt))
825 goto retry;
826
827 gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
828 return ERR_PTR(-ENOMEM);
829 }
830
831 spt->vgpu = vgpu;
832 atomic_set(&spt->refcount, 1);
833 INIT_LIST_HEAD(&spt->post_shadow_list);
834
835 /*
836 * Init shadow_page.
837 */
838 spt->shadow_page.type = type;
839 daddr = dma_map_page(kdev, spt->shadow_page.page,
840 0, 4096, PCI_DMA_BIDIRECTIONAL);
841 if (dma_mapping_error(kdev, daddr)) {
842 gvt_vgpu_err("fail to map dma addr\n");
843 ret = -EINVAL;
844 goto err_free_spt;
845 }
846 spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
847 spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
848
849 ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
850 if (ret)
851 goto err_unmap_dma;
852
853 return spt;
854
855 err_unmap_dma:
856 dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
857 err_free_spt:
858 free_spt(spt);
859 return ERR_PTR(ret);
860 }
861
862 /* Allocate shadow page table associated with specific gfn. */
863 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
864 struct intel_vgpu *vgpu, intel_gvt_gtt_type_t type,
865 unsigned long gfn, bool guest_pde_ips)
866 {
867 struct intel_vgpu_ppgtt_spt *spt;
868 int ret;
869
870 spt = ppgtt_alloc_spt(vgpu, type);
871 if (IS_ERR(spt))
872 return spt;
873
874 /*
875 * Init guest_page.
876 */
877 ret = intel_vgpu_register_page_track(vgpu, gfn,
878 ppgtt_write_protection_handler, spt);
879 if (ret) {
880 ppgtt_free_spt(spt);
881 return ERR_PTR(ret);
882 }
883
884 spt->guest_page.type = type;
885 spt->guest_page.gfn = gfn;
886 spt->guest_page.pde_ips = guest_pde_ips;
887
888 trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
889
890 return spt;
891 }
892
893 #define pt_entry_size_shift(spt) \
894 ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
895
896 #define pt_entries(spt) \
897 (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
898
899 #define for_each_present_guest_entry(spt, e, i) \
900 for (i = 0; i < pt_entries(spt); \
901 i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
902 if (!ppgtt_get_guest_entry(spt, e, i) && \
903 spt->vgpu->gvt->gtt.pte_ops->test_present(e))
904
905 #define for_each_present_shadow_entry(spt, e, i) \
906 for (i = 0; i < pt_entries(spt); \
907 i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
908 if (!ppgtt_get_shadow_entry(spt, e, i) && \
909 spt->vgpu->gvt->gtt.pte_ops->test_present(e))
910
911 #define for_each_shadow_entry(spt, e, i) \
912 for (i = 0; i < pt_entries(spt); \
913 i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
914 if (!ppgtt_get_shadow_entry(spt, e, i))
915
916 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
917 {
918 int v = atomic_read(&spt->refcount);
919
920 trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
921 atomic_inc(&spt->refcount);
922 }
923
924 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
925 {
926 int v = atomic_read(&spt->refcount);
927
928 trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
929 return atomic_dec_return(&spt->refcount);
930 }
931
932 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
933
934 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
935 struct intel_gvt_gtt_entry *e)
936 {
937 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
938 struct intel_vgpu_ppgtt_spt *s;
939 intel_gvt_gtt_type_t cur_pt_type;
940
941 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
942
943 if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
944 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
945 cur_pt_type = get_next_pt_type(e->type) + 1;
946 if (ops->get_pfn(e) ==
947 vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
948 return 0;
949 }
950 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
951 if (!s) {
952 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
953 ops->get_pfn(e));
954 return -ENXIO;
955 }
956 return ppgtt_invalidate_spt(s);
957 }
958
959 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
960 struct intel_gvt_gtt_entry *entry)
961 {
962 struct intel_vgpu *vgpu = spt->vgpu;
963 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
964 unsigned long pfn;
965 int type;
966
967 pfn = ops->get_pfn(entry);
968 type = spt->shadow_page.type;
969
970 /* Uninitialized spte or unshadowed spte. */
971 if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
972 return;
973
974 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
975 }
976
977 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
978 {
979 struct intel_vgpu *vgpu = spt->vgpu;
980 struct intel_gvt_gtt_entry e;
981 unsigned long index;
982 int ret;
983
984 trace_spt_change(spt->vgpu->id, "die", spt,
985 spt->guest_page.gfn, spt->shadow_page.type);
986
987 if (ppgtt_put_spt(spt) > 0)
988 return 0;
989
990 for_each_present_shadow_entry(spt, &e, index) {
991 switch (e.type) {
992 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
993 gvt_vdbg_mm("invalidate 4K entry\n");
994 ppgtt_invalidate_pte(spt, &e);
995 break;
996 case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
997 /* We don't setup 64K shadow entry so far. */
998 WARN(1, "suspicious 64K gtt entry\n");
999 continue;
1000 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1001 gvt_vdbg_mm("invalidate 2M entry\n");
1002 continue;
1003 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1004 WARN(1, "GVT doesn't support 1GB page\n");
1005 continue;
1006 case GTT_TYPE_PPGTT_PML4_ENTRY:
1007 case GTT_TYPE_PPGTT_PDP_ENTRY:
1008 case GTT_TYPE_PPGTT_PDE_ENTRY:
1009 gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1010 ret = ppgtt_invalidate_spt_by_shadow_entry(
1011 spt->vgpu, &e);
1012 if (ret)
1013 goto fail;
1014 break;
1015 default:
1016 GEM_BUG_ON(1);
1017 }
1018 }
1019
1020 trace_spt_change(spt->vgpu->id, "release", spt,
1021 spt->guest_page.gfn, spt->shadow_page.type);
1022 ppgtt_free_spt(spt);
1023 return 0;
1024 fail:
1025 gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1026 spt, e.val64, e.type);
1027 return ret;
1028 }
1029
1030 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1031 {
1032 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1033
1034 if (INTEL_GEN(dev_priv) == 9 || INTEL_GEN(dev_priv) == 10) {
1035 u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1036 GAMW_ECO_ENABLE_64K_IPS_FIELD;
1037
1038 return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1039 } else if (INTEL_GEN(dev_priv) >= 11) {
1040 /* 64K paging only controlled by IPS bit in PTE now. */
1041 return true;
1042 } else
1043 return false;
1044 }
1045
1046 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1047
1048 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1049 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1050 {
1051 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1052 struct intel_vgpu_ppgtt_spt *spt = NULL;
1053 bool ips = false;
1054 int ret;
1055
1056 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1057
1058 if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1059 ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1060
1061 spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1062 if (spt) {
1063 ppgtt_get_spt(spt);
1064
1065 if (ips != spt->guest_page.pde_ips) {
1066 spt->guest_page.pde_ips = ips;
1067
1068 gvt_dbg_mm("reshadow PDE since ips changed\n");
1069 clear_page(spt->shadow_page.vaddr);
1070 ret = ppgtt_populate_spt(spt);
1071 if (ret) {
1072 ppgtt_put_spt(spt);
1073 goto err;
1074 }
1075 }
1076 } else {
1077 int type = get_next_pt_type(we->type);
1078
1079 spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1080 if (IS_ERR(spt)) {
1081 ret = PTR_ERR(spt);
1082 goto err;
1083 }
1084
1085 ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1086 if (ret)
1087 goto err_free_spt;
1088
1089 ret = ppgtt_populate_spt(spt);
1090 if (ret)
1091 goto err_free_spt;
1092
1093 trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1094 spt->shadow_page.type);
1095 }
1096 return spt;
1097
1098 err_free_spt:
1099 ppgtt_free_spt(spt);
1100 err:
1101 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1102 spt, we->val64, we->type);
1103 return ERR_PTR(ret);
1104 }
1105
1106 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1107 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1108 {
1109 struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1110
1111 se->type = ge->type;
1112 se->val64 = ge->val64;
1113
1114 /* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1115 if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1116 ops->clear_ips(se);
1117
1118 ops->set_pfn(se, s->shadow_page.mfn);
1119 }
1120
1121 /**
1122 * Check if can do 2M page
1123 * @vgpu: target vgpu
1124 * @entry: target pfn's gtt entry
1125 *
1126 * Return 1 if 2MB huge gtt shadowing is possilbe, 0 if miscondition,
1127 * negtive if found err.
1128 */
1129 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
1130 struct intel_gvt_gtt_entry *entry)
1131 {
1132 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1133 unsigned long pfn;
1134
1135 if (!HAS_PAGE_SIZES(vgpu->gvt->dev_priv, I915_GTT_PAGE_SIZE_2M))
1136 return 0;
1137
1138 pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry));
1139 if (pfn == INTEL_GVT_INVALID_ADDR)
1140 return -EINVAL;
1141
1142 return PageTransHuge(pfn_to_page(pfn));
1143 }
1144
1145 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1146 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1147 struct intel_gvt_gtt_entry *se)
1148 {
1149 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1150 struct intel_vgpu_ppgtt_spt *sub_spt;
1151 struct intel_gvt_gtt_entry sub_se;
1152 unsigned long start_gfn;
1153 dma_addr_t dma_addr;
1154 unsigned long sub_index;
1155 int ret;
1156
1157 gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1158
1159 start_gfn = ops->get_pfn(se);
1160
1161 sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1162 if (IS_ERR(sub_spt))
1163 return PTR_ERR(sub_spt);
1164
1165 for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1166 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1167 start_gfn + sub_index, PAGE_SIZE, &dma_addr);
1168 if (ret) {
1169 ppgtt_invalidate_spt(spt);
1170 return ret;
1171 }
1172 sub_se.val64 = se->val64;
1173
1174 /* Copy the PAT field from PDE. */
1175 sub_se.val64 &= ~_PAGE_PAT;
1176 sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1177
1178 ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1179 ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1180 }
1181
1182 /* Clear dirty field. */
1183 se->val64 &= ~_PAGE_DIRTY;
1184
1185 ops->clear_pse(se);
1186 ops->clear_ips(se);
1187 ops->set_pfn(se, sub_spt->shadow_page.mfn);
1188 ppgtt_set_shadow_entry(spt, se, index);
1189 return 0;
1190 }
1191
1192 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1193 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1194 struct intel_gvt_gtt_entry *se)
1195 {
1196 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1197 struct intel_gvt_gtt_entry entry = *se;
1198 unsigned long start_gfn;
1199 dma_addr_t dma_addr;
1200 int i, ret;
1201
1202 gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1203
1204 GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1205
1206 start_gfn = ops->get_pfn(se);
1207
1208 entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1209 ops->set_64k_splited(&entry);
1210
1211 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1212 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1213 start_gfn + i, PAGE_SIZE, &dma_addr);
1214 if (ret)
1215 return ret;
1216
1217 ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1218 ppgtt_set_shadow_entry(spt, &entry, index + i);
1219 }
1220 return 0;
1221 }
1222
1223 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1224 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1225 struct intel_gvt_gtt_entry *ge)
1226 {
1227 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1228 struct intel_gvt_gtt_entry se = *ge;
1229 unsigned long gfn, page_size = PAGE_SIZE;
1230 dma_addr_t dma_addr;
1231 int ret;
1232
1233 if (!pte_ops->test_present(ge))
1234 return 0;
1235
1236 gfn = pte_ops->get_pfn(ge);
1237
1238 switch (ge->type) {
1239 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1240 gvt_vdbg_mm("shadow 4K gtt entry\n");
1241 break;
1242 case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1243 gvt_vdbg_mm("shadow 64K gtt entry\n");
1244 /*
1245 * The layout of 64K page is special, the page size is
1246 * controlled by uper PDE. To be simple, we always split
1247 * 64K page to smaller 4K pages in shadow PT.
1248 */
1249 return split_64KB_gtt_entry(vgpu, spt, index, &se);
1250 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1251 gvt_vdbg_mm("shadow 2M gtt entry\n");
1252 ret = is_2MB_gtt_possible(vgpu, ge);
1253 if (ret == 0)
1254 return split_2MB_gtt_entry(vgpu, spt, index, &se);
1255 else if (ret < 0)
1256 return ret;
1257 page_size = I915_GTT_PAGE_SIZE_2M;
1258 break;
1259 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1260 gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1261 return -EINVAL;
1262 default:
1263 GEM_BUG_ON(1);
1264 };
1265
1266 /* direct shadow */
1267 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size,
1268 &dma_addr);
1269 if (ret)
1270 return -ENXIO;
1271
1272 pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1273 ppgtt_set_shadow_entry(spt, &se, index);
1274 return 0;
1275 }
1276
1277 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1278 {
1279 struct intel_vgpu *vgpu = spt->vgpu;
1280 struct intel_gvt *gvt = vgpu->gvt;
1281 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1282 struct intel_vgpu_ppgtt_spt *s;
1283 struct intel_gvt_gtt_entry se, ge;
1284 unsigned long gfn, i;
1285 int ret;
1286
1287 trace_spt_change(spt->vgpu->id, "born", spt,
1288 spt->guest_page.gfn, spt->shadow_page.type);
1289
1290 for_each_present_guest_entry(spt, &ge, i) {
1291 if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1292 s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1293 if (IS_ERR(s)) {
1294 ret = PTR_ERR(s);
1295 goto fail;
1296 }
1297 ppgtt_get_shadow_entry(spt, &se, i);
1298 ppgtt_generate_shadow_entry(&se, s, &ge);
1299 ppgtt_set_shadow_entry(spt, &se, i);
1300 } else {
1301 gfn = ops->get_pfn(&ge);
1302 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1303 ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1304 ppgtt_set_shadow_entry(spt, &se, i);
1305 continue;
1306 }
1307
1308 ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1309 if (ret)
1310 goto fail;
1311 }
1312 }
1313 return 0;
1314 fail:
1315 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1316 spt, ge.val64, ge.type);
1317 return ret;
1318 }
1319
1320 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1321 struct intel_gvt_gtt_entry *se, unsigned long index)
1322 {
1323 struct intel_vgpu *vgpu = spt->vgpu;
1324 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1325 int ret;
1326
1327 trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1328 spt->shadow_page.type, se->val64, index);
1329
1330 gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1331 se->type, index, se->val64);
1332
1333 if (!ops->test_present(se))
1334 return 0;
1335
1336 if (ops->get_pfn(se) ==
1337 vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1338 return 0;
1339
1340 if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1341 struct intel_vgpu_ppgtt_spt *s =
1342 intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1343 if (!s) {
1344 gvt_vgpu_err("fail to find guest page\n");
1345 ret = -ENXIO;
1346 goto fail;
1347 }
1348 ret = ppgtt_invalidate_spt(s);
1349 if (ret)
1350 goto fail;
1351 } else {
1352 /* We don't setup 64K shadow entry so far. */
1353 WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1354 "suspicious 64K entry\n");
1355 ppgtt_invalidate_pte(spt, se);
1356 }
1357
1358 return 0;
1359 fail:
1360 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1361 spt, se->val64, se->type);
1362 return ret;
1363 }
1364
1365 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1366 struct intel_gvt_gtt_entry *we, unsigned long index)
1367 {
1368 struct intel_vgpu *vgpu = spt->vgpu;
1369 struct intel_gvt_gtt_entry m;
1370 struct intel_vgpu_ppgtt_spt *s;
1371 int ret;
1372
1373 trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1374 we->val64, index);
1375
1376 gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1377 we->type, index, we->val64);
1378
1379 if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1380 s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1381 if (IS_ERR(s)) {
1382 ret = PTR_ERR(s);
1383 goto fail;
1384 }
1385 ppgtt_get_shadow_entry(spt, &m, index);
1386 ppgtt_generate_shadow_entry(&m, s, we);
1387 ppgtt_set_shadow_entry(spt, &m, index);
1388 } else {
1389 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1390 if (ret)
1391 goto fail;
1392 }
1393 return 0;
1394 fail:
1395 gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1396 spt, we->val64, we->type);
1397 return ret;
1398 }
1399
1400 static int sync_oos_page(struct intel_vgpu *vgpu,
1401 struct intel_vgpu_oos_page *oos_page)
1402 {
1403 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1404 struct intel_gvt *gvt = vgpu->gvt;
1405 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1406 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1407 struct intel_gvt_gtt_entry old, new;
1408 int index;
1409 int ret;
1410
1411 trace_oos_change(vgpu->id, "sync", oos_page->id,
1412 spt, spt->guest_page.type);
1413
1414 old.type = new.type = get_entry_type(spt->guest_page.type);
1415 old.val64 = new.val64 = 0;
1416
1417 for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1418 info->gtt_entry_size_shift); index++) {
1419 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1420 ops->get_entry(NULL, &new, index, true,
1421 spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1422
1423 if (old.val64 == new.val64
1424 && !test_and_clear_bit(index, spt->post_shadow_bitmap))
1425 continue;
1426
1427 trace_oos_sync(vgpu->id, oos_page->id,
1428 spt, spt->guest_page.type,
1429 new.val64, index);
1430
1431 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1432 if (ret)
1433 return ret;
1434
1435 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1436 }
1437
1438 spt->guest_page.write_cnt = 0;
1439 list_del_init(&spt->post_shadow_list);
1440 return 0;
1441 }
1442
1443 static int detach_oos_page(struct intel_vgpu *vgpu,
1444 struct intel_vgpu_oos_page *oos_page)
1445 {
1446 struct intel_gvt *gvt = vgpu->gvt;
1447 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1448
1449 trace_oos_change(vgpu->id, "detach", oos_page->id,
1450 spt, spt->guest_page.type);
1451
1452 spt->guest_page.write_cnt = 0;
1453 spt->guest_page.oos_page = NULL;
1454 oos_page->spt = NULL;
1455
1456 list_del_init(&oos_page->vm_list);
1457 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1458
1459 return 0;
1460 }
1461
1462 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1463 struct intel_vgpu_ppgtt_spt *spt)
1464 {
1465 struct intel_gvt *gvt = spt->vgpu->gvt;
1466 int ret;
1467
1468 ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
1469 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1470 oos_page->mem, I915_GTT_PAGE_SIZE);
1471 if (ret)
1472 return ret;
1473
1474 oos_page->spt = spt;
1475 spt->guest_page.oos_page = oos_page;
1476
1477 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1478
1479 trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1480 spt, spt->guest_page.type);
1481 return 0;
1482 }
1483
1484 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1485 {
1486 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1487 int ret;
1488
1489 ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1490 if (ret)
1491 return ret;
1492
1493 trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1494 spt, spt->guest_page.type);
1495
1496 list_del_init(&oos_page->vm_list);
1497 return sync_oos_page(spt->vgpu, oos_page);
1498 }
1499
1500 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1501 {
1502 struct intel_gvt *gvt = spt->vgpu->gvt;
1503 struct intel_gvt_gtt *gtt = &gvt->gtt;
1504 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1505 int ret;
1506
1507 WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1508
1509 if (list_empty(&gtt->oos_page_free_list_head)) {
1510 oos_page = container_of(gtt->oos_page_use_list_head.next,
1511 struct intel_vgpu_oos_page, list);
1512 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1513 if (ret)
1514 return ret;
1515 ret = detach_oos_page(spt->vgpu, oos_page);
1516 if (ret)
1517 return ret;
1518 } else
1519 oos_page = container_of(gtt->oos_page_free_list_head.next,
1520 struct intel_vgpu_oos_page, list);
1521 return attach_oos_page(oos_page, spt);
1522 }
1523
1524 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1525 {
1526 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1527
1528 if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1529 return -EINVAL;
1530
1531 trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1532 spt, spt->guest_page.type);
1533
1534 list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1535 return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1536 }
1537
1538 /**
1539 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1540 * @vgpu: a vGPU
1541 *
1542 * This function is called before submitting a guest workload to host,
1543 * to sync all the out-of-synced shadow for vGPU
1544 *
1545 * Returns:
1546 * Zero on success, negative error code if failed.
1547 */
1548 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1549 {
1550 struct list_head *pos, *n;
1551 struct intel_vgpu_oos_page *oos_page;
1552 int ret;
1553
1554 if (!enable_out_of_sync)
1555 return 0;
1556
1557 list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1558 oos_page = container_of(pos,
1559 struct intel_vgpu_oos_page, vm_list);
1560 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1561 if (ret)
1562 return ret;
1563 }
1564 return 0;
1565 }
1566
1567 /*
1568 * The heart of PPGTT shadow page table.
1569 */
1570 static int ppgtt_handle_guest_write_page_table(
1571 struct intel_vgpu_ppgtt_spt *spt,
1572 struct intel_gvt_gtt_entry *we, unsigned long index)
1573 {
1574 struct intel_vgpu *vgpu = spt->vgpu;
1575 int type = spt->shadow_page.type;
1576 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1577 struct intel_gvt_gtt_entry old_se;
1578 int new_present;
1579 int i, ret;
1580
1581 new_present = ops->test_present(we);
1582
1583 /*
1584 * Adding the new entry first and then removing the old one, that can
1585 * guarantee the ppgtt table is validated during the window between
1586 * adding and removal.
1587 */
1588 ppgtt_get_shadow_entry(spt, &old_se, index);
1589
1590 if (new_present) {
1591 ret = ppgtt_handle_guest_entry_add(spt, we, index);
1592 if (ret)
1593 goto fail;
1594 }
1595
1596 ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1597 if (ret)
1598 goto fail;
1599
1600 if (!new_present) {
1601 /* For 64KB splited entries, we need clear them all. */
1602 if (ops->test_64k_splited(&old_se) &&
1603 !(index % GTT_64K_PTE_STRIDE)) {
1604 gvt_vdbg_mm("remove splited 64K shadow entries\n");
1605 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1606 ops->clear_64k_splited(&old_se);
1607 ops->set_pfn(&old_se,
1608 vgpu->gtt.scratch_pt[type].page_mfn);
1609 ppgtt_set_shadow_entry(spt, &old_se, index + i);
1610 }
1611 } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1612 old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1613 ops->clear_pse(&old_se);
1614 ops->set_pfn(&old_se,
1615 vgpu->gtt.scratch_pt[type].page_mfn);
1616 ppgtt_set_shadow_entry(spt, &old_se, index);
1617 } else {
1618 ops->set_pfn(&old_se,
1619 vgpu->gtt.scratch_pt[type].page_mfn);
1620 ppgtt_set_shadow_entry(spt, &old_se, index);
1621 }
1622 }
1623
1624 return 0;
1625 fail:
1626 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1627 spt, we->val64, we->type);
1628 return ret;
1629 }
1630
1631
1632
1633 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1634 {
1635 return enable_out_of_sync
1636 && gtt_type_is_pte_pt(spt->guest_page.type)
1637 && spt->guest_page.write_cnt >= 2;
1638 }
1639
1640 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1641 unsigned long index)
1642 {
1643 set_bit(index, spt->post_shadow_bitmap);
1644 if (!list_empty(&spt->post_shadow_list))
1645 return;
1646
1647 list_add_tail(&spt->post_shadow_list,
1648 &spt->vgpu->gtt.post_shadow_list_head);
1649 }
1650
1651 /**
1652 * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1653 * @vgpu: a vGPU
1654 *
1655 * This function is called before submitting a guest workload to host,
1656 * to flush all the post shadows for a vGPU.
1657 *
1658 * Returns:
1659 * Zero on success, negative error code if failed.
1660 */
1661 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1662 {
1663 struct list_head *pos, *n;
1664 struct intel_vgpu_ppgtt_spt *spt;
1665 struct intel_gvt_gtt_entry ge;
1666 unsigned long index;
1667 int ret;
1668
1669 list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1670 spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1671 post_shadow_list);
1672
1673 for_each_set_bit(index, spt->post_shadow_bitmap,
1674 GTT_ENTRY_NUM_IN_ONE_PAGE) {
1675 ppgtt_get_guest_entry(spt, &ge, index);
1676
1677 ret = ppgtt_handle_guest_write_page_table(spt,
1678 &ge, index);
1679 if (ret)
1680 return ret;
1681 clear_bit(index, spt->post_shadow_bitmap);
1682 }
1683 list_del_init(&spt->post_shadow_list);
1684 }
1685 return 0;
1686 }
1687
1688 static int ppgtt_handle_guest_write_page_table_bytes(
1689 struct intel_vgpu_ppgtt_spt *spt,
1690 u64 pa, void *p_data, int bytes)
1691 {
1692 struct intel_vgpu *vgpu = spt->vgpu;
1693 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1694 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1695 struct intel_gvt_gtt_entry we, se;
1696 unsigned long index;
1697 int ret;
1698
1699 index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1700
1701 ppgtt_get_guest_entry(spt, &we, index);
1702
1703 /*
1704 * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1705 * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1706 * ignored.
1707 */
1708 if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1709 (index % GTT_64K_PTE_STRIDE)) {
1710 gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1711 index);
1712 return 0;
1713 }
1714
1715 if (bytes == info->gtt_entry_size) {
1716 ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1717 if (ret)
1718 return ret;
1719 } else {
1720 if (!test_bit(index, spt->post_shadow_bitmap)) {
1721 int type = spt->shadow_page.type;
1722
1723 ppgtt_get_shadow_entry(spt, &se, index);
1724 ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1725 if (ret)
1726 return ret;
1727 ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1728 ppgtt_set_shadow_entry(spt, &se, index);
1729 }
1730 ppgtt_set_post_shadow(spt, index);
1731 }
1732
1733 if (!enable_out_of_sync)
1734 return 0;
1735
1736 spt->guest_page.write_cnt++;
1737
1738 if (spt->guest_page.oos_page)
1739 ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1740 false, 0, vgpu);
1741
1742 if (can_do_out_of_sync(spt)) {
1743 if (!spt->guest_page.oos_page)
1744 ppgtt_allocate_oos_page(spt);
1745
1746 ret = ppgtt_set_guest_page_oos(spt);
1747 if (ret < 0)
1748 return ret;
1749 }
1750 return 0;
1751 }
1752
1753 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1754 {
1755 struct intel_vgpu *vgpu = mm->vgpu;
1756 struct intel_gvt *gvt = vgpu->gvt;
1757 struct intel_gvt_gtt *gtt = &gvt->gtt;
1758 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1759 struct intel_gvt_gtt_entry se;
1760 int index;
1761
1762 if (!mm->ppgtt_mm.shadowed)
1763 return;
1764
1765 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1766 ppgtt_get_shadow_root_entry(mm, &se, index);
1767
1768 if (!ops->test_present(&se))
1769 continue;
1770
1771 ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1772 se.val64 = 0;
1773 ppgtt_set_shadow_root_entry(mm, &se, index);
1774
1775 trace_spt_guest_change(vgpu->id, "destroy root pointer",
1776 NULL, se.type, se.val64, index);
1777 }
1778
1779 mm->ppgtt_mm.shadowed = false;
1780 }
1781
1782
1783 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1784 {
1785 struct intel_vgpu *vgpu = mm->vgpu;
1786 struct intel_gvt *gvt = vgpu->gvt;
1787 struct intel_gvt_gtt *gtt = &gvt->gtt;
1788 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1789 struct intel_vgpu_ppgtt_spt *spt;
1790 struct intel_gvt_gtt_entry ge, se;
1791 int index, ret;
1792
1793 if (mm->ppgtt_mm.shadowed)
1794 return 0;
1795
1796 mm->ppgtt_mm.shadowed = true;
1797
1798 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1799 ppgtt_get_guest_root_entry(mm, &ge, index);
1800
1801 if (!ops->test_present(&ge))
1802 continue;
1803
1804 trace_spt_guest_change(vgpu->id, __func__, NULL,
1805 ge.type, ge.val64, index);
1806
1807 spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1808 if (IS_ERR(spt)) {
1809 gvt_vgpu_err("fail to populate guest root pointer\n");
1810 ret = PTR_ERR(spt);
1811 goto fail;
1812 }
1813 ppgtt_generate_shadow_entry(&se, spt, &ge);
1814 ppgtt_set_shadow_root_entry(mm, &se, index);
1815
1816 trace_spt_guest_change(vgpu->id, "populate root pointer",
1817 NULL, se.type, se.val64, index);
1818 }
1819
1820 return 0;
1821 fail:
1822 invalidate_ppgtt_mm(mm);
1823 return ret;
1824 }
1825
1826 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1827 {
1828 struct intel_vgpu_mm *mm;
1829
1830 mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1831 if (!mm)
1832 return NULL;
1833
1834 mm->vgpu = vgpu;
1835 kref_init(&mm->ref);
1836 atomic_set(&mm->pincount, 0);
1837
1838 return mm;
1839 }
1840
1841 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1842 {
1843 kfree(mm);
1844 }
1845
1846 /**
1847 * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1848 * @vgpu: a vGPU
1849 * @root_entry_type: ppgtt root entry type
1850 * @pdps: guest pdps.
1851 *
1852 * This function is used to create a ppgtt mm object for a vGPU.
1853 *
1854 * Returns:
1855 * Zero on success, negative error code in pointer if failed.
1856 */
1857 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1858 intel_gvt_gtt_type_t root_entry_type, u64 pdps[])
1859 {
1860 struct intel_gvt *gvt = vgpu->gvt;
1861 struct intel_vgpu_mm *mm;
1862 int ret;
1863
1864 mm = vgpu_alloc_mm(vgpu);
1865 if (!mm)
1866 return ERR_PTR(-ENOMEM);
1867
1868 mm->type = INTEL_GVT_MM_PPGTT;
1869
1870 GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1871 root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1872 mm->ppgtt_mm.root_entry_type = root_entry_type;
1873
1874 INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1875 INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1876
1877 if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1878 mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1879 else
1880 memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1881 sizeof(mm->ppgtt_mm.guest_pdps));
1882
1883 ret = shadow_ppgtt_mm(mm);
1884 if (ret) {
1885 gvt_vgpu_err("failed to shadow ppgtt mm\n");
1886 vgpu_free_mm(mm);
1887 return ERR_PTR(ret);
1888 }
1889
1890 list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1891
1892 mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1893 list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1894 mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
1895
1896 return mm;
1897 }
1898
1899 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1900 {
1901 struct intel_vgpu_mm *mm;
1902 unsigned long nr_entries;
1903
1904 mm = vgpu_alloc_mm(vgpu);
1905 if (!mm)
1906 return ERR_PTR(-ENOMEM);
1907
1908 mm->type = INTEL_GVT_MM_GGTT;
1909
1910 nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1911 mm->ggtt_mm.virtual_ggtt =
1912 vzalloc(array_size(nr_entries,
1913 vgpu->gvt->device_info.gtt_entry_size));
1914 if (!mm->ggtt_mm.virtual_ggtt) {
1915 vgpu_free_mm(mm);
1916 return ERR_PTR(-ENOMEM);
1917 }
1918
1919 return mm;
1920 }
1921
1922 /**
1923 * _intel_vgpu_mm_release - destroy a mm object
1924 * @mm_ref: a kref object
1925 *
1926 * This function is used to destroy a mm object for vGPU
1927 *
1928 */
1929 void _intel_vgpu_mm_release(struct kref *mm_ref)
1930 {
1931 struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1932
1933 if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1934 gvt_err("vgpu mm pin count bug detected\n");
1935
1936 if (mm->type == INTEL_GVT_MM_PPGTT) {
1937 list_del(&mm->ppgtt_mm.list);
1938 list_del(&mm->ppgtt_mm.lru_list);
1939 invalidate_ppgtt_mm(mm);
1940 } else {
1941 vfree(mm->ggtt_mm.virtual_ggtt);
1942 }
1943
1944 vgpu_free_mm(mm);
1945 }
1946
1947 /**
1948 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1949 * @mm: a vGPU mm object
1950 *
1951 * This function is called when user doesn't want to use a vGPU mm object
1952 */
1953 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1954 {
1955 atomic_dec_if_positive(&mm->pincount);
1956 }
1957
1958 /**
1959 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1960 * @mm: target vgpu mm
1961 *
1962 * This function is called when user wants to use a vGPU mm object. If this
1963 * mm object hasn't been shadowed yet, the shadow will be populated at this
1964 * time.
1965 *
1966 * Returns:
1967 * Zero on success, negative error code if failed.
1968 */
1969 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1970 {
1971 int ret;
1972
1973 atomic_inc(&mm->pincount);
1974
1975 if (mm->type == INTEL_GVT_MM_PPGTT) {
1976 ret = shadow_ppgtt_mm(mm);
1977 if (ret)
1978 return ret;
1979
1980 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1981 list_move_tail(&mm->ppgtt_mm.lru_list,
1982 &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
1983 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1984 }
1985
1986 return 0;
1987 }
1988
1989 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
1990 {
1991 struct intel_vgpu_mm *mm;
1992 struct list_head *pos, *n;
1993
1994 mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1995
1996 list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
1997 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
1998
1999 if (atomic_read(&mm->pincount))
2000 continue;
2001
2002 list_del_init(&mm->ppgtt_mm.lru_list);
2003 mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2004 invalidate_ppgtt_mm(mm);
2005 return 1;
2006 }
2007 mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2008 return 0;
2009 }
2010
2011 /*
2012 * GMA translation APIs.
2013 */
2014 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
2015 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2016 {
2017 struct intel_vgpu *vgpu = mm->vgpu;
2018 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2019 struct intel_vgpu_ppgtt_spt *s;
2020
2021 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2022 if (!s)
2023 return -ENXIO;
2024
2025 if (!guest)
2026 ppgtt_get_shadow_entry(s, e, index);
2027 else
2028 ppgtt_get_guest_entry(s, e, index);
2029 return 0;
2030 }
2031
2032 /**
2033 * intel_vgpu_gma_to_gpa - translate a gma to GPA
2034 * @mm: mm object. could be a PPGTT or GGTT mm object
2035 * @gma: graphics memory address in this mm object
2036 *
2037 * This function is used to translate a graphics memory address in specific
2038 * graphics memory space to guest physical address.
2039 *
2040 * Returns:
2041 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2042 */
2043 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2044 {
2045 struct intel_vgpu *vgpu = mm->vgpu;
2046 struct intel_gvt *gvt = vgpu->gvt;
2047 struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2048 struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2049 unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2050 unsigned long gma_index[4];
2051 struct intel_gvt_gtt_entry e;
2052 int i, levels = 0;
2053 int ret;
2054
2055 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2056 mm->type != INTEL_GVT_MM_PPGTT);
2057
2058 if (mm->type == INTEL_GVT_MM_GGTT) {
2059 if (!vgpu_gmadr_is_valid(vgpu, gma))
2060 goto err;
2061
2062 ggtt_get_guest_entry(mm, &e,
2063 gma_ops->gma_to_ggtt_pte_index(gma));
2064
2065 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2066 + (gma & ~I915_GTT_PAGE_MASK);
2067
2068 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2069 } else {
2070 switch (mm->ppgtt_mm.root_entry_type) {
2071 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2072 ppgtt_get_shadow_root_entry(mm, &e, 0);
2073
2074 gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2075 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2076 gma_index[2] = gma_ops->gma_to_pde_index(gma);
2077 gma_index[3] = gma_ops->gma_to_pte_index(gma);
2078 levels = 4;
2079 break;
2080 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2081 ppgtt_get_shadow_root_entry(mm, &e,
2082 gma_ops->gma_to_l3_pdp_index(gma));
2083
2084 gma_index[0] = gma_ops->gma_to_pde_index(gma);
2085 gma_index[1] = gma_ops->gma_to_pte_index(gma);
2086 levels = 2;
2087 break;
2088 default:
2089 GEM_BUG_ON(1);
2090 }
2091
2092 /* walk the shadow page table and get gpa from guest entry */
2093 for (i = 0; i < levels; i++) {
2094 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2095 (i == levels - 1));
2096 if (ret)
2097 goto err;
2098
2099 if (!pte_ops->test_present(&e)) {
2100 gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2101 goto err;
2102 }
2103 }
2104
2105 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2106 (gma & ~I915_GTT_PAGE_MASK);
2107 trace_gma_translate(vgpu->id, "ppgtt", 0,
2108 mm->ppgtt_mm.root_entry_type, gma, gpa);
2109 }
2110
2111 return gpa;
2112 err:
2113 gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2114 return INTEL_GVT_INVALID_ADDR;
2115 }
2116
2117 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2118 unsigned int off, void *p_data, unsigned int bytes)
2119 {
2120 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2121 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2122 unsigned long index = off >> info->gtt_entry_size_shift;
2123 struct intel_gvt_gtt_entry e;
2124
2125 if (bytes != 4 && bytes != 8)
2126 return -EINVAL;
2127
2128 ggtt_get_guest_entry(ggtt_mm, &e, index);
2129 memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2130 bytes);
2131 return 0;
2132 }
2133
2134 /**
2135 * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
2136 * @vgpu: a vGPU
2137 * @off: register offset
2138 * @p_data: data will be returned to guest
2139 * @bytes: data length
2140 *
2141 * This function is used to emulate the GTT MMIO register read
2142 *
2143 * Returns:
2144 * Zero on success, error code if failed.
2145 */
2146 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2147 void *p_data, unsigned int bytes)
2148 {
2149 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2150 int ret;
2151
2152 if (bytes != 4 && bytes != 8)
2153 return -EINVAL;
2154
2155 off -= info->gtt_start_offset;
2156 ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2157 return ret;
2158 }
2159
2160 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2161 struct intel_gvt_gtt_entry *entry)
2162 {
2163 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2164 unsigned long pfn;
2165
2166 pfn = pte_ops->get_pfn(entry);
2167 if (pfn != vgpu->gvt->gtt.scratch_mfn)
2168 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu,
2169 pfn << PAGE_SHIFT);
2170 }
2171
2172 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2173 void *p_data, unsigned int bytes)
2174 {
2175 struct intel_gvt *gvt = vgpu->gvt;
2176 const struct intel_gvt_device_info *info = &gvt->device_info;
2177 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2178 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2179 unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2180 unsigned long gma, gfn;
2181 struct intel_gvt_gtt_entry e, m;
2182 dma_addr_t dma_addr;
2183 int ret;
2184 struct intel_gvt_partial_pte *partial_pte, *pos, *n;
2185 bool partial_update = false;
2186
2187 if (bytes != 4 && bytes != 8)
2188 return -EINVAL;
2189
2190 gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2191
2192 /* the VM may configure the whole GM space when ballooning is used */
2193 if (!vgpu_gmadr_is_valid(vgpu, gma))
2194 return 0;
2195
2196 e.type = GTT_TYPE_GGTT_PTE;
2197 memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2198 bytes);
2199
2200 /* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2201 * write, save the first 4 bytes in a list and update virtual
2202 * PTE. Only update shadow PTE when the second 4 bytes comes.
2203 */
2204 if (bytes < info->gtt_entry_size) {
2205 bool found = false;
2206
2207 list_for_each_entry_safe(pos, n,
2208 &ggtt_mm->ggtt_mm.partial_pte_list, list) {
2209 if (g_gtt_index == pos->offset >>
2210 info->gtt_entry_size_shift) {
2211 if (off != pos->offset) {
2212 /* the second partial part*/
2213 int last_off = pos->offset &
2214 (info->gtt_entry_size - 1);
2215
2216 memcpy((void *)&e.val64 + last_off,
2217 (void *)&pos->data + last_off,
2218 bytes);
2219
2220 list_del(&pos->list);
2221 kfree(pos);
2222 found = true;
2223 break;
2224 }
2225
2226 /* update of the first partial part */
2227 pos->data = e.val64;
2228 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2229 return 0;
2230 }
2231 }
2232
2233 if (!found) {
2234 /* the first partial part */
2235 partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
2236 if (!partial_pte)
2237 return -ENOMEM;
2238 partial_pte->offset = off;
2239 partial_pte->data = e.val64;
2240 list_add_tail(&partial_pte->list,
2241 &ggtt_mm->ggtt_mm.partial_pte_list);
2242 partial_update = true;
2243 }
2244 }
2245
2246 if (!partial_update && (ops->test_present(&e))) {
2247 gfn = ops->get_pfn(&e);
2248 m = e;
2249
2250 /* one PTE update may be issued in multiple writes and the
2251 * first write may not construct a valid gfn
2252 */
2253 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
2254 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2255 goto out;
2256 }
2257
2258 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
2259 PAGE_SIZE, &dma_addr);
2260 if (ret) {
2261 gvt_vgpu_err("fail to populate guest ggtt entry\n");
2262 /* guest driver may read/write the entry when partial
2263 * update the entry in this situation p2m will fail
2264 * settting the shadow entry to point to a scratch page
2265 */
2266 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2267 } else
2268 ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2269 } else {
2270 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2271 ops->clear_present(&m);
2272 }
2273
2274 out:
2275 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2276
2277 ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
2278 ggtt_invalidate_pte(vgpu, &e);
2279
2280 ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2281 ggtt_invalidate(gvt->dev_priv);
2282 return 0;
2283 }
2284
2285 /*
2286 * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2287 * @vgpu: a vGPU
2288 * @off: register offset
2289 * @p_data: data from guest write
2290 * @bytes: data length
2291 *
2292 * This function is used to emulate the GTT MMIO register write
2293 *
2294 * Returns:
2295 * Zero on success, error code if failed.
2296 */
2297 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2298 unsigned int off, void *p_data, unsigned int bytes)
2299 {
2300 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2301 int ret;
2302
2303 if (bytes != 4 && bytes != 8)
2304 return -EINVAL;
2305
2306 off -= info->gtt_start_offset;
2307 ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2308 return ret;
2309 }
2310
2311 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2312 intel_gvt_gtt_type_t type)
2313 {
2314 struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2315 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2316 int page_entry_num = I915_GTT_PAGE_SIZE >>
2317 vgpu->gvt->device_info.gtt_entry_size_shift;
2318 void *scratch_pt;
2319 int i;
2320 struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2321 dma_addr_t daddr;
2322
2323 if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2324 return -EINVAL;
2325
2326 scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2327 if (!scratch_pt) {
2328 gvt_vgpu_err("fail to allocate scratch page\n");
2329 return -ENOMEM;
2330 }
2331
2332 daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
2333 4096, PCI_DMA_BIDIRECTIONAL);
2334 if (dma_mapping_error(dev, daddr)) {
2335 gvt_vgpu_err("fail to dmamap scratch_pt\n");
2336 __free_page(virt_to_page(scratch_pt));
2337 return -ENOMEM;
2338 }
2339 gtt->scratch_pt[type].page_mfn =
2340 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2341 gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2342 gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2343 vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2344
2345 /* Build the tree by full filled the scratch pt with the entries which
2346 * point to the next level scratch pt or scratch page. The
2347 * scratch_pt[type] indicate the scratch pt/scratch page used by the
2348 * 'type' pt.
2349 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2350 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2351 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2352 */
2353 if (type > GTT_TYPE_PPGTT_PTE_PT) {
2354 struct intel_gvt_gtt_entry se;
2355
2356 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2357 se.type = get_entry_type(type - 1);
2358 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2359
2360 /* The entry parameters like present/writeable/cache type
2361 * set to the same as i915's scratch page tree.
2362 */
2363 se.val64 |= _PAGE_PRESENT | _PAGE_RW;
2364 if (type == GTT_TYPE_PPGTT_PDE_PT)
2365 se.val64 |= PPAT_CACHED;
2366
2367 for (i = 0; i < page_entry_num; i++)
2368 ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2369 }
2370
2371 return 0;
2372 }
2373
2374 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2375 {
2376 int i;
2377 struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2378 dma_addr_t daddr;
2379
2380 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2381 if (vgpu->gtt.scratch_pt[i].page != NULL) {
2382 daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2383 I915_GTT_PAGE_SHIFT);
2384 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2385 __free_page(vgpu->gtt.scratch_pt[i].page);
2386 vgpu->gtt.scratch_pt[i].page = NULL;
2387 vgpu->gtt.scratch_pt[i].page_mfn = 0;
2388 }
2389 }
2390
2391 return 0;
2392 }
2393
2394 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2395 {
2396 int i, ret;
2397
2398 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2399 ret = alloc_scratch_pages(vgpu, i);
2400 if (ret)
2401 goto err;
2402 }
2403
2404 return 0;
2405
2406 err:
2407 release_scratch_page_tree(vgpu);
2408 return ret;
2409 }
2410
2411 /**
2412 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2413 * @vgpu: a vGPU
2414 *
2415 * This function is used to initialize per-vGPU graphics memory virtualization
2416 * components.
2417 *
2418 * Returns:
2419 * Zero on success, error code if failed.
2420 */
2421 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2422 {
2423 struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2424
2425 INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2426
2427 INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
2428 INIT_LIST_HEAD(&gtt->oos_page_list_head);
2429 INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2430
2431 gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2432 if (IS_ERR(gtt->ggtt_mm)) {
2433 gvt_vgpu_err("fail to create mm for ggtt.\n");
2434 return PTR_ERR(gtt->ggtt_mm);
2435 }
2436
2437 intel_vgpu_reset_ggtt(vgpu, false);
2438
2439 INIT_LIST_HEAD(&gtt->ggtt_mm->ggtt_mm.partial_pte_list);
2440
2441 return create_scratch_page_tree(vgpu);
2442 }
2443
2444 static void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2445 {
2446 struct list_head *pos, *n;
2447 struct intel_vgpu_mm *mm;
2448
2449 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2450 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2451 intel_vgpu_destroy_mm(mm);
2452 }
2453
2454 if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2455 gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2456
2457 if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2458 gvt_err("Why we still has spt not freed?\n");
2459 ppgtt_free_all_spt(vgpu);
2460 }
2461 }
2462
2463 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2464 {
2465 struct intel_gvt_partial_pte *pos, *next;
2466
2467 list_for_each_entry_safe(pos, next,
2468 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
2469 list) {
2470 gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
2471 pos->offset, pos->data);
2472 kfree(pos);
2473 }
2474 intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2475 vgpu->gtt.ggtt_mm = NULL;
2476 }
2477
2478 /**
2479 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2480 * @vgpu: a vGPU
2481 *
2482 * This function is used to clean up per-vGPU graphics memory virtualization
2483 * components.
2484 *
2485 * Returns:
2486 * Zero on success, error code if failed.
2487 */
2488 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2489 {
2490 intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2491 intel_vgpu_destroy_ggtt_mm(vgpu);
2492 release_scratch_page_tree(vgpu);
2493 }
2494
2495 static void clean_spt_oos(struct intel_gvt *gvt)
2496 {
2497 struct intel_gvt_gtt *gtt = &gvt->gtt;
2498 struct list_head *pos, *n;
2499 struct intel_vgpu_oos_page *oos_page;
2500
2501 WARN(!list_empty(&gtt->oos_page_use_list_head),
2502 "someone is still using oos page\n");
2503
2504 list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2505 oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2506 list_del(&oos_page->list);
2507 kfree(oos_page);
2508 }
2509 }
2510
2511 static int setup_spt_oos(struct intel_gvt *gvt)
2512 {
2513 struct intel_gvt_gtt *gtt = &gvt->gtt;
2514 struct intel_vgpu_oos_page *oos_page;
2515 int i;
2516 int ret;
2517
2518 INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2519 INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2520
2521 for (i = 0; i < preallocated_oos_pages; i++) {
2522 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2523 if (!oos_page) {
2524 ret = -ENOMEM;
2525 goto fail;
2526 }
2527
2528 INIT_LIST_HEAD(&oos_page->list);
2529 INIT_LIST_HEAD(&oos_page->vm_list);
2530 oos_page->id = i;
2531 list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2532 }
2533
2534 gvt_dbg_mm("%d oos pages preallocated\n", i);
2535
2536 return 0;
2537 fail:
2538 clean_spt_oos(gvt);
2539 return ret;
2540 }
2541
2542 /**
2543 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2544 * @vgpu: a vGPU
2545 * @pdps: pdp root array
2546 *
2547 * This function is used to find a PPGTT mm object from mm object pool
2548 *
2549 * Returns:
2550 * pointer to mm object on success, NULL if failed.
2551 */
2552 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2553 u64 pdps[])
2554 {
2555 struct intel_vgpu_mm *mm;
2556 struct list_head *pos;
2557
2558 list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2559 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2560
2561 switch (mm->ppgtt_mm.root_entry_type) {
2562 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2563 if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2564 return mm;
2565 break;
2566 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2567 if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2568 sizeof(mm->ppgtt_mm.guest_pdps)))
2569 return mm;
2570 break;
2571 default:
2572 GEM_BUG_ON(1);
2573 }
2574 }
2575 return NULL;
2576 }
2577
2578 /**
2579 * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2580 * @vgpu: a vGPU
2581 * @root_entry_type: ppgtt root entry type
2582 * @pdps: guest pdps
2583 *
2584 * This function is used to find or create a PPGTT mm object from a guest.
2585 *
2586 * Returns:
2587 * Zero on success, negative error code if failed.
2588 */
2589 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2590 intel_gvt_gtt_type_t root_entry_type, u64 pdps[])
2591 {
2592 struct intel_vgpu_mm *mm;
2593
2594 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2595 if (mm) {
2596 intel_vgpu_mm_get(mm);
2597 } else {
2598 mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2599 if (IS_ERR(mm))
2600 gvt_vgpu_err("fail to create mm\n");
2601 }
2602 return mm;
2603 }
2604
2605 /**
2606 * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2607 * @vgpu: a vGPU
2608 * @pdps: guest pdps
2609 *
2610 * This function is used to find a PPGTT mm object from a guest and destroy it.
2611 *
2612 * Returns:
2613 * Zero on success, negative error code if failed.
2614 */
2615 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2616 {
2617 struct intel_vgpu_mm *mm;
2618
2619 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2620 if (!mm) {
2621 gvt_vgpu_err("fail to find ppgtt instance.\n");
2622 return -EINVAL;
2623 }
2624 intel_vgpu_mm_put(mm);
2625 return 0;
2626 }
2627
2628 /**
2629 * intel_gvt_init_gtt - initialize mm components of a GVT device
2630 * @gvt: GVT device
2631 *
2632 * This function is called at the initialization stage, to initialize
2633 * the mm components of a GVT device.
2634 *
2635 * Returns:
2636 * zero on success, negative error code if failed.
2637 */
2638 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2639 {
2640 int ret;
2641 void *page;
2642 struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2643 dma_addr_t daddr;
2644
2645 gvt_dbg_core("init gtt\n");
2646
2647 gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2648 gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2649
2650 page = (void *)get_zeroed_page(GFP_KERNEL);
2651 if (!page) {
2652 gvt_err("fail to allocate scratch ggtt page\n");
2653 return -ENOMEM;
2654 }
2655
2656 daddr = dma_map_page(dev, virt_to_page(page), 0,
2657 4096, PCI_DMA_BIDIRECTIONAL);
2658 if (dma_mapping_error(dev, daddr)) {
2659 gvt_err("fail to dmamap scratch ggtt page\n");
2660 __free_page(virt_to_page(page));
2661 return -ENOMEM;
2662 }
2663
2664 gvt->gtt.scratch_page = virt_to_page(page);
2665 gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2666
2667 if (enable_out_of_sync) {
2668 ret = setup_spt_oos(gvt);
2669 if (ret) {
2670 gvt_err("fail to initialize SPT oos\n");
2671 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2672 __free_page(gvt->gtt.scratch_page);
2673 return ret;
2674 }
2675 }
2676 INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2677 mutex_init(&gvt->gtt.ppgtt_mm_lock);
2678 return 0;
2679 }
2680
2681 /**
2682 * intel_gvt_clean_gtt - clean up mm components of a GVT device
2683 * @gvt: GVT device
2684 *
2685 * This function is called at the driver unloading stage, to clean up the
2686 * the mm components of a GVT device.
2687 *
2688 */
2689 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2690 {
2691 struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2692 dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2693 I915_GTT_PAGE_SHIFT);
2694
2695 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2696
2697 __free_page(gvt->gtt.scratch_page);
2698
2699 if (enable_out_of_sync)
2700 clean_spt_oos(gvt);
2701 }
2702
2703 /**
2704 * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2705 * @vgpu: a vGPU
2706 *
2707 * This function is called when invalidate all PPGTT instances of a vGPU.
2708 *
2709 */
2710 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2711 {
2712 struct list_head *pos, *n;
2713 struct intel_vgpu_mm *mm;
2714
2715 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2716 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2717 if (mm->type == INTEL_GVT_MM_PPGTT) {
2718 mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2719 list_del_init(&mm->ppgtt_mm.lru_list);
2720 mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2721 if (mm->ppgtt_mm.shadowed)
2722 invalidate_ppgtt_mm(mm);
2723 }
2724 }
2725 }
2726
2727 /**
2728 * intel_vgpu_reset_ggtt - reset the GGTT entry
2729 * @vgpu: a vGPU
2730 * @invalidate_old: invalidate old entries
2731 *
2732 * This function is called at the vGPU create stage
2733 * to reset all the GGTT entries.
2734 *
2735 */
2736 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2737 {
2738 struct intel_gvt *gvt = vgpu->gvt;
2739 struct drm_i915_private *dev_priv = gvt->dev_priv;
2740 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2741 struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2742 struct intel_gvt_gtt_entry old_entry;
2743 u32 index;
2744 u32 num_entries;
2745
2746 pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2747 pte_ops->set_present(&entry);
2748
2749 index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2750 num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2751 while (num_entries--) {
2752 if (invalidate_old) {
2753 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2754 ggtt_invalidate_pte(vgpu, &old_entry);
2755 }
2756 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2757 }
2758
2759 index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2760 num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2761 while (num_entries--) {
2762 if (invalidate_old) {
2763 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2764 ggtt_invalidate_pte(vgpu, &old_entry);
2765 }
2766 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2767 }
2768
2769 ggtt_invalidate(dev_priv);
2770 }
2771
2772 /**
2773 * intel_vgpu_reset_gtt - reset the all GTT related status
2774 * @vgpu: a vGPU
2775 *
2776 * This function is called from vfio core to reset reset all
2777 * GTT related status, including GGTT, PPGTT, scratch page.
2778 *
2779 */
2780 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2781 {
2782 /* Shadow pages are only created when there is no page
2783 * table tracking data, so remove page tracking data after
2784 * removing the shadow pages.
2785 */
2786 intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2787 intel_vgpu_reset_ggtt(vgpu, true);
2788 }