]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_debugfs.c
drm/i915: Make IS_GEN macros only take dev_priv
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Keith Packard <keithp@keithp.com>
26 *
27 */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
44 {
45 return to_i915(node->minor->dev);
46 }
47
48 /* As the drm_debugfs_init() routines are called before dev->dev_private is
49 * allocated we need to hook into the minor for release. */
50 static int
51 drm_add_fake_info_node(struct drm_minor *minor,
52 struct dentry *ent,
53 const void *key)
54 {
55 struct drm_info_node *node;
56
57 node = kmalloc(sizeof(*node), GFP_KERNEL);
58 if (node == NULL) {
59 debugfs_remove(ent);
60 return -ENOMEM;
61 }
62
63 node->minor = minor;
64 node->dent = ent;
65 node->info_ent = (void *)key;
66
67 mutex_lock(&minor->debugfs_lock);
68 list_add(&node->list, &minor->debugfs_list);
69 mutex_unlock(&minor->debugfs_lock);
70
71 return 0;
72 }
73
74 static int i915_capabilities(struct seq_file *m, void *data)
75 {
76 struct drm_i915_private *dev_priv = node_to_i915(m->private);
77 const struct intel_device_info *info = INTEL_INFO(dev_priv);
78
79 seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
80 seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));
81 #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
82 DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
83 #undef PRINT_FLAG
84
85 return 0;
86 }
87
88 static char get_active_flag(struct drm_i915_gem_object *obj)
89 {
90 return i915_gem_object_is_active(obj) ? '*' : ' ';
91 }
92
93 static char get_pin_flag(struct drm_i915_gem_object *obj)
94 {
95 return obj->pin_display ? 'p' : ' ';
96 }
97
98 static char get_tiling_flag(struct drm_i915_gem_object *obj)
99 {
100 switch (i915_gem_object_get_tiling(obj)) {
101 default:
102 case I915_TILING_NONE: return ' ';
103 case I915_TILING_X: return 'X';
104 case I915_TILING_Y: return 'Y';
105 }
106 }
107
108 static char get_global_flag(struct drm_i915_gem_object *obj)
109 {
110 return obj->fault_mappable ? 'g' : ' ';
111 }
112
113 static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
114 {
115 return obj->mapping ? 'M' : ' ';
116 }
117
118 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
119 {
120 u64 size = 0;
121 struct i915_vma *vma;
122
123 list_for_each_entry(vma, &obj->vma_list, obj_link) {
124 if (i915_vma_is_ggtt(vma) && drm_mm_node_allocated(&vma->node))
125 size += vma->node.size;
126 }
127
128 return size;
129 }
130
131 static void
132 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
133 {
134 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
135 struct intel_engine_cs *engine;
136 struct i915_vma *vma;
137 unsigned int frontbuffer_bits;
138 int pin_count = 0;
139 enum intel_engine_id id;
140
141 lockdep_assert_held(&obj->base.dev->struct_mutex);
142
143 seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x [ ",
144 &obj->base,
145 get_active_flag(obj),
146 get_pin_flag(obj),
147 get_tiling_flag(obj),
148 get_global_flag(obj),
149 get_pin_mapped_flag(obj),
150 obj->base.size / 1024,
151 obj->base.read_domains,
152 obj->base.write_domain);
153 for_each_engine(engine, dev_priv, id)
154 seq_printf(m, "%x ",
155 i915_gem_active_get_seqno(&obj->last_read[id],
156 &obj->base.dev->struct_mutex));
157 seq_printf(m, "] %x %s%s%s",
158 i915_gem_active_get_seqno(&obj->last_write,
159 &obj->base.dev->struct_mutex),
160 i915_cache_level_str(dev_priv, obj->cache_level),
161 obj->dirty ? " dirty" : "",
162 obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
163 if (obj->base.name)
164 seq_printf(m, " (name: %d)", obj->base.name);
165 list_for_each_entry(vma, &obj->vma_list, obj_link) {
166 if (i915_vma_is_pinned(vma))
167 pin_count++;
168 }
169 seq_printf(m, " (pinned x %d)", pin_count);
170 if (obj->pin_display)
171 seq_printf(m, " (display)");
172 list_for_each_entry(vma, &obj->vma_list, obj_link) {
173 if (!drm_mm_node_allocated(&vma->node))
174 continue;
175
176 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
177 i915_vma_is_ggtt(vma) ? "g" : "pp",
178 vma->node.start, vma->node.size);
179 if (i915_vma_is_ggtt(vma))
180 seq_printf(m, ", type: %u", vma->ggtt_view.type);
181 if (vma->fence)
182 seq_printf(m, " , fence: %d%s",
183 vma->fence->id,
184 i915_gem_active_isset(&vma->last_fence) ? "*" : "");
185 seq_puts(m, ")");
186 }
187 if (obj->stolen)
188 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
189
190 engine = i915_gem_active_get_engine(&obj->last_write,
191 &dev_priv->drm.struct_mutex);
192 if (engine)
193 seq_printf(m, " (%s)", engine->name);
194
195 frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
196 if (frontbuffer_bits)
197 seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
198 }
199
200 static int obj_rank_by_stolen(void *priv,
201 struct list_head *A, struct list_head *B)
202 {
203 struct drm_i915_gem_object *a =
204 container_of(A, struct drm_i915_gem_object, obj_exec_link);
205 struct drm_i915_gem_object *b =
206 container_of(B, struct drm_i915_gem_object, obj_exec_link);
207
208 if (a->stolen->start < b->stolen->start)
209 return -1;
210 if (a->stolen->start > b->stolen->start)
211 return 1;
212 return 0;
213 }
214
215 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
216 {
217 struct drm_i915_private *dev_priv = node_to_i915(m->private);
218 struct drm_device *dev = &dev_priv->drm;
219 struct drm_i915_gem_object *obj;
220 u64 total_obj_size, total_gtt_size;
221 LIST_HEAD(stolen);
222 int count, ret;
223
224 ret = mutex_lock_interruptible(&dev->struct_mutex);
225 if (ret)
226 return ret;
227
228 total_obj_size = total_gtt_size = count = 0;
229 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
230 if (obj->stolen == NULL)
231 continue;
232
233 list_add(&obj->obj_exec_link, &stolen);
234
235 total_obj_size += obj->base.size;
236 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
237 count++;
238 }
239 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
240 if (obj->stolen == NULL)
241 continue;
242
243 list_add(&obj->obj_exec_link, &stolen);
244
245 total_obj_size += obj->base.size;
246 count++;
247 }
248 list_sort(NULL, &stolen, obj_rank_by_stolen);
249 seq_puts(m, "Stolen:\n");
250 while (!list_empty(&stolen)) {
251 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
252 seq_puts(m, " ");
253 describe_obj(m, obj);
254 seq_putc(m, '\n');
255 list_del_init(&obj->obj_exec_link);
256 }
257 mutex_unlock(&dev->struct_mutex);
258
259 seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
260 count, total_obj_size, total_gtt_size);
261 return 0;
262 }
263
264 struct file_stats {
265 struct drm_i915_file_private *file_priv;
266 unsigned long count;
267 u64 total, unbound;
268 u64 global, shared;
269 u64 active, inactive;
270 };
271
272 static int per_file_stats(int id, void *ptr, void *data)
273 {
274 struct drm_i915_gem_object *obj = ptr;
275 struct file_stats *stats = data;
276 struct i915_vma *vma;
277
278 stats->count++;
279 stats->total += obj->base.size;
280 if (!obj->bind_count)
281 stats->unbound += obj->base.size;
282 if (obj->base.name || obj->base.dma_buf)
283 stats->shared += obj->base.size;
284
285 list_for_each_entry(vma, &obj->vma_list, obj_link) {
286 if (!drm_mm_node_allocated(&vma->node))
287 continue;
288
289 if (i915_vma_is_ggtt(vma)) {
290 stats->global += vma->node.size;
291 } else {
292 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
293
294 if (ppgtt->base.file != stats->file_priv)
295 continue;
296 }
297
298 if (i915_vma_is_active(vma))
299 stats->active += vma->node.size;
300 else
301 stats->inactive += vma->node.size;
302 }
303
304 return 0;
305 }
306
307 #define print_file_stats(m, name, stats) do { \
308 if (stats.count) \
309 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
310 name, \
311 stats.count, \
312 stats.total, \
313 stats.active, \
314 stats.inactive, \
315 stats.global, \
316 stats.shared, \
317 stats.unbound); \
318 } while (0)
319
320 static void print_batch_pool_stats(struct seq_file *m,
321 struct drm_i915_private *dev_priv)
322 {
323 struct drm_i915_gem_object *obj;
324 struct file_stats stats;
325 struct intel_engine_cs *engine;
326 enum intel_engine_id id;
327 int j;
328
329 memset(&stats, 0, sizeof(stats));
330
331 for_each_engine(engine, dev_priv, id) {
332 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
333 list_for_each_entry(obj,
334 &engine->batch_pool.cache_list[j],
335 batch_pool_link)
336 per_file_stats(0, obj, &stats);
337 }
338 }
339
340 print_file_stats(m, "[k]batch pool", stats);
341 }
342
343 static int per_file_ctx_stats(int id, void *ptr, void *data)
344 {
345 struct i915_gem_context *ctx = ptr;
346 int n;
347
348 for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
349 if (ctx->engine[n].state)
350 per_file_stats(0, ctx->engine[n].state->obj, data);
351 if (ctx->engine[n].ring)
352 per_file_stats(0, ctx->engine[n].ring->vma->obj, data);
353 }
354
355 return 0;
356 }
357
358 static void print_context_stats(struct seq_file *m,
359 struct drm_i915_private *dev_priv)
360 {
361 struct drm_device *dev = &dev_priv->drm;
362 struct file_stats stats;
363 struct drm_file *file;
364
365 memset(&stats, 0, sizeof(stats));
366
367 mutex_lock(&dev->struct_mutex);
368 if (dev_priv->kernel_context)
369 per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
370
371 list_for_each_entry(file, &dev->filelist, lhead) {
372 struct drm_i915_file_private *fpriv = file->driver_priv;
373 idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
374 }
375 mutex_unlock(&dev->struct_mutex);
376
377 print_file_stats(m, "[k]contexts", stats);
378 }
379
380 static int i915_gem_object_info(struct seq_file *m, void *data)
381 {
382 struct drm_i915_private *dev_priv = node_to_i915(m->private);
383 struct drm_device *dev = &dev_priv->drm;
384 struct i915_ggtt *ggtt = &dev_priv->ggtt;
385 u32 count, mapped_count, purgeable_count, dpy_count;
386 u64 size, mapped_size, purgeable_size, dpy_size;
387 struct drm_i915_gem_object *obj;
388 struct drm_file *file;
389 int ret;
390
391 ret = mutex_lock_interruptible(&dev->struct_mutex);
392 if (ret)
393 return ret;
394
395 seq_printf(m, "%u objects, %zu bytes\n",
396 dev_priv->mm.object_count,
397 dev_priv->mm.object_memory);
398
399 size = count = 0;
400 mapped_size = mapped_count = 0;
401 purgeable_size = purgeable_count = 0;
402 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
403 size += obj->base.size;
404 ++count;
405
406 if (obj->madv == I915_MADV_DONTNEED) {
407 purgeable_size += obj->base.size;
408 ++purgeable_count;
409 }
410
411 if (obj->mapping) {
412 mapped_count++;
413 mapped_size += obj->base.size;
414 }
415 }
416 seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
417
418 size = count = dpy_size = dpy_count = 0;
419 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
420 size += obj->base.size;
421 ++count;
422
423 if (obj->pin_display) {
424 dpy_size += obj->base.size;
425 ++dpy_count;
426 }
427
428 if (obj->madv == I915_MADV_DONTNEED) {
429 purgeable_size += obj->base.size;
430 ++purgeable_count;
431 }
432
433 if (obj->mapping) {
434 mapped_count++;
435 mapped_size += obj->base.size;
436 }
437 }
438 seq_printf(m, "%u bound objects, %llu bytes\n",
439 count, size);
440 seq_printf(m, "%u purgeable objects, %llu bytes\n",
441 purgeable_count, purgeable_size);
442 seq_printf(m, "%u mapped objects, %llu bytes\n",
443 mapped_count, mapped_size);
444 seq_printf(m, "%u display objects (pinned), %llu bytes\n",
445 dpy_count, dpy_size);
446
447 seq_printf(m, "%llu [%llu] gtt total\n",
448 ggtt->base.total, ggtt->mappable_end - ggtt->base.start);
449
450 seq_putc(m, '\n');
451 print_batch_pool_stats(m, dev_priv);
452 mutex_unlock(&dev->struct_mutex);
453
454 mutex_lock(&dev->filelist_mutex);
455 print_context_stats(m, dev_priv);
456 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
457 struct file_stats stats;
458 struct drm_i915_file_private *file_priv = file->driver_priv;
459 struct drm_i915_gem_request *request;
460 struct task_struct *task;
461
462 memset(&stats, 0, sizeof(stats));
463 stats.file_priv = file->driver_priv;
464 spin_lock(&file->table_lock);
465 idr_for_each(&file->object_idr, per_file_stats, &stats);
466 spin_unlock(&file->table_lock);
467 /*
468 * Although we have a valid reference on file->pid, that does
469 * not guarantee that the task_struct who called get_pid() is
470 * still alive (e.g. get_pid(current) => fork() => exit()).
471 * Therefore, we need to protect this ->comm access using RCU.
472 */
473 mutex_lock(&dev->struct_mutex);
474 request = list_first_entry_or_null(&file_priv->mm.request_list,
475 struct drm_i915_gem_request,
476 client_list);
477 rcu_read_lock();
478 task = pid_task(request && request->ctx->pid ?
479 request->ctx->pid : file->pid,
480 PIDTYPE_PID);
481 print_file_stats(m, task ? task->comm : "<unknown>", stats);
482 rcu_read_unlock();
483 mutex_unlock(&dev->struct_mutex);
484 }
485 mutex_unlock(&dev->filelist_mutex);
486
487 return 0;
488 }
489
490 static int i915_gem_gtt_info(struct seq_file *m, void *data)
491 {
492 struct drm_info_node *node = m->private;
493 struct drm_i915_private *dev_priv = node_to_i915(node);
494 struct drm_device *dev = &dev_priv->drm;
495 bool show_pin_display_only = !!node->info_ent->data;
496 struct drm_i915_gem_object *obj;
497 u64 total_obj_size, total_gtt_size;
498 int count, ret;
499
500 ret = mutex_lock_interruptible(&dev->struct_mutex);
501 if (ret)
502 return ret;
503
504 total_obj_size = total_gtt_size = count = 0;
505 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
506 if (show_pin_display_only && !obj->pin_display)
507 continue;
508
509 seq_puts(m, " ");
510 describe_obj(m, obj);
511 seq_putc(m, '\n');
512 total_obj_size += obj->base.size;
513 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
514 count++;
515 }
516
517 mutex_unlock(&dev->struct_mutex);
518
519 seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
520 count, total_obj_size, total_gtt_size);
521
522 return 0;
523 }
524
525 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
526 {
527 struct drm_i915_private *dev_priv = node_to_i915(m->private);
528 struct drm_device *dev = &dev_priv->drm;
529 struct intel_crtc *crtc;
530 int ret;
531
532 ret = mutex_lock_interruptible(&dev->struct_mutex);
533 if (ret)
534 return ret;
535
536 for_each_intel_crtc(dev, crtc) {
537 const char pipe = pipe_name(crtc->pipe);
538 const char plane = plane_name(crtc->plane);
539 struct intel_flip_work *work;
540
541 spin_lock_irq(&dev->event_lock);
542 work = crtc->flip_work;
543 if (work == NULL) {
544 seq_printf(m, "No flip due on pipe %c (plane %c)\n",
545 pipe, plane);
546 } else {
547 u32 pending;
548 u32 addr;
549
550 pending = atomic_read(&work->pending);
551 if (pending) {
552 seq_printf(m, "Flip ioctl preparing on pipe %c (plane %c)\n",
553 pipe, plane);
554 } else {
555 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
556 pipe, plane);
557 }
558 if (work->flip_queued_req) {
559 struct intel_engine_cs *engine = i915_gem_request_get_engine(work->flip_queued_req);
560
561 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
562 engine->name,
563 i915_gem_request_get_seqno(work->flip_queued_req),
564 dev_priv->next_seqno,
565 intel_engine_get_seqno(engine),
566 i915_gem_request_completed(work->flip_queued_req));
567 } else
568 seq_printf(m, "Flip not associated with any ring\n");
569 seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
570 work->flip_queued_vblank,
571 work->flip_ready_vblank,
572 intel_crtc_get_vblank_counter(crtc));
573 seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
574
575 if (INTEL_GEN(dev_priv) >= 4)
576 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
577 else
578 addr = I915_READ(DSPADDR(crtc->plane));
579 seq_printf(m, "Current scanout address 0x%08x\n", addr);
580
581 if (work->pending_flip_obj) {
582 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
583 seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset);
584 }
585 }
586 spin_unlock_irq(&dev->event_lock);
587 }
588
589 mutex_unlock(&dev->struct_mutex);
590
591 return 0;
592 }
593
594 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
595 {
596 struct drm_i915_private *dev_priv = node_to_i915(m->private);
597 struct drm_device *dev = &dev_priv->drm;
598 struct drm_i915_gem_object *obj;
599 struct intel_engine_cs *engine;
600 enum intel_engine_id id;
601 int total = 0;
602 int ret, j;
603
604 ret = mutex_lock_interruptible(&dev->struct_mutex);
605 if (ret)
606 return ret;
607
608 for_each_engine(engine, dev_priv, id) {
609 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
610 int count;
611
612 count = 0;
613 list_for_each_entry(obj,
614 &engine->batch_pool.cache_list[j],
615 batch_pool_link)
616 count++;
617 seq_printf(m, "%s cache[%d]: %d objects\n",
618 engine->name, j, count);
619
620 list_for_each_entry(obj,
621 &engine->batch_pool.cache_list[j],
622 batch_pool_link) {
623 seq_puts(m, " ");
624 describe_obj(m, obj);
625 seq_putc(m, '\n');
626 }
627
628 total += count;
629 }
630 }
631
632 seq_printf(m, "total: %d\n", total);
633
634 mutex_unlock(&dev->struct_mutex);
635
636 return 0;
637 }
638
639 static void print_request(struct seq_file *m,
640 struct drm_i915_gem_request *rq,
641 const char *prefix)
642 {
643 struct pid *pid = rq->ctx->pid;
644 struct task_struct *task;
645
646 rcu_read_lock();
647 task = pid ? pid_task(pid, PIDTYPE_PID) : NULL;
648 seq_printf(m, "%s%x [%x:%x] @ %d: %s [%d]\n", prefix,
649 rq->fence.seqno, rq->ctx->hw_id, rq->fence.seqno,
650 jiffies_to_msecs(jiffies - rq->emitted_jiffies),
651 task ? task->comm : "<unknown>",
652 task ? task->pid : -1);
653 rcu_read_unlock();
654 }
655
656 static int i915_gem_request_info(struct seq_file *m, void *data)
657 {
658 struct drm_i915_private *dev_priv = node_to_i915(m->private);
659 struct drm_device *dev = &dev_priv->drm;
660 struct drm_i915_gem_request *req;
661 struct intel_engine_cs *engine;
662 enum intel_engine_id id;
663 int ret, any;
664
665 ret = mutex_lock_interruptible(&dev->struct_mutex);
666 if (ret)
667 return ret;
668
669 any = 0;
670 for_each_engine(engine, dev_priv, id) {
671 int count;
672
673 count = 0;
674 list_for_each_entry(req, &engine->request_list, link)
675 count++;
676 if (count == 0)
677 continue;
678
679 seq_printf(m, "%s requests: %d\n", engine->name, count);
680 list_for_each_entry(req, &engine->request_list, link)
681 print_request(m, req, " ");
682
683 any++;
684 }
685 mutex_unlock(&dev->struct_mutex);
686
687 if (any == 0)
688 seq_puts(m, "No requests\n");
689
690 return 0;
691 }
692
693 static void i915_ring_seqno_info(struct seq_file *m,
694 struct intel_engine_cs *engine)
695 {
696 struct intel_breadcrumbs *b = &engine->breadcrumbs;
697 struct rb_node *rb;
698
699 seq_printf(m, "Current sequence (%s): %x\n",
700 engine->name, intel_engine_get_seqno(engine));
701
702 spin_lock(&b->lock);
703 for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
704 struct intel_wait *w = container_of(rb, typeof(*w), node);
705
706 seq_printf(m, "Waiting (%s): %s [%d] on %x\n",
707 engine->name, w->tsk->comm, w->tsk->pid, w->seqno);
708 }
709 spin_unlock(&b->lock);
710 }
711
712 static int i915_gem_seqno_info(struct seq_file *m, void *data)
713 {
714 struct drm_i915_private *dev_priv = node_to_i915(m->private);
715 struct intel_engine_cs *engine;
716 enum intel_engine_id id;
717
718 for_each_engine(engine, dev_priv, id)
719 i915_ring_seqno_info(m, engine);
720
721 return 0;
722 }
723
724
725 static int i915_interrupt_info(struct seq_file *m, void *data)
726 {
727 struct drm_i915_private *dev_priv = node_to_i915(m->private);
728 struct intel_engine_cs *engine;
729 enum intel_engine_id id;
730 int i, pipe;
731
732 intel_runtime_pm_get(dev_priv);
733
734 if (IS_CHERRYVIEW(dev_priv)) {
735 seq_printf(m, "Master Interrupt Control:\t%08x\n",
736 I915_READ(GEN8_MASTER_IRQ));
737
738 seq_printf(m, "Display IER:\t%08x\n",
739 I915_READ(VLV_IER));
740 seq_printf(m, "Display IIR:\t%08x\n",
741 I915_READ(VLV_IIR));
742 seq_printf(m, "Display IIR_RW:\t%08x\n",
743 I915_READ(VLV_IIR_RW));
744 seq_printf(m, "Display IMR:\t%08x\n",
745 I915_READ(VLV_IMR));
746 for_each_pipe(dev_priv, pipe)
747 seq_printf(m, "Pipe %c stat:\t%08x\n",
748 pipe_name(pipe),
749 I915_READ(PIPESTAT(pipe)));
750
751 seq_printf(m, "Port hotplug:\t%08x\n",
752 I915_READ(PORT_HOTPLUG_EN));
753 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
754 I915_READ(VLV_DPFLIPSTAT));
755 seq_printf(m, "DPINVGTT:\t%08x\n",
756 I915_READ(DPINVGTT));
757
758 for (i = 0; i < 4; i++) {
759 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
760 i, I915_READ(GEN8_GT_IMR(i)));
761 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
762 i, I915_READ(GEN8_GT_IIR(i)));
763 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
764 i, I915_READ(GEN8_GT_IER(i)));
765 }
766
767 seq_printf(m, "PCU interrupt mask:\t%08x\n",
768 I915_READ(GEN8_PCU_IMR));
769 seq_printf(m, "PCU interrupt identity:\t%08x\n",
770 I915_READ(GEN8_PCU_IIR));
771 seq_printf(m, "PCU interrupt enable:\t%08x\n",
772 I915_READ(GEN8_PCU_IER));
773 } else if (INTEL_GEN(dev_priv) >= 8) {
774 seq_printf(m, "Master Interrupt Control:\t%08x\n",
775 I915_READ(GEN8_MASTER_IRQ));
776
777 for (i = 0; i < 4; i++) {
778 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
779 i, I915_READ(GEN8_GT_IMR(i)));
780 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
781 i, I915_READ(GEN8_GT_IIR(i)));
782 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
783 i, I915_READ(GEN8_GT_IER(i)));
784 }
785
786 for_each_pipe(dev_priv, pipe) {
787 enum intel_display_power_domain power_domain;
788
789 power_domain = POWER_DOMAIN_PIPE(pipe);
790 if (!intel_display_power_get_if_enabled(dev_priv,
791 power_domain)) {
792 seq_printf(m, "Pipe %c power disabled\n",
793 pipe_name(pipe));
794 continue;
795 }
796 seq_printf(m, "Pipe %c IMR:\t%08x\n",
797 pipe_name(pipe),
798 I915_READ(GEN8_DE_PIPE_IMR(pipe)));
799 seq_printf(m, "Pipe %c IIR:\t%08x\n",
800 pipe_name(pipe),
801 I915_READ(GEN8_DE_PIPE_IIR(pipe)));
802 seq_printf(m, "Pipe %c IER:\t%08x\n",
803 pipe_name(pipe),
804 I915_READ(GEN8_DE_PIPE_IER(pipe)));
805
806 intel_display_power_put(dev_priv, power_domain);
807 }
808
809 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
810 I915_READ(GEN8_DE_PORT_IMR));
811 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
812 I915_READ(GEN8_DE_PORT_IIR));
813 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
814 I915_READ(GEN8_DE_PORT_IER));
815
816 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
817 I915_READ(GEN8_DE_MISC_IMR));
818 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
819 I915_READ(GEN8_DE_MISC_IIR));
820 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
821 I915_READ(GEN8_DE_MISC_IER));
822
823 seq_printf(m, "PCU interrupt mask:\t%08x\n",
824 I915_READ(GEN8_PCU_IMR));
825 seq_printf(m, "PCU interrupt identity:\t%08x\n",
826 I915_READ(GEN8_PCU_IIR));
827 seq_printf(m, "PCU interrupt enable:\t%08x\n",
828 I915_READ(GEN8_PCU_IER));
829 } else if (IS_VALLEYVIEW(dev_priv)) {
830 seq_printf(m, "Display IER:\t%08x\n",
831 I915_READ(VLV_IER));
832 seq_printf(m, "Display IIR:\t%08x\n",
833 I915_READ(VLV_IIR));
834 seq_printf(m, "Display IIR_RW:\t%08x\n",
835 I915_READ(VLV_IIR_RW));
836 seq_printf(m, "Display IMR:\t%08x\n",
837 I915_READ(VLV_IMR));
838 for_each_pipe(dev_priv, pipe)
839 seq_printf(m, "Pipe %c stat:\t%08x\n",
840 pipe_name(pipe),
841 I915_READ(PIPESTAT(pipe)));
842
843 seq_printf(m, "Master IER:\t%08x\n",
844 I915_READ(VLV_MASTER_IER));
845
846 seq_printf(m, "Render IER:\t%08x\n",
847 I915_READ(GTIER));
848 seq_printf(m, "Render IIR:\t%08x\n",
849 I915_READ(GTIIR));
850 seq_printf(m, "Render IMR:\t%08x\n",
851 I915_READ(GTIMR));
852
853 seq_printf(m, "PM IER:\t\t%08x\n",
854 I915_READ(GEN6_PMIER));
855 seq_printf(m, "PM IIR:\t\t%08x\n",
856 I915_READ(GEN6_PMIIR));
857 seq_printf(m, "PM IMR:\t\t%08x\n",
858 I915_READ(GEN6_PMIMR));
859
860 seq_printf(m, "Port hotplug:\t%08x\n",
861 I915_READ(PORT_HOTPLUG_EN));
862 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
863 I915_READ(VLV_DPFLIPSTAT));
864 seq_printf(m, "DPINVGTT:\t%08x\n",
865 I915_READ(DPINVGTT));
866
867 } else if (!HAS_PCH_SPLIT(dev_priv)) {
868 seq_printf(m, "Interrupt enable: %08x\n",
869 I915_READ(IER));
870 seq_printf(m, "Interrupt identity: %08x\n",
871 I915_READ(IIR));
872 seq_printf(m, "Interrupt mask: %08x\n",
873 I915_READ(IMR));
874 for_each_pipe(dev_priv, pipe)
875 seq_printf(m, "Pipe %c stat: %08x\n",
876 pipe_name(pipe),
877 I915_READ(PIPESTAT(pipe)));
878 } else {
879 seq_printf(m, "North Display Interrupt enable: %08x\n",
880 I915_READ(DEIER));
881 seq_printf(m, "North Display Interrupt identity: %08x\n",
882 I915_READ(DEIIR));
883 seq_printf(m, "North Display Interrupt mask: %08x\n",
884 I915_READ(DEIMR));
885 seq_printf(m, "South Display Interrupt enable: %08x\n",
886 I915_READ(SDEIER));
887 seq_printf(m, "South Display Interrupt identity: %08x\n",
888 I915_READ(SDEIIR));
889 seq_printf(m, "South Display Interrupt mask: %08x\n",
890 I915_READ(SDEIMR));
891 seq_printf(m, "Graphics Interrupt enable: %08x\n",
892 I915_READ(GTIER));
893 seq_printf(m, "Graphics Interrupt identity: %08x\n",
894 I915_READ(GTIIR));
895 seq_printf(m, "Graphics Interrupt mask: %08x\n",
896 I915_READ(GTIMR));
897 }
898 for_each_engine(engine, dev_priv, id) {
899 if (INTEL_GEN(dev_priv) >= 6) {
900 seq_printf(m,
901 "Graphics Interrupt mask (%s): %08x\n",
902 engine->name, I915_READ_IMR(engine));
903 }
904 i915_ring_seqno_info(m, engine);
905 }
906 intel_runtime_pm_put(dev_priv);
907
908 return 0;
909 }
910
911 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
912 {
913 struct drm_i915_private *dev_priv = node_to_i915(m->private);
914 struct drm_device *dev = &dev_priv->drm;
915 int i, ret;
916
917 ret = mutex_lock_interruptible(&dev->struct_mutex);
918 if (ret)
919 return ret;
920
921 seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
922 for (i = 0; i < dev_priv->num_fence_regs; i++) {
923 struct i915_vma *vma = dev_priv->fence_regs[i].vma;
924
925 seq_printf(m, "Fence %d, pin count = %d, object = ",
926 i, dev_priv->fence_regs[i].pin_count);
927 if (!vma)
928 seq_puts(m, "unused");
929 else
930 describe_obj(m, vma->obj);
931 seq_putc(m, '\n');
932 }
933
934 mutex_unlock(&dev->struct_mutex);
935 return 0;
936 }
937
938 static int i915_hws_info(struct seq_file *m, void *data)
939 {
940 struct drm_info_node *node = m->private;
941 struct drm_i915_private *dev_priv = node_to_i915(node);
942 struct intel_engine_cs *engine;
943 const u32 *hws;
944 int i;
945
946 engine = dev_priv->engine[(uintptr_t)node->info_ent->data];
947 hws = engine->status_page.page_addr;
948 if (hws == NULL)
949 return 0;
950
951 for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
952 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
953 i * 4,
954 hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
955 }
956 return 0;
957 }
958
959 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
960
961 static ssize_t
962 i915_error_state_write(struct file *filp,
963 const char __user *ubuf,
964 size_t cnt,
965 loff_t *ppos)
966 {
967 struct i915_error_state_file_priv *error_priv = filp->private_data;
968
969 DRM_DEBUG_DRIVER("Resetting error state\n");
970 i915_destroy_error_state(error_priv->dev);
971
972 return cnt;
973 }
974
975 static int i915_error_state_open(struct inode *inode, struct file *file)
976 {
977 struct drm_i915_private *dev_priv = inode->i_private;
978 struct i915_error_state_file_priv *error_priv;
979
980 error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
981 if (!error_priv)
982 return -ENOMEM;
983
984 error_priv->dev = &dev_priv->drm;
985
986 i915_error_state_get(&dev_priv->drm, error_priv);
987
988 file->private_data = error_priv;
989
990 return 0;
991 }
992
993 static int i915_error_state_release(struct inode *inode, struct file *file)
994 {
995 struct i915_error_state_file_priv *error_priv = file->private_data;
996
997 i915_error_state_put(error_priv);
998 kfree(error_priv);
999
1000 return 0;
1001 }
1002
1003 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1004 size_t count, loff_t *pos)
1005 {
1006 struct i915_error_state_file_priv *error_priv = file->private_data;
1007 struct drm_i915_error_state_buf error_str;
1008 loff_t tmp_pos = 0;
1009 ssize_t ret_count = 0;
1010 int ret;
1011
1012 ret = i915_error_state_buf_init(&error_str,
1013 to_i915(error_priv->dev), count, *pos);
1014 if (ret)
1015 return ret;
1016
1017 ret = i915_error_state_to_str(&error_str, error_priv);
1018 if (ret)
1019 goto out;
1020
1021 ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1022 error_str.buf,
1023 error_str.bytes);
1024
1025 if (ret_count < 0)
1026 ret = ret_count;
1027 else
1028 *pos = error_str.start + ret_count;
1029 out:
1030 i915_error_state_buf_release(&error_str);
1031 return ret ?: ret_count;
1032 }
1033
1034 static const struct file_operations i915_error_state_fops = {
1035 .owner = THIS_MODULE,
1036 .open = i915_error_state_open,
1037 .read = i915_error_state_read,
1038 .write = i915_error_state_write,
1039 .llseek = default_llseek,
1040 .release = i915_error_state_release,
1041 };
1042
1043 #endif
1044
1045 static int
1046 i915_next_seqno_get(void *data, u64 *val)
1047 {
1048 struct drm_i915_private *dev_priv = data;
1049 int ret;
1050
1051 ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
1052 if (ret)
1053 return ret;
1054
1055 *val = dev_priv->next_seqno;
1056 mutex_unlock(&dev_priv->drm.struct_mutex);
1057
1058 return 0;
1059 }
1060
1061 static int
1062 i915_next_seqno_set(void *data, u64 val)
1063 {
1064 struct drm_i915_private *dev_priv = data;
1065 struct drm_device *dev = &dev_priv->drm;
1066 int ret;
1067
1068 ret = mutex_lock_interruptible(&dev->struct_mutex);
1069 if (ret)
1070 return ret;
1071
1072 ret = i915_gem_set_seqno(dev, val);
1073 mutex_unlock(&dev->struct_mutex);
1074
1075 return ret;
1076 }
1077
1078 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1079 i915_next_seqno_get, i915_next_seqno_set,
1080 "0x%llx\n");
1081
1082 static int i915_frequency_info(struct seq_file *m, void *unused)
1083 {
1084 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1085 struct drm_device *dev = &dev_priv->drm;
1086 int ret = 0;
1087
1088 intel_runtime_pm_get(dev_priv);
1089
1090 if (IS_GEN5(dev_priv)) {
1091 u16 rgvswctl = I915_READ16(MEMSWCTL);
1092 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1093
1094 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1095 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1096 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1097 MEMSTAT_VID_SHIFT);
1098 seq_printf(m, "Current P-state: %d\n",
1099 (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1100 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1101 u32 freq_sts;
1102
1103 mutex_lock(&dev_priv->rps.hw_lock);
1104 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1105 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1106 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1107
1108 seq_printf(m, "actual GPU freq: %d MHz\n",
1109 intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1110
1111 seq_printf(m, "current GPU freq: %d MHz\n",
1112 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1113
1114 seq_printf(m, "max GPU freq: %d MHz\n",
1115 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1116
1117 seq_printf(m, "min GPU freq: %d MHz\n",
1118 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1119
1120 seq_printf(m, "idle GPU freq: %d MHz\n",
1121 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1122
1123 seq_printf(m,
1124 "efficient (RPe) frequency: %d MHz\n",
1125 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1126 mutex_unlock(&dev_priv->rps.hw_lock);
1127 } else if (INTEL_GEN(dev_priv) >= 6) {
1128 u32 rp_state_limits;
1129 u32 gt_perf_status;
1130 u32 rp_state_cap;
1131 u32 rpmodectl, rpinclimit, rpdeclimit;
1132 u32 rpstat, cagf, reqf;
1133 u32 rpupei, rpcurup, rpprevup;
1134 u32 rpdownei, rpcurdown, rpprevdown;
1135 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1136 int max_freq;
1137
1138 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1139 if (IS_BROXTON(dev_priv)) {
1140 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1141 gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1142 } else {
1143 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1144 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1145 }
1146
1147 /* RPSTAT1 is in the GT power well */
1148 ret = mutex_lock_interruptible(&dev->struct_mutex);
1149 if (ret)
1150 goto out;
1151
1152 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1153
1154 reqf = I915_READ(GEN6_RPNSWREQ);
1155 if (IS_GEN9(dev_priv))
1156 reqf >>= 23;
1157 else {
1158 reqf &= ~GEN6_TURBO_DISABLE;
1159 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1160 reqf >>= 24;
1161 else
1162 reqf >>= 25;
1163 }
1164 reqf = intel_gpu_freq(dev_priv, reqf);
1165
1166 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1167 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1168 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1169
1170 rpstat = I915_READ(GEN6_RPSTAT1);
1171 rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
1172 rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
1173 rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
1174 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
1175 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
1176 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
1177 if (IS_GEN9(dev_priv))
1178 cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1179 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1180 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1181 else
1182 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1183 cagf = intel_gpu_freq(dev_priv, cagf);
1184
1185 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1186 mutex_unlock(&dev->struct_mutex);
1187
1188 if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
1189 pm_ier = I915_READ(GEN6_PMIER);
1190 pm_imr = I915_READ(GEN6_PMIMR);
1191 pm_isr = I915_READ(GEN6_PMISR);
1192 pm_iir = I915_READ(GEN6_PMIIR);
1193 pm_mask = I915_READ(GEN6_PMINTRMSK);
1194 } else {
1195 pm_ier = I915_READ(GEN8_GT_IER(2));
1196 pm_imr = I915_READ(GEN8_GT_IMR(2));
1197 pm_isr = I915_READ(GEN8_GT_ISR(2));
1198 pm_iir = I915_READ(GEN8_GT_IIR(2));
1199 pm_mask = I915_READ(GEN6_PMINTRMSK);
1200 }
1201 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1202 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1203 seq_printf(m, "pm_intr_keep: 0x%08x\n", dev_priv->rps.pm_intr_keep);
1204 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1205 seq_printf(m, "Render p-state ratio: %d\n",
1206 (gt_perf_status & (IS_GEN9(dev_priv) ? 0x1ff00 : 0xff00)) >> 8);
1207 seq_printf(m, "Render p-state VID: %d\n",
1208 gt_perf_status & 0xff);
1209 seq_printf(m, "Render p-state limit: %d\n",
1210 rp_state_limits & 0xff);
1211 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1212 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1213 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1214 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1215 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1216 seq_printf(m, "CAGF: %dMHz\n", cagf);
1217 seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
1218 rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
1219 seq_printf(m, "RP CUR UP: %d (%dus)\n",
1220 rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
1221 seq_printf(m, "RP PREV UP: %d (%dus)\n",
1222 rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
1223 seq_printf(m, "Up threshold: %d%%\n",
1224 dev_priv->rps.up_threshold);
1225
1226 seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
1227 rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
1228 seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
1229 rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
1230 seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
1231 rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
1232 seq_printf(m, "Down threshold: %d%%\n",
1233 dev_priv->rps.down_threshold);
1234
1235 max_freq = (IS_BROXTON(dev_priv) ? rp_state_cap >> 0 :
1236 rp_state_cap >> 16) & 0xff;
1237 max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1238 GEN9_FREQ_SCALER : 1);
1239 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1240 intel_gpu_freq(dev_priv, max_freq));
1241
1242 max_freq = (rp_state_cap & 0xff00) >> 8;
1243 max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1244 GEN9_FREQ_SCALER : 1);
1245 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1246 intel_gpu_freq(dev_priv, max_freq));
1247
1248 max_freq = (IS_BROXTON(dev_priv) ? rp_state_cap >> 16 :
1249 rp_state_cap >> 0) & 0xff;
1250 max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1251 GEN9_FREQ_SCALER : 1);
1252 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1253 intel_gpu_freq(dev_priv, max_freq));
1254 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1255 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1256
1257 seq_printf(m, "Current freq: %d MHz\n",
1258 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1259 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1260 seq_printf(m, "Idle freq: %d MHz\n",
1261 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1262 seq_printf(m, "Min freq: %d MHz\n",
1263 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1264 seq_printf(m, "Boost freq: %d MHz\n",
1265 intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
1266 seq_printf(m, "Max freq: %d MHz\n",
1267 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1268 seq_printf(m,
1269 "efficient (RPe) frequency: %d MHz\n",
1270 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1271 } else {
1272 seq_puts(m, "no P-state info available\n");
1273 }
1274
1275 seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1276 seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1277 seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1278
1279 out:
1280 intel_runtime_pm_put(dev_priv);
1281 return ret;
1282 }
1283
1284 static void i915_instdone_info(struct drm_i915_private *dev_priv,
1285 struct seq_file *m,
1286 struct intel_instdone *instdone)
1287 {
1288 int slice;
1289 int subslice;
1290
1291 seq_printf(m, "\t\tINSTDONE: 0x%08x\n",
1292 instdone->instdone);
1293
1294 if (INTEL_GEN(dev_priv) <= 3)
1295 return;
1296
1297 seq_printf(m, "\t\tSC_INSTDONE: 0x%08x\n",
1298 instdone->slice_common);
1299
1300 if (INTEL_GEN(dev_priv) <= 6)
1301 return;
1302
1303 for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1304 seq_printf(m, "\t\tSAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
1305 slice, subslice, instdone->sampler[slice][subslice]);
1306
1307 for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1308 seq_printf(m, "\t\tROW_INSTDONE[%d][%d]: 0x%08x\n",
1309 slice, subslice, instdone->row[slice][subslice]);
1310 }
1311
1312 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1313 {
1314 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1315 struct intel_engine_cs *engine;
1316 u64 acthd[I915_NUM_ENGINES];
1317 u32 seqno[I915_NUM_ENGINES];
1318 struct intel_instdone instdone;
1319 enum intel_engine_id id;
1320
1321 if (test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
1322 seq_printf(m, "Wedged\n");
1323 if (test_bit(I915_RESET_IN_PROGRESS, &dev_priv->gpu_error.flags))
1324 seq_printf(m, "Reset in progress\n");
1325 if (waitqueue_active(&dev_priv->gpu_error.wait_queue))
1326 seq_printf(m, "Waiter holding struct mutex\n");
1327 if (waitqueue_active(&dev_priv->gpu_error.reset_queue))
1328 seq_printf(m, "struct_mutex blocked for reset\n");
1329
1330 if (!i915.enable_hangcheck) {
1331 seq_printf(m, "Hangcheck disabled\n");
1332 return 0;
1333 }
1334
1335 intel_runtime_pm_get(dev_priv);
1336
1337 for_each_engine(engine, dev_priv, id) {
1338 acthd[id] = intel_engine_get_active_head(engine);
1339 seqno[id] = intel_engine_get_seqno(engine);
1340 }
1341
1342 intel_engine_get_instdone(dev_priv->engine[RCS], &instdone);
1343
1344 intel_runtime_pm_put(dev_priv);
1345
1346 if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1347 seq_printf(m, "Hangcheck active, fires in %dms\n",
1348 jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1349 jiffies));
1350 } else
1351 seq_printf(m, "Hangcheck inactive\n");
1352
1353 for_each_engine(engine, dev_priv, id) {
1354 struct intel_breadcrumbs *b = &engine->breadcrumbs;
1355 struct rb_node *rb;
1356
1357 seq_printf(m, "%s:\n", engine->name);
1358 seq_printf(m, "\tseqno = %x [current %x, last %x]\n",
1359 engine->hangcheck.seqno,
1360 seqno[id],
1361 engine->last_submitted_seqno);
1362 seq_printf(m, "\twaiters? %s, fake irq active? %s\n",
1363 yesno(intel_engine_has_waiter(engine)),
1364 yesno(test_bit(engine->id,
1365 &dev_priv->gpu_error.missed_irq_rings)));
1366 spin_lock(&b->lock);
1367 for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
1368 struct intel_wait *w = container_of(rb, typeof(*w), node);
1369
1370 seq_printf(m, "\t%s [%d] waiting for %x\n",
1371 w->tsk->comm, w->tsk->pid, w->seqno);
1372 }
1373 spin_unlock(&b->lock);
1374
1375 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1376 (long long)engine->hangcheck.acthd,
1377 (long long)acthd[id]);
1378 seq_printf(m, "\tscore = %d\n", engine->hangcheck.score);
1379 seq_printf(m, "\taction = %d\n", engine->hangcheck.action);
1380
1381 if (engine->id == RCS) {
1382 seq_puts(m, "\tinstdone read =\n");
1383
1384 i915_instdone_info(dev_priv, m, &instdone);
1385
1386 seq_puts(m, "\tinstdone accu =\n");
1387
1388 i915_instdone_info(dev_priv, m,
1389 &engine->hangcheck.instdone);
1390 }
1391 }
1392
1393 return 0;
1394 }
1395
1396 static int ironlake_drpc_info(struct seq_file *m)
1397 {
1398 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1399 struct drm_device *dev = &dev_priv->drm;
1400 u32 rgvmodectl, rstdbyctl;
1401 u16 crstandvid;
1402 int ret;
1403
1404 ret = mutex_lock_interruptible(&dev->struct_mutex);
1405 if (ret)
1406 return ret;
1407 intel_runtime_pm_get(dev_priv);
1408
1409 rgvmodectl = I915_READ(MEMMODECTL);
1410 rstdbyctl = I915_READ(RSTDBYCTL);
1411 crstandvid = I915_READ16(CRSTANDVID);
1412
1413 intel_runtime_pm_put(dev_priv);
1414 mutex_unlock(&dev->struct_mutex);
1415
1416 seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1417 seq_printf(m, "Boost freq: %d\n",
1418 (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1419 MEMMODE_BOOST_FREQ_SHIFT);
1420 seq_printf(m, "HW control enabled: %s\n",
1421 yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1422 seq_printf(m, "SW control enabled: %s\n",
1423 yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1424 seq_printf(m, "Gated voltage change: %s\n",
1425 yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1426 seq_printf(m, "Starting frequency: P%d\n",
1427 (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1428 seq_printf(m, "Max P-state: P%d\n",
1429 (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1430 seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1431 seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1432 seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1433 seq_printf(m, "Render standby enabled: %s\n",
1434 yesno(!(rstdbyctl & RCX_SW_EXIT)));
1435 seq_puts(m, "Current RS state: ");
1436 switch (rstdbyctl & RSX_STATUS_MASK) {
1437 case RSX_STATUS_ON:
1438 seq_puts(m, "on\n");
1439 break;
1440 case RSX_STATUS_RC1:
1441 seq_puts(m, "RC1\n");
1442 break;
1443 case RSX_STATUS_RC1E:
1444 seq_puts(m, "RC1E\n");
1445 break;
1446 case RSX_STATUS_RS1:
1447 seq_puts(m, "RS1\n");
1448 break;
1449 case RSX_STATUS_RS2:
1450 seq_puts(m, "RS2 (RC6)\n");
1451 break;
1452 case RSX_STATUS_RS3:
1453 seq_puts(m, "RC3 (RC6+)\n");
1454 break;
1455 default:
1456 seq_puts(m, "unknown\n");
1457 break;
1458 }
1459
1460 return 0;
1461 }
1462
1463 static int i915_forcewake_domains(struct seq_file *m, void *data)
1464 {
1465 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1466 struct intel_uncore_forcewake_domain *fw_domain;
1467
1468 spin_lock_irq(&dev_priv->uncore.lock);
1469 for_each_fw_domain(fw_domain, dev_priv) {
1470 seq_printf(m, "%s.wake_count = %u\n",
1471 intel_uncore_forcewake_domain_to_str(fw_domain->id),
1472 fw_domain->wake_count);
1473 }
1474 spin_unlock_irq(&dev_priv->uncore.lock);
1475
1476 return 0;
1477 }
1478
1479 static int vlv_drpc_info(struct seq_file *m)
1480 {
1481 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1482 u32 rpmodectl1, rcctl1, pw_status;
1483
1484 intel_runtime_pm_get(dev_priv);
1485
1486 pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1487 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1488 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1489
1490 intel_runtime_pm_put(dev_priv);
1491
1492 seq_printf(m, "Video Turbo Mode: %s\n",
1493 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1494 seq_printf(m, "Turbo enabled: %s\n",
1495 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1496 seq_printf(m, "HW control enabled: %s\n",
1497 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1498 seq_printf(m, "SW control enabled: %s\n",
1499 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1500 GEN6_RP_MEDIA_SW_MODE));
1501 seq_printf(m, "RC6 Enabled: %s\n",
1502 yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1503 GEN6_RC_CTL_EI_MODE(1))));
1504 seq_printf(m, "Render Power Well: %s\n",
1505 (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1506 seq_printf(m, "Media Power Well: %s\n",
1507 (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1508
1509 seq_printf(m, "Render RC6 residency since boot: %u\n",
1510 I915_READ(VLV_GT_RENDER_RC6));
1511 seq_printf(m, "Media RC6 residency since boot: %u\n",
1512 I915_READ(VLV_GT_MEDIA_RC6));
1513
1514 return i915_forcewake_domains(m, NULL);
1515 }
1516
1517 static int gen6_drpc_info(struct seq_file *m)
1518 {
1519 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1520 struct drm_device *dev = &dev_priv->drm;
1521 u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1522 u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
1523 unsigned forcewake_count;
1524 int count = 0, ret;
1525
1526 ret = mutex_lock_interruptible(&dev->struct_mutex);
1527 if (ret)
1528 return ret;
1529 intel_runtime_pm_get(dev_priv);
1530
1531 spin_lock_irq(&dev_priv->uncore.lock);
1532 forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1533 spin_unlock_irq(&dev_priv->uncore.lock);
1534
1535 if (forcewake_count) {
1536 seq_puts(m, "RC information inaccurate because somebody "
1537 "holds a forcewake reference \n");
1538 } else {
1539 /* NB: we cannot use forcewake, else we read the wrong values */
1540 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1541 udelay(10);
1542 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1543 }
1544
1545 gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1546 trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1547
1548 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1549 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1550 if (INTEL_GEN(dev_priv) >= 9) {
1551 gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
1552 gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
1553 }
1554 mutex_unlock(&dev->struct_mutex);
1555 mutex_lock(&dev_priv->rps.hw_lock);
1556 sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1557 mutex_unlock(&dev_priv->rps.hw_lock);
1558
1559 intel_runtime_pm_put(dev_priv);
1560
1561 seq_printf(m, "Video Turbo Mode: %s\n",
1562 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1563 seq_printf(m, "HW control enabled: %s\n",
1564 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1565 seq_printf(m, "SW control enabled: %s\n",
1566 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1567 GEN6_RP_MEDIA_SW_MODE));
1568 seq_printf(m, "RC1e Enabled: %s\n",
1569 yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1570 seq_printf(m, "RC6 Enabled: %s\n",
1571 yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1572 if (INTEL_GEN(dev_priv) >= 9) {
1573 seq_printf(m, "Render Well Gating Enabled: %s\n",
1574 yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
1575 seq_printf(m, "Media Well Gating Enabled: %s\n",
1576 yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
1577 }
1578 seq_printf(m, "Deep RC6 Enabled: %s\n",
1579 yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1580 seq_printf(m, "Deepest RC6 Enabled: %s\n",
1581 yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1582 seq_puts(m, "Current RC state: ");
1583 switch (gt_core_status & GEN6_RCn_MASK) {
1584 case GEN6_RC0:
1585 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1586 seq_puts(m, "Core Power Down\n");
1587 else
1588 seq_puts(m, "on\n");
1589 break;
1590 case GEN6_RC3:
1591 seq_puts(m, "RC3\n");
1592 break;
1593 case GEN6_RC6:
1594 seq_puts(m, "RC6\n");
1595 break;
1596 case GEN6_RC7:
1597 seq_puts(m, "RC7\n");
1598 break;
1599 default:
1600 seq_puts(m, "Unknown\n");
1601 break;
1602 }
1603
1604 seq_printf(m, "Core Power Down: %s\n",
1605 yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1606 if (INTEL_GEN(dev_priv) >= 9) {
1607 seq_printf(m, "Render Power Well: %s\n",
1608 (gen9_powergate_status &
1609 GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
1610 seq_printf(m, "Media Power Well: %s\n",
1611 (gen9_powergate_status &
1612 GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
1613 }
1614
1615 /* Not exactly sure what this is */
1616 seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1617 I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1618 seq_printf(m, "RC6 residency since boot: %u\n",
1619 I915_READ(GEN6_GT_GFX_RC6));
1620 seq_printf(m, "RC6+ residency since boot: %u\n",
1621 I915_READ(GEN6_GT_GFX_RC6p));
1622 seq_printf(m, "RC6++ residency since boot: %u\n",
1623 I915_READ(GEN6_GT_GFX_RC6pp));
1624
1625 seq_printf(m, "RC6 voltage: %dmV\n",
1626 GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1627 seq_printf(m, "RC6+ voltage: %dmV\n",
1628 GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1629 seq_printf(m, "RC6++ voltage: %dmV\n",
1630 GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1631 return i915_forcewake_domains(m, NULL);
1632 }
1633
1634 static int i915_drpc_info(struct seq_file *m, void *unused)
1635 {
1636 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1637
1638 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1639 return vlv_drpc_info(m);
1640 else if (INTEL_GEN(dev_priv) >= 6)
1641 return gen6_drpc_info(m);
1642 else
1643 return ironlake_drpc_info(m);
1644 }
1645
1646 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1647 {
1648 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1649
1650 seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1651 dev_priv->fb_tracking.busy_bits);
1652
1653 seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1654 dev_priv->fb_tracking.flip_bits);
1655
1656 return 0;
1657 }
1658
1659 static int i915_fbc_status(struct seq_file *m, void *unused)
1660 {
1661 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1662
1663 if (!HAS_FBC(dev_priv)) {
1664 seq_puts(m, "FBC unsupported on this chipset\n");
1665 return 0;
1666 }
1667
1668 intel_runtime_pm_get(dev_priv);
1669 mutex_lock(&dev_priv->fbc.lock);
1670
1671 if (intel_fbc_is_active(dev_priv))
1672 seq_puts(m, "FBC enabled\n");
1673 else
1674 seq_printf(m, "FBC disabled: %s\n",
1675 dev_priv->fbc.no_fbc_reason);
1676
1677 if (intel_fbc_is_active(dev_priv) &&
1678 INTEL_GEN(dev_priv) >= 7)
1679 seq_printf(m, "Compressing: %s\n",
1680 yesno(I915_READ(FBC_STATUS2) &
1681 FBC_COMPRESSION_MASK));
1682
1683 mutex_unlock(&dev_priv->fbc.lock);
1684 intel_runtime_pm_put(dev_priv);
1685
1686 return 0;
1687 }
1688
1689 static int i915_fbc_fc_get(void *data, u64 *val)
1690 {
1691 struct drm_i915_private *dev_priv = data;
1692
1693 if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1694 return -ENODEV;
1695
1696 *val = dev_priv->fbc.false_color;
1697
1698 return 0;
1699 }
1700
1701 static int i915_fbc_fc_set(void *data, u64 val)
1702 {
1703 struct drm_i915_private *dev_priv = data;
1704 u32 reg;
1705
1706 if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1707 return -ENODEV;
1708
1709 mutex_lock(&dev_priv->fbc.lock);
1710
1711 reg = I915_READ(ILK_DPFC_CONTROL);
1712 dev_priv->fbc.false_color = val;
1713
1714 I915_WRITE(ILK_DPFC_CONTROL, val ?
1715 (reg | FBC_CTL_FALSE_COLOR) :
1716 (reg & ~FBC_CTL_FALSE_COLOR));
1717
1718 mutex_unlock(&dev_priv->fbc.lock);
1719 return 0;
1720 }
1721
1722 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1723 i915_fbc_fc_get, i915_fbc_fc_set,
1724 "%llu\n");
1725
1726 static int i915_ips_status(struct seq_file *m, void *unused)
1727 {
1728 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1729
1730 if (!HAS_IPS(dev_priv)) {
1731 seq_puts(m, "not supported\n");
1732 return 0;
1733 }
1734
1735 intel_runtime_pm_get(dev_priv);
1736
1737 seq_printf(m, "Enabled by kernel parameter: %s\n",
1738 yesno(i915.enable_ips));
1739
1740 if (INTEL_GEN(dev_priv) >= 8) {
1741 seq_puts(m, "Currently: unknown\n");
1742 } else {
1743 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1744 seq_puts(m, "Currently: enabled\n");
1745 else
1746 seq_puts(m, "Currently: disabled\n");
1747 }
1748
1749 intel_runtime_pm_put(dev_priv);
1750
1751 return 0;
1752 }
1753
1754 static int i915_sr_status(struct seq_file *m, void *unused)
1755 {
1756 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1757 bool sr_enabled = false;
1758
1759 intel_runtime_pm_get(dev_priv);
1760
1761 if (HAS_PCH_SPLIT(dev_priv))
1762 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1763 else if (IS_CRESTLINE(dev_priv) || IS_G4X(dev_priv) ||
1764 IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1765 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1766 else if (IS_I915GM(dev_priv))
1767 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1768 else if (IS_PINEVIEW(dev_priv))
1769 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1770 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1771 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1772
1773 intel_runtime_pm_put(dev_priv);
1774
1775 seq_printf(m, "self-refresh: %s\n",
1776 sr_enabled ? "enabled" : "disabled");
1777
1778 return 0;
1779 }
1780
1781 static int i915_emon_status(struct seq_file *m, void *unused)
1782 {
1783 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1784 struct drm_device *dev = &dev_priv->drm;
1785 unsigned long temp, chipset, gfx;
1786 int ret;
1787
1788 if (!IS_GEN5(dev_priv))
1789 return -ENODEV;
1790
1791 ret = mutex_lock_interruptible(&dev->struct_mutex);
1792 if (ret)
1793 return ret;
1794
1795 temp = i915_mch_val(dev_priv);
1796 chipset = i915_chipset_val(dev_priv);
1797 gfx = i915_gfx_val(dev_priv);
1798 mutex_unlock(&dev->struct_mutex);
1799
1800 seq_printf(m, "GMCH temp: %ld\n", temp);
1801 seq_printf(m, "Chipset power: %ld\n", chipset);
1802 seq_printf(m, "GFX power: %ld\n", gfx);
1803 seq_printf(m, "Total power: %ld\n", chipset + gfx);
1804
1805 return 0;
1806 }
1807
1808 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1809 {
1810 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1811 int ret = 0;
1812 int gpu_freq, ia_freq;
1813 unsigned int max_gpu_freq, min_gpu_freq;
1814
1815 if (!HAS_LLC(dev_priv)) {
1816 seq_puts(m, "unsupported on this chipset\n");
1817 return 0;
1818 }
1819
1820 intel_runtime_pm_get(dev_priv);
1821
1822 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1823 if (ret)
1824 goto out;
1825
1826 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
1827 /* Convert GT frequency to 50 HZ units */
1828 min_gpu_freq =
1829 dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1830 max_gpu_freq =
1831 dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1832 } else {
1833 min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1834 max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1835 }
1836
1837 seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1838
1839 for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1840 ia_freq = gpu_freq;
1841 sandybridge_pcode_read(dev_priv,
1842 GEN6_PCODE_READ_MIN_FREQ_TABLE,
1843 &ia_freq);
1844 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1845 intel_gpu_freq(dev_priv, (gpu_freq *
1846 (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1847 GEN9_FREQ_SCALER : 1))),
1848 ((ia_freq >> 0) & 0xff) * 100,
1849 ((ia_freq >> 8) & 0xff) * 100);
1850 }
1851
1852 mutex_unlock(&dev_priv->rps.hw_lock);
1853
1854 out:
1855 intel_runtime_pm_put(dev_priv);
1856 return ret;
1857 }
1858
1859 static int i915_opregion(struct seq_file *m, void *unused)
1860 {
1861 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1862 struct drm_device *dev = &dev_priv->drm;
1863 struct intel_opregion *opregion = &dev_priv->opregion;
1864 int ret;
1865
1866 ret = mutex_lock_interruptible(&dev->struct_mutex);
1867 if (ret)
1868 goto out;
1869
1870 if (opregion->header)
1871 seq_write(m, opregion->header, OPREGION_SIZE);
1872
1873 mutex_unlock(&dev->struct_mutex);
1874
1875 out:
1876 return 0;
1877 }
1878
1879 static int i915_vbt(struct seq_file *m, void *unused)
1880 {
1881 struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;
1882
1883 if (opregion->vbt)
1884 seq_write(m, opregion->vbt, opregion->vbt_size);
1885
1886 return 0;
1887 }
1888
1889 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1890 {
1891 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1892 struct drm_device *dev = &dev_priv->drm;
1893 struct intel_framebuffer *fbdev_fb = NULL;
1894 struct drm_framebuffer *drm_fb;
1895 int ret;
1896
1897 ret = mutex_lock_interruptible(&dev->struct_mutex);
1898 if (ret)
1899 return ret;
1900
1901 #ifdef CONFIG_DRM_FBDEV_EMULATION
1902 if (dev_priv->fbdev) {
1903 fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);
1904
1905 seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1906 fbdev_fb->base.width,
1907 fbdev_fb->base.height,
1908 fbdev_fb->base.depth,
1909 fbdev_fb->base.bits_per_pixel,
1910 fbdev_fb->base.modifier[0],
1911 drm_framebuffer_read_refcount(&fbdev_fb->base));
1912 describe_obj(m, fbdev_fb->obj);
1913 seq_putc(m, '\n');
1914 }
1915 #endif
1916
1917 mutex_lock(&dev->mode_config.fb_lock);
1918 drm_for_each_fb(drm_fb, dev) {
1919 struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1920 if (fb == fbdev_fb)
1921 continue;
1922
1923 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1924 fb->base.width,
1925 fb->base.height,
1926 fb->base.depth,
1927 fb->base.bits_per_pixel,
1928 fb->base.modifier[0],
1929 drm_framebuffer_read_refcount(&fb->base));
1930 describe_obj(m, fb->obj);
1931 seq_putc(m, '\n');
1932 }
1933 mutex_unlock(&dev->mode_config.fb_lock);
1934 mutex_unlock(&dev->struct_mutex);
1935
1936 return 0;
1937 }
1938
1939 static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
1940 {
1941 seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1942 ring->space, ring->head, ring->tail,
1943 ring->last_retired_head);
1944 }
1945
1946 static int i915_context_status(struct seq_file *m, void *unused)
1947 {
1948 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1949 struct drm_device *dev = &dev_priv->drm;
1950 struct intel_engine_cs *engine;
1951 struct i915_gem_context *ctx;
1952 enum intel_engine_id id;
1953 int ret;
1954
1955 ret = mutex_lock_interruptible(&dev->struct_mutex);
1956 if (ret)
1957 return ret;
1958
1959 list_for_each_entry(ctx, &dev_priv->context_list, link) {
1960 seq_printf(m, "HW context %u ", ctx->hw_id);
1961 if (ctx->pid) {
1962 struct task_struct *task;
1963
1964 task = get_pid_task(ctx->pid, PIDTYPE_PID);
1965 if (task) {
1966 seq_printf(m, "(%s [%d]) ",
1967 task->comm, task->pid);
1968 put_task_struct(task);
1969 }
1970 } else if (IS_ERR(ctx->file_priv)) {
1971 seq_puts(m, "(deleted) ");
1972 } else {
1973 seq_puts(m, "(kernel) ");
1974 }
1975
1976 seq_putc(m, ctx->remap_slice ? 'R' : 'r');
1977 seq_putc(m, '\n');
1978
1979 for_each_engine(engine, dev_priv, id) {
1980 struct intel_context *ce = &ctx->engine[engine->id];
1981
1982 seq_printf(m, "%s: ", engine->name);
1983 seq_putc(m, ce->initialised ? 'I' : 'i');
1984 if (ce->state)
1985 describe_obj(m, ce->state->obj);
1986 if (ce->ring)
1987 describe_ctx_ring(m, ce->ring);
1988 seq_putc(m, '\n');
1989 }
1990
1991 seq_putc(m, '\n');
1992 }
1993
1994 mutex_unlock(&dev->struct_mutex);
1995
1996 return 0;
1997 }
1998
1999 static void i915_dump_lrc_obj(struct seq_file *m,
2000 struct i915_gem_context *ctx,
2001 struct intel_engine_cs *engine)
2002 {
2003 struct i915_vma *vma = ctx->engine[engine->id].state;
2004 struct page *page;
2005 int j;
2006
2007 seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
2008
2009 if (!vma) {
2010 seq_puts(m, "\tFake context\n");
2011 return;
2012 }
2013
2014 if (vma->flags & I915_VMA_GLOBAL_BIND)
2015 seq_printf(m, "\tBound in GGTT at 0x%08x\n",
2016 i915_ggtt_offset(vma));
2017
2018 if (i915_gem_object_get_pages(vma->obj)) {
2019 seq_puts(m, "\tFailed to get pages for context object\n\n");
2020 return;
2021 }
2022
2023 page = i915_gem_object_get_page(vma->obj, LRC_STATE_PN);
2024 if (page) {
2025 u32 *reg_state = kmap_atomic(page);
2026
2027 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2028 seq_printf(m,
2029 "\t[0x%04x] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2030 j * 4,
2031 reg_state[j], reg_state[j + 1],
2032 reg_state[j + 2], reg_state[j + 3]);
2033 }
2034 kunmap_atomic(reg_state);
2035 }
2036
2037 seq_putc(m, '\n');
2038 }
2039
2040 static int i915_dump_lrc(struct seq_file *m, void *unused)
2041 {
2042 struct drm_i915_private *dev_priv = node_to_i915(m->private);
2043 struct drm_device *dev = &dev_priv->drm;
2044 struct intel_engine_cs *engine;
2045 struct i915_gem_context *ctx;
2046 enum intel_engine_id id;
2047 int ret;
2048
2049 if (!i915.enable_execlists) {
2050 seq_printf(m, "Logical Ring Contexts are disabled\n");
2051 return 0;
2052 }
2053
2054 ret = mutex_lock_interruptible(&dev->struct_mutex);
2055 if (ret)
2056 return ret;
2057
2058 list_for_each_entry(ctx, &dev_priv->context_list, link)
2059 for_each_engine(engine, dev_priv, id)
2060 i915_dump_lrc_obj(m, ctx, engine);
2061
2062 mutex_unlock(&dev->struct_mutex);
2063
2064 return 0;
2065 }
2066
2067 static const char *swizzle_string(unsigned swizzle)
2068 {
2069 switch (swizzle) {
2070 case I915_BIT_6_SWIZZLE_NONE:
2071 return "none";
2072 case I915_BIT_6_SWIZZLE_9:
2073 return "bit9";
2074 case I915_BIT_6_SWIZZLE_9_10:
2075 return "bit9/bit10";
2076 case I915_BIT_6_SWIZZLE_9_11:
2077 return "bit9/bit11";
2078 case I915_BIT_6_SWIZZLE_9_10_11:
2079 return "bit9/bit10/bit11";
2080 case I915_BIT_6_SWIZZLE_9_17:
2081 return "bit9/bit17";
2082 case I915_BIT_6_SWIZZLE_9_10_17:
2083 return "bit9/bit10/bit17";
2084 case I915_BIT_6_SWIZZLE_UNKNOWN:
2085 return "unknown";
2086 }
2087
2088 return "bug";
2089 }
2090
2091 static int i915_swizzle_info(struct seq_file *m, void *data)
2092 {
2093 struct drm_i915_private *dev_priv = node_to_i915(m->private);
2094 struct drm_device *dev = &dev_priv->drm;
2095 int ret;
2096
2097 ret = mutex_lock_interruptible(&dev->struct_mutex);
2098 if (ret)
2099 return ret;
2100 intel_runtime_pm_get(dev_priv);
2101
2102 seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2103 swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2104 seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2105 swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2106
2107 if (IS_GEN3(dev_priv) || IS_GEN4(dev_priv)) {
2108 seq_printf(m, "DDC = 0x%08x\n",
2109 I915_READ(DCC));
2110 seq_printf(m, "DDC2 = 0x%08x\n",
2111 I915_READ(DCC2));
2112 seq_printf(m, "C0DRB3 = 0x%04x\n",
2113 I915_READ16(C0DRB3));
2114 seq_printf(m, "C1DRB3 = 0x%04x\n",
2115 I915_READ16(C1DRB3));
2116 } else if (INTEL_GEN(dev_priv) >= 6) {
2117 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2118 I915_READ(MAD_DIMM_C0));
2119 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2120 I915_READ(MAD_DIMM_C1));
2121 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2122 I915_READ(MAD_DIMM_C2));
2123 seq_printf(m, "TILECTL = 0x%08x\n",
2124 I915_READ(TILECTL));
2125 if (INTEL_GEN(dev_priv) >= 8)
2126 seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2127 I915_READ(GAMTARBMODE));
2128 else
2129 seq_printf(m, "ARB_MODE = 0x%08x\n",
2130 I915_READ(ARB_MODE));
2131 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2132 I915_READ(DISP_ARB_CTL));
2133 }
2134
2135 if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2136 seq_puts(m, "L-shaped memory detected\n");
2137
2138 intel_runtime_pm_put(dev_priv);
2139 mutex_unlock(&dev->struct_mutex);
2140
2141 return 0;
2142 }
2143
2144 static int per_file_ctx(int id, void *ptr, void *data)
2145 {
2146 struct i915_gem_context *ctx = ptr;
2147 struct seq_file *m = data;
2148 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2149
2150 if (!ppgtt) {
2151 seq_printf(m, " no ppgtt for context %d\n",
2152 ctx->user_handle);
2153 return 0;
2154 }
2155
2156 if (i915_gem_context_is_default(ctx))
2157 seq_puts(m, " default context:\n");
2158 else
2159 seq_printf(m, " context %d:\n", ctx->user_handle);
2160 ppgtt->debug_dump(ppgtt, m);
2161
2162 return 0;
2163 }
2164
2165 static void gen8_ppgtt_info(struct seq_file *m,
2166 struct drm_i915_private *dev_priv)
2167 {
2168 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2169 struct intel_engine_cs *engine;
2170 enum intel_engine_id id;
2171 int i;
2172
2173 if (!ppgtt)
2174 return;
2175
2176 for_each_engine(engine, dev_priv, id) {
2177 seq_printf(m, "%s\n", engine->name);
2178 for (i = 0; i < 4; i++) {
2179 u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
2180 pdp <<= 32;
2181 pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
2182 seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2183 }
2184 }
2185 }
2186
2187 static void gen6_ppgtt_info(struct seq_file *m,
2188 struct drm_i915_private *dev_priv)
2189 {
2190 struct intel_engine_cs *engine;
2191 enum intel_engine_id id;
2192
2193 if (IS_GEN6(dev_priv))
2194 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2195
2196 for_each_engine(engine, dev_priv, id) {
2197 seq_printf(m, "%s\n", engine->name);
2198 if (IS_GEN7(dev_priv))
2199 seq_printf(m, "GFX_MODE: 0x%08x\n",
2200 I915_READ(RING_MODE_GEN7(engine)));
2201 seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
2202 I915_READ(RING_PP_DIR_BASE(engine)));
2203 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
2204 I915_READ(RING_PP_DIR_BASE_READ(engine)));
2205 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
2206 I915_READ(RING_PP_DIR_DCLV(engine)));
2207 }
2208 if (dev_priv->mm.aliasing_ppgtt) {
2209 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2210
2211 seq_puts(m, "aliasing PPGTT:\n");
2212 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2213
2214 ppgtt->debug_dump(ppgtt, m);
2215 }
2216
2217 seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2218 }
2219
2220 static int i915_ppgtt_info(struct seq_file *m, void *data)
2221 {
2222 struct drm_i915_private *dev_priv = node_to_i915(m->private);
2223 struct drm_device *dev = &dev_priv->drm;
2224 struct drm_file *file;
2225 int ret;
2226
2227 mutex_lock(&dev->filelist_mutex);
2228 ret = mutex_lock_interruptible(&dev->struct_mutex);
2229 if (ret)
2230 goto out_unlock;
2231
2232 intel_runtime_pm_get(dev_priv);
2233
2234 if (INTEL_GEN(dev_priv) >= 8)
2235 gen8_ppgtt_info(m, dev_priv);
2236 else if (INTEL_GEN(dev_priv) >= 6)
2237 gen6_ppgtt_info(m, dev_priv);
2238
2239 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2240 struct drm_i915_file_private *file_priv = file->driver_priv;
2241 struct task_struct *task;
2242
2243 task = get_pid_task(file->pid, PIDTYPE_PID);
2244 if (!task) {
2245 ret = -ESRCH;
2246 goto out_rpm;
2247 }
2248 seq_printf(m, "\nproc: %s\n", task->comm);
2249 put_task_struct(task);
2250 idr_for_each(&file_priv->context_idr, per_file_ctx,
2251 (void *)(unsigned long)m);
2252 }
2253
2254 out_rpm:
2255 intel_runtime_pm_put(dev_priv);
2256 mutex_unlock(&dev->struct_mutex);
2257 out_unlock:
2258 mutex_unlock(&dev->filelist_mutex);
2259 return ret;
2260 }
2261
2262 static int count_irq_waiters(struct drm_i915_private *i915)
2263 {
2264 struct intel_engine_cs *engine;
2265 enum intel_engine_id id;
2266 int count = 0;
2267
2268 for_each_engine(engine, i915, id)
2269 count += intel_engine_has_waiter(engine);
2270
2271 return count;
2272 }
2273
2274 static const char *rps_power_to_str(unsigned int power)
2275 {
2276 static const char * const strings[] = {
2277 [LOW_POWER] = "low power",
2278 [BETWEEN] = "mixed",
2279 [HIGH_POWER] = "high power",
2280 };
2281
2282 if (power >= ARRAY_SIZE(strings) || !strings[power])
2283 return "unknown";
2284
2285 return strings[power];
2286 }
2287
2288 static int i915_rps_boost_info(struct seq_file *m, void *data)
2289 {
2290 struct drm_i915_private *dev_priv = node_to_i915(m->private);
2291 struct drm_device *dev = &dev_priv->drm;
2292 struct drm_file *file;
2293
2294 seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2295 seq_printf(m, "GPU busy? %s [%x]\n",
2296 yesno(dev_priv->gt.awake), dev_priv->gt.active_engines);
2297 seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2298 seq_printf(m, "Frequency requested %d\n",
2299 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
2300 seq_printf(m, " min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2301 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2302 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2303 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2304 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2305 seq_printf(m, " idle:%d, efficient:%d, boost:%d\n",
2306 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
2307 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
2308 intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
2309
2310 mutex_lock(&dev->filelist_mutex);
2311 spin_lock(&dev_priv->rps.client_lock);
2312 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2313 struct drm_i915_file_private *file_priv = file->driver_priv;
2314 struct task_struct *task;
2315
2316 rcu_read_lock();
2317 task = pid_task(file->pid, PIDTYPE_PID);
2318 seq_printf(m, "%s [%d]: %d boosts%s\n",
2319 task ? task->comm : "<unknown>",
2320 task ? task->pid : -1,
2321 file_priv->rps.boosts,
2322 list_empty(&file_priv->rps.link) ? "" : ", active");
2323 rcu_read_unlock();
2324 }
2325 seq_printf(m, "Kernel (anonymous) boosts: %d\n", dev_priv->rps.boosts);
2326 spin_unlock(&dev_priv->rps.client_lock);
2327 mutex_unlock(&dev->filelist_mutex);
2328
2329 if (INTEL_GEN(dev_priv) >= 6 &&
2330 dev_priv->rps.enabled &&
2331 dev_priv->gt.active_engines) {
2332 u32 rpup, rpupei;
2333 u32 rpdown, rpdownei;
2334
2335 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2336 rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
2337 rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
2338 rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
2339 rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
2340 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2341
2342 seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
2343 rps_power_to_str(dev_priv->rps.power));
2344 seq_printf(m, " Avg. up: %d%% [above threshold? %d%%]\n",
2345 100 * rpup / rpupei,
2346 dev_priv->rps.up_threshold);
2347 seq_printf(m, " Avg. down: %d%% [below threshold? %d%%]\n",
2348 100 * rpdown / rpdownei,
2349 dev_priv->rps.down_threshold);
2350 } else {
2351 seq_puts(m, "\nRPS Autotuning inactive\n");
2352 }
2353
2354 return 0;
2355 }
2356
2357 static int i915_llc(struct seq_file *m, void *data)
2358 {
2359 struct drm_i915_private *dev_priv = node_to_i915(m->private);
2360 const bool edram = INTEL_GEN(dev_priv) > 8;
2361
2362 seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
2363 seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
2364 intel_uncore_edram_size(dev_priv)/1024/1024);
2365
2366 return 0;
2367 }
2368
2369 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2370 {
2371 struct drm_i915_private *dev_priv = node_to_i915(m->private);
2372 struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2373 u32 tmp, i;
2374
2375 if (!HAS_GUC_UCODE(dev_priv))
2376 return 0;
2377
2378 seq_printf(m, "GuC firmware status:\n");
2379 seq_printf(m, "\tpath: %s\n",
2380 guc_fw->guc_fw_path);
2381 seq_printf(m, "\tfetch: %s\n",
2382 intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2383 seq_printf(m, "\tload: %s\n",
2384 intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2385 seq_printf(m, "\tversion wanted: %d.%d\n",
2386 guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2387 seq_printf(m, "\tversion found: %d.%d\n",
2388 guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2389 seq_printf(m, "\theader: offset is %d; size = %d\n",
2390 guc_fw->header_offset, guc_fw->header_size);
2391 seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2392 guc_fw->ucode_offset, guc_fw->ucode_size);
2393 seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2394 guc_fw->rsa_offset, guc_fw->rsa_size);
2395
2396 tmp = I915_READ(GUC_STATUS);
2397
2398 seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2399 seq_printf(m, "\tBootrom status = 0x%x\n",
2400 (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2401 seq_printf(m, "\tuKernel status = 0x%x\n",
2402 (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2403 seq_printf(m, "\tMIA Core status = 0x%x\n",
2404 (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2405 seq_puts(m, "\nScratch registers:\n");
2406 for (i = 0; i < 16; i++)
2407 seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2408
2409 return 0;
2410 }
2411
2412 static void i915_guc_client_info(struct seq_file *m,
2413 struct drm_i915_private *dev_priv,
2414 struct i915_guc_client *client)
2415 {
2416 struct intel_engine_cs *engine;
2417 enum intel_engine_id id;
2418 uint64_t tot = 0;
2419
2420 seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2421 client->priority, client->ctx_index, client->proc_desc_offset);
2422 seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2423 client->doorbell_id, client->doorbell_offset, client->cookie);
2424 seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2425 client->wq_size, client->wq_offset, client->wq_tail);
2426
2427 seq_printf(m, "\tWork queue full: %u\n", client->no_wq_space);
2428 seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2429 seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2430
2431 for_each_engine(engine, dev_priv, id) {
2432 u64 submissions = client->submissions[id];
2433 tot += submissions;
2434 seq_printf(m, "\tSubmissions: %llu %s\n",
2435 submissions, engine->name);
2436 }
2437 seq_printf(m, "\tTotal: %llu\n", tot);
2438 }
2439
2440 static int i915_guc_info(struct seq_file *m, void *data)
2441 {
2442 struct drm_i915_private *dev_priv = node_to_i915(m->private);
2443 struct drm_device *dev = &dev_priv->drm;
2444 struct intel_guc guc;
2445 struct i915_guc_client client = {};
2446 struct intel_engine_cs *engine;
2447 enum intel_engine_id id;
2448 u64 total = 0;
2449
2450 if (!HAS_GUC_SCHED(dev_priv))
2451 return 0;
2452
2453 if (mutex_lock_interruptible(&dev->struct_mutex))
2454 return 0;
2455
2456 /* Take a local copy of the GuC data, so we can dump it at leisure */
2457 guc = dev_priv->guc;
2458 if (guc.execbuf_client)
2459 client = *guc.execbuf_client;
2460
2461 mutex_unlock(&dev->struct_mutex);
2462
2463 seq_printf(m, "Doorbell map:\n");
2464 seq_printf(m, "\t%*pb\n", GUC_MAX_DOORBELLS, guc.doorbell_bitmap);
2465 seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc.db_cacheline);
2466
2467 seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2468 seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2469 seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2470 seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2471 seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2472
2473 seq_printf(m, "\nGuC submissions:\n");
2474 for_each_engine(engine, dev_priv, id) {
2475 u64 submissions = guc.submissions[id];
2476 total += submissions;
2477 seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
2478 engine->name, submissions, guc.last_seqno[id]);
2479 }
2480 seq_printf(m, "\t%s: %llu\n", "Total", total);
2481
2482 seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2483 i915_guc_client_info(m, dev_priv, &client);
2484
2485 /* Add more as required ... */
2486
2487 return 0;
2488 }
2489
2490 static int i915_guc_log_dump(struct seq_file *m, void *data)
2491 {
2492 struct drm_i915_private *dev_priv = node_to_i915(m->private);
2493 struct drm_i915_gem_object *obj;
2494 int i = 0, pg;
2495
2496 if (!dev_priv->guc.log_vma)
2497 return 0;
2498
2499 obj = dev_priv->guc.log_vma->obj;
2500 for (pg = 0; pg < obj->base.size / PAGE_SIZE; pg++) {
2501 u32 *log = kmap_atomic(i915_gem_object_get_page(obj, pg));
2502
2503 for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2504 seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2505 *(log + i), *(log + i + 1),
2506 *(log + i + 2), *(log + i + 3));
2507
2508 kunmap_atomic(log);
2509 }
2510
2511 seq_putc(m, '\n');
2512
2513 return 0;
2514 }
2515
2516 static int i915_edp_psr_status(struct seq_file *m, void *data)
2517 {
2518 struct drm_i915_private *dev_priv = node_to_i915(m->private);
2519 u32 psrperf = 0;
2520 u32 stat[3];
2521 enum pipe pipe;
2522 bool enabled = false;
2523
2524 if (!HAS_PSR(dev_priv)) {
2525 seq_puts(m, "PSR not supported\n");
2526 return 0;
2527 }
2528
2529 intel_runtime_pm_get(dev_priv);
2530
2531 mutex_lock(&dev_priv->psr.lock);
2532 seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2533 seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2534 seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2535 seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2536 seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2537 dev_priv->psr.busy_frontbuffer_bits);
2538 seq_printf(m, "Re-enable work scheduled: %s\n",
2539 yesno(work_busy(&dev_priv->psr.work.work)));
2540
2541 if (HAS_DDI(dev_priv))
2542 enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2543 else {
2544 for_each_pipe(dev_priv, pipe) {
2545 stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2546 VLV_EDP_PSR_CURR_STATE_MASK;
2547 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2548 (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2549 enabled = true;
2550 }
2551 }
2552
2553 seq_printf(m, "Main link in standby mode: %s\n",
2554 yesno(dev_priv->psr.link_standby));
2555
2556 seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2557
2558 if (!HAS_DDI(dev_priv))
2559 for_each_pipe(dev_priv, pipe) {
2560 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2561 (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2562 seq_printf(m, " pipe %c", pipe_name(pipe));
2563 }
2564 seq_puts(m, "\n");
2565
2566 /*
2567 * VLV/CHV PSR has no kind of performance counter
2568 * SKL+ Perf counter is reset to 0 everytime DC state is entered
2569 */
2570 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2571 psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2572 EDP_PSR_PERF_CNT_MASK;
2573
2574 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2575 }
2576 mutex_unlock(&dev_priv->psr.lock);
2577
2578 intel_runtime_pm_put(dev_priv);
2579 return 0;
2580 }
2581
2582 static int i915_sink_crc(struct seq_file *m, void *data)
2583 {
2584 struct drm_i915_private *dev_priv = node_to_i915(m->private);
2585 struct drm_device *dev = &dev_priv->drm;
2586 struct intel_connector *connector;
2587 struct intel_dp *intel_dp = NULL;
2588 int ret;
2589 u8 crc[6];
2590
2591 drm_modeset_lock_all(dev);
2592 for_each_intel_connector(dev, connector) {
2593 struct drm_crtc *crtc;
2594
2595 if (!connector->base.state->best_encoder)
2596 continue;
2597
2598 crtc = connector->base.state->crtc;
2599 if (!crtc->state->active)
2600 continue;
2601
2602 if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
2603 continue;
2604
2605 intel_dp = enc_to_intel_dp(connector->base.state->best_encoder);
2606
2607 ret = intel_dp_sink_crc(intel_dp, crc);
2608 if (ret)
2609 goto out;
2610
2611 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2612 crc[0], crc[1], crc[2],
2613 crc[3], crc[4], crc[5]);
2614 goto out;
2615 }
2616 ret = -ENODEV;
2617 out:
2618 drm_modeset_unlock_all(dev);
2619 return ret;
2620 }
2621
2622 static int i915_energy_uJ(struct seq_file *m, void *data)
2623 {
2624 struct drm_i915_private *dev_priv = node_to_i915(m->private);
2625 u64 power;
2626 u32 units;
2627
2628 if (INTEL_GEN(dev_priv) < 6)
2629 return -ENODEV;
2630
2631 intel_runtime_pm_get(dev_priv);
2632
2633 rdmsrl(MSR_RAPL_POWER_UNIT, power);
2634 power = (power & 0x1f00) >> 8;
2635 units = 1000000 / (1 << power); /* convert to uJ */
2636 power = I915_READ(MCH_SECP_NRG_STTS);
2637 power *= units;
2638
2639 intel_runtime_pm_put(dev_priv);
2640
2641 seq_printf(m, "%llu", (long long unsigned)power);
2642
2643 return 0;
2644 }
2645
2646 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2647 {
2648 struct drm_i915_private *dev_priv = node_to_i915(m->private);
2649 struct pci_dev *pdev = dev_priv->drm.pdev;
2650
2651 if (!HAS_RUNTIME_PM(dev_priv))
2652 seq_puts(m, "Runtime power management not supported\n");
2653
2654 seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
2655 seq_printf(m, "IRQs disabled: %s\n",
2656 yesno(!intel_irqs_enabled(dev_priv)));
2657 #ifdef CONFIG_PM
2658 seq_printf(m, "Usage count: %d\n",
2659 atomic_read(&dev_priv->drm.dev->power.usage_count));
2660 #else
2661 seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2662 #endif
2663 seq_printf(m, "PCI device power state: %s [%d]\n",
2664 pci_power_name(pdev->current_state),
2665 pdev->current_state);
2666
2667 return 0;
2668 }
2669
2670 static int i915_power_domain_info(struct seq_file *m, void *unused)
2671 {
2672 struct drm_i915_private *dev_priv = node_to_i915(m->private);
2673 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2674 int i;
2675
2676 mutex_lock(&power_domains->lock);
2677
2678 seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2679 for (i = 0; i < power_domains->power_well_count; i++) {
2680 struct i915_power_well *power_well;
2681 enum intel_display_power_domain power_domain;
2682
2683 power_well = &power_domains->power_wells[i];
2684 seq_printf(m, "%-25s %d\n", power_well->name,
2685 power_well->count);
2686
2687 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2688 power_domain++) {
2689 if (!(BIT(power_domain) & power_well->domains))
2690 continue;
2691
2692 seq_printf(m, " %-23s %d\n",
2693 intel_display_power_domain_str(power_domain),
2694 power_domains->domain_use_count[power_domain]);
2695 }
2696 }
2697
2698 mutex_unlock(&power_domains->lock);
2699
2700 return 0;
2701 }
2702
2703 static int i915_dmc_info(struct seq_file *m, void *unused)
2704 {
2705 struct drm_i915_private *dev_priv = node_to_i915(m->private);
2706 struct intel_csr *csr;
2707
2708 if (!HAS_CSR(dev_priv)) {
2709 seq_puts(m, "not supported\n");
2710 return 0;
2711 }
2712
2713 csr = &dev_priv->csr;
2714
2715 intel_runtime_pm_get(dev_priv);
2716
2717 seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2718 seq_printf(m, "path: %s\n", csr->fw_path);
2719
2720 if (!csr->dmc_payload)
2721 goto out;
2722
2723 seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2724 CSR_VERSION_MINOR(csr->version));
2725
2726 if (IS_SKYLAKE(dev_priv) && csr->version >= CSR_VERSION(1, 6)) {
2727 seq_printf(m, "DC3 -> DC5 count: %d\n",
2728 I915_READ(SKL_CSR_DC3_DC5_COUNT));
2729 seq_printf(m, "DC5 -> DC6 count: %d\n",
2730 I915_READ(SKL_CSR_DC5_DC6_COUNT));
2731 } else if (IS_BROXTON(dev_priv) && csr->version >= CSR_VERSION(1, 4)) {
2732 seq_printf(m, "DC3 -> DC5 count: %d\n",
2733 I915_READ(BXT_CSR_DC3_DC5_COUNT));
2734 }
2735
2736 out:
2737 seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2738 seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2739 seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2740
2741 intel_runtime_pm_put(dev_priv);
2742
2743 return 0;
2744 }
2745
2746 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2747 struct drm_display_mode *mode)
2748 {
2749 int i;
2750
2751 for (i = 0; i < tabs; i++)
2752 seq_putc(m, '\t');
2753
2754 seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2755 mode->base.id, mode->name,
2756 mode->vrefresh, mode->clock,
2757 mode->hdisplay, mode->hsync_start,
2758 mode->hsync_end, mode->htotal,
2759 mode->vdisplay, mode->vsync_start,
2760 mode->vsync_end, mode->vtotal,
2761 mode->type, mode->flags);
2762 }
2763
2764 static void intel_encoder_info(struct seq_file *m,
2765 struct intel_crtc *intel_crtc,
2766 struct intel_encoder *intel_encoder)
2767 {
2768 struct drm_i915_private *dev_priv = node_to_i915(m->private);
2769 struct drm_device *dev = &dev_priv->drm;
2770 struct drm_crtc *crtc = &intel_crtc->base;
2771 struct intel_connector *intel_connector;
2772 struct drm_encoder *encoder;
2773
2774 encoder = &intel_encoder->base;
2775 seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2776 encoder->base.id, encoder->name);
2777 for_each_connector_on_encoder(dev, encoder, intel_connector) {
2778 struct drm_connector *connector = &intel_connector->base;
2779 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2780 connector->base.id,
2781 connector->name,
2782 drm_get_connector_status_name(connector->status));
2783 if (connector->status == connector_status_connected) {
2784 struct drm_display_mode *mode = &crtc->mode;
2785 seq_printf(m, ", mode:\n");
2786 intel_seq_print_mode(m, 2, mode);
2787 } else {
2788 seq_putc(m, '\n');
2789 }
2790 }
2791 }
2792
2793 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2794 {
2795 struct drm_i915_private *dev_priv = node_to_i915(m->private);
2796 struct drm_device *dev = &dev_priv->drm;
2797 struct drm_crtc *crtc = &intel_crtc->base;
2798 struct intel_encoder *intel_encoder;
2799 struct drm_plane_state *plane_state = crtc->primary->state;
2800 struct drm_framebuffer *fb = plane_state->fb;
2801
2802 if (fb)
2803 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2804 fb->base.id, plane_state->src_x >> 16,
2805 plane_state->src_y >> 16, fb->width, fb->height);
2806 else
2807 seq_puts(m, "\tprimary plane disabled\n");
2808 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2809 intel_encoder_info(m, intel_crtc, intel_encoder);
2810 }
2811
2812 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2813 {
2814 struct drm_display_mode *mode = panel->fixed_mode;
2815
2816 seq_printf(m, "\tfixed mode:\n");
2817 intel_seq_print_mode(m, 2, mode);
2818 }
2819
2820 static void intel_dp_info(struct seq_file *m,
2821 struct intel_connector *intel_connector)
2822 {
2823 struct intel_encoder *intel_encoder = intel_connector->encoder;
2824 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2825
2826 seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2827 seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2828 if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
2829 intel_panel_info(m, &intel_connector->panel);
2830
2831 drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports,
2832 &intel_dp->aux);
2833 }
2834
2835 static void intel_hdmi_info(struct seq_file *m,
2836 struct intel_connector *intel_connector)
2837 {
2838 struct intel_encoder *intel_encoder = intel_connector->encoder;
2839 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2840
2841 seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2842 }
2843
2844 static void intel_lvds_info(struct seq_file *m,
2845 struct intel_connector *intel_connector)
2846 {
2847 intel_panel_info(m, &intel_connector->panel);
2848 }
2849
2850 static void intel_connector_info(struct seq_file *m,
2851 struct drm_connector *connector)
2852 {
2853 struct intel_connector *intel_connector = to_intel_connector(connector);
2854 struct intel_encoder *intel_encoder = intel_connector->encoder;
2855 struct drm_display_mode *mode;
2856
2857 seq_printf(m, "connector %d: type %s, status: %s\n",
2858 connector->base.id, connector->name,
2859 drm_get_connector_status_name(connector->status));
2860 if (connector->status == connector_status_connected) {
2861 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2862 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2863 connector->display_info.width_mm,
2864 connector->display_info.height_mm);
2865 seq_printf(m, "\tsubpixel order: %s\n",
2866 drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2867 seq_printf(m, "\tCEA rev: %d\n",
2868 connector->display_info.cea_rev);
2869 }
2870
2871 if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
2872 return;
2873
2874 switch (connector->connector_type) {
2875 case DRM_MODE_CONNECTOR_DisplayPort:
2876 case DRM_MODE_CONNECTOR_eDP:
2877 intel_dp_info(m, intel_connector);
2878 break;
2879 case DRM_MODE_CONNECTOR_LVDS:
2880 if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2881 intel_lvds_info(m, intel_connector);
2882 break;
2883 case DRM_MODE_CONNECTOR_HDMIA:
2884 if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
2885 intel_encoder->type == INTEL_OUTPUT_UNKNOWN)
2886 intel_hdmi_info(m, intel_connector);
2887 break;
2888 default:
2889 break;
2890 }
2891
2892 seq_printf(m, "\tmodes:\n");
2893 list_for_each_entry(mode, &connector->modes, head)
2894 intel_seq_print_mode(m, 2, mode);
2895 }
2896
2897 static bool cursor_active(struct drm_i915_private *dev_priv, int pipe)
2898 {
2899 u32 state;
2900
2901 if (IS_845G(dev_priv) || IS_I865G(dev_priv))
2902 state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
2903 else
2904 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2905
2906 return state;
2907 }
2908
2909 static bool cursor_position(struct drm_i915_private *dev_priv,
2910 int pipe, int *x, int *y)
2911 {
2912 u32 pos;
2913
2914 pos = I915_READ(CURPOS(pipe));
2915
2916 *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2917 if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2918 *x = -*x;
2919
2920 *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2921 if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2922 *y = -*y;
2923
2924 return cursor_active(dev_priv, pipe);
2925 }
2926
2927 static const char *plane_type(enum drm_plane_type type)
2928 {
2929 switch (type) {
2930 case DRM_PLANE_TYPE_OVERLAY:
2931 return "OVL";
2932 case DRM_PLANE_TYPE_PRIMARY:
2933 return "PRI";
2934 case DRM_PLANE_TYPE_CURSOR:
2935 return "CUR";
2936 /*
2937 * Deliberately omitting default: to generate compiler warnings
2938 * when a new drm_plane_type gets added.
2939 */
2940 }
2941
2942 return "unknown";
2943 }
2944
2945 static const char *plane_rotation(unsigned int rotation)
2946 {
2947 static char buf[48];
2948 /*
2949 * According to doc only one DRM_ROTATE_ is allowed but this
2950 * will print them all to visualize if the values are misused
2951 */
2952 snprintf(buf, sizeof(buf),
2953 "%s%s%s%s%s%s(0x%08x)",
2954 (rotation & DRM_ROTATE_0) ? "0 " : "",
2955 (rotation & DRM_ROTATE_90) ? "90 " : "",
2956 (rotation & DRM_ROTATE_180) ? "180 " : "",
2957 (rotation & DRM_ROTATE_270) ? "270 " : "",
2958 (rotation & DRM_REFLECT_X) ? "FLIPX " : "",
2959 (rotation & DRM_REFLECT_Y) ? "FLIPY " : "",
2960 rotation);
2961
2962 return buf;
2963 }
2964
2965 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2966 {
2967 struct drm_i915_private *dev_priv = node_to_i915(m->private);
2968 struct drm_device *dev = &dev_priv->drm;
2969 struct intel_plane *intel_plane;
2970
2971 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2972 struct drm_plane_state *state;
2973 struct drm_plane *plane = &intel_plane->base;
2974 char *format_name;
2975
2976 if (!plane->state) {
2977 seq_puts(m, "plane->state is NULL!\n");
2978 continue;
2979 }
2980
2981 state = plane->state;
2982
2983 if (state->fb) {
2984 format_name = drm_get_format_name(state->fb->pixel_format);
2985 } else {
2986 format_name = kstrdup("N/A", GFP_KERNEL);
2987 }
2988
2989 seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
2990 plane->base.id,
2991 plane_type(intel_plane->base.type),
2992 state->crtc_x, state->crtc_y,
2993 state->crtc_w, state->crtc_h,
2994 (state->src_x >> 16),
2995 ((state->src_x & 0xffff) * 15625) >> 10,
2996 (state->src_y >> 16),
2997 ((state->src_y & 0xffff) * 15625) >> 10,
2998 (state->src_w >> 16),
2999 ((state->src_w & 0xffff) * 15625) >> 10,
3000 (state->src_h >> 16),
3001 ((state->src_h & 0xffff) * 15625) >> 10,
3002 format_name,
3003 plane_rotation(state->rotation));
3004
3005 kfree(format_name);
3006 }
3007 }
3008
3009 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3010 {
3011 struct intel_crtc_state *pipe_config;
3012 int num_scalers = intel_crtc->num_scalers;
3013 int i;
3014
3015 pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3016
3017 /* Not all platformas have a scaler */
3018 if (num_scalers) {
3019 seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3020 num_scalers,
3021 pipe_config->scaler_state.scaler_users,
3022 pipe_config->scaler_state.scaler_id);
3023
3024 for (i = 0; i < SKL_NUM_SCALERS; i++) {
3025 struct intel_scaler *sc =
3026 &pipe_config->scaler_state.scalers[i];
3027
3028 seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3029 i, yesno(sc->in_use), sc->mode);
3030 }
3031 seq_puts(m, "\n");
3032 } else {
3033 seq_puts(m, "\tNo scalers available on this platform\n");
3034 }
3035 }
3036
3037 static int i915_display_info(struct seq_file *m, void *unused)
3038 {
3039 struct drm_i915_private *dev_priv = node_to_i915(m->private);
3040 struct drm_device *dev = &dev_priv->drm;
3041 struct intel_crtc *crtc;
3042 struct drm_connector *connector;
3043
3044 intel_runtime_pm_get(dev_priv);
3045 drm_modeset_lock_all(dev);
3046 seq_printf(m, "CRTC info\n");
3047 seq_printf(m, "---------\n");
3048 for_each_intel_crtc(dev, crtc) {
3049 bool active;
3050 struct intel_crtc_state *pipe_config;
3051 int x, y;
3052
3053 pipe_config = to_intel_crtc_state(crtc->base.state);
3054
3055 seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3056 crtc->base.base.id, pipe_name(crtc->pipe),
3057 yesno(pipe_config->base.active),
3058 pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3059 yesno(pipe_config->dither), pipe_config->pipe_bpp);
3060
3061 if (pipe_config->base.active) {
3062 intel_crtc_info(m, crtc);
3063
3064 active = cursor_position(dev_priv, crtc->pipe, &x, &y);
3065 seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3066 yesno(crtc->cursor_base),
3067 x, y, crtc->base.cursor->state->crtc_w,
3068 crtc->base.cursor->state->crtc_h,
3069 crtc->cursor_addr, yesno(active));
3070 intel_scaler_info(m, crtc);
3071 intel_plane_info(m, crtc);
3072 }
3073
3074 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3075 yesno(!crtc->cpu_fifo_underrun_disabled),
3076 yesno(!crtc->pch_fifo_underrun_disabled));
3077 }
3078
3079 seq_printf(m, "\n");
3080 seq_printf(m, "Connector info\n");
3081 seq_printf(m, "--------------\n");
3082 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3083 intel_connector_info(m, connector);
3084 }
3085 drm_modeset_unlock_all(dev);
3086 intel_runtime_pm_put(dev_priv);
3087
3088 return 0;
3089 }
3090
3091 static int i915_engine_info(struct seq_file *m, void *unused)
3092 {
3093 struct drm_i915_private *dev_priv = node_to_i915(m->private);
3094 struct intel_engine_cs *engine;
3095 enum intel_engine_id id;
3096
3097 for_each_engine(engine, dev_priv, id) {
3098 struct intel_breadcrumbs *b = &engine->breadcrumbs;
3099 struct drm_i915_gem_request *rq;
3100 struct rb_node *rb;
3101 u64 addr;
3102
3103 seq_printf(m, "%s\n", engine->name);
3104 seq_printf(m, "\tcurrent seqno %x, last %x, hangcheck %x [score %d]\n",
3105 intel_engine_get_seqno(engine),
3106 engine->last_submitted_seqno,
3107 engine->hangcheck.seqno,
3108 engine->hangcheck.score);
3109
3110 rcu_read_lock();
3111
3112 seq_printf(m, "\tRequests:\n");
3113
3114 rq = list_first_entry(&engine->request_list,
3115 struct drm_i915_gem_request, link);
3116 if (&rq->link != &engine->request_list)
3117 print_request(m, rq, "\t\tfirst ");
3118
3119 rq = list_last_entry(&engine->request_list,
3120 struct drm_i915_gem_request, link);
3121 if (&rq->link != &engine->request_list)
3122 print_request(m, rq, "\t\tlast ");
3123
3124 rq = i915_gem_find_active_request(engine);
3125 if (rq) {
3126 print_request(m, rq, "\t\tactive ");
3127 seq_printf(m,
3128 "\t\t[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]\n",
3129 rq->head, rq->postfix, rq->tail,
3130 rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
3131 rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
3132 }
3133
3134 seq_printf(m, "\tRING_START: 0x%08x [0x%08x]\n",
3135 I915_READ(RING_START(engine->mmio_base)),
3136 rq ? i915_ggtt_offset(rq->ring->vma) : 0);
3137 seq_printf(m, "\tRING_HEAD: 0x%08x [0x%08x]\n",
3138 I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR,
3139 rq ? rq->ring->head : 0);
3140 seq_printf(m, "\tRING_TAIL: 0x%08x [0x%08x]\n",
3141 I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR,
3142 rq ? rq->ring->tail : 0);
3143 seq_printf(m, "\tRING_CTL: 0x%08x [%s]\n",
3144 I915_READ(RING_CTL(engine->mmio_base)),
3145 I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? "waiting" : "");
3146
3147 rcu_read_unlock();
3148
3149 addr = intel_engine_get_active_head(engine);
3150 seq_printf(m, "\tACTHD: 0x%08x_%08x\n",
3151 upper_32_bits(addr), lower_32_bits(addr));
3152 addr = intel_engine_get_last_batch_head(engine);
3153 seq_printf(m, "\tBBADDR: 0x%08x_%08x\n",
3154 upper_32_bits(addr), lower_32_bits(addr));
3155
3156 if (i915.enable_execlists) {
3157 u32 ptr, read, write;
3158
3159 seq_printf(m, "\tExeclist status: 0x%08x %08x\n",
3160 I915_READ(RING_EXECLIST_STATUS_LO(engine)),
3161 I915_READ(RING_EXECLIST_STATUS_HI(engine)));
3162
3163 ptr = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
3164 read = GEN8_CSB_READ_PTR(ptr);
3165 write = GEN8_CSB_WRITE_PTR(ptr);
3166 seq_printf(m, "\tExeclist CSB read %d, write %d\n",
3167 read, write);
3168 if (read >= GEN8_CSB_ENTRIES)
3169 read = 0;
3170 if (write >= GEN8_CSB_ENTRIES)
3171 write = 0;
3172 if (read > write)
3173 write += GEN8_CSB_ENTRIES;
3174 while (read < write) {
3175 unsigned int idx = ++read % GEN8_CSB_ENTRIES;
3176
3177 seq_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
3178 idx,
3179 I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)),
3180 I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)));
3181 }
3182
3183 rcu_read_lock();
3184 rq = READ_ONCE(engine->execlist_port[0].request);
3185 if (rq)
3186 print_request(m, rq, "\t\tELSP[0] ");
3187 else
3188 seq_printf(m, "\t\tELSP[0] idle\n");
3189 rq = READ_ONCE(engine->execlist_port[1].request);
3190 if (rq)
3191 print_request(m, rq, "\t\tELSP[1] ");
3192 else
3193 seq_printf(m, "\t\tELSP[1] idle\n");
3194 rcu_read_unlock();
3195 } else if (INTEL_GEN(dev_priv) > 6) {
3196 seq_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
3197 I915_READ(RING_PP_DIR_BASE(engine)));
3198 seq_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
3199 I915_READ(RING_PP_DIR_BASE_READ(engine)));
3200 seq_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
3201 I915_READ(RING_PP_DIR_DCLV(engine)));
3202 }
3203
3204 spin_lock(&b->lock);
3205 for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
3206 struct intel_wait *w = container_of(rb, typeof(*w), node);
3207
3208 seq_printf(m, "\t%s [%d] waiting for %x\n",
3209 w->tsk->comm, w->tsk->pid, w->seqno);
3210 }
3211 spin_unlock(&b->lock);
3212
3213 seq_puts(m, "\n");
3214 }
3215
3216 return 0;
3217 }
3218
3219 static int i915_semaphore_status(struct seq_file *m, void *unused)
3220 {
3221 struct drm_i915_private *dev_priv = node_to_i915(m->private);
3222 struct drm_device *dev = &dev_priv->drm;
3223 struct intel_engine_cs *engine;
3224 int num_rings = INTEL_INFO(dev_priv)->num_rings;
3225 enum intel_engine_id id;
3226 int j, ret;
3227
3228 if (!i915.semaphores) {
3229 seq_puts(m, "Semaphores are disabled\n");
3230 return 0;
3231 }
3232
3233 ret = mutex_lock_interruptible(&dev->struct_mutex);
3234 if (ret)
3235 return ret;
3236 intel_runtime_pm_get(dev_priv);
3237
3238 if (IS_BROADWELL(dev_priv)) {
3239 struct page *page;
3240 uint64_t *seqno;
3241
3242 page = i915_gem_object_get_page(dev_priv->semaphore->obj, 0);
3243
3244 seqno = (uint64_t *)kmap_atomic(page);
3245 for_each_engine(engine, dev_priv, id) {
3246 uint64_t offset;
3247
3248 seq_printf(m, "%s\n", engine->name);
3249
3250 seq_puts(m, " Last signal:");
3251 for (j = 0; j < num_rings; j++) {
3252 offset = id * I915_NUM_ENGINES + j;
3253 seq_printf(m, "0x%08llx (0x%02llx) ",
3254 seqno[offset], offset * 8);
3255 }
3256 seq_putc(m, '\n');
3257
3258 seq_puts(m, " Last wait: ");
3259 for (j = 0; j < num_rings; j++) {
3260 offset = id + (j * I915_NUM_ENGINES);
3261 seq_printf(m, "0x%08llx (0x%02llx) ",
3262 seqno[offset], offset * 8);
3263 }
3264 seq_putc(m, '\n');
3265
3266 }
3267 kunmap_atomic(seqno);
3268 } else {
3269 seq_puts(m, " Last signal:");
3270 for_each_engine(engine, dev_priv, id)
3271 for (j = 0; j < num_rings; j++)
3272 seq_printf(m, "0x%08x\n",
3273 I915_READ(engine->semaphore.mbox.signal[j]));
3274 seq_putc(m, '\n');
3275 }
3276
3277 seq_puts(m, "\nSync seqno:\n");
3278 for_each_engine(engine, dev_priv, id) {
3279 for (j = 0; j < num_rings; j++)
3280 seq_printf(m, " 0x%08x ",
3281 engine->semaphore.sync_seqno[j]);
3282 seq_putc(m, '\n');
3283 }
3284 seq_putc(m, '\n');
3285
3286 intel_runtime_pm_put(dev_priv);
3287 mutex_unlock(&dev->struct_mutex);
3288 return 0;
3289 }
3290
3291 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3292 {
3293 struct drm_i915_private *dev_priv = node_to_i915(m->private);
3294 struct drm_device *dev = &dev_priv->drm;
3295 int i;
3296
3297 drm_modeset_lock_all(dev);
3298 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3299 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3300
3301 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3302 seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
3303 pll->config.crtc_mask, pll->active_mask, yesno(pll->on));
3304 seq_printf(m, " tracked hardware state:\n");
3305 seq_printf(m, " dpll: 0x%08x\n", pll->config.hw_state.dpll);
3306 seq_printf(m, " dpll_md: 0x%08x\n",
3307 pll->config.hw_state.dpll_md);
3308 seq_printf(m, " fp0: 0x%08x\n", pll->config.hw_state.fp0);
3309 seq_printf(m, " fp1: 0x%08x\n", pll->config.hw_state.fp1);
3310 seq_printf(m, " wrpll: 0x%08x\n", pll->config.hw_state.wrpll);
3311 }
3312 drm_modeset_unlock_all(dev);
3313
3314 return 0;
3315 }
3316
3317 static int i915_wa_registers(struct seq_file *m, void *unused)
3318 {
3319 int i;
3320 int ret;
3321 struct intel_engine_cs *engine;
3322 struct drm_i915_private *dev_priv = node_to_i915(m->private);
3323 struct drm_device *dev = &dev_priv->drm;
3324 struct i915_workarounds *workarounds = &dev_priv->workarounds;
3325 enum intel_engine_id id;
3326
3327 ret = mutex_lock_interruptible(&dev->struct_mutex);
3328 if (ret)
3329 return ret;
3330
3331 intel_runtime_pm_get(dev_priv);
3332
3333 seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3334 for_each_engine(engine, dev_priv, id)
3335 seq_printf(m, "HW whitelist count for %s: %d\n",
3336 engine->name, workarounds->hw_whitelist_count[id]);
3337 for (i = 0; i < workarounds->count; ++i) {
3338 i915_reg_t addr;
3339 u32 mask, value, read;
3340 bool ok;
3341
3342 addr = workarounds->reg[i].addr;
3343 mask = workarounds->reg[i].mask;
3344 value = workarounds->reg[i].value;
3345 read = I915_READ(addr);
3346 ok = (value & mask) == (read & mask);
3347 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3348 i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3349 }
3350
3351 intel_runtime_pm_put(dev_priv);
3352 mutex_unlock(&dev->struct_mutex);
3353
3354 return 0;
3355 }
3356
3357 static int i915_ddb_info(struct seq_file *m, void *unused)
3358 {
3359 struct drm_i915_private *dev_priv = node_to_i915(m->private);
3360 struct drm_device *dev = &dev_priv->drm;
3361 struct skl_ddb_allocation *ddb;
3362 struct skl_ddb_entry *entry;
3363 enum pipe pipe;
3364 int plane;
3365
3366 if (INTEL_GEN(dev_priv) < 9)
3367 return 0;
3368
3369 drm_modeset_lock_all(dev);
3370
3371 ddb = &dev_priv->wm.skl_hw.ddb;
3372
3373 seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3374
3375 for_each_pipe(dev_priv, pipe) {
3376 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3377
3378 for_each_plane(dev_priv, pipe, plane) {
3379 entry = &ddb->plane[pipe][plane];
3380 seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
3381 entry->start, entry->end,
3382 skl_ddb_entry_size(entry));
3383 }
3384
3385 entry = &ddb->plane[pipe][PLANE_CURSOR];
3386 seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
3387 entry->end, skl_ddb_entry_size(entry));
3388 }
3389
3390 drm_modeset_unlock_all(dev);
3391
3392 return 0;
3393 }
3394
3395 static void drrs_status_per_crtc(struct seq_file *m,
3396 struct drm_device *dev,
3397 struct intel_crtc *intel_crtc)
3398 {
3399 struct drm_i915_private *dev_priv = to_i915(dev);
3400 struct i915_drrs *drrs = &dev_priv->drrs;
3401 int vrefresh = 0;
3402 struct drm_connector *connector;
3403
3404 drm_for_each_connector(connector, dev) {
3405 if (connector->state->crtc != &intel_crtc->base)
3406 continue;
3407
3408 seq_printf(m, "%s:\n", connector->name);
3409 }
3410
3411 if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3412 seq_puts(m, "\tVBT: DRRS_type: Static");
3413 else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3414 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3415 else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3416 seq_puts(m, "\tVBT: DRRS_type: None");
3417 else
3418 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3419
3420 seq_puts(m, "\n\n");
3421
3422 if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3423 struct intel_panel *panel;
3424
3425 mutex_lock(&drrs->mutex);
3426 /* DRRS Supported */
3427 seq_puts(m, "\tDRRS Supported: Yes\n");
3428
3429 /* disable_drrs() will make drrs->dp NULL */
3430 if (!drrs->dp) {
3431 seq_puts(m, "Idleness DRRS: Disabled");
3432 mutex_unlock(&drrs->mutex);
3433 return;
3434 }
3435
3436 panel = &drrs->dp->attached_connector->panel;
3437 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3438 drrs->busy_frontbuffer_bits);
3439
3440 seq_puts(m, "\n\t\t");
3441 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3442 seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3443 vrefresh = panel->fixed_mode->vrefresh;
3444 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3445 seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3446 vrefresh = panel->downclock_mode->vrefresh;
3447 } else {
3448 seq_printf(m, "DRRS_State: Unknown(%d)\n",
3449 drrs->refresh_rate_type);
3450 mutex_unlock(&drrs->mutex);
3451 return;
3452 }
3453 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3454
3455 seq_puts(m, "\n\t\t");
3456 mutex_unlock(&drrs->mutex);
3457 } else {
3458 /* DRRS not supported. Print the VBT parameter*/
3459 seq_puts(m, "\tDRRS Supported : No");
3460 }
3461 seq_puts(m, "\n");
3462 }
3463
3464 static int i915_drrs_status(struct seq_file *m, void *unused)
3465 {
3466 struct drm_i915_private *dev_priv = node_to_i915(m->private);
3467 struct drm_device *dev = &dev_priv->drm;
3468 struct intel_crtc *intel_crtc;
3469 int active_crtc_cnt = 0;
3470
3471 drm_modeset_lock_all(dev);
3472 for_each_intel_crtc(dev, intel_crtc) {
3473 if (intel_crtc->base.state->active) {
3474 active_crtc_cnt++;
3475 seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
3476
3477 drrs_status_per_crtc(m, dev, intel_crtc);
3478 }
3479 }
3480 drm_modeset_unlock_all(dev);
3481
3482 if (!active_crtc_cnt)
3483 seq_puts(m, "No active crtc found\n");
3484
3485 return 0;
3486 }
3487
3488 struct pipe_crc_info {
3489 const char *name;
3490 struct drm_i915_private *dev_priv;
3491 enum pipe pipe;
3492 };
3493
3494 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3495 {
3496 struct drm_i915_private *dev_priv = node_to_i915(m->private);
3497 struct drm_device *dev = &dev_priv->drm;
3498 struct intel_encoder *intel_encoder;
3499 struct intel_digital_port *intel_dig_port;
3500 struct drm_connector *connector;
3501
3502 drm_modeset_lock_all(dev);
3503 drm_for_each_connector(connector, dev) {
3504 if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
3505 continue;
3506
3507 intel_encoder = intel_attached_encoder(connector);
3508 if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3509 continue;
3510
3511 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
3512 if (!intel_dig_port->dp.can_mst)
3513 continue;
3514
3515 seq_printf(m, "MST Source Port %c\n",
3516 port_name(intel_dig_port->port));
3517 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3518 }
3519 drm_modeset_unlock_all(dev);
3520 return 0;
3521 }
3522
3523 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3524 {
3525 struct pipe_crc_info *info = inode->i_private;
3526 struct drm_i915_private *dev_priv = info->dev_priv;
3527 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3528
3529 if (info->pipe >= INTEL_INFO(dev_priv)->num_pipes)
3530 return -ENODEV;
3531
3532 spin_lock_irq(&pipe_crc->lock);
3533
3534 if (pipe_crc->opened) {
3535 spin_unlock_irq(&pipe_crc->lock);
3536 return -EBUSY; /* already open */
3537 }
3538
3539 pipe_crc->opened = true;
3540 filep->private_data = inode->i_private;
3541
3542 spin_unlock_irq(&pipe_crc->lock);
3543
3544 return 0;
3545 }
3546
3547 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3548 {
3549 struct pipe_crc_info *info = inode->i_private;
3550 struct drm_i915_private *dev_priv = info->dev_priv;
3551 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3552
3553 spin_lock_irq(&pipe_crc->lock);
3554 pipe_crc->opened = false;
3555 spin_unlock_irq(&pipe_crc->lock);
3556
3557 return 0;
3558 }
3559
3560 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3561 #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
3562 /* account for \'0' */
3563 #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
3564
3565 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3566 {
3567 assert_spin_locked(&pipe_crc->lock);
3568 return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3569 INTEL_PIPE_CRC_ENTRIES_NR);
3570 }
3571
3572 static ssize_t
3573 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3574 loff_t *pos)
3575 {
3576 struct pipe_crc_info *info = filep->private_data;
3577 struct drm_i915_private *dev_priv = info->dev_priv;
3578 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3579 char buf[PIPE_CRC_BUFFER_LEN];
3580 int n_entries;
3581 ssize_t bytes_read;
3582
3583 /*
3584 * Don't allow user space to provide buffers not big enough to hold
3585 * a line of data.
3586 */
3587 if (count < PIPE_CRC_LINE_LEN)
3588 return -EINVAL;
3589
3590 if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3591 return 0;
3592
3593 /* nothing to read */
3594 spin_lock_irq(&pipe_crc->lock);
3595 while (pipe_crc_data_count(pipe_crc) == 0) {
3596 int ret;
3597
3598 if (filep->f_flags & O_NONBLOCK) {
3599 spin_unlock_irq(&pipe_crc->lock);
3600 return -EAGAIN;
3601 }
3602
3603 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3604 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3605 if (ret) {
3606 spin_unlock_irq(&pipe_crc->lock);
3607 return ret;
3608 }
3609 }
3610
3611 /* We now have one or more entries to read */
3612 n_entries = count / PIPE_CRC_LINE_LEN;
3613
3614 bytes_read = 0;
3615 while (n_entries > 0) {
3616 struct intel_pipe_crc_entry *entry =
3617 &pipe_crc->entries[pipe_crc->tail];
3618
3619 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3620 INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3621 break;
3622
3623 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3624 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3625
3626 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3627 "%8u %8x %8x %8x %8x %8x\n",
3628 entry->frame, entry->crc[0],
3629 entry->crc[1], entry->crc[2],
3630 entry->crc[3], entry->crc[4]);
3631
3632 spin_unlock_irq(&pipe_crc->lock);
3633
3634 if (copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN))
3635 return -EFAULT;
3636
3637 user_buf += PIPE_CRC_LINE_LEN;
3638 n_entries--;
3639
3640 spin_lock_irq(&pipe_crc->lock);
3641 }
3642
3643 spin_unlock_irq(&pipe_crc->lock);
3644
3645 return bytes_read;
3646 }
3647
3648 static const struct file_operations i915_pipe_crc_fops = {
3649 .owner = THIS_MODULE,
3650 .open = i915_pipe_crc_open,
3651 .read = i915_pipe_crc_read,
3652 .release = i915_pipe_crc_release,
3653 };
3654
3655 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3656 {
3657 .name = "i915_pipe_A_crc",
3658 .pipe = PIPE_A,
3659 },
3660 {
3661 .name = "i915_pipe_B_crc",
3662 .pipe = PIPE_B,
3663 },
3664 {
3665 .name = "i915_pipe_C_crc",
3666 .pipe = PIPE_C,
3667 },
3668 };
3669
3670 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3671 enum pipe pipe)
3672 {
3673 struct drm_i915_private *dev_priv = to_i915(minor->dev);
3674 struct dentry *ent;
3675 struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3676
3677 info->dev_priv = dev_priv;
3678 ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3679 &i915_pipe_crc_fops);
3680 if (!ent)
3681 return -ENOMEM;
3682
3683 return drm_add_fake_info_node(minor, ent, info);
3684 }
3685
3686 static const char * const pipe_crc_sources[] = {
3687 "none",
3688 "plane1",
3689 "plane2",
3690 "pf",
3691 "pipe",
3692 "TV",
3693 "DP-B",
3694 "DP-C",
3695 "DP-D",
3696 "auto",
3697 };
3698
3699 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3700 {
3701 BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3702 return pipe_crc_sources[source];
3703 }
3704
3705 static int display_crc_ctl_show(struct seq_file *m, void *data)
3706 {
3707 struct drm_i915_private *dev_priv = m->private;
3708 int i;
3709
3710 for (i = 0; i < I915_MAX_PIPES; i++)
3711 seq_printf(m, "%c %s\n", pipe_name(i),
3712 pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3713
3714 return 0;
3715 }
3716
3717 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3718 {
3719 return single_open(file, display_crc_ctl_show, inode->i_private);
3720 }
3721
3722 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3723 uint32_t *val)
3724 {
3725 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3726 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3727
3728 switch (*source) {
3729 case INTEL_PIPE_CRC_SOURCE_PIPE:
3730 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3731 break;
3732 case INTEL_PIPE_CRC_SOURCE_NONE:
3733 *val = 0;
3734 break;
3735 default:
3736 return -EINVAL;
3737 }
3738
3739 return 0;
3740 }
3741
3742 static int i9xx_pipe_crc_auto_source(struct drm_i915_private *dev_priv,
3743 enum pipe pipe,
3744 enum intel_pipe_crc_source *source)
3745 {
3746 struct drm_device *dev = &dev_priv->drm;
3747 struct intel_encoder *encoder;
3748 struct intel_crtc *crtc;
3749 struct intel_digital_port *dig_port;
3750 int ret = 0;
3751
3752 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3753
3754 drm_modeset_lock_all(dev);
3755 for_each_intel_encoder(dev, encoder) {
3756 if (!encoder->base.crtc)
3757 continue;
3758
3759 crtc = to_intel_crtc(encoder->base.crtc);
3760
3761 if (crtc->pipe != pipe)
3762 continue;
3763
3764 switch (encoder->type) {
3765 case INTEL_OUTPUT_TVOUT:
3766 *source = INTEL_PIPE_CRC_SOURCE_TV;
3767 break;
3768 case INTEL_OUTPUT_DP:
3769 case INTEL_OUTPUT_EDP:
3770 dig_port = enc_to_dig_port(&encoder->base);
3771 switch (dig_port->port) {
3772 case PORT_B:
3773 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3774 break;
3775 case PORT_C:
3776 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3777 break;
3778 case PORT_D:
3779 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3780 break;
3781 default:
3782 WARN(1, "nonexisting DP port %c\n",
3783 port_name(dig_port->port));
3784 break;
3785 }
3786 break;
3787 default:
3788 break;
3789 }
3790 }
3791 drm_modeset_unlock_all(dev);
3792
3793 return ret;
3794 }
3795
3796 static int vlv_pipe_crc_ctl_reg(struct drm_i915_private *dev_priv,
3797 enum pipe pipe,
3798 enum intel_pipe_crc_source *source,
3799 uint32_t *val)
3800 {
3801 bool need_stable_symbols = false;
3802
3803 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3804 int ret = i9xx_pipe_crc_auto_source(dev_priv, pipe, source);
3805 if (ret)
3806 return ret;
3807 }
3808
3809 switch (*source) {
3810 case INTEL_PIPE_CRC_SOURCE_PIPE:
3811 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3812 break;
3813 case INTEL_PIPE_CRC_SOURCE_DP_B:
3814 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3815 need_stable_symbols = true;
3816 break;
3817 case INTEL_PIPE_CRC_SOURCE_DP_C:
3818 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3819 need_stable_symbols = true;
3820 break;
3821 case INTEL_PIPE_CRC_SOURCE_DP_D:
3822 if (!IS_CHERRYVIEW(dev_priv))
3823 return -EINVAL;
3824 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3825 need_stable_symbols = true;
3826 break;
3827 case INTEL_PIPE_CRC_SOURCE_NONE:
3828 *val = 0;
3829 break;
3830 default:
3831 return -EINVAL;
3832 }
3833
3834 /*
3835 * When the pipe CRC tap point is after the transcoders we need
3836 * to tweak symbol-level features to produce a deterministic series of
3837 * symbols for a given frame. We need to reset those features only once
3838 * a frame (instead of every nth symbol):
3839 * - DC-balance: used to ensure a better clock recovery from the data
3840 * link (SDVO)
3841 * - DisplayPort scrambling: used for EMI reduction
3842 */
3843 if (need_stable_symbols) {
3844 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3845
3846 tmp |= DC_BALANCE_RESET_VLV;
3847 switch (pipe) {
3848 case PIPE_A:
3849 tmp |= PIPE_A_SCRAMBLE_RESET;
3850 break;
3851 case PIPE_B:
3852 tmp |= PIPE_B_SCRAMBLE_RESET;
3853 break;
3854 case PIPE_C:
3855 tmp |= PIPE_C_SCRAMBLE_RESET;
3856 break;
3857 default:
3858 return -EINVAL;
3859 }
3860 I915_WRITE(PORT_DFT2_G4X, tmp);
3861 }
3862
3863 return 0;
3864 }
3865
3866 static int i9xx_pipe_crc_ctl_reg(struct drm_i915_private *dev_priv,
3867 enum pipe pipe,
3868 enum intel_pipe_crc_source *source,
3869 uint32_t *val)
3870 {
3871 bool need_stable_symbols = false;
3872
3873 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3874 int ret = i9xx_pipe_crc_auto_source(dev_priv, pipe, source);
3875 if (ret)
3876 return ret;
3877 }
3878
3879 switch (*source) {
3880 case INTEL_PIPE_CRC_SOURCE_PIPE:
3881 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3882 break;
3883 case INTEL_PIPE_CRC_SOURCE_TV:
3884 if (!SUPPORTS_TV(dev_priv))
3885 return -EINVAL;
3886 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3887 break;
3888 case INTEL_PIPE_CRC_SOURCE_DP_B:
3889 if (!IS_G4X(dev_priv))
3890 return -EINVAL;
3891 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3892 need_stable_symbols = true;
3893 break;
3894 case INTEL_PIPE_CRC_SOURCE_DP_C:
3895 if (!IS_G4X(dev_priv))
3896 return -EINVAL;
3897 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3898 need_stable_symbols = true;
3899 break;
3900 case INTEL_PIPE_CRC_SOURCE_DP_D:
3901 if (!IS_G4X(dev_priv))
3902 return -EINVAL;
3903 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3904 need_stable_symbols = true;
3905 break;
3906 case INTEL_PIPE_CRC_SOURCE_NONE:
3907 *val = 0;
3908 break;
3909 default:
3910 return -EINVAL;
3911 }
3912
3913 /*
3914 * When the pipe CRC tap point is after the transcoders we need
3915 * to tweak symbol-level features to produce a deterministic series of
3916 * symbols for a given frame. We need to reset those features only once
3917 * a frame (instead of every nth symbol):
3918 * - DC-balance: used to ensure a better clock recovery from the data
3919 * link (SDVO)
3920 * - DisplayPort scrambling: used for EMI reduction
3921 */
3922 if (need_stable_symbols) {
3923 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3924
3925 WARN_ON(!IS_G4X(dev_priv));
3926
3927 I915_WRITE(PORT_DFT_I9XX,
3928 I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3929
3930 if (pipe == PIPE_A)
3931 tmp |= PIPE_A_SCRAMBLE_RESET;
3932 else
3933 tmp |= PIPE_B_SCRAMBLE_RESET;
3934
3935 I915_WRITE(PORT_DFT2_G4X, tmp);
3936 }
3937
3938 return 0;
3939 }
3940
3941 static void vlv_undo_pipe_scramble_reset(struct drm_i915_private *dev_priv,
3942 enum pipe pipe)
3943 {
3944 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3945
3946 switch (pipe) {
3947 case PIPE_A:
3948 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3949 break;
3950 case PIPE_B:
3951 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3952 break;
3953 case PIPE_C:
3954 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3955 break;
3956 default:
3957 return;
3958 }
3959 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3960 tmp &= ~DC_BALANCE_RESET_VLV;
3961 I915_WRITE(PORT_DFT2_G4X, tmp);
3962
3963 }
3964
3965 static void g4x_undo_pipe_scramble_reset(struct drm_i915_private *dev_priv,
3966 enum pipe pipe)
3967 {
3968 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3969
3970 if (pipe == PIPE_A)
3971 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3972 else
3973 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3974 I915_WRITE(PORT_DFT2_G4X, tmp);
3975
3976 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3977 I915_WRITE(PORT_DFT_I9XX,
3978 I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3979 }
3980 }
3981
3982 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3983 uint32_t *val)
3984 {
3985 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3986 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3987
3988 switch (*source) {
3989 case INTEL_PIPE_CRC_SOURCE_PLANE1:
3990 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3991 break;
3992 case INTEL_PIPE_CRC_SOURCE_PLANE2:
3993 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3994 break;
3995 case INTEL_PIPE_CRC_SOURCE_PIPE:
3996 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3997 break;
3998 case INTEL_PIPE_CRC_SOURCE_NONE:
3999 *val = 0;
4000 break;
4001 default:
4002 return -EINVAL;
4003 }
4004
4005 return 0;
4006 }
4007
4008 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_i915_private *dev_priv,
4009 bool enable)
4010 {
4011 struct drm_device *dev = &dev_priv->drm;
4012 struct intel_crtc *crtc =
4013 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
4014 struct intel_crtc_state *pipe_config;
4015 struct drm_atomic_state *state;
4016 int ret = 0;
4017
4018 drm_modeset_lock_all(dev);
4019 state = drm_atomic_state_alloc(dev);
4020 if (!state) {
4021 ret = -ENOMEM;
4022 goto out;
4023 }
4024
4025 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
4026 pipe_config = intel_atomic_get_crtc_state(state, crtc);
4027 if (IS_ERR(pipe_config)) {
4028 ret = PTR_ERR(pipe_config);
4029 goto out;
4030 }
4031
4032 pipe_config->pch_pfit.force_thru = enable;
4033 if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
4034 pipe_config->pch_pfit.enabled != enable)
4035 pipe_config->base.connectors_changed = true;
4036
4037 ret = drm_atomic_commit(state);
4038 out:
4039 drm_modeset_unlock_all(dev);
4040 WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
4041 if (ret)
4042 drm_atomic_state_free(state);
4043 }
4044
4045 static int ivb_pipe_crc_ctl_reg(struct drm_i915_private *dev_priv,
4046 enum pipe pipe,
4047 enum intel_pipe_crc_source *source,
4048 uint32_t *val)
4049 {
4050 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
4051 *source = INTEL_PIPE_CRC_SOURCE_PF;
4052
4053 switch (*source) {
4054 case INTEL_PIPE_CRC_SOURCE_PLANE1:
4055 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
4056 break;
4057 case INTEL_PIPE_CRC_SOURCE_PLANE2:
4058 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
4059 break;
4060 case INTEL_PIPE_CRC_SOURCE_PF:
4061 if (IS_HASWELL(dev_priv) && pipe == PIPE_A)
4062 hsw_trans_edp_pipe_A_crc_wa(dev_priv, true);
4063
4064 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
4065 break;
4066 case INTEL_PIPE_CRC_SOURCE_NONE:
4067 *val = 0;
4068 break;
4069 default:
4070 return -EINVAL;
4071 }
4072
4073 return 0;
4074 }
4075
4076 static int pipe_crc_set_source(struct drm_i915_private *dev_priv,
4077 enum pipe pipe,
4078 enum intel_pipe_crc_source source)
4079 {
4080 struct drm_device *dev = &dev_priv->drm;
4081 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4082 struct intel_crtc *crtc =
4083 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
4084 enum intel_display_power_domain power_domain;
4085 u32 val = 0; /* shut up gcc */
4086 int ret;
4087
4088 if (pipe_crc->source == source)
4089 return 0;
4090
4091 /* forbid changing the source without going back to 'none' */
4092 if (pipe_crc->source && source)
4093 return -EINVAL;
4094
4095 power_domain = POWER_DOMAIN_PIPE(pipe);
4096 if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) {
4097 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
4098 return -EIO;
4099 }
4100
4101 if (IS_GEN2(dev_priv))
4102 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
4103 else if (INTEL_GEN(dev_priv) < 5)
4104 ret = i9xx_pipe_crc_ctl_reg(dev_priv, pipe, &source, &val);
4105 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4106 ret = vlv_pipe_crc_ctl_reg(dev_priv, pipe, &source, &val);
4107 else if (IS_GEN5(dev_priv) || IS_GEN6(dev_priv))
4108 ret = ilk_pipe_crc_ctl_reg(&source, &val);
4109 else
4110 ret = ivb_pipe_crc_ctl_reg(dev_priv, pipe, &source, &val);
4111
4112 if (ret != 0)
4113 goto out;
4114
4115 /* none -> real source transition */
4116 if (source) {
4117 struct intel_pipe_crc_entry *entries;
4118
4119 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
4120 pipe_name(pipe), pipe_crc_source_name(source));
4121
4122 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
4123 sizeof(pipe_crc->entries[0]),
4124 GFP_KERNEL);
4125 if (!entries) {
4126 ret = -ENOMEM;
4127 goto out;
4128 }
4129
4130 /*
4131 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
4132 * enabled and disabled dynamically based on package C states,
4133 * user space can't make reliable use of the CRCs, so let's just
4134 * completely disable it.
4135 */
4136 hsw_disable_ips(crtc);
4137
4138 spin_lock_irq(&pipe_crc->lock);
4139 kfree(pipe_crc->entries);
4140 pipe_crc->entries = entries;
4141 pipe_crc->head = 0;
4142 pipe_crc->tail = 0;
4143 spin_unlock_irq(&pipe_crc->lock);
4144 }
4145
4146 pipe_crc->source = source;
4147
4148 I915_WRITE(PIPE_CRC_CTL(pipe), val);
4149 POSTING_READ(PIPE_CRC_CTL(pipe));
4150
4151 /* real source -> none transition */
4152 if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
4153 struct intel_pipe_crc_entry *entries;
4154 struct intel_crtc *crtc =
4155 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
4156
4157 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
4158 pipe_name(pipe));
4159
4160 drm_modeset_lock(&crtc->base.mutex, NULL);
4161 if (crtc->base.state->active)
4162 intel_wait_for_vblank(dev, pipe);
4163 drm_modeset_unlock(&crtc->base.mutex);
4164
4165 spin_lock_irq(&pipe_crc->lock);
4166 entries = pipe_crc->entries;
4167 pipe_crc->entries = NULL;
4168 pipe_crc->head = 0;
4169 pipe_crc->tail = 0;
4170 spin_unlock_irq(&pipe_crc->lock);
4171
4172 kfree(entries);
4173
4174 if (IS_G4X(dev_priv))
4175 g4x_undo_pipe_scramble_reset(dev_priv, pipe);
4176 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4177 vlv_undo_pipe_scramble_reset(dev_priv, pipe);
4178 else if (IS_HASWELL(dev_priv) && pipe == PIPE_A)
4179 hsw_trans_edp_pipe_A_crc_wa(dev_priv, false);
4180
4181 hsw_enable_ips(crtc);
4182 }
4183
4184 ret = 0;
4185
4186 out:
4187 intel_display_power_put(dev_priv, power_domain);
4188
4189 return ret;
4190 }
4191
4192 /*
4193 * Parse pipe CRC command strings:
4194 * command: wsp* object wsp+ name wsp+ source wsp*
4195 * object: 'pipe'
4196 * name: (A | B | C)
4197 * source: (none | plane1 | plane2 | pf)
4198 * wsp: (#0x20 | #0x9 | #0xA)+
4199 *
4200 * eg.:
4201 * "pipe A plane1" -> Start CRC computations on plane1 of pipe A
4202 * "pipe A none" -> Stop CRC
4203 */
4204 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
4205 {
4206 int n_words = 0;
4207
4208 while (*buf) {
4209 char *end;
4210
4211 /* skip leading white space */
4212 buf = skip_spaces(buf);
4213 if (!*buf)
4214 break; /* end of buffer */
4215
4216 /* find end of word */
4217 for (end = buf; *end && !isspace(*end); end++)
4218 ;
4219
4220 if (n_words == max_words) {
4221 DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4222 max_words);
4223 return -EINVAL; /* ran out of words[] before bytes */
4224 }
4225
4226 if (*end)
4227 *end++ = '\0';
4228 words[n_words++] = buf;
4229 buf = end;
4230 }
4231
4232 return n_words;
4233 }
4234
4235 enum intel_pipe_crc_object {
4236 PIPE_CRC_OBJECT_PIPE,
4237 };
4238
4239 static const char * const pipe_crc_objects[] = {
4240 "pipe",
4241 };
4242
4243 static int
4244 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4245 {
4246 int i;
4247
4248 for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4249 if (!strcmp(buf, pipe_crc_objects[i])) {
4250 *o = i;
4251 return 0;
4252 }
4253
4254 return -EINVAL;
4255 }
4256
4257 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4258 {
4259 const char name = buf[0];
4260
4261 if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4262 return -EINVAL;
4263
4264 *pipe = name - 'A';
4265
4266 return 0;
4267 }
4268
4269 static int
4270 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4271 {
4272 int i;
4273
4274 for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4275 if (!strcmp(buf, pipe_crc_sources[i])) {
4276 *s = i;
4277 return 0;
4278 }
4279
4280 return -EINVAL;
4281 }
4282
4283 static int display_crc_ctl_parse(struct drm_i915_private *dev_priv,
4284 char *buf, size_t len)
4285 {
4286 #define N_WORDS 3
4287 int n_words;
4288 char *words[N_WORDS];
4289 enum pipe pipe;
4290 enum intel_pipe_crc_object object;
4291 enum intel_pipe_crc_source source;
4292
4293 n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4294 if (n_words != N_WORDS) {
4295 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4296 N_WORDS);
4297 return -EINVAL;
4298 }
4299
4300 if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4301 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4302 return -EINVAL;
4303 }
4304
4305 if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4306 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4307 return -EINVAL;
4308 }
4309
4310 if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4311 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4312 return -EINVAL;
4313 }
4314
4315 return pipe_crc_set_source(dev_priv, pipe, source);
4316 }
4317
4318 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4319 size_t len, loff_t *offp)
4320 {
4321 struct seq_file *m = file->private_data;
4322 struct drm_i915_private *dev_priv = m->private;
4323 char *tmpbuf;
4324 int ret;
4325
4326 if (len == 0)
4327 return 0;
4328
4329 if (len > PAGE_SIZE - 1) {
4330 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4331 PAGE_SIZE);
4332 return -E2BIG;
4333 }
4334
4335 tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4336 if (!tmpbuf)
4337 return -ENOMEM;
4338
4339 if (copy_from_user(tmpbuf, ubuf, len)) {
4340 ret = -EFAULT;
4341 goto out;
4342 }
4343 tmpbuf[len] = '\0';
4344
4345 ret = display_crc_ctl_parse(dev_priv, tmpbuf, len);
4346
4347 out:
4348 kfree(tmpbuf);
4349 if (ret < 0)
4350 return ret;
4351
4352 *offp += len;
4353 return len;
4354 }
4355
4356 static const struct file_operations i915_display_crc_ctl_fops = {
4357 .owner = THIS_MODULE,
4358 .open = display_crc_ctl_open,
4359 .read = seq_read,
4360 .llseek = seq_lseek,
4361 .release = single_release,
4362 .write = display_crc_ctl_write
4363 };
4364
4365 static ssize_t i915_displayport_test_active_write(struct file *file,
4366 const char __user *ubuf,
4367 size_t len, loff_t *offp)
4368 {
4369 char *input_buffer;
4370 int status = 0;
4371 struct drm_device *dev;
4372 struct drm_connector *connector;
4373 struct list_head *connector_list;
4374 struct intel_dp *intel_dp;
4375 int val = 0;
4376
4377 dev = ((struct seq_file *)file->private_data)->private;
4378
4379 connector_list = &dev->mode_config.connector_list;
4380
4381 if (len == 0)
4382 return 0;
4383
4384 input_buffer = kmalloc(len + 1, GFP_KERNEL);
4385 if (!input_buffer)
4386 return -ENOMEM;
4387
4388 if (copy_from_user(input_buffer, ubuf, len)) {
4389 status = -EFAULT;
4390 goto out;
4391 }
4392
4393 input_buffer[len] = '\0';
4394 DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4395
4396 list_for_each_entry(connector, connector_list, head) {
4397 if (connector->connector_type !=
4398 DRM_MODE_CONNECTOR_DisplayPort)
4399 continue;
4400
4401 if (connector->status == connector_status_connected &&
4402 connector->encoder != NULL) {
4403 intel_dp = enc_to_intel_dp(connector->encoder);
4404 status = kstrtoint(input_buffer, 10, &val);
4405 if (status < 0)
4406 goto out;
4407 DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4408 /* To prevent erroneous activation of the compliance
4409 * testing code, only accept an actual value of 1 here
4410 */
4411 if (val == 1)
4412 intel_dp->compliance_test_active = 1;
4413 else
4414 intel_dp->compliance_test_active = 0;
4415 }
4416 }
4417 out:
4418 kfree(input_buffer);
4419 if (status < 0)
4420 return status;
4421
4422 *offp += len;
4423 return len;
4424 }
4425
4426 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4427 {
4428 struct drm_device *dev = m->private;
4429 struct drm_connector *connector;
4430 struct list_head *connector_list = &dev->mode_config.connector_list;
4431 struct intel_dp *intel_dp;
4432
4433 list_for_each_entry(connector, connector_list, head) {
4434 if (connector->connector_type !=
4435 DRM_MODE_CONNECTOR_DisplayPort)
4436 continue;
4437
4438 if (connector->status == connector_status_connected &&
4439 connector->encoder != NULL) {
4440 intel_dp = enc_to_intel_dp(connector->encoder);
4441 if (intel_dp->compliance_test_active)
4442 seq_puts(m, "1");
4443 else
4444 seq_puts(m, "0");
4445 } else
4446 seq_puts(m, "0");
4447 }
4448
4449 return 0;
4450 }
4451
4452 static int i915_displayport_test_active_open(struct inode *inode,
4453 struct file *file)
4454 {
4455 struct drm_i915_private *dev_priv = inode->i_private;
4456
4457 return single_open(file, i915_displayport_test_active_show,
4458 &dev_priv->drm);
4459 }
4460
4461 static const struct file_operations i915_displayport_test_active_fops = {
4462 .owner = THIS_MODULE,
4463 .open = i915_displayport_test_active_open,
4464 .read = seq_read,
4465 .llseek = seq_lseek,
4466 .release = single_release,
4467 .write = i915_displayport_test_active_write
4468 };
4469
4470 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4471 {
4472 struct drm_device *dev = m->private;
4473 struct drm_connector *connector;
4474 struct list_head *connector_list = &dev->mode_config.connector_list;
4475 struct intel_dp *intel_dp;
4476
4477 list_for_each_entry(connector, connector_list, head) {
4478 if (connector->connector_type !=
4479 DRM_MODE_CONNECTOR_DisplayPort)
4480 continue;
4481
4482 if (connector->status == connector_status_connected &&
4483 connector->encoder != NULL) {
4484 intel_dp = enc_to_intel_dp(connector->encoder);
4485 seq_printf(m, "%lx", intel_dp->compliance_test_data);
4486 } else
4487 seq_puts(m, "0");
4488 }
4489
4490 return 0;
4491 }
4492 static int i915_displayport_test_data_open(struct inode *inode,
4493 struct file *file)
4494 {
4495 struct drm_i915_private *dev_priv = inode->i_private;
4496
4497 return single_open(file, i915_displayport_test_data_show,
4498 &dev_priv->drm);
4499 }
4500
4501 static const struct file_operations i915_displayport_test_data_fops = {
4502 .owner = THIS_MODULE,
4503 .open = i915_displayport_test_data_open,
4504 .read = seq_read,
4505 .llseek = seq_lseek,
4506 .release = single_release
4507 };
4508
4509 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4510 {
4511 struct drm_device *dev = m->private;
4512 struct drm_connector *connector;
4513 struct list_head *connector_list = &dev->mode_config.connector_list;
4514 struct intel_dp *intel_dp;
4515
4516 list_for_each_entry(connector, connector_list, head) {
4517 if (connector->connector_type !=
4518 DRM_MODE_CONNECTOR_DisplayPort)
4519 continue;
4520
4521 if (connector->status == connector_status_connected &&
4522 connector->encoder != NULL) {
4523 intel_dp = enc_to_intel_dp(connector->encoder);
4524 seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4525 } else
4526 seq_puts(m, "0");
4527 }
4528
4529 return 0;
4530 }
4531
4532 static int i915_displayport_test_type_open(struct inode *inode,
4533 struct file *file)
4534 {
4535 struct drm_i915_private *dev_priv = inode->i_private;
4536
4537 return single_open(file, i915_displayport_test_type_show,
4538 &dev_priv->drm);
4539 }
4540
4541 static const struct file_operations i915_displayport_test_type_fops = {
4542 .owner = THIS_MODULE,
4543 .open = i915_displayport_test_type_open,
4544 .read = seq_read,
4545 .llseek = seq_lseek,
4546 .release = single_release
4547 };
4548
4549 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4550 {
4551 struct drm_i915_private *dev_priv = m->private;
4552 struct drm_device *dev = &dev_priv->drm;
4553 int level;
4554 int num_levels;
4555
4556 if (IS_CHERRYVIEW(dev_priv))
4557 num_levels = 3;
4558 else if (IS_VALLEYVIEW(dev_priv))
4559 num_levels = 1;
4560 else
4561 num_levels = ilk_wm_max_level(dev_priv) + 1;
4562
4563 drm_modeset_lock_all(dev);
4564
4565 for (level = 0; level < num_levels; level++) {
4566 unsigned int latency = wm[level];
4567
4568 /*
4569 * - WM1+ latency values in 0.5us units
4570 * - latencies are in us on gen9/vlv/chv
4571 */
4572 if (INTEL_GEN(dev_priv) >= 9 || IS_VALLEYVIEW(dev_priv) ||
4573 IS_CHERRYVIEW(dev_priv))
4574 latency *= 10;
4575 else if (level > 0)
4576 latency *= 5;
4577
4578 seq_printf(m, "WM%d %u (%u.%u usec)\n",
4579 level, wm[level], latency / 10, latency % 10);
4580 }
4581
4582 drm_modeset_unlock_all(dev);
4583 }
4584
4585 static int pri_wm_latency_show(struct seq_file *m, void *data)
4586 {
4587 struct drm_i915_private *dev_priv = m->private;
4588 const uint16_t *latencies;
4589
4590 if (INTEL_GEN(dev_priv) >= 9)
4591 latencies = dev_priv->wm.skl_latency;
4592 else
4593 latencies = dev_priv->wm.pri_latency;
4594
4595 wm_latency_show(m, latencies);
4596
4597 return 0;
4598 }
4599
4600 static int spr_wm_latency_show(struct seq_file *m, void *data)
4601 {
4602 struct drm_i915_private *dev_priv = m->private;
4603 const uint16_t *latencies;
4604
4605 if (INTEL_GEN(dev_priv) >= 9)
4606 latencies = dev_priv->wm.skl_latency;
4607 else
4608 latencies = dev_priv->wm.spr_latency;
4609
4610 wm_latency_show(m, latencies);
4611
4612 return 0;
4613 }
4614
4615 static int cur_wm_latency_show(struct seq_file *m, void *data)
4616 {
4617 struct drm_i915_private *dev_priv = m->private;
4618 const uint16_t *latencies;
4619
4620 if (INTEL_GEN(dev_priv) >= 9)
4621 latencies = dev_priv->wm.skl_latency;
4622 else
4623 latencies = dev_priv->wm.cur_latency;
4624
4625 wm_latency_show(m, latencies);
4626
4627 return 0;
4628 }
4629
4630 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4631 {
4632 struct drm_i915_private *dev_priv = inode->i_private;
4633
4634 if (INTEL_GEN(dev_priv) < 5)
4635 return -ENODEV;
4636
4637 return single_open(file, pri_wm_latency_show, dev_priv);
4638 }
4639
4640 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4641 {
4642 struct drm_i915_private *dev_priv = inode->i_private;
4643
4644 if (HAS_GMCH_DISPLAY(dev_priv))
4645 return -ENODEV;
4646
4647 return single_open(file, spr_wm_latency_show, dev_priv);
4648 }
4649
4650 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4651 {
4652 struct drm_i915_private *dev_priv = inode->i_private;
4653
4654 if (HAS_GMCH_DISPLAY(dev_priv))
4655 return -ENODEV;
4656
4657 return single_open(file, cur_wm_latency_show, dev_priv);
4658 }
4659
4660 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4661 size_t len, loff_t *offp, uint16_t wm[8])
4662 {
4663 struct seq_file *m = file->private_data;
4664 struct drm_i915_private *dev_priv = m->private;
4665 struct drm_device *dev = &dev_priv->drm;
4666 uint16_t new[8] = { 0 };
4667 int num_levels;
4668 int level;
4669 int ret;
4670 char tmp[32];
4671
4672 if (IS_CHERRYVIEW(dev_priv))
4673 num_levels = 3;
4674 else if (IS_VALLEYVIEW(dev_priv))
4675 num_levels = 1;
4676 else
4677 num_levels = ilk_wm_max_level(dev_priv) + 1;
4678
4679 if (len >= sizeof(tmp))
4680 return -EINVAL;
4681
4682 if (copy_from_user(tmp, ubuf, len))
4683 return -EFAULT;
4684
4685 tmp[len] = '\0';
4686
4687 ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4688 &new[0], &new[1], &new[2], &new[3],
4689 &new[4], &new[5], &new[6], &new[7]);
4690 if (ret != num_levels)
4691 return -EINVAL;
4692
4693 drm_modeset_lock_all(dev);
4694
4695 for (level = 0; level < num_levels; level++)
4696 wm[level] = new[level];
4697
4698 drm_modeset_unlock_all(dev);
4699
4700 return len;
4701 }
4702
4703
4704 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4705 size_t len, loff_t *offp)
4706 {
4707 struct seq_file *m = file->private_data;
4708 struct drm_i915_private *dev_priv = m->private;
4709 uint16_t *latencies;
4710
4711 if (INTEL_GEN(dev_priv) >= 9)
4712 latencies = dev_priv->wm.skl_latency;
4713 else
4714 latencies = dev_priv->wm.pri_latency;
4715
4716 return wm_latency_write(file, ubuf, len, offp, latencies);
4717 }
4718
4719 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4720 size_t len, loff_t *offp)
4721 {
4722 struct seq_file *m = file->private_data;
4723 struct drm_i915_private *dev_priv = m->private;
4724 uint16_t *latencies;
4725
4726 if (INTEL_GEN(dev_priv) >= 9)
4727 latencies = dev_priv->wm.skl_latency;
4728 else
4729 latencies = dev_priv->wm.spr_latency;
4730
4731 return wm_latency_write(file, ubuf, len, offp, latencies);
4732 }
4733
4734 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4735 size_t len, loff_t *offp)
4736 {
4737 struct seq_file *m = file->private_data;
4738 struct drm_i915_private *dev_priv = m->private;
4739 uint16_t *latencies;
4740
4741 if (INTEL_GEN(dev_priv) >= 9)
4742 latencies = dev_priv->wm.skl_latency;
4743 else
4744 latencies = dev_priv->wm.cur_latency;
4745
4746 return wm_latency_write(file, ubuf, len, offp, latencies);
4747 }
4748
4749 static const struct file_operations i915_pri_wm_latency_fops = {
4750 .owner = THIS_MODULE,
4751 .open = pri_wm_latency_open,
4752 .read = seq_read,
4753 .llseek = seq_lseek,
4754 .release = single_release,
4755 .write = pri_wm_latency_write
4756 };
4757
4758 static const struct file_operations i915_spr_wm_latency_fops = {
4759 .owner = THIS_MODULE,
4760 .open = spr_wm_latency_open,
4761 .read = seq_read,
4762 .llseek = seq_lseek,
4763 .release = single_release,
4764 .write = spr_wm_latency_write
4765 };
4766
4767 static const struct file_operations i915_cur_wm_latency_fops = {
4768 .owner = THIS_MODULE,
4769 .open = cur_wm_latency_open,
4770 .read = seq_read,
4771 .llseek = seq_lseek,
4772 .release = single_release,
4773 .write = cur_wm_latency_write
4774 };
4775
4776 static int
4777 i915_wedged_get(void *data, u64 *val)
4778 {
4779 struct drm_i915_private *dev_priv = data;
4780
4781 *val = i915_terminally_wedged(&dev_priv->gpu_error);
4782
4783 return 0;
4784 }
4785
4786 static int
4787 i915_wedged_set(void *data, u64 val)
4788 {
4789 struct drm_i915_private *dev_priv = data;
4790
4791 /*
4792 * There is no safeguard against this debugfs entry colliding
4793 * with the hangcheck calling same i915_handle_error() in
4794 * parallel, causing an explosion. For now we assume that the
4795 * test harness is responsible enough not to inject gpu hangs
4796 * while it is writing to 'i915_wedged'
4797 */
4798
4799 if (i915_reset_in_progress(&dev_priv->gpu_error))
4800 return -EAGAIN;
4801
4802 intel_runtime_pm_get(dev_priv);
4803
4804 i915_handle_error(dev_priv, val,
4805 "Manually setting wedged to %llu", val);
4806
4807 intel_runtime_pm_put(dev_priv);
4808
4809 return 0;
4810 }
4811
4812 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4813 i915_wedged_get, i915_wedged_set,
4814 "%llu\n");
4815
4816 static int
4817 i915_ring_missed_irq_get(void *data, u64 *val)
4818 {
4819 struct drm_i915_private *dev_priv = data;
4820
4821 *val = dev_priv->gpu_error.missed_irq_rings;
4822 return 0;
4823 }
4824
4825 static int
4826 i915_ring_missed_irq_set(void *data, u64 val)
4827 {
4828 struct drm_i915_private *dev_priv = data;
4829 struct drm_device *dev = &dev_priv->drm;
4830 int ret;
4831
4832 /* Lock against concurrent debugfs callers */
4833 ret = mutex_lock_interruptible(&dev->struct_mutex);
4834 if (ret)
4835 return ret;
4836 dev_priv->gpu_error.missed_irq_rings = val;
4837 mutex_unlock(&dev->struct_mutex);
4838
4839 return 0;
4840 }
4841
4842 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4843 i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4844 "0x%08llx\n");
4845
4846 static int
4847 i915_ring_test_irq_get(void *data, u64 *val)
4848 {
4849 struct drm_i915_private *dev_priv = data;
4850
4851 *val = dev_priv->gpu_error.test_irq_rings;
4852
4853 return 0;
4854 }
4855
4856 static int
4857 i915_ring_test_irq_set(void *data, u64 val)
4858 {
4859 struct drm_i915_private *dev_priv = data;
4860
4861 val &= INTEL_INFO(dev_priv)->ring_mask;
4862 DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4863 dev_priv->gpu_error.test_irq_rings = val;
4864
4865 return 0;
4866 }
4867
4868 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4869 i915_ring_test_irq_get, i915_ring_test_irq_set,
4870 "0x%08llx\n");
4871
4872 #define DROP_UNBOUND 0x1
4873 #define DROP_BOUND 0x2
4874 #define DROP_RETIRE 0x4
4875 #define DROP_ACTIVE 0x8
4876 #define DROP_ALL (DROP_UNBOUND | \
4877 DROP_BOUND | \
4878 DROP_RETIRE | \
4879 DROP_ACTIVE)
4880 static int
4881 i915_drop_caches_get(void *data, u64 *val)
4882 {
4883 *val = DROP_ALL;
4884
4885 return 0;
4886 }
4887
4888 static int
4889 i915_drop_caches_set(void *data, u64 val)
4890 {
4891 struct drm_i915_private *dev_priv = data;
4892 struct drm_device *dev = &dev_priv->drm;
4893 int ret;
4894
4895 DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4896
4897 /* No need to check and wait for gpu resets, only libdrm auto-restarts
4898 * on ioctls on -EAGAIN. */
4899 ret = mutex_lock_interruptible(&dev->struct_mutex);
4900 if (ret)
4901 return ret;
4902
4903 if (val & DROP_ACTIVE) {
4904 ret = i915_gem_wait_for_idle(dev_priv,
4905 I915_WAIT_INTERRUPTIBLE |
4906 I915_WAIT_LOCKED);
4907 if (ret)
4908 goto unlock;
4909 }
4910
4911 if (val & (DROP_RETIRE | DROP_ACTIVE))
4912 i915_gem_retire_requests(dev_priv);
4913
4914 if (val & DROP_BOUND)
4915 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4916
4917 if (val & DROP_UNBOUND)
4918 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4919
4920 unlock:
4921 mutex_unlock(&dev->struct_mutex);
4922
4923 return ret;
4924 }
4925
4926 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4927 i915_drop_caches_get, i915_drop_caches_set,
4928 "0x%08llx\n");
4929
4930 static int
4931 i915_max_freq_get(void *data, u64 *val)
4932 {
4933 struct drm_i915_private *dev_priv = data;
4934
4935 if (INTEL_GEN(dev_priv) < 6)
4936 return -ENODEV;
4937
4938 *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4939 return 0;
4940 }
4941
4942 static int
4943 i915_max_freq_set(void *data, u64 val)
4944 {
4945 struct drm_i915_private *dev_priv = data;
4946 u32 hw_max, hw_min;
4947 int ret;
4948
4949 if (INTEL_GEN(dev_priv) < 6)
4950 return -ENODEV;
4951
4952 DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4953
4954 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4955 if (ret)
4956 return ret;
4957
4958 /*
4959 * Turbo will still be enabled, but won't go above the set value.
4960 */
4961 val = intel_freq_opcode(dev_priv, val);
4962
4963 hw_max = dev_priv->rps.max_freq;
4964 hw_min = dev_priv->rps.min_freq;
4965
4966 if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4967 mutex_unlock(&dev_priv->rps.hw_lock);
4968 return -EINVAL;
4969 }
4970
4971 dev_priv->rps.max_freq_softlimit = val;
4972
4973 intel_set_rps(dev_priv, val);
4974
4975 mutex_unlock(&dev_priv->rps.hw_lock);
4976
4977 return 0;
4978 }
4979
4980 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4981 i915_max_freq_get, i915_max_freq_set,
4982 "%llu\n");
4983
4984 static int
4985 i915_min_freq_get(void *data, u64 *val)
4986 {
4987 struct drm_i915_private *dev_priv = data;
4988
4989 if (INTEL_GEN(dev_priv) < 6)
4990 return -ENODEV;
4991
4992 *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4993 return 0;
4994 }
4995
4996 static int
4997 i915_min_freq_set(void *data, u64 val)
4998 {
4999 struct drm_i915_private *dev_priv = data;
5000 u32 hw_max, hw_min;
5001 int ret;
5002
5003 if (INTEL_GEN(dev_priv) < 6)
5004 return -ENODEV;
5005
5006 DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
5007
5008 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
5009 if (ret)
5010 return ret;
5011
5012 /*
5013 * Turbo will still be enabled, but won't go below the set value.
5014 */
5015 val = intel_freq_opcode(dev_priv, val);
5016
5017 hw_max = dev_priv->rps.max_freq;
5018 hw_min = dev_priv->rps.min_freq;
5019
5020 if (val < hw_min ||
5021 val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
5022 mutex_unlock(&dev_priv->rps.hw_lock);
5023 return -EINVAL;
5024 }
5025
5026 dev_priv->rps.min_freq_softlimit = val;
5027
5028 intel_set_rps(dev_priv, val);
5029
5030 mutex_unlock(&dev_priv->rps.hw_lock);
5031
5032 return 0;
5033 }
5034
5035 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
5036 i915_min_freq_get, i915_min_freq_set,
5037 "%llu\n");
5038
5039 static int
5040 i915_cache_sharing_get(void *data, u64 *val)
5041 {
5042 struct drm_i915_private *dev_priv = data;
5043 struct drm_device *dev = &dev_priv->drm;
5044 u32 snpcr;
5045 int ret;
5046
5047 if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
5048 return -ENODEV;
5049
5050 ret = mutex_lock_interruptible(&dev->struct_mutex);
5051 if (ret)
5052 return ret;
5053 intel_runtime_pm_get(dev_priv);
5054
5055 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5056
5057 intel_runtime_pm_put(dev_priv);
5058 mutex_unlock(&dev->struct_mutex);
5059
5060 *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
5061
5062 return 0;
5063 }
5064
5065 static int
5066 i915_cache_sharing_set(void *data, u64 val)
5067 {
5068 struct drm_i915_private *dev_priv = data;
5069 u32 snpcr;
5070
5071 if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
5072 return -ENODEV;
5073
5074 if (val > 3)
5075 return -EINVAL;
5076
5077 intel_runtime_pm_get(dev_priv);
5078 DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
5079
5080 /* Update the cache sharing policy here as well */
5081 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5082 snpcr &= ~GEN6_MBC_SNPCR_MASK;
5083 snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
5084 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5085
5086 intel_runtime_pm_put(dev_priv);
5087 return 0;
5088 }
5089
5090 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
5091 i915_cache_sharing_get, i915_cache_sharing_set,
5092 "%llu\n");
5093
5094 static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
5095 struct sseu_dev_info *sseu)
5096 {
5097 int ss_max = 2;
5098 int ss;
5099 u32 sig1[ss_max], sig2[ss_max];
5100
5101 sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
5102 sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
5103 sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
5104 sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
5105
5106 for (ss = 0; ss < ss_max; ss++) {
5107 unsigned int eu_cnt;
5108
5109 if (sig1[ss] & CHV_SS_PG_ENABLE)
5110 /* skip disabled subslice */
5111 continue;
5112
5113 sseu->slice_mask = BIT(0);
5114 sseu->subslice_mask |= BIT(ss);
5115 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
5116 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
5117 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
5118 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
5119 sseu->eu_total += eu_cnt;
5120 sseu->eu_per_subslice = max_t(unsigned int,
5121 sseu->eu_per_subslice, eu_cnt);
5122 }
5123 }
5124
5125 static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
5126 struct sseu_dev_info *sseu)
5127 {
5128 int s_max = 3, ss_max = 4;
5129 int s, ss;
5130 u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5131
5132 /* BXT has a single slice and at most 3 subslices. */
5133 if (IS_BROXTON(dev_priv)) {
5134 s_max = 1;
5135 ss_max = 3;
5136 }
5137
5138 for (s = 0; s < s_max; s++) {
5139 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5140 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5141 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5142 }
5143
5144 eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5145 GEN9_PGCTL_SSA_EU19_ACK |
5146 GEN9_PGCTL_SSA_EU210_ACK |
5147 GEN9_PGCTL_SSA_EU311_ACK;
5148 eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5149 GEN9_PGCTL_SSB_EU19_ACK |
5150 GEN9_PGCTL_SSB_EU210_ACK |
5151 GEN9_PGCTL_SSB_EU311_ACK;
5152
5153 for (s = 0; s < s_max; s++) {
5154 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5155 /* skip disabled slice */
5156 continue;
5157
5158 sseu->slice_mask |= BIT(s);
5159
5160 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
5161 sseu->subslice_mask =
5162 INTEL_INFO(dev_priv)->sseu.subslice_mask;
5163
5164 for (ss = 0; ss < ss_max; ss++) {
5165 unsigned int eu_cnt;
5166
5167 if (IS_BROXTON(dev_priv)) {
5168 if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5169 /* skip disabled subslice */
5170 continue;
5171
5172 sseu->subslice_mask |= BIT(ss);
5173 }
5174
5175 eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5176 eu_mask[ss%2]);
5177 sseu->eu_total += eu_cnt;
5178 sseu->eu_per_subslice = max_t(unsigned int,
5179 sseu->eu_per_subslice,
5180 eu_cnt);
5181 }
5182 }
5183 }
5184
5185 static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
5186 struct sseu_dev_info *sseu)
5187 {
5188 u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5189 int s;
5190
5191 sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
5192
5193 if (sseu->slice_mask) {
5194 sseu->subslice_mask = INTEL_INFO(dev_priv)->sseu.subslice_mask;
5195 sseu->eu_per_subslice =
5196 INTEL_INFO(dev_priv)->sseu.eu_per_subslice;
5197 sseu->eu_total = sseu->eu_per_subslice *
5198 sseu_subslice_total(sseu);
5199
5200 /* subtract fused off EU(s) from enabled slice(s) */
5201 for (s = 0; s < fls(sseu->slice_mask); s++) {
5202 u8 subslice_7eu =
5203 INTEL_INFO(dev_priv)->sseu.subslice_7eu[s];
5204
5205 sseu->eu_total -= hweight8(subslice_7eu);
5206 }
5207 }
5208 }
5209
5210 static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
5211 const struct sseu_dev_info *sseu)
5212 {
5213 struct drm_i915_private *dev_priv = node_to_i915(m->private);
5214 const char *type = is_available_info ? "Available" : "Enabled";
5215
5216 seq_printf(m, " %s Slice Mask: %04x\n", type,
5217 sseu->slice_mask);
5218 seq_printf(m, " %s Slice Total: %u\n", type,
5219 hweight8(sseu->slice_mask));
5220 seq_printf(m, " %s Subslice Total: %u\n", type,
5221 sseu_subslice_total(sseu));
5222 seq_printf(m, " %s Subslice Mask: %04x\n", type,
5223 sseu->subslice_mask);
5224 seq_printf(m, " %s Subslice Per Slice: %u\n", type,
5225 hweight8(sseu->subslice_mask));
5226 seq_printf(m, " %s EU Total: %u\n", type,
5227 sseu->eu_total);
5228 seq_printf(m, " %s EU Per Subslice: %u\n", type,
5229 sseu->eu_per_subslice);
5230
5231 if (!is_available_info)
5232 return;
5233
5234 seq_printf(m, " Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
5235 if (HAS_POOLED_EU(dev_priv))
5236 seq_printf(m, " Min EU in pool: %u\n", sseu->min_eu_in_pool);
5237
5238 seq_printf(m, " Has Slice Power Gating: %s\n",
5239 yesno(sseu->has_slice_pg));
5240 seq_printf(m, " Has Subslice Power Gating: %s\n",
5241 yesno(sseu->has_subslice_pg));
5242 seq_printf(m, " Has EU Power Gating: %s\n",
5243 yesno(sseu->has_eu_pg));
5244 }
5245
5246 static int i915_sseu_status(struct seq_file *m, void *unused)
5247 {
5248 struct drm_i915_private *dev_priv = node_to_i915(m->private);
5249 struct sseu_dev_info sseu;
5250
5251 if (INTEL_GEN(dev_priv) < 8)
5252 return -ENODEV;
5253
5254 seq_puts(m, "SSEU Device Info\n");
5255 i915_print_sseu_info(m, true, &INTEL_INFO(dev_priv)->sseu);
5256
5257 seq_puts(m, "SSEU Device Status\n");
5258 memset(&sseu, 0, sizeof(sseu));
5259
5260 intel_runtime_pm_get(dev_priv);
5261
5262 if (IS_CHERRYVIEW(dev_priv)) {
5263 cherryview_sseu_device_status(dev_priv, &sseu);
5264 } else if (IS_BROADWELL(dev_priv)) {
5265 broadwell_sseu_device_status(dev_priv, &sseu);
5266 } else if (INTEL_GEN(dev_priv) >= 9) {
5267 gen9_sseu_device_status(dev_priv, &sseu);
5268 }
5269
5270 intel_runtime_pm_put(dev_priv);
5271
5272 i915_print_sseu_info(m, false, &sseu);
5273
5274 return 0;
5275 }
5276
5277 static int i915_forcewake_open(struct inode *inode, struct file *file)
5278 {
5279 struct drm_i915_private *dev_priv = inode->i_private;
5280
5281 if (INTEL_GEN(dev_priv) < 6)
5282 return 0;
5283
5284 intel_runtime_pm_get(dev_priv);
5285 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5286
5287 return 0;
5288 }
5289
5290 static int i915_forcewake_release(struct inode *inode, struct file *file)
5291 {
5292 struct drm_i915_private *dev_priv = inode->i_private;
5293
5294 if (INTEL_GEN(dev_priv) < 6)
5295 return 0;
5296
5297 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5298 intel_runtime_pm_put(dev_priv);
5299
5300 return 0;
5301 }
5302
5303 static const struct file_operations i915_forcewake_fops = {
5304 .owner = THIS_MODULE,
5305 .open = i915_forcewake_open,
5306 .release = i915_forcewake_release,
5307 };
5308
5309 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5310 {
5311 struct dentry *ent;
5312
5313 ent = debugfs_create_file("i915_forcewake_user",
5314 S_IRUSR,
5315 root, to_i915(minor->dev),
5316 &i915_forcewake_fops);
5317 if (!ent)
5318 return -ENOMEM;
5319
5320 return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5321 }
5322
5323 static int i915_debugfs_create(struct dentry *root,
5324 struct drm_minor *minor,
5325 const char *name,
5326 const struct file_operations *fops)
5327 {
5328 struct dentry *ent;
5329
5330 ent = debugfs_create_file(name,
5331 S_IRUGO | S_IWUSR,
5332 root, to_i915(minor->dev),
5333 fops);
5334 if (!ent)
5335 return -ENOMEM;
5336
5337 return drm_add_fake_info_node(minor, ent, fops);
5338 }
5339
5340 static const struct drm_info_list i915_debugfs_list[] = {
5341 {"i915_capabilities", i915_capabilities, 0},
5342 {"i915_gem_objects", i915_gem_object_info, 0},
5343 {"i915_gem_gtt", i915_gem_gtt_info, 0},
5344 {"i915_gem_pin_display", i915_gem_gtt_info, 0, (void *)1},
5345 {"i915_gem_stolen", i915_gem_stolen_list_info },
5346 {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5347 {"i915_gem_request", i915_gem_request_info, 0},
5348 {"i915_gem_seqno", i915_gem_seqno_info, 0},
5349 {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5350 {"i915_gem_interrupt", i915_interrupt_info, 0},
5351 {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5352 {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5353 {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5354 {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5355 {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5356 {"i915_guc_info", i915_guc_info, 0},
5357 {"i915_guc_load_status", i915_guc_load_status_info, 0},
5358 {"i915_guc_log_dump", i915_guc_log_dump, 0},
5359 {"i915_frequency_info", i915_frequency_info, 0},
5360 {"i915_hangcheck_info", i915_hangcheck_info, 0},
5361 {"i915_drpc_info", i915_drpc_info, 0},
5362 {"i915_emon_status", i915_emon_status, 0},
5363 {"i915_ring_freq_table", i915_ring_freq_table, 0},
5364 {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5365 {"i915_fbc_status", i915_fbc_status, 0},
5366 {"i915_ips_status", i915_ips_status, 0},
5367 {"i915_sr_status", i915_sr_status, 0},
5368 {"i915_opregion", i915_opregion, 0},
5369 {"i915_vbt", i915_vbt, 0},
5370 {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5371 {"i915_context_status", i915_context_status, 0},
5372 {"i915_dump_lrc", i915_dump_lrc, 0},
5373 {"i915_forcewake_domains", i915_forcewake_domains, 0},
5374 {"i915_swizzle_info", i915_swizzle_info, 0},
5375 {"i915_ppgtt_info", i915_ppgtt_info, 0},
5376 {"i915_llc", i915_llc, 0},
5377 {"i915_edp_psr_status", i915_edp_psr_status, 0},
5378 {"i915_sink_crc_eDP1", i915_sink_crc, 0},
5379 {"i915_energy_uJ", i915_energy_uJ, 0},
5380 {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5381 {"i915_power_domain_info", i915_power_domain_info, 0},
5382 {"i915_dmc_info", i915_dmc_info, 0},
5383 {"i915_display_info", i915_display_info, 0},
5384 {"i915_engine_info", i915_engine_info, 0},
5385 {"i915_semaphore_status", i915_semaphore_status, 0},
5386 {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5387 {"i915_dp_mst_info", i915_dp_mst_info, 0},
5388 {"i915_wa_registers", i915_wa_registers, 0},
5389 {"i915_ddb_info", i915_ddb_info, 0},
5390 {"i915_sseu_status", i915_sseu_status, 0},
5391 {"i915_drrs_status", i915_drrs_status, 0},
5392 {"i915_rps_boost_info", i915_rps_boost_info, 0},
5393 };
5394 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5395
5396 static const struct i915_debugfs_files {
5397 const char *name;
5398 const struct file_operations *fops;
5399 } i915_debugfs_files[] = {
5400 {"i915_wedged", &i915_wedged_fops},
5401 {"i915_max_freq", &i915_max_freq_fops},
5402 {"i915_min_freq", &i915_min_freq_fops},
5403 {"i915_cache_sharing", &i915_cache_sharing_fops},
5404 {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5405 {"i915_ring_test_irq", &i915_ring_test_irq_fops},
5406 {"i915_gem_drop_caches", &i915_drop_caches_fops},
5407 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
5408 {"i915_error_state", &i915_error_state_fops},
5409 #endif
5410 {"i915_next_seqno", &i915_next_seqno_fops},
5411 {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5412 {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5413 {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5414 {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5415 {"i915_fbc_false_color", &i915_fbc_fc_fops},
5416 {"i915_dp_test_data", &i915_displayport_test_data_fops},
5417 {"i915_dp_test_type", &i915_displayport_test_type_fops},
5418 {"i915_dp_test_active", &i915_displayport_test_active_fops}
5419 };
5420
5421 void intel_display_crc_init(struct drm_i915_private *dev_priv)
5422 {
5423 enum pipe pipe;
5424
5425 for_each_pipe(dev_priv, pipe) {
5426 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5427
5428 pipe_crc->opened = false;
5429 spin_lock_init(&pipe_crc->lock);
5430 init_waitqueue_head(&pipe_crc->wq);
5431 }
5432 }
5433
5434 int i915_debugfs_register(struct drm_i915_private *dev_priv)
5435 {
5436 struct drm_minor *minor = dev_priv->drm.primary;
5437 int ret, i;
5438
5439 ret = i915_forcewake_create(minor->debugfs_root, minor);
5440 if (ret)
5441 return ret;
5442
5443 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5444 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5445 if (ret)
5446 return ret;
5447 }
5448
5449 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5450 ret = i915_debugfs_create(minor->debugfs_root, minor,
5451 i915_debugfs_files[i].name,
5452 i915_debugfs_files[i].fops);
5453 if (ret)
5454 return ret;
5455 }
5456
5457 return drm_debugfs_create_files(i915_debugfs_list,
5458 I915_DEBUGFS_ENTRIES,
5459 minor->debugfs_root, minor);
5460 }
5461
5462 void i915_debugfs_unregister(struct drm_i915_private *dev_priv)
5463 {
5464 struct drm_minor *minor = dev_priv->drm.primary;
5465 int i;
5466
5467 drm_debugfs_remove_files(i915_debugfs_list,
5468 I915_DEBUGFS_ENTRIES, minor);
5469
5470 drm_debugfs_remove_files((struct drm_info_list *)&i915_forcewake_fops,
5471 1, minor);
5472
5473 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5474 struct drm_info_list *info_list =
5475 (struct drm_info_list *)&i915_pipe_crc_data[i];
5476
5477 drm_debugfs_remove_files(info_list, 1, minor);
5478 }
5479
5480 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5481 struct drm_info_list *info_list =
5482 (struct drm_info_list *)i915_debugfs_files[i].fops;
5483
5484 drm_debugfs_remove_files(info_list, 1, minor);
5485 }
5486 }
5487
5488 struct dpcd_block {
5489 /* DPCD dump start address. */
5490 unsigned int offset;
5491 /* DPCD dump end address, inclusive. If unset, .size will be used. */
5492 unsigned int end;
5493 /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5494 size_t size;
5495 /* Only valid for eDP. */
5496 bool edp;
5497 };
5498
5499 static const struct dpcd_block i915_dpcd_debug[] = {
5500 { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5501 { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5502 { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5503 { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5504 { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5505 { .offset = DP_SET_POWER },
5506 { .offset = DP_EDP_DPCD_REV },
5507 { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5508 { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5509 { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5510 };
5511
5512 static int i915_dpcd_show(struct seq_file *m, void *data)
5513 {
5514 struct drm_connector *connector = m->private;
5515 struct intel_dp *intel_dp =
5516 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5517 uint8_t buf[16];
5518 ssize_t err;
5519 int i;
5520
5521 if (connector->status != connector_status_connected)
5522 return -ENODEV;
5523
5524 for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5525 const struct dpcd_block *b = &i915_dpcd_debug[i];
5526 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5527
5528 if (b->edp &&
5529 connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5530 continue;
5531
5532 /* low tech for now */
5533 if (WARN_ON(size > sizeof(buf)))
5534 continue;
5535
5536 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5537 if (err <= 0) {
5538 DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5539 size, b->offset, err);
5540 continue;
5541 }
5542
5543 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5544 }
5545
5546 return 0;
5547 }
5548
5549 static int i915_dpcd_open(struct inode *inode, struct file *file)
5550 {
5551 return single_open(file, i915_dpcd_show, inode->i_private);
5552 }
5553
5554 static const struct file_operations i915_dpcd_fops = {
5555 .owner = THIS_MODULE,
5556 .open = i915_dpcd_open,
5557 .read = seq_read,
5558 .llseek = seq_lseek,
5559 .release = single_release,
5560 };
5561
5562 static int i915_panel_show(struct seq_file *m, void *data)
5563 {
5564 struct drm_connector *connector = m->private;
5565 struct intel_dp *intel_dp =
5566 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5567
5568 if (connector->status != connector_status_connected)
5569 return -ENODEV;
5570
5571 seq_printf(m, "Panel power up delay: %d\n",
5572 intel_dp->panel_power_up_delay);
5573 seq_printf(m, "Panel power down delay: %d\n",
5574 intel_dp->panel_power_down_delay);
5575 seq_printf(m, "Backlight on delay: %d\n",
5576 intel_dp->backlight_on_delay);
5577 seq_printf(m, "Backlight off delay: %d\n",
5578 intel_dp->backlight_off_delay);
5579
5580 return 0;
5581 }
5582
5583 static int i915_panel_open(struct inode *inode, struct file *file)
5584 {
5585 return single_open(file, i915_panel_show, inode->i_private);
5586 }
5587
5588 static const struct file_operations i915_panel_fops = {
5589 .owner = THIS_MODULE,
5590 .open = i915_panel_open,
5591 .read = seq_read,
5592 .llseek = seq_lseek,
5593 .release = single_release,
5594 };
5595
5596 /**
5597 * i915_debugfs_connector_add - add i915 specific connector debugfs files
5598 * @connector: pointer to a registered drm_connector
5599 *
5600 * Cleanup will be done by drm_connector_unregister() through a call to
5601 * drm_debugfs_connector_remove().
5602 *
5603 * Returns 0 on success, negative error codes on error.
5604 */
5605 int i915_debugfs_connector_add(struct drm_connector *connector)
5606 {
5607 struct dentry *root = connector->debugfs_entry;
5608
5609 /* The connector must have been registered beforehands. */
5610 if (!root)
5611 return -ENODEV;
5612
5613 if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5614 connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5615 debugfs_create_file("i915_dpcd", S_IRUGO, root,
5616 connector, &i915_dpcd_fops);
5617
5618 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5619 debugfs_create_file("i915_panel_timings", S_IRUGO, root,
5620 connector, &i915_panel_fops);
5621
5622 return 0;
5623 }