]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/i915/i915_debugfs.c
Merge remote-tracking branches 'asoc/topic/atmel', 'asoc/topic/bcm2835' and 'asoc...
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Keith Packard <keithp@keithp.com>
26 *
27 */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44 ACTIVE_LIST,
45 INACTIVE_LIST,
46 PINNED_LIST,
47 };
48
49 /* As the drm_debugfs_init() routines are called before dev->dev_private is
50 * allocated we need to hook into the minor for release. */
51 static int
52 drm_add_fake_info_node(struct drm_minor *minor,
53 struct dentry *ent,
54 const void *key)
55 {
56 struct drm_info_node *node;
57
58 node = kmalloc(sizeof(*node), GFP_KERNEL);
59 if (node == NULL) {
60 debugfs_remove(ent);
61 return -ENOMEM;
62 }
63
64 node->minor = minor;
65 node->dent = ent;
66 node->info_ent = (void *) key;
67
68 mutex_lock(&minor->debugfs_lock);
69 list_add(&node->list, &minor->debugfs_list);
70 mutex_unlock(&minor->debugfs_lock);
71
72 return 0;
73 }
74
75 static int i915_capabilities(struct seq_file *m, void *data)
76 {
77 struct drm_info_node *node = m->private;
78 struct drm_device *dev = node->minor->dev;
79 const struct intel_device_info *info = INTEL_INFO(dev);
80
81 seq_printf(m, "gen: %d\n", info->gen);
82 seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
83 #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
84 #define SEP_SEMICOLON ;
85 DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
86 #undef PRINT_FLAG
87 #undef SEP_SEMICOLON
88
89 return 0;
90 }
91
92 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
93 {
94 if (obj->pin_display)
95 return "p";
96 else
97 return " ";
98 }
99
100 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
101 {
102 switch (obj->tiling_mode) {
103 default:
104 case I915_TILING_NONE: return " ";
105 case I915_TILING_X: return "X";
106 case I915_TILING_Y: return "Y";
107 }
108 }
109
110 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
111 {
112 return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
113 }
114
115 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
116 {
117 u64 size = 0;
118 struct i915_vma *vma;
119
120 list_for_each_entry(vma, &obj->vma_list, vma_link) {
121 if (i915_is_ggtt(vma->vm) &&
122 drm_mm_node_allocated(&vma->node))
123 size += vma->node.size;
124 }
125
126 return size;
127 }
128
129 static void
130 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
131 {
132 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
133 struct intel_engine_cs *ring;
134 struct i915_vma *vma;
135 int pin_count = 0;
136 int i;
137
138 seq_printf(m, "%pK: %s%s%s%s %8zdKiB %02x %02x [ ",
139 &obj->base,
140 obj->active ? "*" : " ",
141 get_pin_flag(obj),
142 get_tiling_flag(obj),
143 get_global_flag(obj),
144 obj->base.size / 1024,
145 obj->base.read_domains,
146 obj->base.write_domain);
147 for_each_ring(ring, dev_priv, i)
148 seq_printf(m, "%x ",
149 i915_gem_request_get_seqno(obj->last_read_req[i]));
150 seq_printf(m, "] %x %x%s%s%s",
151 i915_gem_request_get_seqno(obj->last_write_req),
152 i915_gem_request_get_seqno(obj->last_fenced_req),
153 i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
154 obj->dirty ? " dirty" : "",
155 obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
156 if (obj->base.name)
157 seq_printf(m, " (name: %d)", obj->base.name);
158 list_for_each_entry(vma, &obj->vma_list, vma_link) {
159 if (vma->pin_count > 0)
160 pin_count++;
161 }
162 seq_printf(m, " (pinned x %d)", pin_count);
163 if (obj->pin_display)
164 seq_printf(m, " (display)");
165 if (obj->fence_reg != I915_FENCE_REG_NONE)
166 seq_printf(m, " (fence: %d)", obj->fence_reg);
167 list_for_each_entry(vma, &obj->vma_list, vma_link) {
168 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
169 i915_is_ggtt(vma->vm) ? "g" : "pp",
170 vma->node.start, vma->node.size);
171 if (i915_is_ggtt(vma->vm))
172 seq_printf(m, ", type: %u)", vma->ggtt_view.type);
173 else
174 seq_puts(m, ")");
175 }
176 if (obj->stolen)
177 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
178 if (obj->pin_display || obj->fault_mappable) {
179 char s[3], *t = s;
180 if (obj->pin_display)
181 *t++ = 'p';
182 if (obj->fault_mappable)
183 *t++ = 'f';
184 *t = '\0';
185 seq_printf(m, " (%s mappable)", s);
186 }
187 if (obj->last_write_req != NULL)
188 seq_printf(m, " (%s)",
189 i915_gem_request_get_ring(obj->last_write_req)->name);
190 if (obj->frontbuffer_bits)
191 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
192 }
193
194 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
195 {
196 seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
197 seq_putc(m, ctx->remap_slice ? 'R' : 'r');
198 seq_putc(m, ' ');
199 }
200
201 static int i915_gem_object_list_info(struct seq_file *m, void *data)
202 {
203 struct drm_info_node *node = m->private;
204 uintptr_t list = (uintptr_t) node->info_ent->data;
205 struct list_head *head;
206 struct drm_device *dev = node->minor->dev;
207 struct drm_i915_private *dev_priv = dev->dev_private;
208 struct i915_address_space *vm = &dev_priv->gtt.base;
209 struct i915_vma *vma;
210 u64 total_obj_size, total_gtt_size;
211 int count, ret;
212
213 ret = mutex_lock_interruptible(&dev->struct_mutex);
214 if (ret)
215 return ret;
216
217 /* FIXME: the user of this interface might want more than just GGTT */
218 switch (list) {
219 case ACTIVE_LIST:
220 seq_puts(m, "Active:\n");
221 head = &vm->active_list;
222 break;
223 case INACTIVE_LIST:
224 seq_puts(m, "Inactive:\n");
225 head = &vm->inactive_list;
226 break;
227 default:
228 mutex_unlock(&dev->struct_mutex);
229 return -EINVAL;
230 }
231
232 total_obj_size = total_gtt_size = count = 0;
233 list_for_each_entry(vma, head, mm_list) {
234 seq_printf(m, " ");
235 describe_obj(m, vma->obj);
236 seq_printf(m, "\n");
237 total_obj_size += vma->obj->base.size;
238 total_gtt_size += vma->node.size;
239 count++;
240 }
241 mutex_unlock(&dev->struct_mutex);
242
243 seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
244 count, total_obj_size, total_gtt_size);
245 return 0;
246 }
247
248 static int obj_rank_by_stolen(void *priv,
249 struct list_head *A, struct list_head *B)
250 {
251 struct drm_i915_gem_object *a =
252 container_of(A, struct drm_i915_gem_object, obj_exec_link);
253 struct drm_i915_gem_object *b =
254 container_of(B, struct drm_i915_gem_object, obj_exec_link);
255
256 if (a->stolen->start < b->stolen->start)
257 return -1;
258 if (a->stolen->start > b->stolen->start)
259 return 1;
260 return 0;
261 }
262
263 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
264 {
265 struct drm_info_node *node = m->private;
266 struct drm_device *dev = node->minor->dev;
267 struct drm_i915_private *dev_priv = dev->dev_private;
268 struct drm_i915_gem_object *obj;
269 u64 total_obj_size, total_gtt_size;
270 LIST_HEAD(stolen);
271 int count, ret;
272
273 ret = mutex_lock_interruptible(&dev->struct_mutex);
274 if (ret)
275 return ret;
276
277 total_obj_size = total_gtt_size = count = 0;
278 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
279 if (obj->stolen == NULL)
280 continue;
281
282 list_add(&obj->obj_exec_link, &stolen);
283
284 total_obj_size += obj->base.size;
285 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
286 count++;
287 }
288 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
289 if (obj->stolen == NULL)
290 continue;
291
292 list_add(&obj->obj_exec_link, &stolen);
293
294 total_obj_size += obj->base.size;
295 count++;
296 }
297 list_sort(NULL, &stolen, obj_rank_by_stolen);
298 seq_puts(m, "Stolen:\n");
299 while (!list_empty(&stolen)) {
300 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
301 seq_puts(m, " ");
302 describe_obj(m, obj);
303 seq_putc(m, '\n');
304 list_del_init(&obj->obj_exec_link);
305 }
306 mutex_unlock(&dev->struct_mutex);
307
308 seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
309 count, total_obj_size, total_gtt_size);
310 return 0;
311 }
312
313 #define count_objects(list, member) do { \
314 list_for_each_entry(obj, list, member) { \
315 size += i915_gem_obj_total_ggtt_size(obj); \
316 ++count; \
317 if (obj->map_and_fenceable) { \
318 mappable_size += i915_gem_obj_ggtt_size(obj); \
319 ++mappable_count; \
320 } \
321 } \
322 } while (0)
323
324 struct file_stats {
325 struct drm_i915_file_private *file_priv;
326 unsigned long count;
327 u64 total, unbound;
328 u64 global, shared;
329 u64 active, inactive;
330 };
331
332 static int per_file_stats(int id, void *ptr, void *data)
333 {
334 struct drm_i915_gem_object *obj = ptr;
335 struct file_stats *stats = data;
336 struct i915_vma *vma;
337
338 stats->count++;
339 stats->total += obj->base.size;
340
341 if (obj->base.name || obj->base.dma_buf)
342 stats->shared += obj->base.size;
343
344 if (USES_FULL_PPGTT(obj->base.dev)) {
345 list_for_each_entry(vma, &obj->vma_list, vma_link) {
346 struct i915_hw_ppgtt *ppgtt;
347
348 if (!drm_mm_node_allocated(&vma->node))
349 continue;
350
351 if (i915_is_ggtt(vma->vm)) {
352 stats->global += obj->base.size;
353 continue;
354 }
355
356 ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
357 if (ppgtt->file_priv != stats->file_priv)
358 continue;
359
360 if (obj->active) /* XXX per-vma statistic */
361 stats->active += obj->base.size;
362 else
363 stats->inactive += obj->base.size;
364
365 return 0;
366 }
367 } else {
368 if (i915_gem_obj_ggtt_bound(obj)) {
369 stats->global += obj->base.size;
370 if (obj->active)
371 stats->active += obj->base.size;
372 else
373 stats->inactive += obj->base.size;
374 return 0;
375 }
376 }
377
378 if (!list_empty(&obj->global_list))
379 stats->unbound += obj->base.size;
380
381 return 0;
382 }
383
384 #define print_file_stats(m, name, stats) do { \
385 if (stats.count) \
386 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
387 name, \
388 stats.count, \
389 stats.total, \
390 stats.active, \
391 stats.inactive, \
392 stats.global, \
393 stats.shared, \
394 stats.unbound); \
395 } while (0)
396
397 static void print_batch_pool_stats(struct seq_file *m,
398 struct drm_i915_private *dev_priv)
399 {
400 struct drm_i915_gem_object *obj;
401 struct file_stats stats;
402 struct intel_engine_cs *ring;
403 int i, j;
404
405 memset(&stats, 0, sizeof(stats));
406
407 for_each_ring(ring, dev_priv, i) {
408 for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
409 list_for_each_entry(obj,
410 &ring->batch_pool.cache_list[j],
411 batch_pool_link)
412 per_file_stats(0, obj, &stats);
413 }
414 }
415
416 print_file_stats(m, "[k]batch pool", stats);
417 }
418
419 #define count_vmas(list, member) do { \
420 list_for_each_entry(vma, list, member) { \
421 size += i915_gem_obj_total_ggtt_size(vma->obj); \
422 ++count; \
423 if (vma->obj->map_and_fenceable) { \
424 mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
425 ++mappable_count; \
426 } \
427 } \
428 } while (0)
429
430 static int i915_gem_object_info(struct seq_file *m, void* data)
431 {
432 struct drm_info_node *node = m->private;
433 struct drm_device *dev = node->minor->dev;
434 struct drm_i915_private *dev_priv = dev->dev_private;
435 u32 count, mappable_count, purgeable_count;
436 u64 size, mappable_size, purgeable_size;
437 struct drm_i915_gem_object *obj;
438 struct i915_address_space *vm = &dev_priv->gtt.base;
439 struct drm_file *file;
440 struct i915_vma *vma;
441 int ret;
442
443 ret = mutex_lock_interruptible(&dev->struct_mutex);
444 if (ret)
445 return ret;
446
447 seq_printf(m, "%u objects, %zu bytes\n",
448 dev_priv->mm.object_count,
449 dev_priv->mm.object_memory);
450
451 size = count = mappable_size = mappable_count = 0;
452 count_objects(&dev_priv->mm.bound_list, global_list);
453 seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
454 count, mappable_count, size, mappable_size);
455
456 size = count = mappable_size = mappable_count = 0;
457 count_vmas(&vm->active_list, mm_list);
458 seq_printf(m, " %u [%u] active objects, %llu [%llu] bytes\n",
459 count, mappable_count, size, mappable_size);
460
461 size = count = mappable_size = mappable_count = 0;
462 count_vmas(&vm->inactive_list, mm_list);
463 seq_printf(m, " %u [%u] inactive objects, %llu [%llu] bytes\n",
464 count, mappable_count, size, mappable_size);
465
466 size = count = purgeable_size = purgeable_count = 0;
467 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
468 size += obj->base.size, ++count;
469 if (obj->madv == I915_MADV_DONTNEED)
470 purgeable_size += obj->base.size, ++purgeable_count;
471 }
472 seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
473
474 size = count = mappable_size = mappable_count = 0;
475 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
476 if (obj->fault_mappable) {
477 size += i915_gem_obj_ggtt_size(obj);
478 ++count;
479 }
480 if (obj->pin_display) {
481 mappable_size += i915_gem_obj_ggtt_size(obj);
482 ++mappable_count;
483 }
484 if (obj->madv == I915_MADV_DONTNEED) {
485 purgeable_size += obj->base.size;
486 ++purgeable_count;
487 }
488 }
489 seq_printf(m, "%u purgeable objects, %llu bytes\n",
490 purgeable_count, purgeable_size);
491 seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
492 mappable_count, mappable_size);
493 seq_printf(m, "%u fault mappable objects, %llu bytes\n",
494 count, size);
495
496 seq_printf(m, "%llu [%llu] gtt total\n",
497 dev_priv->gtt.base.total,
498 (u64)dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
499
500 seq_putc(m, '\n');
501 print_batch_pool_stats(m, dev_priv);
502 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
503 struct file_stats stats;
504 struct task_struct *task;
505
506 memset(&stats, 0, sizeof(stats));
507 stats.file_priv = file->driver_priv;
508 spin_lock(&file->table_lock);
509 idr_for_each(&file->object_idr, per_file_stats, &stats);
510 spin_unlock(&file->table_lock);
511 /*
512 * Although we have a valid reference on file->pid, that does
513 * not guarantee that the task_struct who called get_pid() is
514 * still alive (e.g. get_pid(current) => fork() => exit()).
515 * Therefore, we need to protect this ->comm access using RCU.
516 */
517 rcu_read_lock();
518 task = pid_task(file->pid, PIDTYPE_PID);
519 print_file_stats(m, task ? task->comm : "<unknown>", stats);
520 rcu_read_unlock();
521 }
522
523 mutex_unlock(&dev->struct_mutex);
524
525 return 0;
526 }
527
528 static int i915_gem_gtt_info(struct seq_file *m, void *data)
529 {
530 struct drm_info_node *node = m->private;
531 struct drm_device *dev = node->minor->dev;
532 uintptr_t list = (uintptr_t) node->info_ent->data;
533 struct drm_i915_private *dev_priv = dev->dev_private;
534 struct drm_i915_gem_object *obj;
535 u64 total_obj_size, total_gtt_size;
536 int count, ret;
537
538 ret = mutex_lock_interruptible(&dev->struct_mutex);
539 if (ret)
540 return ret;
541
542 total_obj_size = total_gtt_size = count = 0;
543 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
544 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
545 continue;
546
547 seq_puts(m, " ");
548 describe_obj(m, obj);
549 seq_putc(m, '\n');
550 total_obj_size += obj->base.size;
551 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
552 count++;
553 }
554
555 mutex_unlock(&dev->struct_mutex);
556
557 seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
558 count, total_obj_size, total_gtt_size);
559
560 return 0;
561 }
562
563 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
564 {
565 struct drm_info_node *node = m->private;
566 struct drm_device *dev = node->minor->dev;
567 struct drm_i915_private *dev_priv = dev->dev_private;
568 struct intel_crtc *crtc;
569 int ret;
570
571 ret = mutex_lock_interruptible(&dev->struct_mutex);
572 if (ret)
573 return ret;
574
575 for_each_intel_crtc(dev, crtc) {
576 const char pipe = pipe_name(crtc->pipe);
577 const char plane = plane_name(crtc->plane);
578 struct intel_unpin_work *work;
579
580 spin_lock_irq(&dev->event_lock);
581 work = crtc->unpin_work;
582 if (work == NULL) {
583 seq_printf(m, "No flip due on pipe %c (plane %c)\n",
584 pipe, plane);
585 } else {
586 u32 addr;
587
588 if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
589 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
590 pipe, plane);
591 } else {
592 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
593 pipe, plane);
594 }
595 if (work->flip_queued_req) {
596 struct intel_engine_cs *ring =
597 i915_gem_request_get_ring(work->flip_queued_req);
598
599 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
600 ring->name,
601 i915_gem_request_get_seqno(work->flip_queued_req),
602 dev_priv->next_seqno,
603 ring->get_seqno(ring, true),
604 i915_gem_request_completed(work->flip_queued_req, true));
605 } else
606 seq_printf(m, "Flip not associated with any ring\n");
607 seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
608 work->flip_queued_vblank,
609 work->flip_ready_vblank,
610 drm_crtc_vblank_count(&crtc->base));
611 if (work->enable_stall_check)
612 seq_puts(m, "Stall check enabled, ");
613 else
614 seq_puts(m, "Stall check waiting for page flip ioctl, ");
615 seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
616
617 if (INTEL_INFO(dev)->gen >= 4)
618 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
619 else
620 addr = I915_READ(DSPADDR(crtc->plane));
621 seq_printf(m, "Current scanout address 0x%08x\n", addr);
622
623 if (work->pending_flip_obj) {
624 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
625 seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset);
626 }
627 }
628 spin_unlock_irq(&dev->event_lock);
629 }
630
631 mutex_unlock(&dev->struct_mutex);
632
633 return 0;
634 }
635
636 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
637 {
638 struct drm_info_node *node = m->private;
639 struct drm_device *dev = node->minor->dev;
640 struct drm_i915_private *dev_priv = dev->dev_private;
641 struct drm_i915_gem_object *obj;
642 struct intel_engine_cs *ring;
643 int total = 0;
644 int ret, i, j;
645
646 ret = mutex_lock_interruptible(&dev->struct_mutex);
647 if (ret)
648 return ret;
649
650 for_each_ring(ring, dev_priv, i) {
651 for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
652 int count;
653
654 count = 0;
655 list_for_each_entry(obj,
656 &ring->batch_pool.cache_list[j],
657 batch_pool_link)
658 count++;
659 seq_printf(m, "%s cache[%d]: %d objects\n",
660 ring->name, j, count);
661
662 list_for_each_entry(obj,
663 &ring->batch_pool.cache_list[j],
664 batch_pool_link) {
665 seq_puts(m, " ");
666 describe_obj(m, obj);
667 seq_putc(m, '\n');
668 }
669
670 total += count;
671 }
672 }
673
674 seq_printf(m, "total: %d\n", total);
675
676 mutex_unlock(&dev->struct_mutex);
677
678 return 0;
679 }
680
681 static int i915_gem_request_info(struct seq_file *m, void *data)
682 {
683 struct drm_info_node *node = m->private;
684 struct drm_device *dev = node->minor->dev;
685 struct drm_i915_private *dev_priv = dev->dev_private;
686 struct intel_engine_cs *ring;
687 struct drm_i915_gem_request *req;
688 int ret, any, i;
689
690 ret = mutex_lock_interruptible(&dev->struct_mutex);
691 if (ret)
692 return ret;
693
694 any = 0;
695 for_each_ring(ring, dev_priv, i) {
696 int count;
697
698 count = 0;
699 list_for_each_entry(req, &ring->request_list, list)
700 count++;
701 if (count == 0)
702 continue;
703
704 seq_printf(m, "%s requests: %d\n", ring->name, count);
705 list_for_each_entry(req, &ring->request_list, list) {
706 struct task_struct *task;
707
708 rcu_read_lock();
709 task = NULL;
710 if (req->pid)
711 task = pid_task(req->pid, PIDTYPE_PID);
712 seq_printf(m, " %x @ %d: %s [%d]\n",
713 req->seqno,
714 (int) (jiffies - req->emitted_jiffies),
715 task ? task->comm : "<unknown>",
716 task ? task->pid : -1);
717 rcu_read_unlock();
718 }
719
720 any++;
721 }
722 mutex_unlock(&dev->struct_mutex);
723
724 if (any == 0)
725 seq_puts(m, "No requests\n");
726
727 return 0;
728 }
729
730 static void i915_ring_seqno_info(struct seq_file *m,
731 struct intel_engine_cs *ring)
732 {
733 if (ring->get_seqno) {
734 seq_printf(m, "Current sequence (%s): %x\n",
735 ring->name, ring->get_seqno(ring, false));
736 }
737 }
738
739 static int i915_gem_seqno_info(struct seq_file *m, void *data)
740 {
741 struct drm_info_node *node = m->private;
742 struct drm_device *dev = node->minor->dev;
743 struct drm_i915_private *dev_priv = dev->dev_private;
744 struct intel_engine_cs *ring;
745 int ret, i;
746
747 ret = mutex_lock_interruptible(&dev->struct_mutex);
748 if (ret)
749 return ret;
750 intel_runtime_pm_get(dev_priv);
751
752 for_each_ring(ring, dev_priv, i)
753 i915_ring_seqno_info(m, ring);
754
755 intel_runtime_pm_put(dev_priv);
756 mutex_unlock(&dev->struct_mutex);
757
758 return 0;
759 }
760
761
762 static int i915_interrupt_info(struct seq_file *m, void *data)
763 {
764 struct drm_info_node *node = m->private;
765 struct drm_device *dev = node->minor->dev;
766 struct drm_i915_private *dev_priv = dev->dev_private;
767 struct intel_engine_cs *ring;
768 int ret, i, pipe;
769
770 ret = mutex_lock_interruptible(&dev->struct_mutex);
771 if (ret)
772 return ret;
773 intel_runtime_pm_get(dev_priv);
774
775 if (IS_CHERRYVIEW(dev)) {
776 seq_printf(m, "Master Interrupt Control:\t%08x\n",
777 I915_READ(GEN8_MASTER_IRQ));
778
779 seq_printf(m, "Display IER:\t%08x\n",
780 I915_READ(VLV_IER));
781 seq_printf(m, "Display IIR:\t%08x\n",
782 I915_READ(VLV_IIR));
783 seq_printf(m, "Display IIR_RW:\t%08x\n",
784 I915_READ(VLV_IIR_RW));
785 seq_printf(m, "Display IMR:\t%08x\n",
786 I915_READ(VLV_IMR));
787 for_each_pipe(dev_priv, pipe)
788 seq_printf(m, "Pipe %c stat:\t%08x\n",
789 pipe_name(pipe),
790 I915_READ(PIPESTAT(pipe)));
791
792 seq_printf(m, "Port hotplug:\t%08x\n",
793 I915_READ(PORT_HOTPLUG_EN));
794 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
795 I915_READ(VLV_DPFLIPSTAT));
796 seq_printf(m, "DPINVGTT:\t%08x\n",
797 I915_READ(DPINVGTT));
798
799 for (i = 0; i < 4; i++) {
800 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
801 i, I915_READ(GEN8_GT_IMR(i)));
802 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
803 i, I915_READ(GEN8_GT_IIR(i)));
804 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
805 i, I915_READ(GEN8_GT_IER(i)));
806 }
807
808 seq_printf(m, "PCU interrupt mask:\t%08x\n",
809 I915_READ(GEN8_PCU_IMR));
810 seq_printf(m, "PCU interrupt identity:\t%08x\n",
811 I915_READ(GEN8_PCU_IIR));
812 seq_printf(m, "PCU interrupt enable:\t%08x\n",
813 I915_READ(GEN8_PCU_IER));
814 } else if (INTEL_INFO(dev)->gen >= 8) {
815 seq_printf(m, "Master Interrupt Control:\t%08x\n",
816 I915_READ(GEN8_MASTER_IRQ));
817
818 for (i = 0; i < 4; i++) {
819 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
820 i, I915_READ(GEN8_GT_IMR(i)));
821 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
822 i, I915_READ(GEN8_GT_IIR(i)));
823 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
824 i, I915_READ(GEN8_GT_IER(i)));
825 }
826
827 for_each_pipe(dev_priv, pipe) {
828 enum intel_display_power_domain power_domain;
829
830 power_domain = POWER_DOMAIN_PIPE(pipe);
831 if (!intel_display_power_get_if_enabled(dev_priv,
832 power_domain)) {
833 seq_printf(m, "Pipe %c power disabled\n",
834 pipe_name(pipe));
835 continue;
836 }
837 seq_printf(m, "Pipe %c IMR:\t%08x\n",
838 pipe_name(pipe),
839 I915_READ(GEN8_DE_PIPE_IMR(pipe)));
840 seq_printf(m, "Pipe %c IIR:\t%08x\n",
841 pipe_name(pipe),
842 I915_READ(GEN8_DE_PIPE_IIR(pipe)));
843 seq_printf(m, "Pipe %c IER:\t%08x\n",
844 pipe_name(pipe),
845 I915_READ(GEN8_DE_PIPE_IER(pipe)));
846
847 intel_display_power_put(dev_priv, power_domain);
848 }
849
850 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
851 I915_READ(GEN8_DE_PORT_IMR));
852 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
853 I915_READ(GEN8_DE_PORT_IIR));
854 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
855 I915_READ(GEN8_DE_PORT_IER));
856
857 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
858 I915_READ(GEN8_DE_MISC_IMR));
859 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
860 I915_READ(GEN8_DE_MISC_IIR));
861 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
862 I915_READ(GEN8_DE_MISC_IER));
863
864 seq_printf(m, "PCU interrupt mask:\t%08x\n",
865 I915_READ(GEN8_PCU_IMR));
866 seq_printf(m, "PCU interrupt identity:\t%08x\n",
867 I915_READ(GEN8_PCU_IIR));
868 seq_printf(m, "PCU interrupt enable:\t%08x\n",
869 I915_READ(GEN8_PCU_IER));
870 } else if (IS_VALLEYVIEW(dev)) {
871 seq_printf(m, "Display IER:\t%08x\n",
872 I915_READ(VLV_IER));
873 seq_printf(m, "Display IIR:\t%08x\n",
874 I915_READ(VLV_IIR));
875 seq_printf(m, "Display IIR_RW:\t%08x\n",
876 I915_READ(VLV_IIR_RW));
877 seq_printf(m, "Display IMR:\t%08x\n",
878 I915_READ(VLV_IMR));
879 for_each_pipe(dev_priv, pipe)
880 seq_printf(m, "Pipe %c stat:\t%08x\n",
881 pipe_name(pipe),
882 I915_READ(PIPESTAT(pipe)));
883
884 seq_printf(m, "Master IER:\t%08x\n",
885 I915_READ(VLV_MASTER_IER));
886
887 seq_printf(m, "Render IER:\t%08x\n",
888 I915_READ(GTIER));
889 seq_printf(m, "Render IIR:\t%08x\n",
890 I915_READ(GTIIR));
891 seq_printf(m, "Render IMR:\t%08x\n",
892 I915_READ(GTIMR));
893
894 seq_printf(m, "PM IER:\t\t%08x\n",
895 I915_READ(GEN6_PMIER));
896 seq_printf(m, "PM IIR:\t\t%08x\n",
897 I915_READ(GEN6_PMIIR));
898 seq_printf(m, "PM IMR:\t\t%08x\n",
899 I915_READ(GEN6_PMIMR));
900
901 seq_printf(m, "Port hotplug:\t%08x\n",
902 I915_READ(PORT_HOTPLUG_EN));
903 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
904 I915_READ(VLV_DPFLIPSTAT));
905 seq_printf(m, "DPINVGTT:\t%08x\n",
906 I915_READ(DPINVGTT));
907
908 } else if (!HAS_PCH_SPLIT(dev)) {
909 seq_printf(m, "Interrupt enable: %08x\n",
910 I915_READ(IER));
911 seq_printf(m, "Interrupt identity: %08x\n",
912 I915_READ(IIR));
913 seq_printf(m, "Interrupt mask: %08x\n",
914 I915_READ(IMR));
915 for_each_pipe(dev_priv, pipe)
916 seq_printf(m, "Pipe %c stat: %08x\n",
917 pipe_name(pipe),
918 I915_READ(PIPESTAT(pipe)));
919 } else {
920 seq_printf(m, "North Display Interrupt enable: %08x\n",
921 I915_READ(DEIER));
922 seq_printf(m, "North Display Interrupt identity: %08x\n",
923 I915_READ(DEIIR));
924 seq_printf(m, "North Display Interrupt mask: %08x\n",
925 I915_READ(DEIMR));
926 seq_printf(m, "South Display Interrupt enable: %08x\n",
927 I915_READ(SDEIER));
928 seq_printf(m, "South Display Interrupt identity: %08x\n",
929 I915_READ(SDEIIR));
930 seq_printf(m, "South Display Interrupt mask: %08x\n",
931 I915_READ(SDEIMR));
932 seq_printf(m, "Graphics Interrupt enable: %08x\n",
933 I915_READ(GTIER));
934 seq_printf(m, "Graphics Interrupt identity: %08x\n",
935 I915_READ(GTIIR));
936 seq_printf(m, "Graphics Interrupt mask: %08x\n",
937 I915_READ(GTIMR));
938 }
939 for_each_ring(ring, dev_priv, i) {
940 if (INTEL_INFO(dev)->gen >= 6) {
941 seq_printf(m,
942 "Graphics Interrupt mask (%s): %08x\n",
943 ring->name, I915_READ_IMR(ring));
944 }
945 i915_ring_seqno_info(m, ring);
946 }
947 intel_runtime_pm_put(dev_priv);
948 mutex_unlock(&dev->struct_mutex);
949
950 return 0;
951 }
952
953 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
954 {
955 struct drm_info_node *node = m->private;
956 struct drm_device *dev = node->minor->dev;
957 struct drm_i915_private *dev_priv = dev->dev_private;
958 int i, ret;
959
960 ret = mutex_lock_interruptible(&dev->struct_mutex);
961 if (ret)
962 return ret;
963
964 seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
965 for (i = 0; i < dev_priv->num_fence_regs; i++) {
966 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
967
968 seq_printf(m, "Fence %d, pin count = %d, object = ",
969 i, dev_priv->fence_regs[i].pin_count);
970 if (obj == NULL)
971 seq_puts(m, "unused");
972 else
973 describe_obj(m, obj);
974 seq_putc(m, '\n');
975 }
976
977 mutex_unlock(&dev->struct_mutex);
978 return 0;
979 }
980
981 static int i915_hws_info(struct seq_file *m, void *data)
982 {
983 struct drm_info_node *node = m->private;
984 struct drm_device *dev = node->minor->dev;
985 struct drm_i915_private *dev_priv = dev->dev_private;
986 struct intel_engine_cs *ring;
987 const u32 *hws;
988 int i;
989
990 ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
991 hws = ring->status_page.page_addr;
992 if (hws == NULL)
993 return 0;
994
995 for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
996 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
997 i * 4,
998 hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
999 }
1000 return 0;
1001 }
1002
1003 static ssize_t
1004 i915_error_state_write(struct file *filp,
1005 const char __user *ubuf,
1006 size_t cnt,
1007 loff_t *ppos)
1008 {
1009 struct i915_error_state_file_priv *error_priv = filp->private_data;
1010 struct drm_device *dev = error_priv->dev;
1011 int ret;
1012
1013 DRM_DEBUG_DRIVER("Resetting error state\n");
1014
1015 ret = mutex_lock_interruptible(&dev->struct_mutex);
1016 if (ret)
1017 return ret;
1018
1019 i915_destroy_error_state(dev);
1020 mutex_unlock(&dev->struct_mutex);
1021
1022 return cnt;
1023 }
1024
1025 static int i915_error_state_open(struct inode *inode, struct file *file)
1026 {
1027 struct drm_device *dev = inode->i_private;
1028 struct i915_error_state_file_priv *error_priv;
1029
1030 error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
1031 if (!error_priv)
1032 return -ENOMEM;
1033
1034 error_priv->dev = dev;
1035
1036 i915_error_state_get(dev, error_priv);
1037
1038 file->private_data = error_priv;
1039
1040 return 0;
1041 }
1042
1043 static int i915_error_state_release(struct inode *inode, struct file *file)
1044 {
1045 struct i915_error_state_file_priv *error_priv = file->private_data;
1046
1047 i915_error_state_put(error_priv);
1048 kfree(error_priv);
1049
1050 return 0;
1051 }
1052
1053 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1054 size_t count, loff_t *pos)
1055 {
1056 struct i915_error_state_file_priv *error_priv = file->private_data;
1057 struct drm_i915_error_state_buf error_str;
1058 loff_t tmp_pos = 0;
1059 ssize_t ret_count = 0;
1060 int ret;
1061
1062 ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1063 if (ret)
1064 return ret;
1065
1066 ret = i915_error_state_to_str(&error_str, error_priv);
1067 if (ret)
1068 goto out;
1069
1070 ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1071 error_str.buf,
1072 error_str.bytes);
1073
1074 if (ret_count < 0)
1075 ret = ret_count;
1076 else
1077 *pos = error_str.start + ret_count;
1078 out:
1079 i915_error_state_buf_release(&error_str);
1080 return ret ?: ret_count;
1081 }
1082
1083 static const struct file_operations i915_error_state_fops = {
1084 .owner = THIS_MODULE,
1085 .open = i915_error_state_open,
1086 .read = i915_error_state_read,
1087 .write = i915_error_state_write,
1088 .llseek = default_llseek,
1089 .release = i915_error_state_release,
1090 };
1091
1092 static int
1093 i915_next_seqno_get(void *data, u64 *val)
1094 {
1095 struct drm_device *dev = data;
1096 struct drm_i915_private *dev_priv = dev->dev_private;
1097 int ret;
1098
1099 ret = mutex_lock_interruptible(&dev->struct_mutex);
1100 if (ret)
1101 return ret;
1102
1103 *val = dev_priv->next_seqno;
1104 mutex_unlock(&dev->struct_mutex);
1105
1106 return 0;
1107 }
1108
1109 static int
1110 i915_next_seqno_set(void *data, u64 val)
1111 {
1112 struct drm_device *dev = data;
1113 int ret;
1114
1115 ret = mutex_lock_interruptible(&dev->struct_mutex);
1116 if (ret)
1117 return ret;
1118
1119 ret = i915_gem_set_seqno(dev, val);
1120 mutex_unlock(&dev->struct_mutex);
1121
1122 return ret;
1123 }
1124
1125 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1126 i915_next_seqno_get, i915_next_seqno_set,
1127 "0x%llx\n");
1128
1129 static int i915_frequency_info(struct seq_file *m, void *unused)
1130 {
1131 struct drm_info_node *node = m->private;
1132 struct drm_device *dev = node->minor->dev;
1133 struct drm_i915_private *dev_priv = dev->dev_private;
1134 int ret = 0;
1135
1136 intel_runtime_pm_get(dev_priv);
1137
1138 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1139
1140 if (IS_GEN5(dev)) {
1141 u16 rgvswctl = I915_READ16(MEMSWCTL);
1142 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1143
1144 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1145 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1146 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1147 MEMSTAT_VID_SHIFT);
1148 seq_printf(m, "Current P-state: %d\n",
1149 (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1150 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1151 u32 freq_sts;
1152
1153 mutex_lock(&dev_priv->rps.hw_lock);
1154 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1155 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1156 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1157
1158 seq_printf(m, "actual GPU freq: %d MHz\n",
1159 intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1160
1161 seq_printf(m, "current GPU freq: %d MHz\n",
1162 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1163
1164 seq_printf(m, "max GPU freq: %d MHz\n",
1165 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1166
1167 seq_printf(m, "min GPU freq: %d MHz\n",
1168 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1169
1170 seq_printf(m, "idle GPU freq: %d MHz\n",
1171 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1172
1173 seq_printf(m,
1174 "efficient (RPe) frequency: %d MHz\n",
1175 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1176 mutex_unlock(&dev_priv->rps.hw_lock);
1177 } else if (INTEL_INFO(dev)->gen >= 6) {
1178 u32 rp_state_limits;
1179 u32 gt_perf_status;
1180 u32 rp_state_cap;
1181 u32 rpmodectl, rpinclimit, rpdeclimit;
1182 u32 rpstat, cagf, reqf;
1183 u32 rpupei, rpcurup, rpprevup;
1184 u32 rpdownei, rpcurdown, rpprevdown;
1185 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1186 int max_freq;
1187
1188 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1189 if (IS_BROXTON(dev)) {
1190 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1191 gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1192 } else {
1193 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1194 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1195 }
1196
1197 /* RPSTAT1 is in the GT power well */
1198 ret = mutex_lock_interruptible(&dev->struct_mutex);
1199 if (ret)
1200 goto out;
1201
1202 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1203
1204 reqf = I915_READ(GEN6_RPNSWREQ);
1205 if (IS_GEN9(dev))
1206 reqf >>= 23;
1207 else {
1208 reqf &= ~GEN6_TURBO_DISABLE;
1209 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1210 reqf >>= 24;
1211 else
1212 reqf >>= 25;
1213 }
1214 reqf = intel_gpu_freq(dev_priv, reqf);
1215
1216 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1217 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1218 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1219
1220 rpstat = I915_READ(GEN6_RPSTAT1);
1221 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1222 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1223 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1224 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1225 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1226 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1227 if (IS_GEN9(dev))
1228 cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1229 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1230 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1231 else
1232 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1233 cagf = intel_gpu_freq(dev_priv, cagf);
1234
1235 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1236 mutex_unlock(&dev->struct_mutex);
1237
1238 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1239 pm_ier = I915_READ(GEN6_PMIER);
1240 pm_imr = I915_READ(GEN6_PMIMR);
1241 pm_isr = I915_READ(GEN6_PMISR);
1242 pm_iir = I915_READ(GEN6_PMIIR);
1243 pm_mask = I915_READ(GEN6_PMINTRMSK);
1244 } else {
1245 pm_ier = I915_READ(GEN8_GT_IER(2));
1246 pm_imr = I915_READ(GEN8_GT_IMR(2));
1247 pm_isr = I915_READ(GEN8_GT_ISR(2));
1248 pm_iir = I915_READ(GEN8_GT_IIR(2));
1249 pm_mask = I915_READ(GEN6_PMINTRMSK);
1250 }
1251 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1252 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1253 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1254 seq_printf(m, "Render p-state ratio: %d\n",
1255 (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1256 seq_printf(m, "Render p-state VID: %d\n",
1257 gt_perf_status & 0xff);
1258 seq_printf(m, "Render p-state limit: %d\n",
1259 rp_state_limits & 0xff);
1260 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1261 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1262 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1263 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1264 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1265 seq_printf(m, "CAGF: %dMHz\n", cagf);
1266 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1267 GEN6_CURICONT_MASK);
1268 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1269 GEN6_CURBSYTAVG_MASK);
1270 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1271 GEN6_CURBSYTAVG_MASK);
1272 seq_printf(m, "Up threshold: %d%%\n",
1273 dev_priv->rps.up_threshold);
1274
1275 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1276 GEN6_CURIAVG_MASK);
1277 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1278 GEN6_CURBSYTAVG_MASK);
1279 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1280 GEN6_CURBSYTAVG_MASK);
1281 seq_printf(m, "Down threshold: %d%%\n",
1282 dev_priv->rps.down_threshold);
1283
1284 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
1285 rp_state_cap >> 16) & 0xff;
1286 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1287 GEN9_FREQ_SCALER : 1);
1288 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1289 intel_gpu_freq(dev_priv, max_freq));
1290
1291 max_freq = (rp_state_cap & 0xff00) >> 8;
1292 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1293 GEN9_FREQ_SCALER : 1);
1294 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1295 intel_gpu_freq(dev_priv, max_freq));
1296
1297 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
1298 rp_state_cap >> 0) & 0xff;
1299 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1300 GEN9_FREQ_SCALER : 1);
1301 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1302 intel_gpu_freq(dev_priv, max_freq));
1303 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1304 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1305
1306 seq_printf(m, "Current freq: %d MHz\n",
1307 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1308 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1309 seq_printf(m, "Idle freq: %d MHz\n",
1310 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1311 seq_printf(m, "Min freq: %d MHz\n",
1312 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1313 seq_printf(m, "Max freq: %d MHz\n",
1314 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1315 seq_printf(m,
1316 "efficient (RPe) frequency: %d MHz\n",
1317 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1318 } else {
1319 seq_puts(m, "no P-state info available\n");
1320 }
1321
1322 seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1323 seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1324 seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1325
1326 out:
1327 intel_runtime_pm_put(dev_priv);
1328 return ret;
1329 }
1330
1331 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1332 {
1333 struct drm_info_node *node = m->private;
1334 struct drm_device *dev = node->minor->dev;
1335 struct drm_i915_private *dev_priv = dev->dev_private;
1336 struct intel_engine_cs *ring;
1337 u64 acthd[I915_NUM_RINGS];
1338 u32 seqno[I915_NUM_RINGS];
1339 int i;
1340
1341 if (!i915.enable_hangcheck) {
1342 seq_printf(m, "Hangcheck disabled\n");
1343 return 0;
1344 }
1345
1346 intel_runtime_pm_get(dev_priv);
1347
1348 for_each_ring(ring, dev_priv, i) {
1349 seqno[i] = ring->get_seqno(ring, false);
1350 acthd[i] = intel_ring_get_active_head(ring);
1351 }
1352
1353 intel_runtime_pm_put(dev_priv);
1354
1355 if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1356 seq_printf(m, "Hangcheck active, fires in %dms\n",
1357 jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1358 jiffies));
1359 } else
1360 seq_printf(m, "Hangcheck inactive\n");
1361
1362 for_each_ring(ring, dev_priv, i) {
1363 seq_printf(m, "%s:\n", ring->name);
1364 seq_printf(m, "\tseqno = %x [current %x]\n",
1365 ring->hangcheck.seqno, seqno[i]);
1366 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1367 (long long)ring->hangcheck.acthd,
1368 (long long)acthd[i]);
1369 seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
1370 (long long)ring->hangcheck.max_acthd);
1371 seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
1372 seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
1373 }
1374
1375 return 0;
1376 }
1377
1378 static int ironlake_drpc_info(struct seq_file *m)
1379 {
1380 struct drm_info_node *node = m->private;
1381 struct drm_device *dev = node->minor->dev;
1382 struct drm_i915_private *dev_priv = dev->dev_private;
1383 u32 rgvmodectl, rstdbyctl;
1384 u16 crstandvid;
1385 int ret;
1386
1387 ret = mutex_lock_interruptible(&dev->struct_mutex);
1388 if (ret)
1389 return ret;
1390 intel_runtime_pm_get(dev_priv);
1391
1392 rgvmodectl = I915_READ(MEMMODECTL);
1393 rstdbyctl = I915_READ(RSTDBYCTL);
1394 crstandvid = I915_READ16(CRSTANDVID);
1395
1396 intel_runtime_pm_put(dev_priv);
1397 mutex_unlock(&dev->struct_mutex);
1398
1399 seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1400 seq_printf(m, "Boost freq: %d\n",
1401 (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1402 MEMMODE_BOOST_FREQ_SHIFT);
1403 seq_printf(m, "HW control enabled: %s\n",
1404 yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1405 seq_printf(m, "SW control enabled: %s\n",
1406 yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1407 seq_printf(m, "Gated voltage change: %s\n",
1408 yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1409 seq_printf(m, "Starting frequency: P%d\n",
1410 (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1411 seq_printf(m, "Max P-state: P%d\n",
1412 (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1413 seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1414 seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1415 seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1416 seq_printf(m, "Render standby enabled: %s\n",
1417 yesno(!(rstdbyctl & RCX_SW_EXIT)));
1418 seq_puts(m, "Current RS state: ");
1419 switch (rstdbyctl & RSX_STATUS_MASK) {
1420 case RSX_STATUS_ON:
1421 seq_puts(m, "on\n");
1422 break;
1423 case RSX_STATUS_RC1:
1424 seq_puts(m, "RC1\n");
1425 break;
1426 case RSX_STATUS_RC1E:
1427 seq_puts(m, "RC1E\n");
1428 break;
1429 case RSX_STATUS_RS1:
1430 seq_puts(m, "RS1\n");
1431 break;
1432 case RSX_STATUS_RS2:
1433 seq_puts(m, "RS2 (RC6)\n");
1434 break;
1435 case RSX_STATUS_RS3:
1436 seq_puts(m, "RC3 (RC6+)\n");
1437 break;
1438 default:
1439 seq_puts(m, "unknown\n");
1440 break;
1441 }
1442
1443 return 0;
1444 }
1445
1446 static int i915_forcewake_domains(struct seq_file *m, void *data)
1447 {
1448 struct drm_info_node *node = m->private;
1449 struct drm_device *dev = node->minor->dev;
1450 struct drm_i915_private *dev_priv = dev->dev_private;
1451 struct intel_uncore_forcewake_domain *fw_domain;
1452 int i;
1453
1454 spin_lock_irq(&dev_priv->uncore.lock);
1455 for_each_fw_domain(fw_domain, dev_priv, i) {
1456 seq_printf(m, "%s.wake_count = %u\n",
1457 intel_uncore_forcewake_domain_to_str(i),
1458 fw_domain->wake_count);
1459 }
1460 spin_unlock_irq(&dev_priv->uncore.lock);
1461
1462 return 0;
1463 }
1464
1465 static int vlv_drpc_info(struct seq_file *m)
1466 {
1467 struct drm_info_node *node = m->private;
1468 struct drm_device *dev = node->minor->dev;
1469 struct drm_i915_private *dev_priv = dev->dev_private;
1470 u32 rpmodectl1, rcctl1, pw_status;
1471
1472 intel_runtime_pm_get(dev_priv);
1473
1474 pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1475 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1476 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1477
1478 intel_runtime_pm_put(dev_priv);
1479
1480 seq_printf(m, "Video Turbo Mode: %s\n",
1481 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1482 seq_printf(m, "Turbo enabled: %s\n",
1483 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1484 seq_printf(m, "HW control enabled: %s\n",
1485 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1486 seq_printf(m, "SW control enabled: %s\n",
1487 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1488 GEN6_RP_MEDIA_SW_MODE));
1489 seq_printf(m, "RC6 Enabled: %s\n",
1490 yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1491 GEN6_RC_CTL_EI_MODE(1))));
1492 seq_printf(m, "Render Power Well: %s\n",
1493 (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1494 seq_printf(m, "Media Power Well: %s\n",
1495 (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1496
1497 seq_printf(m, "Render RC6 residency since boot: %u\n",
1498 I915_READ(VLV_GT_RENDER_RC6));
1499 seq_printf(m, "Media RC6 residency since boot: %u\n",
1500 I915_READ(VLV_GT_MEDIA_RC6));
1501
1502 return i915_forcewake_domains(m, NULL);
1503 }
1504
1505 static int gen6_drpc_info(struct seq_file *m)
1506 {
1507 struct drm_info_node *node = m->private;
1508 struct drm_device *dev = node->minor->dev;
1509 struct drm_i915_private *dev_priv = dev->dev_private;
1510 u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1511 unsigned forcewake_count;
1512 int count = 0, ret;
1513
1514 ret = mutex_lock_interruptible(&dev->struct_mutex);
1515 if (ret)
1516 return ret;
1517 intel_runtime_pm_get(dev_priv);
1518
1519 spin_lock_irq(&dev_priv->uncore.lock);
1520 forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1521 spin_unlock_irq(&dev_priv->uncore.lock);
1522
1523 if (forcewake_count) {
1524 seq_puts(m, "RC information inaccurate because somebody "
1525 "holds a forcewake reference \n");
1526 } else {
1527 /* NB: we cannot use forcewake, else we read the wrong values */
1528 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1529 udelay(10);
1530 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1531 }
1532
1533 gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1534 trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1535
1536 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1537 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1538 mutex_unlock(&dev->struct_mutex);
1539 mutex_lock(&dev_priv->rps.hw_lock);
1540 sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1541 mutex_unlock(&dev_priv->rps.hw_lock);
1542
1543 intel_runtime_pm_put(dev_priv);
1544
1545 seq_printf(m, "Video Turbo Mode: %s\n",
1546 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1547 seq_printf(m, "HW control enabled: %s\n",
1548 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1549 seq_printf(m, "SW control enabled: %s\n",
1550 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1551 GEN6_RP_MEDIA_SW_MODE));
1552 seq_printf(m, "RC1e Enabled: %s\n",
1553 yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1554 seq_printf(m, "RC6 Enabled: %s\n",
1555 yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1556 seq_printf(m, "Deep RC6 Enabled: %s\n",
1557 yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1558 seq_printf(m, "Deepest RC6 Enabled: %s\n",
1559 yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1560 seq_puts(m, "Current RC state: ");
1561 switch (gt_core_status & GEN6_RCn_MASK) {
1562 case GEN6_RC0:
1563 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1564 seq_puts(m, "Core Power Down\n");
1565 else
1566 seq_puts(m, "on\n");
1567 break;
1568 case GEN6_RC3:
1569 seq_puts(m, "RC3\n");
1570 break;
1571 case GEN6_RC6:
1572 seq_puts(m, "RC6\n");
1573 break;
1574 case GEN6_RC7:
1575 seq_puts(m, "RC7\n");
1576 break;
1577 default:
1578 seq_puts(m, "Unknown\n");
1579 break;
1580 }
1581
1582 seq_printf(m, "Core Power Down: %s\n",
1583 yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1584
1585 /* Not exactly sure what this is */
1586 seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1587 I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1588 seq_printf(m, "RC6 residency since boot: %u\n",
1589 I915_READ(GEN6_GT_GFX_RC6));
1590 seq_printf(m, "RC6+ residency since boot: %u\n",
1591 I915_READ(GEN6_GT_GFX_RC6p));
1592 seq_printf(m, "RC6++ residency since boot: %u\n",
1593 I915_READ(GEN6_GT_GFX_RC6pp));
1594
1595 seq_printf(m, "RC6 voltage: %dmV\n",
1596 GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1597 seq_printf(m, "RC6+ voltage: %dmV\n",
1598 GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1599 seq_printf(m, "RC6++ voltage: %dmV\n",
1600 GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1601 return 0;
1602 }
1603
1604 static int i915_drpc_info(struct seq_file *m, void *unused)
1605 {
1606 struct drm_info_node *node = m->private;
1607 struct drm_device *dev = node->minor->dev;
1608
1609 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1610 return vlv_drpc_info(m);
1611 else if (INTEL_INFO(dev)->gen >= 6)
1612 return gen6_drpc_info(m);
1613 else
1614 return ironlake_drpc_info(m);
1615 }
1616
1617 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1618 {
1619 struct drm_info_node *node = m->private;
1620 struct drm_device *dev = node->minor->dev;
1621 struct drm_i915_private *dev_priv = dev->dev_private;
1622
1623 seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1624 dev_priv->fb_tracking.busy_bits);
1625
1626 seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1627 dev_priv->fb_tracking.flip_bits);
1628
1629 return 0;
1630 }
1631
1632 static int i915_fbc_status(struct seq_file *m, void *unused)
1633 {
1634 struct drm_info_node *node = m->private;
1635 struct drm_device *dev = node->minor->dev;
1636 struct drm_i915_private *dev_priv = dev->dev_private;
1637
1638 if (!HAS_FBC(dev)) {
1639 seq_puts(m, "FBC unsupported on this chipset\n");
1640 return 0;
1641 }
1642
1643 intel_runtime_pm_get(dev_priv);
1644 mutex_lock(&dev_priv->fbc.lock);
1645
1646 if (intel_fbc_is_active(dev_priv))
1647 seq_puts(m, "FBC enabled\n");
1648 else
1649 seq_printf(m, "FBC disabled: %s\n",
1650 dev_priv->fbc.no_fbc_reason);
1651
1652 if (INTEL_INFO(dev_priv)->gen >= 7)
1653 seq_printf(m, "Compressing: %s\n",
1654 yesno(I915_READ(FBC_STATUS2) &
1655 FBC_COMPRESSION_MASK));
1656
1657 mutex_unlock(&dev_priv->fbc.lock);
1658 intel_runtime_pm_put(dev_priv);
1659
1660 return 0;
1661 }
1662
1663 static int i915_fbc_fc_get(void *data, u64 *val)
1664 {
1665 struct drm_device *dev = data;
1666 struct drm_i915_private *dev_priv = dev->dev_private;
1667
1668 if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1669 return -ENODEV;
1670
1671 *val = dev_priv->fbc.false_color;
1672
1673 return 0;
1674 }
1675
1676 static int i915_fbc_fc_set(void *data, u64 val)
1677 {
1678 struct drm_device *dev = data;
1679 struct drm_i915_private *dev_priv = dev->dev_private;
1680 u32 reg;
1681
1682 if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1683 return -ENODEV;
1684
1685 mutex_lock(&dev_priv->fbc.lock);
1686
1687 reg = I915_READ(ILK_DPFC_CONTROL);
1688 dev_priv->fbc.false_color = val;
1689
1690 I915_WRITE(ILK_DPFC_CONTROL, val ?
1691 (reg | FBC_CTL_FALSE_COLOR) :
1692 (reg & ~FBC_CTL_FALSE_COLOR));
1693
1694 mutex_unlock(&dev_priv->fbc.lock);
1695 return 0;
1696 }
1697
1698 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1699 i915_fbc_fc_get, i915_fbc_fc_set,
1700 "%llu\n");
1701
1702 static int i915_ips_status(struct seq_file *m, void *unused)
1703 {
1704 struct drm_info_node *node = m->private;
1705 struct drm_device *dev = node->minor->dev;
1706 struct drm_i915_private *dev_priv = dev->dev_private;
1707
1708 if (!HAS_IPS(dev)) {
1709 seq_puts(m, "not supported\n");
1710 return 0;
1711 }
1712
1713 intel_runtime_pm_get(dev_priv);
1714
1715 seq_printf(m, "Enabled by kernel parameter: %s\n",
1716 yesno(i915.enable_ips));
1717
1718 if (INTEL_INFO(dev)->gen >= 8) {
1719 seq_puts(m, "Currently: unknown\n");
1720 } else {
1721 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1722 seq_puts(m, "Currently: enabled\n");
1723 else
1724 seq_puts(m, "Currently: disabled\n");
1725 }
1726
1727 intel_runtime_pm_put(dev_priv);
1728
1729 return 0;
1730 }
1731
1732 static int i915_sr_status(struct seq_file *m, void *unused)
1733 {
1734 struct drm_info_node *node = m->private;
1735 struct drm_device *dev = node->minor->dev;
1736 struct drm_i915_private *dev_priv = dev->dev_private;
1737 bool sr_enabled = false;
1738
1739 intel_runtime_pm_get(dev_priv);
1740
1741 if (HAS_PCH_SPLIT(dev))
1742 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1743 else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1744 IS_I945G(dev) || IS_I945GM(dev))
1745 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1746 else if (IS_I915GM(dev))
1747 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1748 else if (IS_PINEVIEW(dev))
1749 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1750 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1751 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1752
1753 intel_runtime_pm_put(dev_priv);
1754
1755 seq_printf(m, "self-refresh: %s\n",
1756 sr_enabled ? "enabled" : "disabled");
1757
1758 return 0;
1759 }
1760
1761 static int i915_emon_status(struct seq_file *m, void *unused)
1762 {
1763 struct drm_info_node *node = m->private;
1764 struct drm_device *dev = node->minor->dev;
1765 struct drm_i915_private *dev_priv = dev->dev_private;
1766 unsigned long temp, chipset, gfx;
1767 int ret;
1768
1769 if (!IS_GEN5(dev))
1770 return -ENODEV;
1771
1772 ret = mutex_lock_interruptible(&dev->struct_mutex);
1773 if (ret)
1774 return ret;
1775
1776 temp = i915_mch_val(dev_priv);
1777 chipset = i915_chipset_val(dev_priv);
1778 gfx = i915_gfx_val(dev_priv);
1779 mutex_unlock(&dev->struct_mutex);
1780
1781 seq_printf(m, "GMCH temp: %ld\n", temp);
1782 seq_printf(m, "Chipset power: %ld\n", chipset);
1783 seq_printf(m, "GFX power: %ld\n", gfx);
1784 seq_printf(m, "Total power: %ld\n", chipset + gfx);
1785
1786 return 0;
1787 }
1788
1789 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1790 {
1791 struct drm_info_node *node = m->private;
1792 struct drm_device *dev = node->minor->dev;
1793 struct drm_i915_private *dev_priv = dev->dev_private;
1794 int ret = 0;
1795 int gpu_freq, ia_freq;
1796 unsigned int max_gpu_freq, min_gpu_freq;
1797
1798 if (!HAS_CORE_RING_FREQ(dev)) {
1799 seq_puts(m, "unsupported on this chipset\n");
1800 return 0;
1801 }
1802
1803 intel_runtime_pm_get(dev_priv);
1804
1805 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1806
1807 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1808 if (ret)
1809 goto out;
1810
1811 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1812 /* Convert GT frequency to 50 HZ units */
1813 min_gpu_freq =
1814 dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1815 max_gpu_freq =
1816 dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1817 } else {
1818 min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1819 max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1820 }
1821
1822 seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1823
1824 for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1825 ia_freq = gpu_freq;
1826 sandybridge_pcode_read(dev_priv,
1827 GEN6_PCODE_READ_MIN_FREQ_TABLE,
1828 &ia_freq);
1829 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1830 intel_gpu_freq(dev_priv, (gpu_freq *
1831 (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1832 GEN9_FREQ_SCALER : 1))),
1833 ((ia_freq >> 0) & 0xff) * 100,
1834 ((ia_freq >> 8) & 0xff) * 100);
1835 }
1836
1837 mutex_unlock(&dev_priv->rps.hw_lock);
1838
1839 out:
1840 intel_runtime_pm_put(dev_priv);
1841 return ret;
1842 }
1843
1844 static int i915_opregion(struct seq_file *m, void *unused)
1845 {
1846 struct drm_info_node *node = m->private;
1847 struct drm_device *dev = node->minor->dev;
1848 struct drm_i915_private *dev_priv = dev->dev_private;
1849 struct intel_opregion *opregion = &dev_priv->opregion;
1850 int ret;
1851
1852 ret = mutex_lock_interruptible(&dev->struct_mutex);
1853 if (ret)
1854 goto out;
1855
1856 if (opregion->header)
1857 seq_write(m, opregion->header, OPREGION_SIZE);
1858
1859 mutex_unlock(&dev->struct_mutex);
1860
1861 out:
1862 return 0;
1863 }
1864
1865 static int i915_vbt(struct seq_file *m, void *unused)
1866 {
1867 struct drm_info_node *node = m->private;
1868 struct drm_device *dev = node->minor->dev;
1869 struct drm_i915_private *dev_priv = dev->dev_private;
1870 struct intel_opregion *opregion = &dev_priv->opregion;
1871
1872 if (opregion->vbt)
1873 seq_write(m, opregion->vbt, opregion->vbt_size);
1874
1875 return 0;
1876 }
1877
1878 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1879 {
1880 struct drm_info_node *node = m->private;
1881 struct drm_device *dev = node->minor->dev;
1882 struct intel_framebuffer *fbdev_fb = NULL;
1883 struct drm_framebuffer *drm_fb;
1884
1885 #ifdef CONFIG_DRM_FBDEV_EMULATION
1886 if (to_i915(dev)->fbdev) {
1887 fbdev_fb = to_intel_framebuffer(to_i915(dev)->fbdev->helper.fb);
1888
1889 seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1890 fbdev_fb->base.width,
1891 fbdev_fb->base.height,
1892 fbdev_fb->base.depth,
1893 fbdev_fb->base.bits_per_pixel,
1894 fbdev_fb->base.modifier[0],
1895 atomic_read(&fbdev_fb->base.refcount.refcount));
1896 describe_obj(m, fbdev_fb->obj);
1897 seq_putc(m, '\n');
1898 }
1899 #endif
1900
1901 mutex_lock(&dev->mode_config.fb_lock);
1902 drm_for_each_fb(drm_fb, dev) {
1903 struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1904 if (fb == fbdev_fb)
1905 continue;
1906
1907 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1908 fb->base.width,
1909 fb->base.height,
1910 fb->base.depth,
1911 fb->base.bits_per_pixel,
1912 fb->base.modifier[0],
1913 atomic_read(&fb->base.refcount.refcount));
1914 describe_obj(m, fb->obj);
1915 seq_putc(m, '\n');
1916 }
1917 mutex_unlock(&dev->mode_config.fb_lock);
1918
1919 return 0;
1920 }
1921
1922 static void describe_ctx_ringbuf(struct seq_file *m,
1923 struct intel_ringbuffer *ringbuf)
1924 {
1925 seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1926 ringbuf->space, ringbuf->head, ringbuf->tail,
1927 ringbuf->last_retired_head);
1928 }
1929
1930 static int i915_context_status(struct seq_file *m, void *unused)
1931 {
1932 struct drm_info_node *node = m->private;
1933 struct drm_device *dev = node->minor->dev;
1934 struct drm_i915_private *dev_priv = dev->dev_private;
1935 struct intel_engine_cs *ring;
1936 struct intel_context *ctx;
1937 int ret, i;
1938
1939 ret = mutex_lock_interruptible(&dev->struct_mutex);
1940 if (ret)
1941 return ret;
1942
1943 list_for_each_entry(ctx, &dev_priv->context_list, link) {
1944 if (!i915.enable_execlists &&
1945 ctx->legacy_hw_ctx.rcs_state == NULL)
1946 continue;
1947
1948 seq_puts(m, "HW context ");
1949 describe_ctx(m, ctx);
1950 for_each_ring(ring, dev_priv, i) {
1951 if (ring->default_context == ctx)
1952 seq_printf(m, "(default context %s) ",
1953 ring->name);
1954 }
1955
1956 if (i915.enable_execlists) {
1957 seq_putc(m, '\n');
1958 for_each_ring(ring, dev_priv, i) {
1959 struct drm_i915_gem_object *ctx_obj =
1960 ctx->engine[i].state;
1961 struct intel_ringbuffer *ringbuf =
1962 ctx->engine[i].ringbuf;
1963
1964 seq_printf(m, "%s: ", ring->name);
1965 if (ctx_obj)
1966 describe_obj(m, ctx_obj);
1967 if (ringbuf)
1968 describe_ctx_ringbuf(m, ringbuf);
1969 seq_putc(m, '\n');
1970 }
1971 } else {
1972 describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1973 }
1974
1975 seq_putc(m, '\n');
1976 }
1977
1978 mutex_unlock(&dev->struct_mutex);
1979
1980 return 0;
1981 }
1982
1983 static void i915_dump_lrc_obj(struct seq_file *m,
1984 struct intel_engine_cs *ring,
1985 struct drm_i915_gem_object *ctx_obj)
1986 {
1987 struct page *page;
1988 uint32_t *reg_state;
1989 int j;
1990 unsigned long ggtt_offset = 0;
1991
1992 if (ctx_obj == NULL) {
1993 seq_printf(m, "Context on %s with no gem object\n",
1994 ring->name);
1995 return;
1996 }
1997
1998 seq_printf(m, "CONTEXT: %s %u\n", ring->name,
1999 intel_execlists_ctx_id(ctx_obj));
2000
2001 if (!i915_gem_obj_ggtt_bound(ctx_obj))
2002 seq_puts(m, "\tNot bound in GGTT\n");
2003 else
2004 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
2005
2006 if (i915_gem_object_get_pages(ctx_obj)) {
2007 seq_puts(m, "\tFailed to get pages for context object\n");
2008 return;
2009 }
2010
2011 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2012 if (!WARN_ON(page == NULL)) {
2013 reg_state = kmap_atomic(page);
2014
2015 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2016 seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2017 ggtt_offset + 4096 + (j * 4),
2018 reg_state[j], reg_state[j + 1],
2019 reg_state[j + 2], reg_state[j + 3]);
2020 }
2021 kunmap_atomic(reg_state);
2022 }
2023
2024 seq_putc(m, '\n');
2025 }
2026
2027 static int i915_dump_lrc(struct seq_file *m, void *unused)
2028 {
2029 struct drm_info_node *node = (struct drm_info_node *) m->private;
2030 struct drm_device *dev = node->minor->dev;
2031 struct drm_i915_private *dev_priv = dev->dev_private;
2032 struct intel_engine_cs *ring;
2033 struct intel_context *ctx;
2034 int ret, i;
2035
2036 if (!i915.enable_execlists) {
2037 seq_printf(m, "Logical Ring Contexts are disabled\n");
2038 return 0;
2039 }
2040
2041 ret = mutex_lock_interruptible(&dev->struct_mutex);
2042 if (ret)
2043 return ret;
2044
2045 list_for_each_entry(ctx, &dev_priv->context_list, link) {
2046 for_each_ring(ring, dev_priv, i) {
2047 if (ring->default_context != ctx)
2048 i915_dump_lrc_obj(m, ring,
2049 ctx->engine[i].state);
2050 }
2051 }
2052
2053 mutex_unlock(&dev->struct_mutex);
2054
2055 return 0;
2056 }
2057
2058 static int i915_execlists(struct seq_file *m, void *data)
2059 {
2060 struct drm_info_node *node = (struct drm_info_node *)m->private;
2061 struct drm_device *dev = node->minor->dev;
2062 struct drm_i915_private *dev_priv = dev->dev_private;
2063 struct intel_engine_cs *ring;
2064 u32 status_pointer;
2065 u8 read_pointer;
2066 u8 write_pointer;
2067 u32 status;
2068 u32 ctx_id;
2069 struct list_head *cursor;
2070 int ring_id, i;
2071 int ret;
2072
2073 if (!i915.enable_execlists) {
2074 seq_puts(m, "Logical Ring Contexts are disabled\n");
2075 return 0;
2076 }
2077
2078 ret = mutex_lock_interruptible(&dev->struct_mutex);
2079 if (ret)
2080 return ret;
2081
2082 intel_runtime_pm_get(dev_priv);
2083
2084 for_each_ring(ring, dev_priv, ring_id) {
2085 struct drm_i915_gem_request *head_req = NULL;
2086 int count = 0;
2087 unsigned long flags;
2088
2089 seq_printf(m, "%s\n", ring->name);
2090
2091 status = I915_READ(RING_EXECLIST_STATUS_LO(ring));
2092 ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(ring));
2093 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2094 status, ctx_id);
2095
2096 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
2097 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2098
2099 read_pointer = ring->next_context_status_buffer;
2100 write_pointer = status_pointer & 0x07;
2101 if (read_pointer > write_pointer)
2102 write_pointer += 6;
2103 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2104 read_pointer, write_pointer);
2105
2106 for (i = 0; i < 6; i++) {
2107 status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, i));
2108 ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, i));
2109
2110 seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2111 i, status, ctx_id);
2112 }
2113
2114 spin_lock_irqsave(&ring->execlist_lock, flags);
2115 list_for_each(cursor, &ring->execlist_queue)
2116 count++;
2117 head_req = list_first_entry_or_null(&ring->execlist_queue,
2118 struct drm_i915_gem_request, execlist_link);
2119 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2120
2121 seq_printf(m, "\t%d requests in queue\n", count);
2122 if (head_req) {
2123 struct drm_i915_gem_object *ctx_obj;
2124
2125 ctx_obj = head_req->ctx->engine[ring_id].state;
2126 seq_printf(m, "\tHead request id: %u\n",
2127 intel_execlists_ctx_id(ctx_obj));
2128 seq_printf(m, "\tHead request tail: %u\n",
2129 head_req->tail);
2130 }
2131
2132 seq_putc(m, '\n');
2133 }
2134
2135 intel_runtime_pm_put(dev_priv);
2136 mutex_unlock(&dev->struct_mutex);
2137
2138 return 0;
2139 }
2140
2141 static const char *swizzle_string(unsigned swizzle)
2142 {
2143 switch (swizzle) {
2144 case I915_BIT_6_SWIZZLE_NONE:
2145 return "none";
2146 case I915_BIT_6_SWIZZLE_9:
2147 return "bit9";
2148 case I915_BIT_6_SWIZZLE_9_10:
2149 return "bit9/bit10";
2150 case I915_BIT_6_SWIZZLE_9_11:
2151 return "bit9/bit11";
2152 case I915_BIT_6_SWIZZLE_9_10_11:
2153 return "bit9/bit10/bit11";
2154 case I915_BIT_6_SWIZZLE_9_17:
2155 return "bit9/bit17";
2156 case I915_BIT_6_SWIZZLE_9_10_17:
2157 return "bit9/bit10/bit17";
2158 case I915_BIT_6_SWIZZLE_UNKNOWN:
2159 return "unknown";
2160 }
2161
2162 return "bug";
2163 }
2164
2165 static int i915_swizzle_info(struct seq_file *m, void *data)
2166 {
2167 struct drm_info_node *node = m->private;
2168 struct drm_device *dev = node->minor->dev;
2169 struct drm_i915_private *dev_priv = dev->dev_private;
2170 int ret;
2171
2172 ret = mutex_lock_interruptible(&dev->struct_mutex);
2173 if (ret)
2174 return ret;
2175 intel_runtime_pm_get(dev_priv);
2176
2177 seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2178 swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2179 seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2180 swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2181
2182 if (IS_GEN3(dev) || IS_GEN4(dev)) {
2183 seq_printf(m, "DDC = 0x%08x\n",
2184 I915_READ(DCC));
2185 seq_printf(m, "DDC2 = 0x%08x\n",
2186 I915_READ(DCC2));
2187 seq_printf(m, "C0DRB3 = 0x%04x\n",
2188 I915_READ16(C0DRB3));
2189 seq_printf(m, "C1DRB3 = 0x%04x\n",
2190 I915_READ16(C1DRB3));
2191 } else if (INTEL_INFO(dev)->gen >= 6) {
2192 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2193 I915_READ(MAD_DIMM_C0));
2194 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2195 I915_READ(MAD_DIMM_C1));
2196 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2197 I915_READ(MAD_DIMM_C2));
2198 seq_printf(m, "TILECTL = 0x%08x\n",
2199 I915_READ(TILECTL));
2200 if (INTEL_INFO(dev)->gen >= 8)
2201 seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2202 I915_READ(GAMTARBMODE));
2203 else
2204 seq_printf(m, "ARB_MODE = 0x%08x\n",
2205 I915_READ(ARB_MODE));
2206 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2207 I915_READ(DISP_ARB_CTL));
2208 }
2209
2210 if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2211 seq_puts(m, "L-shaped memory detected\n");
2212
2213 intel_runtime_pm_put(dev_priv);
2214 mutex_unlock(&dev->struct_mutex);
2215
2216 return 0;
2217 }
2218
2219 static int per_file_ctx(int id, void *ptr, void *data)
2220 {
2221 struct intel_context *ctx = ptr;
2222 struct seq_file *m = data;
2223 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2224
2225 if (!ppgtt) {
2226 seq_printf(m, " no ppgtt for context %d\n",
2227 ctx->user_handle);
2228 return 0;
2229 }
2230
2231 if (i915_gem_context_is_default(ctx))
2232 seq_puts(m, " default context:\n");
2233 else
2234 seq_printf(m, " context %d:\n", ctx->user_handle);
2235 ppgtt->debug_dump(ppgtt, m);
2236
2237 return 0;
2238 }
2239
2240 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2241 {
2242 struct drm_i915_private *dev_priv = dev->dev_private;
2243 struct intel_engine_cs *ring;
2244 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2245 int unused, i;
2246
2247 if (!ppgtt)
2248 return;
2249
2250 for_each_ring(ring, dev_priv, unused) {
2251 seq_printf(m, "%s\n", ring->name);
2252 for (i = 0; i < 4; i++) {
2253 u64 pdp = I915_READ(GEN8_RING_PDP_UDW(ring, i));
2254 pdp <<= 32;
2255 pdp |= I915_READ(GEN8_RING_PDP_LDW(ring, i));
2256 seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2257 }
2258 }
2259 }
2260
2261 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2262 {
2263 struct drm_i915_private *dev_priv = dev->dev_private;
2264 struct intel_engine_cs *ring;
2265 int i;
2266
2267 if (INTEL_INFO(dev)->gen == 6)
2268 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2269
2270 for_each_ring(ring, dev_priv, i) {
2271 seq_printf(m, "%s\n", ring->name);
2272 if (INTEL_INFO(dev)->gen == 7)
2273 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2274 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2275 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2276 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2277 }
2278 if (dev_priv->mm.aliasing_ppgtt) {
2279 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2280
2281 seq_puts(m, "aliasing PPGTT:\n");
2282 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2283
2284 ppgtt->debug_dump(ppgtt, m);
2285 }
2286
2287 seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2288 }
2289
2290 static int i915_ppgtt_info(struct seq_file *m, void *data)
2291 {
2292 struct drm_info_node *node = m->private;
2293 struct drm_device *dev = node->minor->dev;
2294 struct drm_i915_private *dev_priv = dev->dev_private;
2295 struct drm_file *file;
2296
2297 int ret = mutex_lock_interruptible(&dev->struct_mutex);
2298 if (ret)
2299 return ret;
2300 intel_runtime_pm_get(dev_priv);
2301
2302 if (INTEL_INFO(dev)->gen >= 8)
2303 gen8_ppgtt_info(m, dev);
2304 else if (INTEL_INFO(dev)->gen >= 6)
2305 gen6_ppgtt_info(m, dev);
2306
2307 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2308 struct drm_i915_file_private *file_priv = file->driver_priv;
2309 struct task_struct *task;
2310
2311 task = get_pid_task(file->pid, PIDTYPE_PID);
2312 if (!task) {
2313 ret = -ESRCH;
2314 goto out_put;
2315 }
2316 seq_printf(m, "\nproc: %s\n", task->comm);
2317 put_task_struct(task);
2318 idr_for_each(&file_priv->context_idr, per_file_ctx,
2319 (void *)(unsigned long)m);
2320 }
2321
2322 out_put:
2323 intel_runtime_pm_put(dev_priv);
2324 mutex_unlock(&dev->struct_mutex);
2325
2326 return ret;
2327 }
2328
2329 static int count_irq_waiters(struct drm_i915_private *i915)
2330 {
2331 struct intel_engine_cs *ring;
2332 int count = 0;
2333 int i;
2334
2335 for_each_ring(ring, i915, i)
2336 count += ring->irq_refcount;
2337
2338 return count;
2339 }
2340
2341 static int i915_rps_boost_info(struct seq_file *m, void *data)
2342 {
2343 struct drm_info_node *node = m->private;
2344 struct drm_device *dev = node->minor->dev;
2345 struct drm_i915_private *dev_priv = dev->dev_private;
2346 struct drm_file *file;
2347
2348 seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2349 seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
2350 seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2351 seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2352 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
2353 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2354 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2355 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2356 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2357 spin_lock(&dev_priv->rps.client_lock);
2358 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2359 struct drm_i915_file_private *file_priv = file->driver_priv;
2360 struct task_struct *task;
2361
2362 rcu_read_lock();
2363 task = pid_task(file->pid, PIDTYPE_PID);
2364 seq_printf(m, "%s [%d]: %d boosts%s\n",
2365 task ? task->comm : "<unknown>",
2366 task ? task->pid : -1,
2367 file_priv->rps.boosts,
2368 list_empty(&file_priv->rps.link) ? "" : ", active");
2369 rcu_read_unlock();
2370 }
2371 seq_printf(m, "Semaphore boosts: %d%s\n",
2372 dev_priv->rps.semaphores.boosts,
2373 list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
2374 seq_printf(m, "MMIO flip boosts: %d%s\n",
2375 dev_priv->rps.mmioflips.boosts,
2376 list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
2377 seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
2378 spin_unlock(&dev_priv->rps.client_lock);
2379
2380 return 0;
2381 }
2382
2383 static int i915_llc(struct seq_file *m, void *data)
2384 {
2385 struct drm_info_node *node = m->private;
2386 struct drm_device *dev = node->minor->dev;
2387 struct drm_i915_private *dev_priv = dev->dev_private;
2388
2389 /* Size calculation for LLC is a bit of a pain. Ignore for now. */
2390 seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2391 seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2392
2393 return 0;
2394 }
2395
2396 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2397 {
2398 struct drm_info_node *node = m->private;
2399 struct drm_i915_private *dev_priv = node->minor->dev->dev_private;
2400 struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2401 u32 tmp, i;
2402
2403 if (!HAS_GUC_UCODE(dev_priv->dev))
2404 return 0;
2405
2406 seq_printf(m, "GuC firmware status:\n");
2407 seq_printf(m, "\tpath: %s\n",
2408 guc_fw->guc_fw_path);
2409 seq_printf(m, "\tfetch: %s\n",
2410 intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2411 seq_printf(m, "\tload: %s\n",
2412 intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2413 seq_printf(m, "\tversion wanted: %d.%d\n",
2414 guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2415 seq_printf(m, "\tversion found: %d.%d\n",
2416 guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2417 seq_printf(m, "\theader: offset is %d; size = %d\n",
2418 guc_fw->header_offset, guc_fw->header_size);
2419 seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2420 guc_fw->ucode_offset, guc_fw->ucode_size);
2421 seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2422 guc_fw->rsa_offset, guc_fw->rsa_size);
2423
2424 tmp = I915_READ(GUC_STATUS);
2425
2426 seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2427 seq_printf(m, "\tBootrom status = 0x%x\n",
2428 (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2429 seq_printf(m, "\tuKernel status = 0x%x\n",
2430 (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2431 seq_printf(m, "\tMIA Core status = 0x%x\n",
2432 (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2433 seq_puts(m, "\nScratch registers:\n");
2434 for (i = 0; i < 16; i++)
2435 seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2436
2437 return 0;
2438 }
2439
2440 static void i915_guc_client_info(struct seq_file *m,
2441 struct drm_i915_private *dev_priv,
2442 struct i915_guc_client *client)
2443 {
2444 struct intel_engine_cs *ring;
2445 uint64_t tot = 0;
2446 uint32_t i;
2447
2448 seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2449 client->priority, client->ctx_index, client->proc_desc_offset);
2450 seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2451 client->doorbell_id, client->doorbell_offset, client->cookie);
2452 seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2453 client->wq_size, client->wq_offset, client->wq_tail);
2454
2455 seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
2456 seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2457 seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2458
2459 for_each_ring(ring, dev_priv, i) {
2460 seq_printf(m, "\tSubmissions: %llu %s\n",
2461 client->submissions[i],
2462 ring->name);
2463 tot += client->submissions[i];
2464 }
2465 seq_printf(m, "\tTotal: %llu\n", tot);
2466 }
2467
2468 static int i915_guc_info(struct seq_file *m, void *data)
2469 {
2470 struct drm_info_node *node = m->private;
2471 struct drm_device *dev = node->minor->dev;
2472 struct drm_i915_private *dev_priv = dev->dev_private;
2473 struct intel_guc guc;
2474 struct i915_guc_client client = {};
2475 struct intel_engine_cs *ring;
2476 enum intel_ring_id i;
2477 u64 total = 0;
2478
2479 if (!HAS_GUC_SCHED(dev_priv->dev))
2480 return 0;
2481
2482 if (mutex_lock_interruptible(&dev->struct_mutex))
2483 return 0;
2484
2485 /* Take a local copy of the GuC data, so we can dump it at leisure */
2486 guc = dev_priv->guc;
2487 if (guc.execbuf_client)
2488 client = *guc.execbuf_client;
2489
2490 mutex_unlock(&dev->struct_mutex);
2491
2492 seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2493 seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2494 seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2495 seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2496 seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2497
2498 seq_printf(m, "\nGuC submissions:\n");
2499 for_each_ring(ring, dev_priv, i) {
2500 seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x %9d\n",
2501 ring->name, guc.submissions[i],
2502 guc.last_seqno[i], guc.last_seqno[i]);
2503 total += guc.submissions[i];
2504 }
2505 seq_printf(m, "\t%s: %llu\n", "Total", total);
2506
2507 seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2508 i915_guc_client_info(m, dev_priv, &client);
2509
2510 /* Add more as required ... */
2511
2512 return 0;
2513 }
2514
2515 static int i915_guc_log_dump(struct seq_file *m, void *data)
2516 {
2517 struct drm_info_node *node = m->private;
2518 struct drm_device *dev = node->minor->dev;
2519 struct drm_i915_private *dev_priv = dev->dev_private;
2520 struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
2521 u32 *log;
2522 int i = 0, pg;
2523
2524 if (!log_obj)
2525 return 0;
2526
2527 for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
2528 log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
2529
2530 for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2531 seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2532 *(log + i), *(log + i + 1),
2533 *(log + i + 2), *(log + i + 3));
2534
2535 kunmap_atomic(log);
2536 }
2537
2538 seq_putc(m, '\n');
2539
2540 return 0;
2541 }
2542
2543 static int i915_edp_psr_status(struct seq_file *m, void *data)
2544 {
2545 struct drm_info_node *node = m->private;
2546 struct drm_device *dev = node->minor->dev;
2547 struct drm_i915_private *dev_priv = dev->dev_private;
2548 u32 psrperf = 0;
2549 u32 stat[3];
2550 enum pipe pipe;
2551 bool enabled = false;
2552
2553 if (!HAS_PSR(dev)) {
2554 seq_puts(m, "PSR not supported\n");
2555 return 0;
2556 }
2557
2558 intel_runtime_pm_get(dev_priv);
2559
2560 mutex_lock(&dev_priv->psr.lock);
2561 seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2562 seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2563 seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2564 seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2565 seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2566 dev_priv->psr.busy_frontbuffer_bits);
2567 seq_printf(m, "Re-enable work scheduled: %s\n",
2568 yesno(work_busy(&dev_priv->psr.work.work)));
2569
2570 if (HAS_DDI(dev))
2571 enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2572 else {
2573 for_each_pipe(dev_priv, pipe) {
2574 stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2575 VLV_EDP_PSR_CURR_STATE_MASK;
2576 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2577 (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2578 enabled = true;
2579 }
2580 }
2581 seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2582
2583 if (!HAS_DDI(dev))
2584 for_each_pipe(dev_priv, pipe) {
2585 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2586 (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2587 seq_printf(m, " pipe %c", pipe_name(pipe));
2588 }
2589 seq_puts(m, "\n");
2590
2591 /*
2592 * VLV/CHV PSR has no kind of performance counter
2593 * SKL+ Perf counter is reset to 0 everytime DC state is entered
2594 */
2595 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2596 psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2597 EDP_PSR_PERF_CNT_MASK;
2598
2599 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2600 }
2601 mutex_unlock(&dev_priv->psr.lock);
2602
2603 intel_runtime_pm_put(dev_priv);
2604 return 0;
2605 }
2606
2607 static int i915_sink_crc(struct seq_file *m, void *data)
2608 {
2609 struct drm_info_node *node = m->private;
2610 struct drm_device *dev = node->minor->dev;
2611 struct intel_encoder *encoder;
2612 struct intel_connector *connector;
2613 struct intel_dp *intel_dp = NULL;
2614 int ret;
2615 u8 crc[6];
2616
2617 drm_modeset_lock_all(dev);
2618 for_each_intel_connector(dev, connector) {
2619
2620 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2621 continue;
2622
2623 if (!connector->base.encoder)
2624 continue;
2625
2626 encoder = to_intel_encoder(connector->base.encoder);
2627 if (encoder->type != INTEL_OUTPUT_EDP)
2628 continue;
2629
2630 intel_dp = enc_to_intel_dp(&encoder->base);
2631
2632 ret = intel_dp_sink_crc(intel_dp, crc);
2633 if (ret)
2634 goto out;
2635
2636 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2637 crc[0], crc[1], crc[2],
2638 crc[3], crc[4], crc[5]);
2639 goto out;
2640 }
2641 ret = -ENODEV;
2642 out:
2643 drm_modeset_unlock_all(dev);
2644 return ret;
2645 }
2646
2647 static int i915_energy_uJ(struct seq_file *m, void *data)
2648 {
2649 struct drm_info_node *node = m->private;
2650 struct drm_device *dev = node->minor->dev;
2651 struct drm_i915_private *dev_priv = dev->dev_private;
2652 u64 power;
2653 u32 units;
2654
2655 if (INTEL_INFO(dev)->gen < 6)
2656 return -ENODEV;
2657
2658 intel_runtime_pm_get(dev_priv);
2659
2660 rdmsrl(MSR_RAPL_POWER_UNIT, power);
2661 power = (power & 0x1f00) >> 8;
2662 units = 1000000 / (1 << power); /* convert to uJ */
2663 power = I915_READ(MCH_SECP_NRG_STTS);
2664 power *= units;
2665
2666 intel_runtime_pm_put(dev_priv);
2667
2668 seq_printf(m, "%llu", (long long unsigned)power);
2669
2670 return 0;
2671 }
2672
2673 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2674 {
2675 struct drm_info_node *node = m->private;
2676 struct drm_device *dev = node->minor->dev;
2677 struct drm_i915_private *dev_priv = dev->dev_private;
2678
2679 if (!HAS_RUNTIME_PM(dev)) {
2680 seq_puts(m, "not supported\n");
2681 return 0;
2682 }
2683
2684 seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2685 seq_printf(m, "IRQs disabled: %s\n",
2686 yesno(!intel_irqs_enabled(dev_priv)));
2687 #ifdef CONFIG_PM
2688 seq_printf(m, "Usage count: %d\n",
2689 atomic_read(&dev->dev->power.usage_count));
2690 #else
2691 seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2692 #endif
2693
2694 return 0;
2695 }
2696
2697 static int i915_power_domain_info(struct seq_file *m, void *unused)
2698 {
2699 struct drm_info_node *node = m->private;
2700 struct drm_device *dev = node->minor->dev;
2701 struct drm_i915_private *dev_priv = dev->dev_private;
2702 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2703 int i;
2704
2705 mutex_lock(&power_domains->lock);
2706
2707 seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2708 for (i = 0; i < power_domains->power_well_count; i++) {
2709 struct i915_power_well *power_well;
2710 enum intel_display_power_domain power_domain;
2711
2712 power_well = &power_domains->power_wells[i];
2713 seq_printf(m, "%-25s %d\n", power_well->name,
2714 power_well->count);
2715
2716 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2717 power_domain++) {
2718 if (!(BIT(power_domain) & power_well->domains))
2719 continue;
2720
2721 seq_printf(m, " %-23s %d\n",
2722 intel_display_power_domain_str(power_domain),
2723 power_domains->domain_use_count[power_domain]);
2724 }
2725 }
2726
2727 mutex_unlock(&power_domains->lock);
2728
2729 return 0;
2730 }
2731
2732 static int i915_dmc_info(struct seq_file *m, void *unused)
2733 {
2734 struct drm_info_node *node = m->private;
2735 struct drm_device *dev = node->minor->dev;
2736 struct drm_i915_private *dev_priv = dev->dev_private;
2737 struct intel_csr *csr;
2738
2739 if (!HAS_CSR(dev)) {
2740 seq_puts(m, "not supported\n");
2741 return 0;
2742 }
2743
2744 csr = &dev_priv->csr;
2745
2746 intel_runtime_pm_get(dev_priv);
2747
2748 seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2749 seq_printf(m, "path: %s\n", csr->fw_path);
2750
2751 if (!csr->dmc_payload)
2752 goto out;
2753
2754 seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2755 CSR_VERSION_MINOR(csr->version));
2756
2757 if (IS_SKYLAKE(dev) && csr->version >= CSR_VERSION(1, 6)) {
2758 seq_printf(m, "DC3 -> DC5 count: %d\n",
2759 I915_READ(SKL_CSR_DC3_DC5_COUNT));
2760 seq_printf(m, "DC5 -> DC6 count: %d\n",
2761 I915_READ(SKL_CSR_DC5_DC6_COUNT));
2762 } else if (IS_BROXTON(dev) && csr->version >= CSR_VERSION(1, 4)) {
2763 seq_printf(m, "DC3 -> DC5 count: %d\n",
2764 I915_READ(BXT_CSR_DC3_DC5_COUNT));
2765 }
2766
2767 out:
2768 seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2769 seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2770 seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2771
2772 intel_runtime_pm_put(dev_priv);
2773
2774 return 0;
2775 }
2776
2777 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2778 struct drm_display_mode *mode)
2779 {
2780 int i;
2781
2782 for (i = 0; i < tabs; i++)
2783 seq_putc(m, '\t');
2784
2785 seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2786 mode->base.id, mode->name,
2787 mode->vrefresh, mode->clock,
2788 mode->hdisplay, mode->hsync_start,
2789 mode->hsync_end, mode->htotal,
2790 mode->vdisplay, mode->vsync_start,
2791 mode->vsync_end, mode->vtotal,
2792 mode->type, mode->flags);
2793 }
2794
2795 static void intel_encoder_info(struct seq_file *m,
2796 struct intel_crtc *intel_crtc,
2797 struct intel_encoder *intel_encoder)
2798 {
2799 struct drm_info_node *node = m->private;
2800 struct drm_device *dev = node->minor->dev;
2801 struct drm_crtc *crtc = &intel_crtc->base;
2802 struct intel_connector *intel_connector;
2803 struct drm_encoder *encoder;
2804
2805 encoder = &intel_encoder->base;
2806 seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2807 encoder->base.id, encoder->name);
2808 for_each_connector_on_encoder(dev, encoder, intel_connector) {
2809 struct drm_connector *connector = &intel_connector->base;
2810 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2811 connector->base.id,
2812 connector->name,
2813 drm_get_connector_status_name(connector->status));
2814 if (connector->status == connector_status_connected) {
2815 struct drm_display_mode *mode = &crtc->mode;
2816 seq_printf(m, ", mode:\n");
2817 intel_seq_print_mode(m, 2, mode);
2818 } else {
2819 seq_putc(m, '\n');
2820 }
2821 }
2822 }
2823
2824 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2825 {
2826 struct drm_info_node *node = m->private;
2827 struct drm_device *dev = node->minor->dev;
2828 struct drm_crtc *crtc = &intel_crtc->base;
2829 struct intel_encoder *intel_encoder;
2830 struct drm_plane_state *plane_state = crtc->primary->state;
2831 struct drm_framebuffer *fb = plane_state->fb;
2832
2833 if (fb)
2834 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2835 fb->base.id, plane_state->src_x >> 16,
2836 plane_state->src_y >> 16, fb->width, fb->height);
2837 else
2838 seq_puts(m, "\tprimary plane disabled\n");
2839 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2840 intel_encoder_info(m, intel_crtc, intel_encoder);
2841 }
2842
2843 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2844 {
2845 struct drm_display_mode *mode = panel->fixed_mode;
2846
2847 seq_printf(m, "\tfixed mode:\n");
2848 intel_seq_print_mode(m, 2, mode);
2849 }
2850
2851 static void intel_dp_info(struct seq_file *m,
2852 struct intel_connector *intel_connector)
2853 {
2854 struct intel_encoder *intel_encoder = intel_connector->encoder;
2855 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2856
2857 seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2858 seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2859 if (intel_encoder->type == INTEL_OUTPUT_EDP)
2860 intel_panel_info(m, &intel_connector->panel);
2861 }
2862
2863 static void intel_dp_mst_info(struct seq_file *m,
2864 struct intel_connector *intel_connector)
2865 {
2866 struct intel_encoder *intel_encoder = intel_connector->encoder;
2867 struct intel_dp_mst_encoder *intel_mst =
2868 enc_to_mst(&intel_encoder->base);
2869 struct intel_digital_port *intel_dig_port = intel_mst->primary;
2870 struct intel_dp *intel_dp = &intel_dig_port->dp;
2871 bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
2872 intel_connector->port);
2873
2874 seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
2875 }
2876
2877 static void intel_hdmi_info(struct seq_file *m,
2878 struct intel_connector *intel_connector)
2879 {
2880 struct intel_encoder *intel_encoder = intel_connector->encoder;
2881 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2882
2883 seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2884 }
2885
2886 static void intel_lvds_info(struct seq_file *m,
2887 struct intel_connector *intel_connector)
2888 {
2889 intel_panel_info(m, &intel_connector->panel);
2890 }
2891
2892 static void intel_connector_info(struct seq_file *m,
2893 struct drm_connector *connector)
2894 {
2895 struct intel_connector *intel_connector = to_intel_connector(connector);
2896 struct intel_encoder *intel_encoder = intel_connector->encoder;
2897 struct drm_display_mode *mode;
2898
2899 seq_printf(m, "connector %d: type %s, status: %s\n",
2900 connector->base.id, connector->name,
2901 drm_get_connector_status_name(connector->status));
2902 if (connector->status == connector_status_connected) {
2903 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2904 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2905 connector->display_info.width_mm,
2906 connector->display_info.height_mm);
2907 seq_printf(m, "\tsubpixel order: %s\n",
2908 drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2909 seq_printf(m, "\tCEA rev: %d\n",
2910 connector->display_info.cea_rev);
2911 }
2912 if (intel_encoder) {
2913 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2914 intel_encoder->type == INTEL_OUTPUT_EDP)
2915 intel_dp_info(m, intel_connector);
2916 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2917 intel_hdmi_info(m, intel_connector);
2918 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2919 intel_lvds_info(m, intel_connector);
2920 else if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
2921 intel_dp_mst_info(m, intel_connector);
2922 }
2923
2924 seq_printf(m, "\tmodes:\n");
2925 list_for_each_entry(mode, &connector->modes, head)
2926 intel_seq_print_mode(m, 2, mode);
2927 }
2928
2929 static bool cursor_active(struct drm_device *dev, int pipe)
2930 {
2931 struct drm_i915_private *dev_priv = dev->dev_private;
2932 u32 state;
2933
2934 if (IS_845G(dev) || IS_I865G(dev))
2935 state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
2936 else
2937 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2938
2939 return state;
2940 }
2941
2942 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2943 {
2944 struct drm_i915_private *dev_priv = dev->dev_private;
2945 u32 pos;
2946
2947 pos = I915_READ(CURPOS(pipe));
2948
2949 *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2950 if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2951 *x = -*x;
2952
2953 *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2954 if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2955 *y = -*y;
2956
2957 return cursor_active(dev, pipe);
2958 }
2959
2960 static const char *plane_type(enum drm_plane_type type)
2961 {
2962 switch (type) {
2963 case DRM_PLANE_TYPE_OVERLAY:
2964 return "OVL";
2965 case DRM_PLANE_TYPE_PRIMARY:
2966 return "PRI";
2967 case DRM_PLANE_TYPE_CURSOR:
2968 return "CUR";
2969 /*
2970 * Deliberately omitting default: to generate compiler warnings
2971 * when a new drm_plane_type gets added.
2972 */
2973 }
2974
2975 return "unknown";
2976 }
2977
2978 static const char *plane_rotation(unsigned int rotation)
2979 {
2980 static char buf[48];
2981 /*
2982 * According to doc only one DRM_ROTATE_ is allowed but this
2983 * will print them all to visualize if the values are misused
2984 */
2985 snprintf(buf, sizeof(buf),
2986 "%s%s%s%s%s%s(0x%08x)",
2987 (rotation & BIT(DRM_ROTATE_0)) ? "0 " : "",
2988 (rotation & BIT(DRM_ROTATE_90)) ? "90 " : "",
2989 (rotation & BIT(DRM_ROTATE_180)) ? "180 " : "",
2990 (rotation & BIT(DRM_ROTATE_270)) ? "270 " : "",
2991 (rotation & BIT(DRM_REFLECT_X)) ? "FLIPX " : "",
2992 (rotation & BIT(DRM_REFLECT_Y)) ? "FLIPY " : "",
2993 rotation);
2994
2995 return buf;
2996 }
2997
2998 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2999 {
3000 struct drm_info_node *node = m->private;
3001 struct drm_device *dev = node->minor->dev;
3002 struct intel_plane *intel_plane;
3003
3004 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3005 struct drm_plane_state *state;
3006 struct drm_plane *plane = &intel_plane->base;
3007
3008 if (!plane->state) {
3009 seq_puts(m, "plane->state is NULL!\n");
3010 continue;
3011 }
3012
3013 state = plane->state;
3014
3015 seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3016 plane->base.id,
3017 plane_type(intel_plane->base.type),
3018 state->crtc_x, state->crtc_y,
3019 state->crtc_w, state->crtc_h,
3020 (state->src_x >> 16),
3021 ((state->src_x & 0xffff) * 15625) >> 10,
3022 (state->src_y >> 16),
3023 ((state->src_y & 0xffff) * 15625) >> 10,
3024 (state->src_w >> 16),
3025 ((state->src_w & 0xffff) * 15625) >> 10,
3026 (state->src_h >> 16),
3027 ((state->src_h & 0xffff) * 15625) >> 10,
3028 state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A",
3029 plane_rotation(state->rotation));
3030 }
3031 }
3032
3033 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3034 {
3035 struct intel_crtc_state *pipe_config;
3036 int num_scalers = intel_crtc->num_scalers;
3037 int i;
3038
3039 pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3040
3041 /* Not all platformas have a scaler */
3042 if (num_scalers) {
3043 seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3044 num_scalers,
3045 pipe_config->scaler_state.scaler_users,
3046 pipe_config->scaler_state.scaler_id);
3047
3048 for (i = 0; i < SKL_NUM_SCALERS; i++) {
3049 struct intel_scaler *sc =
3050 &pipe_config->scaler_state.scalers[i];
3051
3052 seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3053 i, yesno(sc->in_use), sc->mode);
3054 }
3055 seq_puts(m, "\n");
3056 } else {
3057 seq_puts(m, "\tNo scalers available on this platform\n");
3058 }
3059 }
3060
3061 static int i915_display_info(struct seq_file *m, void *unused)
3062 {
3063 struct drm_info_node *node = m->private;
3064 struct drm_device *dev = node->minor->dev;
3065 struct drm_i915_private *dev_priv = dev->dev_private;
3066 struct intel_crtc *crtc;
3067 struct drm_connector *connector;
3068
3069 intel_runtime_pm_get(dev_priv);
3070 drm_modeset_lock_all(dev);
3071 seq_printf(m, "CRTC info\n");
3072 seq_printf(m, "---------\n");
3073 for_each_intel_crtc(dev, crtc) {
3074 bool active;
3075 struct intel_crtc_state *pipe_config;
3076 int x, y;
3077
3078 pipe_config = to_intel_crtc_state(crtc->base.state);
3079
3080 seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3081 crtc->base.base.id, pipe_name(crtc->pipe),
3082 yesno(pipe_config->base.active),
3083 pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3084 yesno(pipe_config->dither), pipe_config->pipe_bpp);
3085
3086 if (pipe_config->base.active) {
3087 intel_crtc_info(m, crtc);
3088
3089 active = cursor_position(dev, crtc->pipe, &x, &y);
3090 seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3091 yesno(crtc->cursor_base),
3092 x, y, crtc->base.cursor->state->crtc_w,
3093 crtc->base.cursor->state->crtc_h,
3094 crtc->cursor_addr, yesno(active));
3095 intel_scaler_info(m, crtc);
3096 intel_plane_info(m, crtc);
3097 }
3098
3099 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3100 yesno(!crtc->cpu_fifo_underrun_disabled),
3101 yesno(!crtc->pch_fifo_underrun_disabled));
3102 }
3103
3104 seq_printf(m, "\n");
3105 seq_printf(m, "Connector info\n");
3106 seq_printf(m, "--------------\n");
3107 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3108 intel_connector_info(m, connector);
3109 }
3110 drm_modeset_unlock_all(dev);
3111 intel_runtime_pm_put(dev_priv);
3112
3113 return 0;
3114 }
3115
3116 static int i915_semaphore_status(struct seq_file *m, void *unused)
3117 {
3118 struct drm_info_node *node = (struct drm_info_node *) m->private;
3119 struct drm_device *dev = node->minor->dev;
3120 struct drm_i915_private *dev_priv = dev->dev_private;
3121 struct intel_engine_cs *ring;
3122 int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
3123 int i, j, ret;
3124
3125 if (!i915_semaphore_is_enabled(dev)) {
3126 seq_puts(m, "Semaphores are disabled\n");
3127 return 0;
3128 }
3129
3130 ret = mutex_lock_interruptible(&dev->struct_mutex);
3131 if (ret)
3132 return ret;
3133 intel_runtime_pm_get(dev_priv);
3134
3135 if (IS_BROADWELL(dev)) {
3136 struct page *page;
3137 uint64_t *seqno;
3138
3139 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
3140
3141 seqno = (uint64_t *)kmap_atomic(page);
3142 for_each_ring(ring, dev_priv, i) {
3143 uint64_t offset;
3144
3145 seq_printf(m, "%s\n", ring->name);
3146
3147 seq_puts(m, " Last signal:");
3148 for (j = 0; j < num_rings; j++) {
3149 offset = i * I915_NUM_RINGS + j;
3150 seq_printf(m, "0x%08llx (0x%02llx) ",
3151 seqno[offset], offset * 8);
3152 }
3153 seq_putc(m, '\n');
3154
3155 seq_puts(m, " Last wait: ");
3156 for (j = 0; j < num_rings; j++) {
3157 offset = i + (j * I915_NUM_RINGS);
3158 seq_printf(m, "0x%08llx (0x%02llx) ",
3159 seqno[offset], offset * 8);
3160 }
3161 seq_putc(m, '\n');
3162
3163 }
3164 kunmap_atomic(seqno);
3165 } else {
3166 seq_puts(m, " Last signal:");
3167 for_each_ring(ring, dev_priv, i)
3168 for (j = 0; j < num_rings; j++)
3169 seq_printf(m, "0x%08x\n",
3170 I915_READ(ring->semaphore.mbox.signal[j]));
3171 seq_putc(m, '\n');
3172 }
3173
3174 seq_puts(m, "\nSync seqno:\n");
3175 for_each_ring(ring, dev_priv, i) {
3176 for (j = 0; j < num_rings; j++) {
3177 seq_printf(m, " 0x%08x ", ring->semaphore.sync_seqno[j]);
3178 }
3179 seq_putc(m, '\n');
3180 }
3181 seq_putc(m, '\n');
3182
3183 intel_runtime_pm_put(dev_priv);
3184 mutex_unlock(&dev->struct_mutex);
3185 return 0;
3186 }
3187
3188 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3189 {
3190 struct drm_info_node *node = (struct drm_info_node *) m->private;
3191 struct drm_device *dev = node->minor->dev;
3192 struct drm_i915_private *dev_priv = dev->dev_private;
3193 int i;
3194
3195 drm_modeset_lock_all(dev);
3196 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3197 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3198
3199 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3200 seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
3201 pll->config.crtc_mask, pll->active, yesno(pll->on));
3202 seq_printf(m, " tracked hardware state:\n");
3203 seq_printf(m, " dpll: 0x%08x\n", pll->config.hw_state.dpll);
3204 seq_printf(m, " dpll_md: 0x%08x\n",
3205 pll->config.hw_state.dpll_md);
3206 seq_printf(m, " fp0: 0x%08x\n", pll->config.hw_state.fp0);
3207 seq_printf(m, " fp1: 0x%08x\n", pll->config.hw_state.fp1);
3208 seq_printf(m, " wrpll: 0x%08x\n", pll->config.hw_state.wrpll);
3209 }
3210 drm_modeset_unlock_all(dev);
3211
3212 return 0;
3213 }
3214
3215 static int i915_wa_registers(struct seq_file *m, void *unused)
3216 {
3217 int i;
3218 int ret;
3219 struct drm_info_node *node = (struct drm_info_node *) m->private;
3220 struct drm_device *dev = node->minor->dev;
3221 struct drm_i915_private *dev_priv = dev->dev_private;
3222
3223 ret = mutex_lock_interruptible(&dev->struct_mutex);
3224 if (ret)
3225 return ret;
3226
3227 intel_runtime_pm_get(dev_priv);
3228
3229 seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count);
3230 for (i = 0; i < dev_priv->workarounds.count; ++i) {
3231 i915_reg_t addr;
3232 u32 mask, value, read;
3233 bool ok;
3234
3235 addr = dev_priv->workarounds.reg[i].addr;
3236 mask = dev_priv->workarounds.reg[i].mask;
3237 value = dev_priv->workarounds.reg[i].value;
3238 read = I915_READ(addr);
3239 ok = (value & mask) == (read & mask);
3240 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3241 i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3242 }
3243
3244 intel_runtime_pm_put(dev_priv);
3245 mutex_unlock(&dev->struct_mutex);
3246
3247 return 0;
3248 }
3249
3250 static int i915_ddb_info(struct seq_file *m, void *unused)
3251 {
3252 struct drm_info_node *node = m->private;
3253 struct drm_device *dev = node->minor->dev;
3254 struct drm_i915_private *dev_priv = dev->dev_private;
3255 struct skl_ddb_allocation *ddb;
3256 struct skl_ddb_entry *entry;
3257 enum pipe pipe;
3258 int plane;
3259
3260 if (INTEL_INFO(dev)->gen < 9)
3261 return 0;
3262
3263 drm_modeset_lock_all(dev);
3264
3265 ddb = &dev_priv->wm.skl_hw.ddb;
3266
3267 seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3268
3269 for_each_pipe(dev_priv, pipe) {
3270 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3271
3272 for_each_plane(dev_priv, pipe, plane) {
3273 entry = &ddb->plane[pipe][plane];
3274 seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
3275 entry->start, entry->end,
3276 skl_ddb_entry_size(entry));
3277 }
3278
3279 entry = &ddb->plane[pipe][PLANE_CURSOR];
3280 seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
3281 entry->end, skl_ddb_entry_size(entry));
3282 }
3283
3284 drm_modeset_unlock_all(dev);
3285
3286 return 0;
3287 }
3288
3289 static void drrs_status_per_crtc(struct seq_file *m,
3290 struct drm_device *dev, struct intel_crtc *intel_crtc)
3291 {
3292 struct intel_encoder *intel_encoder;
3293 struct drm_i915_private *dev_priv = dev->dev_private;
3294 struct i915_drrs *drrs = &dev_priv->drrs;
3295 int vrefresh = 0;
3296
3297 for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
3298 /* Encoder connected on this CRTC */
3299 switch (intel_encoder->type) {
3300 case INTEL_OUTPUT_EDP:
3301 seq_puts(m, "eDP:\n");
3302 break;
3303 case INTEL_OUTPUT_DSI:
3304 seq_puts(m, "DSI:\n");
3305 break;
3306 case INTEL_OUTPUT_HDMI:
3307 seq_puts(m, "HDMI:\n");
3308 break;
3309 case INTEL_OUTPUT_DISPLAYPORT:
3310 seq_puts(m, "DP:\n");
3311 break;
3312 default:
3313 seq_printf(m, "Other encoder (id=%d).\n",
3314 intel_encoder->type);
3315 return;
3316 }
3317 }
3318
3319 if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3320 seq_puts(m, "\tVBT: DRRS_type: Static");
3321 else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3322 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3323 else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3324 seq_puts(m, "\tVBT: DRRS_type: None");
3325 else
3326 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3327
3328 seq_puts(m, "\n\n");
3329
3330 if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3331 struct intel_panel *panel;
3332
3333 mutex_lock(&drrs->mutex);
3334 /* DRRS Supported */
3335 seq_puts(m, "\tDRRS Supported: Yes\n");
3336
3337 /* disable_drrs() will make drrs->dp NULL */
3338 if (!drrs->dp) {
3339 seq_puts(m, "Idleness DRRS: Disabled");
3340 mutex_unlock(&drrs->mutex);
3341 return;
3342 }
3343
3344 panel = &drrs->dp->attached_connector->panel;
3345 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3346 drrs->busy_frontbuffer_bits);
3347
3348 seq_puts(m, "\n\t\t");
3349 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3350 seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3351 vrefresh = panel->fixed_mode->vrefresh;
3352 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3353 seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3354 vrefresh = panel->downclock_mode->vrefresh;
3355 } else {
3356 seq_printf(m, "DRRS_State: Unknown(%d)\n",
3357 drrs->refresh_rate_type);
3358 mutex_unlock(&drrs->mutex);
3359 return;
3360 }
3361 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3362
3363 seq_puts(m, "\n\t\t");
3364 mutex_unlock(&drrs->mutex);
3365 } else {
3366 /* DRRS not supported. Print the VBT parameter*/
3367 seq_puts(m, "\tDRRS Supported : No");
3368 }
3369 seq_puts(m, "\n");
3370 }
3371
3372 static int i915_drrs_status(struct seq_file *m, void *unused)
3373 {
3374 struct drm_info_node *node = m->private;
3375 struct drm_device *dev = node->minor->dev;
3376 struct intel_crtc *intel_crtc;
3377 int active_crtc_cnt = 0;
3378
3379 for_each_intel_crtc(dev, intel_crtc) {
3380 drm_modeset_lock(&intel_crtc->base.mutex, NULL);
3381
3382 if (intel_crtc->base.state->active) {
3383 active_crtc_cnt++;
3384 seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
3385
3386 drrs_status_per_crtc(m, dev, intel_crtc);
3387 }
3388
3389 drm_modeset_unlock(&intel_crtc->base.mutex);
3390 }
3391
3392 if (!active_crtc_cnt)
3393 seq_puts(m, "No active crtc found\n");
3394
3395 return 0;
3396 }
3397
3398 struct pipe_crc_info {
3399 const char *name;
3400 struct drm_device *dev;
3401 enum pipe pipe;
3402 };
3403
3404 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3405 {
3406 struct drm_info_node *node = (struct drm_info_node *) m->private;
3407 struct drm_device *dev = node->minor->dev;
3408 struct drm_encoder *encoder;
3409 struct intel_encoder *intel_encoder;
3410 struct intel_digital_port *intel_dig_port;
3411 drm_modeset_lock_all(dev);
3412 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3413 intel_encoder = to_intel_encoder(encoder);
3414 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
3415 continue;
3416 intel_dig_port = enc_to_dig_port(encoder);
3417 if (!intel_dig_port->dp.can_mst)
3418 continue;
3419
3420 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3421 }
3422 drm_modeset_unlock_all(dev);
3423 return 0;
3424 }
3425
3426 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3427 {
3428 struct pipe_crc_info *info = inode->i_private;
3429 struct drm_i915_private *dev_priv = info->dev->dev_private;
3430 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3431
3432 if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3433 return -ENODEV;
3434
3435 spin_lock_irq(&pipe_crc->lock);
3436
3437 if (pipe_crc->opened) {
3438 spin_unlock_irq(&pipe_crc->lock);
3439 return -EBUSY; /* already open */
3440 }
3441
3442 pipe_crc->opened = true;
3443 filep->private_data = inode->i_private;
3444
3445 spin_unlock_irq(&pipe_crc->lock);
3446
3447 return 0;
3448 }
3449
3450 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3451 {
3452 struct pipe_crc_info *info = inode->i_private;
3453 struct drm_i915_private *dev_priv = info->dev->dev_private;
3454 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3455
3456 spin_lock_irq(&pipe_crc->lock);
3457 pipe_crc->opened = false;
3458 spin_unlock_irq(&pipe_crc->lock);
3459
3460 return 0;
3461 }
3462
3463 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3464 #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
3465 /* account for \'0' */
3466 #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
3467
3468 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3469 {
3470 assert_spin_locked(&pipe_crc->lock);
3471 return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3472 INTEL_PIPE_CRC_ENTRIES_NR);
3473 }
3474
3475 static ssize_t
3476 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3477 loff_t *pos)
3478 {
3479 struct pipe_crc_info *info = filep->private_data;
3480 struct drm_device *dev = info->dev;
3481 struct drm_i915_private *dev_priv = dev->dev_private;
3482 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3483 char buf[PIPE_CRC_BUFFER_LEN];
3484 int n_entries;
3485 ssize_t bytes_read;
3486
3487 /*
3488 * Don't allow user space to provide buffers not big enough to hold
3489 * a line of data.
3490 */
3491 if (count < PIPE_CRC_LINE_LEN)
3492 return -EINVAL;
3493
3494 if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3495 return 0;
3496
3497 /* nothing to read */
3498 spin_lock_irq(&pipe_crc->lock);
3499 while (pipe_crc_data_count(pipe_crc) == 0) {
3500 int ret;
3501
3502 if (filep->f_flags & O_NONBLOCK) {
3503 spin_unlock_irq(&pipe_crc->lock);
3504 return -EAGAIN;
3505 }
3506
3507 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3508 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3509 if (ret) {
3510 spin_unlock_irq(&pipe_crc->lock);
3511 return ret;
3512 }
3513 }
3514
3515 /* We now have one or more entries to read */
3516 n_entries = count / PIPE_CRC_LINE_LEN;
3517
3518 bytes_read = 0;
3519 while (n_entries > 0) {
3520 struct intel_pipe_crc_entry *entry =
3521 &pipe_crc->entries[pipe_crc->tail];
3522 int ret;
3523
3524 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3525 INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3526 break;
3527
3528 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3529 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3530
3531 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3532 "%8u %8x %8x %8x %8x %8x\n",
3533 entry->frame, entry->crc[0],
3534 entry->crc[1], entry->crc[2],
3535 entry->crc[3], entry->crc[4]);
3536
3537 spin_unlock_irq(&pipe_crc->lock);
3538
3539 ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3540 if (ret == PIPE_CRC_LINE_LEN)
3541 return -EFAULT;
3542
3543 user_buf += PIPE_CRC_LINE_LEN;
3544 n_entries--;
3545
3546 spin_lock_irq(&pipe_crc->lock);
3547 }
3548
3549 spin_unlock_irq(&pipe_crc->lock);
3550
3551 return bytes_read;
3552 }
3553
3554 static const struct file_operations i915_pipe_crc_fops = {
3555 .owner = THIS_MODULE,
3556 .open = i915_pipe_crc_open,
3557 .read = i915_pipe_crc_read,
3558 .release = i915_pipe_crc_release,
3559 };
3560
3561 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3562 {
3563 .name = "i915_pipe_A_crc",
3564 .pipe = PIPE_A,
3565 },
3566 {
3567 .name = "i915_pipe_B_crc",
3568 .pipe = PIPE_B,
3569 },
3570 {
3571 .name = "i915_pipe_C_crc",
3572 .pipe = PIPE_C,
3573 },
3574 };
3575
3576 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3577 enum pipe pipe)
3578 {
3579 struct drm_device *dev = minor->dev;
3580 struct dentry *ent;
3581 struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3582
3583 info->dev = dev;
3584 ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3585 &i915_pipe_crc_fops);
3586 if (!ent)
3587 return -ENOMEM;
3588
3589 return drm_add_fake_info_node(minor, ent, info);
3590 }
3591
3592 static const char * const pipe_crc_sources[] = {
3593 "none",
3594 "plane1",
3595 "plane2",
3596 "pf",
3597 "pipe",
3598 "TV",
3599 "DP-B",
3600 "DP-C",
3601 "DP-D",
3602 "auto",
3603 };
3604
3605 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3606 {
3607 BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3608 return pipe_crc_sources[source];
3609 }
3610
3611 static int display_crc_ctl_show(struct seq_file *m, void *data)
3612 {
3613 struct drm_device *dev = m->private;
3614 struct drm_i915_private *dev_priv = dev->dev_private;
3615 int i;
3616
3617 for (i = 0; i < I915_MAX_PIPES; i++)
3618 seq_printf(m, "%c %s\n", pipe_name(i),
3619 pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3620
3621 return 0;
3622 }
3623
3624 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3625 {
3626 struct drm_device *dev = inode->i_private;
3627
3628 return single_open(file, display_crc_ctl_show, dev);
3629 }
3630
3631 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3632 uint32_t *val)
3633 {
3634 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3635 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3636
3637 switch (*source) {
3638 case INTEL_PIPE_CRC_SOURCE_PIPE:
3639 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3640 break;
3641 case INTEL_PIPE_CRC_SOURCE_NONE:
3642 *val = 0;
3643 break;
3644 default:
3645 return -EINVAL;
3646 }
3647
3648 return 0;
3649 }
3650
3651 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3652 enum intel_pipe_crc_source *source)
3653 {
3654 struct intel_encoder *encoder;
3655 struct intel_crtc *crtc;
3656 struct intel_digital_port *dig_port;
3657 int ret = 0;
3658
3659 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3660
3661 drm_modeset_lock_all(dev);
3662 for_each_intel_encoder(dev, encoder) {
3663 if (!encoder->base.crtc)
3664 continue;
3665
3666 crtc = to_intel_crtc(encoder->base.crtc);
3667
3668 if (crtc->pipe != pipe)
3669 continue;
3670
3671 switch (encoder->type) {
3672 case INTEL_OUTPUT_TVOUT:
3673 *source = INTEL_PIPE_CRC_SOURCE_TV;
3674 break;
3675 case INTEL_OUTPUT_DISPLAYPORT:
3676 case INTEL_OUTPUT_EDP:
3677 dig_port = enc_to_dig_port(&encoder->base);
3678 switch (dig_port->port) {
3679 case PORT_B:
3680 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3681 break;
3682 case PORT_C:
3683 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3684 break;
3685 case PORT_D:
3686 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3687 break;
3688 default:
3689 WARN(1, "nonexisting DP port %c\n",
3690 port_name(dig_port->port));
3691 break;
3692 }
3693 break;
3694 default:
3695 break;
3696 }
3697 }
3698 drm_modeset_unlock_all(dev);
3699
3700 return ret;
3701 }
3702
3703 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3704 enum pipe pipe,
3705 enum intel_pipe_crc_source *source,
3706 uint32_t *val)
3707 {
3708 struct drm_i915_private *dev_priv = dev->dev_private;
3709 bool need_stable_symbols = false;
3710
3711 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3712 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3713 if (ret)
3714 return ret;
3715 }
3716
3717 switch (*source) {
3718 case INTEL_PIPE_CRC_SOURCE_PIPE:
3719 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3720 break;
3721 case INTEL_PIPE_CRC_SOURCE_DP_B:
3722 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3723 need_stable_symbols = true;
3724 break;
3725 case INTEL_PIPE_CRC_SOURCE_DP_C:
3726 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3727 need_stable_symbols = true;
3728 break;
3729 case INTEL_PIPE_CRC_SOURCE_DP_D:
3730 if (!IS_CHERRYVIEW(dev))
3731 return -EINVAL;
3732 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3733 need_stable_symbols = true;
3734 break;
3735 case INTEL_PIPE_CRC_SOURCE_NONE:
3736 *val = 0;
3737 break;
3738 default:
3739 return -EINVAL;
3740 }
3741
3742 /*
3743 * When the pipe CRC tap point is after the transcoders we need
3744 * to tweak symbol-level features to produce a deterministic series of
3745 * symbols for a given frame. We need to reset those features only once
3746 * a frame (instead of every nth symbol):
3747 * - DC-balance: used to ensure a better clock recovery from the data
3748 * link (SDVO)
3749 * - DisplayPort scrambling: used for EMI reduction
3750 */
3751 if (need_stable_symbols) {
3752 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3753
3754 tmp |= DC_BALANCE_RESET_VLV;
3755 switch (pipe) {
3756 case PIPE_A:
3757 tmp |= PIPE_A_SCRAMBLE_RESET;
3758 break;
3759 case PIPE_B:
3760 tmp |= PIPE_B_SCRAMBLE_RESET;
3761 break;
3762 case PIPE_C:
3763 tmp |= PIPE_C_SCRAMBLE_RESET;
3764 break;
3765 default:
3766 return -EINVAL;
3767 }
3768 I915_WRITE(PORT_DFT2_G4X, tmp);
3769 }
3770
3771 return 0;
3772 }
3773
3774 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3775 enum pipe pipe,
3776 enum intel_pipe_crc_source *source,
3777 uint32_t *val)
3778 {
3779 struct drm_i915_private *dev_priv = dev->dev_private;
3780 bool need_stable_symbols = false;
3781
3782 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3783 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3784 if (ret)
3785 return ret;
3786 }
3787
3788 switch (*source) {
3789 case INTEL_PIPE_CRC_SOURCE_PIPE:
3790 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3791 break;
3792 case INTEL_PIPE_CRC_SOURCE_TV:
3793 if (!SUPPORTS_TV(dev))
3794 return -EINVAL;
3795 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3796 break;
3797 case INTEL_PIPE_CRC_SOURCE_DP_B:
3798 if (!IS_G4X(dev))
3799 return -EINVAL;
3800 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3801 need_stable_symbols = true;
3802 break;
3803 case INTEL_PIPE_CRC_SOURCE_DP_C:
3804 if (!IS_G4X(dev))
3805 return -EINVAL;
3806 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3807 need_stable_symbols = true;
3808 break;
3809 case INTEL_PIPE_CRC_SOURCE_DP_D:
3810 if (!IS_G4X(dev))
3811 return -EINVAL;
3812 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3813 need_stable_symbols = true;
3814 break;
3815 case INTEL_PIPE_CRC_SOURCE_NONE:
3816 *val = 0;
3817 break;
3818 default:
3819 return -EINVAL;
3820 }
3821
3822 /*
3823 * When the pipe CRC tap point is after the transcoders we need
3824 * to tweak symbol-level features to produce a deterministic series of
3825 * symbols for a given frame. We need to reset those features only once
3826 * a frame (instead of every nth symbol):
3827 * - DC-balance: used to ensure a better clock recovery from the data
3828 * link (SDVO)
3829 * - DisplayPort scrambling: used for EMI reduction
3830 */
3831 if (need_stable_symbols) {
3832 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3833
3834 WARN_ON(!IS_G4X(dev));
3835
3836 I915_WRITE(PORT_DFT_I9XX,
3837 I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3838
3839 if (pipe == PIPE_A)
3840 tmp |= PIPE_A_SCRAMBLE_RESET;
3841 else
3842 tmp |= PIPE_B_SCRAMBLE_RESET;
3843
3844 I915_WRITE(PORT_DFT2_G4X, tmp);
3845 }
3846
3847 return 0;
3848 }
3849
3850 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3851 enum pipe pipe)
3852 {
3853 struct drm_i915_private *dev_priv = dev->dev_private;
3854 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3855
3856 switch (pipe) {
3857 case PIPE_A:
3858 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3859 break;
3860 case PIPE_B:
3861 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3862 break;
3863 case PIPE_C:
3864 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3865 break;
3866 default:
3867 return;
3868 }
3869 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3870 tmp &= ~DC_BALANCE_RESET_VLV;
3871 I915_WRITE(PORT_DFT2_G4X, tmp);
3872
3873 }
3874
3875 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3876 enum pipe pipe)
3877 {
3878 struct drm_i915_private *dev_priv = dev->dev_private;
3879 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3880
3881 if (pipe == PIPE_A)
3882 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3883 else
3884 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3885 I915_WRITE(PORT_DFT2_G4X, tmp);
3886
3887 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3888 I915_WRITE(PORT_DFT_I9XX,
3889 I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3890 }
3891 }
3892
3893 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3894 uint32_t *val)
3895 {
3896 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3897 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3898
3899 switch (*source) {
3900 case INTEL_PIPE_CRC_SOURCE_PLANE1:
3901 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3902 break;
3903 case INTEL_PIPE_CRC_SOURCE_PLANE2:
3904 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3905 break;
3906 case INTEL_PIPE_CRC_SOURCE_PIPE:
3907 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3908 break;
3909 case INTEL_PIPE_CRC_SOURCE_NONE:
3910 *val = 0;
3911 break;
3912 default:
3913 return -EINVAL;
3914 }
3915
3916 return 0;
3917 }
3918
3919 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
3920 {
3921 struct drm_i915_private *dev_priv = dev->dev_private;
3922 struct intel_crtc *crtc =
3923 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3924 struct intel_crtc_state *pipe_config;
3925 struct drm_atomic_state *state;
3926 int ret = 0;
3927
3928 drm_modeset_lock_all(dev);
3929 state = drm_atomic_state_alloc(dev);
3930 if (!state) {
3931 ret = -ENOMEM;
3932 goto out;
3933 }
3934
3935 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
3936 pipe_config = intel_atomic_get_crtc_state(state, crtc);
3937 if (IS_ERR(pipe_config)) {
3938 ret = PTR_ERR(pipe_config);
3939 goto out;
3940 }
3941
3942 pipe_config->pch_pfit.force_thru = enable;
3943 if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
3944 pipe_config->pch_pfit.enabled != enable)
3945 pipe_config->base.connectors_changed = true;
3946
3947 ret = drm_atomic_commit(state);
3948 out:
3949 drm_modeset_unlock_all(dev);
3950 WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
3951 if (ret)
3952 drm_atomic_state_free(state);
3953 }
3954
3955 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3956 enum pipe pipe,
3957 enum intel_pipe_crc_source *source,
3958 uint32_t *val)
3959 {
3960 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3961 *source = INTEL_PIPE_CRC_SOURCE_PF;
3962
3963 switch (*source) {
3964 case INTEL_PIPE_CRC_SOURCE_PLANE1:
3965 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3966 break;
3967 case INTEL_PIPE_CRC_SOURCE_PLANE2:
3968 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3969 break;
3970 case INTEL_PIPE_CRC_SOURCE_PF:
3971 if (IS_HASWELL(dev) && pipe == PIPE_A)
3972 hsw_trans_edp_pipe_A_crc_wa(dev, true);
3973
3974 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3975 break;
3976 case INTEL_PIPE_CRC_SOURCE_NONE:
3977 *val = 0;
3978 break;
3979 default:
3980 return -EINVAL;
3981 }
3982
3983 return 0;
3984 }
3985
3986 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
3987 enum intel_pipe_crc_source source)
3988 {
3989 struct drm_i915_private *dev_priv = dev->dev_private;
3990 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3991 struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
3992 pipe));
3993 enum intel_display_power_domain power_domain;
3994 u32 val = 0; /* shut up gcc */
3995 int ret;
3996
3997 if (pipe_crc->source == source)
3998 return 0;
3999
4000 /* forbid changing the source without going back to 'none' */
4001 if (pipe_crc->source && source)
4002 return -EINVAL;
4003
4004 power_domain = POWER_DOMAIN_PIPE(pipe);
4005 if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) {
4006 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
4007 return -EIO;
4008 }
4009
4010 if (IS_GEN2(dev))
4011 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
4012 else if (INTEL_INFO(dev)->gen < 5)
4013 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4014 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4015 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4016 else if (IS_GEN5(dev) || IS_GEN6(dev))
4017 ret = ilk_pipe_crc_ctl_reg(&source, &val);
4018 else
4019 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4020
4021 if (ret != 0)
4022 goto out;
4023
4024 /* none -> real source transition */
4025 if (source) {
4026 struct intel_pipe_crc_entry *entries;
4027
4028 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
4029 pipe_name(pipe), pipe_crc_source_name(source));
4030
4031 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
4032 sizeof(pipe_crc->entries[0]),
4033 GFP_KERNEL);
4034 if (!entries) {
4035 ret = -ENOMEM;
4036 goto out;
4037 }
4038
4039 /*
4040 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
4041 * enabled and disabled dynamically based on package C states,
4042 * user space can't make reliable use of the CRCs, so let's just
4043 * completely disable it.
4044 */
4045 hsw_disable_ips(crtc);
4046
4047 spin_lock_irq(&pipe_crc->lock);
4048 kfree(pipe_crc->entries);
4049 pipe_crc->entries = entries;
4050 pipe_crc->head = 0;
4051 pipe_crc->tail = 0;
4052 spin_unlock_irq(&pipe_crc->lock);
4053 }
4054
4055 pipe_crc->source = source;
4056
4057 I915_WRITE(PIPE_CRC_CTL(pipe), val);
4058 POSTING_READ(PIPE_CRC_CTL(pipe));
4059
4060 /* real source -> none transition */
4061 if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
4062 struct intel_pipe_crc_entry *entries;
4063 struct intel_crtc *crtc =
4064 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
4065
4066 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
4067 pipe_name(pipe));
4068
4069 drm_modeset_lock(&crtc->base.mutex, NULL);
4070 if (crtc->base.state->active)
4071 intel_wait_for_vblank(dev, pipe);
4072 drm_modeset_unlock(&crtc->base.mutex);
4073
4074 spin_lock_irq(&pipe_crc->lock);
4075 entries = pipe_crc->entries;
4076 pipe_crc->entries = NULL;
4077 pipe_crc->head = 0;
4078 pipe_crc->tail = 0;
4079 spin_unlock_irq(&pipe_crc->lock);
4080
4081 kfree(entries);
4082
4083 if (IS_G4X(dev))
4084 g4x_undo_pipe_scramble_reset(dev, pipe);
4085 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4086 vlv_undo_pipe_scramble_reset(dev, pipe);
4087 else if (IS_HASWELL(dev) && pipe == PIPE_A)
4088 hsw_trans_edp_pipe_A_crc_wa(dev, false);
4089
4090 hsw_enable_ips(crtc);
4091 }
4092
4093 ret = 0;
4094
4095 out:
4096 intel_display_power_put(dev_priv, power_domain);
4097
4098 return ret;
4099 }
4100
4101 /*
4102 * Parse pipe CRC command strings:
4103 * command: wsp* object wsp+ name wsp+ source wsp*
4104 * object: 'pipe'
4105 * name: (A | B | C)
4106 * source: (none | plane1 | plane2 | pf)
4107 * wsp: (#0x20 | #0x9 | #0xA)+
4108 *
4109 * eg.:
4110 * "pipe A plane1" -> Start CRC computations on plane1 of pipe A
4111 * "pipe A none" -> Stop CRC
4112 */
4113 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
4114 {
4115 int n_words = 0;
4116
4117 while (*buf) {
4118 char *end;
4119
4120 /* skip leading white space */
4121 buf = skip_spaces(buf);
4122 if (!*buf)
4123 break; /* end of buffer */
4124
4125 /* find end of word */
4126 for (end = buf; *end && !isspace(*end); end++)
4127 ;
4128
4129 if (n_words == max_words) {
4130 DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4131 max_words);
4132 return -EINVAL; /* ran out of words[] before bytes */
4133 }
4134
4135 if (*end)
4136 *end++ = '\0';
4137 words[n_words++] = buf;
4138 buf = end;
4139 }
4140
4141 return n_words;
4142 }
4143
4144 enum intel_pipe_crc_object {
4145 PIPE_CRC_OBJECT_PIPE,
4146 };
4147
4148 static const char * const pipe_crc_objects[] = {
4149 "pipe",
4150 };
4151
4152 static int
4153 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4154 {
4155 int i;
4156
4157 for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4158 if (!strcmp(buf, pipe_crc_objects[i])) {
4159 *o = i;
4160 return 0;
4161 }
4162
4163 return -EINVAL;
4164 }
4165
4166 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4167 {
4168 const char name = buf[0];
4169
4170 if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4171 return -EINVAL;
4172
4173 *pipe = name - 'A';
4174
4175 return 0;
4176 }
4177
4178 static int
4179 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4180 {
4181 int i;
4182
4183 for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4184 if (!strcmp(buf, pipe_crc_sources[i])) {
4185 *s = i;
4186 return 0;
4187 }
4188
4189 return -EINVAL;
4190 }
4191
4192 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
4193 {
4194 #define N_WORDS 3
4195 int n_words;
4196 char *words[N_WORDS];
4197 enum pipe pipe;
4198 enum intel_pipe_crc_object object;
4199 enum intel_pipe_crc_source source;
4200
4201 n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4202 if (n_words != N_WORDS) {
4203 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4204 N_WORDS);
4205 return -EINVAL;
4206 }
4207
4208 if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4209 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4210 return -EINVAL;
4211 }
4212
4213 if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4214 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4215 return -EINVAL;
4216 }
4217
4218 if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4219 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4220 return -EINVAL;
4221 }
4222
4223 return pipe_crc_set_source(dev, pipe, source);
4224 }
4225
4226 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4227 size_t len, loff_t *offp)
4228 {
4229 struct seq_file *m = file->private_data;
4230 struct drm_device *dev = m->private;
4231 char *tmpbuf;
4232 int ret;
4233
4234 if (len == 0)
4235 return 0;
4236
4237 if (len > PAGE_SIZE - 1) {
4238 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4239 PAGE_SIZE);
4240 return -E2BIG;
4241 }
4242
4243 tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4244 if (!tmpbuf)
4245 return -ENOMEM;
4246
4247 if (copy_from_user(tmpbuf, ubuf, len)) {
4248 ret = -EFAULT;
4249 goto out;
4250 }
4251 tmpbuf[len] = '\0';
4252
4253 ret = display_crc_ctl_parse(dev, tmpbuf, len);
4254
4255 out:
4256 kfree(tmpbuf);
4257 if (ret < 0)
4258 return ret;
4259
4260 *offp += len;
4261 return len;
4262 }
4263
4264 static const struct file_operations i915_display_crc_ctl_fops = {
4265 .owner = THIS_MODULE,
4266 .open = display_crc_ctl_open,
4267 .read = seq_read,
4268 .llseek = seq_lseek,
4269 .release = single_release,
4270 .write = display_crc_ctl_write
4271 };
4272
4273 static ssize_t i915_displayport_test_active_write(struct file *file,
4274 const char __user *ubuf,
4275 size_t len, loff_t *offp)
4276 {
4277 char *input_buffer;
4278 int status = 0;
4279 struct drm_device *dev;
4280 struct drm_connector *connector;
4281 struct list_head *connector_list;
4282 struct intel_dp *intel_dp;
4283 int val = 0;
4284
4285 dev = ((struct seq_file *)file->private_data)->private;
4286
4287 connector_list = &dev->mode_config.connector_list;
4288
4289 if (len == 0)
4290 return 0;
4291
4292 input_buffer = kmalloc(len + 1, GFP_KERNEL);
4293 if (!input_buffer)
4294 return -ENOMEM;
4295
4296 if (copy_from_user(input_buffer, ubuf, len)) {
4297 status = -EFAULT;
4298 goto out;
4299 }
4300
4301 input_buffer[len] = '\0';
4302 DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4303
4304 list_for_each_entry(connector, connector_list, head) {
4305
4306 if (connector->connector_type !=
4307 DRM_MODE_CONNECTOR_DisplayPort)
4308 continue;
4309
4310 if (connector->status == connector_status_connected &&
4311 connector->encoder != NULL) {
4312 intel_dp = enc_to_intel_dp(connector->encoder);
4313 status = kstrtoint(input_buffer, 10, &val);
4314 if (status < 0)
4315 goto out;
4316 DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4317 /* To prevent erroneous activation of the compliance
4318 * testing code, only accept an actual value of 1 here
4319 */
4320 if (val == 1)
4321 intel_dp->compliance_test_active = 1;
4322 else
4323 intel_dp->compliance_test_active = 0;
4324 }
4325 }
4326 out:
4327 kfree(input_buffer);
4328 if (status < 0)
4329 return status;
4330
4331 *offp += len;
4332 return len;
4333 }
4334
4335 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4336 {
4337 struct drm_device *dev = m->private;
4338 struct drm_connector *connector;
4339 struct list_head *connector_list = &dev->mode_config.connector_list;
4340 struct intel_dp *intel_dp;
4341
4342 list_for_each_entry(connector, connector_list, head) {
4343
4344 if (connector->connector_type !=
4345 DRM_MODE_CONNECTOR_DisplayPort)
4346 continue;
4347
4348 if (connector->status == connector_status_connected &&
4349 connector->encoder != NULL) {
4350 intel_dp = enc_to_intel_dp(connector->encoder);
4351 if (intel_dp->compliance_test_active)
4352 seq_puts(m, "1");
4353 else
4354 seq_puts(m, "0");
4355 } else
4356 seq_puts(m, "0");
4357 }
4358
4359 return 0;
4360 }
4361
4362 static int i915_displayport_test_active_open(struct inode *inode,
4363 struct file *file)
4364 {
4365 struct drm_device *dev = inode->i_private;
4366
4367 return single_open(file, i915_displayport_test_active_show, dev);
4368 }
4369
4370 static const struct file_operations i915_displayport_test_active_fops = {
4371 .owner = THIS_MODULE,
4372 .open = i915_displayport_test_active_open,
4373 .read = seq_read,
4374 .llseek = seq_lseek,
4375 .release = single_release,
4376 .write = i915_displayport_test_active_write
4377 };
4378
4379 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4380 {
4381 struct drm_device *dev = m->private;
4382 struct drm_connector *connector;
4383 struct list_head *connector_list = &dev->mode_config.connector_list;
4384 struct intel_dp *intel_dp;
4385
4386 list_for_each_entry(connector, connector_list, head) {
4387
4388 if (connector->connector_type !=
4389 DRM_MODE_CONNECTOR_DisplayPort)
4390 continue;
4391
4392 if (connector->status == connector_status_connected &&
4393 connector->encoder != NULL) {
4394 intel_dp = enc_to_intel_dp(connector->encoder);
4395 seq_printf(m, "%lx", intel_dp->compliance_test_data);
4396 } else
4397 seq_puts(m, "0");
4398 }
4399
4400 return 0;
4401 }
4402 static int i915_displayport_test_data_open(struct inode *inode,
4403 struct file *file)
4404 {
4405 struct drm_device *dev = inode->i_private;
4406
4407 return single_open(file, i915_displayport_test_data_show, dev);
4408 }
4409
4410 static const struct file_operations i915_displayport_test_data_fops = {
4411 .owner = THIS_MODULE,
4412 .open = i915_displayport_test_data_open,
4413 .read = seq_read,
4414 .llseek = seq_lseek,
4415 .release = single_release
4416 };
4417
4418 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4419 {
4420 struct drm_device *dev = m->private;
4421 struct drm_connector *connector;
4422 struct list_head *connector_list = &dev->mode_config.connector_list;
4423 struct intel_dp *intel_dp;
4424
4425 list_for_each_entry(connector, connector_list, head) {
4426
4427 if (connector->connector_type !=
4428 DRM_MODE_CONNECTOR_DisplayPort)
4429 continue;
4430
4431 if (connector->status == connector_status_connected &&
4432 connector->encoder != NULL) {
4433 intel_dp = enc_to_intel_dp(connector->encoder);
4434 seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4435 } else
4436 seq_puts(m, "0");
4437 }
4438
4439 return 0;
4440 }
4441
4442 static int i915_displayport_test_type_open(struct inode *inode,
4443 struct file *file)
4444 {
4445 struct drm_device *dev = inode->i_private;
4446
4447 return single_open(file, i915_displayport_test_type_show, dev);
4448 }
4449
4450 static const struct file_operations i915_displayport_test_type_fops = {
4451 .owner = THIS_MODULE,
4452 .open = i915_displayport_test_type_open,
4453 .read = seq_read,
4454 .llseek = seq_lseek,
4455 .release = single_release
4456 };
4457
4458 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4459 {
4460 struct drm_device *dev = m->private;
4461 int level;
4462 int num_levels;
4463
4464 if (IS_CHERRYVIEW(dev))
4465 num_levels = 3;
4466 else if (IS_VALLEYVIEW(dev))
4467 num_levels = 1;
4468 else
4469 num_levels = ilk_wm_max_level(dev) + 1;
4470
4471 drm_modeset_lock_all(dev);
4472
4473 for (level = 0; level < num_levels; level++) {
4474 unsigned int latency = wm[level];
4475
4476 /*
4477 * - WM1+ latency values in 0.5us units
4478 * - latencies are in us on gen9/vlv/chv
4479 */
4480 if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev) ||
4481 IS_CHERRYVIEW(dev))
4482 latency *= 10;
4483 else if (level > 0)
4484 latency *= 5;
4485
4486 seq_printf(m, "WM%d %u (%u.%u usec)\n",
4487 level, wm[level], latency / 10, latency % 10);
4488 }
4489
4490 drm_modeset_unlock_all(dev);
4491 }
4492
4493 static int pri_wm_latency_show(struct seq_file *m, void *data)
4494 {
4495 struct drm_device *dev = m->private;
4496 struct drm_i915_private *dev_priv = dev->dev_private;
4497 const uint16_t *latencies;
4498
4499 if (INTEL_INFO(dev)->gen >= 9)
4500 latencies = dev_priv->wm.skl_latency;
4501 else
4502 latencies = to_i915(dev)->wm.pri_latency;
4503
4504 wm_latency_show(m, latencies);
4505
4506 return 0;
4507 }
4508
4509 static int spr_wm_latency_show(struct seq_file *m, void *data)
4510 {
4511 struct drm_device *dev = m->private;
4512 struct drm_i915_private *dev_priv = dev->dev_private;
4513 const uint16_t *latencies;
4514
4515 if (INTEL_INFO(dev)->gen >= 9)
4516 latencies = dev_priv->wm.skl_latency;
4517 else
4518 latencies = to_i915(dev)->wm.spr_latency;
4519
4520 wm_latency_show(m, latencies);
4521
4522 return 0;
4523 }
4524
4525 static int cur_wm_latency_show(struct seq_file *m, void *data)
4526 {
4527 struct drm_device *dev = m->private;
4528 struct drm_i915_private *dev_priv = dev->dev_private;
4529 const uint16_t *latencies;
4530
4531 if (INTEL_INFO(dev)->gen >= 9)
4532 latencies = dev_priv->wm.skl_latency;
4533 else
4534 latencies = to_i915(dev)->wm.cur_latency;
4535
4536 wm_latency_show(m, latencies);
4537
4538 return 0;
4539 }
4540
4541 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4542 {
4543 struct drm_device *dev = inode->i_private;
4544
4545 if (INTEL_INFO(dev)->gen < 5)
4546 return -ENODEV;
4547
4548 return single_open(file, pri_wm_latency_show, dev);
4549 }
4550
4551 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4552 {
4553 struct drm_device *dev = inode->i_private;
4554
4555 if (HAS_GMCH_DISPLAY(dev))
4556 return -ENODEV;
4557
4558 return single_open(file, spr_wm_latency_show, dev);
4559 }
4560
4561 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4562 {
4563 struct drm_device *dev = inode->i_private;
4564
4565 if (HAS_GMCH_DISPLAY(dev))
4566 return -ENODEV;
4567
4568 return single_open(file, cur_wm_latency_show, dev);
4569 }
4570
4571 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4572 size_t len, loff_t *offp, uint16_t wm[8])
4573 {
4574 struct seq_file *m = file->private_data;
4575 struct drm_device *dev = m->private;
4576 uint16_t new[8] = { 0 };
4577 int num_levels;
4578 int level;
4579 int ret;
4580 char tmp[32];
4581
4582 if (IS_CHERRYVIEW(dev))
4583 num_levels = 3;
4584 else if (IS_VALLEYVIEW(dev))
4585 num_levels = 1;
4586 else
4587 num_levels = ilk_wm_max_level(dev) + 1;
4588
4589 if (len >= sizeof(tmp))
4590 return -EINVAL;
4591
4592 if (copy_from_user(tmp, ubuf, len))
4593 return -EFAULT;
4594
4595 tmp[len] = '\0';
4596
4597 ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4598 &new[0], &new[1], &new[2], &new[3],
4599 &new[4], &new[5], &new[6], &new[7]);
4600 if (ret != num_levels)
4601 return -EINVAL;
4602
4603 drm_modeset_lock_all(dev);
4604
4605 for (level = 0; level < num_levels; level++)
4606 wm[level] = new[level];
4607
4608 drm_modeset_unlock_all(dev);
4609
4610 return len;
4611 }
4612
4613
4614 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4615 size_t len, loff_t *offp)
4616 {
4617 struct seq_file *m = file->private_data;
4618 struct drm_device *dev = m->private;
4619 struct drm_i915_private *dev_priv = dev->dev_private;
4620 uint16_t *latencies;
4621
4622 if (INTEL_INFO(dev)->gen >= 9)
4623 latencies = dev_priv->wm.skl_latency;
4624 else
4625 latencies = to_i915(dev)->wm.pri_latency;
4626
4627 return wm_latency_write(file, ubuf, len, offp, latencies);
4628 }
4629
4630 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4631 size_t len, loff_t *offp)
4632 {
4633 struct seq_file *m = file->private_data;
4634 struct drm_device *dev = m->private;
4635 struct drm_i915_private *dev_priv = dev->dev_private;
4636 uint16_t *latencies;
4637
4638 if (INTEL_INFO(dev)->gen >= 9)
4639 latencies = dev_priv->wm.skl_latency;
4640 else
4641 latencies = to_i915(dev)->wm.spr_latency;
4642
4643 return wm_latency_write(file, ubuf, len, offp, latencies);
4644 }
4645
4646 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4647 size_t len, loff_t *offp)
4648 {
4649 struct seq_file *m = file->private_data;
4650 struct drm_device *dev = m->private;
4651 struct drm_i915_private *dev_priv = dev->dev_private;
4652 uint16_t *latencies;
4653
4654 if (INTEL_INFO(dev)->gen >= 9)
4655 latencies = dev_priv->wm.skl_latency;
4656 else
4657 latencies = to_i915(dev)->wm.cur_latency;
4658
4659 return wm_latency_write(file, ubuf, len, offp, latencies);
4660 }
4661
4662 static const struct file_operations i915_pri_wm_latency_fops = {
4663 .owner = THIS_MODULE,
4664 .open = pri_wm_latency_open,
4665 .read = seq_read,
4666 .llseek = seq_lseek,
4667 .release = single_release,
4668 .write = pri_wm_latency_write
4669 };
4670
4671 static const struct file_operations i915_spr_wm_latency_fops = {
4672 .owner = THIS_MODULE,
4673 .open = spr_wm_latency_open,
4674 .read = seq_read,
4675 .llseek = seq_lseek,
4676 .release = single_release,
4677 .write = spr_wm_latency_write
4678 };
4679
4680 static const struct file_operations i915_cur_wm_latency_fops = {
4681 .owner = THIS_MODULE,
4682 .open = cur_wm_latency_open,
4683 .read = seq_read,
4684 .llseek = seq_lseek,
4685 .release = single_release,
4686 .write = cur_wm_latency_write
4687 };
4688
4689 static int
4690 i915_wedged_get(void *data, u64 *val)
4691 {
4692 struct drm_device *dev = data;
4693 struct drm_i915_private *dev_priv = dev->dev_private;
4694
4695 *val = atomic_read(&dev_priv->gpu_error.reset_counter);
4696
4697 return 0;
4698 }
4699
4700 static int
4701 i915_wedged_set(void *data, u64 val)
4702 {
4703 struct drm_device *dev = data;
4704 struct drm_i915_private *dev_priv = dev->dev_private;
4705
4706 /*
4707 * There is no safeguard against this debugfs entry colliding
4708 * with the hangcheck calling same i915_handle_error() in
4709 * parallel, causing an explosion. For now we assume that the
4710 * test harness is responsible enough not to inject gpu hangs
4711 * while it is writing to 'i915_wedged'
4712 */
4713
4714 if (i915_reset_in_progress(&dev_priv->gpu_error))
4715 return -EAGAIN;
4716
4717 intel_runtime_pm_get(dev_priv);
4718
4719 i915_handle_error(dev, val,
4720 "Manually setting wedged to %llu", val);
4721
4722 intel_runtime_pm_put(dev_priv);
4723
4724 return 0;
4725 }
4726
4727 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4728 i915_wedged_get, i915_wedged_set,
4729 "%llu\n");
4730
4731 static int
4732 i915_ring_stop_get(void *data, u64 *val)
4733 {
4734 struct drm_device *dev = data;
4735 struct drm_i915_private *dev_priv = dev->dev_private;
4736
4737 *val = dev_priv->gpu_error.stop_rings;
4738
4739 return 0;
4740 }
4741
4742 static int
4743 i915_ring_stop_set(void *data, u64 val)
4744 {
4745 struct drm_device *dev = data;
4746 struct drm_i915_private *dev_priv = dev->dev_private;
4747 int ret;
4748
4749 DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4750
4751 ret = mutex_lock_interruptible(&dev->struct_mutex);
4752 if (ret)
4753 return ret;
4754
4755 dev_priv->gpu_error.stop_rings = val;
4756 mutex_unlock(&dev->struct_mutex);
4757
4758 return 0;
4759 }
4760
4761 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4762 i915_ring_stop_get, i915_ring_stop_set,
4763 "0x%08llx\n");
4764
4765 static int
4766 i915_ring_missed_irq_get(void *data, u64 *val)
4767 {
4768 struct drm_device *dev = data;
4769 struct drm_i915_private *dev_priv = dev->dev_private;
4770
4771 *val = dev_priv->gpu_error.missed_irq_rings;
4772 return 0;
4773 }
4774
4775 static int
4776 i915_ring_missed_irq_set(void *data, u64 val)
4777 {
4778 struct drm_device *dev = data;
4779 struct drm_i915_private *dev_priv = dev->dev_private;
4780 int ret;
4781
4782 /* Lock against concurrent debugfs callers */
4783 ret = mutex_lock_interruptible(&dev->struct_mutex);
4784 if (ret)
4785 return ret;
4786 dev_priv->gpu_error.missed_irq_rings = val;
4787 mutex_unlock(&dev->struct_mutex);
4788
4789 return 0;
4790 }
4791
4792 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4793 i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4794 "0x%08llx\n");
4795
4796 static int
4797 i915_ring_test_irq_get(void *data, u64 *val)
4798 {
4799 struct drm_device *dev = data;
4800 struct drm_i915_private *dev_priv = dev->dev_private;
4801
4802 *val = dev_priv->gpu_error.test_irq_rings;
4803
4804 return 0;
4805 }
4806
4807 static int
4808 i915_ring_test_irq_set(void *data, u64 val)
4809 {
4810 struct drm_device *dev = data;
4811 struct drm_i915_private *dev_priv = dev->dev_private;
4812 int ret;
4813
4814 DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4815
4816 /* Lock against concurrent debugfs callers */
4817 ret = mutex_lock_interruptible(&dev->struct_mutex);
4818 if (ret)
4819 return ret;
4820
4821 dev_priv->gpu_error.test_irq_rings = val;
4822 mutex_unlock(&dev->struct_mutex);
4823
4824 return 0;
4825 }
4826
4827 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4828 i915_ring_test_irq_get, i915_ring_test_irq_set,
4829 "0x%08llx\n");
4830
4831 #define DROP_UNBOUND 0x1
4832 #define DROP_BOUND 0x2
4833 #define DROP_RETIRE 0x4
4834 #define DROP_ACTIVE 0x8
4835 #define DROP_ALL (DROP_UNBOUND | \
4836 DROP_BOUND | \
4837 DROP_RETIRE | \
4838 DROP_ACTIVE)
4839 static int
4840 i915_drop_caches_get(void *data, u64 *val)
4841 {
4842 *val = DROP_ALL;
4843
4844 return 0;
4845 }
4846
4847 static int
4848 i915_drop_caches_set(void *data, u64 val)
4849 {
4850 struct drm_device *dev = data;
4851 struct drm_i915_private *dev_priv = dev->dev_private;
4852 int ret;
4853
4854 DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4855
4856 /* No need to check and wait for gpu resets, only libdrm auto-restarts
4857 * on ioctls on -EAGAIN. */
4858 ret = mutex_lock_interruptible(&dev->struct_mutex);
4859 if (ret)
4860 return ret;
4861
4862 if (val & DROP_ACTIVE) {
4863 ret = i915_gpu_idle(dev);
4864 if (ret)
4865 goto unlock;
4866 }
4867
4868 if (val & (DROP_RETIRE | DROP_ACTIVE))
4869 i915_gem_retire_requests(dev);
4870
4871 if (val & DROP_BOUND)
4872 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4873
4874 if (val & DROP_UNBOUND)
4875 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4876
4877 unlock:
4878 mutex_unlock(&dev->struct_mutex);
4879
4880 return ret;
4881 }
4882
4883 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4884 i915_drop_caches_get, i915_drop_caches_set,
4885 "0x%08llx\n");
4886
4887 static int
4888 i915_max_freq_get(void *data, u64 *val)
4889 {
4890 struct drm_device *dev = data;
4891 struct drm_i915_private *dev_priv = dev->dev_private;
4892 int ret;
4893
4894 if (INTEL_INFO(dev)->gen < 6)
4895 return -ENODEV;
4896
4897 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4898
4899 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4900 if (ret)
4901 return ret;
4902
4903 *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4904 mutex_unlock(&dev_priv->rps.hw_lock);
4905
4906 return 0;
4907 }
4908
4909 static int
4910 i915_max_freq_set(void *data, u64 val)
4911 {
4912 struct drm_device *dev = data;
4913 struct drm_i915_private *dev_priv = dev->dev_private;
4914 u32 hw_max, hw_min;
4915 int ret;
4916
4917 if (INTEL_INFO(dev)->gen < 6)
4918 return -ENODEV;
4919
4920 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4921
4922 DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4923
4924 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4925 if (ret)
4926 return ret;
4927
4928 /*
4929 * Turbo will still be enabled, but won't go above the set value.
4930 */
4931 val = intel_freq_opcode(dev_priv, val);
4932
4933 hw_max = dev_priv->rps.max_freq;
4934 hw_min = dev_priv->rps.min_freq;
4935
4936 if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4937 mutex_unlock(&dev_priv->rps.hw_lock);
4938 return -EINVAL;
4939 }
4940
4941 dev_priv->rps.max_freq_softlimit = val;
4942
4943 intel_set_rps(dev, val);
4944
4945 mutex_unlock(&dev_priv->rps.hw_lock);
4946
4947 return 0;
4948 }
4949
4950 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4951 i915_max_freq_get, i915_max_freq_set,
4952 "%llu\n");
4953
4954 static int
4955 i915_min_freq_get(void *data, u64 *val)
4956 {
4957 struct drm_device *dev = data;
4958 struct drm_i915_private *dev_priv = dev->dev_private;
4959 int ret;
4960
4961 if (INTEL_INFO(dev)->gen < 6)
4962 return -ENODEV;
4963
4964 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4965
4966 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4967 if (ret)
4968 return ret;
4969
4970 *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4971 mutex_unlock(&dev_priv->rps.hw_lock);
4972
4973 return 0;
4974 }
4975
4976 static int
4977 i915_min_freq_set(void *data, u64 val)
4978 {
4979 struct drm_device *dev = data;
4980 struct drm_i915_private *dev_priv = dev->dev_private;
4981 u32 hw_max, hw_min;
4982 int ret;
4983
4984 if (INTEL_INFO(dev)->gen < 6)
4985 return -ENODEV;
4986
4987 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4988
4989 DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4990
4991 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4992 if (ret)
4993 return ret;
4994
4995 /*
4996 * Turbo will still be enabled, but won't go below the set value.
4997 */
4998 val = intel_freq_opcode(dev_priv, val);
4999
5000 hw_max = dev_priv->rps.max_freq;
5001 hw_min = dev_priv->rps.min_freq;
5002
5003 if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
5004 mutex_unlock(&dev_priv->rps.hw_lock);
5005 return -EINVAL;
5006 }
5007
5008 dev_priv->rps.min_freq_softlimit = val;
5009
5010 intel_set_rps(dev, val);
5011
5012 mutex_unlock(&dev_priv->rps.hw_lock);
5013
5014 return 0;
5015 }
5016
5017 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
5018 i915_min_freq_get, i915_min_freq_set,
5019 "%llu\n");
5020
5021 static int
5022 i915_cache_sharing_get(void *data, u64 *val)
5023 {
5024 struct drm_device *dev = data;
5025 struct drm_i915_private *dev_priv = dev->dev_private;
5026 u32 snpcr;
5027 int ret;
5028
5029 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5030 return -ENODEV;
5031
5032 ret = mutex_lock_interruptible(&dev->struct_mutex);
5033 if (ret)
5034 return ret;
5035 intel_runtime_pm_get(dev_priv);
5036
5037 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5038
5039 intel_runtime_pm_put(dev_priv);
5040 mutex_unlock(&dev_priv->dev->struct_mutex);
5041
5042 *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
5043
5044 return 0;
5045 }
5046
5047 static int
5048 i915_cache_sharing_set(void *data, u64 val)
5049 {
5050 struct drm_device *dev = data;
5051 struct drm_i915_private *dev_priv = dev->dev_private;
5052 u32 snpcr;
5053
5054 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5055 return -ENODEV;
5056
5057 if (val > 3)
5058 return -EINVAL;
5059
5060 intel_runtime_pm_get(dev_priv);
5061 DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
5062
5063 /* Update the cache sharing policy here as well */
5064 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5065 snpcr &= ~GEN6_MBC_SNPCR_MASK;
5066 snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
5067 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5068
5069 intel_runtime_pm_put(dev_priv);
5070 return 0;
5071 }
5072
5073 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
5074 i915_cache_sharing_get, i915_cache_sharing_set,
5075 "%llu\n");
5076
5077 struct sseu_dev_status {
5078 unsigned int slice_total;
5079 unsigned int subslice_total;
5080 unsigned int subslice_per_slice;
5081 unsigned int eu_total;
5082 unsigned int eu_per_subslice;
5083 };
5084
5085 static void cherryview_sseu_device_status(struct drm_device *dev,
5086 struct sseu_dev_status *stat)
5087 {
5088 struct drm_i915_private *dev_priv = dev->dev_private;
5089 int ss_max = 2;
5090 int ss;
5091 u32 sig1[ss_max], sig2[ss_max];
5092
5093 sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
5094 sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
5095 sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
5096 sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
5097
5098 for (ss = 0; ss < ss_max; ss++) {
5099 unsigned int eu_cnt;
5100
5101 if (sig1[ss] & CHV_SS_PG_ENABLE)
5102 /* skip disabled subslice */
5103 continue;
5104
5105 stat->slice_total = 1;
5106 stat->subslice_per_slice++;
5107 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
5108 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
5109 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
5110 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
5111 stat->eu_total += eu_cnt;
5112 stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
5113 }
5114 stat->subslice_total = stat->subslice_per_slice;
5115 }
5116
5117 static void gen9_sseu_device_status(struct drm_device *dev,
5118 struct sseu_dev_status *stat)
5119 {
5120 struct drm_i915_private *dev_priv = dev->dev_private;
5121 int s_max = 3, ss_max = 4;
5122 int s, ss;
5123 u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5124
5125 /* BXT has a single slice and at most 3 subslices. */
5126 if (IS_BROXTON(dev)) {
5127 s_max = 1;
5128 ss_max = 3;
5129 }
5130
5131 for (s = 0; s < s_max; s++) {
5132 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5133 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5134 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5135 }
5136
5137 eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5138 GEN9_PGCTL_SSA_EU19_ACK |
5139 GEN9_PGCTL_SSA_EU210_ACK |
5140 GEN9_PGCTL_SSA_EU311_ACK;
5141 eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5142 GEN9_PGCTL_SSB_EU19_ACK |
5143 GEN9_PGCTL_SSB_EU210_ACK |
5144 GEN9_PGCTL_SSB_EU311_ACK;
5145
5146 for (s = 0; s < s_max; s++) {
5147 unsigned int ss_cnt = 0;
5148
5149 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5150 /* skip disabled slice */
5151 continue;
5152
5153 stat->slice_total++;
5154
5155 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
5156 ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
5157
5158 for (ss = 0; ss < ss_max; ss++) {
5159 unsigned int eu_cnt;
5160
5161 if (IS_BROXTON(dev) &&
5162 !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5163 /* skip disabled subslice */
5164 continue;
5165
5166 if (IS_BROXTON(dev))
5167 ss_cnt++;
5168
5169 eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5170 eu_mask[ss%2]);
5171 stat->eu_total += eu_cnt;
5172 stat->eu_per_subslice = max(stat->eu_per_subslice,
5173 eu_cnt);
5174 }
5175
5176 stat->subslice_total += ss_cnt;
5177 stat->subslice_per_slice = max(stat->subslice_per_slice,
5178 ss_cnt);
5179 }
5180 }
5181
5182 static void broadwell_sseu_device_status(struct drm_device *dev,
5183 struct sseu_dev_status *stat)
5184 {
5185 struct drm_i915_private *dev_priv = dev->dev_private;
5186 int s;
5187 u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5188
5189 stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
5190
5191 if (stat->slice_total) {
5192 stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
5193 stat->subslice_total = stat->slice_total *
5194 stat->subslice_per_slice;
5195 stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
5196 stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
5197
5198 /* subtract fused off EU(s) from enabled slice(s) */
5199 for (s = 0; s < stat->slice_total; s++) {
5200 u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
5201
5202 stat->eu_total -= hweight8(subslice_7eu);
5203 }
5204 }
5205 }
5206
5207 static int i915_sseu_status(struct seq_file *m, void *unused)
5208 {
5209 struct drm_info_node *node = (struct drm_info_node *) m->private;
5210 struct drm_device *dev = node->minor->dev;
5211 struct sseu_dev_status stat;
5212
5213 if (INTEL_INFO(dev)->gen < 8)
5214 return -ENODEV;
5215
5216 seq_puts(m, "SSEU Device Info\n");
5217 seq_printf(m, " Available Slice Total: %u\n",
5218 INTEL_INFO(dev)->slice_total);
5219 seq_printf(m, " Available Subslice Total: %u\n",
5220 INTEL_INFO(dev)->subslice_total);
5221 seq_printf(m, " Available Subslice Per Slice: %u\n",
5222 INTEL_INFO(dev)->subslice_per_slice);
5223 seq_printf(m, " Available EU Total: %u\n",
5224 INTEL_INFO(dev)->eu_total);
5225 seq_printf(m, " Available EU Per Subslice: %u\n",
5226 INTEL_INFO(dev)->eu_per_subslice);
5227 seq_printf(m, " Has Slice Power Gating: %s\n",
5228 yesno(INTEL_INFO(dev)->has_slice_pg));
5229 seq_printf(m, " Has Subslice Power Gating: %s\n",
5230 yesno(INTEL_INFO(dev)->has_subslice_pg));
5231 seq_printf(m, " Has EU Power Gating: %s\n",
5232 yesno(INTEL_INFO(dev)->has_eu_pg));
5233
5234 seq_puts(m, "SSEU Device Status\n");
5235 memset(&stat, 0, sizeof(stat));
5236 if (IS_CHERRYVIEW(dev)) {
5237 cherryview_sseu_device_status(dev, &stat);
5238 } else if (IS_BROADWELL(dev)) {
5239 broadwell_sseu_device_status(dev, &stat);
5240 } else if (INTEL_INFO(dev)->gen >= 9) {
5241 gen9_sseu_device_status(dev, &stat);
5242 }
5243 seq_printf(m, " Enabled Slice Total: %u\n",
5244 stat.slice_total);
5245 seq_printf(m, " Enabled Subslice Total: %u\n",
5246 stat.subslice_total);
5247 seq_printf(m, " Enabled Subslice Per Slice: %u\n",
5248 stat.subslice_per_slice);
5249 seq_printf(m, " Enabled EU Total: %u\n",
5250 stat.eu_total);
5251 seq_printf(m, " Enabled EU Per Subslice: %u\n",
5252 stat.eu_per_subslice);
5253
5254 return 0;
5255 }
5256
5257 static int i915_forcewake_open(struct inode *inode, struct file *file)
5258 {
5259 struct drm_device *dev = inode->i_private;
5260 struct drm_i915_private *dev_priv = dev->dev_private;
5261
5262 if (INTEL_INFO(dev)->gen < 6)
5263 return 0;
5264
5265 intel_runtime_pm_get(dev_priv);
5266 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5267
5268 return 0;
5269 }
5270
5271 static int i915_forcewake_release(struct inode *inode, struct file *file)
5272 {
5273 struct drm_device *dev = inode->i_private;
5274 struct drm_i915_private *dev_priv = dev->dev_private;
5275
5276 if (INTEL_INFO(dev)->gen < 6)
5277 return 0;
5278
5279 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5280 intel_runtime_pm_put(dev_priv);
5281
5282 return 0;
5283 }
5284
5285 static const struct file_operations i915_forcewake_fops = {
5286 .owner = THIS_MODULE,
5287 .open = i915_forcewake_open,
5288 .release = i915_forcewake_release,
5289 };
5290
5291 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5292 {
5293 struct drm_device *dev = minor->dev;
5294 struct dentry *ent;
5295
5296 ent = debugfs_create_file("i915_forcewake_user",
5297 S_IRUSR,
5298 root, dev,
5299 &i915_forcewake_fops);
5300 if (!ent)
5301 return -ENOMEM;
5302
5303 return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5304 }
5305
5306 static int i915_debugfs_create(struct dentry *root,
5307 struct drm_minor *minor,
5308 const char *name,
5309 const struct file_operations *fops)
5310 {
5311 struct drm_device *dev = minor->dev;
5312 struct dentry *ent;
5313
5314 ent = debugfs_create_file(name,
5315 S_IRUGO | S_IWUSR,
5316 root, dev,
5317 fops);
5318 if (!ent)
5319 return -ENOMEM;
5320
5321 return drm_add_fake_info_node(minor, ent, fops);
5322 }
5323
5324 static const struct drm_info_list i915_debugfs_list[] = {
5325 {"i915_capabilities", i915_capabilities, 0},
5326 {"i915_gem_objects", i915_gem_object_info, 0},
5327 {"i915_gem_gtt", i915_gem_gtt_info, 0},
5328 {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
5329 {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
5330 {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
5331 {"i915_gem_stolen", i915_gem_stolen_list_info },
5332 {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5333 {"i915_gem_request", i915_gem_request_info, 0},
5334 {"i915_gem_seqno", i915_gem_seqno_info, 0},
5335 {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5336 {"i915_gem_interrupt", i915_interrupt_info, 0},
5337 {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5338 {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5339 {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5340 {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5341 {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5342 {"i915_guc_info", i915_guc_info, 0},
5343 {"i915_guc_load_status", i915_guc_load_status_info, 0},
5344 {"i915_guc_log_dump", i915_guc_log_dump, 0},
5345 {"i915_frequency_info", i915_frequency_info, 0},
5346 {"i915_hangcheck_info", i915_hangcheck_info, 0},
5347 {"i915_drpc_info", i915_drpc_info, 0},
5348 {"i915_emon_status", i915_emon_status, 0},
5349 {"i915_ring_freq_table", i915_ring_freq_table, 0},
5350 {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5351 {"i915_fbc_status", i915_fbc_status, 0},
5352 {"i915_ips_status", i915_ips_status, 0},
5353 {"i915_sr_status", i915_sr_status, 0},
5354 {"i915_opregion", i915_opregion, 0},
5355 {"i915_vbt", i915_vbt, 0},
5356 {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5357 {"i915_context_status", i915_context_status, 0},
5358 {"i915_dump_lrc", i915_dump_lrc, 0},
5359 {"i915_execlists", i915_execlists, 0},
5360 {"i915_forcewake_domains", i915_forcewake_domains, 0},
5361 {"i915_swizzle_info", i915_swizzle_info, 0},
5362 {"i915_ppgtt_info", i915_ppgtt_info, 0},
5363 {"i915_llc", i915_llc, 0},
5364 {"i915_edp_psr_status", i915_edp_psr_status, 0},
5365 {"i915_sink_crc_eDP1", i915_sink_crc, 0},
5366 {"i915_energy_uJ", i915_energy_uJ, 0},
5367 {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5368 {"i915_power_domain_info", i915_power_domain_info, 0},
5369 {"i915_dmc_info", i915_dmc_info, 0},
5370 {"i915_display_info", i915_display_info, 0},
5371 {"i915_semaphore_status", i915_semaphore_status, 0},
5372 {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5373 {"i915_dp_mst_info", i915_dp_mst_info, 0},
5374 {"i915_wa_registers", i915_wa_registers, 0},
5375 {"i915_ddb_info", i915_ddb_info, 0},
5376 {"i915_sseu_status", i915_sseu_status, 0},
5377 {"i915_drrs_status", i915_drrs_status, 0},
5378 {"i915_rps_boost_info", i915_rps_boost_info, 0},
5379 };
5380 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5381
5382 static const struct i915_debugfs_files {
5383 const char *name;
5384 const struct file_operations *fops;
5385 } i915_debugfs_files[] = {
5386 {"i915_wedged", &i915_wedged_fops},
5387 {"i915_max_freq", &i915_max_freq_fops},
5388 {"i915_min_freq", &i915_min_freq_fops},
5389 {"i915_cache_sharing", &i915_cache_sharing_fops},
5390 {"i915_ring_stop", &i915_ring_stop_fops},
5391 {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5392 {"i915_ring_test_irq", &i915_ring_test_irq_fops},
5393 {"i915_gem_drop_caches", &i915_drop_caches_fops},
5394 {"i915_error_state", &i915_error_state_fops},
5395 {"i915_next_seqno", &i915_next_seqno_fops},
5396 {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5397 {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5398 {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5399 {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5400 {"i915_fbc_false_color", &i915_fbc_fc_fops},
5401 {"i915_dp_test_data", &i915_displayport_test_data_fops},
5402 {"i915_dp_test_type", &i915_displayport_test_type_fops},
5403 {"i915_dp_test_active", &i915_displayport_test_active_fops}
5404 };
5405
5406 void intel_display_crc_init(struct drm_device *dev)
5407 {
5408 struct drm_i915_private *dev_priv = dev->dev_private;
5409 enum pipe pipe;
5410
5411 for_each_pipe(dev_priv, pipe) {
5412 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5413
5414 pipe_crc->opened = false;
5415 spin_lock_init(&pipe_crc->lock);
5416 init_waitqueue_head(&pipe_crc->wq);
5417 }
5418 }
5419
5420 int i915_debugfs_init(struct drm_minor *minor)
5421 {
5422 int ret, i;
5423
5424 ret = i915_forcewake_create(minor->debugfs_root, minor);
5425 if (ret)
5426 return ret;
5427
5428 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5429 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5430 if (ret)
5431 return ret;
5432 }
5433
5434 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5435 ret = i915_debugfs_create(minor->debugfs_root, minor,
5436 i915_debugfs_files[i].name,
5437 i915_debugfs_files[i].fops);
5438 if (ret)
5439 return ret;
5440 }
5441
5442 return drm_debugfs_create_files(i915_debugfs_list,
5443 I915_DEBUGFS_ENTRIES,
5444 minor->debugfs_root, minor);
5445 }
5446
5447 void i915_debugfs_cleanup(struct drm_minor *minor)
5448 {
5449 int i;
5450
5451 drm_debugfs_remove_files(i915_debugfs_list,
5452 I915_DEBUGFS_ENTRIES, minor);
5453
5454 drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
5455 1, minor);
5456
5457 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5458 struct drm_info_list *info_list =
5459 (struct drm_info_list *)&i915_pipe_crc_data[i];
5460
5461 drm_debugfs_remove_files(info_list, 1, minor);
5462 }
5463
5464 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5465 struct drm_info_list *info_list =
5466 (struct drm_info_list *) i915_debugfs_files[i].fops;
5467
5468 drm_debugfs_remove_files(info_list, 1, minor);
5469 }
5470 }
5471
5472 struct dpcd_block {
5473 /* DPCD dump start address. */
5474 unsigned int offset;
5475 /* DPCD dump end address, inclusive. If unset, .size will be used. */
5476 unsigned int end;
5477 /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5478 size_t size;
5479 /* Only valid for eDP. */
5480 bool edp;
5481 };
5482
5483 static const struct dpcd_block i915_dpcd_debug[] = {
5484 { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5485 { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5486 { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5487 { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5488 { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5489 { .offset = DP_SET_POWER },
5490 { .offset = DP_EDP_DPCD_REV },
5491 { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5492 { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5493 { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5494 };
5495
5496 static int i915_dpcd_show(struct seq_file *m, void *data)
5497 {
5498 struct drm_connector *connector = m->private;
5499 struct intel_dp *intel_dp =
5500 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5501 uint8_t buf[16];
5502 ssize_t err;
5503 int i;
5504
5505 if (connector->status != connector_status_connected)
5506 return -ENODEV;
5507
5508 for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5509 const struct dpcd_block *b = &i915_dpcd_debug[i];
5510 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5511
5512 if (b->edp &&
5513 connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5514 continue;
5515
5516 /* low tech for now */
5517 if (WARN_ON(size > sizeof(buf)))
5518 continue;
5519
5520 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5521 if (err <= 0) {
5522 DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5523 size, b->offset, err);
5524 continue;
5525 }
5526
5527 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5528 }
5529
5530 return 0;
5531 }
5532
5533 static int i915_dpcd_open(struct inode *inode, struct file *file)
5534 {
5535 return single_open(file, i915_dpcd_show, inode->i_private);
5536 }
5537
5538 static const struct file_operations i915_dpcd_fops = {
5539 .owner = THIS_MODULE,
5540 .open = i915_dpcd_open,
5541 .read = seq_read,
5542 .llseek = seq_lseek,
5543 .release = single_release,
5544 };
5545
5546 /**
5547 * i915_debugfs_connector_add - add i915 specific connector debugfs files
5548 * @connector: pointer to a registered drm_connector
5549 *
5550 * Cleanup will be done by drm_connector_unregister() through a call to
5551 * drm_debugfs_connector_remove().
5552 *
5553 * Returns 0 on success, negative error codes on error.
5554 */
5555 int i915_debugfs_connector_add(struct drm_connector *connector)
5556 {
5557 struct dentry *root = connector->debugfs_entry;
5558
5559 /* The connector must have been registered beforehands. */
5560 if (!root)
5561 return -ENODEV;
5562
5563 if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5564 connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5565 debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
5566 &i915_dpcd_fops);
5567
5568 return 0;
5569 }