]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/gpu/drm/i915/i915_debugfs.c
Merge tag 'trace-fix-filter-4.1-rc8' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-focal-kernel.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Keith Packard <keithp@keithp.com>
26 *
27 */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44 ACTIVE_LIST,
45 INACTIVE_LIST,
46 PINNED_LIST,
47 };
48
49 static const char *yesno(int v)
50 {
51 return v ? "yes" : "no";
52 }
53
54 /* As the drm_debugfs_init() routines are called before dev->dev_private is
55 * allocated we need to hook into the minor for release. */
56 static int
57 drm_add_fake_info_node(struct drm_minor *minor,
58 struct dentry *ent,
59 const void *key)
60 {
61 struct drm_info_node *node;
62
63 node = kmalloc(sizeof(*node), GFP_KERNEL);
64 if (node == NULL) {
65 debugfs_remove(ent);
66 return -ENOMEM;
67 }
68
69 node->minor = minor;
70 node->dent = ent;
71 node->info_ent = (void *) key;
72
73 mutex_lock(&minor->debugfs_lock);
74 list_add(&node->list, &minor->debugfs_list);
75 mutex_unlock(&minor->debugfs_lock);
76
77 return 0;
78 }
79
80 static int i915_capabilities(struct seq_file *m, void *data)
81 {
82 struct drm_info_node *node = m->private;
83 struct drm_device *dev = node->minor->dev;
84 const struct intel_device_info *info = INTEL_INFO(dev);
85
86 seq_printf(m, "gen: %d\n", info->gen);
87 seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
88 #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
89 #define SEP_SEMICOLON ;
90 DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
91 #undef PRINT_FLAG
92 #undef SEP_SEMICOLON
93
94 return 0;
95 }
96
97 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99 if (i915_gem_obj_is_pinned(obj))
100 return "p";
101 else
102 return " ";
103 }
104
105 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
106 {
107 switch (obj->tiling_mode) {
108 default:
109 case I915_TILING_NONE: return " ";
110 case I915_TILING_X: return "X";
111 case I915_TILING_Y: return "Y";
112 }
113 }
114
115 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
116 {
117 return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
118 }
119
120 static void
121 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
122 {
123 struct i915_vma *vma;
124 int pin_count = 0;
125
126 seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %x %x %x%s%s%s",
127 &obj->base,
128 get_pin_flag(obj),
129 get_tiling_flag(obj),
130 get_global_flag(obj),
131 obj->base.size / 1024,
132 obj->base.read_domains,
133 obj->base.write_domain,
134 i915_gem_request_get_seqno(obj->last_read_req),
135 i915_gem_request_get_seqno(obj->last_write_req),
136 i915_gem_request_get_seqno(obj->last_fenced_req),
137 i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
138 obj->dirty ? " dirty" : "",
139 obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
140 if (obj->base.name)
141 seq_printf(m, " (name: %d)", obj->base.name);
142 list_for_each_entry(vma, &obj->vma_list, vma_link) {
143 if (vma->pin_count > 0)
144 pin_count++;
145 }
146 seq_printf(m, " (pinned x %d)", pin_count);
147 if (obj->pin_display)
148 seq_printf(m, " (display)");
149 if (obj->fence_reg != I915_FENCE_REG_NONE)
150 seq_printf(m, " (fence: %d)", obj->fence_reg);
151 list_for_each_entry(vma, &obj->vma_list, vma_link) {
152 if (!i915_is_ggtt(vma->vm))
153 seq_puts(m, " (pp");
154 else
155 seq_puts(m, " (g");
156 seq_printf(m, "gtt offset: %08llx, size: %08llx, type: %u)",
157 vma->node.start, vma->node.size,
158 vma->ggtt_view.type);
159 }
160 if (obj->stolen)
161 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
162 if (obj->pin_mappable || obj->fault_mappable) {
163 char s[3], *t = s;
164 if (obj->pin_mappable)
165 *t++ = 'p';
166 if (obj->fault_mappable)
167 *t++ = 'f';
168 *t = '\0';
169 seq_printf(m, " (%s mappable)", s);
170 }
171 if (obj->last_read_req != NULL)
172 seq_printf(m, " (%s)",
173 i915_gem_request_get_ring(obj->last_read_req)->name);
174 if (obj->frontbuffer_bits)
175 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
176 }
177
178 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
179 {
180 seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
181 seq_putc(m, ctx->remap_slice ? 'R' : 'r');
182 seq_putc(m, ' ');
183 }
184
185 static int i915_gem_object_list_info(struct seq_file *m, void *data)
186 {
187 struct drm_info_node *node = m->private;
188 uintptr_t list = (uintptr_t) node->info_ent->data;
189 struct list_head *head;
190 struct drm_device *dev = node->minor->dev;
191 struct drm_i915_private *dev_priv = dev->dev_private;
192 struct i915_address_space *vm = &dev_priv->gtt.base;
193 struct i915_vma *vma;
194 size_t total_obj_size, total_gtt_size;
195 int count, ret;
196
197 ret = mutex_lock_interruptible(&dev->struct_mutex);
198 if (ret)
199 return ret;
200
201 /* FIXME: the user of this interface might want more than just GGTT */
202 switch (list) {
203 case ACTIVE_LIST:
204 seq_puts(m, "Active:\n");
205 head = &vm->active_list;
206 break;
207 case INACTIVE_LIST:
208 seq_puts(m, "Inactive:\n");
209 head = &vm->inactive_list;
210 break;
211 default:
212 mutex_unlock(&dev->struct_mutex);
213 return -EINVAL;
214 }
215
216 total_obj_size = total_gtt_size = count = 0;
217 list_for_each_entry(vma, head, mm_list) {
218 seq_printf(m, " ");
219 describe_obj(m, vma->obj);
220 seq_printf(m, "\n");
221 total_obj_size += vma->obj->base.size;
222 total_gtt_size += vma->node.size;
223 count++;
224 }
225 mutex_unlock(&dev->struct_mutex);
226
227 seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
228 count, total_obj_size, total_gtt_size);
229 return 0;
230 }
231
232 static int obj_rank_by_stolen(void *priv,
233 struct list_head *A, struct list_head *B)
234 {
235 struct drm_i915_gem_object *a =
236 container_of(A, struct drm_i915_gem_object, obj_exec_link);
237 struct drm_i915_gem_object *b =
238 container_of(B, struct drm_i915_gem_object, obj_exec_link);
239
240 return a->stolen->start - b->stolen->start;
241 }
242
243 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
244 {
245 struct drm_info_node *node = m->private;
246 struct drm_device *dev = node->minor->dev;
247 struct drm_i915_private *dev_priv = dev->dev_private;
248 struct drm_i915_gem_object *obj;
249 size_t total_obj_size, total_gtt_size;
250 LIST_HEAD(stolen);
251 int count, ret;
252
253 ret = mutex_lock_interruptible(&dev->struct_mutex);
254 if (ret)
255 return ret;
256
257 total_obj_size = total_gtt_size = count = 0;
258 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
259 if (obj->stolen == NULL)
260 continue;
261
262 list_add(&obj->obj_exec_link, &stolen);
263
264 total_obj_size += obj->base.size;
265 total_gtt_size += i915_gem_obj_ggtt_size(obj);
266 count++;
267 }
268 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
269 if (obj->stolen == NULL)
270 continue;
271
272 list_add(&obj->obj_exec_link, &stolen);
273
274 total_obj_size += obj->base.size;
275 count++;
276 }
277 list_sort(NULL, &stolen, obj_rank_by_stolen);
278 seq_puts(m, "Stolen:\n");
279 while (!list_empty(&stolen)) {
280 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
281 seq_puts(m, " ");
282 describe_obj(m, obj);
283 seq_putc(m, '\n');
284 list_del_init(&obj->obj_exec_link);
285 }
286 mutex_unlock(&dev->struct_mutex);
287
288 seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
289 count, total_obj_size, total_gtt_size);
290 return 0;
291 }
292
293 #define count_objects(list, member) do { \
294 list_for_each_entry(obj, list, member) { \
295 size += i915_gem_obj_ggtt_size(obj); \
296 ++count; \
297 if (obj->map_and_fenceable) { \
298 mappable_size += i915_gem_obj_ggtt_size(obj); \
299 ++mappable_count; \
300 } \
301 } \
302 } while (0)
303
304 struct file_stats {
305 struct drm_i915_file_private *file_priv;
306 int count;
307 size_t total, unbound;
308 size_t global, shared;
309 size_t active, inactive;
310 };
311
312 static int per_file_stats(int id, void *ptr, void *data)
313 {
314 struct drm_i915_gem_object *obj = ptr;
315 struct file_stats *stats = data;
316 struct i915_vma *vma;
317
318 stats->count++;
319 stats->total += obj->base.size;
320
321 if (obj->base.name || obj->base.dma_buf)
322 stats->shared += obj->base.size;
323
324 if (USES_FULL_PPGTT(obj->base.dev)) {
325 list_for_each_entry(vma, &obj->vma_list, vma_link) {
326 struct i915_hw_ppgtt *ppgtt;
327
328 if (!drm_mm_node_allocated(&vma->node))
329 continue;
330
331 if (i915_is_ggtt(vma->vm)) {
332 stats->global += obj->base.size;
333 continue;
334 }
335
336 ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
337 if (ppgtt->file_priv != stats->file_priv)
338 continue;
339
340 if (obj->active) /* XXX per-vma statistic */
341 stats->active += obj->base.size;
342 else
343 stats->inactive += obj->base.size;
344
345 return 0;
346 }
347 } else {
348 if (i915_gem_obj_ggtt_bound(obj)) {
349 stats->global += obj->base.size;
350 if (obj->active)
351 stats->active += obj->base.size;
352 else
353 stats->inactive += obj->base.size;
354 return 0;
355 }
356 }
357
358 if (!list_empty(&obj->global_list))
359 stats->unbound += obj->base.size;
360
361 return 0;
362 }
363
364 #define print_file_stats(m, name, stats) \
365 seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu global, %zu shared, %zu unbound)\n", \
366 name, \
367 stats.count, \
368 stats.total, \
369 stats.active, \
370 stats.inactive, \
371 stats.global, \
372 stats.shared, \
373 stats.unbound)
374
375 static void print_batch_pool_stats(struct seq_file *m,
376 struct drm_i915_private *dev_priv)
377 {
378 struct drm_i915_gem_object *obj;
379 struct file_stats stats;
380
381 memset(&stats, 0, sizeof(stats));
382
383 list_for_each_entry(obj,
384 &dev_priv->mm.batch_pool.cache_list,
385 batch_pool_list)
386 per_file_stats(0, obj, &stats);
387
388 print_file_stats(m, "batch pool", stats);
389 }
390
391 #define count_vmas(list, member) do { \
392 list_for_each_entry(vma, list, member) { \
393 size += i915_gem_obj_ggtt_size(vma->obj); \
394 ++count; \
395 if (vma->obj->map_and_fenceable) { \
396 mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
397 ++mappable_count; \
398 } \
399 } \
400 } while (0)
401
402 static int i915_gem_object_info(struct seq_file *m, void* data)
403 {
404 struct drm_info_node *node = m->private;
405 struct drm_device *dev = node->minor->dev;
406 struct drm_i915_private *dev_priv = dev->dev_private;
407 u32 count, mappable_count, purgeable_count;
408 size_t size, mappable_size, purgeable_size;
409 struct drm_i915_gem_object *obj;
410 struct i915_address_space *vm = &dev_priv->gtt.base;
411 struct drm_file *file;
412 struct i915_vma *vma;
413 int ret;
414
415 ret = mutex_lock_interruptible(&dev->struct_mutex);
416 if (ret)
417 return ret;
418
419 seq_printf(m, "%u objects, %zu bytes\n",
420 dev_priv->mm.object_count,
421 dev_priv->mm.object_memory);
422
423 size = count = mappable_size = mappable_count = 0;
424 count_objects(&dev_priv->mm.bound_list, global_list);
425 seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
426 count, mappable_count, size, mappable_size);
427
428 size = count = mappable_size = mappable_count = 0;
429 count_vmas(&vm->active_list, mm_list);
430 seq_printf(m, " %u [%u] active objects, %zu [%zu] bytes\n",
431 count, mappable_count, size, mappable_size);
432
433 size = count = mappable_size = mappable_count = 0;
434 count_vmas(&vm->inactive_list, mm_list);
435 seq_printf(m, " %u [%u] inactive objects, %zu [%zu] bytes\n",
436 count, mappable_count, size, mappable_size);
437
438 size = count = purgeable_size = purgeable_count = 0;
439 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
440 size += obj->base.size, ++count;
441 if (obj->madv == I915_MADV_DONTNEED)
442 purgeable_size += obj->base.size, ++purgeable_count;
443 }
444 seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
445
446 size = count = mappable_size = mappable_count = 0;
447 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
448 if (obj->fault_mappable) {
449 size += i915_gem_obj_ggtt_size(obj);
450 ++count;
451 }
452 if (obj->pin_mappable) {
453 mappable_size += i915_gem_obj_ggtt_size(obj);
454 ++mappable_count;
455 }
456 if (obj->madv == I915_MADV_DONTNEED) {
457 purgeable_size += obj->base.size;
458 ++purgeable_count;
459 }
460 }
461 seq_printf(m, "%u purgeable objects, %zu bytes\n",
462 purgeable_count, purgeable_size);
463 seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
464 mappable_count, mappable_size);
465 seq_printf(m, "%u fault mappable objects, %zu bytes\n",
466 count, size);
467
468 seq_printf(m, "%zu [%lu] gtt total\n",
469 dev_priv->gtt.base.total,
470 dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
471
472 seq_putc(m, '\n');
473 print_batch_pool_stats(m, dev_priv);
474
475 seq_putc(m, '\n');
476 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
477 struct file_stats stats;
478 struct task_struct *task;
479
480 memset(&stats, 0, sizeof(stats));
481 stats.file_priv = file->driver_priv;
482 spin_lock(&file->table_lock);
483 idr_for_each(&file->object_idr, per_file_stats, &stats);
484 spin_unlock(&file->table_lock);
485 /*
486 * Although we have a valid reference on file->pid, that does
487 * not guarantee that the task_struct who called get_pid() is
488 * still alive (e.g. get_pid(current) => fork() => exit()).
489 * Therefore, we need to protect this ->comm access using RCU.
490 */
491 rcu_read_lock();
492 task = pid_task(file->pid, PIDTYPE_PID);
493 print_file_stats(m, task ? task->comm : "<unknown>", stats);
494 rcu_read_unlock();
495 }
496
497 mutex_unlock(&dev->struct_mutex);
498
499 return 0;
500 }
501
502 static int i915_gem_gtt_info(struct seq_file *m, void *data)
503 {
504 struct drm_info_node *node = m->private;
505 struct drm_device *dev = node->minor->dev;
506 uintptr_t list = (uintptr_t) node->info_ent->data;
507 struct drm_i915_private *dev_priv = dev->dev_private;
508 struct drm_i915_gem_object *obj;
509 size_t total_obj_size, total_gtt_size;
510 int count, ret;
511
512 ret = mutex_lock_interruptible(&dev->struct_mutex);
513 if (ret)
514 return ret;
515
516 total_obj_size = total_gtt_size = count = 0;
517 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
518 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
519 continue;
520
521 seq_puts(m, " ");
522 describe_obj(m, obj);
523 seq_putc(m, '\n');
524 total_obj_size += obj->base.size;
525 total_gtt_size += i915_gem_obj_ggtt_size(obj);
526 count++;
527 }
528
529 mutex_unlock(&dev->struct_mutex);
530
531 seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
532 count, total_obj_size, total_gtt_size);
533
534 return 0;
535 }
536
537 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
538 {
539 struct drm_info_node *node = m->private;
540 struct drm_device *dev = node->minor->dev;
541 struct drm_i915_private *dev_priv = dev->dev_private;
542 struct intel_crtc *crtc;
543 int ret;
544
545 ret = mutex_lock_interruptible(&dev->struct_mutex);
546 if (ret)
547 return ret;
548
549 for_each_intel_crtc(dev, crtc) {
550 const char pipe = pipe_name(crtc->pipe);
551 const char plane = plane_name(crtc->plane);
552 struct intel_unpin_work *work;
553
554 spin_lock_irq(&dev->event_lock);
555 work = crtc->unpin_work;
556 if (work == NULL) {
557 seq_printf(m, "No flip due on pipe %c (plane %c)\n",
558 pipe, plane);
559 } else {
560 u32 addr;
561
562 if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
563 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
564 pipe, plane);
565 } else {
566 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
567 pipe, plane);
568 }
569 if (work->flip_queued_req) {
570 struct intel_engine_cs *ring =
571 i915_gem_request_get_ring(work->flip_queued_req);
572
573 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
574 ring->name,
575 i915_gem_request_get_seqno(work->flip_queued_req),
576 dev_priv->next_seqno,
577 ring->get_seqno(ring, true),
578 i915_gem_request_completed(work->flip_queued_req, true));
579 } else
580 seq_printf(m, "Flip not associated with any ring\n");
581 seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
582 work->flip_queued_vblank,
583 work->flip_ready_vblank,
584 drm_crtc_vblank_count(&crtc->base));
585 if (work->enable_stall_check)
586 seq_puts(m, "Stall check enabled, ");
587 else
588 seq_puts(m, "Stall check waiting for page flip ioctl, ");
589 seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
590
591 if (INTEL_INFO(dev)->gen >= 4)
592 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
593 else
594 addr = I915_READ(DSPADDR(crtc->plane));
595 seq_printf(m, "Current scanout address 0x%08x\n", addr);
596
597 if (work->pending_flip_obj) {
598 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
599 seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset);
600 }
601 }
602 spin_unlock_irq(&dev->event_lock);
603 }
604
605 mutex_unlock(&dev->struct_mutex);
606
607 return 0;
608 }
609
610 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
611 {
612 struct drm_info_node *node = m->private;
613 struct drm_device *dev = node->minor->dev;
614 struct drm_i915_private *dev_priv = dev->dev_private;
615 struct drm_i915_gem_object *obj;
616 int count = 0;
617 int ret;
618
619 ret = mutex_lock_interruptible(&dev->struct_mutex);
620 if (ret)
621 return ret;
622
623 seq_puts(m, "cache:\n");
624 list_for_each_entry(obj,
625 &dev_priv->mm.batch_pool.cache_list,
626 batch_pool_list) {
627 seq_puts(m, " ");
628 describe_obj(m, obj);
629 seq_putc(m, '\n');
630 count++;
631 }
632
633 seq_printf(m, "total: %d\n", count);
634
635 mutex_unlock(&dev->struct_mutex);
636
637 return 0;
638 }
639
640 static int i915_gem_request_info(struct seq_file *m, void *data)
641 {
642 struct drm_info_node *node = m->private;
643 struct drm_device *dev = node->minor->dev;
644 struct drm_i915_private *dev_priv = dev->dev_private;
645 struct intel_engine_cs *ring;
646 struct drm_i915_gem_request *gem_request;
647 int ret, count, i;
648
649 ret = mutex_lock_interruptible(&dev->struct_mutex);
650 if (ret)
651 return ret;
652
653 count = 0;
654 for_each_ring(ring, dev_priv, i) {
655 if (list_empty(&ring->request_list))
656 continue;
657
658 seq_printf(m, "%s requests:\n", ring->name);
659 list_for_each_entry(gem_request,
660 &ring->request_list,
661 list) {
662 seq_printf(m, " %x @ %d\n",
663 gem_request->seqno,
664 (int) (jiffies - gem_request->emitted_jiffies));
665 }
666 count++;
667 }
668 mutex_unlock(&dev->struct_mutex);
669
670 if (count == 0)
671 seq_puts(m, "No requests\n");
672
673 return 0;
674 }
675
676 static void i915_ring_seqno_info(struct seq_file *m,
677 struct intel_engine_cs *ring)
678 {
679 if (ring->get_seqno) {
680 seq_printf(m, "Current sequence (%s): %x\n",
681 ring->name, ring->get_seqno(ring, false));
682 }
683 }
684
685 static int i915_gem_seqno_info(struct seq_file *m, void *data)
686 {
687 struct drm_info_node *node = m->private;
688 struct drm_device *dev = node->minor->dev;
689 struct drm_i915_private *dev_priv = dev->dev_private;
690 struct intel_engine_cs *ring;
691 int ret, i;
692
693 ret = mutex_lock_interruptible(&dev->struct_mutex);
694 if (ret)
695 return ret;
696 intel_runtime_pm_get(dev_priv);
697
698 for_each_ring(ring, dev_priv, i)
699 i915_ring_seqno_info(m, ring);
700
701 intel_runtime_pm_put(dev_priv);
702 mutex_unlock(&dev->struct_mutex);
703
704 return 0;
705 }
706
707
708 static int i915_interrupt_info(struct seq_file *m, void *data)
709 {
710 struct drm_info_node *node = m->private;
711 struct drm_device *dev = node->minor->dev;
712 struct drm_i915_private *dev_priv = dev->dev_private;
713 struct intel_engine_cs *ring;
714 int ret, i, pipe;
715
716 ret = mutex_lock_interruptible(&dev->struct_mutex);
717 if (ret)
718 return ret;
719 intel_runtime_pm_get(dev_priv);
720
721 if (IS_CHERRYVIEW(dev)) {
722 seq_printf(m, "Master Interrupt Control:\t%08x\n",
723 I915_READ(GEN8_MASTER_IRQ));
724
725 seq_printf(m, "Display IER:\t%08x\n",
726 I915_READ(VLV_IER));
727 seq_printf(m, "Display IIR:\t%08x\n",
728 I915_READ(VLV_IIR));
729 seq_printf(m, "Display IIR_RW:\t%08x\n",
730 I915_READ(VLV_IIR_RW));
731 seq_printf(m, "Display IMR:\t%08x\n",
732 I915_READ(VLV_IMR));
733 for_each_pipe(dev_priv, pipe)
734 seq_printf(m, "Pipe %c stat:\t%08x\n",
735 pipe_name(pipe),
736 I915_READ(PIPESTAT(pipe)));
737
738 seq_printf(m, "Port hotplug:\t%08x\n",
739 I915_READ(PORT_HOTPLUG_EN));
740 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
741 I915_READ(VLV_DPFLIPSTAT));
742 seq_printf(m, "DPINVGTT:\t%08x\n",
743 I915_READ(DPINVGTT));
744
745 for (i = 0; i < 4; i++) {
746 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
747 i, I915_READ(GEN8_GT_IMR(i)));
748 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
749 i, I915_READ(GEN8_GT_IIR(i)));
750 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
751 i, I915_READ(GEN8_GT_IER(i)));
752 }
753
754 seq_printf(m, "PCU interrupt mask:\t%08x\n",
755 I915_READ(GEN8_PCU_IMR));
756 seq_printf(m, "PCU interrupt identity:\t%08x\n",
757 I915_READ(GEN8_PCU_IIR));
758 seq_printf(m, "PCU interrupt enable:\t%08x\n",
759 I915_READ(GEN8_PCU_IER));
760 } else if (INTEL_INFO(dev)->gen >= 8) {
761 seq_printf(m, "Master Interrupt Control:\t%08x\n",
762 I915_READ(GEN8_MASTER_IRQ));
763
764 for (i = 0; i < 4; i++) {
765 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
766 i, I915_READ(GEN8_GT_IMR(i)));
767 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
768 i, I915_READ(GEN8_GT_IIR(i)));
769 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
770 i, I915_READ(GEN8_GT_IER(i)));
771 }
772
773 for_each_pipe(dev_priv, pipe) {
774 if (!intel_display_power_is_enabled(dev_priv,
775 POWER_DOMAIN_PIPE(pipe))) {
776 seq_printf(m, "Pipe %c power disabled\n",
777 pipe_name(pipe));
778 continue;
779 }
780 seq_printf(m, "Pipe %c IMR:\t%08x\n",
781 pipe_name(pipe),
782 I915_READ(GEN8_DE_PIPE_IMR(pipe)));
783 seq_printf(m, "Pipe %c IIR:\t%08x\n",
784 pipe_name(pipe),
785 I915_READ(GEN8_DE_PIPE_IIR(pipe)));
786 seq_printf(m, "Pipe %c IER:\t%08x\n",
787 pipe_name(pipe),
788 I915_READ(GEN8_DE_PIPE_IER(pipe)));
789 }
790
791 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
792 I915_READ(GEN8_DE_PORT_IMR));
793 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
794 I915_READ(GEN8_DE_PORT_IIR));
795 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
796 I915_READ(GEN8_DE_PORT_IER));
797
798 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
799 I915_READ(GEN8_DE_MISC_IMR));
800 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
801 I915_READ(GEN8_DE_MISC_IIR));
802 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
803 I915_READ(GEN8_DE_MISC_IER));
804
805 seq_printf(m, "PCU interrupt mask:\t%08x\n",
806 I915_READ(GEN8_PCU_IMR));
807 seq_printf(m, "PCU interrupt identity:\t%08x\n",
808 I915_READ(GEN8_PCU_IIR));
809 seq_printf(m, "PCU interrupt enable:\t%08x\n",
810 I915_READ(GEN8_PCU_IER));
811 } else if (IS_VALLEYVIEW(dev)) {
812 seq_printf(m, "Display IER:\t%08x\n",
813 I915_READ(VLV_IER));
814 seq_printf(m, "Display IIR:\t%08x\n",
815 I915_READ(VLV_IIR));
816 seq_printf(m, "Display IIR_RW:\t%08x\n",
817 I915_READ(VLV_IIR_RW));
818 seq_printf(m, "Display IMR:\t%08x\n",
819 I915_READ(VLV_IMR));
820 for_each_pipe(dev_priv, pipe)
821 seq_printf(m, "Pipe %c stat:\t%08x\n",
822 pipe_name(pipe),
823 I915_READ(PIPESTAT(pipe)));
824
825 seq_printf(m, "Master IER:\t%08x\n",
826 I915_READ(VLV_MASTER_IER));
827
828 seq_printf(m, "Render IER:\t%08x\n",
829 I915_READ(GTIER));
830 seq_printf(m, "Render IIR:\t%08x\n",
831 I915_READ(GTIIR));
832 seq_printf(m, "Render IMR:\t%08x\n",
833 I915_READ(GTIMR));
834
835 seq_printf(m, "PM IER:\t\t%08x\n",
836 I915_READ(GEN6_PMIER));
837 seq_printf(m, "PM IIR:\t\t%08x\n",
838 I915_READ(GEN6_PMIIR));
839 seq_printf(m, "PM IMR:\t\t%08x\n",
840 I915_READ(GEN6_PMIMR));
841
842 seq_printf(m, "Port hotplug:\t%08x\n",
843 I915_READ(PORT_HOTPLUG_EN));
844 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
845 I915_READ(VLV_DPFLIPSTAT));
846 seq_printf(m, "DPINVGTT:\t%08x\n",
847 I915_READ(DPINVGTT));
848
849 } else if (!HAS_PCH_SPLIT(dev)) {
850 seq_printf(m, "Interrupt enable: %08x\n",
851 I915_READ(IER));
852 seq_printf(m, "Interrupt identity: %08x\n",
853 I915_READ(IIR));
854 seq_printf(m, "Interrupt mask: %08x\n",
855 I915_READ(IMR));
856 for_each_pipe(dev_priv, pipe)
857 seq_printf(m, "Pipe %c stat: %08x\n",
858 pipe_name(pipe),
859 I915_READ(PIPESTAT(pipe)));
860 } else {
861 seq_printf(m, "North Display Interrupt enable: %08x\n",
862 I915_READ(DEIER));
863 seq_printf(m, "North Display Interrupt identity: %08x\n",
864 I915_READ(DEIIR));
865 seq_printf(m, "North Display Interrupt mask: %08x\n",
866 I915_READ(DEIMR));
867 seq_printf(m, "South Display Interrupt enable: %08x\n",
868 I915_READ(SDEIER));
869 seq_printf(m, "South Display Interrupt identity: %08x\n",
870 I915_READ(SDEIIR));
871 seq_printf(m, "South Display Interrupt mask: %08x\n",
872 I915_READ(SDEIMR));
873 seq_printf(m, "Graphics Interrupt enable: %08x\n",
874 I915_READ(GTIER));
875 seq_printf(m, "Graphics Interrupt identity: %08x\n",
876 I915_READ(GTIIR));
877 seq_printf(m, "Graphics Interrupt mask: %08x\n",
878 I915_READ(GTIMR));
879 }
880 for_each_ring(ring, dev_priv, i) {
881 if (INTEL_INFO(dev)->gen >= 6) {
882 seq_printf(m,
883 "Graphics Interrupt mask (%s): %08x\n",
884 ring->name, I915_READ_IMR(ring));
885 }
886 i915_ring_seqno_info(m, ring);
887 }
888 intel_runtime_pm_put(dev_priv);
889 mutex_unlock(&dev->struct_mutex);
890
891 return 0;
892 }
893
894 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
895 {
896 struct drm_info_node *node = m->private;
897 struct drm_device *dev = node->minor->dev;
898 struct drm_i915_private *dev_priv = dev->dev_private;
899 int i, ret;
900
901 ret = mutex_lock_interruptible(&dev->struct_mutex);
902 if (ret)
903 return ret;
904
905 seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
906 seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
907 for (i = 0; i < dev_priv->num_fence_regs; i++) {
908 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
909
910 seq_printf(m, "Fence %d, pin count = %d, object = ",
911 i, dev_priv->fence_regs[i].pin_count);
912 if (obj == NULL)
913 seq_puts(m, "unused");
914 else
915 describe_obj(m, obj);
916 seq_putc(m, '\n');
917 }
918
919 mutex_unlock(&dev->struct_mutex);
920 return 0;
921 }
922
923 static int i915_hws_info(struct seq_file *m, void *data)
924 {
925 struct drm_info_node *node = m->private;
926 struct drm_device *dev = node->minor->dev;
927 struct drm_i915_private *dev_priv = dev->dev_private;
928 struct intel_engine_cs *ring;
929 const u32 *hws;
930 int i;
931
932 ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
933 hws = ring->status_page.page_addr;
934 if (hws == NULL)
935 return 0;
936
937 for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
938 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
939 i * 4,
940 hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
941 }
942 return 0;
943 }
944
945 static ssize_t
946 i915_error_state_write(struct file *filp,
947 const char __user *ubuf,
948 size_t cnt,
949 loff_t *ppos)
950 {
951 struct i915_error_state_file_priv *error_priv = filp->private_data;
952 struct drm_device *dev = error_priv->dev;
953 int ret;
954
955 DRM_DEBUG_DRIVER("Resetting error state\n");
956
957 ret = mutex_lock_interruptible(&dev->struct_mutex);
958 if (ret)
959 return ret;
960
961 i915_destroy_error_state(dev);
962 mutex_unlock(&dev->struct_mutex);
963
964 return cnt;
965 }
966
967 static int i915_error_state_open(struct inode *inode, struct file *file)
968 {
969 struct drm_device *dev = inode->i_private;
970 struct i915_error_state_file_priv *error_priv;
971
972 error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
973 if (!error_priv)
974 return -ENOMEM;
975
976 error_priv->dev = dev;
977
978 i915_error_state_get(dev, error_priv);
979
980 file->private_data = error_priv;
981
982 return 0;
983 }
984
985 static int i915_error_state_release(struct inode *inode, struct file *file)
986 {
987 struct i915_error_state_file_priv *error_priv = file->private_data;
988
989 i915_error_state_put(error_priv);
990 kfree(error_priv);
991
992 return 0;
993 }
994
995 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
996 size_t count, loff_t *pos)
997 {
998 struct i915_error_state_file_priv *error_priv = file->private_data;
999 struct drm_i915_error_state_buf error_str;
1000 loff_t tmp_pos = 0;
1001 ssize_t ret_count = 0;
1002 int ret;
1003
1004 ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1005 if (ret)
1006 return ret;
1007
1008 ret = i915_error_state_to_str(&error_str, error_priv);
1009 if (ret)
1010 goto out;
1011
1012 ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1013 error_str.buf,
1014 error_str.bytes);
1015
1016 if (ret_count < 0)
1017 ret = ret_count;
1018 else
1019 *pos = error_str.start + ret_count;
1020 out:
1021 i915_error_state_buf_release(&error_str);
1022 return ret ?: ret_count;
1023 }
1024
1025 static const struct file_operations i915_error_state_fops = {
1026 .owner = THIS_MODULE,
1027 .open = i915_error_state_open,
1028 .read = i915_error_state_read,
1029 .write = i915_error_state_write,
1030 .llseek = default_llseek,
1031 .release = i915_error_state_release,
1032 };
1033
1034 static int
1035 i915_next_seqno_get(void *data, u64 *val)
1036 {
1037 struct drm_device *dev = data;
1038 struct drm_i915_private *dev_priv = dev->dev_private;
1039 int ret;
1040
1041 ret = mutex_lock_interruptible(&dev->struct_mutex);
1042 if (ret)
1043 return ret;
1044
1045 *val = dev_priv->next_seqno;
1046 mutex_unlock(&dev->struct_mutex);
1047
1048 return 0;
1049 }
1050
1051 static int
1052 i915_next_seqno_set(void *data, u64 val)
1053 {
1054 struct drm_device *dev = data;
1055 int ret;
1056
1057 ret = mutex_lock_interruptible(&dev->struct_mutex);
1058 if (ret)
1059 return ret;
1060
1061 ret = i915_gem_set_seqno(dev, val);
1062 mutex_unlock(&dev->struct_mutex);
1063
1064 return ret;
1065 }
1066
1067 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1068 i915_next_seqno_get, i915_next_seqno_set,
1069 "0x%llx\n");
1070
1071 static int i915_frequency_info(struct seq_file *m, void *unused)
1072 {
1073 struct drm_info_node *node = m->private;
1074 struct drm_device *dev = node->minor->dev;
1075 struct drm_i915_private *dev_priv = dev->dev_private;
1076 int ret = 0;
1077
1078 intel_runtime_pm_get(dev_priv);
1079
1080 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1081
1082 if (IS_GEN5(dev)) {
1083 u16 rgvswctl = I915_READ16(MEMSWCTL);
1084 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1085
1086 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1087 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1088 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1089 MEMSTAT_VID_SHIFT);
1090 seq_printf(m, "Current P-state: %d\n",
1091 (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1092 } else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) ||
1093 IS_BROADWELL(dev) || IS_GEN9(dev)) {
1094 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1095 u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1096 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1097 u32 rpmodectl, rpinclimit, rpdeclimit;
1098 u32 rpstat, cagf, reqf;
1099 u32 rpupei, rpcurup, rpprevup;
1100 u32 rpdownei, rpcurdown, rpprevdown;
1101 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1102 int max_freq;
1103
1104 /* RPSTAT1 is in the GT power well */
1105 ret = mutex_lock_interruptible(&dev->struct_mutex);
1106 if (ret)
1107 goto out;
1108
1109 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1110
1111 reqf = I915_READ(GEN6_RPNSWREQ);
1112 if (IS_GEN9(dev))
1113 reqf >>= 23;
1114 else {
1115 reqf &= ~GEN6_TURBO_DISABLE;
1116 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1117 reqf >>= 24;
1118 else
1119 reqf >>= 25;
1120 }
1121 reqf = intel_gpu_freq(dev_priv, reqf);
1122
1123 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1124 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1125 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1126
1127 rpstat = I915_READ(GEN6_RPSTAT1);
1128 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1129 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1130 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1131 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1132 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1133 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1134 if (IS_GEN9(dev))
1135 cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1136 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1137 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1138 else
1139 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1140 cagf = intel_gpu_freq(dev_priv, cagf);
1141
1142 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1143 mutex_unlock(&dev->struct_mutex);
1144
1145 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1146 pm_ier = I915_READ(GEN6_PMIER);
1147 pm_imr = I915_READ(GEN6_PMIMR);
1148 pm_isr = I915_READ(GEN6_PMISR);
1149 pm_iir = I915_READ(GEN6_PMIIR);
1150 pm_mask = I915_READ(GEN6_PMINTRMSK);
1151 } else {
1152 pm_ier = I915_READ(GEN8_GT_IER(2));
1153 pm_imr = I915_READ(GEN8_GT_IMR(2));
1154 pm_isr = I915_READ(GEN8_GT_ISR(2));
1155 pm_iir = I915_READ(GEN8_GT_IIR(2));
1156 pm_mask = I915_READ(GEN6_PMINTRMSK);
1157 }
1158 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1159 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1160 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1161 seq_printf(m, "Render p-state ratio: %d\n",
1162 (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1163 seq_printf(m, "Render p-state VID: %d\n",
1164 gt_perf_status & 0xff);
1165 seq_printf(m, "Render p-state limit: %d\n",
1166 rp_state_limits & 0xff);
1167 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1168 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1169 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1170 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1171 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1172 seq_printf(m, "CAGF: %dMHz\n", cagf);
1173 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1174 GEN6_CURICONT_MASK);
1175 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1176 GEN6_CURBSYTAVG_MASK);
1177 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1178 GEN6_CURBSYTAVG_MASK);
1179 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1180 GEN6_CURIAVG_MASK);
1181 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1182 GEN6_CURBSYTAVG_MASK);
1183 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1184 GEN6_CURBSYTAVG_MASK);
1185
1186 max_freq = (rp_state_cap & 0xff0000) >> 16;
1187 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1188 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1189 intel_gpu_freq(dev_priv, max_freq));
1190
1191 max_freq = (rp_state_cap & 0xff00) >> 8;
1192 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1193 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1194 intel_gpu_freq(dev_priv, max_freq));
1195
1196 max_freq = rp_state_cap & 0xff;
1197 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1198 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1199 intel_gpu_freq(dev_priv, max_freq));
1200
1201 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1202 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1203
1204 seq_printf(m, "Idle freq: %d MHz\n",
1205 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1206 } else if (IS_VALLEYVIEW(dev)) {
1207 u32 freq_sts;
1208
1209 mutex_lock(&dev_priv->rps.hw_lock);
1210 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1211 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1212 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1213
1214 seq_printf(m, "max GPU freq: %d MHz\n",
1215 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1216
1217 seq_printf(m, "min GPU freq: %d MHz\n",
1218 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1219
1220 seq_printf(m, "idle GPU freq: %d MHz\n",
1221 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1222
1223 seq_printf(m,
1224 "efficient (RPe) frequency: %d MHz\n",
1225 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1226
1227 seq_printf(m, "current GPU freq: %d MHz\n",
1228 intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1229 mutex_unlock(&dev_priv->rps.hw_lock);
1230 } else {
1231 seq_puts(m, "no P-state info available\n");
1232 }
1233
1234 out:
1235 intel_runtime_pm_put(dev_priv);
1236 return ret;
1237 }
1238
1239 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1240 {
1241 struct drm_info_node *node = m->private;
1242 struct drm_device *dev = node->minor->dev;
1243 struct drm_i915_private *dev_priv = dev->dev_private;
1244 struct intel_engine_cs *ring;
1245 u64 acthd[I915_NUM_RINGS];
1246 u32 seqno[I915_NUM_RINGS];
1247 int i;
1248
1249 if (!i915.enable_hangcheck) {
1250 seq_printf(m, "Hangcheck disabled\n");
1251 return 0;
1252 }
1253
1254 intel_runtime_pm_get(dev_priv);
1255
1256 for_each_ring(ring, dev_priv, i) {
1257 seqno[i] = ring->get_seqno(ring, false);
1258 acthd[i] = intel_ring_get_active_head(ring);
1259 }
1260
1261 intel_runtime_pm_put(dev_priv);
1262
1263 if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1264 seq_printf(m, "Hangcheck active, fires in %dms\n",
1265 jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1266 jiffies));
1267 } else
1268 seq_printf(m, "Hangcheck inactive\n");
1269
1270 for_each_ring(ring, dev_priv, i) {
1271 seq_printf(m, "%s:\n", ring->name);
1272 seq_printf(m, "\tseqno = %x [current %x]\n",
1273 ring->hangcheck.seqno, seqno[i]);
1274 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1275 (long long)ring->hangcheck.acthd,
1276 (long long)acthd[i]);
1277 seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
1278 (long long)ring->hangcheck.max_acthd);
1279 seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
1280 seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
1281 }
1282
1283 return 0;
1284 }
1285
1286 static int ironlake_drpc_info(struct seq_file *m)
1287 {
1288 struct drm_info_node *node = m->private;
1289 struct drm_device *dev = node->minor->dev;
1290 struct drm_i915_private *dev_priv = dev->dev_private;
1291 u32 rgvmodectl, rstdbyctl;
1292 u16 crstandvid;
1293 int ret;
1294
1295 ret = mutex_lock_interruptible(&dev->struct_mutex);
1296 if (ret)
1297 return ret;
1298 intel_runtime_pm_get(dev_priv);
1299
1300 rgvmodectl = I915_READ(MEMMODECTL);
1301 rstdbyctl = I915_READ(RSTDBYCTL);
1302 crstandvid = I915_READ16(CRSTANDVID);
1303
1304 intel_runtime_pm_put(dev_priv);
1305 mutex_unlock(&dev->struct_mutex);
1306
1307 seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1308 "yes" : "no");
1309 seq_printf(m, "Boost freq: %d\n",
1310 (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1311 MEMMODE_BOOST_FREQ_SHIFT);
1312 seq_printf(m, "HW control enabled: %s\n",
1313 rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1314 seq_printf(m, "SW control enabled: %s\n",
1315 rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1316 seq_printf(m, "Gated voltage change: %s\n",
1317 rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1318 seq_printf(m, "Starting frequency: P%d\n",
1319 (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1320 seq_printf(m, "Max P-state: P%d\n",
1321 (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1322 seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1323 seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1324 seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1325 seq_printf(m, "Render standby enabled: %s\n",
1326 (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1327 seq_puts(m, "Current RS state: ");
1328 switch (rstdbyctl & RSX_STATUS_MASK) {
1329 case RSX_STATUS_ON:
1330 seq_puts(m, "on\n");
1331 break;
1332 case RSX_STATUS_RC1:
1333 seq_puts(m, "RC1\n");
1334 break;
1335 case RSX_STATUS_RC1E:
1336 seq_puts(m, "RC1E\n");
1337 break;
1338 case RSX_STATUS_RS1:
1339 seq_puts(m, "RS1\n");
1340 break;
1341 case RSX_STATUS_RS2:
1342 seq_puts(m, "RS2 (RC6)\n");
1343 break;
1344 case RSX_STATUS_RS3:
1345 seq_puts(m, "RC3 (RC6+)\n");
1346 break;
1347 default:
1348 seq_puts(m, "unknown\n");
1349 break;
1350 }
1351
1352 return 0;
1353 }
1354
1355 static int i915_forcewake_domains(struct seq_file *m, void *data)
1356 {
1357 struct drm_info_node *node = m->private;
1358 struct drm_device *dev = node->minor->dev;
1359 struct drm_i915_private *dev_priv = dev->dev_private;
1360 struct intel_uncore_forcewake_domain *fw_domain;
1361 int i;
1362
1363 spin_lock_irq(&dev_priv->uncore.lock);
1364 for_each_fw_domain(fw_domain, dev_priv, i) {
1365 seq_printf(m, "%s.wake_count = %u\n",
1366 intel_uncore_forcewake_domain_to_str(i),
1367 fw_domain->wake_count);
1368 }
1369 spin_unlock_irq(&dev_priv->uncore.lock);
1370
1371 return 0;
1372 }
1373
1374 static int vlv_drpc_info(struct seq_file *m)
1375 {
1376 struct drm_info_node *node = m->private;
1377 struct drm_device *dev = node->minor->dev;
1378 struct drm_i915_private *dev_priv = dev->dev_private;
1379 u32 rpmodectl1, rcctl1, pw_status;
1380
1381 intel_runtime_pm_get(dev_priv);
1382
1383 pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1384 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1385 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1386
1387 intel_runtime_pm_put(dev_priv);
1388
1389 seq_printf(m, "Video Turbo Mode: %s\n",
1390 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1391 seq_printf(m, "Turbo enabled: %s\n",
1392 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1393 seq_printf(m, "HW control enabled: %s\n",
1394 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1395 seq_printf(m, "SW control enabled: %s\n",
1396 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1397 GEN6_RP_MEDIA_SW_MODE));
1398 seq_printf(m, "RC6 Enabled: %s\n",
1399 yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1400 GEN6_RC_CTL_EI_MODE(1))));
1401 seq_printf(m, "Render Power Well: %s\n",
1402 (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1403 seq_printf(m, "Media Power Well: %s\n",
1404 (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1405
1406 seq_printf(m, "Render RC6 residency since boot: %u\n",
1407 I915_READ(VLV_GT_RENDER_RC6));
1408 seq_printf(m, "Media RC6 residency since boot: %u\n",
1409 I915_READ(VLV_GT_MEDIA_RC6));
1410
1411 return i915_forcewake_domains(m, NULL);
1412 }
1413
1414 static int gen6_drpc_info(struct seq_file *m)
1415 {
1416 struct drm_info_node *node = m->private;
1417 struct drm_device *dev = node->minor->dev;
1418 struct drm_i915_private *dev_priv = dev->dev_private;
1419 u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1420 unsigned forcewake_count;
1421 int count = 0, ret;
1422
1423 ret = mutex_lock_interruptible(&dev->struct_mutex);
1424 if (ret)
1425 return ret;
1426 intel_runtime_pm_get(dev_priv);
1427
1428 spin_lock_irq(&dev_priv->uncore.lock);
1429 forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1430 spin_unlock_irq(&dev_priv->uncore.lock);
1431
1432 if (forcewake_count) {
1433 seq_puts(m, "RC information inaccurate because somebody "
1434 "holds a forcewake reference \n");
1435 } else {
1436 /* NB: we cannot use forcewake, else we read the wrong values */
1437 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1438 udelay(10);
1439 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1440 }
1441
1442 gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1443 trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1444
1445 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1446 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1447 mutex_unlock(&dev->struct_mutex);
1448 mutex_lock(&dev_priv->rps.hw_lock);
1449 sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1450 mutex_unlock(&dev_priv->rps.hw_lock);
1451
1452 intel_runtime_pm_put(dev_priv);
1453
1454 seq_printf(m, "Video Turbo Mode: %s\n",
1455 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1456 seq_printf(m, "HW control enabled: %s\n",
1457 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1458 seq_printf(m, "SW control enabled: %s\n",
1459 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1460 GEN6_RP_MEDIA_SW_MODE));
1461 seq_printf(m, "RC1e Enabled: %s\n",
1462 yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1463 seq_printf(m, "RC6 Enabled: %s\n",
1464 yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1465 seq_printf(m, "Deep RC6 Enabled: %s\n",
1466 yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1467 seq_printf(m, "Deepest RC6 Enabled: %s\n",
1468 yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1469 seq_puts(m, "Current RC state: ");
1470 switch (gt_core_status & GEN6_RCn_MASK) {
1471 case GEN6_RC0:
1472 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1473 seq_puts(m, "Core Power Down\n");
1474 else
1475 seq_puts(m, "on\n");
1476 break;
1477 case GEN6_RC3:
1478 seq_puts(m, "RC3\n");
1479 break;
1480 case GEN6_RC6:
1481 seq_puts(m, "RC6\n");
1482 break;
1483 case GEN6_RC7:
1484 seq_puts(m, "RC7\n");
1485 break;
1486 default:
1487 seq_puts(m, "Unknown\n");
1488 break;
1489 }
1490
1491 seq_printf(m, "Core Power Down: %s\n",
1492 yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1493
1494 /* Not exactly sure what this is */
1495 seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1496 I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1497 seq_printf(m, "RC6 residency since boot: %u\n",
1498 I915_READ(GEN6_GT_GFX_RC6));
1499 seq_printf(m, "RC6+ residency since boot: %u\n",
1500 I915_READ(GEN6_GT_GFX_RC6p));
1501 seq_printf(m, "RC6++ residency since boot: %u\n",
1502 I915_READ(GEN6_GT_GFX_RC6pp));
1503
1504 seq_printf(m, "RC6 voltage: %dmV\n",
1505 GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1506 seq_printf(m, "RC6+ voltage: %dmV\n",
1507 GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1508 seq_printf(m, "RC6++ voltage: %dmV\n",
1509 GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1510 return 0;
1511 }
1512
1513 static int i915_drpc_info(struct seq_file *m, void *unused)
1514 {
1515 struct drm_info_node *node = m->private;
1516 struct drm_device *dev = node->minor->dev;
1517
1518 if (IS_VALLEYVIEW(dev))
1519 return vlv_drpc_info(m);
1520 else if (INTEL_INFO(dev)->gen >= 6)
1521 return gen6_drpc_info(m);
1522 else
1523 return ironlake_drpc_info(m);
1524 }
1525
1526 static int i915_fbc_status(struct seq_file *m, void *unused)
1527 {
1528 struct drm_info_node *node = m->private;
1529 struct drm_device *dev = node->minor->dev;
1530 struct drm_i915_private *dev_priv = dev->dev_private;
1531
1532 if (!HAS_FBC(dev)) {
1533 seq_puts(m, "FBC unsupported on this chipset\n");
1534 return 0;
1535 }
1536
1537 intel_runtime_pm_get(dev_priv);
1538
1539 if (intel_fbc_enabled(dev)) {
1540 seq_puts(m, "FBC enabled\n");
1541 } else {
1542 seq_puts(m, "FBC disabled: ");
1543 switch (dev_priv->fbc.no_fbc_reason) {
1544 case FBC_OK:
1545 seq_puts(m, "FBC actived, but currently disabled in hardware");
1546 break;
1547 case FBC_UNSUPPORTED:
1548 seq_puts(m, "unsupported by this chipset");
1549 break;
1550 case FBC_NO_OUTPUT:
1551 seq_puts(m, "no outputs");
1552 break;
1553 case FBC_STOLEN_TOO_SMALL:
1554 seq_puts(m, "not enough stolen memory");
1555 break;
1556 case FBC_UNSUPPORTED_MODE:
1557 seq_puts(m, "mode not supported");
1558 break;
1559 case FBC_MODE_TOO_LARGE:
1560 seq_puts(m, "mode too large");
1561 break;
1562 case FBC_BAD_PLANE:
1563 seq_puts(m, "FBC unsupported on plane");
1564 break;
1565 case FBC_NOT_TILED:
1566 seq_puts(m, "scanout buffer not tiled");
1567 break;
1568 case FBC_MULTIPLE_PIPES:
1569 seq_puts(m, "multiple pipes are enabled");
1570 break;
1571 case FBC_MODULE_PARAM:
1572 seq_puts(m, "disabled per module param (default off)");
1573 break;
1574 case FBC_CHIP_DEFAULT:
1575 seq_puts(m, "disabled per chip default");
1576 break;
1577 default:
1578 seq_puts(m, "unknown reason");
1579 }
1580 seq_putc(m, '\n');
1581 }
1582
1583 intel_runtime_pm_put(dev_priv);
1584
1585 return 0;
1586 }
1587
1588 static int i915_fbc_fc_get(void *data, u64 *val)
1589 {
1590 struct drm_device *dev = data;
1591 struct drm_i915_private *dev_priv = dev->dev_private;
1592
1593 if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1594 return -ENODEV;
1595
1596 drm_modeset_lock_all(dev);
1597 *val = dev_priv->fbc.false_color;
1598 drm_modeset_unlock_all(dev);
1599
1600 return 0;
1601 }
1602
1603 static int i915_fbc_fc_set(void *data, u64 val)
1604 {
1605 struct drm_device *dev = data;
1606 struct drm_i915_private *dev_priv = dev->dev_private;
1607 u32 reg;
1608
1609 if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1610 return -ENODEV;
1611
1612 drm_modeset_lock_all(dev);
1613
1614 reg = I915_READ(ILK_DPFC_CONTROL);
1615 dev_priv->fbc.false_color = val;
1616
1617 I915_WRITE(ILK_DPFC_CONTROL, val ?
1618 (reg | FBC_CTL_FALSE_COLOR) :
1619 (reg & ~FBC_CTL_FALSE_COLOR));
1620
1621 drm_modeset_unlock_all(dev);
1622 return 0;
1623 }
1624
1625 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1626 i915_fbc_fc_get, i915_fbc_fc_set,
1627 "%llu\n");
1628
1629 static int i915_ips_status(struct seq_file *m, void *unused)
1630 {
1631 struct drm_info_node *node = m->private;
1632 struct drm_device *dev = node->minor->dev;
1633 struct drm_i915_private *dev_priv = dev->dev_private;
1634
1635 if (!HAS_IPS(dev)) {
1636 seq_puts(m, "not supported\n");
1637 return 0;
1638 }
1639
1640 intel_runtime_pm_get(dev_priv);
1641
1642 seq_printf(m, "Enabled by kernel parameter: %s\n",
1643 yesno(i915.enable_ips));
1644
1645 if (INTEL_INFO(dev)->gen >= 8) {
1646 seq_puts(m, "Currently: unknown\n");
1647 } else {
1648 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1649 seq_puts(m, "Currently: enabled\n");
1650 else
1651 seq_puts(m, "Currently: disabled\n");
1652 }
1653
1654 intel_runtime_pm_put(dev_priv);
1655
1656 return 0;
1657 }
1658
1659 static int i915_sr_status(struct seq_file *m, void *unused)
1660 {
1661 struct drm_info_node *node = m->private;
1662 struct drm_device *dev = node->minor->dev;
1663 struct drm_i915_private *dev_priv = dev->dev_private;
1664 bool sr_enabled = false;
1665
1666 intel_runtime_pm_get(dev_priv);
1667
1668 if (HAS_PCH_SPLIT(dev))
1669 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1670 else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1671 IS_I945G(dev) || IS_I945GM(dev))
1672 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1673 else if (IS_I915GM(dev))
1674 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1675 else if (IS_PINEVIEW(dev))
1676 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1677 else if (IS_VALLEYVIEW(dev))
1678 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1679
1680 intel_runtime_pm_put(dev_priv);
1681
1682 seq_printf(m, "self-refresh: %s\n",
1683 sr_enabled ? "enabled" : "disabled");
1684
1685 return 0;
1686 }
1687
1688 static int i915_emon_status(struct seq_file *m, void *unused)
1689 {
1690 struct drm_info_node *node = m->private;
1691 struct drm_device *dev = node->minor->dev;
1692 struct drm_i915_private *dev_priv = dev->dev_private;
1693 unsigned long temp, chipset, gfx;
1694 int ret;
1695
1696 if (!IS_GEN5(dev))
1697 return -ENODEV;
1698
1699 ret = mutex_lock_interruptible(&dev->struct_mutex);
1700 if (ret)
1701 return ret;
1702
1703 temp = i915_mch_val(dev_priv);
1704 chipset = i915_chipset_val(dev_priv);
1705 gfx = i915_gfx_val(dev_priv);
1706 mutex_unlock(&dev->struct_mutex);
1707
1708 seq_printf(m, "GMCH temp: %ld\n", temp);
1709 seq_printf(m, "Chipset power: %ld\n", chipset);
1710 seq_printf(m, "GFX power: %ld\n", gfx);
1711 seq_printf(m, "Total power: %ld\n", chipset + gfx);
1712
1713 return 0;
1714 }
1715
1716 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1717 {
1718 struct drm_info_node *node = m->private;
1719 struct drm_device *dev = node->minor->dev;
1720 struct drm_i915_private *dev_priv = dev->dev_private;
1721 int ret = 0;
1722 int gpu_freq, ia_freq;
1723
1724 if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1725 seq_puts(m, "unsupported on this chipset\n");
1726 return 0;
1727 }
1728
1729 intel_runtime_pm_get(dev_priv);
1730
1731 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1732
1733 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1734 if (ret)
1735 goto out;
1736
1737 seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1738
1739 for (gpu_freq = dev_priv->rps.min_freq_softlimit;
1740 gpu_freq <= dev_priv->rps.max_freq_softlimit;
1741 gpu_freq++) {
1742 ia_freq = gpu_freq;
1743 sandybridge_pcode_read(dev_priv,
1744 GEN6_PCODE_READ_MIN_FREQ_TABLE,
1745 &ia_freq);
1746 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1747 intel_gpu_freq(dev_priv, gpu_freq),
1748 ((ia_freq >> 0) & 0xff) * 100,
1749 ((ia_freq >> 8) & 0xff) * 100);
1750 }
1751
1752 mutex_unlock(&dev_priv->rps.hw_lock);
1753
1754 out:
1755 intel_runtime_pm_put(dev_priv);
1756 return ret;
1757 }
1758
1759 static int i915_opregion(struct seq_file *m, void *unused)
1760 {
1761 struct drm_info_node *node = m->private;
1762 struct drm_device *dev = node->minor->dev;
1763 struct drm_i915_private *dev_priv = dev->dev_private;
1764 struct intel_opregion *opregion = &dev_priv->opregion;
1765 void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1766 int ret;
1767
1768 if (data == NULL)
1769 return -ENOMEM;
1770
1771 ret = mutex_lock_interruptible(&dev->struct_mutex);
1772 if (ret)
1773 goto out;
1774
1775 if (opregion->header) {
1776 memcpy_fromio(data, opregion->header, OPREGION_SIZE);
1777 seq_write(m, data, OPREGION_SIZE);
1778 }
1779
1780 mutex_unlock(&dev->struct_mutex);
1781
1782 out:
1783 kfree(data);
1784 return 0;
1785 }
1786
1787 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1788 {
1789 struct drm_info_node *node = m->private;
1790 struct drm_device *dev = node->minor->dev;
1791 struct intel_fbdev *ifbdev = NULL;
1792 struct intel_framebuffer *fb;
1793
1794 #ifdef CONFIG_DRM_I915_FBDEV
1795 struct drm_i915_private *dev_priv = dev->dev_private;
1796
1797 ifbdev = dev_priv->fbdev;
1798 fb = to_intel_framebuffer(ifbdev->helper.fb);
1799
1800 seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1801 fb->base.width,
1802 fb->base.height,
1803 fb->base.depth,
1804 fb->base.bits_per_pixel,
1805 fb->base.modifier[0],
1806 atomic_read(&fb->base.refcount.refcount));
1807 describe_obj(m, fb->obj);
1808 seq_putc(m, '\n');
1809 #endif
1810
1811 mutex_lock(&dev->mode_config.fb_lock);
1812 list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1813 if (ifbdev && &fb->base == ifbdev->helper.fb)
1814 continue;
1815
1816 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1817 fb->base.width,
1818 fb->base.height,
1819 fb->base.depth,
1820 fb->base.bits_per_pixel,
1821 fb->base.modifier[0],
1822 atomic_read(&fb->base.refcount.refcount));
1823 describe_obj(m, fb->obj);
1824 seq_putc(m, '\n');
1825 }
1826 mutex_unlock(&dev->mode_config.fb_lock);
1827
1828 return 0;
1829 }
1830
1831 static void describe_ctx_ringbuf(struct seq_file *m,
1832 struct intel_ringbuffer *ringbuf)
1833 {
1834 seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1835 ringbuf->space, ringbuf->head, ringbuf->tail,
1836 ringbuf->last_retired_head);
1837 }
1838
1839 static int i915_context_status(struct seq_file *m, void *unused)
1840 {
1841 struct drm_info_node *node = m->private;
1842 struct drm_device *dev = node->minor->dev;
1843 struct drm_i915_private *dev_priv = dev->dev_private;
1844 struct intel_engine_cs *ring;
1845 struct intel_context *ctx;
1846 int ret, i;
1847
1848 ret = mutex_lock_interruptible(&dev->struct_mutex);
1849 if (ret)
1850 return ret;
1851
1852 list_for_each_entry(ctx, &dev_priv->context_list, link) {
1853 if (!i915.enable_execlists &&
1854 ctx->legacy_hw_ctx.rcs_state == NULL)
1855 continue;
1856
1857 seq_puts(m, "HW context ");
1858 describe_ctx(m, ctx);
1859 for_each_ring(ring, dev_priv, i) {
1860 if (ring->default_context == ctx)
1861 seq_printf(m, "(default context %s) ",
1862 ring->name);
1863 }
1864
1865 if (i915.enable_execlists) {
1866 seq_putc(m, '\n');
1867 for_each_ring(ring, dev_priv, i) {
1868 struct drm_i915_gem_object *ctx_obj =
1869 ctx->engine[i].state;
1870 struct intel_ringbuffer *ringbuf =
1871 ctx->engine[i].ringbuf;
1872
1873 seq_printf(m, "%s: ", ring->name);
1874 if (ctx_obj)
1875 describe_obj(m, ctx_obj);
1876 if (ringbuf)
1877 describe_ctx_ringbuf(m, ringbuf);
1878 seq_putc(m, '\n');
1879 }
1880 } else {
1881 describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1882 }
1883
1884 seq_putc(m, '\n');
1885 }
1886
1887 mutex_unlock(&dev->struct_mutex);
1888
1889 return 0;
1890 }
1891
1892 static void i915_dump_lrc_obj(struct seq_file *m,
1893 struct intel_engine_cs *ring,
1894 struct drm_i915_gem_object *ctx_obj)
1895 {
1896 struct page *page;
1897 uint32_t *reg_state;
1898 int j;
1899 unsigned long ggtt_offset = 0;
1900
1901 if (ctx_obj == NULL) {
1902 seq_printf(m, "Context on %s with no gem object\n",
1903 ring->name);
1904 return;
1905 }
1906
1907 seq_printf(m, "CONTEXT: %s %u\n", ring->name,
1908 intel_execlists_ctx_id(ctx_obj));
1909
1910 if (!i915_gem_obj_ggtt_bound(ctx_obj))
1911 seq_puts(m, "\tNot bound in GGTT\n");
1912 else
1913 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
1914
1915 if (i915_gem_object_get_pages(ctx_obj)) {
1916 seq_puts(m, "\tFailed to get pages for context object\n");
1917 return;
1918 }
1919
1920 page = i915_gem_object_get_page(ctx_obj, 1);
1921 if (!WARN_ON(page == NULL)) {
1922 reg_state = kmap_atomic(page);
1923
1924 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
1925 seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
1926 ggtt_offset + 4096 + (j * 4),
1927 reg_state[j], reg_state[j + 1],
1928 reg_state[j + 2], reg_state[j + 3]);
1929 }
1930 kunmap_atomic(reg_state);
1931 }
1932
1933 seq_putc(m, '\n');
1934 }
1935
1936 static int i915_dump_lrc(struct seq_file *m, void *unused)
1937 {
1938 struct drm_info_node *node = (struct drm_info_node *) m->private;
1939 struct drm_device *dev = node->minor->dev;
1940 struct drm_i915_private *dev_priv = dev->dev_private;
1941 struct intel_engine_cs *ring;
1942 struct intel_context *ctx;
1943 int ret, i;
1944
1945 if (!i915.enable_execlists) {
1946 seq_printf(m, "Logical Ring Contexts are disabled\n");
1947 return 0;
1948 }
1949
1950 ret = mutex_lock_interruptible(&dev->struct_mutex);
1951 if (ret)
1952 return ret;
1953
1954 list_for_each_entry(ctx, &dev_priv->context_list, link) {
1955 for_each_ring(ring, dev_priv, i) {
1956 if (ring->default_context != ctx)
1957 i915_dump_lrc_obj(m, ring,
1958 ctx->engine[i].state);
1959 }
1960 }
1961
1962 mutex_unlock(&dev->struct_mutex);
1963
1964 return 0;
1965 }
1966
1967 static int i915_execlists(struct seq_file *m, void *data)
1968 {
1969 struct drm_info_node *node = (struct drm_info_node *)m->private;
1970 struct drm_device *dev = node->minor->dev;
1971 struct drm_i915_private *dev_priv = dev->dev_private;
1972 struct intel_engine_cs *ring;
1973 u32 status_pointer;
1974 u8 read_pointer;
1975 u8 write_pointer;
1976 u32 status;
1977 u32 ctx_id;
1978 struct list_head *cursor;
1979 int ring_id, i;
1980 int ret;
1981
1982 if (!i915.enable_execlists) {
1983 seq_puts(m, "Logical Ring Contexts are disabled\n");
1984 return 0;
1985 }
1986
1987 ret = mutex_lock_interruptible(&dev->struct_mutex);
1988 if (ret)
1989 return ret;
1990
1991 intel_runtime_pm_get(dev_priv);
1992
1993 for_each_ring(ring, dev_priv, ring_id) {
1994 struct drm_i915_gem_request *head_req = NULL;
1995 int count = 0;
1996 unsigned long flags;
1997
1998 seq_printf(m, "%s\n", ring->name);
1999
2000 status = I915_READ(RING_EXECLIST_STATUS(ring));
2001 ctx_id = I915_READ(RING_EXECLIST_STATUS(ring) + 4);
2002 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2003 status, ctx_id);
2004
2005 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
2006 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2007
2008 read_pointer = ring->next_context_status_buffer;
2009 write_pointer = status_pointer & 0x07;
2010 if (read_pointer > write_pointer)
2011 write_pointer += 6;
2012 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2013 read_pointer, write_pointer);
2014
2015 for (i = 0; i < 6; i++) {
2016 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i);
2017 ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i + 4);
2018
2019 seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2020 i, status, ctx_id);
2021 }
2022
2023 spin_lock_irqsave(&ring->execlist_lock, flags);
2024 list_for_each(cursor, &ring->execlist_queue)
2025 count++;
2026 head_req = list_first_entry_or_null(&ring->execlist_queue,
2027 struct drm_i915_gem_request, execlist_link);
2028 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2029
2030 seq_printf(m, "\t%d requests in queue\n", count);
2031 if (head_req) {
2032 struct drm_i915_gem_object *ctx_obj;
2033
2034 ctx_obj = head_req->ctx->engine[ring_id].state;
2035 seq_printf(m, "\tHead request id: %u\n",
2036 intel_execlists_ctx_id(ctx_obj));
2037 seq_printf(m, "\tHead request tail: %u\n",
2038 head_req->tail);
2039 }
2040
2041 seq_putc(m, '\n');
2042 }
2043
2044 intel_runtime_pm_put(dev_priv);
2045 mutex_unlock(&dev->struct_mutex);
2046
2047 return 0;
2048 }
2049
2050 static const char *swizzle_string(unsigned swizzle)
2051 {
2052 switch (swizzle) {
2053 case I915_BIT_6_SWIZZLE_NONE:
2054 return "none";
2055 case I915_BIT_6_SWIZZLE_9:
2056 return "bit9";
2057 case I915_BIT_6_SWIZZLE_9_10:
2058 return "bit9/bit10";
2059 case I915_BIT_6_SWIZZLE_9_11:
2060 return "bit9/bit11";
2061 case I915_BIT_6_SWIZZLE_9_10_11:
2062 return "bit9/bit10/bit11";
2063 case I915_BIT_6_SWIZZLE_9_17:
2064 return "bit9/bit17";
2065 case I915_BIT_6_SWIZZLE_9_10_17:
2066 return "bit9/bit10/bit17";
2067 case I915_BIT_6_SWIZZLE_UNKNOWN:
2068 return "unknown";
2069 }
2070
2071 return "bug";
2072 }
2073
2074 static int i915_swizzle_info(struct seq_file *m, void *data)
2075 {
2076 struct drm_info_node *node = m->private;
2077 struct drm_device *dev = node->minor->dev;
2078 struct drm_i915_private *dev_priv = dev->dev_private;
2079 int ret;
2080
2081 ret = mutex_lock_interruptible(&dev->struct_mutex);
2082 if (ret)
2083 return ret;
2084 intel_runtime_pm_get(dev_priv);
2085
2086 seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2087 swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2088 seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2089 swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2090
2091 if (IS_GEN3(dev) || IS_GEN4(dev)) {
2092 seq_printf(m, "DDC = 0x%08x\n",
2093 I915_READ(DCC));
2094 seq_printf(m, "DDC2 = 0x%08x\n",
2095 I915_READ(DCC2));
2096 seq_printf(m, "C0DRB3 = 0x%04x\n",
2097 I915_READ16(C0DRB3));
2098 seq_printf(m, "C1DRB3 = 0x%04x\n",
2099 I915_READ16(C1DRB3));
2100 } else if (INTEL_INFO(dev)->gen >= 6) {
2101 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2102 I915_READ(MAD_DIMM_C0));
2103 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2104 I915_READ(MAD_DIMM_C1));
2105 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2106 I915_READ(MAD_DIMM_C2));
2107 seq_printf(m, "TILECTL = 0x%08x\n",
2108 I915_READ(TILECTL));
2109 if (INTEL_INFO(dev)->gen >= 8)
2110 seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2111 I915_READ(GAMTARBMODE));
2112 else
2113 seq_printf(m, "ARB_MODE = 0x%08x\n",
2114 I915_READ(ARB_MODE));
2115 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2116 I915_READ(DISP_ARB_CTL));
2117 }
2118
2119 if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2120 seq_puts(m, "L-shaped memory detected\n");
2121
2122 intel_runtime_pm_put(dev_priv);
2123 mutex_unlock(&dev->struct_mutex);
2124
2125 return 0;
2126 }
2127
2128 static int per_file_ctx(int id, void *ptr, void *data)
2129 {
2130 struct intel_context *ctx = ptr;
2131 struct seq_file *m = data;
2132 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2133
2134 if (!ppgtt) {
2135 seq_printf(m, " no ppgtt for context %d\n",
2136 ctx->user_handle);
2137 return 0;
2138 }
2139
2140 if (i915_gem_context_is_default(ctx))
2141 seq_puts(m, " default context:\n");
2142 else
2143 seq_printf(m, " context %d:\n", ctx->user_handle);
2144 ppgtt->debug_dump(ppgtt, m);
2145
2146 return 0;
2147 }
2148
2149 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2150 {
2151 struct drm_i915_private *dev_priv = dev->dev_private;
2152 struct intel_engine_cs *ring;
2153 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2154 int unused, i;
2155
2156 if (!ppgtt)
2157 return;
2158
2159 seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages);
2160 seq_printf(m, "Page tables: %d\n", ppgtt->num_pd_entries);
2161 for_each_ring(ring, dev_priv, unused) {
2162 seq_printf(m, "%s\n", ring->name);
2163 for (i = 0; i < 4; i++) {
2164 u32 offset = 0x270 + i * 8;
2165 u64 pdp = I915_READ(ring->mmio_base + offset + 4);
2166 pdp <<= 32;
2167 pdp |= I915_READ(ring->mmio_base + offset);
2168 seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2169 }
2170 }
2171 }
2172
2173 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2174 {
2175 struct drm_i915_private *dev_priv = dev->dev_private;
2176 struct intel_engine_cs *ring;
2177 struct drm_file *file;
2178 int i;
2179
2180 if (INTEL_INFO(dev)->gen == 6)
2181 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2182
2183 for_each_ring(ring, dev_priv, i) {
2184 seq_printf(m, "%s\n", ring->name);
2185 if (INTEL_INFO(dev)->gen == 7)
2186 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2187 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2188 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2189 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2190 }
2191 if (dev_priv->mm.aliasing_ppgtt) {
2192 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2193
2194 seq_puts(m, "aliasing PPGTT:\n");
2195 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.pd_offset);
2196
2197 ppgtt->debug_dump(ppgtt, m);
2198 }
2199
2200 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2201 struct drm_i915_file_private *file_priv = file->driver_priv;
2202
2203 seq_printf(m, "proc: %s\n",
2204 get_pid_task(file->pid, PIDTYPE_PID)->comm);
2205 idr_for_each(&file_priv->context_idr, per_file_ctx, m);
2206 }
2207 seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2208 }
2209
2210 static int i915_ppgtt_info(struct seq_file *m, void *data)
2211 {
2212 struct drm_info_node *node = m->private;
2213 struct drm_device *dev = node->minor->dev;
2214 struct drm_i915_private *dev_priv = dev->dev_private;
2215
2216 int ret = mutex_lock_interruptible(&dev->struct_mutex);
2217 if (ret)
2218 return ret;
2219 intel_runtime_pm_get(dev_priv);
2220
2221 if (INTEL_INFO(dev)->gen >= 8)
2222 gen8_ppgtt_info(m, dev);
2223 else if (INTEL_INFO(dev)->gen >= 6)
2224 gen6_ppgtt_info(m, dev);
2225
2226 intel_runtime_pm_put(dev_priv);
2227 mutex_unlock(&dev->struct_mutex);
2228
2229 return 0;
2230 }
2231
2232 static int i915_llc(struct seq_file *m, void *data)
2233 {
2234 struct drm_info_node *node = m->private;
2235 struct drm_device *dev = node->minor->dev;
2236 struct drm_i915_private *dev_priv = dev->dev_private;
2237
2238 /* Size calculation for LLC is a bit of a pain. Ignore for now. */
2239 seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2240 seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2241
2242 return 0;
2243 }
2244
2245 static int i915_edp_psr_status(struct seq_file *m, void *data)
2246 {
2247 struct drm_info_node *node = m->private;
2248 struct drm_device *dev = node->minor->dev;
2249 struct drm_i915_private *dev_priv = dev->dev_private;
2250 u32 psrperf = 0;
2251 u32 stat[3];
2252 enum pipe pipe;
2253 bool enabled = false;
2254
2255 if (!HAS_PSR(dev)) {
2256 seq_puts(m, "PSR not supported\n");
2257 return 0;
2258 }
2259
2260 intel_runtime_pm_get(dev_priv);
2261
2262 mutex_lock(&dev_priv->psr.lock);
2263 seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2264 seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2265 seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2266 seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2267 seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2268 dev_priv->psr.busy_frontbuffer_bits);
2269 seq_printf(m, "Re-enable work scheduled: %s\n",
2270 yesno(work_busy(&dev_priv->psr.work.work)));
2271
2272 if (HAS_DDI(dev))
2273 enabled = I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
2274 else {
2275 for_each_pipe(dev_priv, pipe) {
2276 stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2277 VLV_EDP_PSR_CURR_STATE_MASK;
2278 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2279 (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2280 enabled = true;
2281 }
2282 }
2283 seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2284
2285 if (!HAS_DDI(dev))
2286 for_each_pipe(dev_priv, pipe) {
2287 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2288 (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2289 seq_printf(m, " pipe %c", pipe_name(pipe));
2290 }
2291 seq_puts(m, "\n");
2292
2293 seq_printf(m, "Link standby: %s\n",
2294 yesno((bool)dev_priv->psr.link_standby));
2295
2296 /* CHV PSR has no kind of performance counter */
2297 if (HAS_DDI(dev)) {
2298 psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
2299 EDP_PSR_PERF_CNT_MASK;
2300
2301 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2302 }
2303 mutex_unlock(&dev_priv->psr.lock);
2304
2305 intel_runtime_pm_put(dev_priv);
2306 return 0;
2307 }
2308
2309 static int i915_sink_crc(struct seq_file *m, void *data)
2310 {
2311 struct drm_info_node *node = m->private;
2312 struct drm_device *dev = node->minor->dev;
2313 struct intel_encoder *encoder;
2314 struct intel_connector *connector;
2315 struct intel_dp *intel_dp = NULL;
2316 int ret;
2317 u8 crc[6];
2318
2319 drm_modeset_lock_all(dev);
2320 for_each_intel_connector(dev, connector) {
2321
2322 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2323 continue;
2324
2325 if (!connector->base.encoder)
2326 continue;
2327
2328 encoder = to_intel_encoder(connector->base.encoder);
2329 if (encoder->type != INTEL_OUTPUT_EDP)
2330 continue;
2331
2332 intel_dp = enc_to_intel_dp(&encoder->base);
2333
2334 ret = intel_dp_sink_crc(intel_dp, crc);
2335 if (ret)
2336 goto out;
2337
2338 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2339 crc[0], crc[1], crc[2],
2340 crc[3], crc[4], crc[5]);
2341 goto out;
2342 }
2343 ret = -ENODEV;
2344 out:
2345 drm_modeset_unlock_all(dev);
2346 return ret;
2347 }
2348
2349 static int i915_energy_uJ(struct seq_file *m, void *data)
2350 {
2351 struct drm_info_node *node = m->private;
2352 struct drm_device *dev = node->minor->dev;
2353 struct drm_i915_private *dev_priv = dev->dev_private;
2354 u64 power;
2355 u32 units;
2356
2357 if (INTEL_INFO(dev)->gen < 6)
2358 return -ENODEV;
2359
2360 intel_runtime_pm_get(dev_priv);
2361
2362 rdmsrl(MSR_RAPL_POWER_UNIT, power);
2363 power = (power & 0x1f00) >> 8;
2364 units = 1000000 / (1 << power); /* convert to uJ */
2365 power = I915_READ(MCH_SECP_NRG_STTS);
2366 power *= units;
2367
2368 intel_runtime_pm_put(dev_priv);
2369
2370 seq_printf(m, "%llu", (long long unsigned)power);
2371
2372 return 0;
2373 }
2374
2375 static int i915_pc8_status(struct seq_file *m, void *unused)
2376 {
2377 struct drm_info_node *node = m->private;
2378 struct drm_device *dev = node->minor->dev;
2379 struct drm_i915_private *dev_priv = dev->dev_private;
2380
2381 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2382 seq_puts(m, "not supported\n");
2383 return 0;
2384 }
2385
2386 seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2387 seq_printf(m, "IRQs disabled: %s\n",
2388 yesno(!intel_irqs_enabled(dev_priv)));
2389
2390 return 0;
2391 }
2392
2393 static const char *power_domain_str(enum intel_display_power_domain domain)
2394 {
2395 switch (domain) {
2396 case POWER_DOMAIN_PIPE_A:
2397 return "PIPE_A";
2398 case POWER_DOMAIN_PIPE_B:
2399 return "PIPE_B";
2400 case POWER_DOMAIN_PIPE_C:
2401 return "PIPE_C";
2402 case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2403 return "PIPE_A_PANEL_FITTER";
2404 case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2405 return "PIPE_B_PANEL_FITTER";
2406 case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2407 return "PIPE_C_PANEL_FITTER";
2408 case POWER_DOMAIN_TRANSCODER_A:
2409 return "TRANSCODER_A";
2410 case POWER_DOMAIN_TRANSCODER_B:
2411 return "TRANSCODER_B";
2412 case POWER_DOMAIN_TRANSCODER_C:
2413 return "TRANSCODER_C";
2414 case POWER_DOMAIN_TRANSCODER_EDP:
2415 return "TRANSCODER_EDP";
2416 case POWER_DOMAIN_PORT_DDI_A_2_LANES:
2417 return "PORT_DDI_A_2_LANES";
2418 case POWER_DOMAIN_PORT_DDI_A_4_LANES:
2419 return "PORT_DDI_A_4_LANES";
2420 case POWER_DOMAIN_PORT_DDI_B_2_LANES:
2421 return "PORT_DDI_B_2_LANES";
2422 case POWER_DOMAIN_PORT_DDI_B_4_LANES:
2423 return "PORT_DDI_B_4_LANES";
2424 case POWER_DOMAIN_PORT_DDI_C_2_LANES:
2425 return "PORT_DDI_C_2_LANES";
2426 case POWER_DOMAIN_PORT_DDI_C_4_LANES:
2427 return "PORT_DDI_C_4_LANES";
2428 case POWER_DOMAIN_PORT_DDI_D_2_LANES:
2429 return "PORT_DDI_D_2_LANES";
2430 case POWER_DOMAIN_PORT_DDI_D_4_LANES:
2431 return "PORT_DDI_D_4_LANES";
2432 case POWER_DOMAIN_PORT_DSI:
2433 return "PORT_DSI";
2434 case POWER_DOMAIN_PORT_CRT:
2435 return "PORT_CRT";
2436 case POWER_DOMAIN_PORT_OTHER:
2437 return "PORT_OTHER";
2438 case POWER_DOMAIN_VGA:
2439 return "VGA";
2440 case POWER_DOMAIN_AUDIO:
2441 return "AUDIO";
2442 case POWER_DOMAIN_PLLS:
2443 return "PLLS";
2444 case POWER_DOMAIN_AUX_A:
2445 return "AUX_A";
2446 case POWER_DOMAIN_AUX_B:
2447 return "AUX_B";
2448 case POWER_DOMAIN_AUX_C:
2449 return "AUX_C";
2450 case POWER_DOMAIN_AUX_D:
2451 return "AUX_D";
2452 case POWER_DOMAIN_INIT:
2453 return "INIT";
2454 default:
2455 MISSING_CASE(domain);
2456 return "?";
2457 }
2458 }
2459
2460 static int i915_power_domain_info(struct seq_file *m, void *unused)
2461 {
2462 struct drm_info_node *node = m->private;
2463 struct drm_device *dev = node->minor->dev;
2464 struct drm_i915_private *dev_priv = dev->dev_private;
2465 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2466 int i;
2467
2468 mutex_lock(&power_domains->lock);
2469
2470 seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2471 for (i = 0; i < power_domains->power_well_count; i++) {
2472 struct i915_power_well *power_well;
2473 enum intel_display_power_domain power_domain;
2474
2475 power_well = &power_domains->power_wells[i];
2476 seq_printf(m, "%-25s %d\n", power_well->name,
2477 power_well->count);
2478
2479 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2480 power_domain++) {
2481 if (!(BIT(power_domain) & power_well->domains))
2482 continue;
2483
2484 seq_printf(m, " %-23s %d\n",
2485 power_domain_str(power_domain),
2486 power_domains->domain_use_count[power_domain]);
2487 }
2488 }
2489
2490 mutex_unlock(&power_domains->lock);
2491
2492 return 0;
2493 }
2494
2495 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2496 struct drm_display_mode *mode)
2497 {
2498 int i;
2499
2500 for (i = 0; i < tabs; i++)
2501 seq_putc(m, '\t');
2502
2503 seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2504 mode->base.id, mode->name,
2505 mode->vrefresh, mode->clock,
2506 mode->hdisplay, mode->hsync_start,
2507 mode->hsync_end, mode->htotal,
2508 mode->vdisplay, mode->vsync_start,
2509 mode->vsync_end, mode->vtotal,
2510 mode->type, mode->flags);
2511 }
2512
2513 static void intel_encoder_info(struct seq_file *m,
2514 struct intel_crtc *intel_crtc,
2515 struct intel_encoder *intel_encoder)
2516 {
2517 struct drm_info_node *node = m->private;
2518 struct drm_device *dev = node->minor->dev;
2519 struct drm_crtc *crtc = &intel_crtc->base;
2520 struct intel_connector *intel_connector;
2521 struct drm_encoder *encoder;
2522
2523 encoder = &intel_encoder->base;
2524 seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2525 encoder->base.id, encoder->name);
2526 for_each_connector_on_encoder(dev, encoder, intel_connector) {
2527 struct drm_connector *connector = &intel_connector->base;
2528 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2529 connector->base.id,
2530 connector->name,
2531 drm_get_connector_status_name(connector->status));
2532 if (connector->status == connector_status_connected) {
2533 struct drm_display_mode *mode = &crtc->mode;
2534 seq_printf(m, ", mode:\n");
2535 intel_seq_print_mode(m, 2, mode);
2536 } else {
2537 seq_putc(m, '\n');
2538 }
2539 }
2540 }
2541
2542 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2543 {
2544 struct drm_info_node *node = m->private;
2545 struct drm_device *dev = node->minor->dev;
2546 struct drm_crtc *crtc = &intel_crtc->base;
2547 struct intel_encoder *intel_encoder;
2548
2549 if (crtc->primary->fb)
2550 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2551 crtc->primary->fb->base.id, crtc->x, crtc->y,
2552 crtc->primary->fb->width, crtc->primary->fb->height);
2553 else
2554 seq_puts(m, "\tprimary plane disabled\n");
2555 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2556 intel_encoder_info(m, intel_crtc, intel_encoder);
2557 }
2558
2559 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2560 {
2561 struct drm_display_mode *mode = panel->fixed_mode;
2562
2563 seq_printf(m, "\tfixed mode:\n");
2564 intel_seq_print_mode(m, 2, mode);
2565 }
2566
2567 static void intel_dp_info(struct seq_file *m,
2568 struct intel_connector *intel_connector)
2569 {
2570 struct intel_encoder *intel_encoder = intel_connector->encoder;
2571 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2572
2573 seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2574 seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
2575 "no");
2576 if (intel_encoder->type == INTEL_OUTPUT_EDP)
2577 intel_panel_info(m, &intel_connector->panel);
2578 }
2579
2580 static void intel_hdmi_info(struct seq_file *m,
2581 struct intel_connector *intel_connector)
2582 {
2583 struct intel_encoder *intel_encoder = intel_connector->encoder;
2584 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2585
2586 seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
2587 "no");
2588 }
2589
2590 static void intel_lvds_info(struct seq_file *m,
2591 struct intel_connector *intel_connector)
2592 {
2593 intel_panel_info(m, &intel_connector->panel);
2594 }
2595
2596 static void intel_connector_info(struct seq_file *m,
2597 struct drm_connector *connector)
2598 {
2599 struct intel_connector *intel_connector = to_intel_connector(connector);
2600 struct intel_encoder *intel_encoder = intel_connector->encoder;
2601 struct drm_display_mode *mode;
2602
2603 seq_printf(m, "connector %d: type %s, status: %s\n",
2604 connector->base.id, connector->name,
2605 drm_get_connector_status_name(connector->status));
2606 if (connector->status == connector_status_connected) {
2607 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2608 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2609 connector->display_info.width_mm,
2610 connector->display_info.height_mm);
2611 seq_printf(m, "\tsubpixel order: %s\n",
2612 drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2613 seq_printf(m, "\tCEA rev: %d\n",
2614 connector->display_info.cea_rev);
2615 }
2616 if (intel_encoder) {
2617 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2618 intel_encoder->type == INTEL_OUTPUT_EDP)
2619 intel_dp_info(m, intel_connector);
2620 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2621 intel_hdmi_info(m, intel_connector);
2622 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2623 intel_lvds_info(m, intel_connector);
2624 }
2625
2626 seq_printf(m, "\tmodes:\n");
2627 list_for_each_entry(mode, &connector->modes, head)
2628 intel_seq_print_mode(m, 2, mode);
2629 }
2630
2631 static bool cursor_active(struct drm_device *dev, int pipe)
2632 {
2633 struct drm_i915_private *dev_priv = dev->dev_private;
2634 u32 state;
2635
2636 if (IS_845G(dev) || IS_I865G(dev))
2637 state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
2638 else
2639 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2640
2641 return state;
2642 }
2643
2644 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2645 {
2646 struct drm_i915_private *dev_priv = dev->dev_private;
2647 u32 pos;
2648
2649 pos = I915_READ(CURPOS(pipe));
2650
2651 *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2652 if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2653 *x = -*x;
2654
2655 *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2656 if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2657 *y = -*y;
2658
2659 return cursor_active(dev, pipe);
2660 }
2661
2662 static int i915_display_info(struct seq_file *m, void *unused)
2663 {
2664 struct drm_info_node *node = m->private;
2665 struct drm_device *dev = node->minor->dev;
2666 struct drm_i915_private *dev_priv = dev->dev_private;
2667 struct intel_crtc *crtc;
2668 struct drm_connector *connector;
2669
2670 intel_runtime_pm_get(dev_priv);
2671 drm_modeset_lock_all(dev);
2672 seq_printf(m, "CRTC info\n");
2673 seq_printf(m, "---------\n");
2674 for_each_intel_crtc(dev, crtc) {
2675 bool active;
2676 int x, y;
2677
2678 seq_printf(m, "CRTC %d: pipe: %c, active=%s (size=%dx%d)\n",
2679 crtc->base.base.id, pipe_name(crtc->pipe),
2680 yesno(crtc->active), crtc->config->pipe_src_w,
2681 crtc->config->pipe_src_h);
2682 if (crtc->active) {
2683 intel_crtc_info(m, crtc);
2684
2685 active = cursor_position(dev, crtc->pipe, &x, &y);
2686 seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
2687 yesno(crtc->cursor_base),
2688 x, y, crtc->base.cursor->state->crtc_w,
2689 crtc->base.cursor->state->crtc_h,
2690 crtc->cursor_addr, yesno(active));
2691 }
2692
2693 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
2694 yesno(!crtc->cpu_fifo_underrun_disabled),
2695 yesno(!crtc->pch_fifo_underrun_disabled));
2696 }
2697
2698 seq_printf(m, "\n");
2699 seq_printf(m, "Connector info\n");
2700 seq_printf(m, "--------------\n");
2701 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2702 intel_connector_info(m, connector);
2703 }
2704 drm_modeset_unlock_all(dev);
2705 intel_runtime_pm_put(dev_priv);
2706
2707 return 0;
2708 }
2709
2710 static int i915_semaphore_status(struct seq_file *m, void *unused)
2711 {
2712 struct drm_info_node *node = (struct drm_info_node *) m->private;
2713 struct drm_device *dev = node->minor->dev;
2714 struct drm_i915_private *dev_priv = dev->dev_private;
2715 struct intel_engine_cs *ring;
2716 int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
2717 int i, j, ret;
2718
2719 if (!i915_semaphore_is_enabled(dev)) {
2720 seq_puts(m, "Semaphores are disabled\n");
2721 return 0;
2722 }
2723
2724 ret = mutex_lock_interruptible(&dev->struct_mutex);
2725 if (ret)
2726 return ret;
2727 intel_runtime_pm_get(dev_priv);
2728
2729 if (IS_BROADWELL(dev)) {
2730 struct page *page;
2731 uint64_t *seqno;
2732
2733 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
2734
2735 seqno = (uint64_t *)kmap_atomic(page);
2736 for_each_ring(ring, dev_priv, i) {
2737 uint64_t offset;
2738
2739 seq_printf(m, "%s\n", ring->name);
2740
2741 seq_puts(m, " Last signal:");
2742 for (j = 0; j < num_rings; j++) {
2743 offset = i * I915_NUM_RINGS + j;
2744 seq_printf(m, "0x%08llx (0x%02llx) ",
2745 seqno[offset], offset * 8);
2746 }
2747 seq_putc(m, '\n');
2748
2749 seq_puts(m, " Last wait: ");
2750 for (j = 0; j < num_rings; j++) {
2751 offset = i + (j * I915_NUM_RINGS);
2752 seq_printf(m, "0x%08llx (0x%02llx) ",
2753 seqno[offset], offset * 8);
2754 }
2755 seq_putc(m, '\n');
2756
2757 }
2758 kunmap_atomic(seqno);
2759 } else {
2760 seq_puts(m, " Last signal:");
2761 for_each_ring(ring, dev_priv, i)
2762 for (j = 0; j < num_rings; j++)
2763 seq_printf(m, "0x%08x\n",
2764 I915_READ(ring->semaphore.mbox.signal[j]));
2765 seq_putc(m, '\n');
2766 }
2767
2768 seq_puts(m, "\nSync seqno:\n");
2769 for_each_ring(ring, dev_priv, i) {
2770 for (j = 0; j < num_rings; j++) {
2771 seq_printf(m, " 0x%08x ", ring->semaphore.sync_seqno[j]);
2772 }
2773 seq_putc(m, '\n');
2774 }
2775 seq_putc(m, '\n');
2776
2777 intel_runtime_pm_put(dev_priv);
2778 mutex_unlock(&dev->struct_mutex);
2779 return 0;
2780 }
2781
2782 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
2783 {
2784 struct drm_info_node *node = (struct drm_info_node *) m->private;
2785 struct drm_device *dev = node->minor->dev;
2786 struct drm_i915_private *dev_priv = dev->dev_private;
2787 int i;
2788
2789 drm_modeset_lock_all(dev);
2790 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2791 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
2792
2793 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
2794 seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
2795 pll->config.crtc_mask, pll->active, yesno(pll->on));
2796 seq_printf(m, " tracked hardware state:\n");
2797 seq_printf(m, " dpll: 0x%08x\n", pll->config.hw_state.dpll);
2798 seq_printf(m, " dpll_md: 0x%08x\n",
2799 pll->config.hw_state.dpll_md);
2800 seq_printf(m, " fp0: 0x%08x\n", pll->config.hw_state.fp0);
2801 seq_printf(m, " fp1: 0x%08x\n", pll->config.hw_state.fp1);
2802 seq_printf(m, " wrpll: 0x%08x\n", pll->config.hw_state.wrpll);
2803 }
2804 drm_modeset_unlock_all(dev);
2805
2806 return 0;
2807 }
2808
2809 static int i915_wa_registers(struct seq_file *m, void *unused)
2810 {
2811 int i;
2812 int ret;
2813 struct drm_info_node *node = (struct drm_info_node *) m->private;
2814 struct drm_device *dev = node->minor->dev;
2815 struct drm_i915_private *dev_priv = dev->dev_private;
2816
2817 ret = mutex_lock_interruptible(&dev->struct_mutex);
2818 if (ret)
2819 return ret;
2820
2821 intel_runtime_pm_get(dev_priv);
2822
2823 seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count);
2824 for (i = 0; i < dev_priv->workarounds.count; ++i) {
2825 u32 addr, mask, value, read;
2826 bool ok;
2827
2828 addr = dev_priv->workarounds.reg[i].addr;
2829 mask = dev_priv->workarounds.reg[i].mask;
2830 value = dev_priv->workarounds.reg[i].value;
2831 read = I915_READ(addr);
2832 ok = (value & mask) == (read & mask);
2833 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
2834 addr, value, mask, read, ok ? "OK" : "FAIL");
2835 }
2836
2837 intel_runtime_pm_put(dev_priv);
2838 mutex_unlock(&dev->struct_mutex);
2839
2840 return 0;
2841 }
2842
2843 static int i915_ddb_info(struct seq_file *m, void *unused)
2844 {
2845 struct drm_info_node *node = m->private;
2846 struct drm_device *dev = node->minor->dev;
2847 struct drm_i915_private *dev_priv = dev->dev_private;
2848 struct skl_ddb_allocation *ddb;
2849 struct skl_ddb_entry *entry;
2850 enum pipe pipe;
2851 int plane;
2852
2853 if (INTEL_INFO(dev)->gen < 9)
2854 return 0;
2855
2856 drm_modeset_lock_all(dev);
2857
2858 ddb = &dev_priv->wm.skl_hw.ddb;
2859
2860 seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
2861
2862 for_each_pipe(dev_priv, pipe) {
2863 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
2864
2865 for_each_plane(dev_priv, pipe, plane) {
2866 entry = &ddb->plane[pipe][plane];
2867 seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
2868 entry->start, entry->end,
2869 skl_ddb_entry_size(entry));
2870 }
2871
2872 entry = &ddb->cursor[pipe];
2873 seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
2874 entry->end, skl_ddb_entry_size(entry));
2875 }
2876
2877 drm_modeset_unlock_all(dev);
2878
2879 return 0;
2880 }
2881
2882 static void drrs_status_per_crtc(struct seq_file *m,
2883 struct drm_device *dev, struct intel_crtc *intel_crtc)
2884 {
2885 struct intel_encoder *intel_encoder;
2886 struct drm_i915_private *dev_priv = dev->dev_private;
2887 struct i915_drrs *drrs = &dev_priv->drrs;
2888 int vrefresh = 0;
2889
2890 for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
2891 /* Encoder connected on this CRTC */
2892 switch (intel_encoder->type) {
2893 case INTEL_OUTPUT_EDP:
2894 seq_puts(m, "eDP:\n");
2895 break;
2896 case INTEL_OUTPUT_DSI:
2897 seq_puts(m, "DSI:\n");
2898 break;
2899 case INTEL_OUTPUT_HDMI:
2900 seq_puts(m, "HDMI:\n");
2901 break;
2902 case INTEL_OUTPUT_DISPLAYPORT:
2903 seq_puts(m, "DP:\n");
2904 break;
2905 default:
2906 seq_printf(m, "Other encoder (id=%d).\n",
2907 intel_encoder->type);
2908 return;
2909 }
2910 }
2911
2912 if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
2913 seq_puts(m, "\tVBT: DRRS_type: Static");
2914 else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
2915 seq_puts(m, "\tVBT: DRRS_type: Seamless");
2916 else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
2917 seq_puts(m, "\tVBT: DRRS_type: None");
2918 else
2919 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
2920
2921 seq_puts(m, "\n\n");
2922
2923 if (intel_crtc->config->has_drrs) {
2924 struct intel_panel *panel;
2925
2926 mutex_lock(&drrs->mutex);
2927 /* DRRS Supported */
2928 seq_puts(m, "\tDRRS Supported: Yes\n");
2929
2930 /* disable_drrs() will make drrs->dp NULL */
2931 if (!drrs->dp) {
2932 seq_puts(m, "Idleness DRRS: Disabled");
2933 mutex_unlock(&drrs->mutex);
2934 return;
2935 }
2936
2937 panel = &drrs->dp->attached_connector->panel;
2938 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
2939 drrs->busy_frontbuffer_bits);
2940
2941 seq_puts(m, "\n\t\t");
2942 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
2943 seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
2944 vrefresh = panel->fixed_mode->vrefresh;
2945 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
2946 seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
2947 vrefresh = panel->downclock_mode->vrefresh;
2948 } else {
2949 seq_printf(m, "DRRS_State: Unknown(%d)\n",
2950 drrs->refresh_rate_type);
2951 mutex_unlock(&drrs->mutex);
2952 return;
2953 }
2954 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
2955
2956 seq_puts(m, "\n\t\t");
2957 mutex_unlock(&drrs->mutex);
2958 } else {
2959 /* DRRS not supported. Print the VBT parameter*/
2960 seq_puts(m, "\tDRRS Supported : No");
2961 }
2962 seq_puts(m, "\n");
2963 }
2964
2965 static int i915_drrs_status(struct seq_file *m, void *unused)
2966 {
2967 struct drm_info_node *node = m->private;
2968 struct drm_device *dev = node->minor->dev;
2969 struct intel_crtc *intel_crtc;
2970 int active_crtc_cnt = 0;
2971
2972 for_each_intel_crtc(dev, intel_crtc) {
2973 drm_modeset_lock(&intel_crtc->base.mutex, NULL);
2974
2975 if (intel_crtc->active) {
2976 active_crtc_cnt++;
2977 seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
2978
2979 drrs_status_per_crtc(m, dev, intel_crtc);
2980 }
2981
2982 drm_modeset_unlock(&intel_crtc->base.mutex);
2983 }
2984
2985 if (!active_crtc_cnt)
2986 seq_puts(m, "No active crtc found\n");
2987
2988 return 0;
2989 }
2990
2991 struct pipe_crc_info {
2992 const char *name;
2993 struct drm_device *dev;
2994 enum pipe pipe;
2995 };
2996
2997 static int i915_dp_mst_info(struct seq_file *m, void *unused)
2998 {
2999 struct drm_info_node *node = (struct drm_info_node *) m->private;
3000 struct drm_device *dev = node->minor->dev;
3001 struct drm_encoder *encoder;
3002 struct intel_encoder *intel_encoder;
3003 struct intel_digital_port *intel_dig_port;
3004 drm_modeset_lock_all(dev);
3005 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3006 intel_encoder = to_intel_encoder(encoder);
3007 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
3008 continue;
3009 intel_dig_port = enc_to_dig_port(encoder);
3010 if (!intel_dig_port->dp.can_mst)
3011 continue;
3012
3013 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3014 }
3015 drm_modeset_unlock_all(dev);
3016 return 0;
3017 }
3018
3019 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3020 {
3021 struct pipe_crc_info *info = inode->i_private;
3022 struct drm_i915_private *dev_priv = info->dev->dev_private;
3023 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3024
3025 if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3026 return -ENODEV;
3027
3028 spin_lock_irq(&pipe_crc->lock);
3029
3030 if (pipe_crc->opened) {
3031 spin_unlock_irq(&pipe_crc->lock);
3032 return -EBUSY; /* already open */
3033 }
3034
3035 pipe_crc->opened = true;
3036 filep->private_data = inode->i_private;
3037
3038 spin_unlock_irq(&pipe_crc->lock);
3039
3040 return 0;
3041 }
3042
3043 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3044 {
3045 struct pipe_crc_info *info = inode->i_private;
3046 struct drm_i915_private *dev_priv = info->dev->dev_private;
3047 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3048
3049 spin_lock_irq(&pipe_crc->lock);
3050 pipe_crc->opened = false;
3051 spin_unlock_irq(&pipe_crc->lock);
3052
3053 return 0;
3054 }
3055
3056 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3057 #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
3058 /* account for \'0' */
3059 #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
3060
3061 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3062 {
3063 assert_spin_locked(&pipe_crc->lock);
3064 return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3065 INTEL_PIPE_CRC_ENTRIES_NR);
3066 }
3067
3068 static ssize_t
3069 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3070 loff_t *pos)
3071 {
3072 struct pipe_crc_info *info = filep->private_data;
3073 struct drm_device *dev = info->dev;
3074 struct drm_i915_private *dev_priv = dev->dev_private;
3075 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3076 char buf[PIPE_CRC_BUFFER_LEN];
3077 int n_entries;
3078 ssize_t bytes_read;
3079
3080 /*
3081 * Don't allow user space to provide buffers not big enough to hold
3082 * a line of data.
3083 */
3084 if (count < PIPE_CRC_LINE_LEN)
3085 return -EINVAL;
3086
3087 if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3088 return 0;
3089
3090 /* nothing to read */
3091 spin_lock_irq(&pipe_crc->lock);
3092 while (pipe_crc_data_count(pipe_crc) == 0) {
3093 int ret;
3094
3095 if (filep->f_flags & O_NONBLOCK) {
3096 spin_unlock_irq(&pipe_crc->lock);
3097 return -EAGAIN;
3098 }
3099
3100 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3101 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3102 if (ret) {
3103 spin_unlock_irq(&pipe_crc->lock);
3104 return ret;
3105 }
3106 }
3107
3108 /* We now have one or more entries to read */
3109 n_entries = count / PIPE_CRC_LINE_LEN;
3110
3111 bytes_read = 0;
3112 while (n_entries > 0) {
3113 struct intel_pipe_crc_entry *entry =
3114 &pipe_crc->entries[pipe_crc->tail];
3115 int ret;
3116
3117 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3118 INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3119 break;
3120
3121 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3122 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3123
3124 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3125 "%8u %8x %8x %8x %8x %8x\n",
3126 entry->frame, entry->crc[0],
3127 entry->crc[1], entry->crc[2],
3128 entry->crc[3], entry->crc[4]);
3129
3130 spin_unlock_irq(&pipe_crc->lock);
3131
3132 ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3133 if (ret == PIPE_CRC_LINE_LEN)
3134 return -EFAULT;
3135
3136 user_buf += PIPE_CRC_LINE_LEN;
3137 n_entries--;
3138
3139 spin_lock_irq(&pipe_crc->lock);
3140 }
3141
3142 spin_unlock_irq(&pipe_crc->lock);
3143
3144 return bytes_read;
3145 }
3146
3147 static const struct file_operations i915_pipe_crc_fops = {
3148 .owner = THIS_MODULE,
3149 .open = i915_pipe_crc_open,
3150 .read = i915_pipe_crc_read,
3151 .release = i915_pipe_crc_release,
3152 };
3153
3154 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3155 {
3156 .name = "i915_pipe_A_crc",
3157 .pipe = PIPE_A,
3158 },
3159 {
3160 .name = "i915_pipe_B_crc",
3161 .pipe = PIPE_B,
3162 },
3163 {
3164 .name = "i915_pipe_C_crc",
3165 .pipe = PIPE_C,
3166 },
3167 };
3168
3169 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3170 enum pipe pipe)
3171 {
3172 struct drm_device *dev = minor->dev;
3173 struct dentry *ent;
3174 struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3175
3176 info->dev = dev;
3177 ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3178 &i915_pipe_crc_fops);
3179 if (!ent)
3180 return -ENOMEM;
3181
3182 return drm_add_fake_info_node(minor, ent, info);
3183 }
3184
3185 static const char * const pipe_crc_sources[] = {
3186 "none",
3187 "plane1",
3188 "plane2",
3189 "pf",
3190 "pipe",
3191 "TV",
3192 "DP-B",
3193 "DP-C",
3194 "DP-D",
3195 "auto",
3196 };
3197
3198 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3199 {
3200 BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3201 return pipe_crc_sources[source];
3202 }
3203
3204 static int display_crc_ctl_show(struct seq_file *m, void *data)
3205 {
3206 struct drm_device *dev = m->private;
3207 struct drm_i915_private *dev_priv = dev->dev_private;
3208 int i;
3209
3210 for (i = 0; i < I915_MAX_PIPES; i++)
3211 seq_printf(m, "%c %s\n", pipe_name(i),
3212 pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3213
3214 return 0;
3215 }
3216
3217 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3218 {
3219 struct drm_device *dev = inode->i_private;
3220
3221 return single_open(file, display_crc_ctl_show, dev);
3222 }
3223
3224 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3225 uint32_t *val)
3226 {
3227 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3228 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3229
3230 switch (*source) {
3231 case INTEL_PIPE_CRC_SOURCE_PIPE:
3232 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3233 break;
3234 case INTEL_PIPE_CRC_SOURCE_NONE:
3235 *val = 0;
3236 break;
3237 default:
3238 return -EINVAL;
3239 }
3240
3241 return 0;
3242 }
3243
3244 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3245 enum intel_pipe_crc_source *source)
3246 {
3247 struct intel_encoder *encoder;
3248 struct intel_crtc *crtc;
3249 struct intel_digital_port *dig_port;
3250 int ret = 0;
3251
3252 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3253
3254 drm_modeset_lock_all(dev);
3255 for_each_intel_encoder(dev, encoder) {
3256 if (!encoder->base.crtc)
3257 continue;
3258
3259 crtc = to_intel_crtc(encoder->base.crtc);
3260
3261 if (crtc->pipe != pipe)
3262 continue;
3263
3264 switch (encoder->type) {
3265 case INTEL_OUTPUT_TVOUT:
3266 *source = INTEL_PIPE_CRC_SOURCE_TV;
3267 break;
3268 case INTEL_OUTPUT_DISPLAYPORT:
3269 case INTEL_OUTPUT_EDP:
3270 dig_port = enc_to_dig_port(&encoder->base);
3271 switch (dig_port->port) {
3272 case PORT_B:
3273 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3274 break;
3275 case PORT_C:
3276 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3277 break;
3278 case PORT_D:
3279 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3280 break;
3281 default:
3282 WARN(1, "nonexisting DP port %c\n",
3283 port_name(dig_port->port));
3284 break;
3285 }
3286 break;
3287 default:
3288 break;
3289 }
3290 }
3291 drm_modeset_unlock_all(dev);
3292
3293 return ret;
3294 }
3295
3296 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3297 enum pipe pipe,
3298 enum intel_pipe_crc_source *source,
3299 uint32_t *val)
3300 {
3301 struct drm_i915_private *dev_priv = dev->dev_private;
3302 bool need_stable_symbols = false;
3303
3304 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3305 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3306 if (ret)
3307 return ret;
3308 }
3309
3310 switch (*source) {
3311 case INTEL_PIPE_CRC_SOURCE_PIPE:
3312 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3313 break;
3314 case INTEL_PIPE_CRC_SOURCE_DP_B:
3315 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3316 need_stable_symbols = true;
3317 break;
3318 case INTEL_PIPE_CRC_SOURCE_DP_C:
3319 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3320 need_stable_symbols = true;
3321 break;
3322 case INTEL_PIPE_CRC_SOURCE_DP_D:
3323 if (!IS_CHERRYVIEW(dev))
3324 return -EINVAL;
3325 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3326 need_stable_symbols = true;
3327 break;
3328 case INTEL_PIPE_CRC_SOURCE_NONE:
3329 *val = 0;
3330 break;
3331 default:
3332 return -EINVAL;
3333 }
3334
3335 /*
3336 * When the pipe CRC tap point is after the transcoders we need
3337 * to tweak symbol-level features to produce a deterministic series of
3338 * symbols for a given frame. We need to reset those features only once
3339 * a frame (instead of every nth symbol):
3340 * - DC-balance: used to ensure a better clock recovery from the data
3341 * link (SDVO)
3342 * - DisplayPort scrambling: used for EMI reduction
3343 */
3344 if (need_stable_symbols) {
3345 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3346
3347 tmp |= DC_BALANCE_RESET_VLV;
3348 switch (pipe) {
3349 case PIPE_A:
3350 tmp |= PIPE_A_SCRAMBLE_RESET;
3351 break;
3352 case PIPE_B:
3353 tmp |= PIPE_B_SCRAMBLE_RESET;
3354 break;
3355 case PIPE_C:
3356 tmp |= PIPE_C_SCRAMBLE_RESET;
3357 break;
3358 default:
3359 return -EINVAL;
3360 }
3361 I915_WRITE(PORT_DFT2_G4X, tmp);
3362 }
3363
3364 return 0;
3365 }
3366
3367 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3368 enum pipe pipe,
3369 enum intel_pipe_crc_source *source,
3370 uint32_t *val)
3371 {
3372 struct drm_i915_private *dev_priv = dev->dev_private;
3373 bool need_stable_symbols = false;
3374
3375 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3376 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3377 if (ret)
3378 return ret;
3379 }
3380
3381 switch (*source) {
3382 case INTEL_PIPE_CRC_SOURCE_PIPE:
3383 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3384 break;
3385 case INTEL_PIPE_CRC_SOURCE_TV:
3386 if (!SUPPORTS_TV(dev))
3387 return -EINVAL;
3388 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3389 break;
3390 case INTEL_PIPE_CRC_SOURCE_DP_B:
3391 if (!IS_G4X(dev))
3392 return -EINVAL;
3393 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3394 need_stable_symbols = true;
3395 break;
3396 case INTEL_PIPE_CRC_SOURCE_DP_C:
3397 if (!IS_G4X(dev))
3398 return -EINVAL;
3399 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3400 need_stable_symbols = true;
3401 break;
3402 case INTEL_PIPE_CRC_SOURCE_DP_D:
3403 if (!IS_G4X(dev))
3404 return -EINVAL;
3405 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3406 need_stable_symbols = true;
3407 break;
3408 case INTEL_PIPE_CRC_SOURCE_NONE:
3409 *val = 0;
3410 break;
3411 default:
3412 return -EINVAL;
3413 }
3414
3415 /*
3416 * When the pipe CRC tap point is after the transcoders we need
3417 * to tweak symbol-level features to produce a deterministic series of
3418 * symbols for a given frame. We need to reset those features only once
3419 * a frame (instead of every nth symbol):
3420 * - DC-balance: used to ensure a better clock recovery from the data
3421 * link (SDVO)
3422 * - DisplayPort scrambling: used for EMI reduction
3423 */
3424 if (need_stable_symbols) {
3425 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3426
3427 WARN_ON(!IS_G4X(dev));
3428
3429 I915_WRITE(PORT_DFT_I9XX,
3430 I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3431
3432 if (pipe == PIPE_A)
3433 tmp |= PIPE_A_SCRAMBLE_RESET;
3434 else
3435 tmp |= PIPE_B_SCRAMBLE_RESET;
3436
3437 I915_WRITE(PORT_DFT2_G4X, tmp);
3438 }
3439
3440 return 0;
3441 }
3442
3443 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3444 enum pipe pipe)
3445 {
3446 struct drm_i915_private *dev_priv = dev->dev_private;
3447 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3448
3449 switch (pipe) {
3450 case PIPE_A:
3451 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3452 break;
3453 case PIPE_B:
3454 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3455 break;
3456 case PIPE_C:
3457 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3458 break;
3459 default:
3460 return;
3461 }
3462 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3463 tmp &= ~DC_BALANCE_RESET_VLV;
3464 I915_WRITE(PORT_DFT2_G4X, tmp);
3465
3466 }
3467
3468 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3469 enum pipe pipe)
3470 {
3471 struct drm_i915_private *dev_priv = dev->dev_private;
3472 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3473
3474 if (pipe == PIPE_A)
3475 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3476 else
3477 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3478 I915_WRITE(PORT_DFT2_G4X, tmp);
3479
3480 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3481 I915_WRITE(PORT_DFT_I9XX,
3482 I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3483 }
3484 }
3485
3486 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3487 uint32_t *val)
3488 {
3489 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3490 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3491
3492 switch (*source) {
3493 case INTEL_PIPE_CRC_SOURCE_PLANE1:
3494 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3495 break;
3496 case INTEL_PIPE_CRC_SOURCE_PLANE2:
3497 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3498 break;
3499 case INTEL_PIPE_CRC_SOURCE_PIPE:
3500 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3501 break;
3502 case INTEL_PIPE_CRC_SOURCE_NONE:
3503 *val = 0;
3504 break;
3505 default:
3506 return -EINVAL;
3507 }
3508
3509 return 0;
3510 }
3511
3512 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3513 {
3514 struct drm_i915_private *dev_priv = dev->dev_private;
3515 struct intel_crtc *crtc =
3516 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3517
3518 drm_modeset_lock_all(dev);
3519 /*
3520 * If we use the eDP transcoder we need to make sure that we don't
3521 * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3522 * relevant on hsw with pipe A when using the always-on power well
3523 * routing.
3524 */
3525 if (crtc->config->cpu_transcoder == TRANSCODER_EDP &&
3526 !crtc->config->pch_pfit.enabled) {
3527 crtc->config->pch_pfit.force_thru = true;
3528
3529 intel_display_power_get(dev_priv,
3530 POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3531
3532 dev_priv->display.crtc_disable(&crtc->base);
3533 dev_priv->display.crtc_enable(&crtc->base);
3534 }
3535 drm_modeset_unlock_all(dev);
3536 }
3537
3538 static void hsw_undo_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3539 {
3540 struct drm_i915_private *dev_priv = dev->dev_private;
3541 struct intel_crtc *crtc =
3542 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3543
3544 drm_modeset_lock_all(dev);
3545 /*
3546 * If we use the eDP transcoder we need to make sure that we don't
3547 * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3548 * relevant on hsw with pipe A when using the always-on power well
3549 * routing.
3550 */
3551 if (crtc->config->pch_pfit.force_thru) {
3552 crtc->config->pch_pfit.force_thru = false;
3553
3554 dev_priv->display.crtc_disable(&crtc->base);
3555 dev_priv->display.crtc_enable(&crtc->base);
3556
3557 intel_display_power_put(dev_priv,
3558 POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3559 }
3560 drm_modeset_unlock_all(dev);
3561 }
3562
3563 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3564 enum pipe pipe,
3565 enum intel_pipe_crc_source *source,
3566 uint32_t *val)
3567 {
3568 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3569 *source = INTEL_PIPE_CRC_SOURCE_PF;
3570
3571 switch (*source) {
3572 case INTEL_PIPE_CRC_SOURCE_PLANE1:
3573 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3574 break;
3575 case INTEL_PIPE_CRC_SOURCE_PLANE2:
3576 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3577 break;
3578 case INTEL_PIPE_CRC_SOURCE_PF:
3579 if (IS_HASWELL(dev) && pipe == PIPE_A)
3580 hsw_trans_edp_pipe_A_crc_wa(dev);
3581
3582 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3583 break;
3584 case INTEL_PIPE_CRC_SOURCE_NONE:
3585 *val = 0;
3586 break;
3587 default:
3588 return -EINVAL;
3589 }
3590
3591 return 0;
3592 }
3593
3594 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
3595 enum intel_pipe_crc_source source)
3596 {
3597 struct drm_i915_private *dev_priv = dev->dev_private;
3598 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3599 struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
3600 pipe));
3601 u32 val = 0; /* shut up gcc */
3602 int ret;
3603
3604 if (pipe_crc->source == source)
3605 return 0;
3606
3607 /* forbid changing the source without going back to 'none' */
3608 if (pipe_crc->source && source)
3609 return -EINVAL;
3610
3611 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) {
3612 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
3613 return -EIO;
3614 }
3615
3616 if (IS_GEN2(dev))
3617 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
3618 else if (INTEL_INFO(dev)->gen < 5)
3619 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3620 else if (IS_VALLEYVIEW(dev))
3621 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3622 else if (IS_GEN5(dev) || IS_GEN6(dev))
3623 ret = ilk_pipe_crc_ctl_reg(&source, &val);
3624 else
3625 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3626
3627 if (ret != 0)
3628 return ret;
3629
3630 /* none -> real source transition */
3631 if (source) {
3632 struct intel_pipe_crc_entry *entries;
3633
3634 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
3635 pipe_name(pipe), pipe_crc_source_name(source));
3636
3637 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
3638 sizeof(pipe_crc->entries[0]),
3639 GFP_KERNEL);
3640 if (!entries)
3641 return -ENOMEM;
3642
3643 /*
3644 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
3645 * enabled and disabled dynamically based on package C states,
3646 * user space can't make reliable use of the CRCs, so let's just
3647 * completely disable it.
3648 */
3649 hsw_disable_ips(crtc);
3650
3651 spin_lock_irq(&pipe_crc->lock);
3652 kfree(pipe_crc->entries);
3653 pipe_crc->entries = entries;
3654 pipe_crc->head = 0;
3655 pipe_crc->tail = 0;
3656 spin_unlock_irq(&pipe_crc->lock);
3657 }
3658
3659 pipe_crc->source = source;
3660
3661 I915_WRITE(PIPE_CRC_CTL(pipe), val);
3662 POSTING_READ(PIPE_CRC_CTL(pipe));
3663
3664 /* real source -> none transition */
3665 if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
3666 struct intel_pipe_crc_entry *entries;
3667 struct intel_crtc *crtc =
3668 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
3669
3670 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
3671 pipe_name(pipe));
3672
3673 drm_modeset_lock(&crtc->base.mutex, NULL);
3674 if (crtc->active)
3675 intel_wait_for_vblank(dev, pipe);
3676 drm_modeset_unlock(&crtc->base.mutex);
3677
3678 spin_lock_irq(&pipe_crc->lock);
3679 entries = pipe_crc->entries;
3680 pipe_crc->entries = NULL;
3681 pipe_crc->head = 0;
3682 pipe_crc->tail = 0;
3683 spin_unlock_irq(&pipe_crc->lock);
3684
3685 kfree(entries);
3686
3687 if (IS_G4X(dev))
3688 g4x_undo_pipe_scramble_reset(dev, pipe);
3689 else if (IS_VALLEYVIEW(dev))
3690 vlv_undo_pipe_scramble_reset(dev, pipe);
3691 else if (IS_HASWELL(dev) && pipe == PIPE_A)
3692 hsw_undo_trans_edp_pipe_A_crc_wa(dev);
3693
3694 hsw_enable_ips(crtc);
3695 }
3696
3697 return 0;
3698 }
3699
3700 /*
3701 * Parse pipe CRC command strings:
3702 * command: wsp* object wsp+ name wsp+ source wsp*
3703 * object: 'pipe'
3704 * name: (A | B | C)
3705 * source: (none | plane1 | plane2 | pf)
3706 * wsp: (#0x20 | #0x9 | #0xA)+
3707 *
3708 * eg.:
3709 * "pipe A plane1" -> Start CRC computations on plane1 of pipe A
3710 * "pipe A none" -> Stop CRC
3711 */
3712 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
3713 {
3714 int n_words = 0;
3715
3716 while (*buf) {
3717 char *end;
3718
3719 /* skip leading white space */
3720 buf = skip_spaces(buf);
3721 if (!*buf)
3722 break; /* end of buffer */
3723
3724 /* find end of word */
3725 for (end = buf; *end && !isspace(*end); end++)
3726 ;
3727
3728 if (n_words == max_words) {
3729 DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
3730 max_words);
3731 return -EINVAL; /* ran out of words[] before bytes */
3732 }
3733
3734 if (*end)
3735 *end++ = '\0';
3736 words[n_words++] = buf;
3737 buf = end;
3738 }
3739
3740 return n_words;
3741 }
3742
3743 enum intel_pipe_crc_object {
3744 PIPE_CRC_OBJECT_PIPE,
3745 };
3746
3747 static const char * const pipe_crc_objects[] = {
3748 "pipe",
3749 };
3750
3751 static int
3752 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
3753 {
3754 int i;
3755
3756 for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
3757 if (!strcmp(buf, pipe_crc_objects[i])) {
3758 *o = i;
3759 return 0;
3760 }
3761
3762 return -EINVAL;
3763 }
3764
3765 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
3766 {
3767 const char name = buf[0];
3768
3769 if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
3770 return -EINVAL;
3771
3772 *pipe = name - 'A';
3773
3774 return 0;
3775 }
3776
3777 static int
3778 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
3779 {
3780 int i;
3781
3782 for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
3783 if (!strcmp(buf, pipe_crc_sources[i])) {
3784 *s = i;
3785 return 0;
3786 }
3787
3788 return -EINVAL;
3789 }
3790
3791 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
3792 {
3793 #define N_WORDS 3
3794 int n_words;
3795 char *words[N_WORDS];
3796 enum pipe pipe;
3797 enum intel_pipe_crc_object object;
3798 enum intel_pipe_crc_source source;
3799
3800 n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
3801 if (n_words != N_WORDS) {
3802 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
3803 N_WORDS);
3804 return -EINVAL;
3805 }
3806
3807 if (display_crc_ctl_parse_object(words[0], &object) < 0) {
3808 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
3809 return -EINVAL;
3810 }
3811
3812 if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
3813 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
3814 return -EINVAL;
3815 }
3816
3817 if (display_crc_ctl_parse_source(words[2], &source) < 0) {
3818 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
3819 return -EINVAL;
3820 }
3821
3822 return pipe_crc_set_source(dev, pipe, source);
3823 }
3824
3825 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
3826 size_t len, loff_t *offp)
3827 {
3828 struct seq_file *m = file->private_data;
3829 struct drm_device *dev = m->private;
3830 char *tmpbuf;
3831 int ret;
3832
3833 if (len == 0)
3834 return 0;
3835
3836 if (len > PAGE_SIZE - 1) {
3837 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
3838 PAGE_SIZE);
3839 return -E2BIG;
3840 }
3841
3842 tmpbuf = kmalloc(len + 1, GFP_KERNEL);
3843 if (!tmpbuf)
3844 return -ENOMEM;
3845
3846 if (copy_from_user(tmpbuf, ubuf, len)) {
3847 ret = -EFAULT;
3848 goto out;
3849 }
3850 tmpbuf[len] = '\0';
3851
3852 ret = display_crc_ctl_parse(dev, tmpbuf, len);
3853
3854 out:
3855 kfree(tmpbuf);
3856 if (ret < 0)
3857 return ret;
3858
3859 *offp += len;
3860 return len;
3861 }
3862
3863 static const struct file_operations i915_display_crc_ctl_fops = {
3864 .owner = THIS_MODULE,
3865 .open = display_crc_ctl_open,
3866 .read = seq_read,
3867 .llseek = seq_lseek,
3868 .release = single_release,
3869 .write = display_crc_ctl_write
3870 };
3871
3872 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
3873 {
3874 struct drm_device *dev = m->private;
3875 int num_levels = ilk_wm_max_level(dev) + 1;
3876 int level;
3877
3878 drm_modeset_lock_all(dev);
3879
3880 for (level = 0; level < num_levels; level++) {
3881 unsigned int latency = wm[level];
3882
3883 /*
3884 * - WM1+ latency values in 0.5us units
3885 * - latencies are in us on gen9
3886 */
3887 if (INTEL_INFO(dev)->gen >= 9)
3888 latency *= 10;
3889 else if (level > 0)
3890 latency *= 5;
3891
3892 seq_printf(m, "WM%d %u (%u.%u usec)\n",
3893 level, wm[level], latency / 10, latency % 10);
3894 }
3895
3896 drm_modeset_unlock_all(dev);
3897 }
3898
3899 static int pri_wm_latency_show(struct seq_file *m, void *data)
3900 {
3901 struct drm_device *dev = m->private;
3902 struct drm_i915_private *dev_priv = dev->dev_private;
3903 const uint16_t *latencies;
3904
3905 if (INTEL_INFO(dev)->gen >= 9)
3906 latencies = dev_priv->wm.skl_latency;
3907 else
3908 latencies = to_i915(dev)->wm.pri_latency;
3909
3910 wm_latency_show(m, latencies);
3911
3912 return 0;
3913 }
3914
3915 static int spr_wm_latency_show(struct seq_file *m, void *data)
3916 {
3917 struct drm_device *dev = m->private;
3918 struct drm_i915_private *dev_priv = dev->dev_private;
3919 const uint16_t *latencies;
3920
3921 if (INTEL_INFO(dev)->gen >= 9)
3922 latencies = dev_priv->wm.skl_latency;
3923 else
3924 latencies = to_i915(dev)->wm.spr_latency;
3925
3926 wm_latency_show(m, latencies);
3927
3928 return 0;
3929 }
3930
3931 static int cur_wm_latency_show(struct seq_file *m, void *data)
3932 {
3933 struct drm_device *dev = m->private;
3934 struct drm_i915_private *dev_priv = dev->dev_private;
3935 const uint16_t *latencies;
3936
3937 if (INTEL_INFO(dev)->gen >= 9)
3938 latencies = dev_priv->wm.skl_latency;
3939 else
3940 latencies = to_i915(dev)->wm.cur_latency;
3941
3942 wm_latency_show(m, latencies);
3943
3944 return 0;
3945 }
3946
3947 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3948 {
3949 struct drm_device *dev = inode->i_private;
3950
3951 if (HAS_GMCH_DISPLAY(dev))
3952 return -ENODEV;
3953
3954 return single_open(file, pri_wm_latency_show, dev);
3955 }
3956
3957 static int spr_wm_latency_open(struct inode *inode, struct file *file)
3958 {
3959 struct drm_device *dev = inode->i_private;
3960
3961 if (HAS_GMCH_DISPLAY(dev))
3962 return -ENODEV;
3963
3964 return single_open(file, spr_wm_latency_show, dev);
3965 }
3966
3967 static int cur_wm_latency_open(struct inode *inode, struct file *file)
3968 {
3969 struct drm_device *dev = inode->i_private;
3970
3971 if (HAS_GMCH_DISPLAY(dev))
3972 return -ENODEV;
3973
3974 return single_open(file, cur_wm_latency_show, dev);
3975 }
3976
3977 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
3978 size_t len, loff_t *offp, uint16_t wm[8])
3979 {
3980 struct seq_file *m = file->private_data;
3981 struct drm_device *dev = m->private;
3982 uint16_t new[8] = { 0 };
3983 int num_levels = ilk_wm_max_level(dev) + 1;
3984 int level;
3985 int ret;
3986 char tmp[32];
3987
3988 if (len >= sizeof(tmp))
3989 return -EINVAL;
3990
3991 if (copy_from_user(tmp, ubuf, len))
3992 return -EFAULT;
3993
3994 tmp[len] = '\0';
3995
3996 ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
3997 &new[0], &new[1], &new[2], &new[3],
3998 &new[4], &new[5], &new[6], &new[7]);
3999 if (ret != num_levels)
4000 return -EINVAL;
4001
4002 drm_modeset_lock_all(dev);
4003
4004 for (level = 0; level < num_levels; level++)
4005 wm[level] = new[level];
4006
4007 drm_modeset_unlock_all(dev);
4008
4009 return len;
4010 }
4011
4012
4013 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4014 size_t len, loff_t *offp)
4015 {
4016 struct seq_file *m = file->private_data;
4017 struct drm_device *dev = m->private;
4018 struct drm_i915_private *dev_priv = dev->dev_private;
4019 uint16_t *latencies;
4020
4021 if (INTEL_INFO(dev)->gen >= 9)
4022 latencies = dev_priv->wm.skl_latency;
4023 else
4024 latencies = to_i915(dev)->wm.pri_latency;
4025
4026 return wm_latency_write(file, ubuf, len, offp, latencies);
4027 }
4028
4029 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4030 size_t len, loff_t *offp)
4031 {
4032 struct seq_file *m = file->private_data;
4033 struct drm_device *dev = m->private;
4034 struct drm_i915_private *dev_priv = dev->dev_private;
4035 uint16_t *latencies;
4036
4037 if (INTEL_INFO(dev)->gen >= 9)
4038 latencies = dev_priv->wm.skl_latency;
4039 else
4040 latencies = to_i915(dev)->wm.spr_latency;
4041
4042 return wm_latency_write(file, ubuf, len, offp, latencies);
4043 }
4044
4045 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4046 size_t len, loff_t *offp)
4047 {
4048 struct seq_file *m = file->private_data;
4049 struct drm_device *dev = m->private;
4050 struct drm_i915_private *dev_priv = dev->dev_private;
4051 uint16_t *latencies;
4052
4053 if (INTEL_INFO(dev)->gen >= 9)
4054 latencies = dev_priv->wm.skl_latency;
4055 else
4056 latencies = to_i915(dev)->wm.cur_latency;
4057
4058 return wm_latency_write(file, ubuf, len, offp, latencies);
4059 }
4060
4061 static const struct file_operations i915_pri_wm_latency_fops = {
4062 .owner = THIS_MODULE,
4063 .open = pri_wm_latency_open,
4064 .read = seq_read,
4065 .llseek = seq_lseek,
4066 .release = single_release,
4067 .write = pri_wm_latency_write
4068 };
4069
4070 static const struct file_operations i915_spr_wm_latency_fops = {
4071 .owner = THIS_MODULE,
4072 .open = spr_wm_latency_open,
4073 .read = seq_read,
4074 .llseek = seq_lseek,
4075 .release = single_release,
4076 .write = spr_wm_latency_write
4077 };
4078
4079 static const struct file_operations i915_cur_wm_latency_fops = {
4080 .owner = THIS_MODULE,
4081 .open = cur_wm_latency_open,
4082 .read = seq_read,
4083 .llseek = seq_lseek,
4084 .release = single_release,
4085 .write = cur_wm_latency_write
4086 };
4087
4088 static int
4089 i915_wedged_get(void *data, u64 *val)
4090 {
4091 struct drm_device *dev = data;
4092 struct drm_i915_private *dev_priv = dev->dev_private;
4093
4094 *val = atomic_read(&dev_priv->gpu_error.reset_counter);
4095
4096 return 0;
4097 }
4098
4099 static int
4100 i915_wedged_set(void *data, u64 val)
4101 {
4102 struct drm_device *dev = data;
4103 struct drm_i915_private *dev_priv = dev->dev_private;
4104
4105 /*
4106 * There is no safeguard against this debugfs entry colliding
4107 * with the hangcheck calling same i915_handle_error() in
4108 * parallel, causing an explosion. For now we assume that the
4109 * test harness is responsible enough not to inject gpu hangs
4110 * while it is writing to 'i915_wedged'
4111 */
4112
4113 if (i915_reset_in_progress(&dev_priv->gpu_error))
4114 return -EAGAIN;
4115
4116 intel_runtime_pm_get(dev_priv);
4117
4118 i915_handle_error(dev, val,
4119 "Manually setting wedged to %llu", val);
4120
4121 intel_runtime_pm_put(dev_priv);
4122
4123 return 0;
4124 }
4125
4126 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4127 i915_wedged_get, i915_wedged_set,
4128 "%llu\n");
4129
4130 static int
4131 i915_ring_stop_get(void *data, u64 *val)
4132 {
4133 struct drm_device *dev = data;
4134 struct drm_i915_private *dev_priv = dev->dev_private;
4135
4136 *val = dev_priv->gpu_error.stop_rings;
4137
4138 return 0;
4139 }
4140
4141 static int
4142 i915_ring_stop_set(void *data, u64 val)
4143 {
4144 struct drm_device *dev = data;
4145 struct drm_i915_private *dev_priv = dev->dev_private;
4146 int ret;
4147
4148 DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4149
4150 ret = mutex_lock_interruptible(&dev->struct_mutex);
4151 if (ret)
4152 return ret;
4153
4154 dev_priv->gpu_error.stop_rings = val;
4155 mutex_unlock(&dev->struct_mutex);
4156
4157 return 0;
4158 }
4159
4160 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4161 i915_ring_stop_get, i915_ring_stop_set,
4162 "0x%08llx\n");
4163
4164 static int
4165 i915_ring_missed_irq_get(void *data, u64 *val)
4166 {
4167 struct drm_device *dev = data;
4168 struct drm_i915_private *dev_priv = dev->dev_private;
4169
4170 *val = dev_priv->gpu_error.missed_irq_rings;
4171 return 0;
4172 }
4173
4174 static int
4175 i915_ring_missed_irq_set(void *data, u64 val)
4176 {
4177 struct drm_device *dev = data;
4178 struct drm_i915_private *dev_priv = dev->dev_private;
4179 int ret;
4180
4181 /* Lock against concurrent debugfs callers */
4182 ret = mutex_lock_interruptible(&dev->struct_mutex);
4183 if (ret)
4184 return ret;
4185 dev_priv->gpu_error.missed_irq_rings = val;
4186 mutex_unlock(&dev->struct_mutex);
4187
4188 return 0;
4189 }
4190
4191 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4192 i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4193 "0x%08llx\n");
4194
4195 static int
4196 i915_ring_test_irq_get(void *data, u64 *val)
4197 {
4198 struct drm_device *dev = data;
4199 struct drm_i915_private *dev_priv = dev->dev_private;
4200
4201 *val = dev_priv->gpu_error.test_irq_rings;
4202
4203 return 0;
4204 }
4205
4206 static int
4207 i915_ring_test_irq_set(void *data, u64 val)
4208 {
4209 struct drm_device *dev = data;
4210 struct drm_i915_private *dev_priv = dev->dev_private;
4211 int ret;
4212
4213 DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4214
4215 /* Lock against concurrent debugfs callers */
4216 ret = mutex_lock_interruptible(&dev->struct_mutex);
4217 if (ret)
4218 return ret;
4219
4220 dev_priv->gpu_error.test_irq_rings = val;
4221 mutex_unlock(&dev->struct_mutex);
4222
4223 return 0;
4224 }
4225
4226 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4227 i915_ring_test_irq_get, i915_ring_test_irq_set,
4228 "0x%08llx\n");
4229
4230 #define DROP_UNBOUND 0x1
4231 #define DROP_BOUND 0x2
4232 #define DROP_RETIRE 0x4
4233 #define DROP_ACTIVE 0x8
4234 #define DROP_ALL (DROP_UNBOUND | \
4235 DROP_BOUND | \
4236 DROP_RETIRE | \
4237 DROP_ACTIVE)
4238 static int
4239 i915_drop_caches_get(void *data, u64 *val)
4240 {
4241 *val = DROP_ALL;
4242
4243 return 0;
4244 }
4245
4246 static int
4247 i915_drop_caches_set(void *data, u64 val)
4248 {
4249 struct drm_device *dev = data;
4250 struct drm_i915_private *dev_priv = dev->dev_private;
4251 int ret;
4252
4253 DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4254
4255 /* No need to check and wait for gpu resets, only libdrm auto-restarts
4256 * on ioctls on -EAGAIN. */
4257 ret = mutex_lock_interruptible(&dev->struct_mutex);
4258 if (ret)
4259 return ret;
4260
4261 if (val & DROP_ACTIVE) {
4262 ret = i915_gpu_idle(dev);
4263 if (ret)
4264 goto unlock;
4265 }
4266
4267 if (val & (DROP_RETIRE | DROP_ACTIVE))
4268 i915_gem_retire_requests(dev);
4269
4270 if (val & DROP_BOUND)
4271 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4272
4273 if (val & DROP_UNBOUND)
4274 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4275
4276 unlock:
4277 mutex_unlock(&dev->struct_mutex);
4278
4279 return ret;
4280 }
4281
4282 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4283 i915_drop_caches_get, i915_drop_caches_set,
4284 "0x%08llx\n");
4285
4286 static int
4287 i915_max_freq_get(void *data, u64 *val)
4288 {
4289 struct drm_device *dev = data;
4290 struct drm_i915_private *dev_priv = dev->dev_private;
4291 int ret;
4292
4293 if (INTEL_INFO(dev)->gen < 6)
4294 return -ENODEV;
4295
4296 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4297
4298 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4299 if (ret)
4300 return ret;
4301
4302 *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4303 mutex_unlock(&dev_priv->rps.hw_lock);
4304
4305 return 0;
4306 }
4307
4308 static int
4309 i915_max_freq_set(void *data, u64 val)
4310 {
4311 struct drm_device *dev = data;
4312 struct drm_i915_private *dev_priv = dev->dev_private;
4313 u32 hw_max, hw_min;
4314 int ret;
4315
4316 if (INTEL_INFO(dev)->gen < 6)
4317 return -ENODEV;
4318
4319 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4320
4321 DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4322
4323 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4324 if (ret)
4325 return ret;
4326
4327 /*
4328 * Turbo will still be enabled, but won't go above the set value.
4329 */
4330 val = intel_freq_opcode(dev_priv, val);
4331
4332 hw_max = dev_priv->rps.max_freq;
4333 hw_min = dev_priv->rps.min_freq;
4334
4335 if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4336 mutex_unlock(&dev_priv->rps.hw_lock);
4337 return -EINVAL;
4338 }
4339
4340 dev_priv->rps.max_freq_softlimit = val;
4341
4342 intel_set_rps(dev, val);
4343
4344 mutex_unlock(&dev_priv->rps.hw_lock);
4345
4346 return 0;
4347 }
4348
4349 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4350 i915_max_freq_get, i915_max_freq_set,
4351 "%llu\n");
4352
4353 static int
4354 i915_min_freq_get(void *data, u64 *val)
4355 {
4356 struct drm_device *dev = data;
4357 struct drm_i915_private *dev_priv = dev->dev_private;
4358 int ret;
4359
4360 if (INTEL_INFO(dev)->gen < 6)
4361 return -ENODEV;
4362
4363 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4364
4365 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4366 if (ret)
4367 return ret;
4368
4369 *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4370 mutex_unlock(&dev_priv->rps.hw_lock);
4371
4372 return 0;
4373 }
4374
4375 static int
4376 i915_min_freq_set(void *data, u64 val)
4377 {
4378 struct drm_device *dev = data;
4379 struct drm_i915_private *dev_priv = dev->dev_private;
4380 u32 hw_max, hw_min;
4381 int ret;
4382
4383 if (INTEL_INFO(dev)->gen < 6)
4384 return -ENODEV;
4385
4386 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4387
4388 DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4389
4390 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4391 if (ret)
4392 return ret;
4393
4394 /*
4395 * Turbo will still be enabled, but won't go below the set value.
4396 */
4397 val = intel_freq_opcode(dev_priv, val);
4398
4399 hw_max = dev_priv->rps.max_freq;
4400 hw_min = dev_priv->rps.min_freq;
4401
4402 if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4403 mutex_unlock(&dev_priv->rps.hw_lock);
4404 return -EINVAL;
4405 }
4406
4407 dev_priv->rps.min_freq_softlimit = val;
4408
4409 intel_set_rps(dev, val);
4410
4411 mutex_unlock(&dev_priv->rps.hw_lock);
4412
4413 return 0;
4414 }
4415
4416 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4417 i915_min_freq_get, i915_min_freq_set,
4418 "%llu\n");
4419
4420 static int
4421 i915_cache_sharing_get(void *data, u64 *val)
4422 {
4423 struct drm_device *dev = data;
4424 struct drm_i915_private *dev_priv = dev->dev_private;
4425 u32 snpcr;
4426 int ret;
4427
4428 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4429 return -ENODEV;
4430
4431 ret = mutex_lock_interruptible(&dev->struct_mutex);
4432 if (ret)
4433 return ret;
4434 intel_runtime_pm_get(dev_priv);
4435
4436 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4437
4438 intel_runtime_pm_put(dev_priv);
4439 mutex_unlock(&dev_priv->dev->struct_mutex);
4440
4441 *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4442
4443 return 0;
4444 }
4445
4446 static int
4447 i915_cache_sharing_set(void *data, u64 val)
4448 {
4449 struct drm_device *dev = data;
4450 struct drm_i915_private *dev_priv = dev->dev_private;
4451 u32 snpcr;
4452
4453 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4454 return -ENODEV;
4455
4456 if (val > 3)
4457 return -EINVAL;
4458
4459 intel_runtime_pm_get(dev_priv);
4460 DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4461
4462 /* Update the cache sharing policy here as well */
4463 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4464 snpcr &= ~GEN6_MBC_SNPCR_MASK;
4465 snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4466 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4467
4468 intel_runtime_pm_put(dev_priv);
4469 return 0;
4470 }
4471
4472 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4473 i915_cache_sharing_get, i915_cache_sharing_set,
4474 "%llu\n");
4475
4476 static int i915_sseu_status(struct seq_file *m, void *unused)
4477 {
4478 struct drm_info_node *node = (struct drm_info_node *) m->private;
4479 struct drm_device *dev = node->minor->dev;
4480 struct drm_i915_private *dev_priv = dev->dev_private;
4481 unsigned int s_tot = 0, ss_tot = 0, ss_per = 0, eu_tot = 0, eu_per = 0;
4482
4483 if ((INTEL_INFO(dev)->gen < 8) || IS_BROADWELL(dev))
4484 return -ENODEV;
4485
4486 seq_puts(m, "SSEU Device Info\n");
4487 seq_printf(m, " Available Slice Total: %u\n",
4488 INTEL_INFO(dev)->slice_total);
4489 seq_printf(m, " Available Subslice Total: %u\n",
4490 INTEL_INFO(dev)->subslice_total);
4491 seq_printf(m, " Available Subslice Per Slice: %u\n",
4492 INTEL_INFO(dev)->subslice_per_slice);
4493 seq_printf(m, " Available EU Total: %u\n",
4494 INTEL_INFO(dev)->eu_total);
4495 seq_printf(m, " Available EU Per Subslice: %u\n",
4496 INTEL_INFO(dev)->eu_per_subslice);
4497 seq_printf(m, " Has Slice Power Gating: %s\n",
4498 yesno(INTEL_INFO(dev)->has_slice_pg));
4499 seq_printf(m, " Has Subslice Power Gating: %s\n",
4500 yesno(INTEL_INFO(dev)->has_subslice_pg));
4501 seq_printf(m, " Has EU Power Gating: %s\n",
4502 yesno(INTEL_INFO(dev)->has_eu_pg));
4503
4504 seq_puts(m, "SSEU Device Status\n");
4505 if (IS_CHERRYVIEW(dev)) {
4506 const int ss_max = 2;
4507 int ss;
4508 u32 sig1[ss_max], sig2[ss_max];
4509
4510 sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
4511 sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
4512 sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
4513 sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
4514
4515 for (ss = 0; ss < ss_max; ss++) {
4516 unsigned int eu_cnt;
4517
4518 if (sig1[ss] & CHV_SS_PG_ENABLE)
4519 /* skip disabled subslice */
4520 continue;
4521
4522 s_tot = 1;
4523 ss_per++;
4524 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
4525 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
4526 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
4527 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
4528 eu_tot += eu_cnt;
4529 eu_per = max(eu_per, eu_cnt);
4530 }
4531 ss_tot = ss_per;
4532 } else if (IS_SKYLAKE(dev)) {
4533 const int s_max = 3, ss_max = 4;
4534 int s, ss;
4535 u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
4536
4537 s_reg[0] = I915_READ(GEN9_SLICE0_PGCTL_ACK);
4538 s_reg[1] = I915_READ(GEN9_SLICE1_PGCTL_ACK);
4539 s_reg[2] = I915_READ(GEN9_SLICE2_PGCTL_ACK);
4540 eu_reg[0] = I915_READ(GEN9_SLICE0_SS01_EU_PGCTL_ACK);
4541 eu_reg[1] = I915_READ(GEN9_SLICE0_SS23_EU_PGCTL_ACK);
4542 eu_reg[2] = I915_READ(GEN9_SLICE1_SS01_EU_PGCTL_ACK);
4543 eu_reg[3] = I915_READ(GEN9_SLICE1_SS23_EU_PGCTL_ACK);
4544 eu_reg[4] = I915_READ(GEN9_SLICE2_SS01_EU_PGCTL_ACK);
4545 eu_reg[5] = I915_READ(GEN9_SLICE2_SS23_EU_PGCTL_ACK);
4546 eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
4547 GEN9_PGCTL_SSA_EU19_ACK |
4548 GEN9_PGCTL_SSA_EU210_ACK |
4549 GEN9_PGCTL_SSA_EU311_ACK;
4550 eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
4551 GEN9_PGCTL_SSB_EU19_ACK |
4552 GEN9_PGCTL_SSB_EU210_ACK |
4553 GEN9_PGCTL_SSB_EU311_ACK;
4554
4555 for (s = 0; s < s_max; s++) {
4556 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
4557 /* skip disabled slice */
4558 continue;
4559
4560 s_tot++;
4561 ss_per = INTEL_INFO(dev)->subslice_per_slice;
4562 ss_tot += ss_per;
4563 for (ss = 0; ss < ss_max; ss++) {
4564 unsigned int eu_cnt;
4565
4566 eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
4567 eu_mask[ss%2]);
4568 eu_tot += eu_cnt;
4569 eu_per = max(eu_per, eu_cnt);
4570 }
4571 }
4572 }
4573 seq_printf(m, " Enabled Slice Total: %u\n", s_tot);
4574 seq_printf(m, " Enabled Subslice Total: %u\n", ss_tot);
4575 seq_printf(m, " Enabled Subslice Per Slice: %u\n", ss_per);
4576 seq_printf(m, " Enabled EU Total: %u\n", eu_tot);
4577 seq_printf(m, " Enabled EU Per Subslice: %u\n", eu_per);
4578
4579 return 0;
4580 }
4581
4582 static int i915_forcewake_open(struct inode *inode, struct file *file)
4583 {
4584 struct drm_device *dev = inode->i_private;
4585 struct drm_i915_private *dev_priv = dev->dev_private;
4586
4587 if (INTEL_INFO(dev)->gen < 6)
4588 return 0;
4589
4590 intel_runtime_pm_get(dev_priv);
4591 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4592
4593 return 0;
4594 }
4595
4596 static int i915_forcewake_release(struct inode *inode, struct file *file)
4597 {
4598 struct drm_device *dev = inode->i_private;
4599 struct drm_i915_private *dev_priv = dev->dev_private;
4600
4601 if (INTEL_INFO(dev)->gen < 6)
4602 return 0;
4603
4604 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4605 intel_runtime_pm_put(dev_priv);
4606
4607 return 0;
4608 }
4609
4610 static const struct file_operations i915_forcewake_fops = {
4611 .owner = THIS_MODULE,
4612 .open = i915_forcewake_open,
4613 .release = i915_forcewake_release,
4614 };
4615
4616 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
4617 {
4618 struct drm_device *dev = minor->dev;
4619 struct dentry *ent;
4620
4621 ent = debugfs_create_file("i915_forcewake_user",
4622 S_IRUSR,
4623 root, dev,
4624 &i915_forcewake_fops);
4625 if (!ent)
4626 return -ENOMEM;
4627
4628 return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
4629 }
4630
4631 static int i915_debugfs_create(struct dentry *root,
4632 struct drm_minor *minor,
4633 const char *name,
4634 const struct file_operations *fops)
4635 {
4636 struct drm_device *dev = minor->dev;
4637 struct dentry *ent;
4638
4639 ent = debugfs_create_file(name,
4640 S_IRUGO | S_IWUSR,
4641 root, dev,
4642 fops);
4643 if (!ent)
4644 return -ENOMEM;
4645
4646 return drm_add_fake_info_node(minor, ent, fops);
4647 }
4648
4649 static const struct drm_info_list i915_debugfs_list[] = {
4650 {"i915_capabilities", i915_capabilities, 0},
4651 {"i915_gem_objects", i915_gem_object_info, 0},
4652 {"i915_gem_gtt", i915_gem_gtt_info, 0},
4653 {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
4654 {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
4655 {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
4656 {"i915_gem_stolen", i915_gem_stolen_list_info },
4657 {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
4658 {"i915_gem_request", i915_gem_request_info, 0},
4659 {"i915_gem_seqno", i915_gem_seqno_info, 0},
4660 {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
4661 {"i915_gem_interrupt", i915_interrupt_info, 0},
4662 {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
4663 {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
4664 {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
4665 {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
4666 {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
4667 {"i915_frequency_info", i915_frequency_info, 0},
4668 {"i915_hangcheck_info", i915_hangcheck_info, 0},
4669 {"i915_drpc_info", i915_drpc_info, 0},
4670 {"i915_emon_status", i915_emon_status, 0},
4671 {"i915_ring_freq_table", i915_ring_freq_table, 0},
4672 {"i915_fbc_status", i915_fbc_status, 0},
4673 {"i915_ips_status", i915_ips_status, 0},
4674 {"i915_sr_status", i915_sr_status, 0},
4675 {"i915_opregion", i915_opregion, 0},
4676 {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
4677 {"i915_context_status", i915_context_status, 0},
4678 {"i915_dump_lrc", i915_dump_lrc, 0},
4679 {"i915_execlists", i915_execlists, 0},
4680 {"i915_forcewake_domains", i915_forcewake_domains, 0},
4681 {"i915_swizzle_info", i915_swizzle_info, 0},
4682 {"i915_ppgtt_info", i915_ppgtt_info, 0},
4683 {"i915_llc", i915_llc, 0},
4684 {"i915_edp_psr_status", i915_edp_psr_status, 0},
4685 {"i915_sink_crc_eDP1", i915_sink_crc, 0},
4686 {"i915_energy_uJ", i915_energy_uJ, 0},
4687 {"i915_pc8_status", i915_pc8_status, 0},
4688 {"i915_power_domain_info", i915_power_domain_info, 0},
4689 {"i915_display_info", i915_display_info, 0},
4690 {"i915_semaphore_status", i915_semaphore_status, 0},
4691 {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
4692 {"i915_dp_mst_info", i915_dp_mst_info, 0},
4693 {"i915_wa_registers", i915_wa_registers, 0},
4694 {"i915_ddb_info", i915_ddb_info, 0},
4695 {"i915_sseu_status", i915_sseu_status, 0},
4696 {"i915_drrs_status", i915_drrs_status, 0},
4697 };
4698 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
4699
4700 static const struct i915_debugfs_files {
4701 const char *name;
4702 const struct file_operations *fops;
4703 } i915_debugfs_files[] = {
4704 {"i915_wedged", &i915_wedged_fops},
4705 {"i915_max_freq", &i915_max_freq_fops},
4706 {"i915_min_freq", &i915_min_freq_fops},
4707 {"i915_cache_sharing", &i915_cache_sharing_fops},
4708 {"i915_ring_stop", &i915_ring_stop_fops},
4709 {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
4710 {"i915_ring_test_irq", &i915_ring_test_irq_fops},
4711 {"i915_gem_drop_caches", &i915_drop_caches_fops},
4712 {"i915_error_state", &i915_error_state_fops},
4713 {"i915_next_seqno", &i915_next_seqno_fops},
4714 {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
4715 {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
4716 {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
4717 {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
4718 {"i915_fbc_false_color", &i915_fbc_fc_fops},
4719 };
4720
4721 void intel_display_crc_init(struct drm_device *dev)
4722 {
4723 struct drm_i915_private *dev_priv = dev->dev_private;
4724 enum pipe pipe;
4725
4726 for_each_pipe(dev_priv, pipe) {
4727 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4728
4729 pipe_crc->opened = false;
4730 spin_lock_init(&pipe_crc->lock);
4731 init_waitqueue_head(&pipe_crc->wq);
4732 }
4733 }
4734
4735 int i915_debugfs_init(struct drm_minor *minor)
4736 {
4737 int ret, i;
4738
4739 ret = i915_forcewake_create(minor->debugfs_root, minor);
4740 if (ret)
4741 return ret;
4742
4743 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
4744 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
4745 if (ret)
4746 return ret;
4747 }
4748
4749 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4750 ret = i915_debugfs_create(minor->debugfs_root, minor,
4751 i915_debugfs_files[i].name,
4752 i915_debugfs_files[i].fops);
4753 if (ret)
4754 return ret;
4755 }
4756
4757 return drm_debugfs_create_files(i915_debugfs_list,
4758 I915_DEBUGFS_ENTRIES,
4759 minor->debugfs_root, minor);
4760 }
4761
4762 void i915_debugfs_cleanup(struct drm_minor *minor)
4763 {
4764 int i;
4765
4766 drm_debugfs_remove_files(i915_debugfs_list,
4767 I915_DEBUGFS_ENTRIES, minor);
4768
4769 drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
4770 1, minor);
4771
4772 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
4773 struct drm_info_list *info_list =
4774 (struct drm_info_list *)&i915_pipe_crc_data[i];
4775
4776 drm_debugfs_remove_files(info_list, 1, minor);
4777 }
4778
4779 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4780 struct drm_info_list *info_list =
4781 (struct drm_info_list *) i915_debugfs_files[i].fops;
4782
4783 drm_debugfs_remove_files(info_list, 1, minor);
4784 }
4785 }