]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_debugfs.c
Merge tag 'devprop-4.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Keith Packard <keithp@keithp.com>
26 *
27 */
28
29 #include <linux/debugfs.h>
30 #include <linux/sort.h>
31 #include "intel_drv.h"
32
33 static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
34 {
35 return to_i915(node->minor->dev);
36 }
37
38 static __always_inline void seq_print_param(struct seq_file *m,
39 const char *name,
40 const char *type,
41 const void *x)
42 {
43 if (!__builtin_strcmp(type, "bool"))
44 seq_printf(m, "i915.%s=%s\n", name, yesno(*(const bool *)x));
45 else if (!__builtin_strcmp(type, "int"))
46 seq_printf(m, "i915.%s=%d\n", name, *(const int *)x);
47 else if (!__builtin_strcmp(type, "unsigned int"))
48 seq_printf(m, "i915.%s=%u\n", name, *(const unsigned int *)x);
49 else if (!__builtin_strcmp(type, "char *"))
50 seq_printf(m, "i915.%s=%s\n", name, *(const char **)x);
51 else
52 BUILD_BUG();
53 }
54
55 static int i915_capabilities(struct seq_file *m, void *data)
56 {
57 struct drm_i915_private *dev_priv = node_to_i915(m->private);
58 const struct intel_device_info *info = INTEL_INFO(dev_priv);
59
60 seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
61 seq_printf(m, "platform: %s\n", intel_platform_name(info->platform));
62 seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));
63
64 #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
65 DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
66 #undef PRINT_FLAG
67
68 kernel_param_lock(THIS_MODULE);
69 #define PRINT_PARAM(T, x) seq_print_param(m, #x, #T, &i915.x);
70 I915_PARAMS_FOR_EACH(PRINT_PARAM);
71 #undef PRINT_PARAM
72 kernel_param_unlock(THIS_MODULE);
73
74 return 0;
75 }
76
77 static char get_active_flag(struct drm_i915_gem_object *obj)
78 {
79 return i915_gem_object_is_active(obj) ? '*' : ' ';
80 }
81
82 static char get_pin_flag(struct drm_i915_gem_object *obj)
83 {
84 return obj->pin_display ? 'p' : ' ';
85 }
86
87 static char get_tiling_flag(struct drm_i915_gem_object *obj)
88 {
89 switch (i915_gem_object_get_tiling(obj)) {
90 default:
91 case I915_TILING_NONE: return ' ';
92 case I915_TILING_X: return 'X';
93 case I915_TILING_Y: return 'Y';
94 }
95 }
96
97 static char get_global_flag(struct drm_i915_gem_object *obj)
98 {
99 return !list_empty(&obj->userfault_link) ? 'g' : ' ';
100 }
101
102 static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
103 {
104 return obj->mm.mapping ? 'M' : ' ';
105 }
106
107 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
108 {
109 u64 size = 0;
110 struct i915_vma *vma;
111
112 list_for_each_entry(vma, &obj->vma_list, obj_link) {
113 if (i915_vma_is_ggtt(vma) && drm_mm_node_allocated(&vma->node))
114 size += vma->node.size;
115 }
116
117 return size;
118 }
119
120 static void
121 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
122 {
123 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
124 struct intel_engine_cs *engine;
125 struct i915_vma *vma;
126 unsigned int frontbuffer_bits;
127 int pin_count = 0;
128
129 lockdep_assert_held(&obj->base.dev->struct_mutex);
130
131 seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x %s%s%s",
132 &obj->base,
133 get_active_flag(obj),
134 get_pin_flag(obj),
135 get_tiling_flag(obj),
136 get_global_flag(obj),
137 get_pin_mapped_flag(obj),
138 obj->base.size / 1024,
139 obj->base.read_domains,
140 obj->base.write_domain,
141 i915_cache_level_str(dev_priv, obj->cache_level),
142 obj->mm.dirty ? " dirty" : "",
143 obj->mm.madv == I915_MADV_DONTNEED ? " purgeable" : "");
144 if (obj->base.name)
145 seq_printf(m, " (name: %d)", obj->base.name);
146 list_for_each_entry(vma, &obj->vma_list, obj_link) {
147 if (i915_vma_is_pinned(vma))
148 pin_count++;
149 }
150 seq_printf(m, " (pinned x %d)", pin_count);
151 if (obj->pin_display)
152 seq_printf(m, " (display)");
153 list_for_each_entry(vma, &obj->vma_list, obj_link) {
154 if (!drm_mm_node_allocated(&vma->node))
155 continue;
156
157 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
158 i915_vma_is_ggtt(vma) ? "g" : "pp",
159 vma->node.start, vma->node.size);
160 if (i915_vma_is_ggtt(vma)) {
161 switch (vma->ggtt_view.type) {
162 case I915_GGTT_VIEW_NORMAL:
163 seq_puts(m, ", normal");
164 break;
165
166 case I915_GGTT_VIEW_PARTIAL:
167 seq_printf(m, ", partial [%08llx+%x]",
168 vma->ggtt_view.partial.offset << PAGE_SHIFT,
169 vma->ggtt_view.partial.size << PAGE_SHIFT);
170 break;
171
172 case I915_GGTT_VIEW_ROTATED:
173 seq_printf(m, ", rotated [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]",
174 vma->ggtt_view.rotated.plane[0].width,
175 vma->ggtt_view.rotated.plane[0].height,
176 vma->ggtt_view.rotated.plane[0].stride,
177 vma->ggtt_view.rotated.plane[0].offset,
178 vma->ggtt_view.rotated.plane[1].width,
179 vma->ggtt_view.rotated.plane[1].height,
180 vma->ggtt_view.rotated.plane[1].stride,
181 vma->ggtt_view.rotated.plane[1].offset);
182 break;
183
184 default:
185 MISSING_CASE(vma->ggtt_view.type);
186 break;
187 }
188 }
189 if (vma->fence)
190 seq_printf(m, " , fence: %d%s",
191 vma->fence->id,
192 i915_gem_active_isset(&vma->last_fence) ? "*" : "");
193 seq_puts(m, ")");
194 }
195 if (obj->stolen)
196 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
197
198 engine = i915_gem_object_last_write_engine(obj);
199 if (engine)
200 seq_printf(m, " (%s)", engine->name);
201
202 frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
203 if (frontbuffer_bits)
204 seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
205 }
206
207 static int obj_rank_by_stolen(const void *A, const void *B)
208 {
209 const struct drm_i915_gem_object *a =
210 *(const struct drm_i915_gem_object **)A;
211 const struct drm_i915_gem_object *b =
212 *(const struct drm_i915_gem_object **)B;
213
214 if (a->stolen->start < b->stolen->start)
215 return -1;
216 if (a->stolen->start > b->stolen->start)
217 return 1;
218 return 0;
219 }
220
221 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
222 {
223 struct drm_i915_private *dev_priv = node_to_i915(m->private);
224 struct drm_device *dev = &dev_priv->drm;
225 struct drm_i915_gem_object **objects;
226 struct drm_i915_gem_object *obj;
227 u64 total_obj_size, total_gtt_size;
228 unsigned long total, count, n;
229 int ret;
230
231 total = READ_ONCE(dev_priv->mm.object_count);
232 objects = kvmalloc_array(total, sizeof(*objects), GFP_KERNEL);
233 if (!objects)
234 return -ENOMEM;
235
236 ret = mutex_lock_interruptible(&dev->struct_mutex);
237 if (ret)
238 goto out;
239
240 total_obj_size = total_gtt_size = count = 0;
241 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
242 if (count == total)
243 break;
244
245 if (obj->stolen == NULL)
246 continue;
247
248 objects[count++] = obj;
249 total_obj_size += obj->base.size;
250 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
251
252 }
253 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_link) {
254 if (count == total)
255 break;
256
257 if (obj->stolen == NULL)
258 continue;
259
260 objects[count++] = obj;
261 total_obj_size += obj->base.size;
262 }
263
264 sort(objects, count, sizeof(*objects), obj_rank_by_stolen, NULL);
265
266 seq_puts(m, "Stolen:\n");
267 for (n = 0; n < count; n++) {
268 seq_puts(m, " ");
269 describe_obj(m, objects[n]);
270 seq_putc(m, '\n');
271 }
272 seq_printf(m, "Total %lu objects, %llu bytes, %llu GTT size\n",
273 count, total_obj_size, total_gtt_size);
274
275 mutex_unlock(&dev->struct_mutex);
276 out:
277 kvfree(objects);
278 return ret;
279 }
280
281 struct file_stats {
282 struct drm_i915_file_private *file_priv;
283 unsigned long count;
284 u64 total, unbound;
285 u64 global, shared;
286 u64 active, inactive;
287 };
288
289 static int per_file_stats(int id, void *ptr, void *data)
290 {
291 struct drm_i915_gem_object *obj = ptr;
292 struct file_stats *stats = data;
293 struct i915_vma *vma;
294
295 lockdep_assert_held(&obj->base.dev->struct_mutex);
296
297 stats->count++;
298 stats->total += obj->base.size;
299 if (!obj->bind_count)
300 stats->unbound += obj->base.size;
301 if (obj->base.name || obj->base.dma_buf)
302 stats->shared += obj->base.size;
303
304 list_for_each_entry(vma, &obj->vma_list, obj_link) {
305 if (!drm_mm_node_allocated(&vma->node))
306 continue;
307
308 if (i915_vma_is_ggtt(vma)) {
309 stats->global += vma->node.size;
310 } else {
311 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
312
313 if (ppgtt->base.file != stats->file_priv)
314 continue;
315 }
316
317 if (i915_vma_is_active(vma))
318 stats->active += vma->node.size;
319 else
320 stats->inactive += vma->node.size;
321 }
322
323 return 0;
324 }
325
326 #define print_file_stats(m, name, stats) do { \
327 if (stats.count) \
328 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
329 name, \
330 stats.count, \
331 stats.total, \
332 stats.active, \
333 stats.inactive, \
334 stats.global, \
335 stats.shared, \
336 stats.unbound); \
337 } while (0)
338
339 static void print_batch_pool_stats(struct seq_file *m,
340 struct drm_i915_private *dev_priv)
341 {
342 struct drm_i915_gem_object *obj;
343 struct file_stats stats;
344 struct intel_engine_cs *engine;
345 enum intel_engine_id id;
346 int j;
347
348 memset(&stats, 0, sizeof(stats));
349
350 for_each_engine(engine, dev_priv, id) {
351 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
352 list_for_each_entry(obj,
353 &engine->batch_pool.cache_list[j],
354 batch_pool_link)
355 per_file_stats(0, obj, &stats);
356 }
357 }
358
359 print_file_stats(m, "[k]batch pool", stats);
360 }
361
362 static int per_file_ctx_stats(int id, void *ptr, void *data)
363 {
364 struct i915_gem_context *ctx = ptr;
365 int n;
366
367 for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
368 if (ctx->engine[n].state)
369 per_file_stats(0, ctx->engine[n].state->obj, data);
370 if (ctx->engine[n].ring)
371 per_file_stats(0, ctx->engine[n].ring->vma->obj, data);
372 }
373
374 return 0;
375 }
376
377 static void print_context_stats(struct seq_file *m,
378 struct drm_i915_private *dev_priv)
379 {
380 struct drm_device *dev = &dev_priv->drm;
381 struct file_stats stats;
382 struct drm_file *file;
383
384 memset(&stats, 0, sizeof(stats));
385
386 mutex_lock(&dev->struct_mutex);
387 if (dev_priv->kernel_context)
388 per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
389
390 list_for_each_entry(file, &dev->filelist, lhead) {
391 struct drm_i915_file_private *fpriv = file->driver_priv;
392 idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
393 }
394 mutex_unlock(&dev->struct_mutex);
395
396 print_file_stats(m, "[k]contexts", stats);
397 }
398
399 static int i915_gem_object_info(struct seq_file *m, void *data)
400 {
401 struct drm_i915_private *dev_priv = node_to_i915(m->private);
402 struct drm_device *dev = &dev_priv->drm;
403 struct i915_ggtt *ggtt = &dev_priv->ggtt;
404 u32 count, mapped_count, purgeable_count, dpy_count;
405 u64 size, mapped_size, purgeable_size, dpy_size;
406 struct drm_i915_gem_object *obj;
407 struct drm_file *file;
408 int ret;
409
410 ret = mutex_lock_interruptible(&dev->struct_mutex);
411 if (ret)
412 return ret;
413
414 seq_printf(m, "%u objects, %llu bytes\n",
415 dev_priv->mm.object_count,
416 dev_priv->mm.object_memory);
417
418 size = count = 0;
419 mapped_size = mapped_count = 0;
420 purgeable_size = purgeable_count = 0;
421 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_link) {
422 size += obj->base.size;
423 ++count;
424
425 if (obj->mm.madv == I915_MADV_DONTNEED) {
426 purgeable_size += obj->base.size;
427 ++purgeable_count;
428 }
429
430 if (obj->mm.mapping) {
431 mapped_count++;
432 mapped_size += obj->base.size;
433 }
434 }
435 seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
436
437 size = count = dpy_size = dpy_count = 0;
438 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
439 size += obj->base.size;
440 ++count;
441
442 if (obj->pin_display) {
443 dpy_size += obj->base.size;
444 ++dpy_count;
445 }
446
447 if (obj->mm.madv == I915_MADV_DONTNEED) {
448 purgeable_size += obj->base.size;
449 ++purgeable_count;
450 }
451
452 if (obj->mm.mapping) {
453 mapped_count++;
454 mapped_size += obj->base.size;
455 }
456 }
457 seq_printf(m, "%u bound objects, %llu bytes\n",
458 count, size);
459 seq_printf(m, "%u purgeable objects, %llu bytes\n",
460 purgeable_count, purgeable_size);
461 seq_printf(m, "%u mapped objects, %llu bytes\n",
462 mapped_count, mapped_size);
463 seq_printf(m, "%u display objects (pinned), %llu bytes\n",
464 dpy_count, dpy_size);
465
466 seq_printf(m, "%llu [%llu] gtt total\n",
467 ggtt->base.total, ggtt->mappable_end);
468
469 seq_putc(m, '\n');
470 print_batch_pool_stats(m, dev_priv);
471 mutex_unlock(&dev->struct_mutex);
472
473 mutex_lock(&dev->filelist_mutex);
474 print_context_stats(m, dev_priv);
475 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
476 struct file_stats stats;
477 struct drm_i915_file_private *file_priv = file->driver_priv;
478 struct drm_i915_gem_request *request;
479 struct task_struct *task;
480
481 mutex_lock(&dev->struct_mutex);
482
483 memset(&stats, 0, sizeof(stats));
484 stats.file_priv = file->driver_priv;
485 spin_lock(&file->table_lock);
486 idr_for_each(&file->object_idr, per_file_stats, &stats);
487 spin_unlock(&file->table_lock);
488 /*
489 * Although we have a valid reference on file->pid, that does
490 * not guarantee that the task_struct who called get_pid() is
491 * still alive (e.g. get_pid(current) => fork() => exit()).
492 * Therefore, we need to protect this ->comm access using RCU.
493 */
494 request = list_first_entry_or_null(&file_priv->mm.request_list,
495 struct drm_i915_gem_request,
496 client_link);
497 rcu_read_lock();
498 task = pid_task(request && request->ctx->pid ?
499 request->ctx->pid : file->pid,
500 PIDTYPE_PID);
501 print_file_stats(m, task ? task->comm : "<unknown>", stats);
502 rcu_read_unlock();
503
504 mutex_unlock(&dev->struct_mutex);
505 }
506 mutex_unlock(&dev->filelist_mutex);
507
508 return 0;
509 }
510
511 static int i915_gem_gtt_info(struct seq_file *m, void *data)
512 {
513 struct drm_info_node *node = m->private;
514 struct drm_i915_private *dev_priv = node_to_i915(node);
515 struct drm_device *dev = &dev_priv->drm;
516 bool show_pin_display_only = !!node->info_ent->data;
517 struct drm_i915_gem_object *obj;
518 u64 total_obj_size, total_gtt_size;
519 int count, ret;
520
521 ret = mutex_lock_interruptible(&dev->struct_mutex);
522 if (ret)
523 return ret;
524
525 total_obj_size = total_gtt_size = count = 0;
526 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
527 if (show_pin_display_only && !obj->pin_display)
528 continue;
529
530 seq_puts(m, " ");
531 describe_obj(m, obj);
532 seq_putc(m, '\n');
533 total_obj_size += obj->base.size;
534 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
535 count++;
536 }
537
538 mutex_unlock(&dev->struct_mutex);
539
540 seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
541 count, total_obj_size, total_gtt_size);
542
543 return 0;
544 }
545
546 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
547 {
548 struct drm_i915_private *dev_priv = node_to_i915(m->private);
549 struct drm_device *dev = &dev_priv->drm;
550 struct intel_crtc *crtc;
551 int ret;
552
553 ret = mutex_lock_interruptible(&dev->struct_mutex);
554 if (ret)
555 return ret;
556
557 for_each_intel_crtc(dev, crtc) {
558 const char pipe = pipe_name(crtc->pipe);
559 const char plane = plane_name(crtc->plane);
560 struct intel_flip_work *work;
561
562 spin_lock_irq(&dev->event_lock);
563 work = crtc->flip_work;
564 if (work == NULL) {
565 seq_printf(m, "No flip due on pipe %c (plane %c)\n",
566 pipe, plane);
567 } else {
568 u32 pending;
569 u32 addr;
570
571 pending = atomic_read(&work->pending);
572 if (pending) {
573 seq_printf(m, "Flip ioctl preparing on pipe %c (plane %c)\n",
574 pipe, plane);
575 } else {
576 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
577 pipe, plane);
578 }
579 if (work->flip_queued_req) {
580 struct intel_engine_cs *engine = work->flip_queued_req->engine;
581
582 seq_printf(m, "Flip queued on %s at seqno %x, last submitted seqno %x [current breadcrumb %x], completed? %d\n",
583 engine->name,
584 work->flip_queued_req->global_seqno,
585 intel_engine_last_submit(engine),
586 intel_engine_get_seqno(engine),
587 i915_gem_request_completed(work->flip_queued_req));
588 } else
589 seq_printf(m, "Flip not associated with any ring\n");
590 seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
591 work->flip_queued_vblank,
592 work->flip_ready_vblank,
593 intel_crtc_get_vblank_counter(crtc));
594 seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
595
596 if (INTEL_GEN(dev_priv) >= 4)
597 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
598 else
599 addr = I915_READ(DSPADDR(crtc->plane));
600 seq_printf(m, "Current scanout address 0x%08x\n", addr);
601
602 if (work->pending_flip_obj) {
603 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
604 seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset);
605 }
606 }
607 spin_unlock_irq(&dev->event_lock);
608 }
609
610 mutex_unlock(&dev->struct_mutex);
611
612 return 0;
613 }
614
615 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
616 {
617 struct drm_i915_private *dev_priv = node_to_i915(m->private);
618 struct drm_device *dev = &dev_priv->drm;
619 struct drm_i915_gem_object *obj;
620 struct intel_engine_cs *engine;
621 enum intel_engine_id id;
622 int total = 0;
623 int ret, j;
624
625 ret = mutex_lock_interruptible(&dev->struct_mutex);
626 if (ret)
627 return ret;
628
629 for_each_engine(engine, dev_priv, id) {
630 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
631 int count;
632
633 count = 0;
634 list_for_each_entry(obj,
635 &engine->batch_pool.cache_list[j],
636 batch_pool_link)
637 count++;
638 seq_printf(m, "%s cache[%d]: %d objects\n",
639 engine->name, j, count);
640
641 list_for_each_entry(obj,
642 &engine->batch_pool.cache_list[j],
643 batch_pool_link) {
644 seq_puts(m, " ");
645 describe_obj(m, obj);
646 seq_putc(m, '\n');
647 }
648
649 total += count;
650 }
651 }
652
653 seq_printf(m, "total: %d\n", total);
654
655 mutex_unlock(&dev->struct_mutex);
656
657 return 0;
658 }
659
660 static void print_request(struct seq_file *m,
661 struct drm_i915_gem_request *rq,
662 const char *prefix)
663 {
664 seq_printf(m, "%s%x [%x:%x] prio=%d @ %dms: %s\n", prefix,
665 rq->global_seqno, rq->ctx->hw_id, rq->fence.seqno,
666 rq->priotree.priority,
667 jiffies_to_msecs(jiffies - rq->emitted_jiffies),
668 rq->timeline->common->name);
669 }
670
671 static int i915_gem_request_info(struct seq_file *m, void *data)
672 {
673 struct drm_i915_private *dev_priv = node_to_i915(m->private);
674 struct drm_device *dev = &dev_priv->drm;
675 struct drm_i915_gem_request *req;
676 struct intel_engine_cs *engine;
677 enum intel_engine_id id;
678 int ret, any;
679
680 ret = mutex_lock_interruptible(&dev->struct_mutex);
681 if (ret)
682 return ret;
683
684 any = 0;
685 for_each_engine(engine, dev_priv, id) {
686 int count;
687
688 count = 0;
689 list_for_each_entry(req, &engine->timeline->requests, link)
690 count++;
691 if (count == 0)
692 continue;
693
694 seq_printf(m, "%s requests: %d\n", engine->name, count);
695 list_for_each_entry(req, &engine->timeline->requests, link)
696 print_request(m, req, " ");
697
698 any++;
699 }
700 mutex_unlock(&dev->struct_mutex);
701
702 if (any == 0)
703 seq_puts(m, "No requests\n");
704
705 return 0;
706 }
707
708 static void i915_ring_seqno_info(struct seq_file *m,
709 struct intel_engine_cs *engine)
710 {
711 struct intel_breadcrumbs *b = &engine->breadcrumbs;
712 struct rb_node *rb;
713
714 seq_printf(m, "Current sequence (%s): %x\n",
715 engine->name, intel_engine_get_seqno(engine));
716
717 spin_lock_irq(&b->rb_lock);
718 for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
719 struct intel_wait *w = rb_entry(rb, typeof(*w), node);
720
721 seq_printf(m, "Waiting (%s): %s [%d] on %x\n",
722 engine->name, w->tsk->comm, w->tsk->pid, w->seqno);
723 }
724 spin_unlock_irq(&b->rb_lock);
725 }
726
727 static int i915_gem_seqno_info(struct seq_file *m, void *data)
728 {
729 struct drm_i915_private *dev_priv = node_to_i915(m->private);
730 struct intel_engine_cs *engine;
731 enum intel_engine_id id;
732
733 for_each_engine(engine, dev_priv, id)
734 i915_ring_seqno_info(m, engine);
735
736 return 0;
737 }
738
739
740 static int i915_interrupt_info(struct seq_file *m, void *data)
741 {
742 struct drm_i915_private *dev_priv = node_to_i915(m->private);
743 struct intel_engine_cs *engine;
744 enum intel_engine_id id;
745 int i, pipe;
746
747 intel_runtime_pm_get(dev_priv);
748
749 if (IS_CHERRYVIEW(dev_priv)) {
750 seq_printf(m, "Master Interrupt Control:\t%08x\n",
751 I915_READ(GEN8_MASTER_IRQ));
752
753 seq_printf(m, "Display IER:\t%08x\n",
754 I915_READ(VLV_IER));
755 seq_printf(m, "Display IIR:\t%08x\n",
756 I915_READ(VLV_IIR));
757 seq_printf(m, "Display IIR_RW:\t%08x\n",
758 I915_READ(VLV_IIR_RW));
759 seq_printf(m, "Display IMR:\t%08x\n",
760 I915_READ(VLV_IMR));
761 for_each_pipe(dev_priv, pipe) {
762 enum intel_display_power_domain power_domain;
763
764 power_domain = POWER_DOMAIN_PIPE(pipe);
765 if (!intel_display_power_get_if_enabled(dev_priv,
766 power_domain)) {
767 seq_printf(m, "Pipe %c power disabled\n",
768 pipe_name(pipe));
769 continue;
770 }
771
772 seq_printf(m, "Pipe %c stat:\t%08x\n",
773 pipe_name(pipe),
774 I915_READ(PIPESTAT(pipe)));
775
776 intel_display_power_put(dev_priv, power_domain);
777 }
778
779 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
780 seq_printf(m, "Port hotplug:\t%08x\n",
781 I915_READ(PORT_HOTPLUG_EN));
782 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
783 I915_READ(VLV_DPFLIPSTAT));
784 seq_printf(m, "DPINVGTT:\t%08x\n",
785 I915_READ(DPINVGTT));
786 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
787
788 for (i = 0; i < 4; i++) {
789 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
790 i, I915_READ(GEN8_GT_IMR(i)));
791 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
792 i, I915_READ(GEN8_GT_IIR(i)));
793 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
794 i, I915_READ(GEN8_GT_IER(i)));
795 }
796
797 seq_printf(m, "PCU interrupt mask:\t%08x\n",
798 I915_READ(GEN8_PCU_IMR));
799 seq_printf(m, "PCU interrupt identity:\t%08x\n",
800 I915_READ(GEN8_PCU_IIR));
801 seq_printf(m, "PCU interrupt enable:\t%08x\n",
802 I915_READ(GEN8_PCU_IER));
803 } else if (INTEL_GEN(dev_priv) >= 8) {
804 seq_printf(m, "Master Interrupt Control:\t%08x\n",
805 I915_READ(GEN8_MASTER_IRQ));
806
807 for (i = 0; i < 4; i++) {
808 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
809 i, I915_READ(GEN8_GT_IMR(i)));
810 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
811 i, I915_READ(GEN8_GT_IIR(i)));
812 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
813 i, I915_READ(GEN8_GT_IER(i)));
814 }
815
816 for_each_pipe(dev_priv, pipe) {
817 enum intel_display_power_domain power_domain;
818
819 power_domain = POWER_DOMAIN_PIPE(pipe);
820 if (!intel_display_power_get_if_enabled(dev_priv,
821 power_domain)) {
822 seq_printf(m, "Pipe %c power disabled\n",
823 pipe_name(pipe));
824 continue;
825 }
826 seq_printf(m, "Pipe %c IMR:\t%08x\n",
827 pipe_name(pipe),
828 I915_READ(GEN8_DE_PIPE_IMR(pipe)));
829 seq_printf(m, "Pipe %c IIR:\t%08x\n",
830 pipe_name(pipe),
831 I915_READ(GEN8_DE_PIPE_IIR(pipe)));
832 seq_printf(m, "Pipe %c IER:\t%08x\n",
833 pipe_name(pipe),
834 I915_READ(GEN8_DE_PIPE_IER(pipe)));
835
836 intel_display_power_put(dev_priv, power_domain);
837 }
838
839 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
840 I915_READ(GEN8_DE_PORT_IMR));
841 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
842 I915_READ(GEN8_DE_PORT_IIR));
843 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
844 I915_READ(GEN8_DE_PORT_IER));
845
846 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
847 I915_READ(GEN8_DE_MISC_IMR));
848 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
849 I915_READ(GEN8_DE_MISC_IIR));
850 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
851 I915_READ(GEN8_DE_MISC_IER));
852
853 seq_printf(m, "PCU interrupt mask:\t%08x\n",
854 I915_READ(GEN8_PCU_IMR));
855 seq_printf(m, "PCU interrupt identity:\t%08x\n",
856 I915_READ(GEN8_PCU_IIR));
857 seq_printf(m, "PCU interrupt enable:\t%08x\n",
858 I915_READ(GEN8_PCU_IER));
859 } else if (IS_VALLEYVIEW(dev_priv)) {
860 seq_printf(m, "Display IER:\t%08x\n",
861 I915_READ(VLV_IER));
862 seq_printf(m, "Display IIR:\t%08x\n",
863 I915_READ(VLV_IIR));
864 seq_printf(m, "Display IIR_RW:\t%08x\n",
865 I915_READ(VLV_IIR_RW));
866 seq_printf(m, "Display IMR:\t%08x\n",
867 I915_READ(VLV_IMR));
868 for_each_pipe(dev_priv, pipe) {
869 enum intel_display_power_domain power_domain;
870
871 power_domain = POWER_DOMAIN_PIPE(pipe);
872 if (!intel_display_power_get_if_enabled(dev_priv,
873 power_domain)) {
874 seq_printf(m, "Pipe %c power disabled\n",
875 pipe_name(pipe));
876 continue;
877 }
878
879 seq_printf(m, "Pipe %c stat:\t%08x\n",
880 pipe_name(pipe),
881 I915_READ(PIPESTAT(pipe)));
882 intel_display_power_put(dev_priv, power_domain);
883 }
884
885 seq_printf(m, "Master IER:\t%08x\n",
886 I915_READ(VLV_MASTER_IER));
887
888 seq_printf(m, "Render IER:\t%08x\n",
889 I915_READ(GTIER));
890 seq_printf(m, "Render IIR:\t%08x\n",
891 I915_READ(GTIIR));
892 seq_printf(m, "Render IMR:\t%08x\n",
893 I915_READ(GTIMR));
894
895 seq_printf(m, "PM IER:\t\t%08x\n",
896 I915_READ(GEN6_PMIER));
897 seq_printf(m, "PM IIR:\t\t%08x\n",
898 I915_READ(GEN6_PMIIR));
899 seq_printf(m, "PM IMR:\t\t%08x\n",
900 I915_READ(GEN6_PMIMR));
901
902 seq_printf(m, "Port hotplug:\t%08x\n",
903 I915_READ(PORT_HOTPLUG_EN));
904 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
905 I915_READ(VLV_DPFLIPSTAT));
906 seq_printf(m, "DPINVGTT:\t%08x\n",
907 I915_READ(DPINVGTT));
908
909 } else if (!HAS_PCH_SPLIT(dev_priv)) {
910 seq_printf(m, "Interrupt enable: %08x\n",
911 I915_READ(IER));
912 seq_printf(m, "Interrupt identity: %08x\n",
913 I915_READ(IIR));
914 seq_printf(m, "Interrupt mask: %08x\n",
915 I915_READ(IMR));
916 for_each_pipe(dev_priv, pipe)
917 seq_printf(m, "Pipe %c stat: %08x\n",
918 pipe_name(pipe),
919 I915_READ(PIPESTAT(pipe)));
920 } else {
921 seq_printf(m, "North Display Interrupt enable: %08x\n",
922 I915_READ(DEIER));
923 seq_printf(m, "North Display Interrupt identity: %08x\n",
924 I915_READ(DEIIR));
925 seq_printf(m, "North Display Interrupt mask: %08x\n",
926 I915_READ(DEIMR));
927 seq_printf(m, "South Display Interrupt enable: %08x\n",
928 I915_READ(SDEIER));
929 seq_printf(m, "South Display Interrupt identity: %08x\n",
930 I915_READ(SDEIIR));
931 seq_printf(m, "South Display Interrupt mask: %08x\n",
932 I915_READ(SDEIMR));
933 seq_printf(m, "Graphics Interrupt enable: %08x\n",
934 I915_READ(GTIER));
935 seq_printf(m, "Graphics Interrupt identity: %08x\n",
936 I915_READ(GTIIR));
937 seq_printf(m, "Graphics Interrupt mask: %08x\n",
938 I915_READ(GTIMR));
939 }
940 for_each_engine(engine, dev_priv, id) {
941 if (INTEL_GEN(dev_priv) >= 6) {
942 seq_printf(m,
943 "Graphics Interrupt mask (%s): %08x\n",
944 engine->name, I915_READ_IMR(engine));
945 }
946 i915_ring_seqno_info(m, engine);
947 }
948 intel_runtime_pm_put(dev_priv);
949
950 return 0;
951 }
952
953 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
954 {
955 struct drm_i915_private *dev_priv = node_to_i915(m->private);
956 struct drm_device *dev = &dev_priv->drm;
957 int i, ret;
958
959 ret = mutex_lock_interruptible(&dev->struct_mutex);
960 if (ret)
961 return ret;
962
963 seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
964 for (i = 0; i < dev_priv->num_fence_regs; i++) {
965 struct i915_vma *vma = dev_priv->fence_regs[i].vma;
966
967 seq_printf(m, "Fence %d, pin count = %d, object = ",
968 i, dev_priv->fence_regs[i].pin_count);
969 if (!vma)
970 seq_puts(m, "unused");
971 else
972 describe_obj(m, vma->obj);
973 seq_putc(m, '\n');
974 }
975
976 mutex_unlock(&dev->struct_mutex);
977 return 0;
978 }
979
980 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
981 static ssize_t gpu_state_read(struct file *file, char __user *ubuf,
982 size_t count, loff_t *pos)
983 {
984 struct i915_gpu_state *error = file->private_data;
985 struct drm_i915_error_state_buf str;
986 ssize_t ret;
987 loff_t tmp;
988
989 if (!error)
990 return 0;
991
992 ret = i915_error_state_buf_init(&str, error->i915, count, *pos);
993 if (ret)
994 return ret;
995
996 ret = i915_error_state_to_str(&str, error);
997 if (ret)
998 goto out;
999
1000 tmp = 0;
1001 ret = simple_read_from_buffer(ubuf, count, &tmp, str.buf, str.bytes);
1002 if (ret < 0)
1003 goto out;
1004
1005 *pos = str.start + ret;
1006 out:
1007 i915_error_state_buf_release(&str);
1008 return ret;
1009 }
1010
1011 static int gpu_state_release(struct inode *inode, struct file *file)
1012 {
1013 i915_gpu_state_put(file->private_data);
1014 return 0;
1015 }
1016
1017 static int i915_gpu_info_open(struct inode *inode, struct file *file)
1018 {
1019 struct drm_i915_private *i915 = inode->i_private;
1020 struct i915_gpu_state *gpu;
1021
1022 intel_runtime_pm_get(i915);
1023 gpu = i915_capture_gpu_state(i915);
1024 intel_runtime_pm_put(i915);
1025 if (!gpu)
1026 return -ENOMEM;
1027
1028 file->private_data = gpu;
1029 return 0;
1030 }
1031
1032 static const struct file_operations i915_gpu_info_fops = {
1033 .owner = THIS_MODULE,
1034 .open = i915_gpu_info_open,
1035 .read = gpu_state_read,
1036 .llseek = default_llseek,
1037 .release = gpu_state_release,
1038 };
1039
1040 static ssize_t
1041 i915_error_state_write(struct file *filp,
1042 const char __user *ubuf,
1043 size_t cnt,
1044 loff_t *ppos)
1045 {
1046 struct i915_gpu_state *error = filp->private_data;
1047
1048 if (!error)
1049 return 0;
1050
1051 DRM_DEBUG_DRIVER("Resetting error state\n");
1052 i915_reset_error_state(error->i915);
1053
1054 return cnt;
1055 }
1056
1057 static int i915_error_state_open(struct inode *inode, struct file *file)
1058 {
1059 file->private_data = i915_first_error_state(inode->i_private);
1060 return 0;
1061 }
1062
1063 static const struct file_operations i915_error_state_fops = {
1064 .owner = THIS_MODULE,
1065 .open = i915_error_state_open,
1066 .read = gpu_state_read,
1067 .write = i915_error_state_write,
1068 .llseek = default_llseek,
1069 .release = gpu_state_release,
1070 };
1071 #endif
1072
1073 static int
1074 i915_next_seqno_set(void *data, u64 val)
1075 {
1076 struct drm_i915_private *dev_priv = data;
1077 struct drm_device *dev = &dev_priv->drm;
1078 int ret;
1079
1080 ret = mutex_lock_interruptible(&dev->struct_mutex);
1081 if (ret)
1082 return ret;
1083
1084 ret = i915_gem_set_global_seqno(dev, val);
1085 mutex_unlock(&dev->struct_mutex);
1086
1087 return ret;
1088 }
1089
1090 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1091 NULL, i915_next_seqno_set,
1092 "0x%llx\n");
1093
1094 static int i915_frequency_info(struct seq_file *m, void *unused)
1095 {
1096 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1097 int ret = 0;
1098
1099 intel_runtime_pm_get(dev_priv);
1100
1101 if (IS_GEN5(dev_priv)) {
1102 u16 rgvswctl = I915_READ16(MEMSWCTL);
1103 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1104
1105 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1106 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1107 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1108 MEMSTAT_VID_SHIFT);
1109 seq_printf(m, "Current P-state: %d\n",
1110 (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1111 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1112 u32 freq_sts;
1113
1114 mutex_lock(&dev_priv->rps.hw_lock);
1115 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1116 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1117 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1118
1119 seq_printf(m, "actual GPU freq: %d MHz\n",
1120 intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1121
1122 seq_printf(m, "current GPU freq: %d MHz\n",
1123 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1124
1125 seq_printf(m, "max GPU freq: %d MHz\n",
1126 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1127
1128 seq_printf(m, "min GPU freq: %d MHz\n",
1129 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1130
1131 seq_printf(m, "idle GPU freq: %d MHz\n",
1132 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1133
1134 seq_printf(m,
1135 "efficient (RPe) frequency: %d MHz\n",
1136 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1137 mutex_unlock(&dev_priv->rps.hw_lock);
1138 } else if (INTEL_GEN(dev_priv) >= 6) {
1139 u32 rp_state_limits;
1140 u32 gt_perf_status;
1141 u32 rp_state_cap;
1142 u32 rpmodectl, rpinclimit, rpdeclimit;
1143 u32 rpstat, cagf, reqf;
1144 u32 rpupei, rpcurup, rpprevup;
1145 u32 rpdownei, rpcurdown, rpprevdown;
1146 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1147 int max_freq;
1148
1149 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1150 if (IS_GEN9_LP(dev_priv)) {
1151 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1152 gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1153 } else {
1154 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1155 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1156 }
1157
1158 /* RPSTAT1 is in the GT power well */
1159 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1160
1161 reqf = I915_READ(GEN6_RPNSWREQ);
1162 if (IS_GEN9(dev_priv))
1163 reqf >>= 23;
1164 else {
1165 reqf &= ~GEN6_TURBO_DISABLE;
1166 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1167 reqf >>= 24;
1168 else
1169 reqf >>= 25;
1170 }
1171 reqf = intel_gpu_freq(dev_priv, reqf);
1172
1173 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1174 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1175 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1176
1177 rpstat = I915_READ(GEN6_RPSTAT1);
1178 rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
1179 rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
1180 rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
1181 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
1182 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
1183 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
1184 if (IS_GEN9(dev_priv))
1185 cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1186 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1187 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1188 else
1189 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1190 cagf = intel_gpu_freq(dev_priv, cagf);
1191
1192 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1193
1194 if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
1195 pm_ier = I915_READ(GEN6_PMIER);
1196 pm_imr = I915_READ(GEN6_PMIMR);
1197 pm_isr = I915_READ(GEN6_PMISR);
1198 pm_iir = I915_READ(GEN6_PMIIR);
1199 pm_mask = I915_READ(GEN6_PMINTRMSK);
1200 } else {
1201 pm_ier = I915_READ(GEN8_GT_IER(2));
1202 pm_imr = I915_READ(GEN8_GT_IMR(2));
1203 pm_isr = I915_READ(GEN8_GT_ISR(2));
1204 pm_iir = I915_READ(GEN8_GT_IIR(2));
1205 pm_mask = I915_READ(GEN6_PMINTRMSK);
1206 }
1207 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1208 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1209 seq_printf(m, "pm_intrmsk_mbz: 0x%08x\n",
1210 dev_priv->rps.pm_intrmsk_mbz);
1211 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1212 seq_printf(m, "Render p-state ratio: %d\n",
1213 (gt_perf_status & (IS_GEN9(dev_priv) ? 0x1ff00 : 0xff00)) >> 8);
1214 seq_printf(m, "Render p-state VID: %d\n",
1215 gt_perf_status & 0xff);
1216 seq_printf(m, "Render p-state limit: %d\n",
1217 rp_state_limits & 0xff);
1218 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1219 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1220 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1221 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1222 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1223 seq_printf(m, "CAGF: %dMHz\n", cagf);
1224 seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
1225 rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
1226 seq_printf(m, "RP CUR UP: %d (%dus)\n",
1227 rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
1228 seq_printf(m, "RP PREV UP: %d (%dus)\n",
1229 rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
1230 seq_printf(m, "Up threshold: %d%%\n",
1231 dev_priv->rps.up_threshold);
1232
1233 seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
1234 rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
1235 seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
1236 rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
1237 seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
1238 rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
1239 seq_printf(m, "Down threshold: %d%%\n",
1240 dev_priv->rps.down_threshold);
1241
1242 max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 0 :
1243 rp_state_cap >> 16) & 0xff;
1244 max_freq *= (IS_GEN9_BC(dev_priv) ? GEN9_FREQ_SCALER : 1);
1245 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1246 intel_gpu_freq(dev_priv, max_freq));
1247
1248 max_freq = (rp_state_cap & 0xff00) >> 8;
1249 max_freq *= (IS_GEN9_BC(dev_priv) ? GEN9_FREQ_SCALER : 1);
1250 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1251 intel_gpu_freq(dev_priv, max_freq));
1252
1253 max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 16 :
1254 rp_state_cap >> 0) & 0xff;
1255 max_freq *= (IS_GEN9_BC(dev_priv) ? GEN9_FREQ_SCALER : 1);
1256 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1257 intel_gpu_freq(dev_priv, max_freq));
1258 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1259 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1260
1261 seq_printf(m, "Current freq: %d MHz\n",
1262 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1263 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1264 seq_printf(m, "Idle freq: %d MHz\n",
1265 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1266 seq_printf(m, "Min freq: %d MHz\n",
1267 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1268 seq_printf(m, "Boost freq: %d MHz\n",
1269 intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
1270 seq_printf(m, "Max freq: %d MHz\n",
1271 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1272 seq_printf(m,
1273 "efficient (RPe) frequency: %d MHz\n",
1274 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1275 } else {
1276 seq_puts(m, "no P-state info available\n");
1277 }
1278
1279 seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk.hw.cdclk);
1280 seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1281 seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1282
1283 intel_runtime_pm_put(dev_priv);
1284 return ret;
1285 }
1286
1287 static void i915_instdone_info(struct drm_i915_private *dev_priv,
1288 struct seq_file *m,
1289 struct intel_instdone *instdone)
1290 {
1291 int slice;
1292 int subslice;
1293
1294 seq_printf(m, "\t\tINSTDONE: 0x%08x\n",
1295 instdone->instdone);
1296
1297 if (INTEL_GEN(dev_priv) <= 3)
1298 return;
1299
1300 seq_printf(m, "\t\tSC_INSTDONE: 0x%08x\n",
1301 instdone->slice_common);
1302
1303 if (INTEL_GEN(dev_priv) <= 6)
1304 return;
1305
1306 for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1307 seq_printf(m, "\t\tSAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
1308 slice, subslice, instdone->sampler[slice][subslice]);
1309
1310 for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1311 seq_printf(m, "\t\tROW_INSTDONE[%d][%d]: 0x%08x\n",
1312 slice, subslice, instdone->row[slice][subslice]);
1313 }
1314
1315 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1316 {
1317 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1318 struct intel_engine_cs *engine;
1319 u64 acthd[I915_NUM_ENGINES];
1320 u32 seqno[I915_NUM_ENGINES];
1321 struct intel_instdone instdone;
1322 enum intel_engine_id id;
1323
1324 if (test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
1325 seq_puts(m, "Wedged\n");
1326 if (test_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags))
1327 seq_puts(m, "Reset in progress: struct_mutex backoff\n");
1328 if (test_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags))
1329 seq_puts(m, "Reset in progress: reset handoff to waiter\n");
1330 if (waitqueue_active(&dev_priv->gpu_error.wait_queue))
1331 seq_puts(m, "Waiter holding struct mutex\n");
1332 if (waitqueue_active(&dev_priv->gpu_error.reset_queue))
1333 seq_puts(m, "struct_mutex blocked for reset\n");
1334
1335 if (!i915.enable_hangcheck) {
1336 seq_puts(m, "Hangcheck disabled\n");
1337 return 0;
1338 }
1339
1340 intel_runtime_pm_get(dev_priv);
1341
1342 for_each_engine(engine, dev_priv, id) {
1343 acthd[id] = intel_engine_get_active_head(engine);
1344 seqno[id] = intel_engine_get_seqno(engine);
1345 }
1346
1347 intel_engine_get_instdone(dev_priv->engine[RCS], &instdone);
1348
1349 intel_runtime_pm_put(dev_priv);
1350
1351 if (timer_pending(&dev_priv->gpu_error.hangcheck_work.timer))
1352 seq_printf(m, "Hangcheck active, timer fires in %dms\n",
1353 jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1354 jiffies));
1355 else if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work))
1356 seq_puts(m, "Hangcheck active, work pending\n");
1357 else
1358 seq_puts(m, "Hangcheck inactive\n");
1359
1360 seq_printf(m, "GT active? %s\n", yesno(dev_priv->gt.awake));
1361
1362 for_each_engine(engine, dev_priv, id) {
1363 struct intel_breadcrumbs *b = &engine->breadcrumbs;
1364 struct rb_node *rb;
1365
1366 seq_printf(m, "%s:\n", engine->name);
1367 seq_printf(m, "\tseqno = %x [current %x, last %x], inflight %d\n",
1368 engine->hangcheck.seqno, seqno[id],
1369 intel_engine_last_submit(engine),
1370 engine->timeline->inflight_seqnos);
1371 seq_printf(m, "\twaiters? %s, fake irq active? %s, stalled? %s\n",
1372 yesno(intel_engine_has_waiter(engine)),
1373 yesno(test_bit(engine->id,
1374 &dev_priv->gpu_error.missed_irq_rings)),
1375 yesno(engine->hangcheck.stalled));
1376
1377 spin_lock_irq(&b->rb_lock);
1378 for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
1379 struct intel_wait *w = rb_entry(rb, typeof(*w), node);
1380
1381 seq_printf(m, "\t%s [%d] waiting for %x\n",
1382 w->tsk->comm, w->tsk->pid, w->seqno);
1383 }
1384 spin_unlock_irq(&b->rb_lock);
1385
1386 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1387 (long long)engine->hangcheck.acthd,
1388 (long long)acthd[id]);
1389 seq_printf(m, "\taction = %s(%d) %d ms ago\n",
1390 hangcheck_action_to_str(engine->hangcheck.action),
1391 engine->hangcheck.action,
1392 jiffies_to_msecs(jiffies -
1393 engine->hangcheck.action_timestamp));
1394
1395 if (engine->id == RCS) {
1396 seq_puts(m, "\tinstdone read =\n");
1397
1398 i915_instdone_info(dev_priv, m, &instdone);
1399
1400 seq_puts(m, "\tinstdone accu =\n");
1401
1402 i915_instdone_info(dev_priv, m,
1403 &engine->hangcheck.instdone);
1404 }
1405 }
1406
1407 return 0;
1408 }
1409
1410 static int ironlake_drpc_info(struct seq_file *m)
1411 {
1412 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1413 u32 rgvmodectl, rstdbyctl;
1414 u16 crstandvid;
1415
1416 rgvmodectl = I915_READ(MEMMODECTL);
1417 rstdbyctl = I915_READ(RSTDBYCTL);
1418 crstandvid = I915_READ16(CRSTANDVID);
1419
1420 seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1421 seq_printf(m, "Boost freq: %d\n",
1422 (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1423 MEMMODE_BOOST_FREQ_SHIFT);
1424 seq_printf(m, "HW control enabled: %s\n",
1425 yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1426 seq_printf(m, "SW control enabled: %s\n",
1427 yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1428 seq_printf(m, "Gated voltage change: %s\n",
1429 yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1430 seq_printf(m, "Starting frequency: P%d\n",
1431 (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1432 seq_printf(m, "Max P-state: P%d\n",
1433 (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1434 seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1435 seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1436 seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1437 seq_printf(m, "Render standby enabled: %s\n",
1438 yesno(!(rstdbyctl & RCX_SW_EXIT)));
1439 seq_puts(m, "Current RS state: ");
1440 switch (rstdbyctl & RSX_STATUS_MASK) {
1441 case RSX_STATUS_ON:
1442 seq_puts(m, "on\n");
1443 break;
1444 case RSX_STATUS_RC1:
1445 seq_puts(m, "RC1\n");
1446 break;
1447 case RSX_STATUS_RC1E:
1448 seq_puts(m, "RC1E\n");
1449 break;
1450 case RSX_STATUS_RS1:
1451 seq_puts(m, "RS1\n");
1452 break;
1453 case RSX_STATUS_RS2:
1454 seq_puts(m, "RS2 (RC6)\n");
1455 break;
1456 case RSX_STATUS_RS3:
1457 seq_puts(m, "RC3 (RC6+)\n");
1458 break;
1459 default:
1460 seq_puts(m, "unknown\n");
1461 break;
1462 }
1463
1464 return 0;
1465 }
1466
1467 static int i915_forcewake_domains(struct seq_file *m, void *data)
1468 {
1469 struct drm_i915_private *i915 = node_to_i915(m->private);
1470 struct intel_uncore_forcewake_domain *fw_domain;
1471 unsigned int tmp;
1472
1473 for_each_fw_domain(fw_domain, i915, tmp)
1474 seq_printf(m, "%s.wake_count = %u\n",
1475 intel_uncore_forcewake_domain_to_str(fw_domain->id),
1476 READ_ONCE(fw_domain->wake_count));
1477
1478 return 0;
1479 }
1480
1481 static void print_rc6_res(struct seq_file *m,
1482 const char *title,
1483 const i915_reg_t reg)
1484 {
1485 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1486
1487 seq_printf(m, "%s %u (%llu us)\n",
1488 title, I915_READ(reg),
1489 intel_rc6_residency_us(dev_priv, reg));
1490 }
1491
1492 static int vlv_drpc_info(struct seq_file *m)
1493 {
1494 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1495 u32 rpmodectl1, rcctl1, pw_status;
1496
1497 pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1498 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1499 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1500
1501 seq_printf(m, "Video Turbo Mode: %s\n",
1502 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1503 seq_printf(m, "Turbo enabled: %s\n",
1504 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1505 seq_printf(m, "HW control enabled: %s\n",
1506 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1507 seq_printf(m, "SW control enabled: %s\n",
1508 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1509 GEN6_RP_MEDIA_SW_MODE));
1510 seq_printf(m, "RC6 Enabled: %s\n",
1511 yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1512 GEN6_RC_CTL_EI_MODE(1))));
1513 seq_printf(m, "Render Power Well: %s\n",
1514 (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1515 seq_printf(m, "Media Power Well: %s\n",
1516 (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1517
1518 print_rc6_res(m, "Render RC6 residency since boot:", VLV_GT_RENDER_RC6);
1519 print_rc6_res(m, "Media RC6 residency since boot:", VLV_GT_MEDIA_RC6);
1520
1521 return i915_forcewake_domains(m, NULL);
1522 }
1523
1524 static int gen6_drpc_info(struct seq_file *m)
1525 {
1526 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1527 u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1528 u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
1529 unsigned forcewake_count;
1530 int count = 0;
1531
1532 forcewake_count = READ_ONCE(dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count);
1533 if (forcewake_count) {
1534 seq_puts(m, "RC information inaccurate because somebody "
1535 "holds a forcewake reference \n");
1536 } else {
1537 /* NB: we cannot use forcewake, else we read the wrong values */
1538 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1539 udelay(10);
1540 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1541 }
1542
1543 gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1544 trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1545
1546 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1547 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1548 if (INTEL_GEN(dev_priv) >= 9) {
1549 gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
1550 gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
1551 }
1552
1553 mutex_lock(&dev_priv->rps.hw_lock);
1554 sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1555 mutex_unlock(&dev_priv->rps.hw_lock);
1556
1557 seq_printf(m, "Video Turbo Mode: %s\n",
1558 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1559 seq_printf(m, "HW control enabled: %s\n",
1560 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1561 seq_printf(m, "SW control enabled: %s\n",
1562 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1563 GEN6_RP_MEDIA_SW_MODE));
1564 seq_printf(m, "RC1e Enabled: %s\n",
1565 yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1566 seq_printf(m, "RC6 Enabled: %s\n",
1567 yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1568 if (INTEL_GEN(dev_priv) >= 9) {
1569 seq_printf(m, "Render Well Gating Enabled: %s\n",
1570 yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
1571 seq_printf(m, "Media Well Gating Enabled: %s\n",
1572 yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
1573 }
1574 seq_printf(m, "Deep RC6 Enabled: %s\n",
1575 yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1576 seq_printf(m, "Deepest RC6 Enabled: %s\n",
1577 yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1578 seq_puts(m, "Current RC state: ");
1579 switch (gt_core_status & GEN6_RCn_MASK) {
1580 case GEN6_RC0:
1581 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1582 seq_puts(m, "Core Power Down\n");
1583 else
1584 seq_puts(m, "on\n");
1585 break;
1586 case GEN6_RC3:
1587 seq_puts(m, "RC3\n");
1588 break;
1589 case GEN6_RC6:
1590 seq_puts(m, "RC6\n");
1591 break;
1592 case GEN6_RC7:
1593 seq_puts(m, "RC7\n");
1594 break;
1595 default:
1596 seq_puts(m, "Unknown\n");
1597 break;
1598 }
1599
1600 seq_printf(m, "Core Power Down: %s\n",
1601 yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1602 if (INTEL_GEN(dev_priv) >= 9) {
1603 seq_printf(m, "Render Power Well: %s\n",
1604 (gen9_powergate_status &
1605 GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
1606 seq_printf(m, "Media Power Well: %s\n",
1607 (gen9_powergate_status &
1608 GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
1609 }
1610
1611 /* Not exactly sure what this is */
1612 print_rc6_res(m, "RC6 \"Locked to RPn\" residency since boot:",
1613 GEN6_GT_GFX_RC6_LOCKED);
1614 print_rc6_res(m, "RC6 residency since boot:", GEN6_GT_GFX_RC6);
1615 print_rc6_res(m, "RC6+ residency since boot:", GEN6_GT_GFX_RC6p);
1616 print_rc6_res(m, "RC6++ residency since boot:", GEN6_GT_GFX_RC6pp);
1617
1618 seq_printf(m, "RC6 voltage: %dmV\n",
1619 GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1620 seq_printf(m, "RC6+ voltage: %dmV\n",
1621 GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1622 seq_printf(m, "RC6++ voltage: %dmV\n",
1623 GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1624 return i915_forcewake_domains(m, NULL);
1625 }
1626
1627 static int i915_drpc_info(struct seq_file *m, void *unused)
1628 {
1629 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1630 int err;
1631
1632 intel_runtime_pm_get(dev_priv);
1633
1634 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1635 err = vlv_drpc_info(m);
1636 else if (INTEL_GEN(dev_priv) >= 6)
1637 err = gen6_drpc_info(m);
1638 else
1639 err = ironlake_drpc_info(m);
1640
1641 intel_runtime_pm_put(dev_priv);
1642
1643 return err;
1644 }
1645
1646 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1647 {
1648 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1649
1650 seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1651 dev_priv->fb_tracking.busy_bits);
1652
1653 seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1654 dev_priv->fb_tracking.flip_bits);
1655
1656 return 0;
1657 }
1658
1659 static int i915_fbc_status(struct seq_file *m, void *unused)
1660 {
1661 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1662
1663 if (!HAS_FBC(dev_priv)) {
1664 seq_puts(m, "FBC unsupported on this chipset\n");
1665 return 0;
1666 }
1667
1668 intel_runtime_pm_get(dev_priv);
1669 mutex_lock(&dev_priv->fbc.lock);
1670
1671 if (intel_fbc_is_active(dev_priv))
1672 seq_puts(m, "FBC enabled\n");
1673 else
1674 seq_printf(m, "FBC disabled: %s\n",
1675 dev_priv->fbc.no_fbc_reason);
1676
1677 if (intel_fbc_is_active(dev_priv)) {
1678 u32 mask;
1679
1680 if (INTEL_GEN(dev_priv) >= 8)
1681 mask = I915_READ(IVB_FBC_STATUS2) & BDW_FBC_COMP_SEG_MASK;
1682 else if (INTEL_GEN(dev_priv) >= 7)
1683 mask = I915_READ(IVB_FBC_STATUS2) & IVB_FBC_COMP_SEG_MASK;
1684 else if (INTEL_GEN(dev_priv) >= 5)
1685 mask = I915_READ(ILK_DPFC_STATUS) & ILK_DPFC_COMP_SEG_MASK;
1686 else if (IS_G4X(dev_priv))
1687 mask = I915_READ(DPFC_STATUS) & DPFC_COMP_SEG_MASK;
1688 else
1689 mask = I915_READ(FBC_STATUS) & (FBC_STAT_COMPRESSING |
1690 FBC_STAT_COMPRESSED);
1691
1692 seq_printf(m, "Compressing: %s\n", yesno(mask));
1693 }
1694
1695 mutex_unlock(&dev_priv->fbc.lock);
1696 intel_runtime_pm_put(dev_priv);
1697
1698 return 0;
1699 }
1700
1701 static int i915_fbc_false_color_get(void *data, u64 *val)
1702 {
1703 struct drm_i915_private *dev_priv = data;
1704
1705 if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1706 return -ENODEV;
1707
1708 *val = dev_priv->fbc.false_color;
1709
1710 return 0;
1711 }
1712
1713 static int i915_fbc_false_color_set(void *data, u64 val)
1714 {
1715 struct drm_i915_private *dev_priv = data;
1716 u32 reg;
1717
1718 if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1719 return -ENODEV;
1720
1721 mutex_lock(&dev_priv->fbc.lock);
1722
1723 reg = I915_READ(ILK_DPFC_CONTROL);
1724 dev_priv->fbc.false_color = val;
1725
1726 I915_WRITE(ILK_DPFC_CONTROL, val ?
1727 (reg | FBC_CTL_FALSE_COLOR) :
1728 (reg & ~FBC_CTL_FALSE_COLOR));
1729
1730 mutex_unlock(&dev_priv->fbc.lock);
1731 return 0;
1732 }
1733
1734 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_false_color_fops,
1735 i915_fbc_false_color_get, i915_fbc_false_color_set,
1736 "%llu\n");
1737
1738 static int i915_ips_status(struct seq_file *m, void *unused)
1739 {
1740 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1741
1742 if (!HAS_IPS(dev_priv)) {
1743 seq_puts(m, "not supported\n");
1744 return 0;
1745 }
1746
1747 intel_runtime_pm_get(dev_priv);
1748
1749 seq_printf(m, "Enabled by kernel parameter: %s\n",
1750 yesno(i915.enable_ips));
1751
1752 if (INTEL_GEN(dev_priv) >= 8) {
1753 seq_puts(m, "Currently: unknown\n");
1754 } else {
1755 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1756 seq_puts(m, "Currently: enabled\n");
1757 else
1758 seq_puts(m, "Currently: disabled\n");
1759 }
1760
1761 intel_runtime_pm_put(dev_priv);
1762
1763 return 0;
1764 }
1765
1766 static int i915_sr_status(struct seq_file *m, void *unused)
1767 {
1768 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1769 bool sr_enabled = false;
1770
1771 intel_runtime_pm_get(dev_priv);
1772 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1773
1774 if (INTEL_GEN(dev_priv) >= 9)
1775 /* no global SR status; inspect per-plane WM */;
1776 else if (HAS_PCH_SPLIT(dev_priv))
1777 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1778 else if (IS_I965GM(dev_priv) || IS_G4X(dev_priv) ||
1779 IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1780 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1781 else if (IS_I915GM(dev_priv))
1782 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1783 else if (IS_PINEVIEW(dev_priv))
1784 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1785 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1786 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1787
1788 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1789 intel_runtime_pm_put(dev_priv);
1790
1791 seq_printf(m, "self-refresh: %s\n", enableddisabled(sr_enabled));
1792
1793 return 0;
1794 }
1795
1796 static int i915_emon_status(struct seq_file *m, void *unused)
1797 {
1798 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1799 struct drm_device *dev = &dev_priv->drm;
1800 unsigned long temp, chipset, gfx;
1801 int ret;
1802
1803 if (!IS_GEN5(dev_priv))
1804 return -ENODEV;
1805
1806 ret = mutex_lock_interruptible(&dev->struct_mutex);
1807 if (ret)
1808 return ret;
1809
1810 temp = i915_mch_val(dev_priv);
1811 chipset = i915_chipset_val(dev_priv);
1812 gfx = i915_gfx_val(dev_priv);
1813 mutex_unlock(&dev->struct_mutex);
1814
1815 seq_printf(m, "GMCH temp: %ld\n", temp);
1816 seq_printf(m, "Chipset power: %ld\n", chipset);
1817 seq_printf(m, "GFX power: %ld\n", gfx);
1818 seq_printf(m, "Total power: %ld\n", chipset + gfx);
1819
1820 return 0;
1821 }
1822
1823 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1824 {
1825 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1826 int ret = 0;
1827 int gpu_freq, ia_freq;
1828 unsigned int max_gpu_freq, min_gpu_freq;
1829
1830 if (!HAS_LLC(dev_priv)) {
1831 seq_puts(m, "unsupported on this chipset\n");
1832 return 0;
1833 }
1834
1835 intel_runtime_pm_get(dev_priv);
1836
1837 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1838 if (ret)
1839 goto out;
1840
1841 if (IS_GEN9_BC(dev_priv)) {
1842 /* Convert GT frequency to 50 HZ units */
1843 min_gpu_freq =
1844 dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1845 max_gpu_freq =
1846 dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1847 } else {
1848 min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1849 max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1850 }
1851
1852 seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1853
1854 for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1855 ia_freq = gpu_freq;
1856 sandybridge_pcode_read(dev_priv,
1857 GEN6_PCODE_READ_MIN_FREQ_TABLE,
1858 &ia_freq);
1859 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1860 intel_gpu_freq(dev_priv, (gpu_freq *
1861 (IS_GEN9_BC(dev_priv) ?
1862 GEN9_FREQ_SCALER : 1))),
1863 ((ia_freq >> 0) & 0xff) * 100,
1864 ((ia_freq >> 8) & 0xff) * 100);
1865 }
1866
1867 mutex_unlock(&dev_priv->rps.hw_lock);
1868
1869 out:
1870 intel_runtime_pm_put(dev_priv);
1871 return ret;
1872 }
1873
1874 static int i915_opregion(struct seq_file *m, void *unused)
1875 {
1876 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1877 struct drm_device *dev = &dev_priv->drm;
1878 struct intel_opregion *opregion = &dev_priv->opregion;
1879 int ret;
1880
1881 ret = mutex_lock_interruptible(&dev->struct_mutex);
1882 if (ret)
1883 goto out;
1884
1885 if (opregion->header)
1886 seq_write(m, opregion->header, OPREGION_SIZE);
1887
1888 mutex_unlock(&dev->struct_mutex);
1889
1890 out:
1891 return 0;
1892 }
1893
1894 static int i915_vbt(struct seq_file *m, void *unused)
1895 {
1896 struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;
1897
1898 if (opregion->vbt)
1899 seq_write(m, opregion->vbt, opregion->vbt_size);
1900
1901 return 0;
1902 }
1903
1904 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1905 {
1906 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1907 struct drm_device *dev = &dev_priv->drm;
1908 struct intel_framebuffer *fbdev_fb = NULL;
1909 struct drm_framebuffer *drm_fb;
1910 int ret;
1911
1912 ret = mutex_lock_interruptible(&dev->struct_mutex);
1913 if (ret)
1914 return ret;
1915
1916 #ifdef CONFIG_DRM_FBDEV_EMULATION
1917 if (dev_priv->fbdev) {
1918 fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);
1919
1920 seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1921 fbdev_fb->base.width,
1922 fbdev_fb->base.height,
1923 fbdev_fb->base.format->depth,
1924 fbdev_fb->base.format->cpp[0] * 8,
1925 fbdev_fb->base.modifier,
1926 drm_framebuffer_read_refcount(&fbdev_fb->base));
1927 describe_obj(m, fbdev_fb->obj);
1928 seq_putc(m, '\n');
1929 }
1930 #endif
1931
1932 mutex_lock(&dev->mode_config.fb_lock);
1933 drm_for_each_fb(drm_fb, dev) {
1934 struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1935 if (fb == fbdev_fb)
1936 continue;
1937
1938 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1939 fb->base.width,
1940 fb->base.height,
1941 fb->base.format->depth,
1942 fb->base.format->cpp[0] * 8,
1943 fb->base.modifier,
1944 drm_framebuffer_read_refcount(&fb->base));
1945 describe_obj(m, fb->obj);
1946 seq_putc(m, '\n');
1947 }
1948 mutex_unlock(&dev->mode_config.fb_lock);
1949 mutex_unlock(&dev->struct_mutex);
1950
1951 return 0;
1952 }
1953
1954 static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
1955 {
1956 seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u)",
1957 ring->space, ring->head, ring->tail);
1958 }
1959
1960 static int i915_context_status(struct seq_file *m, void *unused)
1961 {
1962 struct drm_i915_private *dev_priv = node_to_i915(m->private);
1963 struct drm_device *dev = &dev_priv->drm;
1964 struct intel_engine_cs *engine;
1965 struct i915_gem_context *ctx;
1966 enum intel_engine_id id;
1967 int ret;
1968
1969 ret = mutex_lock_interruptible(&dev->struct_mutex);
1970 if (ret)
1971 return ret;
1972
1973 list_for_each_entry(ctx, &dev_priv->context_list, link) {
1974 seq_printf(m, "HW context %u ", ctx->hw_id);
1975 if (ctx->pid) {
1976 struct task_struct *task;
1977
1978 task = get_pid_task(ctx->pid, PIDTYPE_PID);
1979 if (task) {
1980 seq_printf(m, "(%s [%d]) ",
1981 task->comm, task->pid);
1982 put_task_struct(task);
1983 }
1984 } else if (IS_ERR(ctx->file_priv)) {
1985 seq_puts(m, "(deleted) ");
1986 } else {
1987 seq_puts(m, "(kernel) ");
1988 }
1989
1990 seq_putc(m, ctx->remap_slice ? 'R' : 'r');
1991 seq_putc(m, '\n');
1992
1993 for_each_engine(engine, dev_priv, id) {
1994 struct intel_context *ce = &ctx->engine[engine->id];
1995
1996 seq_printf(m, "%s: ", engine->name);
1997 seq_putc(m, ce->initialised ? 'I' : 'i');
1998 if (ce->state)
1999 describe_obj(m, ce->state->obj);
2000 if (ce->ring)
2001 describe_ctx_ring(m, ce->ring);
2002 seq_putc(m, '\n');
2003 }
2004
2005 seq_printf(m,
2006 "\tvma hashtable size=%u (actual %lu), count=%u\n",
2007 ctx->vma_lut.ht_size,
2008 BIT(ctx->vma_lut.ht_bits),
2009 ctx->vma_lut.ht_count);
2010
2011 seq_putc(m, '\n');
2012 }
2013
2014 mutex_unlock(&dev->struct_mutex);
2015
2016 return 0;
2017 }
2018
2019 static void i915_dump_lrc_obj(struct seq_file *m,
2020 struct i915_gem_context *ctx,
2021 struct intel_engine_cs *engine)
2022 {
2023 struct i915_vma *vma = ctx->engine[engine->id].state;
2024 struct page *page;
2025 int j;
2026
2027 seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
2028
2029 if (!vma) {
2030 seq_puts(m, "\tFake context\n");
2031 return;
2032 }
2033
2034 if (vma->flags & I915_VMA_GLOBAL_BIND)
2035 seq_printf(m, "\tBound in GGTT at 0x%08x\n",
2036 i915_ggtt_offset(vma));
2037
2038 if (i915_gem_object_pin_pages(vma->obj)) {
2039 seq_puts(m, "\tFailed to get pages for context object\n\n");
2040 return;
2041 }
2042
2043 page = i915_gem_object_get_page(vma->obj, LRC_STATE_PN);
2044 if (page) {
2045 u32 *reg_state = kmap_atomic(page);
2046
2047 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2048 seq_printf(m,
2049 "\t[0x%04x] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2050 j * 4,
2051 reg_state[j], reg_state[j + 1],
2052 reg_state[j + 2], reg_state[j + 3]);
2053 }
2054 kunmap_atomic(reg_state);
2055 }
2056
2057 i915_gem_object_unpin_pages(vma->obj);
2058 seq_putc(m, '\n');
2059 }
2060
2061 static int i915_dump_lrc(struct seq_file *m, void *unused)
2062 {
2063 struct drm_i915_private *dev_priv = node_to_i915(m->private);
2064 struct drm_device *dev = &dev_priv->drm;
2065 struct intel_engine_cs *engine;
2066 struct i915_gem_context *ctx;
2067 enum intel_engine_id id;
2068 int ret;
2069
2070 if (!i915.enable_execlists) {
2071 seq_printf(m, "Logical Ring Contexts are disabled\n");
2072 return 0;
2073 }
2074
2075 ret = mutex_lock_interruptible(&dev->struct_mutex);
2076 if (ret)
2077 return ret;
2078
2079 list_for_each_entry(ctx, &dev_priv->context_list, link)
2080 for_each_engine(engine, dev_priv, id)
2081 i915_dump_lrc_obj(m, ctx, engine);
2082
2083 mutex_unlock(&dev->struct_mutex);
2084
2085 return 0;
2086 }
2087
2088 static const char *swizzle_string(unsigned swizzle)
2089 {
2090 switch (swizzle) {
2091 case I915_BIT_6_SWIZZLE_NONE:
2092 return "none";
2093 case I915_BIT_6_SWIZZLE_9:
2094 return "bit9";
2095 case I915_BIT_6_SWIZZLE_9_10:
2096 return "bit9/bit10";
2097 case I915_BIT_6_SWIZZLE_9_11:
2098 return "bit9/bit11";
2099 case I915_BIT_6_SWIZZLE_9_10_11:
2100 return "bit9/bit10/bit11";
2101 case I915_BIT_6_SWIZZLE_9_17:
2102 return "bit9/bit17";
2103 case I915_BIT_6_SWIZZLE_9_10_17:
2104 return "bit9/bit10/bit17";
2105 case I915_BIT_6_SWIZZLE_UNKNOWN:
2106 return "unknown";
2107 }
2108
2109 return "bug";
2110 }
2111
2112 static int i915_swizzle_info(struct seq_file *m, void *data)
2113 {
2114 struct drm_i915_private *dev_priv = node_to_i915(m->private);
2115
2116 intel_runtime_pm_get(dev_priv);
2117
2118 seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2119 swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2120 seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2121 swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2122
2123 if (IS_GEN3(dev_priv) || IS_GEN4(dev_priv)) {
2124 seq_printf(m, "DDC = 0x%08x\n",
2125 I915_READ(DCC));
2126 seq_printf(m, "DDC2 = 0x%08x\n",
2127 I915_READ(DCC2));
2128 seq_printf(m, "C0DRB3 = 0x%04x\n",
2129 I915_READ16(C0DRB3));
2130 seq_printf(m, "C1DRB3 = 0x%04x\n",
2131 I915_READ16(C1DRB3));
2132 } else if (INTEL_GEN(dev_priv) >= 6) {
2133 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2134 I915_READ(MAD_DIMM_C0));
2135 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2136 I915_READ(MAD_DIMM_C1));
2137 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2138 I915_READ(MAD_DIMM_C2));
2139 seq_printf(m, "TILECTL = 0x%08x\n",
2140 I915_READ(TILECTL));
2141 if (INTEL_GEN(dev_priv) >= 8)
2142 seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2143 I915_READ(GAMTARBMODE));
2144 else
2145 seq_printf(m, "ARB_MODE = 0x%08x\n",
2146 I915_READ(ARB_MODE));
2147 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2148 I915_READ(DISP_ARB_CTL));
2149 }
2150
2151 if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2152 seq_puts(m, "L-shaped memory detected\n");
2153
2154 intel_runtime_pm_put(dev_priv);
2155
2156 return 0;
2157 }
2158
2159 static int per_file_ctx(int id, void *ptr, void *data)
2160 {
2161 struct i915_gem_context *ctx = ptr;
2162 struct seq_file *m = data;
2163 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2164
2165 if (!ppgtt) {
2166 seq_printf(m, " no ppgtt for context %d\n",
2167 ctx->user_handle);
2168 return 0;
2169 }
2170
2171 if (i915_gem_context_is_default(ctx))
2172 seq_puts(m, " default context:\n");
2173 else
2174 seq_printf(m, " context %d:\n", ctx->user_handle);
2175 ppgtt->debug_dump(ppgtt, m);
2176
2177 return 0;
2178 }
2179
2180 static void gen8_ppgtt_info(struct seq_file *m,
2181 struct drm_i915_private *dev_priv)
2182 {
2183 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2184 struct intel_engine_cs *engine;
2185 enum intel_engine_id id;
2186 int i;
2187
2188 if (!ppgtt)
2189 return;
2190
2191 for_each_engine(engine, dev_priv, id) {
2192 seq_printf(m, "%s\n", engine->name);
2193 for (i = 0; i < 4; i++) {
2194 u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
2195 pdp <<= 32;
2196 pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
2197 seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2198 }
2199 }
2200 }
2201
2202 static void gen6_ppgtt_info(struct seq_file *m,
2203 struct drm_i915_private *dev_priv)
2204 {
2205 struct intel_engine_cs *engine;
2206 enum intel_engine_id id;
2207
2208 if (IS_GEN6(dev_priv))
2209 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2210
2211 for_each_engine(engine, dev_priv, id) {
2212 seq_printf(m, "%s\n", engine->name);
2213 if (IS_GEN7(dev_priv))
2214 seq_printf(m, "GFX_MODE: 0x%08x\n",
2215 I915_READ(RING_MODE_GEN7(engine)));
2216 seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
2217 I915_READ(RING_PP_DIR_BASE(engine)));
2218 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
2219 I915_READ(RING_PP_DIR_BASE_READ(engine)));
2220 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
2221 I915_READ(RING_PP_DIR_DCLV(engine)));
2222 }
2223 if (dev_priv->mm.aliasing_ppgtt) {
2224 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2225
2226 seq_puts(m, "aliasing PPGTT:\n");
2227 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2228
2229 ppgtt->debug_dump(ppgtt, m);
2230 }
2231
2232 seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2233 }
2234
2235 static int i915_ppgtt_info(struct seq_file *m, void *data)
2236 {
2237 struct drm_i915_private *dev_priv = node_to_i915(m->private);
2238 struct drm_device *dev = &dev_priv->drm;
2239 struct drm_file *file;
2240 int ret;
2241
2242 mutex_lock(&dev->filelist_mutex);
2243 ret = mutex_lock_interruptible(&dev->struct_mutex);
2244 if (ret)
2245 goto out_unlock;
2246
2247 intel_runtime_pm_get(dev_priv);
2248
2249 if (INTEL_GEN(dev_priv) >= 8)
2250 gen8_ppgtt_info(m, dev_priv);
2251 else if (INTEL_GEN(dev_priv) >= 6)
2252 gen6_ppgtt_info(m, dev_priv);
2253
2254 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2255 struct drm_i915_file_private *file_priv = file->driver_priv;
2256 struct task_struct *task;
2257
2258 task = get_pid_task(file->pid, PIDTYPE_PID);
2259 if (!task) {
2260 ret = -ESRCH;
2261 goto out_rpm;
2262 }
2263 seq_printf(m, "\nproc: %s\n", task->comm);
2264 put_task_struct(task);
2265 idr_for_each(&file_priv->context_idr, per_file_ctx,
2266 (void *)(unsigned long)m);
2267 }
2268
2269 out_rpm:
2270 intel_runtime_pm_put(dev_priv);
2271 mutex_unlock(&dev->struct_mutex);
2272 out_unlock:
2273 mutex_unlock(&dev->filelist_mutex);
2274 return ret;
2275 }
2276
2277 static int count_irq_waiters(struct drm_i915_private *i915)
2278 {
2279 struct intel_engine_cs *engine;
2280 enum intel_engine_id id;
2281 int count = 0;
2282
2283 for_each_engine(engine, i915, id)
2284 count += intel_engine_has_waiter(engine);
2285
2286 return count;
2287 }
2288
2289 static const char *rps_power_to_str(unsigned int power)
2290 {
2291 static const char * const strings[] = {
2292 [LOW_POWER] = "low power",
2293 [BETWEEN] = "mixed",
2294 [HIGH_POWER] = "high power",
2295 };
2296
2297 if (power >= ARRAY_SIZE(strings) || !strings[power])
2298 return "unknown";
2299
2300 return strings[power];
2301 }
2302
2303 static int i915_rps_boost_info(struct seq_file *m, void *data)
2304 {
2305 struct drm_i915_private *dev_priv = node_to_i915(m->private);
2306 struct drm_device *dev = &dev_priv->drm;
2307 struct drm_file *file;
2308
2309 seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2310 seq_printf(m, "GPU busy? %s [%d requests]\n",
2311 yesno(dev_priv->gt.awake), dev_priv->gt.active_requests);
2312 seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2313 seq_printf(m, "Frequency requested %d\n",
2314 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
2315 seq_printf(m, " min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2316 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2317 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2318 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2319 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2320 seq_printf(m, " idle:%d, efficient:%d, boost:%d\n",
2321 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
2322 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
2323 intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
2324
2325 mutex_lock(&dev->filelist_mutex);
2326 spin_lock(&dev_priv->rps.client_lock);
2327 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2328 struct drm_i915_file_private *file_priv = file->driver_priv;
2329 struct task_struct *task;
2330
2331 rcu_read_lock();
2332 task = pid_task(file->pid, PIDTYPE_PID);
2333 seq_printf(m, "%s [%d]: %d boosts%s\n",
2334 task ? task->comm : "<unknown>",
2335 task ? task->pid : -1,
2336 file_priv->rps.boosts,
2337 list_empty(&file_priv->rps.link) ? "" : ", active");
2338 rcu_read_unlock();
2339 }
2340 seq_printf(m, "Kernel (anonymous) boosts: %d\n", dev_priv->rps.boosts);
2341 spin_unlock(&dev_priv->rps.client_lock);
2342 mutex_unlock(&dev->filelist_mutex);
2343
2344 if (INTEL_GEN(dev_priv) >= 6 &&
2345 dev_priv->rps.enabled &&
2346 dev_priv->gt.active_requests) {
2347 u32 rpup, rpupei;
2348 u32 rpdown, rpdownei;
2349
2350 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2351 rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
2352 rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
2353 rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
2354 rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
2355 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2356
2357 seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
2358 rps_power_to_str(dev_priv->rps.power));
2359 seq_printf(m, " Avg. up: %d%% [above threshold? %d%%]\n",
2360 rpup && rpupei ? 100 * rpup / rpupei : 0,
2361 dev_priv->rps.up_threshold);
2362 seq_printf(m, " Avg. down: %d%% [below threshold? %d%%]\n",
2363 rpdown && rpdownei ? 100 * rpdown / rpdownei : 0,
2364 dev_priv->rps.down_threshold);
2365 } else {
2366 seq_puts(m, "\nRPS Autotuning inactive\n");
2367 }
2368
2369 return 0;
2370 }
2371
2372 static int i915_llc(struct seq_file *m, void *data)
2373 {
2374 struct drm_i915_private *dev_priv = node_to_i915(m->private);
2375 const bool edram = INTEL_GEN(dev_priv) > 8;
2376
2377 seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
2378 seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
2379 intel_uncore_edram_size(dev_priv)/1024/1024);
2380
2381 return 0;
2382 }
2383
2384 static int i915_huc_load_status_info(struct seq_file *m, void *data)
2385 {
2386 struct drm_i915_private *dev_priv = node_to_i915(m->private);
2387 struct intel_uc_fw *huc_fw = &dev_priv->huc.fw;
2388
2389 if (!HAS_HUC_UCODE(dev_priv))
2390 return 0;
2391
2392 seq_puts(m, "HuC firmware status:\n");
2393 seq_printf(m, "\tpath: %s\n", huc_fw->path);
2394 seq_printf(m, "\tfetch: %s\n",
2395 intel_uc_fw_status_repr(huc_fw->fetch_status));
2396 seq_printf(m, "\tload: %s\n",
2397 intel_uc_fw_status_repr(huc_fw->load_status));
2398 seq_printf(m, "\tversion wanted: %d.%d\n",
2399 huc_fw->major_ver_wanted, huc_fw->minor_ver_wanted);
2400 seq_printf(m, "\tversion found: %d.%d\n",
2401 huc_fw->major_ver_found, huc_fw->minor_ver_found);
2402 seq_printf(m, "\theader: offset is %d; size = %d\n",
2403 huc_fw->header_offset, huc_fw->header_size);
2404 seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2405 huc_fw->ucode_offset, huc_fw->ucode_size);
2406 seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2407 huc_fw->rsa_offset, huc_fw->rsa_size);
2408
2409 intel_runtime_pm_get(dev_priv);
2410 seq_printf(m, "\nHuC status 0x%08x:\n", I915_READ(HUC_STATUS2));
2411 intel_runtime_pm_put(dev_priv);
2412
2413 return 0;
2414 }
2415
2416 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2417 {
2418 struct drm_i915_private *dev_priv = node_to_i915(m->private);
2419 struct intel_uc_fw *guc_fw = &dev_priv->guc.fw;
2420 u32 tmp, i;
2421
2422 if (!HAS_GUC_UCODE(dev_priv))
2423 return 0;
2424
2425 seq_printf(m, "GuC firmware status:\n");
2426 seq_printf(m, "\tpath: %s\n",
2427 guc_fw->path);
2428 seq_printf(m, "\tfetch: %s\n",
2429 intel_uc_fw_status_repr(guc_fw->fetch_status));
2430 seq_printf(m, "\tload: %s\n",
2431 intel_uc_fw_status_repr(guc_fw->load_status));
2432 seq_printf(m, "\tversion wanted: %d.%d\n",
2433 guc_fw->major_ver_wanted, guc_fw->minor_ver_wanted);
2434 seq_printf(m, "\tversion found: %d.%d\n",
2435 guc_fw->major_ver_found, guc_fw->minor_ver_found);
2436 seq_printf(m, "\theader: offset is %d; size = %d\n",
2437 guc_fw->header_offset, guc_fw->header_size);
2438 seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2439 guc_fw->ucode_offset, guc_fw->ucode_size);
2440 seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2441 guc_fw->rsa_offset, guc_fw->rsa_size);
2442
2443 intel_runtime_pm_get(dev_priv);
2444
2445 tmp = I915_READ(GUC_STATUS);
2446
2447 seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2448 seq_printf(m, "\tBootrom status = 0x%x\n",
2449 (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2450 seq_printf(m, "\tuKernel status = 0x%x\n",
2451 (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2452 seq_printf(m, "\tMIA Core status = 0x%x\n",
2453 (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2454 seq_puts(m, "\nScratch registers:\n");
2455 for (i = 0; i < 16; i++)
2456 seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2457
2458 intel_runtime_pm_put(dev_priv);
2459
2460 return 0;
2461 }
2462
2463 static void i915_guc_log_info(struct seq_file *m,
2464 struct drm_i915_private *dev_priv)
2465 {
2466 struct intel_guc *guc = &dev_priv->guc;
2467
2468 seq_puts(m, "\nGuC logging stats:\n");
2469
2470 seq_printf(m, "\tISR: flush count %10u, overflow count %10u\n",
2471 guc->log.flush_count[GUC_ISR_LOG_BUFFER],
2472 guc->log.total_overflow_count[GUC_ISR_LOG_BUFFER]);
2473
2474 seq_printf(m, "\tDPC: flush count %10u, overflow count %10u\n",
2475 guc->log.flush_count[GUC_DPC_LOG_BUFFER],
2476 guc->log.total_overflow_count[GUC_DPC_LOG_BUFFER]);
2477
2478 seq_printf(m, "\tCRASH: flush count %10u, overflow count %10u\n",
2479 guc->log.flush_count[GUC_CRASH_DUMP_LOG_BUFFER],
2480 guc->log.total_overflow_count[GUC_CRASH_DUMP_LOG_BUFFER]);
2481
2482 seq_printf(m, "\tTotal flush interrupt count: %u\n",
2483 guc->log.flush_interrupt_count);
2484
2485 seq_printf(m, "\tCapture miss count: %u\n",
2486 guc->log.capture_miss_count);
2487 }
2488
2489 static void i915_guc_client_info(struct seq_file *m,
2490 struct drm_i915_private *dev_priv,
2491 struct i915_guc_client *client)
2492 {
2493 struct intel_engine_cs *engine;
2494 enum intel_engine_id id;
2495 uint64_t tot = 0;
2496
2497 seq_printf(m, "\tPriority %d, GuC stage index: %u, PD offset 0x%x\n",
2498 client->priority, client->stage_id, client->proc_desc_offset);
2499 seq_printf(m, "\tDoorbell id %d, offset: 0x%lx, cookie 0x%x\n",
2500 client->doorbell_id, client->doorbell_offset, client->doorbell_cookie);
2501 seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2502 client->wq_size, client->wq_offset, client->wq_tail);
2503
2504 seq_printf(m, "\tWork queue full: %u\n", client->no_wq_space);
2505
2506 for_each_engine(engine, dev_priv, id) {
2507 u64 submissions = client->submissions[id];
2508 tot += submissions;
2509 seq_printf(m, "\tSubmissions: %llu %s\n",
2510 submissions, engine->name);
2511 }
2512 seq_printf(m, "\tTotal: %llu\n", tot);
2513 }
2514
2515 static bool check_guc_submission(struct seq_file *m)
2516 {
2517 struct drm_i915_private *dev_priv = node_to_i915(m->private);
2518 const struct intel_guc *guc = &dev_priv->guc;
2519
2520 if (!guc->execbuf_client) {
2521 seq_printf(m, "GuC submission %s\n",
2522 HAS_GUC_SCHED(dev_priv) ?
2523 "disabled" :
2524 "not supported");
2525 return false;
2526 }
2527
2528 return true;
2529 }
2530
2531 static int i915_guc_info(struct seq_file *m, void *data)
2532 {
2533 struct drm_i915_private *dev_priv = node_to_i915(m->private);
2534 const struct intel_guc *guc = &dev_priv->guc;
2535
2536 if (!check_guc_submission(m))
2537 return 0;
2538
2539 seq_printf(m, "Doorbell map:\n");
2540 seq_printf(m, "\t%*pb\n", GUC_NUM_DOORBELLS, guc->doorbell_bitmap);
2541 seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc->db_cacheline);
2542
2543 seq_printf(m, "\nGuC execbuf client @ %p:\n", guc->execbuf_client);
2544 i915_guc_client_info(m, dev_priv, guc->execbuf_client);
2545
2546 i915_guc_log_info(m, dev_priv);
2547
2548 /* Add more as required ... */
2549
2550 return 0;
2551 }
2552
2553 static int i915_guc_stage_pool(struct seq_file *m, void *data)
2554 {
2555 struct drm_i915_private *dev_priv = node_to_i915(m->private);
2556 const struct intel_guc *guc = &dev_priv->guc;
2557 struct guc_stage_desc *desc = guc->stage_desc_pool_vaddr;
2558 struct i915_guc_client *client = guc->execbuf_client;
2559 unsigned int tmp;
2560 int index;
2561
2562 if (!check_guc_submission(m))
2563 return 0;
2564
2565 for (index = 0; index < GUC_MAX_STAGE_DESCRIPTORS; index++, desc++) {
2566 struct intel_engine_cs *engine;
2567
2568 if (!(desc->attribute & GUC_STAGE_DESC_ATTR_ACTIVE))
2569 continue;
2570
2571 seq_printf(m, "GuC stage descriptor %u:\n", index);
2572 seq_printf(m, "\tIndex: %u\n", desc->stage_id);
2573 seq_printf(m, "\tAttribute: 0x%x\n", desc->attribute);
2574 seq_printf(m, "\tPriority: %d\n", desc->priority);
2575 seq_printf(m, "\tDoorbell id: %d\n", desc->db_id);
2576 seq_printf(m, "\tEngines used: 0x%x\n",
2577 desc->engines_used);
2578 seq_printf(m, "\tDoorbell trigger phy: 0x%llx, cpu: 0x%llx, uK: 0x%x\n",
2579 desc->db_trigger_phy,
2580 desc->db_trigger_cpu,
2581 desc->db_trigger_uk);
2582 seq_printf(m, "\tProcess descriptor: 0x%x\n",
2583 desc->process_desc);
2584 seq_printf(m, "\tWorkqueue address: 0x%x, size: 0x%x\n",
2585 desc->wq_addr, desc->wq_size);
2586 seq_putc(m, '\n');
2587
2588 for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
2589 u32 guc_engine_id = engine->guc_id;
2590 struct guc_execlist_context *lrc =
2591 &desc->lrc[guc_engine_id];
2592
2593 seq_printf(m, "\t%s LRC:\n", engine->name);
2594 seq_printf(m, "\t\tContext desc: 0x%x\n",
2595 lrc->context_desc);
2596 seq_printf(m, "\t\tContext id: 0x%x\n", lrc->context_id);
2597 seq_printf(m, "\t\tLRCA: 0x%x\n", lrc->ring_lrca);
2598 seq_printf(m, "\t\tRing begin: 0x%x\n", lrc->ring_begin);
2599 seq_printf(m, "\t\tRing end: 0x%x\n", lrc->ring_end);
2600 seq_putc(m, '\n');
2601 }
2602 }
2603
2604 return 0;
2605 }
2606
2607 static int i915_guc_log_dump(struct seq_file *m, void *data)
2608 {
2609 struct drm_info_node *node = m->private;
2610 struct drm_i915_private *dev_priv = node_to_i915(node);
2611 bool dump_load_err = !!node->info_ent->data;
2612 struct drm_i915_gem_object *obj = NULL;
2613 u32 *log;
2614 int i = 0;
2615
2616 if (dump_load_err)
2617 obj = dev_priv->guc.load_err_log;
2618 else if (dev_priv->guc.log.vma)
2619 obj = dev_priv->guc.log.vma->obj;
2620
2621 if (!obj)
2622 return 0;
2623
2624 log = i915_gem_object_pin_map(obj, I915_MAP_WC);
2625 if (IS_ERR(log)) {
2626 DRM_DEBUG("Failed to pin object\n");
2627 seq_puts(m, "(log data unaccessible)\n");
2628 return PTR_ERR(log);
2629 }
2630
2631 for (i = 0; i < obj->base.size / sizeof(u32); i += 4)
2632 seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2633 *(log + i), *(log + i + 1),
2634 *(log + i + 2), *(log + i + 3));
2635
2636 seq_putc(m, '\n');
2637
2638 i915_gem_object_unpin_map(obj);
2639
2640 return 0;
2641 }
2642
2643 static int i915_guc_log_control_get(void *data, u64 *val)
2644 {
2645 struct drm_i915_private *dev_priv = data;
2646
2647 if (!dev_priv->guc.log.vma)
2648 return -EINVAL;
2649
2650 *val = i915.guc_log_level;
2651
2652 return 0;
2653 }
2654
2655 static int i915_guc_log_control_set(void *data, u64 val)
2656 {
2657 struct drm_i915_private *dev_priv = data;
2658 int ret;
2659
2660 if (!dev_priv->guc.log.vma)
2661 return -EINVAL;
2662
2663 ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
2664 if (ret)
2665 return ret;
2666
2667 intel_runtime_pm_get(dev_priv);
2668 ret = i915_guc_log_control(dev_priv, val);
2669 intel_runtime_pm_put(dev_priv);
2670
2671 mutex_unlock(&dev_priv->drm.struct_mutex);
2672 return ret;
2673 }
2674
2675 DEFINE_SIMPLE_ATTRIBUTE(i915_guc_log_control_fops,
2676 i915_guc_log_control_get, i915_guc_log_control_set,
2677 "%lld\n");
2678
2679 static const char *psr2_live_status(u32 val)
2680 {
2681 static const char * const live_status[] = {
2682 "IDLE",
2683 "CAPTURE",
2684 "CAPTURE_FS",
2685 "SLEEP",
2686 "BUFON_FW",
2687 "ML_UP",
2688 "SU_STANDBY",
2689 "FAST_SLEEP",
2690 "DEEP_SLEEP",
2691 "BUF_ON",
2692 "TG_ON"
2693 };
2694
2695 val = (val & EDP_PSR2_STATUS_STATE_MASK) >> EDP_PSR2_STATUS_STATE_SHIFT;
2696 if (val < ARRAY_SIZE(live_status))
2697 return live_status[val];
2698
2699 return "unknown";
2700 }
2701
2702 static int i915_edp_psr_status(struct seq_file *m, void *data)
2703 {
2704 struct drm_i915_private *dev_priv = node_to_i915(m->private);
2705 u32 psrperf = 0;
2706 u32 stat[3];
2707 enum pipe pipe;
2708 bool enabled = false;
2709
2710 if (!HAS_PSR(dev_priv)) {
2711 seq_puts(m, "PSR not supported\n");
2712 return 0;
2713 }
2714
2715 intel_runtime_pm_get(dev_priv);
2716
2717 mutex_lock(&dev_priv->psr.lock);
2718 seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2719 seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2720 seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2721 seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2722 seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2723 dev_priv->psr.busy_frontbuffer_bits);
2724 seq_printf(m, "Re-enable work scheduled: %s\n",
2725 yesno(work_busy(&dev_priv->psr.work.work)));
2726
2727 if (HAS_DDI(dev_priv)) {
2728 if (dev_priv->psr.psr2_support)
2729 enabled = I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE;
2730 else
2731 enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2732 } else {
2733 for_each_pipe(dev_priv, pipe) {
2734 enum transcoder cpu_transcoder =
2735 intel_pipe_to_cpu_transcoder(dev_priv, pipe);
2736 enum intel_display_power_domain power_domain;
2737
2738 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
2739 if (!intel_display_power_get_if_enabled(dev_priv,
2740 power_domain))
2741 continue;
2742
2743 stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2744 VLV_EDP_PSR_CURR_STATE_MASK;
2745 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2746 (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2747 enabled = true;
2748
2749 intel_display_power_put(dev_priv, power_domain);
2750 }
2751 }
2752
2753 seq_printf(m, "Main link in standby mode: %s\n",
2754 yesno(dev_priv->psr.link_standby));
2755
2756 seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2757
2758 if (!HAS_DDI(dev_priv))
2759 for_each_pipe(dev_priv, pipe) {
2760 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2761 (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2762 seq_printf(m, " pipe %c", pipe_name(pipe));
2763 }
2764 seq_puts(m, "\n");
2765
2766 /*
2767 * VLV/CHV PSR has no kind of performance counter
2768 * SKL+ Perf counter is reset to 0 everytime DC state is entered
2769 */
2770 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2771 psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2772 EDP_PSR_PERF_CNT_MASK;
2773
2774 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2775 }
2776 if (dev_priv->psr.psr2_support) {
2777 u32 psr2 = I915_READ(EDP_PSR2_STATUS_CTL);
2778
2779 seq_printf(m, "EDP_PSR2_STATUS_CTL: %x [%s]\n",
2780 psr2, psr2_live_status(psr2));
2781 }
2782 mutex_unlock(&dev_priv->psr.lock);
2783
2784 intel_runtime_pm_put(dev_priv);
2785 return 0;
2786 }
2787
2788 static int i915_sink_crc(struct seq_file *m, void *data)
2789 {
2790 struct drm_i915_private *dev_priv = node_to_i915(m->private);
2791 struct drm_device *dev = &dev_priv->drm;
2792 struct intel_connector *connector;
2793 struct drm_connector_list_iter conn_iter;
2794 struct intel_dp *intel_dp = NULL;
2795 int ret;
2796 u8 crc[6];
2797
2798 drm_modeset_lock_all(dev);
2799 drm_connector_list_iter_begin(dev, &conn_iter);
2800 for_each_intel_connector_iter(connector, &conn_iter) {
2801 struct drm_crtc *crtc;
2802
2803 if (!connector->base.state->best_encoder)
2804 continue;
2805
2806 crtc = connector->base.state->crtc;
2807 if (!crtc->state->active)
2808 continue;
2809
2810 if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
2811 continue;
2812
2813 intel_dp = enc_to_intel_dp(connector->base.state->best_encoder);
2814
2815 ret = intel_dp_sink_crc(intel_dp, crc);
2816 if (ret)
2817 goto out;
2818
2819 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2820 crc[0], crc[1], crc[2],
2821 crc[3], crc[4], crc[5]);
2822 goto out;
2823 }
2824 ret = -ENODEV;
2825 out:
2826 drm_connector_list_iter_end(&conn_iter);
2827 drm_modeset_unlock_all(dev);
2828 return ret;
2829 }
2830
2831 static int i915_energy_uJ(struct seq_file *m, void *data)
2832 {
2833 struct drm_i915_private *dev_priv = node_to_i915(m->private);
2834 u64 power;
2835 u32 units;
2836
2837 if (INTEL_GEN(dev_priv) < 6)
2838 return -ENODEV;
2839
2840 intel_runtime_pm_get(dev_priv);
2841
2842 rdmsrl(MSR_RAPL_POWER_UNIT, power);
2843 power = (power & 0x1f00) >> 8;
2844 units = 1000000 / (1 << power); /* convert to uJ */
2845 power = I915_READ(MCH_SECP_NRG_STTS);
2846 power *= units;
2847
2848 intel_runtime_pm_put(dev_priv);
2849
2850 seq_printf(m, "%llu", (long long unsigned)power);
2851
2852 return 0;
2853 }
2854
2855 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2856 {
2857 struct drm_i915_private *dev_priv = node_to_i915(m->private);
2858 struct pci_dev *pdev = dev_priv->drm.pdev;
2859
2860 if (!HAS_RUNTIME_PM(dev_priv))
2861 seq_puts(m, "Runtime power management not supported\n");
2862
2863 seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
2864 seq_printf(m, "IRQs disabled: %s\n",
2865 yesno(!intel_irqs_enabled(dev_priv)));
2866 #ifdef CONFIG_PM
2867 seq_printf(m, "Usage count: %d\n",
2868 atomic_read(&dev_priv->drm.dev->power.usage_count));
2869 #else
2870 seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2871 #endif
2872 seq_printf(m, "PCI device power state: %s [%d]\n",
2873 pci_power_name(pdev->current_state),
2874 pdev->current_state);
2875
2876 return 0;
2877 }
2878
2879 static int i915_power_domain_info(struct seq_file *m, void *unused)
2880 {
2881 struct drm_i915_private *dev_priv = node_to_i915(m->private);
2882 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2883 int i;
2884
2885 mutex_lock(&power_domains->lock);
2886
2887 seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2888 for (i = 0; i < power_domains->power_well_count; i++) {
2889 struct i915_power_well *power_well;
2890 enum intel_display_power_domain power_domain;
2891
2892 power_well = &power_domains->power_wells[i];
2893 seq_printf(m, "%-25s %d\n", power_well->name,
2894 power_well->count);
2895
2896 for_each_power_domain(power_domain, power_well->domains)
2897 seq_printf(m, " %-23s %d\n",
2898 intel_display_power_domain_str(power_domain),
2899 power_domains->domain_use_count[power_domain]);
2900 }
2901
2902 mutex_unlock(&power_domains->lock);
2903
2904 return 0;
2905 }
2906
2907 static int i915_dmc_info(struct seq_file *m, void *unused)
2908 {
2909 struct drm_i915_private *dev_priv = node_to_i915(m->private);
2910 struct intel_csr *csr;
2911
2912 if (!HAS_CSR(dev_priv)) {
2913 seq_puts(m, "not supported\n");
2914 return 0;
2915 }
2916
2917 csr = &dev_priv->csr;
2918
2919 intel_runtime_pm_get(dev_priv);
2920
2921 seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2922 seq_printf(m, "path: %s\n", csr->fw_path);
2923
2924 if (!csr->dmc_payload)
2925 goto out;
2926
2927 seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2928 CSR_VERSION_MINOR(csr->version));
2929
2930 if (IS_KABYLAKE(dev_priv) ||
2931 (IS_SKYLAKE(dev_priv) && csr->version >= CSR_VERSION(1, 6))) {
2932 seq_printf(m, "DC3 -> DC5 count: %d\n",
2933 I915_READ(SKL_CSR_DC3_DC5_COUNT));
2934 seq_printf(m, "DC5 -> DC6 count: %d\n",
2935 I915_READ(SKL_CSR_DC5_DC6_COUNT));
2936 } else if (IS_BROXTON(dev_priv) && csr->version >= CSR_VERSION(1, 4)) {
2937 seq_printf(m, "DC3 -> DC5 count: %d\n",
2938 I915_READ(BXT_CSR_DC3_DC5_COUNT));
2939 }
2940
2941 out:
2942 seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2943 seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2944 seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2945
2946 intel_runtime_pm_put(dev_priv);
2947
2948 return 0;
2949 }
2950
2951 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2952 struct drm_display_mode *mode)
2953 {
2954 int i;
2955
2956 for (i = 0; i < tabs; i++)
2957 seq_putc(m, '\t');
2958
2959 seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2960 mode->base.id, mode->name,
2961 mode->vrefresh, mode->clock,
2962 mode->hdisplay, mode->hsync_start,
2963 mode->hsync_end, mode->htotal,
2964 mode->vdisplay, mode->vsync_start,
2965 mode->vsync_end, mode->vtotal,
2966 mode->type, mode->flags);
2967 }
2968
2969 static void intel_encoder_info(struct seq_file *m,
2970 struct intel_crtc *intel_crtc,
2971 struct intel_encoder *intel_encoder)
2972 {
2973 struct drm_i915_private *dev_priv = node_to_i915(m->private);
2974 struct drm_device *dev = &dev_priv->drm;
2975 struct drm_crtc *crtc = &intel_crtc->base;
2976 struct intel_connector *intel_connector;
2977 struct drm_encoder *encoder;
2978
2979 encoder = &intel_encoder->base;
2980 seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2981 encoder->base.id, encoder->name);
2982 for_each_connector_on_encoder(dev, encoder, intel_connector) {
2983 struct drm_connector *connector = &intel_connector->base;
2984 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2985 connector->base.id,
2986 connector->name,
2987 drm_get_connector_status_name(connector->status));
2988 if (connector->status == connector_status_connected) {
2989 struct drm_display_mode *mode = &crtc->mode;
2990 seq_printf(m, ", mode:\n");
2991 intel_seq_print_mode(m, 2, mode);
2992 } else {
2993 seq_putc(m, '\n');
2994 }
2995 }
2996 }
2997
2998 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2999 {
3000 struct drm_i915_private *dev_priv = node_to_i915(m->private);
3001 struct drm_device *dev = &dev_priv->drm;
3002 struct drm_crtc *crtc = &intel_crtc->base;
3003 struct intel_encoder *intel_encoder;
3004 struct drm_plane_state *plane_state = crtc->primary->state;
3005 struct drm_framebuffer *fb = plane_state->fb;
3006
3007 if (fb)
3008 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
3009 fb->base.id, plane_state->src_x >> 16,
3010 plane_state->src_y >> 16, fb->width, fb->height);
3011 else
3012 seq_puts(m, "\tprimary plane disabled\n");
3013 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3014 intel_encoder_info(m, intel_crtc, intel_encoder);
3015 }
3016
3017 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
3018 {
3019 struct drm_display_mode *mode = panel->fixed_mode;
3020
3021 seq_printf(m, "\tfixed mode:\n");
3022 intel_seq_print_mode(m, 2, mode);
3023 }
3024
3025 static void intel_dp_info(struct seq_file *m,
3026 struct intel_connector *intel_connector)
3027 {
3028 struct intel_encoder *intel_encoder = intel_connector->encoder;
3029 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3030
3031 seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
3032 seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
3033 if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
3034 intel_panel_info(m, &intel_connector->panel);
3035
3036 drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports,
3037 &intel_dp->aux);
3038 }
3039
3040 static void intel_dp_mst_info(struct seq_file *m,
3041 struct intel_connector *intel_connector)
3042 {
3043 struct intel_encoder *intel_encoder = intel_connector->encoder;
3044 struct intel_dp_mst_encoder *intel_mst =
3045 enc_to_mst(&intel_encoder->base);
3046 struct intel_digital_port *intel_dig_port = intel_mst->primary;
3047 struct intel_dp *intel_dp = &intel_dig_port->dp;
3048 bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
3049 intel_connector->port);
3050
3051 seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
3052 }
3053
3054 static void intel_hdmi_info(struct seq_file *m,
3055 struct intel_connector *intel_connector)
3056 {
3057 struct intel_encoder *intel_encoder = intel_connector->encoder;
3058 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
3059
3060 seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
3061 }
3062
3063 static void intel_lvds_info(struct seq_file *m,
3064 struct intel_connector *intel_connector)
3065 {
3066 intel_panel_info(m, &intel_connector->panel);
3067 }
3068
3069 static void intel_connector_info(struct seq_file *m,
3070 struct drm_connector *connector)
3071 {
3072 struct intel_connector *intel_connector = to_intel_connector(connector);
3073 struct intel_encoder *intel_encoder = intel_connector->encoder;
3074 struct drm_display_mode *mode;
3075
3076 seq_printf(m, "connector %d: type %s, status: %s\n",
3077 connector->base.id, connector->name,
3078 drm_get_connector_status_name(connector->status));
3079 if (connector->status == connector_status_connected) {
3080 seq_printf(m, "\tname: %s\n", connector->display_info.name);
3081 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
3082 connector->display_info.width_mm,
3083 connector->display_info.height_mm);
3084 seq_printf(m, "\tsubpixel order: %s\n",
3085 drm_get_subpixel_order_name(connector->display_info.subpixel_order));
3086 seq_printf(m, "\tCEA rev: %d\n",
3087 connector->display_info.cea_rev);
3088 }
3089
3090 if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3091 return;
3092
3093 switch (connector->connector_type) {
3094 case DRM_MODE_CONNECTOR_DisplayPort:
3095 case DRM_MODE_CONNECTOR_eDP:
3096 if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
3097 intel_dp_mst_info(m, intel_connector);
3098 else
3099 intel_dp_info(m, intel_connector);
3100 break;
3101 case DRM_MODE_CONNECTOR_LVDS:
3102 if (intel_encoder->type == INTEL_OUTPUT_LVDS)
3103 intel_lvds_info(m, intel_connector);
3104 break;
3105 case DRM_MODE_CONNECTOR_HDMIA:
3106 if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
3107 intel_encoder->type == INTEL_OUTPUT_UNKNOWN)
3108 intel_hdmi_info(m, intel_connector);
3109 break;
3110 default:
3111 break;
3112 }
3113
3114 seq_printf(m, "\tmodes:\n");
3115 list_for_each_entry(mode, &connector->modes, head)
3116 intel_seq_print_mode(m, 2, mode);
3117 }
3118
3119 static const char *plane_type(enum drm_plane_type type)
3120 {
3121 switch (type) {
3122 case DRM_PLANE_TYPE_OVERLAY:
3123 return "OVL";
3124 case DRM_PLANE_TYPE_PRIMARY:
3125 return "PRI";
3126 case DRM_PLANE_TYPE_CURSOR:
3127 return "CUR";
3128 /*
3129 * Deliberately omitting default: to generate compiler warnings
3130 * when a new drm_plane_type gets added.
3131 */
3132 }
3133
3134 return "unknown";
3135 }
3136
3137 static const char *plane_rotation(unsigned int rotation)
3138 {
3139 static char buf[48];
3140 /*
3141 * According to doc only one DRM_MODE_ROTATE_ is allowed but this
3142 * will print them all to visualize if the values are misused
3143 */
3144 snprintf(buf, sizeof(buf),
3145 "%s%s%s%s%s%s(0x%08x)",
3146 (rotation & DRM_MODE_ROTATE_0) ? "0 " : "",
3147 (rotation & DRM_MODE_ROTATE_90) ? "90 " : "",
3148 (rotation & DRM_MODE_ROTATE_180) ? "180 " : "",
3149 (rotation & DRM_MODE_ROTATE_270) ? "270 " : "",
3150 (rotation & DRM_MODE_REFLECT_X) ? "FLIPX " : "",
3151 (rotation & DRM_MODE_REFLECT_Y) ? "FLIPY " : "",
3152 rotation);
3153
3154 return buf;
3155 }
3156
3157 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3158 {
3159 struct drm_i915_private *dev_priv = node_to_i915(m->private);
3160 struct drm_device *dev = &dev_priv->drm;
3161 struct intel_plane *intel_plane;
3162
3163 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3164 struct drm_plane_state *state;
3165 struct drm_plane *plane = &intel_plane->base;
3166 struct drm_format_name_buf format_name;
3167
3168 if (!plane->state) {
3169 seq_puts(m, "plane->state is NULL!\n");
3170 continue;
3171 }
3172
3173 state = plane->state;
3174
3175 if (state->fb) {
3176 drm_get_format_name(state->fb->format->format,
3177 &format_name);
3178 } else {
3179 sprintf(format_name.str, "N/A");
3180 }
3181
3182 seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3183 plane->base.id,
3184 plane_type(intel_plane->base.type),
3185 state->crtc_x, state->crtc_y,
3186 state->crtc_w, state->crtc_h,
3187 (state->src_x >> 16),
3188 ((state->src_x & 0xffff) * 15625) >> 10,
3189 (state->src_y >> 16),
3190 ((state->src_y & 0xffff) * 15625) >> 10,
3191 (state->src_w >> 16),
3192 ((state->src_w & 0xffff) * 15625) >> 10,
3193 (state->src_h >> 16),
3194 ((state->src_h & 0xffff) * 15625) >> 10,
3195 format_name.str,
3196 plane_rotation(state->rotation));
3197 }
3198 }
3199
3200 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3201 {
3202 struct intel_crtc_state *pipe_config;
3203 int num_scalers = intel_crtc->num_scalers;
3204 int i;
3205
3206 pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3207
3208 /* Not all platformas have a scaler */
3209 if (num_scalers) {
3210 seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3211 num_scalers,
3212 pipe_config->scaler_state.scaler_users,
3213 pipe_config->scaler_state.scaler_id);
3214
3215 for (i = 0; i < num_scalers; i++) {
3216 struct intel_scaler *sc =
3217 &pipe_config->scaler_state.scalers[i];
3218
3219 seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3220 i, yesno(sc->in_use), sc->mode);
3221 }
3222 seq_puts(m, "\n");
3223 } else {
3224 seq_puts(m, "\tNo scalers available on this platform\n");
3225 }
3226 }
3227
3228 static int i915_display_info(struct seq_file *m, void *unused)
3229 {
3230 struct drm_i915_private *dev_priv = node_to_i915(m->private);
3231 struct drm_device *dev = &dev_priv->drm;
3232 struct intel_crtc *crtc;
3233 struct drm_connector *connector;
3234 struct drm_connector_list_iter conn_iter;
3235
3236 intel_runtime_pm_get(dev_priv);
3237 seq_printf(m, "CRTC info\n");
3238 seq_printf(m, "---------\n");
3239 for_each_intel_crtc(dev, crtc) {
3240 struct intel_crtc_state *pipe_config;
3241
3242 drm_modeset_lock(&crtc->base.mutex, NULL);
3243 pipe_config = to_intel_crtc_state(crtc->base.state);
3244
3245 seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3246 crtc->base.base.id, pipe_name(crtc->pipe),
3247 yesno(pipe_config->base.active),
3248 pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3249 yesno(pipe_config->dither), pipe_config->pipe_bpp);
3250
3251 if (pipe_config->base.active) {
3252 struct intel_plane *cursor =
3253 to_intel_plane(crtc->base.cursor);
3254
3255 intel_crtc_info(m, crtc);
3256
3257 seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x\n",
3258 yesno(cursor->base.state->visible),
3259 cursor->base.state->crtc_x,
3260 cursor->base.state->crtc_y,
3261 cursor->base.state->crtc_w,
3262 cursor->base.state->crtc_h,
3263 cursor->cursor.base);
3264 intel_scaler_info(m, crtc);
3265 intel_plane_info(m, crtc);
3266 }
3267
3268 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3269 yesno(!crtc->cpu_fifo_underrun_disabled),
3270 yesno(!crtc->pch_fifo_underrun_disabled));
3271 drm_modeset_unlock(&crtc->base.mutex);
3272 }
3273
3274 seq_printf(m, "\n");
3275 seq_printf(m, "Connector info\n");
3276 seq_printf(m, "--------------\n");
3277 mutex_lock(&dev->mode_config.mutex);
3278 drm_connector_list_iter_begin(dev, &conn_iter);
3279 drm_for_each_connector_iter(connector, &conn_iter)
3280 intel_connector_info(m, connector);
3281 drm_connector_list_iter_end(&conn_iter);
3282 mutex_unlock(&dev->mode_config.mutex);
3283
3284 intel_runtime_pm_put(dev_priv);
3285
3286 return 0;
3287 }
3288
3289 static int i915_engine_info(struct seq_file *m, void *unused)
3290 {
3291 struct drm_i915_private *dev_priv = node_to_i915(m->private);
3292 struct intel_engine_cs *engine;
3293 enum intel_engine_id id;
3294
3295 intel_runtime_pm_get(dev_priv);
3296
3297 seq_printf(m, "GT awake? %s\n",
3298 yesno(dev_priv->gt.awake));
3299 seq_printf(m, "Global active requests: %d\n",
3300 dev_priv->gt.active_requests);
3301
3302 for_each_engine(engine, dev_priv, id) {
3303 struct intel_breadcrumbs *b = &engine->breadcrumbs;
3304 struct drm_i915_gem_request *rq;
3305 struct rb_node *rb;
3306 u64 addr;
3307
3308 seq_printf(m, "%s\n", engine->name);
3309 seq_printf(m, "\tcurrent seqno %x, last %x, hangcheck %x [%d ms], inflight %d\n",
3310 intel_engine_get_seqno(engine),
3311 intel_engine_last_submit(engine),
3312 engine->hangcheck.seqno,
3313 jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp),
3314 engine->timeline->inflight_seqnos);
3315
3316 rcu_read_lock();
3317
3318 seq_printf(m, "\tRequests:\n");
3319
3320 rq = list_first_entry(&engine->timeline->requests,
3321 struct drm_i915_gem_request, link);
3322 if (&rq->link != &engine->timeline->requests)
3323 print_request(m, rq, "\t\tfirst ");
3324
3325 rq = list_last_entry(&engine->timeline->requests,
3326 struct drm_i915_gem_request, link);
3327 if (&rq->link != &engine->timeline->requests)
3328 print_request(m, rq, "\t\tlast ");
3329
3330 rq = i915_gem_find_active_request(engine);
3331 if (rq) {
3332 print_request(m, rq, "\t\tactive ");
3333 seq_printf(m,
3334 "\t\t[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]\n",
3335 rq->head, rq->postfix, rq->tail,
3336 rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
3337 rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
3338 }
3339
3340 seq_printf(m, "\tRING_START: 0x%08x [0x%08x]\n",
3341 I915_READ(RING_START(engine->mmio_base)),
3342 rq ? i915_ggtt_offset(rq->ring->vma) : 0);
3343 seq_printf(m, "\tRING_HEAD: 0x%08x [0x%08x]\n",
3344 I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR,
3345 rq ? rq->ring->head : 0);
3346 seq_printf(m, "\tRING_TAIL: 0x%08x [0x%08x]\n",
3347 I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR,
3348 rq ? rq->ring->tail : 0);
3349 seq_printf(m, "\tRING_CTL: 0x%08x [%s]\n",
3350 I915_READ(RING_CTL(engine->mmio_base)),
3351 I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? "waiting" : "");
3352
3353 rcu_read_unlock();
3354
3355 addr = intel_engine_get_active_head(engine);
3356 seq_printf(m, "\tACTHD: 0x%08x_%08x\n",
3357 upper_32_bits(addr), lower_32_bits(addr));
3358 addr = intel_engine_get_last_batch_head(engine);
3359 seq_printf(m, "\tBBADDR: 0x%08x_%08x\n",
3360 upper_32_bits(addr), lower_32_bits(addr));
3361
3362 if (i915.enable_execlists) {
3363 u32 ptr, read, write;
3364 unsigned int idx;
3365
3366 seq_printf(m, "\tExeclist status: 0x%08x %08x\n",
3367 I915_READ(RING_EXECLIST_STATUS_LO(engine)),
3368 I915_READ(RING_EXECLIST_STATUS_HI(engine)));
3369
3370 ptr = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
3371 read = GEN8_CSB_READ_PTR(ptr);
3372 write = GEN8_CSB_WRITE_PTR(ptr);
3373 seq_printf(m, "\tExeclist CSB read %d, write %d\n",
3374 read, write);
3375 if (read >= GEN8_CSB_ENTRIES)
3376 read = 0;
3377 if (write >= GEN8_CSB_ENTRIES)
3378 write = 0;
3379 if (read > write)
3380 write += GEN8_CSB_ENTRIES;
3381 while (read < write) {
3382 idx = ++read % GEN8_CSB_ENTRIES;
3383 seq_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
3384 idx,
3385 I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)),
3386 I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)));
3387 }
3388
3389 rcu_read_lock();
3390 for (idx = 0; idx < ARRAY_SIZE(engine->execlist_port); idx++) {
3391 unsigned int count;
3392
3393 rq = port_unpack(&engine->execlist_port[idx],
3394 &count);
3395 if (rq) {
3396 seq_printf(m, "\t\tELSP[%d] count=%d, ",
3397 idx, count);
3398 print_request(m, rq, "rq: ");
3399 } else {
3400 seq_printf(m, "\t\tELSP[%d] idle\n",
3401 idx);
3402 }
3403 }
3404 rcu_read_unlock();
3405
3406 spin_lock_irq(&engine->timeline->lock);
3407 for (rb = engine->execlist_first; rb; rb = rb_next(rb)){
3408 struct i915_priolist *p =
3409 rb_entry(rb, typeof(*p), node);
3410
3411 list_for_each_entry(rq, &p->requests,
3412 priotree.link)
3413 print_request(m, rq, "\t\tQ ");
3414 }
3415 spin_unlock_irq(&engine->timeline->lock);
3416 } else if (INTEL_GEN(dev_priv) > 6) {
3417 seq_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
3418 I915_READ(RING_PP_DIR_BASE(engine)));
3419 seq_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
3420 I915_READ(RING_PP_DIR_BASE_READ(engine)));
3421 seq_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
3422 I915_READ(RING_PP_DIR_DCLV(engine)));
3423 }
3424
3425 spin_lock_irq(&b->rb_lock);
3426 for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
3427 struct intel_wait *w = rb_entry(rb, typeof(*w), node);
3428
3429 seq_printf(m, "\t%s [%d] waiting for %x\n",
3430 w->tsk->comm, w->tsk->pid, w->seqno);
3431 }
3432 spin_unlock_irq(&b->rb_lock);
3433
3434 seq_puts(m, "\n");
3435 }
3436
3437 intel_runtime_pm_put(dev_priv);
3438
3439 return 0;
3440 }
3441
3442 static int i915_semaphore_status(struct seq_file *m, void *unused)
3443 {
3444 struct drm_i915_private *dev_priv = node_to_i915(m->private);
3445 struct drm_device *dev = &dev_priv->drm;
3446 struct intel_engine_cs *engine;
3447 int num_rings = INTEL_INFO(dev_priv)->num_rings;
3448 enum intel_engine_id id;
3449 int j, ret;
3450
3451 if (!i915.semaphores) {
3452 seq_puts(m, "Semaphores are disabled\n");
3453 return 0;
3454 }
3455
3456 ret = mutex_lock_interruptible(&dev->struct_mutex);
3457 if (ret)
3458 return ret;
3459 intel_runtime_pm_get(dev_priv);
3460
3461 if (IS_BROADWELL(dev_priv)) {
3462 struct page *page;
3463 uint64_t *seqno;
3464
3465 page = i915_gem_object_get_page(dev_priv->semaphore->obj, 0);
3466
3467 seqno = (uint64_t *)kmap_atomic(page);
3468 for_each_engine(engine, dev_priv, id) {
3469 uint64_t offset;
3470
3471 seq_printf(m, "%s\n", engine->name);
3472
3473 seq_puts(m, " Last signal:");
3474 for (j = 0; j < num_rings; j++) {
3475 offset = id * I915_NUM_ENGINES + j;
3476 seq_printf(m, "0x%08llx (0x%02llx) ",
3477 seqno[offset], offset * 8);
3478 }
3479 seq_putc(m, '\n');
3480
3481 seq_puts(m, " Last wait: ");
3482 for (j = 0; j < num_rings; j++) {
3483 offset = id + (j * I915_NUM_ENGINES);
3484 seq_printf(m, "0x%08llx (0x%02llx) ",
3485 seqno[offset], offset * 8);
3486 }
3487 seq_putc(m, '\n');
3488
3489 }
3490 kunmap_atomic(seqno);
3491 } else {
3492 seq_puts(m, " Last signal:");
3493 for_each_engine(engine, dev_priv, id)
3494 for (j = 0; j < num_rings; j++)
3495 seq_printf(m, "0x%08x\n",
3496 I915_READ(engine->semaphore.mbox.signal[j]));
3497 seq_putc(m, '\n');
3498 }
3499
3500 intel_runtime_pm_put(dev_priv);
3501 mutex_unlock(&dev->struct_mutex);
3502 return 0;
3503 }
3504
3505 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3506 {
3507 struct drm_i915_private *dev_priv = node_to_i915(m->private);
3508 struct drm_device *dev = &dev_priv->drm;
3509 int i;
3510
3511 drm_modeset_lock_all(dev);
3512 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3513 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3514
3515 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3516 seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
3517 pll->state.crtc_mask, pll->active_mask, yesno(pll->on));
3518 seq_printf(m, " tracked hardware state:\n");
3519 seq_printf(m, " dpll: 0x%08x\n", pll->state.hw_state.dpll);
3520 seq_printf(m, " dpll_md: 0x%08x\n",
3521 pll->state.hw_state.dpll_md);
3522 seq_printf(m, " fp0: 0x%08x\n", pll->state.hw_state.fp0);
3523 seq_printf(m, " fp1: 0x%08x\n", pll->state.hw_state.fp1);
3524 seq_printf(m, " wrpll: 0x%08x\n", pll->state.hw_state.wrpll);
3525 }
3526 drm_modeset_unlock_all(dev);
3527
3528 return 0;
3529 }
3530
3531 static int i915_wa_registers(struct seq_file *m, void *unused)
3532 {
3533 int i;
3534 int ret;
3535 struct intel_engine_cs *engine;
3536 struct drm_i915_private *dev_priv = node_to_i915(m->private);
3537 struct drm_device *dev = &dev_priv->drm;
3538 struct i915_workarounds *workarounds = &dev_priv->workarounds;
3539 enum intel_engine_id id;
3540
3541 ret = mutex_lock_interruptible(&dev->struct_mutex);
3542 if (ret)
3543 return ret;
3544
3545 intel_runtime_pm_get(dev_priv);
3546
3547 seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3548 for_each_engine(engine, dev_priv, id)
3549 seq_printf(m, "HW whitelist count for %s: %d\n",
3550 engine->name, workarounds->hw_whitelist_count[id]);
3551 for (i = 0; i < workarounds->count; ++i) {
3552 i915_reg_t addr;
3553 u32 mask, value, read;
3554 bool ok;
3555
3556 addr = workarounds->reg[i].addr;
3557 mask = workarounds->reg[i].mask;
3558 value = workarounds->reg[i].value;
3559 read = I915_READ(addr);
3560 ok = (value & mask) == (read & mask);
3561 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3562 i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3563 }
3564
3565 intel_runtime_pm_put(dev_priv);
3566 mutex_unlock(&dev->struct_mutex);
3567
3568 return 0;
3569 }
3570
3571 static int i915_ddb_info(struct seq_file *m, void *unused)
3572 {
3573 struct drm_i915_private *dev_priv = node_to_i915(m->private);
3574 struct drm_device *dev = &dev_priv->drm;
3575 struct skl_ddb_allocation *ddb;
3576 struct skl_ddb_entry *entry;
3577 enum pipe pipe;
3578 int plane;
3579
3580 if (INTEL_GEN(dev_priv) < 9)
3581 return 0;
3582
3583 drm_modeset_lock_all(dev);
3584
3585 ddb = &dev_priv->wm.skl_hw.ddb;
3586
3587 seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3588
3589 for_each_pipe(dev_priv, pipe) {
3590 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3591
3592 for_each_universal_plane(dev_priv, pipe, plane) {
3593 entry = &ddb->plane[pipe][plane];
3594 seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
3595 entry->start, entry->end,
3596 skl_ddb_entry_size(entry));
3597 }
3598
3599 entry = &ddb->plane[pipe][PLANE_CURSOR];
3600 seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
3601 entry->end, skl_ddb_entry_size(entry));
3602 }
3603
3604 drm_modeset_unlock_all(dev);
3605
3606 return 0;
3607 }
3608
3609 static void drrs_status_per_crtc(struct seq_file *m,
3610 struct drm_device *dev,
3611 struct intel_crtc *intel_crtc)
3612 {
3613 struct drm_i915_private *dev_priv = to_i915(dev);
3614 struct i915_drrs *drrs = &dev_priv->drrs;
3615 int vrefresh = 0;
3616 struct drm_connector *connector;
3617 struct drm_connector_list_iter conn_iter;
3618
3619 drm_connector_list_iter_begin(dev, &conn_iter);
3620 drm_for_each_connector_iter(connector, &conn_iter) {
3621 if (connector->state->crtc != &intel_crtc->base)
3622 continue;
3623
3624 seq_printf(m, "%s:\n", connector->name);
3625 }
3626 drm_connector_list_iter_end(&conn_iter);
3627
3628 if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3629 seq_puts(m, "\tVBT: DRRS_type: Static");
3630 else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3631 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3632 else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3633 seq_puts(m, "\tVBT: DRRS_type: None");
3634 else
3635 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3636
3637 seq_puts(m, "\n\n");
3638
3639 if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3640 struct intel_panel *panel;
3641
3642 mutex_lock(&drrs->mutex);
3643 /* DRRS Supported */
3644 seq_puts(m, "\tDRRS Supported: Yes\n");
3645
3646 /* disable_drrs() will make drrs->dp NULL */
3647 if (!drrs->dp) {
3648 seq_puts(m, "Idleness DRRS: Disabled");
3649 mutex_unlock(&drrs->mutex);
3650 return;
3651 }
3652
3653 panel = &drrs->dp->attached_connector->panel;
3654 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3655 drrs->busy_frontbuffer_bits);
3656
3657 seq_puts(m, "\n\t\t");
3658 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3659 seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3660 vrefresh = panel->fixed_mode->vrefresh;
3661 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3662 seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3663 vrefresh = panel->downclock_mode->vrefresh;
3664 } else {
3665 seq_printf(m, "DRRS_State: Unknown(%d)\n",
3666 drrs->refresh_rate_type);
3667 mutex_unlock(&drrs->mutex);
3668 return;
3669 }
3670 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3671
3672 seq_puts(m, "\n\t\t");
3673 mutex_unlock(&drrs->mutex);
3674 } else {
3675 /* DRRS not supported. Print the VBT parameter*/
3676 seq_puts(m, "\tDRRS Supported : No");
3677 }
3678 seq_puts(m, "\n");
3679 }
3680
3681 static int i915_drrs_status(struct seq_file *m, void *unused)
3682 {
3683 struct drm_i915_private *dev_priv = node_to_i915(m->private);
3684 struct drm_device *dev = &dev_priv->drm;
3685 struct intel_crtc *intel_crtc;
3686 int active_crtc_cnt = 0;
3687
3688 drm_modeset_lock_all(dev);
3689 for_each_intel_crtc(dev, intel_crtc) {
3690 if (intel_crtc->base.state->active) {
3691 active_crtc_cnt++;
3692 seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
3693
3694 drrs_status_per_crtc(m, dev, intel_crtc);
3695 }
3696 }
3697 drm_modeset_unlock_all(dev);
3698
3699 if (!active_crtc_cnt)
3700 seq_puts(m, "No active crtc found\n");
3701
3702 return 0;
3703 }
3704
3705 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3706 {
3707 struct drm_i915_private *dev_priv = node_to_i915(m->private);
3708 struct drm_device *dev = &dev_priv->drm;
3709 struct intel_encoder *intel_encoder;
3710 struct intel_digital_port *intel_dig_port;
3711 struct drm_connector *connector;
3712 struct drm_connector_list_iter conn_iter;
3713
3714 drm_connector_list_iter_begin(dev, &conn_iter);
3715 drm_for_each_connector_iter(connector, &conn_iter) {
3716 if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
3717 continue;
3718
3719 intel_encoder = intel_attached_encoder(connector);
3720 if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3721 continue;
3722
3723 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
3724 if (!intel_dig_port->dp.can_mst)
3725 continue;
3726
3727 seq_printf(m, "MST Source Port %c\n",
3728 port_name(intel_dig_port->port));
3729 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3730 }
3731 drm_connector_list_iter_end(&conn_iter);
3732
3733 return 0;
3734 }
3735
3736 static ssize_t i915_displayport_test_active_write(struct file *file,
3737 const char __user *ubuf,
3738 size_t len, loff_t *offp)
3739 {
3740 char *input_buffer;
3741 int status = 0;
3742 struct drm_device *dev;
3743 struct drm_connector *connector;
3744 struct drm_connector_list_iter conn_iter;
3745 struct intel_dp *intel_dp;
3746 int val = 0;
3747
3748 dev = ((struct seq_file *)file->private_data)->private;
3749
3750 if (len == 0)
3751 return 0;
3752
3753 input_buffer = memdup_user_nul(ubuf, len);
3754 if (IS_ERR(input_buffer))
3755 return PTR_ERR(input_buffer);
3756
3757 DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
3758
3759 drm_connector_list_iter_begin(dev, &conn_iter);
3760 drm_for_each_connector_iter(connector, &conn_iter) {
3761 if (connector->connector_type !=
3762 DRM_MODE_CONNECTOR_DisplayPort)
3763 continue;
3764
3765 if (connector->status == connector_status_connected &&
3766 connector->encoder != NULL) {
3767 intel_dp = enc_to_intel_dp(connector->encoder);
3768 status = kstrtoint(input_buffer, 10, &val);
3769 if (status < 0)
3770 break;
3771 DRM_DEBUG_DRIVER("Got %d for test active\n", val);
3772 /* To prevent erroneous activation of the compliance
3773 * testing code, only accept an actual value of 1 here
3774 */
3775 if (val == 1)
3776 intel_dp->compliance.test_active = 1;
3777 else
3778 intel_dp->compliance.test_active = 0;
3779 }
3780 }
3781 drm_connector_list_iter_end(&conn_iter);
3782 kfree(input_buffer);
3783 if (status < 0)
3784 return status;
3785
3786 *offp += len;
3787 return len;
3788 }
3789
3790 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
3791 {
3792 struct drm_device *dev = m->private;
3793 struct drm_connector *connector;
3794 struct drm_connector_list_iter conn_iter;
3795 struct intel_dp *intel_dp;
3796
3797 drm_connector_list_iter_begin(dev, &conn_iter);
3798 drm_for_each_connector_iter(connector, &conn_iter) {
3799 if (connector->connector_type !=
3800 DRM_MODE_CONNECTOR_DisplayPort)
3801 continue;
3802
3803 if (connector->status == connector_status_connected &&
3804 connector->encoder != NULL) {
3805 intel_dp = enc_to_intel_dp(connector->encoder);
3806 if (intel_dp->compliance.test_active)
3807 seq_puts(m, "1");
3808 else
3809 seq_puts(m, "0");
3810 } else
3811 seq_puts(m, "0");
3812 }
3813 drm_connector_list_iter_end(&conn_iter);
3814
3815 return 0;
3816 }
3817
3818 static int i915_displayport_test_active_open(struct inode *inode,
3819 struct file *file)
3820 {
3821 struct drm_i915_private *dev_priv = inode->i_private;
3822
3823 return single_open(file, i915_displayport_test_active_show,
3824 &dev_priv->drm);
3825 }
3826
3827 static const struct file_operations i915_displayport_test_active_fops = {
3828 .owner = THIS_MODULE,
3829 .open = i915_displayport_test_active_open,
3830 .read = seq_read,
3831 .llseek = seq_lseek,
3832 .release = single_release,
3833 .write = i915_displayport_test_active_write
3834 };
3835
3836 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
3837 {
3838 struct drm_device *dev = m->private;
3839 struct drm_connector *connector;
3840 struct drm_connector_list_iter conn_iter;
3841 struct intel_dp *intel_dp;
3842
3843 drm_connector_list_iter_begin(dev, &conn_iter);
3844 drm_for_each_connector_iter(connector, &conn_iter) {
3845 if (connector->connector_type !=
3846 DRM_MODE_CONNECTOR_DisplayPort)
3847 continue;
3848
3849 if (connector->status == connector_status_connected &&
3850 connector->encoder != NULL) {
3851 intel_dp = enc_to_intel_dp(connector->encoder);
3852 if (intel_dp->compliance.test_type ==
3853 DP_TEST_LINK_EDID_READ)
3854 seq_printf(m, "%lx",
3855 intel_dp->compliance.test_data.edid);
3856 else if (intel_dp->compliance.test_type ==
3857 DP_TEST_LINK_VIDEO_PATTERN) {
3858 seq_printf(m, "hdisplay: %d\n",
3859 intel_dp->compliance.test_data.hdisplay);
3860 seq_printf(m, "vdisplay: %d\n",
3861 intel_dp->compliance.test_data.vdisplay);
3862 seq_printf(m, "bpc: %u\n",
3863 intel_dp->compliance.test_data.bpc);
3864 }
3865 } else
3866 seq_puts(m, "0");
3867 }
3868 drm_connector_list_iter_end(&conn_iter);
3869
3870 return 0;
3871 }
3872 static int i915_displayport_test_data_open(struct inode *inode,
3873 struct file *file)
3874 {
3875 struct drm_i915_private *dev_priv = inode->i_private;
3876
3877 return single_open(file, i915_displayport_test_data_show,
3878 &dev_priv->drm);
3879 }
3880
3881 static const struct file_operations i915_displayport_test_data_fops = {
3882 .owner = THIS_MODULE,
3883 .open = i915_displayport_test_data_open,
3884 .read = seq_read,
3885 .llseek = seq_lseek,
3886 .release = single_release
3887 };
3888
3889 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
3890 {
3891 struct drm_device *dev = m->private;
3892 struct drm_connector *connector;
3893 struct drm_connector_list_iter conn_iter;
3894 struct intel_dp *intel_dp;
3895
3896 drm_connector_list_iter_begin(dev, &conn_iter);
3897 drm_for_each_connector_iter(connector, &conn_iter) {
3898 if (connector->connector_type !=
3899 DRM_MODE_CONNECTOR_DisplayPort)
3900 continue;
3901
3902 if (connector->status == connector_status_connected &&
3903 connector->encoder != NULL) {
3904 intel_dp = enc_to_intel_dp(connector->encoder);
3905 seq_printf(m, "%02lx", intel_dp->compliance.test_type);
3906 } else
3907 seq_puts(m, "0");
3908 }
3909 drm_connector_list_iter_end(&conn_iter);
3910
3911 return 0;
3912 }
3913
3914 static int i915_displayport_test_type_open(struct inode *inode,
3915 struct file *file)
3916 {
3917 struct drm_i915_private *dev_priv = inode->i_private;
3918
3919 return single_open(file, i915_displayport_test_type_show,
3920 &dev_priv->drm);
3921 }
3922
3923 static const struct file_operations i915_displayport_test_type_fops = {
3924 .owner = THIS_MODULE,
3925 .open = i915_displayport_test_type_open,
3926 .read = seq_read,
3927 .llseek = seq_lseek,
3928 .release = single_release
3929 };
3930
3931 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
3932 {
3933 struct drm_i915_private *dev_priv = m->private;
3934 struct drm_device *dev = &dev_priv->drm;
3935 int level;
3936 int num_levels;
3937
3938 if (IS_CHERRYVIEW(dev_priv))
3939 num_levels = 3;
3940 else if (IS_VALLEYVIEW(dev_priv))
3941 num_levels = 1;
3942 else if (IS_G4X(dev_priv))
3943 num_levels = 3;
3944 else
3945 num_levels = ilk_wm_max_level(dev_priv) + 1;
3946
3947 drm_modeset_lock_all(dev);
3948
3949 for (level = 0; level < num_levels; level++) {
3950 unsigned int latency = wm[level];
3951
3952 /*
3953 * - WM1+ latency values in 0.5us units
3954 * - latencies are in us on gen9/vlv/chv
3955 */
3956 if (INTEL_GEN(dev_priv) >= 9 ||
3957 IS_VALLEYVIEW(dev_priv) ||
3958 IS_CHERRYVIEW(dev_priv) ||
3959 IS_G4X(dev_priv))
3960 latency *= 10;
3961 else if (level > 0)
3962 latency *= 5;
3963
3964 seq_printf(m, "WM%d %u (%u.%u usec)\n",
3965 level, wm[level], latency / 10, latency % 10);
3966 }
3967
3968 drm_modeset_unlock_all(dev);
3969 }
3970
3971 static int pri_wm_latency_show(struct seq_file *m, void *data)
3972 {
3973 struct drm_i915_private *dev_priv = m->private;
3974 const uint16_t *latencies;
3975
3976 if (INTEL_GEN(dev_priv) >= 9)
3977 latencies = dev_priv->wm.skl_latency;
3978 else
3979 latencies = dev_priv->wm.pri_latency;
3980
3981 wm_latency_show(m, latencies);
3982
3983 return 0;
3984 }
3985
3986 static int spr_wm_latency_show(struct seq_file *m, void *data)
3987 {
3988 struct drm_i915_private *dev_priv = m->private;
3989 const uint16_t *latencies;
3990
3991 if (INTEL_GEN(dev_priv) >= 9)
3992 latencies = dev_priv->wm.skl_latency;
3993 else
3994 latencies = dev_priv->wm.spr_latency;
3995
3996 wm_latency_show(m, latencies);
3997
3998 return 0;
3999 }
4000
4001 static int cur_wm_latency_show(struct seq_file *m, void *data)
4002 {
4003 struct drm_i915_private *dev_priv = m->private;
4004 const uint16_t *latencies;
4005
4006 if (INTEL_GEN(dev_priv) >= 9)
4007 latencies = dev_priv->wm.skl_latency;
4008 else
4009 latencies = dev_priv->wm.cur_latency;
4010
4011 wm_latency_show(m, latencies);
4012
4013 return 0;
4014 }
4015
4016 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4017 {
4018 struct drm_i915_private *dev_priv = inode->i_private;
4019
4020 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
4021 return -ENODEV;
4022
4023 return single_open(file, pri_wm_latency_show, dev_priv);
4024 }
4025
4026 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4027 {
4028 struct drm_i915_private *dev_priv = inode->i_private;
4029
4030 if (HAS_GMCH_DISPLAY(dev_priv))
4031 return -ENODEV;
4032
4033 return single_open(file, spr_wm_latency_show, dev_priv);
4034 }
4035
4036 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4037 {
4038 struct drm_i915_private *dev_priv = inode->i_private;
4039
4040 if (HAS_GMCH_DISPLAY(dev_priv))
4041 return -ENODEV;
4042
4043 return single_open(file, cur_wm_latency_show, dev_priv);
4044 }
4045
4046 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4047 size_t len, loff_t *offp, uint16_t wm[8])
4048 {
4049 struct seq_file *m = file->private_data;
4050 struct drm_i915_private *dev_priv = m->private;
4051 struct drm_device *dev = &dev_priv->drm;
4052 uint16_t new[8] = { 0 };
4053 int num_levels;
4054 int level;
4055 int ret;
4056 char tmp[32];
4057
4058 if (IS_CHERRYVIEW(dev_priv))
4059 num_levels = 3;
4060 else if (IS_VALLEYVIEW(dev_priv))
4061 num_levels = 1;
4062 else if (IS_G4X(dev_priv))
4063 num_levels = 3;
4064 else
4065 num_levels = ilk_wm_max_level(dev_priv) + 1;
4066
4067 if (len >= sizeof(tmp))
4068 return -EINVAL;
4069
4070 if (copy_from_user(tmp, ubuf, len))
4071 return -EFAULT;
4072
4073 tmp[len] = '\0';
4074
4075 ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4076 &new[0], &new[1], &new[2], &new[3],
4077 &new[4], &new[5], &new[6], &new[7]);
4078 if (ret != num_levels)
4079 return -EINVAL;
4080
4081 drm_modeset_lock_all(dev);
4082
4083 for (level = 0; level < num_levels; level++)
4084 wm[level] = new[level];
4085
4086 drm_modeset_unlock_all(dev);
4087
4088 return len;
4089 }
4090
4091
4092 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4093 size_t len, loff_t *offp)
4094 {
4095 struct seq_file *m = file->private_data;
4096 struct drm_i915_private *dev_priv = m->private;
4097 uint16_t *latencies;
4098
4099 if (INTEL_GEN(dev_priv) >= 9)
4100 latencies = dev_priv->wm.skl_latency;
4101 else
4102 latencies = dev_priv->wm.pri_latency;
4103
4104 return wm_latency_write(file, ubuf, len, offp, latencies);
4105 }
4106
4107 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4108 size_t len, loff_t *offp)
4109 {
4110 struct seq_file *m = file->private_data;
4111 struct drm_i915_private *dev_priv = m->private;
4112 uint16_t *latencies;
4113
4114 if (INTEL_GEN(dev_priv) >= 9)
4115 latencies = dev_priv->wm.skl_latency;
4116 else
4117 latencies = dev_priv->wm.spr_latency;
4118
4119 return wm_latency_write(file, ubuf, len, offp, latencies);
4120 }
4121
4122 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4123 size_t len, loff_t *offp)
4124 {
4125 struct seq_file *m = file->private_data;
4126 struct drm_i915_private *dev_priv = m->private;
4127 uint16_t *latencies;
4128
4129 if (INTEL_GEN(dev_priv) >= 9)
4130 latencies = dev_priv->wm.skl_latency;
4131 else
4132 latencies = dev_priv->wm.cur_latency;
4133
4134 return wm_latency_write(file, ubuf, len, offp, latencies);
4135 }
4136
4137 static const struct file_operations i915_pri_wm_latency_fops = {
4138 .owner = THIS_MODULE,
4139 .open = pri_wm_latency_open,
4140 .read = seq_read,
4141 .llseek = seq_lseek,
4142 .release = single_release,
4143 .write = pri_wm_latency_write
4144 };
4145
4146 static const struct file_operations i915_spr_wm_latency_fops = {
4147 .owner = THIS_MODULE,
4148 .open = spr_wm_latency_open,
4149 .read = seq_read,
4150 .llseek = seq_lseek,
4151 .release = single_release,
4152 .write = spr_wm_latency_write
4153 };
4154
4155 static const struct file_operations i915_cur_wm_latency_fops = {
4156 .owner = THIS_MODULE,
4157 .open = cur_wm_latency_open,
4158 .read = seq_read,
4159 .llseek = seq_lseek,
4160 .release = single_release,
4161 .write = cur_wm_latency_write
4162 };
4163
4164 static int
4165 i915_wedged_get(void *data, u64 *val)
4166 {
4167 struct drm_i915_private *dev_priv = data;
4168
4169 *val = i915_terminally_wedged(&dev_priv->gpu_error);
4170
4171 return 0;
4172 }
4173
4174 static int
4175 i915_wedged_set(void *data, u64 val)
4176 {
4177 struct drm_i915_private *i915 = data;
4178 struct intel_engine_cs *engine;
4179 unsigned int tmp;
4180
4181 /*
4182 * There is no safeguard against this debugfs entry colliding
4183 * with the hangcheck calling same i915_handle_error() in
4184 * parallel, causing an explosion. For now we assume that the
4185 * test harness is responsible enough not to inject gpu hangs
4186 * while it is writing to 'i915_wedged'
4187 */
4188
4189 if (i915_reset_backoff(&i915->gpu_error))
4190 return -EAGAIN;
4191
4192 for_each_engine_masked(engine, i915, val, tmp) {
4193 engine->hangcheck.seqno = intel_engine_get_seqno(engine);
4194 engine->hangcheck.stalled = true;
4195 }
4196
4197 i915_handle_error(i915, val, "Manually setting wedged to %llu", val);
4198
4199 wait_on_bit(&i915->gpu_error.flags,
4200 I915_RESET_HANDOFF,
4201 TASK_UNINTERRUPTIBLE);
4202
4203 return 0;
4204 }
4205
4206 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4207 i915_wedged_get, i915_wedged_set,
4208 "%llu\n");
4209
4210 static int
4211 fault_irq_set(struct drm_i915_private *i915,
4212 unsigned long *irq,
4213 unsigned long val)
4214 {
4215 int err;
4216
4217 err = mutex_lock_interruptible(&i915->drm.struct_mutex);
4218 if (err)
4219 return err;
4220
4221 err = i915_gem_wait_for_idle(i915,
4222 I915_WAIT_LOCKED |
4223 I915_WAIT_INTERRUPTIBLE);
4224 if (err)
4225 goto err_unlock;
4226
4227 *irq = val;
4228 mutex_unlock(&i915->drm.struct_mutex);
4229
4230 /* Flush idle worker to disarm irq */
4231 while (flush_delayed_work(&i915->gt.idle_work))
4232 ;
4233
4234 return 0;
4235
4236 err_unlock:
4237 mutex_unlock(&i915->drm.struct_mutex);
4238 return err;
4239 }
4240
4241 static int
4242 i915_ring_missed_irq_get(void *data, u64 *val)
4243 {
4244 struct drm_i915_private *dev_priv = data;
4245
4246 *val = dev_priv->gpu_error.missed_irq_rings;
4247 return 0;
4248 }
4249
4250 static int
4251 i915_ring_missed_irq_set(void *data, u64 val)
4252 {
4253 struct drm_i915_private *i915 = data;
4254
4255 return fault_irq_set(i915, &i915->gpu_error.missed_irq_rings, val);
4256 }
4257
4258 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4259 i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4260 "0x%08llx\n");
4261
4262 static int
4263 i915_ring_test_irq_get(void *data, u64 *val)
4264 {
4265 struct drm_i915_private *dev_priv = data;
4266
4267 *val = dev_priv->gpu_error.test_irq_rings;
4268
4269 return 0;
4270 }
4271
4272 static int
4273 i915_ring_test_irq_set(void *data, u64 val)
4274 {
4275 struct drm_i915_private *i915 = data;
4276
4277 val &= INTEL_INFO(i915)->ring_mask;
4278 DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4279
4280 return fault_irq_set(i915, &i915->gpu_error.test_irq_rings, val);
4281 }
4282
4283 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4284 i915_ring_test_irq_get, i915_ring_test_irq_set,
4285 "0x%08llx\n");
4286
4287 #define DROP_UNBOUND 0x1
4288 #define DROP_BOUND 0x2
4289 #define DROP_RETIRE 0x4
4290 #define DROP_ACTIVE 0x8
4291 #define DROP_FREED 0x10
4292 #define DROP_SHRINK_ALL 0x20
4293 #define DROP_ALL (DROP_UNBOUND | \
4294 DROP_BOUND | \
4295 DROP_RETIRE | \
4296 DROP_ACTIVE | \
4297 DROP_FREED | \
4298 DROP_SHRINK_ALL)
4299 static int
4300 i915_drop_caches_get(void *data, u64 *val)
4301 {
4302 *val = DROP_ALL;
4303
4304 return 0;
4305 }
4306
4307 static int
4308 i915_drop_caches_set(void *data, u64 val)
4309 {
4310 struct drm_i915_private *dev_priv = data;
4311 struct drm_device *dev = &dev_priv->drm;
4312 int ret = 0;
4313
4314 DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4315
4316 /* No need to check and wait for gpu resets, only libdrm auto-restarts
4317 * on ioctls on -EAGAIN. */
4318 if (val & (DROP_ACTIVE | DROP_RETIRE)) {
4319 ret = mutex_lock_interruptible(&dev->struct_mutex);
4320 if (ret)
4321 return ret;
4322
4323 if (val & DROP_ACTIVE)
4324 ret = i915_gem_wait_for_idle(dev_priv,
4325 I915_WAIT_INTERRUPTIBLE |
4326 I915_WAIT_LOCKED);
4327
4328 if (val & DROP_RETIRE)
4329 i915_gem_retire_requests(dev_priv);
4330
4331 mutex_unlock(&dev->struct_mutex);
4332 }
4333
4334 lockdep_set_current_reclaim_state(GFP_KERNEL);
4335 if (val & DROP_BOUND)
4336 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4337
4338 if (val & DROP_UNBOUND)
4339 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4340
4341 if (val & DROP_SHRINK_ALL)
4342 i915_gem_shrink_all(dev_priv);
4343 lockdep_clear_current_reclaim_state();
4344
4345 if (val & DROP_FREED) {
4346 synchronize_rcu();
4347 i915_gem_drain_freed_objects(dev_priv);
4348 }
4349
4350 return ret;
4351 }
4352
4353 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4354 i915_drop_caches_get, i915_drop_caches_set,
4355 "0x%08llx\n");
4356
4357 static int
4358 i915_max_freq_get(void *data, u64 *val)
4359 {
4360 struct drm_i915_private *dev_priv = data;
4361
4362 if (INTEL_GEN(dev_priv) < 6)
4363 return -ENODEV;
4364
4365 *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4366 return 0;
4367 }
4368
4369 static int
4370 i915_max_freq_set(void *data, u64 val)
4371 {
4372 struct drm_i915_private *dev_priv = data;
4373 u32 hw_max, hw_min;
4374 int ret;
4375
4376 if (INTEL_GEN(dev_priv) < 6)
4377 return -ENODEV;
4378
4379 DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4380
4381 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4382 if (ret)
4383 return ret;
4384
4385 /*
4386 * Turbo will still be enabled, but won't go above the set value.
4387 */
4388 val = intel_freq_opcode(dev_priv, val);
4389
4390 hw_max = dev_priv->rps.max_freq;
4391 hw_min = dev_priv->rps.min_freq;
4392
4393 if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4394 mutex_unlock(&dev_priv->rps.hw_lock);
4395 return -EINVAL;
4396 }
4397
4398 dev_priv->rps.max_freq_softlimit = val;
4399
4400 if (intel_set_rps(dev_priv, val))
4401 DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
4402
4403 mutex_unlock(&dev_priv->rps.hw_lock);
4404
4405 return 0;
4406 }
4407
4408 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4409 i915_max_freq_get, i915_max_freq_set,
4410 "%llu\n");
4411
4412 static int
4413 i915_min_freq_get(void *data, u64 *val)
4414 {
4415 struct drm_i915_private *dev_priv = data;
4416
4417 if (INTEL_GEN(dev_priv) < 6)
4418 return -ENODEV;
4419
4420 *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4421 return 0;
4422 }
4423
4424 static int
4425 i915_min_freq_set(void *data, u64 val)
4426 {
4427 struct drm_i915_private *dev_priv = data;
4428 u32 hw_max, hw_min;
4429 int ret;
4430
4431 if (INTEL_GEN(dev_priv) < 6)
4432 return -ENODEV;
4433
4434 DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4435
4436 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4437 if (ret)
4438 return ret;
4439
4440 /*
4441 * Turbo will still be enabled, but won't go below the set value.
4442 */
4443 val = intel_freq_opcode(dev_priv, val);
4444
4445 hw_max = dev_priv->rps.max_freq;
4446 hw_min = dev_priv->rps.min_freq;
4447
4448 if (val < hw_min ||
4449 val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4450 mutex_unlock(&dev_priv->rps.hw_lock);
4451 return -EINVAL;
4452 }
4453
4454 dev_priv->rps.min_freq_softlimit = val;
4455
4456 if (intel_set_rps(dev_priv, val))
4457 DRM_DEBUG_DRIVER("failed to update RPS to new softlimit\n");
4458
4459 mutex_unlock(&dev_priv->rps.hw_lock);
4460
4461 return 0;
4462 }
4463
4464 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4465 i915_min_freq_get, i915_min_freq_set,
4466 "%llu\n");
4467
4468 static int
4469 i915_cache_sharing_get(void *data, u64 *val)
4470 {
4471 struct drm_i915_private *dev_priv = data;
4472 u32 snpcr;
4473
4474 if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
4475 return -ENODEV;
4476
4477 intel_runtime_pm_get(dev_priv);
4478
4479 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4480
4481 intel_runtime_pm_put(dev_priv);
4482
4483 *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4484
4485 return 0;
4486 }
4487
4488 static int
4489 i915_cache_sharing_set(void *data, u64 val)
4490 {
4491 struct drm_i915_private *dev_priv = data;
4492 u32 snpcr;
4493
4494 if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
4495 return -ENODEV;
4496
4497 if (val > 3)
4498 return -EINVAL;
4499
4500 intel_runtime_pm_get(dev_priv);
4501 DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4502
4503 /* Update the cache sharing policy here as well */
4504 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4505 snpcr &= ~GEN6_MBC_SNPCR_MASK;
4506 snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4507 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4508
4509 intel_runtime_pm_put(dev_priv);
4510 return 0;
4511 }
4512
4513 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4514 i915_cache_sharing_get, i915_cache_sharing_set,
4515 "%llu\n");
4516
4517 static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
4518 struct sseu_dev_info *sseu)
4519 {
4520 int ss_max = 2;
4521 int ss;
4522 u32 sig1[ss_max], sig2[ss_max];
4523
4524 sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
4525 sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
4526 sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
4527 sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
4528
4529 for (ss = 0; ss < ss_max; ss++) {
4530 unsigned int eu_cnt;
4531
4532 if (sig1[ss] & CHV_SS_PG_ENABLE)
4533 /* skip disabled subslice */
4534 continue;
4535
4536 sseu->slice_mask = BIT(0);
4537 sseu->subslice_mask |= BIT(ss);
4538 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
4539 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
4540 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
4541 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
4542 sseu->eu_total += eu_cnt;
4543 sseu->eu_per_subslice = max_t(unsigned int,
4544 sseu->eu_per_subslice, eu_cnt);
4545 }
4546 }
4547
4548 static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
4549 struct sseu_dev_info *sseu)
4550 {
4551 int s_max = 3, ss_max = 4;
4552 int s, ss;
4553 u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
4554
4555 /* BXT has a single slice and at most 3 subslices. */
4556 if (IS_GEN9_LP(dev_priv)) {
4557 s_max = 1;
4558 ss_max = 3;
4559 }
4560
4561 for (s = 0; s < s_max; s++) {
4562 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
4563 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
4564 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
4565 }
4566
4567 eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
4568 GEN9_PGCTL_SSA_EU19_ACK |
4569 GEN9_PGCTL_SSA_EU210_ACK |
4570 GEN9_PGCTL_SSA_EU311_ACK;
4571 eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
4572 GEN9_PGCTL_SSB_EU19_ACK |
4573 GEN9_PGCTL_SSB_EU210_ACK |
4574 GEN9_PGCTL_SSB_EU311_ACK;
4575
4576 for (s = 0; s < s_max; s++) {
4577 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
4578 /* skip disabled slice */
4579 continue;
4580
4581 sseu->slice_mask |= BIT(s);
4582
4583 if (IS_GEN9_BC(dev_priv))
4584 sseu->subslice_mask =
4585 INTEL_INFO(dev_priv)->sseu.subslice_mask;
4586
4587 for (ss = 0; ss < ss_max; ss++) {
4588 unsigned int eu_cnt;
4589
4590 if (IS_GEN9_LP(dev_priv)) {
4591 if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
4592 /* skip disabled subslice */
4593 continue;
4594
4595 sseu->subslice_mask |= BIT(ss);
4596 }
4597
4598 eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
4599 eu_mask[ss%2]);
4600 sseu->eu_total += eu_cnt;
4601 sseu->eu_per_subslice = max_t(unsigned int,
4602 sseu->eu_per_subslice,
4603 eu_cnt);
4604 }
4605 }
4606 }
4607
4608 static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
4609 struct sseu_dev_info *sseu)
4610 {
4611 u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
4612 int s;
4613
4614 sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
4615
4616 if (sseu->slice_mask) {
4617 sseu->subslice_mask = INTEL_INFO(dev_priv)->sseu.subslice_mask;
4618 sseu->eu_per_subslice =
4619 INTEL_INFO(dev_priv)->sseu.eu_per_subslice;
4620 sseu->eu_total = sseu->eu_per_subslice *
4621 sseu_subslice_total(sseu);
4622
4623 /* subtract fused off EU(s) from enabled slice(s) */
4624 for (s = 0; s < fls(sseu->slice_mask); s++) {
4625 u8 subslice_7eu =
4626 INTEL_INFO(dev_priv)->sseu.subslice_7eu[s];
4627
4628 sseu->eu_total -= hweight8(subslice_7eu);
4629 }
4630 }
4631 }
4632
4633 static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
4634 const struct sseu_dev_info *sseu)
4635 {
4636 struct drm_i915_private *dev_priv = node_to_i915(m->private);
4637 const char *type = is_available_info ? "Available" : "Enabled";
4638
4639 seq_printf(m, " %s Slice Mask: %04x\n", type,
4640 sseu->slice_mask);
4641 seq_printf(m, " %s Slice Total: %u\n", type,
4642 hweight8(sseu->slice_mask));
4643 seq_printf(m, " %s Subslice Total: %u\n", type,
4644 sseu_subslice_total(sseu));
4645 seq_printf(m, " %s Subslice Mask: %04x\n", type,
4646 sseu->subslice_mask);
4647 seq_printf(m, " %s Subslice Per Slice: %u\n", type,
4648 hweight8(sseu->subslice_mask));
4649 seq_printf(m, " %s EU Total: %u\n", type,
4650 sseu->eu_total);
4651 seq_printf(m, " %s EU Per Subslice: %u\n", type,
4652 sseu->eu_per_subslice);
4653
4654 if (!is_available_info)
4655 return;
4656
4657 seq_printf(m, " Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
4658 if (HAS_POOLED_EU(dev_priv))
4659 seq_printf(m, " Min EU in pool: %u\n", sseu->min_eu_in_pool);
4660
4661 seq_printf(m, " Has Slice Power Gating: %s\n",
4662 yesno(sseu->has_slice_pg));
4663 seq_printf(m, " Has Subslice Power Gating: %s\n",
4664 yesno(sseu->has_subslice_pg));
4665 seq_printf(m, " Has EU Power Gating: %s\n",
4666 yesno(sseu->has_eu_pg));
4667 }
4668
4669 static int i915_sseu_status(struct seq_file *m, void *unused)
4670 {
4671 struct drm_i915_private *dev_priv = node_to_i915(m->private);
4672 struct sseu_dev_info sseu;
4673
4674 if (INTEL_GEN(dev_priv) < 8)
4675 return -ENODEV;
4676
4677 seq_puts(m, "SSEU Device Info\n");
4678 i915_print_sseu_info(m, true, &INTEL_INFO(dev_priv)->sseu);
4679
4680 seq_puts(m, "SSEU Device Status\n");
4681 memset(&sseu, 0, sizeof(sseu));
4682
4683 intel_runtime_pm_get(dev_priv);
4684
4685 if (IS_CHERRYVIEW(dev_priv)) {
4686 cherryview_sseu_device_status(dev_priv, &sseu);
4687 } else if (IS_BROADWELL(dev_priv)) {
4688 broadwell_sseu_device_status(dev_priv, &sseu);
4689 } else if (INTEL_GEN(dev_priv) >= 9) {
4690 gen9_sseu_device_status(dev_priv, &sseu);
4691 }
4692
4693 intel_runtime_pm_put(dev_priv);
4694
4695 i915_print_sseu_info(m, false, &sseu);
4696
4697 return 0;
4698 }
4699
4700 static int i915_forcewake_open(struct inode *inode, struct file *file)
4701 {
4702 struct drm_i915_private *dev_priv = inode->i_private;
4703
4704 if (INTEL_GEN(dev_priv) < 6)
4705 return 0;
4706
4707 intel_runtime_pm_get(dev_priv);
4708 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4709
4710 return 0;
4711 }
4712
4713 static int i915_forcewake_release(struct inode *inode, struct file *file)
4714 {
4715 struct drm_i915_private *dev_priv = inode->i_private;
4716
4717 if (INTEL_GEN(dev_priv) < 6)
4718 return 0;
4719
4720 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4721 intel_runtime_pm_put(dev_priv);
4722
4723 return 0;
4724 }
4725
4726 static const struct file_operations i915_forcewake_fops = {
4727 .owner = THIS_MODULE,
4728 .open = i915_forcewake_open,
4729 .release = i915_forcewake_release,
4730 };
4731
4732 static int i915_hpd_storm_ctl_show(struct seq_file *m, void *data)
4733 {
4734 struct drm_i915_private *dev_priv = m->private;
4735 struct i915_hotplug *hotplug = &dev_priv->hotplug;
4736
4737 seq_printf(m, "Threshold: %d\n", hotplug->hpd_storm_threshold);
4738 seq_printf(m, "Detected: %s\n",
4739 yesno(delayed_work_pending(&hotplug->reenable_work)));
4740
4741 return 0;
4742 }
4743
4744 static ssize_t i915_hpd_storm_ctl_write(struct file *file,
4745 const char __user *ubuf, size_t len,
4746 loff_t *offp)
4747 {
4748 struct seq_file *m = file->private_data;
4749 struct drm_i915_private *dev_priv = m->private;
4750 struct i915_hotplug *hotplug = &dev_priv->hotplug;
4751 unsigned int new_threshold;
4752 int i;
4753 char *newline;
4754 char tmp[16];
4755
4756 if (len >= sizeof(tmp))
4757 return -EINVAL;
4758
4759 if (copy_from_user(tmp, ubuf, len))
4760 return -EFAULT;
4761
4762 tmp[len] = '\0';
4763
4764 /* Strip newline, if any */
4765 newline = strchr(tmp, '\n');
4766 if (newline)
4767 *newline = '\0';
4768
4769 if (strcmp(tmp, "reset") == 0)
4770 new_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4771 else if (kstrtouint(tmp, 10, &new_threshold) != 0)
4772 return -EINVAL;
4773
4774 if (new_threshold > 0)
4775 DRM_DEBUG_KMS("Setting HPD storm detection threshold to %d\n",
4776 new_threshold);
4777 else
4778 DRM_DEBUG_KMS("Disabling HPD storm detection\n");
4779
4780 spin_lock_irq(&dev_priv->irq_lock);
4781 hotplug->hpd_storm_threshold = new_threshold;
4782 /* Reset the HPD storm stats so we don't accidentally trigger a storm */
4783 for_each_hpd_pin(i)
4784 hotplug->stats[i].count = 0;
4785 spin_unlock_irq(&dev_priv->irq_lock);
4786
4787 /* Re-enable hpd immediately if we were in an irq storm */
4788 flush_delayed_work(&dev_priv->hotplug.reenable_work);
4789
4790 return len;
4791 }
4792
4793 static int i915_hpd_storm_ctl_open(struct inode *inode, struct file *file)
4794 {
4795 return single_open(file, i915_hpd_storm_ctl_show, inode->i_private);
4796 }
4797
4798 static const struct file_operations i915_hpd_storm_ctl_fops = {
4799 .owner = THIS_MODULE,
4800 .open = i915_hpd_storm_ctl_open,
4801 .read = seq_read,
4802 .llseek = seq_lseek,
4803 .release = single_release,
4804 .write = i915_hpd_storm_ctl_write
4805 };
4806
4807 static const struct drm_info_list i915_debugfs_list[] = {
4808 {"i915_capabilities", i915_capabilities, 0},
4809 {"i915_gem_objects", i915_gem_object_info, 0},
4810 {"i915_gem_gtt", i915_gem_gtt_info, 0},
4811 {"i915_gem_pin_display", i915_gem_gtt_info, 0, (void *)1},
4812 {"i915_gem_stolen", i915_gem_stolen_list_info },
4813 {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
4814 {"i915_gem_request", i915_gem_request_info, 0},
4815 {"i915_gem_seqno", i915_gem_seqno_info, 0},
4816 {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
4817 {"i915_gem_interrupt", i915_interrupt_info, 0},
4818 {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
4819 {"i915_guc_info", i915_guc_info, 0},
4820 {"i915_guc_load_status", i915_guc_load_status_info, 0},
4821 {"i915_guc_log_dump", i915_guc_log_dump, 0},
4822 {"i915_guc_load_err_log_dump", i915_guc_log_dump, 0, (void *)1},
4823 {"i915_guc_stage_pool", i915_guc_stage_pool, 0},
4824 {"i915_huc_load_status", i915_huc_load_status_info, 0},
4825 {"i915_frequency_info", i915_frequency_info, 0},
4826 {"i915_hangcheck_info", i915_hangcheck_info, 0},
4827 {"i915_drpc_info", i915_drpc_info, 0},
4828 {"i915_emon_status", i915_emon_status, 0},
4829 {"i915_ring_freq_table", i915_ring_freq_table, 0},
4830 {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
4831 {"i915_fbc_status", i915_fbc_status, 0},
4832 {"i915_ips_status", i915_ips_status, 0},
4833 {"i915_sr_status", i915_sr_status, 0},
4834 {"i915_opregion", i915_opregion, 0},
4835 {"i915_vbt", i915_vbt, 0},
4836 {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
4837 {"i915_context_status", i915_context_status, 0},
4838 {"i915_dump_lrc", i915_dump_lrc, 0},
4839 {"i915_forcewake_domains", i915_forcewake_domains, 0},
4840 {"i915_swizzle_info", i915_swizzle_info, 0},
4841 {"i915_ppgtt_info", i915_ppgtt_info, 0},
4842 {"i915_llc", i915_llc, 0},
4843 {"i915_edp_psr_status", i915_edp_psr_status, 0},
4844 {"i915_sink_crc_eDP1", i915_sink_crc, 0},
4845 {"i915_energy_uJ", i915_energy_uJ, 0},
4846 {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
4847 {"i915_power_domain_info", i915_power_domain_info, 0},
4848 {"i915_dmc_info", i915_dmc_info, 0},
4849 {"i915_display_info", i915_display_info, 0},
4850 {"i915_engine_info", i915_engine_info, 0},
4851 {"i915_semaphore_status", i915_semaphore_status, 0},
4852 {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
4853 {"i915_dp_mst_info", i915_dp_mst_info, 0},
4854 {"i915_wa_registers", i915_wa_registers, 0},
4855 {"i915_ddb_info", i915_ddb_info, 0},
4856 {"i915_sseu_status", i915_sseu_status, 0},
4857 {"i915_drrs_status", i915_drrs_status, 0},
4858 {"i915_rps_boost_info", i915_rps_boost_info, 0},
4859 };
4860 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
4861
4862 static const struct i915_debugfs_files {
4863 const char *name;
4864 const struct file_operations *fops;
4865 } i915_debugfs_files[] = {
4866 {"i915_wedged", &i915_wedged_fops},
4867 {"i915_max_freq", &i915_max_freq_fops},
4868 {"i915_min_freq", &i915_min_freq_fops},
4869 {"i915_cache_sharing", &i915_cache_sharing_fops},
4870 {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
4871 {"i915_ring_test_irq", &i915_ring_test_irq_fops},
4872 {"i915_gem_drop_caches", &i915_drop_caches_fops},
4873 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
4874 {"i915_error_state", &i915_error_state_fops},
4875 {"i915_gpu_info", &i915_gpu_info_fops},
4876 #endif
4877 {"i915_next_seqno", &i915_next_seqno_fops},
4878 {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
4879 {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
4880 {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
4881 {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
4882 {"i915_fbc_false_color", &i915_fbc_false_color_fops},
4883 {"i915_dp_test_data", &i915_displayport_test_data_fops},
4884 {"i915_dp_test_type", &i915_displayport_test_type_fops},
4885 {"i915_dp_test_active", &i915_displayport_test_active_fops},
4886 {"i915_guc_log_control", &i915_guc_log_control_fops},
4887 {"i915_hpd_storm_ctl", &i915_hpd_storm_ctl_fops}
4888 };
4889
4890 int i915_debugfs_register(struct drm_i915_private *dev_priv)
4891 {
4892 struct drm_minor *minor = dev_priv->drm.primary;
4893 struct dentry *ent;
4894 int ret, i;
4895
4896 ent = debugfs_create_file("i915_forcewake_user", S_IRUSR,
4897 minor->debugfs_root, to_i915(minor->dev),
4898 &i915_forcewake_fops);
4899 if (!ent)
4900 return -ENOMEM;
4901
4902 ret = intel_pipe_crc_create(minor);
4903 if (ret)
4904 return ret;
4905
4906 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4907 ent = debugfs_create_file(i915_debugfs_files[i].name,
4908 S_IRUGO | S_IWUSR,
4909 minor->debugfs_root,
4910 to_i915(minor->dev),
4911 i915_debugfs_files[i].fops);
4912 if (!ent)
4913 return -ENOMEM;
4914 }
4915
4916 return drm_debugfs_create_files(i915_debugfs_list,
4917 I915_DEBUGFS_ENTRIES,
4918 minor->debugfs_root, minor);
4919 }
4920
4921 struct dpcd_block {
4922 /* DPCD dump start address. */
4923 unsigned int offset;
4924 /* DPCD dump end address, inclusive. If unset, .size will be used. */
4925 unsigned int end;
4926 /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
4927 size_t size;
4928 /* Only valid for eDP. */
4929 bool edp;
4930 };
4931
4932 static const struct dpcd_block i915_dpcd_debug[] = {
4933 { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
4934 { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
4935 { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
4936 { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
4937 { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
4938 { .offset = DP_SET_POWER },
4939 { .offset = DP_EDP_DPCD_REV },
4940 { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
4941 { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
4942 { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
4943 };
4944
4945 static int i915_dpcd_show(struct seq_file *m, void *data)
4946 {
4947 struct drm_connector *connector = m->private;
4948 struct intel_dp *intel_dp =
4949 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
4950 uint8_t buf[16];
4951 ssize_t err;
4952 int i;
4953
4954 if (connector->status != connector_status_connected)
4955 return -ENODEV;
4956
4957 for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
4958 const struct dpcd_block *b = &i915_dpcd_debug[i];
4959 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
4960
4961 if (b->edp &&
4962 connector->connector_type != DRM_MODE_CONNECTOR_eDP)
4963 continue;
4964
4965 /* low tech for now */
4966 if (WARN_ON(size > sizeof(buf)))
4967 continue;
4968
4969 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
4970 if (err <= 0) {
4971 DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
4972 size, b->offset, err);
4973 continue;
4974 }
4975
4976 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
4977 }
4978
4979 return 0;
4980 }
4981
4982 static int i915_dpcd_open(struct inode *inode, struct file *file)
4983 {
4984 return single_open(file, i915_dpcd_show, inode->i_private);
4985 }
4986
4987 static const struct file_operations i915_dpcd_fops = {
4988 .owner = THIS_MODULE,
4989 .open = i915_dpcd_open,
4990 .read = seq_read,
4991 .llseek = seq_lseek,
4992 .release = single_release,
4993 };
4994
4995 static int i915_panel_show(struct seq_file *m, void *data)
4996 {
4997 struct drm_connector *connector = m->private;
4998 struct intel_dp *intel_dp =
4999 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5000
5001 if (connector->status != connector_status_connected)
5002 return -ENODEV;
5003
5004 seq_printf(m, "Panel power up delay: %d\n",
5005 intel_dp->panel_power_up_delay);
5006 seq_printf(m, "Panel power down delay: %d\n",
5007 intel_dp->panel_power_down_delay);
5008 seq_printf(m, "Backlight on delay: %d\n",
5009 intel_dp->backlight_on_delay);
5010 seq_printf(m, "Backlight off delay: %d\n",
5011 intel_dp->backlight_off_delay);
5012
5013 return 0;
5014 }
5015
5016 static int i915_panel_open(struct inode *inode, struct file *file)
5017 {
5018 return single_open(file, i915_panel_show, inode->i_private);
5019 }
5020
5021 static const struct file_operations i915_panel_fops = {
5022 .owner = THIS_MODULE,
5023 .open = i915_panel_open,
5024 .read = seq_read,
5025 .llseek = seq_lseek,
5026 .release = single_release,
5027 };
5028
5029 /**
5030 * i915_debugfs_connector_add - add i915 specific connector debugfs files
5031 * @connector: pointer to a registered drm_connector
5032 *
5033 * Cleanup will be done by drm_connector_unregister() through a call to
5034 * drm_debugfs_connector_remove().
5035 *
5036 * Returns 0 on success, negative error codes on error.
5037 */
5038 int i915_debugfs_connector_add(struct drm_connector *connector)
5039 {
5040 struct dentry *root = connector->debugfs_entry;
5041
5042 /* The connector must have been registered beforehands. */
5043 if (!root)
5044 return -ENODEV;
5045
5046 if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5047 connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5048 debugfs_create_file("i915_dpcd", S_IRUGO, root,
5049 connector, &i915_dpcd_fops);
5050
5051 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5052 debugfs_create_file("i915_panel_timings", S_IRUGO, root,
5053 connector, &i915_panel_fops);
5054
5055 return 0;
5056 }