]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_cmd_parser.c
drm/i915: Use the precomputed value for whether to enable command parsing
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_cmd_parser.c
1 /*
2 * Copyright © 2013 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Brad Volkin <bradley.d.volkin@intel.com>
25 *
26 */
27
28 #include "i915_drv.h"
29
30 /**
31 * DOC: batch buffer command parser
32 *
33 * Motivation:
34 * Certain OpenGL features (e.g. transform feedback, performance monitoring)
35 * require userspace code to submit batches containing commands such as
36 * MI_LOAD_REGISTER_IMM to access various registers. Unfortunately, some
37 * generations of the hardware will noop these commands in "unsecure" batches
38 * (which includes all userspace batches submitted via i915) even though the
39 * commands may be safe and represent the intended programming model of the
40 * device.
41 *
42 * The software command parser is similar in operation to the command parsing
43 * done in hardware for unsecure batches. However, the software parser allows
44 * some operations that would be noop'd by hardware, if the parser determines
45 * the operation is safe, and submits the batch as "secure" to prevent hardware
46 * parsing.
47 *
48 * Threats:
49 * At a high level, the hardware (and software) checks attempt to prevent
50 * granting userspace undue privileges. There are three categories of privilege.
51 *
52 * First, commands which are explicitly defined as privileged or which should
53 * only be used by the kernel driver. The parser generally rejects such
54 * commands, though it may allow some from the drm master process.
55 *
56 * Second, commands which access registers. To support correct/enhanced
57 * userspace functionality, particularly certain OpenGL extensions, the parser
58 * provides a whitelist of registers which userspace may safely access (for both
59 * normal and drm master processes).
60 *
61 * Third, commands which access privileged memory (i.e. GGTT, HWS page, etc).
62 * The parser always rejects such commands.
63 *
64 * The majority of the problematic commands fall in the MI_* range, with only a
65 * few specific commands on each engine (e.g. PIPE_CONTROL and MI_FLUSH_DW).
66 *
67 * Implementation:
68 * Each engine maintains tables of commands and registers which the parser
69 * uses in scanning batch buffers submitted to that engine.
70 *
71 * Since the set of commands that the parser must check for is significantly
72 * smaller than the number of commands supported, the parser tables contain only
73 * those commands required by the parser. This generally works because command
74 * opcode ranges have standard command length encodings. So for commands that
75 * the parser does not need to check, it can easily skip them. This is
76 * implemented via a per-engine length decoding vfunc.
77 *
78 * Unfortunately, there are a number of commands that do not follow the standard
79 * length encoding for their opcode range, primarily amongst the MI_* commands.
80 * To handle this, the parser provides a way to define explicit "skip" entries
81 * in the per-engine command tables.
82 *
83 * Other command table entries map fairly directly to high level categories
84 * mentioned above: rejected, master-only, register whitelist. The parser
85 * implements a number of checks, including the privileged memory checks, via a
86 * general bitmasking mechanism.
87 */
88
89 /*
90 * A command that requires special handling by the command parser.
91 */
92 struct drm_i915_cmd_descriptor {
93 /*
94 * Flags describing how the command parser processes the command.
95 *
96 * CMD_DESC_FIXED: The command has a fixed length if this is set,
97 * a length mask if not set
98 * CMD_DESC_SKIP: The command is allowed but does not follow the
99 * standard length encoding for the opcode range in
100 * which it falls
101 * CMD_DESC_REJECT: The command is never allowed
102 * CMD_DESC_REGISTER: The command should be checked against the
103 * register whitelist for the appropriate ring
104 * CMD_DESC_MASTER: The command is allowed if the submitting process
105 * is the DRM master
106 */
107 u32 flags;
108 #define CMD_DESC_FIXED (1<<0)
109 #define CMD_DESC_SKIP (1<<1)
110 #define CMD_DESC_REJECT (1<<2)
111 #define CMD_DESC_REGISTER (1<<3)
112 #define CMD_DESC_BITMASK (1<<4)
113 #define CMD_DESC_MASTER (1<<5)
114
115 /*
116 * The command's unique identification bits and the bitmask to get them.
117 * This isn't strictly the opcode field as defined in the spec and may
118 * also include type, subtype, and/or subop fields.
119 */
120 struct {
121 u32 value;
122 u32 mask;
123 } cmd;
124
125 /*
126 * The command's length. The command is either fixed length (i.e. does
127 * not include a length field) or has a length field mask. The flag
128 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
129 * a length mask. All command entries in a command table must include
130 * length information.
131 */
132 union {
133 u32 fixed;
134 u32 mask;
135 } length;
136
137 /*
138 * Describes where to find a register address in the command to check
139 * against the ring's register whitelist. Only valid if flags has the
140 * CMD_DESC_REGISTER bit set.
141 *
142 * A non-zero step value implies that the command may access multiple
143 * registers in sequence (e.g. LRI), in that case step gives the
144 * distance in dwords between individual offset fields.
145 */
146 struct {
147 u32 offset;
148 u32 mask;
149 u32 step;
150 } reg;
151
152 #define MAX_CMD_DESC_BITMASKS 3
153 /*
154 * Describes command checks where a particular dword is masked and
155 * compared against an expected value. If the command does not match
156 * the expected value, the parser rejects it. Only valid if flags has
157 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
158 * are valid.
159 *
160 * If the check specifies a non-zero condition_mask then the parser
161 * only performs the check when the bits specified by condition_mask
162 * are non-zero.
163 */
164 struct {
165 u32 offset;
166 u32 mask;
167 u32 expected;
168 u32 condition_offset;
169 u32 condition_mask;
170 } bits[MAX_CMD_DESC_BITMASKS];
171 };
172
173 /*
174 * A table of commands requiring special handling by the command parser.
175 *
176 * Each engine has an array of tables. Each table consists of an array of
177 * command descriptors, which must be sorted with command opcodes in
178 * ascending order.
179 */
180 struct drm_i915_cmd_table {
181 const struct drm_i915_cmd_descriptor *table;
182 int count;
183 };
184
185 #define STD_MI_OPCODE_SHIFT (32 - 9)
186 #define STD_3D_OPCODE_SHIFT (32 - 16)
187 #define STD_2D_OPCODE_SHIFT (32 - 10)
188 #define STD_MFX_OPCODE_SHIFT (32 - 16)
189 #define MIN_OPCODE_SHIFT 16
190
191 #define CMD(op, opm, f, lm, fl, ...) \
192 { \
193 .flags = (fl) | ((f) ? CMD_DESC_FIXED : 0), \
194 .cmd = { (op), ~0u << (opm) }, \
195 .length = { (lm) }, \
196 __VA_ARGS__ \
197 }
198
199 /* Convenience macros to compress the tables */
200 #define SMI STD_MI_OPCODE_SHIFT
201 #define S3D STD_3D_OPCODE_SHIFT
202 #define S2D STD_2D_OPCODE_SHIFT
203 #define SMFX STD_MFX_OPCODE_SHIFT
204 #define F true
205 #define S CMD_DESC_SKIP
206 #define R CMD_DESC_REJECT
207 #define W CMD_DESC_REGISTER
208 #define B CMD_DESC_BITMASK
209 #define M CMD_DESC_MASTER
210
211 /* Command Mask Fixed Len Action
212 ---------------------------------------------------------- */
213 static const struct drm_i915_cmd_descriptor common_cmds[] = {
214 CMD( MI_NOOP, SMI, F, 1, S ),
215 CMD( MI_USER_INTERRUPT, SMI, F, 1, R ),
216 CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, M ),
217 CMD( MI_ARB_CHECK, SMI, F, 1, S ),
218 CMD( MI_REPORT_HEAD, SMI, F, 1, S ),
219 CMD( MI_SUSPEND_FLUSH, SMI, F, 1, S ),
220 CMD( MI_SEMAPHORE_MBOX, SMI, !F, 0xFF, R ),
221 CMD( MI_STORE_DWORD_INDEX, SMI, !F, 0xFF, R ),
222 CMD( MI_LOAD_REGISTER_IMM(1), SMI, !F, 0xFF, W,
223 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 } ),
224 CMD( MI_STORE_REGISTER_MEM, SMI, F, 3, W | B,
225 .reg = { .offset = 1, .mask = 0x007FFFFC },
226 .bits = {{
227 .offset = 0,
228 .mask = MI_GLOBAL_GTT,
229 .expected = 0,
230 }}, ),
231 CMD( MI_LOAD_REGISTER_MEM, SMI, F, 3, W | B,
232 .reg = { .offset = 1, .mask = 0x007FFFFC },
233 .bits = {{
234 .offset = 0,
235 .mask = MI_GLOBAL_GTT,
236 .expected = 0,
237 }}, ),
238 /*
239 * MI_BATCH_BUFFER_START requires some special handling. It's not
240 * really a 'skip' action but it doesn't seem like it's worth adding
241 * a new action. See i915_parse_cmds().
242 */
243 CMD( MI_BATCH_BUFFER_START, SMI, !F, 0xFF, S ),
244 };
245
246 static const struct drm_i915_cmd_descriptor render_cmds[] = {
247 CMD( MI_FLUSH, SMI, F, 1, S ),
248 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ),
249 CMD( MI_PREDICATE, SMI, F, 1, S ),
250 CMD( MI_TOPOLOGY_FILTER, SMI, F, 1, S ),
251 CMD( MI_SET_APPID, SMI, F, 1, S ),
252 CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ),
253 CMD( MI_SET_CONTEXT, SMI, !F, 0xFF, R ),
254 CMD( MI_URB_CLEAR, SMI, !F, 0xFF, S ),
255 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3F, B,
256 .bits = {{
257 .offset = 0,
258 .mask = MI_GLOBAL_GTT,
259 .expected = 0,
260 }}, ),
261 CMD( MI_UPDATE_GTT, SMI, !F, 0xFF, R ),
262 CMD( MI_CLFLUSH, SMI, !F, 0x3FF, B,
263 .bits = {{
264 .offset = 0,
265 .mask = MI_GLOBAL_GTT,
266 .expected = 0,
267 }}, ),
268 CMD( MI_REPORT_PERF_COUNT, SMI, !F, 0x3F, B,
269 .bits = {{
270 .offset = 1,
271 .mask = MI_REPORT_PERF_COUNT_GGTT,
272 .expected = 0,
273 }}, ),
274 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B,
275 .bits = {{
276 .offset = 0,
277 .mask = MI_GLOBAL_GTT,
278 .expected = 0,
279 }}, ),
280 CMD( GFX_OP_3DSTATE_VF_STATISTICS, S3D, F, 1, S ),
281 CMD( PIPELINE_SELECT, S3D, F, 1, S ),
282 CMD( MEDIA_VFE_STATE, S3D, !F, 0xFFFF, B,
283 .bits = {{
284 .offset = 2,
285 .mask = MEDIA_VFE_STATE_MMIO_ACCESS_MASK,
286 .expected = 0,
287 }}, ),
288 CMD( GPGPU_OBJECT, S3D, !F, 0xFF, S ),
289 CMD( GPGPU_WALKER, S3D, !F, 0xFF, S ),
290 CMD( GFX_OP_3DSTATE_SO_DECL_LIST, S3D, !F, 0x1FF, S ),
291 CMD( GFX_OP_PIPE_CONTROL(5), S3D, !F, 0xFF, B,
292 .bits = {{
293 .offset = 1,
294 .mask = (PIPE_CONTROL_MMIO_WRITE | PIPE_CONTROL_NOTIFY),
295 .expected = 0,
296 },
297 {
298 .offset = 1,
299 .mask = (PIPE_CONTROL_GLOBAL_GTT_IVB |
300 PIPE_CONTROL_STORE_DATA_INDEX),
301 .expected = 0,
302 .condition_offset = 1,
303 .condition_mask = PIPE_CONTROL_POST_SYNC_OP_MASK,
304 }}, ),
305 };
306
307 static const struct drm_i915_cmd_descriptor hsw_render_cmds[] = {
308 CMD( MI_SET_PREDICATE, SMI, F, 1, S ),
309 CMD( MI_RS_CONTROL, SMI, F, 1, S ),
310 CMD( MI_URB_ATOMIC_ALLOC, SMI, F, 1, S ),
311 CMD( MI_SET_APPID, SMI, F, 1, S ),
312 CMD( MI_RS_CONTEXT, SMI, F, 1, S ),
313 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, M ),
314 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ),
315 CMD( MI_LOAD_REGISTER_REG, SMI, !F, 0xFF, W,
316 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 } ),
317 CMD( MI_RS_STORE_DATA_IMM, SMI, !F, 0xFF, S ),
318 CMD( MI_LOAD_URB_MEM, SMI, !F, 0xFF, S ),
319 CMD( MI_STORE_URB_MEM, SMI, !F, 0xFF, S ),
320 CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_VS, S3D, !F, 0x7FF, S ),
321 CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_PS, S3D, !F, 0x7FF, S ),
322
323 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_VS, S3D, !F, 0x1FF, S ),
324 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_GS, S3D, !F, 0x1FF, S ),
325 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_HS, S3D, !F, 0x1FF, S ),
326 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_DS, S3D, !F, 0x1FF, S ),
327 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_PS, S3D, !F, 0x1FF, S ),
328 };
329
330 static const struct drm_i915_cmd_descriptor video_cmds[] = {
331 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ),
332 CMD( MI_SET_APPID, SMI, F, 1, S ),
333 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B,
334 .bits = {{
335 .offset = 0,
336 .mask = MI_GLOBAL_GTT,
337 .expected = 0,
338 }}, ),
339 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ),
340 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B,
341 .bits = {{
342 .offset = 0,
343 .mask = MI_FLUSH_DW_NOTIFY,
344 .expected = 0,
345 },
346 {
347 .offset = 1,
348 .mask = MI_FLUSH_DW_USE_GTT,
349 .expected = 0,
350 .condition_offset = 0,
351 .condition_mask = MI_FLUSH_DW_OP_MASK,
352 },
353 {
354 .offset = 0,
355 .mask = MI_FLUSH_DW_STORE_INDEX,
356 .expected = 0,
357 .condition_offset = 0,
358 .condition_mask = MI_FLUSH_DW_OP_MASK,
359 }}, ),
360 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B,
361 .bits = {{
362 .offset = 0,
363 .mask = MI_GLOBAL_GTT,
364 .expected = 0,
365 }}, ),
366 /*
367 * MFX_WAIT doesn't fit the way we handle length for most commands.
368 * It has a length field but it uses a non-standard length bias.
369 * It is always 1 dword though, so just treat it as fixed length.
370 */
371 CMD( MFX_WAIT, SMFX, F, 1, S ),
372 };
373
374 static const struct drm_i915_cmd_descriptor vecs_cmds[] = {
375 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ),
376 CMD( MI_SET_APPID, SMI, F, 1, S ),
377 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B,
378 .bits = {{
379 .offset = 0,
380 .mask = MI_GLOBAL_GTT,
381 .expected = 0,
382 }}, ),
383 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ),
384 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B,
385 .bits = {{
386 .offset = 0,
387 .mask = MI_FLUSH_DW_NOTIFY,
388 .expected = 0,
389 },
390 {
391 .offset = 1,
392 .mask = MI_FLUSH_DW_USE_GTT,
393 .expected = 0,
394 .condition_offset = 0,
395 .condition_mask = MI_FLUSH_DW_OP_MASK,
396 },
397 {
398 .offset = 0,
399 .mask = MI_FLUSH_DW_STORE_INDEX,
400 .expected = 0,
401 .condition_offset = 0,
402 .condition_mask = MI_FLUSH_DW_OP_MASK,
403 }}, ),
404 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B,
405 .bits = {{
406 .offset = 0,
407 .mask = MI_GLOBAL_GTT,
408 .expected = 0,
409 }}, ),
410 };
411
412 static const struct drm_i915_cmd_descriptor blt_cmds[] = {
413 CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ),
414 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3FF, B,
415 .bits = {{
416 .offset = 0,
417 .mask = MI_GLOBAL_GTT,
418 .expected = 0,
419 }}, ),
420 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ),
421 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B,
422 .bits = {{
423 .offset = 0,
424 .mask = MI_FLUSH_DW_NOTIFY,
425 .expected = 0,
426 },
427 {
428 .offset = 1,
429 .mask = MI_FLUSH_DW_USE_GTT,
430 .expected = 0,
431 .condition_offset = 0,
432 .condition_mask = MI_FLUSH_DW_OP_MASK,
433 },
434 {
435 .offset = 0,
436 .mask = MI_FLUSH_DW_STORE_INDEX,
437 .expected = 0,
438 .condition_offset = 0,
439 .condition_mask = MI_FLUSH_DW_OP_MASK,
440 }}, ),
441 CMD( COLOR_BLT, S2D, !F, 0x3F, S ),
442 CMD( SRC_COPY_BLT, S2D, !F, 0x3F, S ),
443 };
444
445 static const struct drm_i915_cmd_descriptor hsw_blt_cmds[] = {
446 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, M ),
447 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ),
448 };
449
450 static const struct drm_i915_cmd_descriptor noop_desc =
451 CMD(MI_NOOP, SMI, F, 1, S);
452
453 #undef CMD
454 #undef SMI
455 #undef S3D
456 #undef S2D
457 #undef SMFX
458 #undef F
459 #undef S
460 #undef R
461 #undef W
462 #undef B
463 #undef M
464
465 static const struct drm_i915_cmd_table gen7_render_cmds[] = {
466 { common_cmds, ARRAY_SIZE(common_cmds) },
467 { render_cmds, ARRAY_SIZE(render_cmds) },
468 };
469
470 static const struct drm_i915_cmd_table hsw_render_ring_cmds[] = {
471 { common_cmds, ARRAY_SIZE(common_cmds) },
472 { render_cmds, ARRAY_SIZE(render_cmds) },
473 { hsw_render_cmds, ARRAY_SIZE(hsw_render_cmds) },
474 };
475
476 static const struct drm_i915_cmd_table gen7_video_cmds[] = {
477 { common_cmds, ARRAY_SIZE(common_cmds) },
478 { video_cmds, ARRAY_SIZE(video_cmds) },
479 };
480
481 static const struct drm_i915_cmd_table hsw_vebox_cmds[] = {
482 { common_cmds, ARRAY_SIZE(common_cmds) },
483 { vecs_cmds, ARRAY_SIZE(vecs_cmds) },
484 };
485
486 static const struct drm_i915_cmd_table gen7_blt_cmds[] = {
487 { common_cmds, ARRAY_SIZE(common_cmds) },
488 { blt_cmds, ARRAY_SIZE(blt_cmds) },
489 };
490
491 static const struct drm_i915_cmd_table hsw_blt_ring_cmds[] = {
492 { common_cmds, ARRAY_SIZE(common_cmds) },
493 { blt_cmds, ARRAY_SIZE(blt_cmds) },
494 { hsw_blt_cmds, ARRAY_SIZE(hsw_blt_cmds) },
495 };
496
497 /*
498 * Register whitelists, sorted by increasing register offset.
499 */
500
501 /*
502 * An individual whitelist entry granting access to register addr. If
503 * mask is non-zero the argument of immediate register writes will be
504 * AND-ed with mask, and the command will be rejected if the result
505 * doesn't match value.
506 *
507 * Registers with non-zero mask are only allowed to be written using
508 * LRI.
509 */
510 struct drm_i915_reg_descriptor {
511 i915_reg_t addr;
512 u32 mask;
513 u32 value;
514 };
515
516 /* Convenience macro for adding 32-bit registers. */
517 #define REG32(_reg, ...) \
518 { .addr = (_reg), __VA_ARGS__ }
519
520 /*
521 * Convenience macro for adding 64-bit registers.
522 *
523 * Some registers that userspace accesses are 64 bits. The register
524 * access commands only allow 32-bit accesses. Hence, we have to include
525 * entries for both halves of the 64-bit registers.
526 */
527 #define REG64(_reg) \
528 { .addr = _reg }, \
529 { .addr = _reg ## _UDW }
530
531 #define REG64_IDX(_reg, idx) \
532 { .addr = _reg(idx) }, \
533 { .addr = _reg ## _UDW(idx) }
534
535 static const struct drm_i915_reg_descriptor gen7_render_regs[] = {
536 REG64(GPGPU_THREADS_DISPATCHED),
537 REG64(HS_INVOCATION_COUNT),
538 REG64(DS_INVOCATION_COUNT),
539 REG64(IA_VERTICES_COUNT),
540 REG64(IA_PRIMITIVES_COUNT),
541 REG64(VS_INVOCATION_COUNT),
542 REG64(GS_INVOCATION_COUNT),
543 REG64(GS_PRIMITIVES_COUNT),
544 REG64(CL_INVOCATION_COUNT),
545 REG64(CL_PRIMITIVES_COUNT),
546 REG64(PS_INVOCATION_COUNT),
547 REG64(PS_DEPTH_COUNT),
548 REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
549 REG64(MI_PREDICATE_SRC0),
550 REG64(MI_PREDICATE_SRC1),
551 REG32(GEN7_3DPRIM_END_OFFSET),
552 REG32(GEN7_3DPRIM_START_VERTEX),
553 REG32(GEN7_3DPRIM_VERTEX_COUNT),
554 REG32(GEN7_3DPRIM_INSTANCE_COUNT),
555 REG32(GEN7_3DPRIM_START_INSTANCE),
556 REG32(GEN7_3DPRIM_BASE_VERTEX),
557 REG32(GEN7_GPGPU_DISPATCHDIMX),
558 REG32(GEN7_GPGPU_DISPATCHDIMY),
559 REG32(GEN7_GPGPU_DISPATCHDIMZ),
560 REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
561 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 0),
562 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 1),
563 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 2),
564 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 3),
565 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 0),
566 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 1),
567 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 2),
568 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 3),
569 REG32(GEN7_SO_WRITE_OFFSET(0)),
570 REG32(GEN7_SO_WRITE_OFFSET(1)),
571 REG32(GEN7_SO_WRITE_OFFSET(2)),
572 REG32(GEN7_SO_WRITE_OFFSET(3)),
573 REG32(GEN7_L3SQCREG1),
574 REG32(GEN7_L3CNTLREG2),
575 REG32(GEN7_L3CNTLREG3),
576 REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
577 };
578
579 static const struct drm_i915_reg_descriptor hsw_render_regs[] = {
580 REG64_IDX(HSW_CS_GPR, 0),
581 REG64_IDX(HSW_CS_GPR, 1),
582 REG64_IDX(HSW_CS_GPR, 2),
583 REG64_IDX(HSW_CS_GPR, 3),
584 REG64_IDX(HSW_CS_GPR, 4),
585 REG64_IDX(HSW_CS_GPR, 5),
586 REG64_IDX(HSW_CS_GPR, 6),
587 REG64_IDX(HSW_CS_GPR, 7),
588 REG64_IDX(HSW_CS_GPR, 8),
589 REG64_IDX(HSW_CS_GPR, 9),
590 REG64_IDX(HSW_CS_GPR, 10),
591 REG64_IDX(HSW_CS_GPR, 11),
592 REG64_IDX(HSW_CS_GPR, 12),
593 REG64_IDX(HSW_CS_GPR, 13),
594 REG64_IDX(HSW_CS_GPR, 14),
595 REG64_IDX(HSW_CS_GPR, 15),
596 REG32(HSW_SCRATCH1,
597 .mask = ~HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE,
598 .value = 0),
599 REG32(HSW_ROW_CHICKEN3,
600 .mask = ~(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE << 16 |
601 HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
602 .value = 0),
603 };
604
605 static const struct drm_i915_reg_descriptor gen7_blt_regs[] = {
606 REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
607 REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
608 REG32(BCS_SWCTRL),
609 REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
610 };
611
612 static const struct drm_i915_reg_descriptor ivb_master_regs[] = {
613 REG32(FORCEWAKE_MT),
614 REG32(DERRMR),
615 REG32(GEN7_PIPE_DE_LOAD_SL(PIPE_A)),
616 REG32(GEN7_PIPE_DE_LOAD_SL(PIPE_B)),
617 REG32(GEN7_PIPE_DE_LOAD_SL(PIPE_C)),
618 };
619
620 static const struct drm_i915_reg_descriptor hsw_master_regs[] = {
621 REG32(FORCEWAKE_MT),
622 REG32(DERRMR),
623 };
624
625 #undef REG64
626 #undef REG32
627
628 struct drm_i915_reg_table {
629 const struct drm_i915_reg_descriptor *regs;
630 int num_regs;
631 bool master;
632 };
633
634 static const struct drm_i915_reg_table ivb_render_reg_tables[] = {
635 { gen7_render_regs, ARRAY_SIZE(gen7_render_regs), false },
636 { ivb_master_regs, ARRAY_SIZE(ivb_master_regs), true },
637 };
638
639 static const struct drm_i915_reg_table ivb_blt_reg_tables[] = {
640 { gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs), false },
641 { ivb_master_regs, ARRAY_SIZE(ivb_master_regs), true },
642 };
643
644 static const struct drm_i915_reg_table hsw_render_reg_tables[] = {
645 { gen7_render_regs, ARRAY_SIZE(gen7_render_regs), false },
646 { hsw_render_regs, ARRAY_SIZE(hsw_render_regs), false },
647 { hsw_master_regs, ARRAY_SIZE(hsw_master_regs), true },
648 };
649
650 static const struct drm_i915_reg_table hsw_blt_reg_tables[] = {
651 { gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs), false },
652 { hsw_master_regs, ARRAY_SIZE(hsw_master_regs), true },
653 };
654
655 static u32 gen7_render_get_cmd_length_mask(u32 cmd_header)
656 {
657 u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
658 u32 subclient =
659 (cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT;
660
661 if (client == INSTR_MI_CLIENT)
662 return 0x3F;
663 else if (client == INSTR_RC_CLIENT) {
664 if (subclient == INSTR_MEDIA_SUBCLIENT)
665 return 0xFFFF;
666 else
667 return 0xFF;
668 }
669
670 DRM_DEBUG_DRIVER("CMD: Abnormal rcs cmd length! 0x%08X\n", cmd_header);
671 return 0;
672 }
673
674 static u32 gen7_bsd_get_cmd_length_mask(u32 cmd_header)
675 {
676 u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
677 u32 subclient =
678 (cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT;
679 u32 op = (cmd_header & INSTR_26_TO_24_MASK) >> INSTR_26_TO_24_SHIFT;
680
681 if (client == INSTR_MI_CLIENT)
682 return 0x3F;
683 else if (client == INSTR_RC_CLIENT) {
684 if (subclient == INSTR_MEDIA_SUBCLIENT) {
685 if (op == 6)
686 return 0xFFFF;
687 else
688 return 0xFFF;
689 } else
690 return 0xFF;
691 }
692
693 DRM_DEBUG_DRIVER("CMD: Abnormal bsd cmd length! 0x%08X\n", cmd_header);
694 return 0;
695 }
696
697 static u32 gen7_blt_get_cmd_length_mask(u32 cmd_header)
698 {
699 u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
700
701 if (client == INSTR_MI_CLIENT)
702 return 0x3F;
703 else if (client == INSTR_BC_CLIENT)
704 return 0xFF;
705
706 DRM_DEBUG_DRIVER("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header);
707 return 0;
708 }
709
710 static bool validate_cmds_sorted(const struct intel_engine_cs *engine,
711 const struct drm_i915_cmd_table *cmd_tables,
712 int cmd_table_count)
713 {
714 int i;
715 bool ret = true;
716
717 if (!cmd_tables || cmd_table_count == 0)
718 return true;
719
720 for (i = 0; i < cmd_table_count; i++) {
721 const struct drm_i915_cmd_table *table = &cmd_tables[i];
722 u32 previous = 0;
723 int j;
724
725 for (j = 0; j < table->count; j++) {
726 const struct drm_i915_cmd_descriptor *desc =
727 &table->table[j];
728 u32 curr = desc->cmd.value & desc->cmd.mask;
729
730 if (curr < previous) {
731 DRM_ERROR("CMD: %s [%d] command table not sorted: "
732 "table=%d entry=%d cmd=0x%08X prev=0x%08X\n",
733 engine->name, engine->id,
734 i, j, curr, previous);
735 ret = false;
736 }
737
738 previous = curr;
739 }
740 }
741
742 return ret;
743 }
744
745 static bool check_sorted(const struct intel_engine_cs *engine,
746 const struct drm_i915_reg_descriptor *reg_table,
747 int reg_count)
748 {
749 int i;
750 u32 previous = 0;
751 bool ret = true;
752
753 for (i = 0; i < reg_count; i++) {
754 u32 curr = i915_mmio_reg_offset(reg_table[i].addr);
755
756 if (curr < previous) {
757 DRM_ERROR("CMD: %s [%d] register table not sorted: "
758 "entry=%d reg=0x%08X prev=0x%08X\n",
759 engine->name, engine->id,
760 i, curr, previous);
761 ret = false;
762 }
763
764 previous = curr;
765 }
766
767 return ret;
768 }
769
770 static bool validate_regs_sorted(struct intel_engine_cs *engine)
771 {
772 int i;
773 const struct drm_i915_reg_table *table;
774
775 for (i = 0; i < engine->reg_table_count; i++) {
776 table = &engine->reg_tables[i];
777 if (!check_sorted(engine, table->regs, table->num_regs))
778 return false;
779 }
780
781 return true;
782 }
783
784 struct cmd_node {
785 const struct drm_i915_cmd_descriptor *desc;
786 struct hlist_node node;
787 };
788
789 /*
790 * Different command ranges have different numbers of bits for the opcode. For
791 * example, MI commands use bits 31:23 while 3D commands use bits 31:16. The
792 * problem is that, for example, MI commands use bits 22:16 for other fields
793 * such as GGTT vs PPGTT bits. If we include those bits in the mask then when
794 * we mask a command from a batch it could hash to the wrong bucket due to
795 * non-opcode bits being set. But if we don't include those bits, some 3D
796 * commands may hash to the same bucket due to not including opcode bits that
797 * make the command unique. For now, we will risk hashing to the same bucket.
798 */
799 static inline u32 cmd_header_key(u32 x)
800 {
801 u32 shift;
802
803 switch (x >> INSTR_CLIENT_SHIFT) {
804 default:
805 case INSTR_MI_CLIENT:
806 shift = STD_MI_OPCODE_SHIFT;
807 break;
808 case INSTR_RC_CLIENT:
809 shift = STD_3D_OPCODE_SHIFT;
810 break;
811 case INSTR_BC_CLIENT:
812 shift = STD_2D_OPCODE_SHIFT;
813 break;
814 }
815
816 return x >> shift;
817 }
818
819 static int init_hash_table(struct intel_engine_cs *engine,
820 const struct drm_i915_cmd_table *cmd_tables,
821 int cmd_table_count)
822 {
823 int i, j;
824
825 hash_init(engine->cmd_hash);
826
827 for (i = 0; i < cmd_table_count; i++) {
828 const struct drm_i915_cmd_table *table = &cmd_tables[i];
829
830 for (j = 0; j < table->count; j++) {
831 const struct drm_i915_cmd_descriptor *desc =
832 &table->table[j];
833 struct cmd_node *desc_node =
834 kmalloc(sizeof(*desc_node), GFP_KERNEL);
835
836 if (!desc_node)
837 return -ENOMEM;
838
839 desc_node->desc = desc;
840 hash_add(engine->cmd_hash, &desc_node->node,
841 cmd_header_key(desc->cmd.value));
842 }
843 }
844
845 return 0;
846 }
847
848 static void fini_hash_table(struct intel_engine_cs *engine)
849 {
850 struct hlist_node *tmp;
851 struct cmd_node *desc_node;
852 int i;
853
854 hash_for_each_safe(engine->cmd_hash, i, tmp, desc_node, node) {
855 hash_del(&desc_node->node);
856 kfree(desc_node);
857 }
858 }
859
860 /**
861 * intel_engine_init_cmd_parser() - set cmd parser related fields for an engine
862 * @engine: the engine to initialize
863 *
864 * Optionally initializes fields related to batch buffer command parsing in the
865 * struct intel_engine_cs based on whether the platform requires software
866 * command parsing.
867 */
868 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine)
869 {
870 const struct drm_i915_cmd_table *cmd_tables;
871 int cmd_table_count;
872 int ret;
873
874 if (!IS_GEN7(engine->i915))
875 return;
876
877 switch (engine->id) {
878 case RCS:
879 if (IS_HASWELL(engine->i915)) {
880 cmd_tables = hsw_render_ring_cmds;
881 cmd_table_count =
882 ARRAY_SIZE(hsw_render_ring_cmds);
883 } else {
884 cmd_tables = gen7_render_cmds;
885 cmd_table_count = ARRAY_SIZE(gen7_render_cmds);
886 }
887
888 if (IS_HASWELL(engine->i915)) {
889 engine->reg_tables = hsw_render_reg_tables;
890 engine->reg_table_count = ARRAY_SIZE(hsw_render_reg_tables);
891 } else {
892 engine->reg_tables = ivb_render_reg_tables;
893 engine->reg_table_count = ARRAY_SIZE(ivb_render_reg_tables);
894 }
895
896 engine->get_cmd_length_mask = gen7_render_get_cmd_length_mask;
897 break;
898 case VCS:
899 cmd_tables = gen7_video_cmds;
900 cmd_table_count = ARRAY_SIZE(gen7_video_cmds);
901 engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
902 break;
903 case BCS:
904 if (IS_HASWELL(engine->i915)) {
905 cmd_tables = hsw_blt_ring_cmds;
906 cmd_table_count = ARRAY_SIZE(hsw_blt_ring_cmds);
907 } else {
908 cmd_tables = gen7_blt_cmds;
909 cmd_table_count = ARRAY_SIZE(gen7_blt_cmds);
910 }
911
912 if (IS_HASWELL(engine->i915)) {
913 engine->reg_tables = hsw_blt_reg_tables;
914 engine->reg_table_count = ARRAY_SIZE(hsw_blt_reg_tables);
915 } else {
916 engine->reg_tables = ivb_blt_reg_tables;
917 engine->reg_table_count = ARRAY_SIZE(ivb_blt_reg_tables);
918 }
919
920 engine->get_cmd_length_mask = gen7_blt_get_cmd_length_mask;
921 break;
922 case VECS:
923 cmd_tables = hsw_vebox_cmds;
924 cmd_table_count = ARRAY_SIZE(hsw_vebox_cmds);
925 /* VECS can use the same length_mask function as VCS */
926 engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
927 break;
928 default:
929 MISSING_CASE(engine->id);
930 return;
931 }
932
933 if (!validate_cmds_sorted(engine, cmd_tables, cmd_table_count)) {
934 DRM_ERROR("%s: command descriptions are not sorted\n",
935 engine->name);
936 return;
937 }
938 if (!validate_regs_sorted(engine)) {
939 DRM_ERROR("%s: registers are not sorted\n", engine->name);
940 return;
941 }
942
943 ret = init_hash_table(engine, cmd_tables, cmd_table_count);
944 if (ret) {
945 DRM_ERROR("%s: initialised failed!\n", engine->name);
946 fini_hash_table(engine);
947 return;
948 }
949
950 engine->needs_cmd_parser = true;
951 }
952
953 /**
954 * intel_engine_cleanup_cmd_parser() - clean up cmd parser related fields
955 * @engine: the engine to clean up
956 *
957 * Releases any resources related to command parsing that may have been
958 * initialized for the specified engine.
959 */
960 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine)
961 {
962 if (!engine->needs_cmd_parser)
963 return;
964
965 fini_hash_table(engine);
966 }
967
968 static const struct drm_i915_cmd_descriptor*
969 find_cmd_in_table(struct intel_engine_cs *engine,
970 u32 cmd_header)
971 {
972 struct cmd_node *desc_node;
973
974 hash_for_each_possible(engine->cmd_hash, desc_node, node,
975 cmd_header_key(cmd_header)) {
976 const struct drm_i915_cmd_descriptor *desc = desc_node->desc;
977 if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0)
978 return desc;
979 }
980
981 return NULL;
982 }
983
984 /*
985 * Returns a pointer to a descriptor for the command specified by cmd_header.
986 *
987 * The caller must supply space for a default descriptor via the default_desc
988 * parameter. If no descriptor for the specified command exists in the engine's
989 * command parser tables, this function fills in default_desc based on the
990 * engine's default length encoding and returns default_desc.
991 */
992 static const struct drm_i915_cmd_descriptor*
993 find_cmd(struct intel_engine_cs *engine,
994 u32 cmd_header,
995 const struct drm_i915_cmd_descriptor *desc,
996 struct drm_i915_cmd_descriptor *default_desc)
997 {
998 u32 mask;
999
1000 if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0)
1001 return desc;
1002
1003 desc = find_cmd_in_table(engine, cmd_header);
1004 if (desc)
1005 return desc;
1006
1007 mask = engine->get_cmd_length_mask(cmd_header);
1008 if (!mask)
1009 return NULL;
1010
1011 default_desc->cmd.value = cmd_header;
1012 default_desc->cmd.mask = ~0u << MIN_OPCODE_SHIFT;
1013 default_desc->length.mask = mask;
1014 default_desc->flags = CMD_DESC_SKIP;
1015 return default_desc;
1016 }
1017
1018 static const struct drm_i915_reg_descriptor *
1019 __find_reg(const struct drm_i915_reg_descriptor *table, int count, u32 addr)
1020 {
1021 int start = 0, end = count;
1022 while (start < end) {
1023 int mid = start + (end - start) / 2;
1024 int ret = addr - i915_mmio_reg_offset(table[mid].addr);
1025 if (ret < 0)
1026 end = mid;
1027 else if (ret > 0)
1028 start = mid + 1;
1029 else
1030 return &table[mid];
1031 }
1032 return NULL;
1033 }
1034
1035 static const struct drm_i915_reg_descriptor *
1036 find_reg(const struct intel_engine_cs *engine, bool is_master, u32 addr)
1037 {
1038 const struct drm_i915_reg_table *table = engine->reg_tables;
1039 int count = engine->reg_table_count;
1040
1041 do {
1042 if (!table->master || is_master) {
1043 const struct drm_i915_reg_descriptor *reg;
1044
1045 reg = __find_reg(table->regs, table->num_regs, addr);
1046 if (reg != NULL)
1047 return reg;
1048 }
1049 } while (table++, --count);
1050
1051 return NULL;
1052 }
1053
1054 /* Returns a vmap'd pointer to dst_obj, which the caller must unmap */
1055 static u32 *copy_batch(struct drm_i915_gem_object *dst_obj,
1056 struct drm_i915_gem_object *src_obj,
1057 u32 batch_start_offset,
1058 u32 batch_len,
1059 bool *needs_clflush_after)
1060 {
1061 unsigned int src_needs_clflush;
1062 unsigned int dst_needs_clflush;
1063 void *dst, *src;
1064 int ret;
1065
1066 ret = i915_gem_obj_prepare_shmem_read(src_obj, &src_needs_clflush);
1067 if (ret)
1068 return ERR_PTR(ret);
1069
1070 ret = i915_gem_obj_prepare_shmem_write(dst_obj, &dst_needs_clflush);
1071 if (ret) {
1072 dst = ERR_PTR(ret);
1073 goto unpin_src;
1074 }
1075
1076 dst = i915_gem_object_pin_map(dst_obj, I915_MAP_WB);
1077 if (IS_ERR(dst))
1078 goto unpin_dst;
1079
1080 src = ERR_PTR(-ENODEV);
1081 if (src_needs_clflush &&
1082 i915_memcpy_from_wc((void *)(uintptr_t)batch_start_offset, NULL, 0)) {
1083 src = i915_gem_object_pin_map(src_obj, I915_MAP_WC);
1084 if (!IS_ERR(src)) {
1085 i915_memcpy_from_wc(dst,
1086 src + batch_start_offset,
1087 ALIGN(batch_len, 16));
1088 i915_gem_object_unpin_map(src_obj);
1089 }
1090 }
1091 if (IS_ERR(src)) {
1092 void *ptr;
1093 int offset, n;
1094
1095 offset = offset_in_page(batch_start_offset);
1096
1097 /* We can avoid clflushing partial cachelines before the write
1098 * if we only every write full cache-lines. Since we know that
1099 * both the source and destination are in multiples of
1100 * PAGE_SIZE, we can simply round up to the next cacheline.
1101 * We don't care about copying too much here as we only
1102 * validate up to the end of the batch.
1103 */
1104 if (dst_needs_clflush & CLFLUSH_BEFORE)
1105 batch_len = roundup(batch_len,
1106 boot_cpu_data.x86_clflush_size);
1107
1108 ptr = dst;
1109 for (n = batch_start_offset >> PAGE_SHIFT; batch_len; n++) {
1110 int len = min_t(int, batch_len, PAGE_SIZE - offset);
1111
1112 src = kmap_atomic(i915_gem_object_get_page(src_obj, n));
1113 if (src_needs_clflush)
1114 drm_clflush_virt_range(src + offset, len);
1115 memcpy(ptr, src + offset, len);
1116 kunmap_atomic(src);
1117
1118 ptr += len;
1119 batch_len -= len;
1120 offset = 0;
1121 }
1122 }
1123
1124 /* dst_obj is returned with vmap pinned */
1125 *needs_clflush_after = dst_needs_clflush & CLFLUSH_AFTER;
1126
1127 unpin_dst:
1128 i915_gem_obj_finish_shmem_access(dst_obj);
1129 unpin_src:
1130 i915_gem_obj_finish_shmem_access(src_obj);
1131 return dst;
1132 }
1133
1134 static bool check_cmd(const struct intel_engine_cs *engine,
1135 const struct drm_i915_cmd_descriptor *desc,
1136 const u32 *cmd, u32 length,
1137 const bool is_master)
1138 {
1139 if (desc->flags & CMD_DESC_SKIP)
1140 return true;
1141
1142 if (desc->flags & CMD_DESC_REJECT) {
1143 DRM_DEBUG_DRIVER("CMD: Rejected command: 0x%08X\n", *cmd);
1144 return false;
1145 }
1146
1147 if ((desc->flags & CMD_DESC_MASTER) && !is_master) {
1148 DRM_DEBUG_DRIVER("CMD: Rejected master-only command: 0x%08X\n",
1149 *cmd);
1150 return false;
1151 }
1152
1153 if (desc->flags & CMD_DESC_REGISTER) {
1154 /*
1155 * Get the distance between individual register offset
1156 * fields if the command can perform more than one
1157 * access at a time.
1158 */
1159 const u32 step = desc->reg.step ? desc->reg.step : length;
1160 u32 offset;
1161
1162 for (offset = desc->reg.offset; offset < length;
1163 offset += step) {
1164 const u32 reg_addr = cmd[offset] & desc->reg.mask;
1165 const struct drm_i915_reg_descriptor *reg =
1166 find_reg(engine, is_master, reg_addr);
1167
1168 if (!reg) {
1169 DRM_DEBUG_DRIVER("CMD: Rejected register 0x%08X in command: 0x%08X (exec_id=%d)\n",
1170 reg_addr, *cmd, engine->exec_id);
1171 return false;
1172 }
1173
1174 /*
1175 * Check the value written to the register against the
1176 * allowed mask/value pair given in the whitelist entry.
1177 */
1178 if (reg->mask) {
1179 if (desc->cmd.value == MI_LOAD_REGISTER_MEM) {
1180 DRM_DEBUG_DRIVER("CMD: Rejected LRM to masked register 0x%08X\n",
1181 reg_addr);
1182 return false;
1183 }
1184
1185 if (desc->cmd.value == MI_LOAD_REGISTER_REG) {
1186 DRM_DEBUG_DRIVER("CMD: Rejected LRR to masked register 0x%08X\n",
1187 reg_addr);
1188 return false;
1189 }
1190
1191 if (desc->cmd.value == MI_LOAD_REGISTER_IMM(1) &&
1192 (offset + 2 > length ||
1193 (cmd[offset + 1] & reg->mask) != reg->value)) {
1194 DRM_DEBUG_DRIVER("CMD: Rejected LRI to masked register 0x%08X\n",
1195 reg_addr);
1196 return false;
1197 }
1198 }
1199 }
1200 }
1201
1202 if (desc->flags & CMD_DESC_BITMASK) {
1203 int i;
1204
1205 for (i = 0; i < MAX_CMD_DESC_BITMASKS; i++) {
1206 u32 dword;
1207
1208 if (desc->bits[i].mask == 0)
1209 break;
1210
1211 if (desc->bits[i].condition_mask != 0) {
1212 u32 offset =
1213 desc->bits[i].condition_offset;
1214 u32 condition = cmd[offset] &
1215 desc->bits[i].condition_mask;
1216
1217 if (condition == 0)
1218 continue;
1219 }
1220
1221 dword = cmd[desc->bits[i].offset] &
1222 desc->bits[i].mask;
1223
1224 if (dword != desc->bits[i].expected) {
1225 DRM_DEBUG_DRIVER("CMD: Rejected command 0x%08X for bitmask 0x%08X (exp=0x%08X act=0x%08X) (exec_id=%d)\n",
1226 *cmd,
1227 desc->bits[i].mask,
1228 desc->bits[i].expected,
1229 dword, engine->exec_id);
1230 return false;
1231 }
1232 }
1233 }
1234
1235 return true;
1236 }
1237
1238 #define LENGTH_BIAS 2
1239
1240 /**
1241 * i915_parse_cmds() - parse a submitted batch buffer for privilege violations
1242 * @engine: the engine on which the batch is to execute
1243 * @batch_obj: the batch buffer in question
1244 * @shadow_batch_obj: copy of the batch buffer in question
1245 * @batch_start_offset: byte offset in the batch at which execution starts
1246 * @batch_len: length of the commands in batch_obj
1247 * @is_master: is the submitting process the drm master?
1248 *
1249 * Parses the specified batch buffer looking for privilege violations as
1250 * described in the overview.
1251 *
1252 * Return: non-zero if the parser finds violations or otherwise fails; -EACCES
1253 * if the batch appears legal but should use hardware parsing
1254 */
1255 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
1256 struct drm_i915_gem_object *batch_obj,
1257 struct drm_i915_gem_object *shadow_batch_obj,
1258 u32 batch_start_offset,
1259 u32 batch_len,
1260 bool is_master)
1261 {
1262 u32 *cmd, *batch_end;
1263 struct drm_i915_cmd_descriptor default_desc = noop_desc;
1264 const struct drm_i915_cmd_descriptor *desc = &default_desc;
1265 bool needs_clflush_after = false;
1266 int ret = 0;
1267
1268 cmd = copy_batch(shadow_batch_obj, batch_obj,
1269 batch_start_offset, batch_len,
1270 &needs_clflush_after);
1271 if (IS_ERR(cmd)) {
1272 DRM_DEBUG_DRIVER("CMD: Failed to copy batch\n");
1273 return PTR_ERR(cmd);
1274 }
1275
1276 /*
1277 * We use the batch length as size because the shadow object is as
1278 * large or larger and copy_batch() will write MI_NOPs to the extra
1279 * space. Parsing should be faster in some cases this way.
1280 */
1281 batch_end = cmd + (batch_len / sizeof(*batch_end));
1282 while (cmd < batch_end) {
1283 u32 length;
1284
1285 if (*cmd == MI_BATCH_BUFFER_END)
1286 break;
1287
1288 desc = find_cmd(engine, *cmd, desc, &default_desc);
1289 if (!desc) {
1290 DRM_DEBUG_DRIVER("CMD: Unrecognized command: 0x%08X\n",
1291 *cmd);
1292 ret = -EINVAL;
1293 break;
1294 }
1295
1296 /*
1297 * If the batch buffer contains a chained batch, return an
1298 * error that tells the caller to abort and dispatch the
1299 * workload as a non-secure batch.
1300 */
1301 if (desc->cmd.value == MI_BATCH_BUFFER_START) {
1302 ret = -EACCES;
1303 break;
1304 }
1305
1306 if (desc->flags & CMD_DESC_FIXED)
1307 length = desc->length.fixed;
1308 else
1309 length = ((*cmd & desc->length.mask) + LENGTH_BIAS);
1310
1311 if ((batch_end - cmd) < length) {
1312 DRM_DEBUG_DRIVER("CMD: Command length exceeds batch length: 0x%08X length=%u batchlen=%td\n",
1313 *cmd,
1314 length,
1315 batch_end - cmd);
1316 ret = -EINVAL;
1317 break;
1318 }
1319
1320 if (!check_cmd(engine, desc, cmd, length, is_master)) {
1321 ret = -EACCES;
1322 break;
1323 }
1324
1325 cmd += length;
1326 }
1327
1328 if (cmd >= batch_end) {
1329 DRM_DEBUG_DRIVER("CMD: Got to the end of the buffer w/o a BBE cmd!\n");
1330 ret = -EINVAL;
1331 }
1332
1333 if (ret == 0 && needs_clflush_after)
1334 drm_clflush_virt_range(shadow_batch_obj->mm.mapping, batch_len);
1335 i915_gem_object_unpin_map(shadow_batch_obj);
1336
1337 return ret;
1338 }
1339
1340 /**
1341 * i915_cmd_parser_get_version() - get the cmd parser version number
1342 * @dev_priv: i915 device private
1343 *
1344 * The cmd parser maintains a simple increasing integer version number suitable
1345 * for passing to userspace clients to determine what operations are permitted.
1346 *
1347 * Return: the current version number of the cmd parser
1348 */
1349 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv)
1350 {
1351 struct intel_engine_cs *engine;
1352 enum intel_engine_id id;
1353 bool active = false;
1354
1355 /* If the command parser is not enabled, report 0 - unsupported */
1356 for_each_engine(engine, dev_priv, id) {
1357 if (engine->needs_cmd_parser) {
1358 active = true;
1359 break;
1360 }
1361 }
1362 if (!active)
1363 return 0;
1364
1365 /*
1366 * Command parser version history
1367 *
1368 * 1. Initial version. Checks batches and reports violations, but leaves
1369 * hardware parsing enabled (so does not allow new use cases).
1370 * 2. Allow access to the MI_PREDICATE_SRC0 and
1371 * MI_PREDICATE_SRC1 registers.
1372 * 3. Allow access to the GPGPU_THREADS_DISPATCHED register.
1373 * 4. L3 atomic chicken bits of HSW_SCRATCH1 and HSW_ROW_CHICKEN3.
1374 * 5. GPGPU dispatch compute indirect registers.
1375 * 6. TIMESTAMP register and Haswell CS GPR registers
1376 * 7. Allow MI_LOAD_REGISTER_REG between whitelisted registers.
1377 * 8. Don't report cmd_check() failures as EINVAL errors to userspace;
1378 * rely on the HW to NOOP disallowed commands as it would without
1379 * the parser enabled.
1380 * 9. Don't whitelist or handle oacontrol specially, as ownership
1381 * for oacontrol state is moving to i915-perf.
1382 */
1383 return 9;
1384 }