]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_debugfs.c
Merge tag 'drm-intel-next-2016-02-14' of git://anongit.freedesktop.org/drm-intel...
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Keith Packard <keithp@keithp.com>
26 *
27 */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44 ACTIVE_LIST,
45 INACTIVE_LIST,
46 PINNED_LIST,
47 };
48
49 /* As the drm_debugfs_init() routines are called before dev->dev_private is
50 * allocated we need to hook into the minor for release. */
51 static int
52 drm_add_fake_info_node(struct drm_minor *minor,
53 struct dentry *ent,
54 const void *key)
55 {
56 struct drm_info_node *node;
57
58 node = kmalloc(sizeof(*node), GFP_KERNEL);
59 if (node == NULL) {
60 debugfs_remove(ent);
61 return -ENOMEM;
62 }
63
64 node->minor = minor;
65 node->dent = ent;
66 node->info_ent = (void *) key;
67
68 mutex_lock(&minor->debugfs_lock);
69 list_add(&node->list, &minor->debugfs_list);
70 mutex_unlock(&minor->debugfs_lock);
71
72 return 0;
73 }
74
75 static int i915_capabilities(struct seq_file *m, void *data)
76 {
77 struct drm_info_node *node = m->private;
78 struct drm_device *dev = node->minor->dev;
79 const struct intel_device_info *info = INTEL_INFO(dev);
80
81 seq_printf(m, "gen: %d\n", info->gen);
82 seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
83 #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
84 #define SEP_SEMICOLON ;
85 DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
86 #undef PRINT_FLAG
87 #undef SEP_SEMICOLON
88
89 return 0;
90 }
91
92 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
93 {
94 if (obj->pin_display)
95 return "p";
96 else
97 return " ";
98 }
99
100 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
101 {
102 switch (obj->tiling_mode) {
103 default:
104 case I915_TILING_NONE: return " ";
105 case I915_TILING_X: return "X";
106 case I915_TILING_Y: return "Y";
107 }
108 }
109
110 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
111 {
112 return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
113 }
114
115 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
116 {
117 u64 size = 0;
118 struct i915_vma *vma;
119
120 list_for_each_entry(vma, &obj->vma_list, vma_link) {
121 if (i915_is_ggtt(vma->vm) &&
122 drm_mm_node_allocated(&vma->node))
123 size += vma->node.size;
124 }
125
126 return size;
127 }
128
129 static void
130 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
131 {
132 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
133 struct intel_engine_cs *ring;
134 struct i915_vma *vma;
135 int pin_count = 0;
136 int i;
137
138 seq_printf(m, "%pK: %s%s%s%s %8zdKiB %02x %02x [ ",
139 &obj->base,
140 obj->active ? "*" : " ",
141 get_pin_flag(obj),
142 get_tiling_flag(obj),
143 get_global_flag(obj),
144 obj->base.size / 1024,
145 obj->base.read_domains,
146 obj->base.write_domain);
147 for_each_ring(ring, dev_priv, i)
148 seq_printf(m, "%x ",
149 i915_gem_request_get_seqno(obj->last_read_req[i]));
150 seq_printf(m, "] %x %x%s%s%s",
151 i915_gem_request_get_seqno(obj->last_write_req),
152 i915_gem_request_get_seqno(obj->last_fenced_req),
153 i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
154 obj->dirty ? " dirty" : "",
155 obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
156 if (obj->base.name)
157 seq_printf(m, " (name: %d)", obj->base.name);
158 list_for_each_entry(vma, &obj->vma_list, vma_link) {
159 if (vma->pin_count > 0)
160 pin_count++;
161 }
162 seq_printf(m, " (pinned x %d)", pin_count);
163 if (obj->pin_display)
164 seq_printf(m, " (display)");
165 if (obj->fence_reg != I915_FENCE_REG_NONE)
166 seq_printf(m, " (fence: %d)", obj->fence_reg);
167 list_for_each_entry(vma, &obj->vma_list, vma_link) {
168 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
169 i915_is_ggtt(vma->vm) ? "g" : "pp",
170 vma->node.start, vma->node.size);
171 if (i915_is_ggtt(vma->vm))
172 seq_printf(m, ", type: %u)", vma->ggtt_view.type);
173 else
174 seq_puts(m, ")");
175 }
176 if (obj->stolen)
177 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
178 if (obj->pin_display || obj->fault_mappable) {
179 char s[3], *t = s;
180 if (obj->pin_display)
181 *t++ = 'p';
182 if (obj->fault_mappable)
183 *t++ = 'f';
184 *t = '\0';
185 seq_printf(m, " (%s mappable)", s);
186 }
187 if (obj->last_write_req != NULL)
188 seq_printf(m, " (%s)",
189 i915_gem_request_get_ring(obj->last_write_req)->name);
190 if (obj->frontbuffer_bits)
191 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
192 }
193
194 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
195 {
196 seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
197 seq_putc(m, ctx->remap_slice ? 'R' : 'r');
198 seq_putc(m, ' ');
199 }
200
201 static int i915_gem_object_list_info(struct seq_file *m, void *data)
202 {
203 struct drm_info_node *node = m->private;
204 uintptr_t list = (uintptr_t) node->info_ent->data;
205 struct list_head *head;
206 struct drm_device *dev = node->minor->dev;
207 struct drm_i915_private *dev_priv = dev->dev_private;
208 struct i915_address_space *vm = &dev_priv->gtt.base;
209 struct i915_vma *vma;
210 u64 total_obj_size, total_gtt_size;
211 int count, ret;
212
213 ret = mutex_lock_interruptible(&dev->struct_mutex);
214 if (ret)
215 return ret;
216
217 /* FIXME: the user of this interface might want more than just GGTT */
218 switch (list) {
219 case ACTIVE_LIST:
220 seq_puts(m, "Active:\n");
221 head = &vm->active_list;
222 break;
223 case INACTIVE_LIST:
224 seq_puts(m, "Inactive:\n");
225 head = &vm->inactive_list;
226 break;
227 default:
228 mutex_unlock(&dev->struct_mutex);
229 return -EINVAL;
230 }
231
232 total_obj_size = total_gtt_size = count = 0;
233 list_for_each_entry(vma, head, mm_list) {
234 seq_printf(m, " ");
235 describe_obj(m, vma->obj);
236 seq_printf(m, "\n");
237 total_obj_size += vma->obj->base.size;
238 total_gtt_size += vma->node.size;
239 count++;
240 }
241 mutex_unlock(&dev->struct_mutex);
242
243 seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
244 count, total_obj_size, total_gtt_size);
245 return 0;
246 }
247
248 static int obj_rank_by_stolen(void *priv,
249 struct list_head *A, struct list_head *B)
250 {
251 struct drm_i915_gem_object *a =
252 container_of(A, struct drm_i915_gem_object, obj_exec_link);
253 struct drm_i915_gem_object *b =
254 container_of(B, struct drm_i915_gem_object, obj_exec_link);
255
256 if (a->stolen->start < b->stolen->start)
257 return -1;
258 if (a->stolen->start > b->stolen->start)
259 return 1;
260 return 0;
261 }
262
263 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
264 {
265 struct drm_info_node *node = m->private;
266 struct drm_device *dev = node->minor->dev;
267 struct drm_i915_private *dev_priv = dev->dev_private;
268 struct drm_i915_gem_object *obj;
269 u64 total_obj_size, total_gtt_size;
270 LIST_HEAD(stolen);
271 int count, ret;
272
273 ret = mutex_lock_interruptible(&dev->struct_mutex);
274 if (ret)
275 return ret;
276
277 total_obj_size = total_gtt_size = count = 0;
278 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
279 if (obj->stolen == NULL)
280 continue;
281
282 list_add(&obj->obj_exec_link, &stolen);
283
284 total_obj_size += obj->base.size;
285 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
286 count++;
287 }
288 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
289 if (obj->stolen == NULL)
290 continue;
291
292 list_add(&obj->obj_exec_link, &stolen);
293
294 total_obj_size += obj->base.size;
295 count++;
296 }
297 list_sort(NULL, &stolen, obj_rank_by_stolen);
298 seq_puts(m, "Stolen:\n");
299 while (!list_empty(&stolen)) {
300 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
301 seq_puts(m, " ");
302 describe_obj(m, obj);
303 seq_putc(m, '\n');
304 list_del_init(&obj->obj_exec_link);
305 }
306 mutex_unlock(&dev->struct_mutex);
307
308 seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
309 count, total_obj_size, total_gtt_size);
310 return 0;
311 }
312
313 #define count_objects(list, member) do { \
314 list_for_each_entry(obj, list, member) { \
315 size += i915_gem_obj_total_ggtt_size(obj); \
316 ++count; \
317 if (obj->map_and_fenceable) { \
318 mappable_size += i915_gem_obj_ggtt_size(obj); \
319 ++mappable_count; \
320 } \
321 } \
322 } while (0)
323
324 struct file_stats {
325 struct drm_i915_file_private *file_priv;
326 unsigned long count;
327 u64 total, unbound;
328 u64 global, shared;
329 u64 active, inactive;
330 };
331
332 static int per_file_stats(int id, void *ptr, void *data)
333 {
334 struct drm_i915_gem_object *obj = ptr;
335 struct file_stats *stats = data;
336 struct i915_vma *vma;
337
338 stats->count++;
339 stats->total += obj->base.size;
340
341 if (obj->base.name || obj->base.dma_buf)
342 stats->shared += obj->base.size;
343
344 if (USES_FULL_PPGTT(obj->base.dev)) {
345 list_for_each_entry(vma, &obj->vma_list, vma_link) {
346 struct i915_hw_ppgtt *ppgtt;
347
348 if (!drm_mm_node_allocated(&vma->node))
349 continue;
350
351 if (i915_is_ggtt(vma->vm)) {
352 stats->global += obj->base.size;
353 continue;
354 }
355
356 ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
357 if (ppgtt->file_priv != stats->file_priv)
358 continue;
359
360 if (obj->active) /* XXX per-vma statistic */
361 stats->active += obj->base.size;
362 else
363 stats->inactive += obj->base.size;
364
365 return 0;
366 }
367 } else {
368 if (i915_gem_obj_ggtt_bound(obj)) {
369 stats->global += obj->base.size;
370 if (obj->active)
371 stats->active += obj->base.size;
372 else
373 stats->inactive += obj->base.size;
374 return 0;
375 }
376 }
377
378 if (!list_empty(&obj->global_list))
379 stats->unbound += obj->base.size;
380
381 return 0;
382 }
383
384 #define print_file_stats(m, name, stats) do { \
385 if (stats.count) \
386 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
387 name, \
388 stats.count, \
389 stats.total, \
390 stats.active, \
391 stats.inactive, \
392 stats.global, \
393 stats.shared, \
394 stats.unbound); \
395 } while (0)
396
397 static void print_batch_pool_stats(struct seq_file *m,
398 struct drm_i915_private *dev_priv)
399 {
400 struct drm_i915_gem_object *obj;
401 struct file_stats stats;
402 struct intel_engine_cs *ring;
403 int i, j;
404
405 memset(&stats, 0, sizeof(stats));
406
407 for_each_ring(ring, dev_priv, i) {
408 for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
409 list_for_each_entry(obj,
410 &ring->batch_pool.cache_list[j],
411 batch_pool_link)
412 per_file_stats(0, obj, &stats);
413 }
414 }
415
416 print_file_stats(m, "[k]batch pool", stats);
417 }
418
419 #define count_vmas(list, member) do { \
420 list_for_each_entry(vma, list, member) { \
421 size += i915_gem_obj_total_ggtt_size(vma->obj); \
422 ++count; \
423 if (vma->obj->map_and_fenceable) { \
424 mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
425 ++mappable_count; \
426 } \
427 } \
428 } while (0)
429
430 static int i915_gem_object_info(struct seq_file *m, void* data)
431 {
432 struct drm_info_node *node = m->private;
433 struct drm_device *dev = node->minor->dev;
434 struct drm_i915_private *dev_priv = dev->dev_private;
435 u32 count, mappable_count, purgeable_count;
436 u64 size, mappable_size, purgeable_size;
437 struct drm_i915_gem_object *obj;
438 struct i915_address_space *vm = &dev_priv->gtt.base;
439 struct drm_file *file;
440 struct i915_vma *vma;
441 int ret;
442
443 ret = mutex_lock_interruptible(&dev->struct_mutex);
444 if (ret)
445 return ret;
446
447 seq_printf(m, "%u objects, %zu bytes\n",
448 dev_priv->mm.object_count,
449 dev_priv->mm.object_memory);
450
451 size = count = mappable_size = mappable_count = 0;
452 count_objects(&dev_priv->mm.bound_list, global_list);
453 seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
454 count, mappable_count, size, mappable_size);
455
456 size = count = mappable_size = mappable_count = 0;
457 count_vmas(&vm->active_list, mm_list);
458 seq_printf(m, " %u [%u] active objects, %llu [%llu] bytes\n",
459 count, mappable_count, size, mappable_size);
460
461 size = count = mappable_size = mappable_count = 0;
462 count_vmas(&vm->inactive_list, mm_list);
463 seq_printf(m, " %u [%u] inactive objects, %llu [%llu] bytes\n",
464 count, mappable_count, size, mappable_size);
465
466 size = count = purgeable_size = purgeable_count = 0;
467 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
468 size += obj->base.size, ++count;
469 if (obj->madv == I915_MADV_DONTNEED)
470 purgeable_size += obj->base.size, ++purgeable_count;
471 }
472 seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
473
474 size = count = mappable_size = mappable_count = 0;
475 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
476 if (obj->fault_mappable) {
477 size += i915_gem_obj_ggtt_size(obj);
478 ++count;
479 }
480 if (obj->pin_display) {
481 mappable_size += i915_gem_obj_ggtt_size(obj);
482 ++mappable_count;
483 }
484 if (obj->madv == I915_MADV_DONTNEED) {
485 purgeable_size += obj->base.size;
486 ++purgeable_count;
487 }
488 }
489 seq_printf(m, "%u purgeable objects, %llu bytes\n",
490 purgeable_count, purgeable_size);
491 seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
492 mappable_count, mappable_size);
493 seq_printf(m, "%u fault mappable objects, %llu bytes\n",
494 count, size);
495
496 seq_printf(m, "%llu [%llu] gtt total\n",
497 dev_priv->gtt.base.total,
498 (u64)dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
499
500 seq_putc(m, '\n');
501 print_batch_pool_stats(m, dev_priv);
502 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
503 struct file_stats stats;
504 struct task_struct *task;
505
506 memset(&stats, 0, sizeof(stats));
507 stats.file_priv = file->driver_priv;
508 spin_lock(&file->table_lock);
509 idr_for_each(&file->object_idr, per_file_stats, &stats);
510 spin_unlock(&file->table_lock);
511 /*
512 * Although we have a valid reference on file->pid, that does
513 * not guarantee that the task_struct who called get_pid() is
514 * still alive (e.g. get_pid(current) => fork() => exit()).
515 * Therefore, we need to protect this ->comm access using RCU.
516 */
517 rcu_read_lock();
518 task = pid_task(file->pid, PIDTYPE_PID);
519 print_file_stats(m, task ? task->comm : "<unknown>", stats);
520 rcu_read_unlock();
521 }
522
523 mutex_unlock(&dev->struct_mutex);
524
525 return 0;
526 }
527
528 static int i915_gem_gtt_info(struct seq_file *m, void *data)
529 {
530 struct drm_info_node *node = m->private;
531 struct drm_device *dev = node->minor->dev;
532 uintptr_t list = (uintptr_t) node->info_ent->data;
533 struct drm_i915_private *dev_priv = dev->dev_private;
534 struct drm_i915_gem_object *obj;
535 u64 total_obj_size, total_gtt_size;
536 int count, ret;
537
538 ret = mutex_lock_interruptible(&dev->struct_mutex);
539 if (ret)
540 return ret;
541
542 total_obj_size = total_gtt_size = count = 0;
543 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
544 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
545 continue;
546
547 seq_puts(m, " ");
548 describe_obj(m, obj);
549 seq_putc(m, '\n');
550 total_obj_size += obj->base.size;
551 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
552 count++;
553 }
554
555 mutex_unlock(&dev->struct_mutex);
556
557 seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
558 count, total_obj_size, total_gtt_size);
559
560 return 0;
561 }
562
563 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
564 {
565 struct drm_info_node *node = m->private;
566 struct drm_device *dev = node->minor->dev;
567 struct drm_i915_private *dev_priv = dev->dev_private;
568 struct intel_crtc *crtc;
569 int ret;
570
571 ret = mutex_lock_interruptible(&dev->struct_mutex);
572 if (ret)
573 return ret;
574
575 for_each_intel_crtc(dev, crtc) {
576 const char pipe = pipe_name(crtc->pipe);
577 const char plane = plane_name(crtc->plane);
578 struct intel_unpin_work *work;
579
580 spin_lock_irq(&dev->event_lock);
581 work = crtc->unpin_work;
582 if (work == NULL) {
583 seq_printf(m, "No flip due on pipe %c (plane %c)\n",
584 pipe, plane);
585 } else {
586 u32 addr;
587
588 if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
589 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
590 pipe, plane);
591 } else {
592 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
593 pipe, plane);
594 }
595 if (work->flip_queued_req) {
596 struct intel_engine_cs *ring =
597 i915_gem_request_get_ring(work->flip_queued_req);
598
599 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
600 ring->name,
601 i915_gem_request_get_seqno(work->flip_queued_req),
602 dev_priv->next_seqno,
603 ring->get_seqno(ring, true),
604 i915_gem_request_completed(work->flip_queued_req, true));
605 } else
606 seq_printf(m, "Flip not associated with any ring\n");
607 seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
608 work->flip_queued_vblank,
609 work->flip_ready_vblank,
610 drm_crtc_vblank_count(&crtc->base));
611 if (work->enable_stall_check)
612 seq_puts(m, "Stall check enabled, ");
613 else
614 seq_puts(m, "Stall check waiting for page flip ioctl, ");
615 seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
616
617 if (INTEL_INFO(dev)->gen >= 4)
618 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
619 else
620 addr = I915_READ(DSPADDR(crtc->plane));
621 seq_printf(m, "Current scanout address 0x%08x\n", addr);
622
623 if (work->pending_flip_obj) {
624 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
625 seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset);
626 }
627 }
628 spin_unlock_irq(&dev->event_lock);
629 }
630
631 mutex_unlock(&dev->struct_mutex);
632
633 return 0;
634 }
635
636 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
637 {
638 struct drm_info_node *node = m->private;
639 struct drm_device *dev = node->minor->dev;
640 struct drm_i915_private *dev_priv = dev->dev_private;
641 struct drm_i915_gem_object *obj;
642 struct intel_engine_cs *ring;
643 int total = 0;
644 int ret, i, j;
645
646 ret = mutex_lock_interruptible(&dev->struct_mutex);
647 if (ret)
648 return ret;
649
650 for_each_ring(ring, dev_priv, i) {
651 for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
652 int count;
653
654 count = 0;
655 list_for_each_entry(obj,
656 &ring->batch_pool.cache_list[j],
657 batch_pool_link)
658 count++;
659 seq_printf(m, "%s cache[%d]: %d objects\n",
660 ring->name, j, count);
661
662 list_for_each_entry(obj,
663 &ring->batch_pool.cache_list[j],
664 batch_pool_link) {
665 seq_puts(m, " ");
666 describe_obj(m, obj);
667 seq_putc(m, '\n');
668 }
669
670 total += count;
671 }
672 }
673
674 seq_printf(m, "total: %d\n", total);
675
676 mutex_unlock(&dev->struct_mutex);
677
678 return 0;
679 }
680
681 static int i915_gem_request_info(struct seq_file *m, void *data)
682 {
683 struct drm_info_node *node = m->private;
684 struct drm_device *dev = node->minor->dev;
685 struct drm_i915_private *dev_priv = dev->dev_private;
686 struct intel_engine_cs *ring;
687 struct drm_i915_gem_request *req;
688 int ret, any, i;
689
690 ret = mutex_lock_interruptible(&dev->struct_mutex);
691 if (ret)
692 return ret;
693
694 any = 0;
695 for_each_ring(ring, dev_priv, i) {
696 int count;
697
698 count = 0;
699 list_for_each_entry(req, &ring->request_list, list)
700 count++;
701 if (count == 0)
702 continue;
703
704 seq_printf(m, "%s requests: %d\n", ring->name, count);
705 list_for_each_entry(req, &ring->request_list, list) {
706 struct task_struct *task;
707
708 rcu_read_lock();
709 task = NULL;
710 if (req->pid)
711 task = pid_task(req->pid, PIDTYPE_PID);
712 seq_printf(m, " %x @ %d: %s [%d]\n",
713 req->seqno,
714 (int) (jiffies - req->emitted_jiffies),
715 task ? task->comm : "<unknown>",
716 task ? task->pid : -1);
717 rcu_read_unlock();
718 }
719
720 any++;
721 }
722 mutex_unlock(&dev->struct_mutex);
723
724 if (any == 0)
725 seq_puts(m, "No requests\n");
726
727 return 0;
728 }
729
730 static void i915_ring_seqno_info(struct seq_file *m,
731 struct intel_engine_cs *ring)
732 {
733 if (ring->get_seqno) {
734 seq_printf(m, "Current sequence (%s): %x\n",
735 ring->name, ring->get_seqno(ring, false));
736 }
737 }
738
739 static int i915_gem_seqno_info(struct seq_file *m, void *data)
740 {
741 struct drm_info_node *node = m->private;
742 struct drm_device *dev = node->minor->dev;
743 struct drm_i915_private *dev_priv = dev->dev_private;
744 struct intel_engine_cs *ring;
745 int ret, i;
746
747 ret = mutex_lock_interruptible(&dev->struct_mutex);
748 if (ret)
749 return ret;
750 intel_runtime_pm_get(dev_priv);
751
752 for_each_ring(ring, dev_priv, i)
753 i915_ring_seqno_info(m, ring);
754
755 intel_runtime_pm_put(dev_priv);
756 mutex_unlock(&dev->struct_mutex);
757
758 return 0;
759 }
760
761
762 static int i915_interrupt_info(struct seq_file *m, void *data)
763 {
764 struct drm_info_node *node = m->private;
765 struct drm_device *dev = node->minor->dev;
766 struct drm_i915_private *dev_priv = dev->dev_private;
767 struct intel_engine_cs *ring;
768 int ret, i, pipe;
769
770 ret = mutex_lock_interruptible(&dev->struct_mutex);
771 if (ret)
772 return ret;
773 intel_runtime_pm_get(dev_priv);
774
775 if (IS_CHERRYVIEW(dev)) {
776 seq_printf(m, "Master Interrupt Control:\t%08x\n",
777 I915_READ(GEN8_MASTER_IRQ));
778
779 seq_printf(m, "Display IER:\t%08x\n",
780 I915_READ(VLV_IER));
781 seq_printf(m, "Display IIR:\t%08x\n",
782 I915_READ(VLV_IIR));
783 seq_printf(m, "Display IIR_RW:\t%08x\n",
784 I915_READ(VLV_IIR_RW));
785 seq_printf(m, "Display IMR:\t%08x\n",
786 I915_READ(VLV_IMR));
787 for_each_pipe(dev_priv, pipe)
788 seq_printf(m, "Pipe %c stat:\t%08x\n",
789 pipe_name(pipe),
790 I915_READ(PIPESTAT(pipe)));
791
792 seq_printf(m, "Port hotplug:\t%08x\n",
793 I915_READ(PORT_HOTPLUG_EN));
794 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
795 I915_READ(VLV_DPFLIPSTAT));
796 seq_printf(m, "DPINVGTT:\t%08x\n",
797 I915_READ(DPINVGTT));
798
799 for (i = 0; i < 4; i++) {
800 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
801 i, I915_READ(GEN8_GT_IMR(i)));
802 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
803 i, I915_READ(GEN8_GT_IIR(i)));
804 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
805 i, I915_READ(GEN8_GT_IER(i)));
806 }
807
808 seq_printf(m, "PCU interrupt mask:\t%08x\n",
809 I915_READ(GEN8_PCU_IMR));
810 seq_printf(m, "PCU interrupt identity:\t%08x\n",
811 I915_READ(GEN8_PCU_IIR));
812 seq_printf(m, "PCU interrupt enable:\t%08x\n",
813 I915_READ(GEN8_PCU_IER));
814 } else if (INTEL_INFO(dev)->gen >= 8) {
815 seq_printf(m, "Master Interrupt Control:\t%08x\n",
816 I915_READ(GEN8_MASTER_IRQ));
817
818 for (i = 0; i < 4; i++) {
819 seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
820 i, I915_READ(GEN8_GT_IMR(i)));
821 seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
822 i, I915_READ(GEN8_GT_IIR(i)));
823 seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
824 i, I915_READ(GEN8_GT_IER(i)));
825 }
826
827 for_each_pipe(dev_priv, pipe) {
828 if (!intel_display_power_is_enabled(dev_priv,
829 POWER_DOMAIN_PIPE(pipe))) {
830 seq_printf(m, "Pipe %c power disabled\n",
831 pipe_name(pipe));
832 continue;
833 }
834 seq_printf(m, "Pipe %c IMR:\t%08x\n",
835 pipe_name(pipe),
836 I915_READ(GEN8_DE_PIPE_IMR(pipe)));
837 seq_printf(m, "Pipe %c IIR:\t%08x\n",
838 pipe_name(pipe),
839 I915_READ(GEN8_DE_PIPE_IIR(pipe)));
840 seq_printf(m, "Pipe %c IER:\t%08x\n",
841 pipe_name(pipe),
842 I915_READ(GEN8_DE_PIPE_IER(pipe)));
843 }
844
845 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
846 I915_READ(GEN8_DE_PORT_IMR));
847 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
848 I915_READ(GEN8_DE_PORT_IIR));
849 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
850 I915_READ(GEN8_DE_PORT_IER));
851
852 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
853 I915_READ(GEN8_DE_MISC_IMR));
854 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
855 I915_READ(GEN8_DE_MISC_IIR));
856 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
857 I915_READ(GEN8_DE_MISC_IER));
858
859 seq_printf(m, "PCU interrupt mask:\t%08x\n",
860 I915_READ(GEN8_PCU_IMR));
861 seq_printf(m, "PCU interrupt identity:\t%08x\n",
862 I915_READ(GEN8_PCU_IIR));
863 seq_printf(m, "PCU interrupt enable:\t%08x\n",
864 I915_READ(GEN8_PCU_IER));
865 } else if (IS_VALLEYVIEW(dev)) {
866 seq_printf(m, "Display IER:\t%08x\n",
867 I915_READ(VLV_IER));
868 seq_printf(m, "Display IIR:\t%08x\n",
869 I915_READ(VLV_IIR));
870 seq_printf(m, "Display IIR_RW:\t%08x\n",
871 I915_READ(VLV_IIR_RW));
872 seq_printf(m, "Display IMR:\t%08x\n",
873 I915_READ(VLV_IMR));
874 for_each_pipe(dev_priv, pipe)
875 seq_printf(m, "Pipe %c stat:\t%08x\n",
876 pipe_name(pipe),
877 I915_READ(PIPESTAT(pipe)));
878
879 seq_printf(m, "Master IER:\t%08x\n",
880 I915_READ(VLV_MASTER_IER));
881
882 seq_printf(m, "Render IER:\t%08x\n",
883 I915_READ(GTIER));
884 seq_printf(m, "Render IIR:\t%08x\n",
885 I915_READ(GTIIR));
886 seq_printf(m, "Render IMR:\t%08x\n",
887 I915_READ(GTIMR));
888
889 seq_printf(m, "PM IER:\t\t%08x\n",
890 I915_READ(GEN6_PMIER));
891 seq_printf(m, "PM IIR:\t\t%08x\n",
892 I915_READ(GEN6_PMIIR));
893 seq_printf(m, "PM IMR:\t\t%08x\n",
894 I915_READ(GEN6_PMIMR));
895
896 seq_printf(m, "Port hotplug:\t%08x\n",
897 I915_READ(PORT_HOTPLUG_EN));
898 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
899 I915_READ(VLV_DPFLIPSTAT));
900 seq_printf(m, "DPINVGTT:\t%08x\n",
901 I915_READ(DPINVGTT));
902
903 } else if (!HAS_PCH_SPLIT(dev)) {
904 seq_printf(m, "Interrupt enable: %08x\n",
905 I915_READ(IER));
906 seq_printf(m, "Interrupt identity: %08x\n",
907 I915_READ(IIR));
908 seq_printf(m, "Interrupt mask: %08x\n",
909 I915_READ(IMR));
910 for_each_pipe(dev_priv, pipe)
911 seq_printf(m, "Pipe %c stat: %08x\n",
912 pipe_name(pipe),
913 I915_READ(PIPESTAT(pipe)));
914 } else {
915 seq_printf(m, "North Display Interrupt enable: %08x\n",
916 I915_READ(DEIER));
917 seq_printf(m, "North Display Interrupt identity: %08x\n",
918 I915_READ(DEIIR));
919 seq_printf(m, "North Display Interrupt mask: %08x\n",
920 I915_READ(DEIMR));
921 seq_printf(m, "South Display Interrupt enable: %08x\n",
922 I915_READ(SDEIER));
923 seq_printf(m, "South Display Interrupt identity: %08x\n",
924 I915_READ(SDEIIR));
925 seq_printf(m, "South Display Interrupt mask: %08x\n",
926 I915_READ(SDEIMR));
927 seq_printf(m, "Graphics Interrupt enable: %08x\n",
928 I915_READ(GTIER));
929 seq_printf(m, "Graphics Interrupt identity: %08x\n",
930 I915_READ(GTIIR));
931 seq_printf(m, "Graphics Interrupt mask: %08x\n",
932 I915_READ(GTIMR));
933 }
934 for_each_ring(ring, dev_priv, i) {
935 if (INTEL_INFO(dev)->gen >= 6) {
936 seq_printf(m,
937 "Graphics Interrupt mask (%s): %08x\n",
938 ring->name, I915_READ_IMR(ring));
939 }
940 i915_ring_seqno_info(m, ring);
941 }
942 intel_runtime_pm_put(dev_priv);
943 mutex_unlock(&dev->struct_mutex);
944
945 return 0;
946 }
947
948 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
949 {
950 struct drm_info_node *node = m->private;
951 struct drm_device *dev = node->minor->dev;
952 struct drm_i915_private *dev_priv = dev->dev_private;
953 int i, ret;
954
955 ret = mutex_lock_interruptible(&dev->struct_mutex);
956 if (ret)
957 return ret;
958
959 seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
960 for (i = 0; i < dev_priv->num_fence_regs; i++) {
961 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
962
963 seq_printf(m, "Fence %d, pin count = %d, object = ",
964 i, dev_priv->fence_regs[i].pin_count);
965 if (obj == NULL)
966 seq_puts(m, "unused");
967 else
968 describe_obj(m, obj);
969 seq_putc(m, '\n');
970 }
971
972 mutex_unlock(&dev->struct_mutex);
973 return 0;
974 }
975
976 static int i915_hws_info(struct seq_file *m, void *data)
977 {
978 struct drm_info_node *node = m->private;
979 struct drm_device *dev = node->minor->dev;
980 struct drm_i915_private *dev_priv = dev->dev_private;
981 struct intel_engine_cs *ring;
982 const u32 *hws;
983 int i;
984
985 ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
986 hws = ring->status_page.page_addr;
987 if (hws == NULL)
988 return 0;
989
990 for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
991 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
992 i * 4,
993 hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
994 }
995 return 0;
996 }
997
998 static ssize_t
999 i915_error_state_write(struct file *filp,
1000 const char __user *ubuf,
1001 size_t cnt,
1002 loff_t *ppos)
1003 {
1004 struct i915_error_state_file_priv *error_priv = filp->private_data;
1005 struct drm_device *dev = error_priv->dev;
1006 int ret;
1007
1008 DRM_DEBUG_DRIVER("Resetting error state\n");
1009
1010 ret = mutex_lock_interruptible(&dev->struct_mutex);
1011 if (ret)
1012 return ret;
1013
1014 i915_destroy_error_state(dev);
1015 mutex_unlock(&dev->struct_mutex);
1016
1017 return cnt;
1018 }
1019
1020 static int i915_error_state_open(struct inode *inode, struct file *file)
1021 {
1022 struct drm_device *dev = inode->i_private;
1023 struct i915_error_state_file_priv *error_priv;
1024
1025 error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
1026 if (!error_priv)
1027 return -ENOMEM;
1028
1029 error_priv->dev = dev;
1030
1031 i915_error_state_get(dev, error_priv);
1032
1033 file->private_data = error_priv;
1034
1035 return 0;
1036 }
1037
1038 static int i915_error_state_release(struct inode *inode, struct file *file)
1039 {
1040 struct i915_error_state_file_priv *error_priv = file->private_data;
1041
1042 i915_error_state_put(error_priv);
1043 kfree(error_priv);
1044
1045 return 0;
1046 }
1047
1048 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1049 size_t count, loff_t *pos)
1050 {
1051 struct i915_error_state_file_priv *error_priv = file->private_data;
1052 struct drm_i915_error_state_buf error_str;
1053 loff_t tmp_pos = 0;
1054 ssize_t ret_count = 0;
1055 int ret;
1056
1057 ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1058 if (ret)
1059 return ret;
1060
1061 ret = i915_error_state_to_str(&error_str, error_priv);
1062 if (ret)
1063 goto out;
1064
1065 ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1066 error_str.buf,
1067 error_str.bytes);
1068
1069 if (ret_count < 0)
1070 ret = ret_count;
1071 else
1072 *pos = error_str.start + ret_count;
1073 out:
1074 i915_error_state_buf_release(&error_str);
1075 return ret ?: ret_count;
1076 }
1077
1078 static const struct file_operations i915_error_state_fops = {
1079 .owner = THIS_MODULE,
1080 .open = i915_error_state_open,
1081 .read = i915_error_state_read,
1082 .write = i915_error_state_write,
1083 .llseek = default_llseek,
1084 .release = i915_error_state_release,
1085 };
1086
1087 static int
1088 i915_next_seqno_get(void *data, u64 *val)
1089 {
1090 struct drm_device *dev = data;
1091 struct drm_i915_private *dev_priv = dev->dev_private;
1092 int ret;
1093
1094 ret = mutex_lock_interruptible(&dev->struct_mutex);
1095 if (ret)
1096 return ret;
1097
1098 *val = dev_priv->next_seqno;
1099 mutex_unlock(&dev->struct_mutex);
1100
1101 return 0;
1102 }
1103
1104 static int
1105 i915_next_seqno_set(void *data, u64 val)
1106 {
1107 struct drm_device *dev = data;
1108 int ret;
1109
1110 ret = mutex_lock_interruptible(&dev->struct_mutex);
1111 if (ret)
1112 return ret;
1113
1114 ret = i915_gem_set_seqno(dev, val);
1115 mutex_unlock(&dev->struct_mutex);
1116
1117 return ret;
1118 }
1119
1120 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1121 i915_next_seqno_get, i915_next_seqno_set,
1122 "0x%llx\n");
1123
1124 static int i915_frequency_info(struct seq_file *m, void *unused)
1125 {
1126 struct drm_info_node *node = m->private;
1127 struct drm_device *dev = node->minor->dev;
1128 struct drm_i915_private *dev_priv = dev->dev_private;
1129 int ret = 0;
1130
1131 intel_runtime_pm_get(dev_priv);
1132
1133 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1134
1135 if (IS_GEN5(dev)) {
1136 u16 rgvswctl = I915_READ16(MEMSWCTL);
1137 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1138
1139 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1140 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1141 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1142 MEMSTAT_VID_SHIFT);
1143 seq_printf(m, "Current P-state: %d\n",
1144 (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1145 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1146 u32 freq_sts;
1147
1148 mutex_lock(&dev_priv->rps.hw_lock);
1149 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1150 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1151 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1152
1153 seq_printf(m, "actual GPU freq: %d MHz\n",
1154 intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1155
1156 seq_printf(m, "current GPU freq: %d MHz\n",
1157 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1158
1159 seq_printf(m, "max GPU freq: %d MHz\n",
1160 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1161
1162 seq_printf(m, "min GPU freq: %d MHz\n",
1163 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1164
1165 seq_printf(m, "idle GPU freq: %d MHz\n",
1166 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1167
1168 seq_printf(m,
1169 "efficient (RPe) frequency: %d MHz\n",
1170 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1171 mutex_unlock(&dev_priv->rps.hw_lock);
1172 } else if (INTEL_INFO(dev)->gen >= 6) {
1173 u32 rp_state_limits;
1174 u32 gt_perf_status;
1175 u32 rp_state_cap;
1176 u32 rpmodectl, rpinclimit, rpdeclimit;
1177 u32 rpstat, cagf, reqf;
1178 u32 rpupei, rpcurup, rpprevup;
1179 u32 rpdownei, rpcurdown, rpprevdown;
1180 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1181 int max_freq;
1182
1183 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1184 if (IS_BROXTON(dev)) {
1185 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1186 gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1187 } else {
1188 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1189 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1190 }
1191
1192 /* RPSTAT1 is in the GT power well */
1193 ret = mutex_lock_interruptible(&dev->struct_mutex);
1194 if (ret)
1195 goto out;
1196
1197 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1198
1199 reqf = I915_READ(GEN6_RPNSWREQ);
1200 if (IS_GEN9(dev))
1201 reqf >>= 23;
1202 else {
1203 reqf &= ~GEN6_TURBO_DISABLE;
1204 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1205 reqf >>= 24;
1206 else
1207 reqf >>= 25;
1208 }
1209 reqf = intel_gpu_freq(dev_priv, reqf);
1210
1211 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1212 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1213 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1214
1215 rpstat = I915_READ(GEN6_RPSTAT1);
1216 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1217 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1218 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1219 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1220 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1221 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1222 if (IS_GEN9(dev))
1223 cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1224 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1225 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1226 else
1227 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1228 cagf = intel_gpu_freq(dev_priv, cagf);
1229
1230 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1231 mutex_unlock(&dev->struct_mutex);
1232
1233 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1234 pm_ier = I915_READ(GEN6_PMIER);
1235 pm_imr = I915_READ(GEN6_PMIMR);
1236 pm_isr = I915_READ(GEN6_PMISR);
1237 pm_iir = I915_READ(GEN6_PMIIR);
1238 pm_mask = I915_READ(GEN6_PMINTRMSK);
1239 } else {
1240 pm_ier = I915_READ(GEN8_GT_IER(2));
1241 pm_imr = I915_READ(GEN8_GT_IMR(2));
1242 pm_isr = I915_READ(GEN8_GT_ISR(2));
1243 pm_iir = I915_READ(GEN8_GT_IIR(2));
1244 pm_mask = I915_READ(GEN6_PMINTRMSK);
1245 }
1246 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1247 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1248 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1249 seq_printf(m, "Render p-state ratio: %d\n",
1250 (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1251 seq_printf(m, "Render p-state VID: %d\n",
1252 gt_perf_status & 0xff);
1253 seq_printf(m, "Render p-state limit: %d\n",
1254 rp_state_limits & 0xff);
1255 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1256 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1257 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1258 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1259 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1260 seq_printf(m, "CAGF: %dMHz\n", cagf);
1261 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1262 GEN6_CURICONT_MASK);
1263 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1264 GEN6_CURBSYTAVG_MASK);
1265 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1266 GEN6_CURBSYTAVG_MASK);
1267 seq_printf(m, "Up threshold: %d%%\n",
1268 dev_priv->rps.up_threshold);
1269
1270 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1271 GEN6_CURIAVG_MASK);
1272 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1273 GEN6_CURBSYTAVG_MASK);
1274 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1275 GEN6_CURBSYTAVG_MASK);
1276 seq_printf(m, "Down threshold: %d%%\n",
1277 dev_priv->rps.down_threshold);
1278
1279 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
1280 rp_state_cap >> 16) & 0xff;
1281 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1282 GEN9_FREQ_SCALER : 1);
1283 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1284 intel_gpu_freq(dev_priv, max_freq));
1285
1286 max_freq = (rp_state_cap & 0xff00) >> 8;
1287 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1288 GEN9_FREQ_SCALER : 1);
1289 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1290 intel_gpu_freq(dev_priv, max_freq));
1291
1292 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
1293 rp_state_cap >> 0) & 0xff;
1294 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1295 GEN9_FREQ_SCALER : 1);
1296 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1297 intel_gpu_freq(dev_priv, max_freq));
1298 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1299 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1300
1301 seq_printf(m, "Current freq: %d MHz\n",
1302 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1303 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1304 seq_printf(m, "Idle freq: %d MHz\n",
1305 intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1306 seq_printf(m, "Min freq: %d MHz\n",
1307 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1308 seq_printf(m, "Max freq: %d MHz\n",
1309 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1310 seq_printf(m,
1311 "efficient (RPe) frequency: %d MHz\n",
1312 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1313 } else {
1314 seq_puts(m, "no P-state info available\n");
1315 }
1316
1317 seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1318 seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1319 seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1320
1321 out:
1322 intel_runtime_pm_put(dev_priv);
1323 return ret;
1324 }
1325
1326 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1327 {
1328 struct drm_info_node *node = m->private;
1329 struct drm_device *dev = node->minor->dev;
1330 struct drm_i915_private *dev_priv = dev->dev_private;
1331 struct intel_engine_cs *ring;
1332 u64 acthd[I915_NUM_RINGS];
1333 u32 seqno[I915_NUM_RINGS];
1334 u32 instdone[I915_NUM_INSTDONE_REG];
1335 int i, j;
1336
1337 if (!i915.enable_hangcheck) {
1338 seq_printf(m, "Hangcheck disabled\n");
1339 return 0;
1340 }
1341
1342 intel_runtime_pm_get(dev_priv);
1343
1344 for_each_ring(ring, dev_priv, i) {
1345 seqno[i] = ring->get_seqno(ring, false);
1346 acthd[i] = intel_ring_get_active_head(ring);
1347 }
1348
1349 i915_get_extra_instdone(dev, instdone);
1350
1351 intel_runtime_pm_put(dev_priv);
1352
1353 if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1354 seq_printf(m, "Hangcheck active, fires in %dms\n",
1355 jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1356 jiffies));
1357 } else
1358 seq_printf(m, "Hangcheck inactive\n");
1359
1360 for_each_ring(ring, dev_priv, i) {
1361 seq_printf(m, "%s:\n", ring->name);
1362 seq_printf(m, "\tseqno = %x [current %x]\n",
1363 ring->hangcheck.seqno, seqno[i]);
1364 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1365 (long long)ring->hangcheck.acthd,
1366 (long long)acthd[i]);
1367 seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
1368 (long long)ring->hangcheck.max_acthd);
1369 seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
1370 seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
1371
1372 if (ring->id == RCS) {
1373 seq_puts(m, "\tinstdone read =");
1374
1375 for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1376 seq_printf(m, " 0x%08x", instdone[j]);
1377
1378 seq_puts(m, "\n\tinstdone accu =");
1379
1380 for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1381 seq_printf(m, " 0x%08x",
1382 ring->hangcheck.instdone[j]);
1383
1384 seq_puts(m, "\n");
1385 }
1386 }
1387
1388 return 0;
1389 }
1390
1391 static int ironlake_drpc_info(struct seq_file *m)
1392 {
1393 struct drm_info_node *node = m->private;
1394 struct drm_device *dev = node->minor->dev;
1395 struct drm_i915_private *dev_priv = dev->dev_private;
1396 u32 rgvmodectl, rstdbyctl;
1397 u16 crstandvid;
1398 int ret;
1399
1400 ret = mutex_lock_interruptible(&dev->struct_mutex);
1401 if (ret)
1402 return ret;
1403 intel_runtime_pm_get(dev_priv);
1404
1405 rgvmodectl = I915_READ(MEMMODECTL);
1406 rstdbyctl = I915_READ(RSTDBYCTL);
1407 crstandvid = I915_READ16(CRSTANDVID);
1408
1409 intel_runtime_pm_put(dev_priv);
1410 mutex_unlock(&dev->struct_mutex);
1411
1412 seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1413 seq_printf(m, "Boost freq: %d\n",
1414 (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1415 MEMMODE_BOOST_FREQ_SHIFT);
1416 seq_printf(m, "HW control enabled: %s\n",
1417 yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1418 seq_printf(m, "SW control enabled: %s\n",
1419 yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1420 seq_printf(m, "Gated voltage change: %s\n",
1421 yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1422 seq_printf(m, "Starting frequency: P%d\n",
1423 (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1424 seq_printf(m, "Max P-state: P%d\n",
1425 (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1426 seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1427 seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1428 seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1429 seq_printf(m, "Render standby enabled: %s\n",
1430 yesno(!(rstdbyctl & RCX_SW_EXIT)));
1431 seq_puts(m, "Current RS state: ");
1432 switch (rstdbyctl & RSX_STATUS_MASK) {
1433 case RSX_STATUS_ON:
1434 seq_puts(m, "on\n");
1435 break;
1436 case RSX_STATUS_RC1:
1437 seq_puts(m, "RC1\n");
1438 break;
1439 case RSX_STATUS_RC1E:
1440 seq_puts(m, "RC1E\n");
1441 break;
1442 case RSX_STATUS_RS1:
1443 seq_puts(m, "RS1\n");
1444 break;
1445 case RSX_STATUS_RS2:
1446 seq_puts(m, "RS2 (RC6)\n");
1447 break;
1448 case RSX_STATUS_RS3:
1449 seq_puts(m, "RC3 (RC6+)\n");
1450 break;
1451 default:
1452 seq_puts(m, "unknown\n");
1453 break;
1454 }
1455
1456 return 0;
1457 }
1458
1459 static int i915_forcewake_domains(struct seq_file *m, void *data)
1460 {
1461 struct drm_info_node *node = m->private;
1462 struct drm_device *dev = node->minor->dev;
1463 struct drm_i915_private *dev_priv = dev->dev_private;
1464 struct intel_uncore_forcewake_domain *fw_domain;
1465 int i;
1466
1467 spin_lock_irq(&dev_priv->uncore.lock);
1468 for_each_fw_domain(fw_domain, dev_priv, i) {
1469 seq_printf(m, "%s.wake_count = %u\n",
1470 intel_uncore_forcewake_domain_to_str(i),
1471 fw_domain->wake_count);
1472 }
1473 spin_unlock_irq(&dev_priv->uncore.lock);
1474
1475 return 0;
1476 }
1477
1478 static int vlv_drpc_info(struct seq_file *m)
1479 {
1480 struct drm_info_node *node = m->private;
1481 struct drm_device *dev = node->minor->dev;
1482 struct drm_i915_private *dev_priv = dev->dev_private;
1483 u32 rpmodectl1, rcctl1, pw_status;
1484
1485 intel_runtime_pm_get(dev_priv);
1486
1487 pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1488 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1489 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1490
1491 intel_runtime_pm_put(dev_priv);
1492
1493 seq_printf(m, "Video Turbo Mode: %s\n",
1494 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1495 seq_printf(m, "Turbo enabled: %s\n",
1496 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1497 seq_printf(m, "HW control enabled: %s\n",
1498 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1499 seq_printf(m, "SW control enabled: %s\n",
1500 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1501 GEN6_RP_MEDIA_SW_MODE));
1502 seq_printf(m, "RC6 Enabled: %s\n",
1503 yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1504 GEN6_RC_CTL_EI_MODE(1))));
1505 seq_printf(m, "Render Power Well: %s\n",
1506 (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1507 seq_printf(m, "Media Power Well: %s\n",
1508 (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1509
1510 seq_printf(m, "Render RC6 residency since boot: %u\n",
1511 I915_READ(VLV_GT_RENDER_RC6));
1512 seq_printf(m, "Media RC6 residency since boot: %u\n",
1513 I915_READ(VLV_GT_MEDIA_RC6));
1514
1515 return i915_forcewake_domains(m, NULL);
1516 }
1517
1518 static int gen6_drpc_info(struct seq_file *m)
1519 {
1520 struct drm_info_node *node = m->private;
1521 struct drm_device *dev = node->minor->dev;
1522 struct drm_i915_private *dev_priv = dev->dev_private;
1523 u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1524 unsigned forcewake_count;
1525 int count = 0, ret;
1526
1527 ret = mutex_lock_interruptible(&dev->struct_mutex);
1528 if (ret)
1529 return ret;
1530 intel_runtime_pm_get(dev_priv);
1531
1532 spin_lock_irq(&dev_priv->uncore.lock);
1533 forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1534 spin_unlock_irq(&dev_priv->uncore.lock);
1535
1536 if (forcewake_count) {
1537 seq_puts(m, "RC information inaccurate because somebody "
1538 "holds a forcewake reference \n");
1539 } else {
1540 /* NB: we cannot use forcewake, else we read the wrong values */
1541 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1542 udelay(10);
1543 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1544 }
1545
1546 gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1547 trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1548
1549 rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1550 rcctl1 = I915_READ(GEN6_RC_CONTROL);
1551 mutex_unlock(&dev->struct_mutex);
1552 mutex_lock(&dev_priv->rps.hw_lock);
1553 sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1554 mutex_unlock(&dev_priv->rps.hw_lock);
1555
1556 intel_runtime_pm_put(dev_priv);
1557
1558 seq_printf(m, "Video Turbo Mode: %s\n",
1559 yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1560 seq_printf(m, "HW control enabled: %s\n",
1561 yesno(rpmodectl1 & GEN6_RP_ENABLE));
1562 seq_printf(m, "SW control enabled: %s\n",
1563 yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1564 GEN6_RP_MEDIA_SW_MODE));
1565 seq_printf(m, "RC1e Enabled: %s\n",
1566 yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1567 seq_printf(m, "RC6 Enabled: %s\n",
1568 yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1569 seq_printf(m, "Deep RC6 Enabled: %s\n",
1570 yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1571 seq_printf(m, "Deepest RC6 Enabled: %s\n",
1572 yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1573 seq_puts(m, "Current RC state: ");
1574 switch (gt_core_status & GEN6_RCn_MASK) {
1575 case GEN6_RC0:
1576 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1577 seq_puts(m, "Core Power Down\n");
1578 else
1579 seq_puts(m, "on\n");
1580 break;
1581 case GEN6_RC3:
1582 seq_puts(m, "RC3\n");
1583 break;
1584 case GEN6_RC6:
1585 seq_puts(m, "RC6\n");
1586 break;
1587 case GEN6_RC7:
1588 seq_puts(m, "RC7\n");
1589 break;
1590 default:
1591 seq_puts(m, "Unknown\n");
1592 break;
1593 }
1594
1595 seq_printf(m, "Core Power Down: %s\n",
1596 yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1597
1598 /* Not exactly sure what this is */
1599 seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1600 I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1601 seq_printf(m, "RC6 residency since boot: %u\n",
1602 I915_READ(GEN6_GT_GFX_RC6));
1603 seq_printf(m, "RC6+ residency since boot: %u\n",
1604 I915_READ(GEN6_GT_GFX_RC6p));
1605 seq_printf(m, "RC6++ residency since boot: %u\n",
1606 I915_READ(GEN6_GT_GFX_RC6pp));
1607
1608 seq_printf(m, "RC6 voltage: %dmV\n",
1609 GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1610 seq_printf(m, "RC6+ voltage: %dmV\n",
1611 GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1612 seq_printf(m, "RC6++ voltage: %dmV\n",
1613 GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1614 return 0;
1615 }
1616
1617 static int i915_drpc_info(struct seq_file *m, void *unused)
1618 {
1619 struct drm_info_node *node = m->private;
1620 struct drm_device *dev = node->minor->dev;
1621
1622 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1623 return vlv_drpc_info(m);
1624 else if (INTEL_INFO(dev)->gen >= 6)
1625 return gen6_drpc_info(m);
1626 else
1627 return ironlake_drpc_info(m);
1628 }
1629
1630 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1631 {
1632 struct drm_info_node *node = m->private;
1633 struct drm_device *dev = node->minor->dev;
1634 struct drm_i915_private *dev_priv = dev->dev_private;
1635
1636 seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1637 dev_priv->fb_tracking.busy_bits);
1638
1639 seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1640 dev_priv->fb_tracking.flip_bits);
1641
1642 return 0;
1643 }
1644
1645 static int i915_fbc_status(struct seq_file *m, void *unused)
1646 {
1647 struct drm_info_node *node = m->private;
1648 struct drm_device *dev = node->minor->dev;
1649 struct drm_i915_private *dev_priv = dev->dev_private;
1650
1651 if (!HAS_FBC(dev)) {
1652 seq_puts(m, "FBC unsupported on this chipset\n");
1653 return 0;
1654 }
1655
1656 intel_runtime_pm_get(dev_priv);
1657 mutex_lock(&dev_priv->fbc.lock);
1658
1659 if (intel_fbc_is_active(dev_priv))
1660 seq_puts(m, "FBC enabled\n");
1661 else
1662 seq_printf(m, "FBC disabled: %s\n",
1663 dev_priv->fbc.no_fbc_reason);
1664
1665 if (INTEL_INFO(dev_priv)->gen >= 7)
1666 seq_printf(m, "Compressing: %s\n",
1667 yesno(I915_READ(FBC_STATUS2) &
1668 FBC_COMPRESSION_MASK));
1669
1670 mutex_unlock(&dev_priv->fbc.lock);
1671 intel_runtime_pm_put(dev_priv);
1672
1673 return 0;
1674 }
1675
1676 static int i915_fbc_fc_get(void *data, u64 *val)
1677 {
1678 struct drm_device *dev = data;
1679 struct drm_i915_private *dev_priv = dev->dev_private;
1680
1681 if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1682 return -ENODEV;
1683
1684 *val = dev_priv->fbc.false_color;
1685
1686 return 0;
1687 }
1688
1689 static int i915_fbc_fc_set(void *data, u64 val)
1690 {
1691 struct drm_device *dev = data;
1692 struct drm_i915_private *dev_priv = dev->dev_private;
1693 u32 reg;
1694
1695 if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1696 return -ENODEV;
1697
1698 mutex_lock(&dev_priv->fbc.lock);
1699
1700 reg = I915_READ(ILK_DPFC_CONTROL);
1701 dev_priv->fbc.false_color = val;
1702
1703 I915_WRITE(ILK_DPFC_CONTROL, val ?
1704 (reg | FBC_CTL_FALSE_COLOR) :
1705 (reg & ~FBC_CTL_FALSE_COLOR));
1706
1707 mutex_unlock(&dev_priv->fbc.lock);
1708 return 0;
1709 }
1710
1711 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1712 i915_fbc_fc_get, i915_fbc_fc_set,
1713 "%llu\n");
1714
1715 static int i915_ips_status(struct seq_file *m, void *unused)
1716 {
1717 struct drm_info_node *node = m->private;
1718 struct drm_device *dev = node->minor->dev;
1719 struct drm_i915_private *dev_priv = dev->dev_private;
1720
1721 if (!HAS_IPS(dev)) {
1722 seq_puts(m, "not supported\n");
1723 return 0;
1724 }
1725
1726 intel_runtime_pm_get(dev_priv);
1727
1728 seq_printf(m, "Enabled by kernel parameter: %s\n",
1729 yesno(i915.enable_ips));
1730
1731 if (INTEL_INFO(dev)->gen >= 8) {
1732 seq_puts(m, "Currently: unknown\n");
1733 } else {
1734 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1735 seq_puts(m, "Currently: enabled\n");
1736 else
1737 seq_puts(m, "Currently: disabled\n");
1738 }
1739
1740 intel_runtime_pm_put(dev_priv);
1741
1742 return 0;
1743 }
1744
1745 static int i915_sr_status(struct seq_file *m, void *unused)
1746 {
1747 struct drm_info_node *node = m->private;
1748 struct drm_device *dev = node->minor->dev;
1749 struct drm_i915_private *dev_priv = dev->dev_private;
1750 bool sr_enabled = false;
1751
1752 intel_runtime_pm_get(dev_priv);
1753
1754 if (HAS_PCH_SPLIT(dev))
1755 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1756 else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1757 IS_I945G(dev) || IS_I945GM(dev))
1758 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1759 else if (IS_I915GM(dev))
1760 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1761 else if (IS_PINEVIEW(dev))
1762 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1763 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1764 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1765
1766 intel_runtime_pm_put(dev_priv);
1767
1768 seq_printf(m, "self-refresh: %s\n",
1769 sr_enabled ? "enabled" : "disabled");
1770
1771 return 0;
1772 }
1773
1774 static int i915_emon_status(struct seq_file *m, void *unused)
1775 {
1776 struct drm_info_node *node = m->private;
1777 struct drm_device *dev = node->minor->dev;
1778 struct drm_i915_private *dev_priv = dev->dev_private;
1779 unsigned long temp, chipset, gfx;
1780 int ret;
1781
1782 if (!IS_GEN5(dev))
1783 return -ENODEV;
1784
1785 ret = mutex_lock_interruptible(&dev->struct_mutex);
1786 if (ret)
1787 return ret;
1788
1789 temp = i915_mch_val(dev_priv);
1790 chipset = i915_chipset_val(dev_priv);
1791 gfx = i915_gfx_val(dev_priv);
1792 mutex_unlock(&dev->struct_mutex);
1793
1794 seq_printf(m, "GMCH temp: %ld\n", temp);
1795 seq_printf(m, "Chipset power: %ld\n", chipset);
1796 seq_printf(m, "GFX power: %ld\n", gfx);
1797 seq_printf(m, "Total power: %ld\n", chipset + gfx);
1798
1799 return 0;
1800 }
1801
1802 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1803 {
1804 struct drm_info_node *node = m->private;
1805 struct drm_device *dev = node->minor->dev;
1806 struct drm_i915_private *dev_priv = dev->dev_private;
1807 int ret = 0;
1808 int gpu_freq, ia_freq;
1809 unsigned int max_gpu_freq, min_gpu_freq;
1810
1811 if (!HAS_CORE_RING_FREQ(dev)) {
1812 seq_puts(m, "unsupported on this chipset\n");
1813 return 0;
1814 }
1815
1816 intel_runtime_pm_get(dev_priv);
1817
1818 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1819
1820 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1821 if (ret)
1822 goto out;
1823
1824 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1825 /* Convert GT frequency to 50 HZ units */
1826 min_gpu_freq =
1827 dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1828 max_gpu_freq =
1829 dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1830 } else {
1831 min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1832 max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1833 }
1834
1835 seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1836
1837 for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1838 ia_freq = gpu_freq;
1839 sandybridge_pcode_read(dev_priv,
1840 GEN6_PCODE_READ_MIN_FREQ_TABLE,
1841 &ia_freq);
1842 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1843 intel_gpu_freq(dev_priv, (gpu_freq *
1844 (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1845 GEN9_FREQ_SCALER : 1))),
1846 ((ia_freq >> 0) & 0xff) * 100,
1847 ((ia_freq >> 8) & 0xff) * 100);
1848 }
1849
1850 mutex_unlock(&dev_priv->rps.hw_lock);
1851
1852 out:
1853 intel_runtime_pm_put(dev_priv);
1854 return ret;
1855 }
1856
1857 static int i915_opregion(struct seq_file *m, void *unused)
1858 {
1859 struct drm_info_node *node = m->private;
1860 struct drm_device *dev = node->minor->dev;
1861 struct drm_i915_private *dev_priv = dev->dev_private;
1862 struct intel_opregion *opregion = &dev_priv->opregion;
1863 int ret;
1864
1865 ret = mutex_lock_interruptible(&dev->struct_mutex);
1866 if (ret)
1867 goto out;
1868
1869 if (opregion->header)
1870 seq_write(m, opregion->header, OPREGION_SIZE);
1871
1872 mutex_unlock(&dev->struct_mutex);
1873
1874 out:
1875 return 0;
1876 }
1877
1878 static int i915_vbt(struct seq_file *m, void *unused)
1879 {
1880 struct drm_info_node *node = m->private;
1881 struct drm_device *dev = node->minor->dev;
1882 struct drm_i915_private *dev_priv = dev->dev_private;
1883 struct intel_opregion *opregion = &dev_priv->opregion;
1884
1885 if (opregion->vbt)
1886 seq_write(m, opregion->vbt, opregion->vbt_size);
1887
1888 return 0;
1889 }
1890
1891 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1892 {
1893 struct drm_info_node *node = m->private;
1894 struct drm_device *dev = node->minor->dev;
1895 struct intel_framebuffer *fbdev_fb = NULL;
1896 struct drm_framebuffer *drm_fb;
1897
1898 #ifdef CONFIG_DRM_FBDEV_EMULATION
1899 if (to_i915(dev)->fbdev) {
1900 fbdev_fb = to_intel_framebuffer(to_i915(dev)->fbdev->helper.fb);
1901
1902 seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1903 fbdev_fb->base.width,
1904 fbdev_fb->base.height,
1905 fbdev_fb->base.depth,
1906 fbdev_fb->base.bits_per_pixel,
1907 fbdev_fb->base.modifier[0],
1908 atomic_read(&fbdev_fb->base.refcount.refcount));
1909 describe_obj(m, fbdev_fb->obj);
1910 seq_putc(m, '\n');
1911 }
1912 #endif
1913
1914 mutex_lock(&dev->mode_config.fb_lock);
1915 drm_for_each_fb(drm_fb, dev) {
1916 struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1917 if (fb == fbdev_fb)
1918 continue;
1919
1920 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1921 fb->base.width,
1922 fb->base.height,
1923 fb->base.depth,
1924 fb->base.bits_per_pixel,
1925 fb->base.modifier[0],
1926 atomic_read(&fb->base.refcount.refcount));
1927 describe_obj(m, fb->obj);
1928 seq_putc(m, '\n');
1929 }
1930 mutex_unlock(&dev->mode_config.fb_lock);
1931
1932 return 0;
1933 }
1934
1935 static void describe_ctx_ringbuf(struct seq_file *m,
1936 struct intel_ringbuffer *ringbuf)
1937 {
1938 seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1939 ringbuf->space, ringbuf->head, ringbuf->tail,
1940 ringbuf->last_retired_head);
1941 }
1942
1943 static int i915_context_status(struct seq_file *m, void *unused)
1944 {
1945 struct drm_info_node *node = m->private;
1946 struct drm_device *dev = node->minor->dev;
1947 struct drm_i915_private *dev_priv = dev->dev_private;
1948 struct intel_engine_cs *ring;
1949 struct intel_context *ctx;
1950 int ret, i;
1951
1952 ret = mutex_lock_interruptible(&dev->struct_mutex);
1953 if (ret)
1954 return ret;
1955
1956 list_for_each_entry(ctx, &dev_priv->context_list, link) {
1957 if (!i915.enable_execlists &&
1958 ctx->legacy_hw_ctx.rcs_state == NULL)
1959 continue;
1960
1961 seq_puts(m, "HW context ");
1962 describe_ctx(m, ctx);
1963 if (ctx == dev_priv->kernel_context)
1964 seq_printf(m, "(kernel context) ");
1965
1966 if (i915.enable_execlists) {
1967 seq_putc(m, '\n');
1968 for_each_ring(ring, dev_priv, i) {
1969 struct drm_i915_gem_object *ctx_obj =
1970 ctx->engine[i].state;
1971 struct intel_ringbuffer *ringbuf =
1972 ctx->engine[i].ringbuf;
1973
1974 seq_printf(m, "%s: ", ring->name);
1975 if (ctx_obj)
1976 describe_obj(m, ctx_obj);
1977 if (ringbuf)
1978 describe_ctx_ringbuf(m, ringbuf);
1979 seq_putc(m, '\n');
1980 }
1981 } else {
1982 describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1983 }
1984
1985 seq_putc(m, '\n');
1986 }
1987
1988 mutex_unlock(&dev->struct_mutex);
1989
1990 return 0;
1991 }
1992
1993 static void i915_dump_lrc_obj(struct seq_file *m,
1994 struct intel_context *ctx,
1995 struct intel_engine_cs *ring)
1996 {
1997 struct page *page;
1998 uint32_t *reg_state;
1999 int j;
2000 struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
2001 unsigned long ggtt_offset = 0;
2002
2003 if (ctx_obj == NULL) {
2004 seq_printf(m, "Context on %s with no gem object\n",
2005 ring->name);
2006 return;
2007 }
2008
2009 seq_printf(m, "CONTEXT: %s %u\n", ring->name,
2010 intel_execlists_ctx_id(ctx, ring));
2011
2012 if (!i915_gem_obj_ggtt_bound(ctx_obj))
2013 seq_puts(m, "\tNot bound in GGTT\n");
2014 else
2015 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
2016
2017 if (i915_gem_object_get_pages(ctx_obj)) {
2018 seq_puts(m, "\tFailed to get pages for context object\n");
2019 return;
2020 }
2021
2022 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2023 if (!WARN_ON(page == NULL)) {
2024 reg_state = kmap_atomic(page);
2025
2026 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2027 seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2028 ggtt_offset + 4096 + (j * 4),
2029 reg_state[j], reg_state[j + 1],
2030 reg_state[j + 2], reg_state[j + 3]);
2031 }
2032 kunmap_atomic(reg_state);
2033 }
2034
2035 seq_putc(m, '\n');
2036 }
2037
2038 static int i915_dump_lrc(struct seq_file *m, void *unused)
2039 {
2040 struct drm_info_node *node = (struct drm_info_node *) m->private;
2041 struct drm_device *dev = node->minor->dev;
2042 struct drm_i915_private *dev_priv = dev->dev_private;
2043 struct intel_engine_cs *ring;
2044 struct intel_context *ctx;
2045 int ret, i;
2046
2047 if (!i915.enable_execlists) {
2048 seq_printf(m, "Logical Ring Contexts are disabled\n");
2049 return 0;
2050 }
2051
2052 ret = mutex_lock_interruptible(&dev->struct_mutex);
2053 if (ret)
2054 return ret;
2055
2056 list_for_each_entry(ctx, &dev_priv->context_list, link)
2057 if (ctx != dev_priv->kernel_context)
2058 for_each_ring(ring, dev_priv, i)
2059 i915_dump_lrc_obj(m, ctx, ring);
2060
2061 mutex_unlock(&dev->struct_mutex);
2062
2063 return 0;
2064 }
2065
2066 static int i915_execlists(struct seq_file *m, void *data)
2067 {
2068 struct drm_info_node *node = (struct drm_info_node *)m->private;
2069 struct drm_device *dev = node->minor->dev;
2070 struct drm_i915_private *dev_priv = dev->dev_private;
2071 struct intel_engine_cs *ring;
2072 u32 status_pointer;
2073 u8 read_pointer;
2074 u8 write_pointer;
2075 u32 status;
2076 u32 ctx_id;
2077 struct list_head *cursor;
2078 int ring_id, i;
2079 int ret;
2080
2081 if (!i915.enable_execlists) {
2082 seq_puts(m, "Logical Ring Contexts are disabled\n");
2083 return 0;
2084 }
2085
2086 ret = mutex_lock_interruptible(&dev->struct_mutex);
2087 if (ret)
2088 return ret;
2089
2090 intel_runtime_pm_get(dev_priv);
2091
2092 for_each_ring(ring, dev_priv, ring_id) {
2093 struct drm_i915_gem_request *head_req = NULL;
2094 int count = 0;
2095 unsigned long flags;
2096
2097 seq_printf(m, "%s\n", ring->name);
2098
2099 status = I915_READ(RING_EXECLIST_STATUS_LO(ring));
2100 ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(ring));
2101 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2102 status, ctx_id);
2103
2104 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
2105 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2106
2107 read_pointer = ring->next_context_status_buffer;
2108 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
2109 if (read_pointer > write_pointer)
2110 write_pointer += GEN8_CSB_ENTRIES;
2111 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2112 read_pointer, write_pointer);
2113
2114 for (i = 0; i < GEN8_CSB_ENTRIES; i++) {
2115 status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, i));
2116 ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, i));
2117
2118 seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2119 i, status, ctx_id);
2120 }
2121
2122 spin_lock_irqsave(&ring->execlist_lock, flags);
2123 list_for_each(cursor, &ring->execlist_queue)
2124 count++;
2125 head_req = list_first_entry_or_null(&ring->execlist_queue,
2126 struct drm_i915_gem_request, execlist_link);
2127 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2128
2129 seq_printf(m, "\t%d requests in queue\n", count);
2130 if (head_req) {
2131 seq_printf(m, "\tHead request id: %u\n",
2132 intel_execlists_ctx_id(head_req->ctx, ring));
2133 seq_printf(m, "\tHead request tail: %u\n",
2134 head_req->tail);
2135 }
2136
2137 seq_putc(m, '\n');
2138 }
2139
2140 intel_runtime_pm_put(dev_priv);
2141 mutex_unlock(&dev->struct_mutex);
2142
2143 return 0;
2144 }
2145
2146 static const char *swizzle_string(unsigned swizzle)
2147 {
2148 switch (swizzle) {
2149 case I915_BIT_6_SWIZZLE_NONE:
2150 return "none";
2151 case I915_BIT_6_SWIZZLE_9:
2152 return "bit9";
2153 case I915_BIT_6_SWIZZLE_9_10:
2154 return "bit9/bit10";
2155 case I915_BIT_6_SWIZZLE_9_11:
2156 return "bit9/bit11";
2157 case I915_BIT_6_SWIZZLE_9_10_11:
2158 return "bit9/bit10/bit11";
2159 case I915_BIT_6_SWIZZLE_9_17:
2160 return "bit9/bit17";
2161 case I915_BIT_6_SWIZZLE_9_10_17:
2162 return "bit9/bit10/bit17";
2163 case I915_BIT_6_SWIZZLE_UNKNOWN:
2164 return "unknown";
2165 }
2166
2167 return "bug";
2168 }
2169
2170 static int i915_swizzle_info(struct seq_file *m, void *data)
2171 {
2172 struct drm_info_node *node = m->private;
2173 struct drm_device *dev = node->minor->dev;
2174 struct drm_i915_private *dev_priv = dev->dev_private;
2175 int ret;
2176
2177 ret = mutex_lock_interruptible(&dev->struct_mutex);
2178 if (ret)
2179 return ret;
2180 intel_runtime_pm_get(dev_priv);
2181
2182 seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2183 swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2184 seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2185 swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2186
2187 if (IS_GEN3(dev) || IS_GEN4(dev)) {
2188 seq_printf(m, "DDC = 0x%08x\n",
2189 I915_READ(DCC));
2190 seq_printf(m, "DDC2 = 0x%08x\n",
2191 I915_READ(DCC2));
2192 seq_printf(m, "C0DRB3 = 0x%04x\n",
2193 I915_READ16(C0DRB3));
2194 seq_printf(m, "C1DRB3 = 0x%04x\n",
2195 I915_READ16(C1DRB3));
2196 } else if (INTEL_INFO(dev)->gen >= 6) {
2197 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2198 I915_READ(MAD_DIMM_C0));
2199 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2200 I915_READ(MAD_DIMM_C1));
2201 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2202 I915_READ(MAD_DIMM_C2));
2203 seq_printf(m, "TILECTL = 0x%08x\n",
2204 I915_READ(TILECTL));
2205 if (INTEL_INFO(dev)->gen >= 8)
2206 seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2207 I915_READ(GAMTARBMODE));
2208 else
2209 seq_printf(m, "ARB_MODE = 0x%08x\n",
2210 I915_READ(ARB_MODE));
2211 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2212 I915_READ(DISP_ARB_CTL));
2213 }
2214
2215 if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2216 seq_puts(m, "L-shaped memory detected\n");
2217
2218 intel_runtime_pm_put(dev_priv);
2219 mutex_unlock(&dev->struct_mutex);
2220
2221 return 0;
2222 }
2223
2224 static int per_file_ctx(int id, void *ptr, void *data)
2225 {
2226 struct intel_context *ctx = ptr;
2227 struct seq_file *m = data;
2228 struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2229
2230 if (!ppgtt) {
2231 seq_printf(m, " no ppgtt for context %d\n",
2232 ctx->user_handle);
2233 return 0;
2234 }
2235
2236 if (i915_gem_context_is_default(ctx))
2237 seq_puts(m, " default context:\n");
2238 else
2239 seq_printf(m, " context %d:\n", ctx->user_handle);
2240 ppgtt->debug_dump(ppgtt, m);
2241
2242 return 0;
2243 }
2244
2245 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2246 {
2247 struct drm_i915_private *dev_priv = dev->dev_private;
2248 struct intel_engine_cs *ring;
2249 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2250 int unused, i;
2251
2252 if (!ppgtt)
2253 return;
2254
2255 for_each_ring(ring, dev_priv, unused) {
2256 seq_printf(m, "%s\n", ring->name);
2257 for (i = 0; i < 4; i++) {
2258 u64 pdp = I915_READ(GEN8_RING_PDP_UDW(ring, i));
2259 pdp <<= 32;
2260 pdp |= I915_READ(GEN8_RING_PDP_LDW(ring, i));
2261 seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2262 }
2263 }
2264 }
2265
2266 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2267 {
2268 struct drm_i915_private *dev_priv = dev->dev_private;
2269 struct intel_engine_cs *ring;
2270 int i;
2271
2272 if (INTEL_INFO(dev)->gen == 6)
2273 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2274
2275 for_each_ring(ring, dev_priv, i) {
2276 seq_printf(m, "%s\n", ring->name);
2277 if (INTEL_INFO(dev)->gen == 7)
2278 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2279 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2280 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2281 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2282 }
2283 if (dev_priv->mm.aliasing_ppgtt) {
2284 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2285
2286 seq_puts(m, "aliasing PPGTT:\n");
2287 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2288
2289 ppgtt->debug_dump(ppgtt, m);
2290 }
2291
2292 seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2293 }
2294
2295 static int i915_ppgtt_info(struct seq_file *m, void *data)
2296 {
2297 struct drm_info_node *node = m->private;
2298 struct drm_device *dev = node->minor->dev;
2299 struct drm_i915_private *dev_priv = dev->dev_private;
2300 struct drm_file *file;
2301
2302 int ret = mutex_lock_interruptible(&dev->struct_mutex);
2303 if (ret)
2304 return ret;
2305 intel_runtime_pm_get(dev_priv);
2306
2307 if (INTEL_INFO(dev)->gen >= 8)
2308 gen8_ppgtt_info(m, dev);
2309 else if (INTEL_INFO(dev)->gen >= 6)
2310 gen6_ppgtt_info(m, dev);
2311
2312 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2313 struct drm_i915_file_private *file_priv = file->driver_priv;
2314 struct task_struct *task;
2315
2316 task = get_pid_task(file->pid, PIDTYPE_PID);
2317 if (!task) {
2318 ret = -ESRCH;
2319 goto out_put;
2320 }
2321 seq_printf(m, "\nproc: %s\n", task->comm);
2322 put_task_struct(task);
2323 idr_for_each(&file_priv->context_idr, per_file_ctx,
2324 (void *)(unsigned long)m);
2325 }
2326
2327 out_put:
2328 intel_runtime_pm_put(dev_priv);
2329 mutex_unlock(&dev->struct_mutex);
2330
2331 return ret;
2332 }
2333
2334 static int count_irq_waiters(struct drm_i915_private *i915)
2335 {
2336 struct intel_engine_cs *ring;
2337 int count = 0;
2338 int i;
2339
2340 for_each_ring(ring, i915, i)
2341 count += ring->irq_refcount;
2342
2343 return count;
2344 }
2345
2346 static int i915_rps_boost_info(struct seq_file *m, void *data)
2347 {
2348 struct drm_info_node *node = m->private;
2349 struct drm_device *dev = node->minor->dev;
2350 struct drm_i915_private *dev_priv = dev->dev_private;
2351 struct drm_file *file;
2352
2353 seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2354 seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
2355 seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2356 seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2357 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
2358 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2359 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2360 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2361 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2362 spin_lock(&dev_priv->rps.client_lock);
2363 list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2364 struct drm_i915_file_private *file_priv = file->driver_priv;
2365 struct task_struct *task;
2366
2367 rcu_read_lock();
2368 task = pid_task(file->pid, PIDTYPE_PID);
2369 seq_printf(m, "%s [%d]: %d boosts%s\n",
2370 task ? task->comm : "<unknown>",
2371 task ? task->pid : -1,
2372 file_priv->rps.boosts,
2373 list_empty(&file_priv->rps.link) ? "" : ", active");
2374 rcu_read_unlock();
2375 }
2376 seq_printf(m, "Semaphore boosts: %d%s\n",
2377 dev_priv->rps.semaphores.boosts,
2378 list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
2379 seq_printf(m, "MMIO flip boosts: %d%s\n",
2380 dev_priv->rps.mmioflips.boosts,
2381 list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
2382 seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
2383 spin_unlock(&dev_priv->rps.client_lock);
2384
2385 return 0;
2386 }
2387
2388 static int i915_llc(struct seq_file *m, void *data)
2389 {
2390 struct drm_info_node *node = m->private;
2391 struct drm_device *dev = node->minor->dev;
2392 struct drm_i915_private *dev_priv = dev->dev_private;
2393
2394 /* Size calculation for LLC is a bit of a pain. Ignore for now. */
2395 seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2396 seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2397
2398 return 0;
2399 }
2400
2401 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2402 {
2403 struct drm_info_node *node = m->private;
2404 struct drm_i915_private *dev_priv = node->minor->dev->dev_private;
2405 struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2406 u32 tmp, i;
2407
2408 if (!HAS_GUC_UCODE(dev_priv->dev))
2409 return 0;
2410
2411 seq_printf(m, "GuC firmware status:\n");
2412 seq_printf(m, "\tpath: %s\n",
2413 guc_fw->guc_fw_path);
2414 seq_printf(m, "\tfetch: %s\n",
2415 intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2416 seq_printf(m, "\tload: %s\n",
2417 intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2418 seq_printf(m, "\tversion wanted: %d.%d\n",
2419 guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2420 seq_printf(m, "\tversion found: %d.%d\n",
2421 guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2422 seq_printf(m, "\theader: offset is %d; size = %d\n",
2423 guc_fw->header_offset, guc_fw->header_size);
2424 seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2425 guc_fw->ucode_offset, guc_fw->ucode_size);
2426 seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2427 guc_fw->rsa_offset, guc_fw->rsa_size);
2428
2429 tmp = I915_READ(GUC_STATUS);
2430
2431 seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2432 seq_printf(m, "\tBootrom status = 0x%x\n",
2433 (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2434 seq_printf(m, "\tuKernel status = 0x%x\n",
2435 (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2436 seq_printf(m, "\tMIA Core status = 0x%x\n",
2437 (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2438 seq_puts(m, "\nScratch registers:\n");
2439 for (i = 0; i < 16; i++)
2440 seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2441
2442 return 0;
2443 }
2444
2445 static void i915_guc_client_info(struct seq_file *m,
2446 struct drm_i915_private *dev_priv,
2447 struct i915_guc_client *client)
2448 {
2449 struct intel_engine_cs *ring;
2450 uint64_t tot = 0;
2451 uint32_t i;
2452
2453 seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2454 client->priority, client->ctx_index, client->proc_desc_offset);
2455 seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2456 client->doorbell_id, client->doorbell_offset, client->cookie);
2457 seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2458 client->wq_size, client->wq_offset, client->wq_tail);
2459
2460 seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
2461 seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2462 seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2463
2464 for_each_ring(ring, dev_priv, i) {
2465 seq_printf(m, "\tSubmissions: %llu %s\n",
2466 client->submissions[ring->guc_id],
2467 ring->name);
2468 tot += client->submissions[ring->guc_id];
2469 }
2470 seq_printf(m, "\tTotal: %llu\n", tot);
2471 }
2472
2473 static int i915_guc_info(struct seq_file *m, void *data)
2474 {
2475 struct drm_info_node *node = m->private;
2476 struct drm_device *dev = node->minor->dev;
2477 struct drm_i915_private *dev_priv = dev->dev_private;
2478 struct intel_guc guc;
2479 struct i915_guc_client client = {};
2480 struct intel_engine_cs *ring;
2481 enum intel_ring_id i;
2482 u64 total = 0;
2483
2484 if (!HAS_GUC_SCHED(dev_priv->dev))
2485 return 0;
2486
2487 if (mutex_lock_interruptible(&dev->struct_mutex))
2488 return 0;
2489
2490 /* Take a local copy of the GuC data, so we can dump it at leisure */
2491 guc = dev_priv->guc;
2492 if (guc.execbuf_client)
2493 client = *guc.execbuf_client;
2494
2495 mutex_unlock(&dev->struct_mutex);
2496
2497 seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2498 seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2499 seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2500 seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2501 seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2502
2503 seq_printf(m, "\nGuC submissions:\n");
2504 for_each_ring(ring, dev_priv, i) {
2505 seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
2506 ring->name, guc.submissions[ring->guc_id],
2507 guc.last_seqno[ring->guc_id]);
2508 total += guc.submissions[ring->guc_id];
2509 }
2510 seq_printf(m, "\t%s: %llu\n", "Total", total);
2511
2512 seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2513 i915_guc_client_info(m, dev_priv, &client);
2514
2515 /* Add more as required ... */
2516
2517 return 0;
2518 }
2519
2520 static int i915_guc_log_dump(struct seq_file *m, void *data)
2521 {
2522 struct drm_info_node *node = m->private;
2523 struct drm_device *dev = node->minor->dev;
2524 struct drm_i915_private *dev_priv = dev->dev_private;
2525 struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
2526 u32 *log;
2527 int i = 0, pg;
2528
2529 if (!log_obj)
2530 return 0;
2531
2532 for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
2533 log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
2534
2535 for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2536 seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2537 *(log + i), *(log + i + 1),
2538 *(log + i + 2), *(log + i + 3));
2539
2540 kunmap_atomic(log);
2541 }
2542
2543 seq_putc(m, '\n');
2544
2545 return 0;
2546 }
2547
2548 static int i915_edp_psr_status(struct seq_file *m, void *data)
2549 {
2550 struct drm_info_node *node = m->private;
2551 struct drm_device *dev = node->minor->dev;
2552 struct drm_i915_private *dev_priv = dev->dev_private;
2553 u32 psrperf = 0;
2554 u32 stat[3];
2555 enum pipe pipe;
2556 bool enabled = false;
2557
2558 if (!HAS_PSR(dev)) {
2559 seq_puts(m, "PSR not supported\n");
2560 return 0;
2561 }
2562
2563 intel_runtime_pm_get(dev_priv);
2564
2565 mutex_lock(&dev_priv->psr.lock);
2566 seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2567 seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2568 seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2569 seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2570 seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2571 dev_priv->psr.busy_frontbuffer_bits);
2572 seq_printf(m, "Re-enable work scheduled: %s\n",
2573 yesno(work_busy(&dev_priv->psr.work.work)));
2574
2575 if (HAS_DDI(dev))
2576 enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2577 else {
2578 for_each_pipe(dev_priv, pipe) {
2579 stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2580 VLV_EDP_PSR_CURR_STATE_MASK;
2581 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2582 (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2583 enabled = true;
2584 }
2585 }
2586
2587 seq_printf(m, "Main link in standby mode: %s\n",
2588 yesno(dev_priv->psr.link_standby));
2589
2590 seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2591
2592 if (!HAS_DDI(dev))
2593 for_each_pipe(dev_priv, pipe) {
2594 if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2595 (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2596 seq_printf(m, " pipe %c", pipe_name(pipe));
2597 }
2598 seq_puts(m, "\n");
2599
2600 /*
2601 * VLV/CHV PSR has no kind of performance counter
2602 * SKL+ Perf counter is reset to 0 everytime DC state is entered
2603 */
2604 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2605 psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2606 EDP_PSR_PERF_CNT_MASK;
2607
2608 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2609 }
2610 mutex_unlock(&dev_priv->psr.lock);
2611
2612 intel_runtime_pm_put(dev_priv);
2613 return 0;
2614 }
2615
2616 static int i915_sink_crc(struct seq_file *m, void *data)
2617 {
2618 struct drm_info_node *node = m->private;
2619 struct drm_device *dev = node->minor->dev;
2620 struct intel_encoder *encoder;
2621 struct intel_connector *connector;
2622 struct intel_dp *intel_dp = NULL;
2623 int ret;
2624 u8 crc[6];
2625
2626 drm_modeset_lock_all(dev);
2627 for_each_intel_connector(dev, connector) {
2628
2629 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2630 continue;
2631
2632 if (!connector->base.encoder)
2633 continue;
2634
2635 encoder = to_intel_encoder(connector->base.encoder);
2636 if (encoder->type != INTEL_OUTPUT_EDP)
2637 continue;
2638
2639 intel_dp = enc_to_intel_dp(&encoder->base);
2640
2641 ret = intel_dp_sink_crc(intel_dp, crc);
2642 if (ret)
2643 goto out;
2644
2645 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2646 crc[0], crc[1], crc[2],
2647 crc[3], crc[4], crc[5]);
2648 goto out;
2649 }
2650 ret = -ENODEV;
2651 out:
2652 drm_modeset_unlock_all(dev);
2653 return ret;
2654 }
2655
2656 static int i915_energy_uJ(struct seq_file *m, void *data)
2657 {
2658 struct drm_info_node *node = m->private;
2659 struct drm_device *dev = node->minor->dev;
2660 struct drm_i915_private *dev_priv = dev->dev_private;
2661 u64 power;
2662 u32 units;
2663
2664 if (INTEL_INFO(dev)->gen < 6)
2665 return -ENODEV;
2666
2667 intel_runtime_pm_get(dev_priv);
2668
2669 rdmsrl(MSR_RAPL_POWER_UNIT, power);
2670 power = (power & 0x1f00) >> 8;
2671 units = 1000000 / (1 << power); /* convert to uJ */
2672 power = I915_READ(MCH_SECP_NRG_STTS);
2673 power *= units;
2674
2675 intel_runtime_pm_put(dev_priv);
2676
2677 seq_printf(m, "%llu", (long long unsigned)power);
2678
2679 return 0;
2680 }
2681
2682 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2683 {
2684 struct drm_info_node *node = m->private;
2685 struct drm_device *dev = node->minor->dev;
2686 struct drm_i915_private *dev_priv = dev->dev_private;
2687
2688 if (!HAS_RUNTIME_PM(dev)) {
2689 seq_puts(m, "not supported\n");
2690 return 0;
2691 }
2692
2693 seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2694 seq_printf(m, "IRQs disabled: %s\n",
2695 yesno(!intel_irqs_enabled(dev_priv)));
2696 #ifdef CONFIG_PM
2697 seq_printf(m, "Usage count: %d\n",
2698 atomic_read(&dev->dev->power.usage_count));
2699 #else
2700 seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2701 #endif
2702
2703 return 0;
2704 }
2705
2706 static int i915_power_domain_info(struct seq_file *m, void *unused)
2707 {
2708 struct drm_info_node *node = m->private;
2709 struct drm_device *dev = node->minor->dev;
2710 struct drm_i915_private *dev_priv = dev->dev_private;
2711 struct i915_power_domains *power_domains = &dev_priv->power_domains;
2712 int i;
2713
2714 mutex_lock(&power_domains->lock);
2715
2716 seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2717 for (i = 0; i < power_domains->power_well_count; i++) {
2718 struct i915_power_well *power_well;
2719 enum intel_display_power_domain power_domain;
2720
2721 power_well = &power_domains->power_wells[i];
2722 seq_printf(m, "%-25s %d\n", power_well->name,
2723 power_well->count);
2724
2725 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2726 power_domain++) {
2727 if (!(BIT(power_domain) & power_well->domains))
2728 continue;
2729
2730 seq_printf(m, " %-23s %d\n",
2731 intel_display_power_domain_str(power_domain),
2732 power_domains->domain_use_count[power_domain]);
2733 }
2734 }
2735
2736 mutex_unlock(&power_domains->lock);
2737
2738 return 0;
2739 }
2740
2741 static int i915_dmc_info(struct seq_file *m, void *unused)
2742 {
2743 struct drm_info_node *node = m->private;
2744 struct drm_device *dev = node->minor->dev;
2745 struct drm_i915_private *dev_priv = dev->dev_private;
2746 struct intel_csr *csr;
2747
2748 if (!HAS_CSR(dev)) {
2749 seq_puts(m, "not supported\n");
2750 return 0;
2751 }
2752
2753 csr = &dev_priv->csr;
2754
2755 intel_runtime_pm_get(dev_priv);
2756
2757 seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2758 seq_printf(m, "path: %s\n", csr->fw_path);
2759
2760 if (!csr->dmc_payload)
2761 goto out;
2762
2763 seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2764 CSR_VERSION_MINOR(csr->version));
2765
2766 if (IS_SKYLAKE(dev) && csr->version >= CSR_VERSION(1, 6)) {
2767 seq_printf(m, "DC3 -> DC5 count: %d\n",
2768 I915_READ(SKL_CSR_DC3_DC5_COUNT));
2769 seq_printf(m, "DC5 -> DC6 count: %d\n",
2770 I915_READ(SKL_CSR_DC5_DC6_COUNT));
2771 } else if (IS_BROXTON(dev) && csr->version >= CSR_VERSION(1, 4)) {
2772 seq_printf(m, "DC3 -> DC5 count: %d\n",
2773 I915_READ(BXT_CSR_DC3_DC5_COUNT));
2774 }
2775
2776 out:
2777 seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2778 seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2779 seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2780
2781 intel_runtime_pm_put(dev_priv);
2782
2783 return 0;
2784 }
2785
2786 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2787 struct drm_display_mode *mode)
2788 {
2789 int i;
2790
2791 for (i = 0; i < tabs; i++)
2792 seq_putc(m, '\t');
2793
2794 seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2795 mode->base.id, mode->name,
2796 mode->vrefresh, mode->clock,
2797 mode->hdisplay, mode->hsync_start,
2798 mode->hsync_end, mode->htotal,
2799 mode->vdisplay, mode->vsync_start,
2800 mode->vsync_end, mode->vtotal,
2801 mode->type, mode->flags);
2802 }
2803
2804 static void intel_encoder_info(struct seq_file *m,
2805 struct intel_crtc *intel_crtc,
2806 struct intel_encoder *intel_encoder)
2807 {
2808 struct drm_info_node *node = m->private;
2809 struct drm_device *dev = node->minor->dev;
2810 struct drm_crtc *crtc = &intel_crtc->base;
2811 struct intel_connector *intel_connector;
2812 struct drm_encoder *encoder;
2813
2814 encoder = &intel_encoder->base;
2815 seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2816 encoder->base.id, encoder->name);
2817 for_each_connector_on_encoder(dev, encoder, intel_connector) {
2818 struct drm_connector *connector = &intel_connector->base;
2819 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2820 connector->base.id,
2821 connector->name,
2822 drm_get_connector_status_name(connector->status));
2823 if (connector->status == connector_status_connected) {
2824 struct drm_display_mode *mode = &crtc->mode;
2825 seq_printf(m, ", mode:\n");
2826 intel_seq_print_mode(m, 2, mode);
2827 } else {
2828 seq_putc(m, '\n');
2829 }
2830 }
2831 }
2832
2833 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2834 {
2835 struct drm_info_node *node = m->private;
2836 struct drm_device *dev = node->minor->dev;
2837 struct drm_crtc *crtc = &intel_crtc->base;
2838 struct intel_encoder *intel_encoder;
2839 struct drm_plane_state *plane_state = crtc->primary->state;
2840 struct drm_framebuffer *fb = plane_state->fb;
2841
2842 if (fb)
2843 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2844 fb->base.id, plane_state->src_x >> 16,
2845 plane_state->src_y >> 16, fb->width, fb->height);
2846 else
2847 seq_puts(m, "\tprimary plane disabled\n");
2848 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2849 intel_encoder_info(m, intel_crtc, intel_encoder);
2850 }
2851
2852 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2853 {
2854 struct drm_display_mode *mode = panel->fixed_mode;
2855
2856 seq_printf(m, "\tfixed mode:\n");
2857 intel_seq_print_mode(m, 2, mode);
2858 }
2859
2860 static void intel_dp_info(struct seq_file *m,
2861 struct intel_connector *intel_connector)
2862 {
2863 struct intel_encoder *intel_encoder = intel_connector->encoder;
2864 struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2865
2866 seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2867 seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2868 if (intel_encoder->type == INTEL_OUTPUT_EDP)
2869 intel_panel_info(m, &intel_connector->panel);
2870 }
2871
2872 static void intel_dp_mst_info(struct seq_file *m,
2873 struct intel_connector *intel_connector)
2874 {
2875 struct intel_encoder *intel_encoder = intel_connector->encoder;
2876 struct intel_dp_mst_encoder *intel_mst =
2877 enc_to_mst(&intel_encoder->base);
2878 struct intel_digital_port *intel_dig_port = intel_mst->primary;
2879 struct intel_dp *intel_dp = &intel_dig_port->dp;
2880 bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
2881 intel_connector->port);
2882
2883 seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
2884 }
2885
2886 static void intel_hdmi_info(struct seq_file *m,
2887 struct intel_connector *intel_connector)
2888 {
2889 struct intel_encoder *intel_encoder = intel_connector->encoder;
2890 struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2891
2892 seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2893 }
2894
2895 static void intel_lvds_info(struct seq_file *m,
2896 struct intel_connector *intel_connector)
2897 {
2898 intel_panel_info(m, &intel_connector->panel);
2899 }
2900
2901 static void intel_connector_info(struct seq_file *m,
2902 struct drm_connector *connector)
2903 {
2904 struct intel_connector *intel_connector = to_intel_connector(connector);
2905 struct intel_encoder *intel_encoder = intel_connector->encoder;
2906 struct drm_display_mode *mode;
2907
2908 seq_printf(m, "connector %d: type %s, status: %s\n",
2909 connector->base.id, connector->name,
2910 drm_get_connector_status_name(connector->status));
2911 if (connector->status == connector_status_connected) {
2912 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2913 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2914 connector->display_info.width_mm,
2915 connector->display_info.height_mm);
2916 seq_printf(m, "\tsubpixel order: %s\n",
2917 drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2918 seq_printf(m, "\tCEA rev: %d\n",
2919 connector->display_info.cea_rev);
2920 }
2921 if (intel_encoder) {
2922 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2923 intel_encoder->type == INTEL_OUTPUT_EDP)
2924 intel_dp_info(m, intel_connector);
2925 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2926 intel_hdmi_info(m, intel_connector);
2927 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2928 intel_lvds_info(m, intel_connector);
2929 else if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
2930 intel_dp_mst_info(m, intel_connector);
2931 }
2932
2933 seq_printf(m, "\tmodes:\n");
2934 list_for_each_entry(mode, &connector->modes, head)
2935 intel_seq_print_mode(m, 2, mode);
2936 }
2937
2938 static bool cursor_active(struct drm_device *dev, int pipe)
2939 {
2940 struct drm_i915_private *dev_priv = dev->dev_private;
2941 u32 state;
2942
2943 if (IS_845G(dev) || IS_I865G(dev))
2944 state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
2945 else
2946 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2947
2948 return state;
2949 }
2950
2951 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2952 {
2953 struct drm_i915_private *dev_priv = dev->dev_private;
2954 u32 pos;
2955
2956 pos = I915_READ(CURPOS(pipe));
2957
2958 *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2959 if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2960 *x = -*x;
2961
2962 *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2963 if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2964 *y = -*y;
2965
2966 return cursor_active(dev, pipe);
2967 }
2968
2969 static const char *plane_type(enum drm_plane_type type)
2970 {
2971 switch (type) {
2972 case DRM_PLANE_TYPE_OVERLAY:
2973 return "OVL";
2974 case DRM_PLANE_TYPE_PRIMARY:
2975 return "PRI";
2976 case DRM_PLANE_TYPE_CURSOR:
2977 return "CUR";
2978 /*
2979 * Deliberately omitting default: to generate compiler warnings
2980 * when a new drm_plane_type gets added.
2981 */
2982 }
2983
2984 return "unknown";
2985 }
2986
2987 static const char *plane_rotation(unsigned int rotation)
2988 {
2989 static char buf[48];
2990 /*
2991 * According to doc only one DRM_ROTATE_ is allowed but this
2992 * will print them all to visualize if the values are misused
2993 */
2994 snprintf(buf, sizeof(buf),
2995 "%s%s%s%s%s%s(0x%08x)",
2996 (rotation & BIT(DRM_ROTATE_0)) ? "0 " : "",
2997 (rotation & BIT(DRM_ROTATE_90)) ? "90 " : "",
2998 (rotation & BIT(DRM_ROTATE_180)) ? "180 " : "",
2999 (rotation & BIT(DRM_ROTATE_270)) ? "270 " : "",
3000 (rotation & BIT(DRM_REFLECT_X)) ? "FLIPX " : "",
3001 (rotation & BIT(DRM_REFLECT_Y)) ? "FLIPY " : "",
3002 rotation);
3003
3004 return buf;
3005 }
3006
3007 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3008 {
3009 struct drm_info_node *node = m->private;
3010 struct drm_device *dev = node->minor->dev;
3011 struct intel_plane *intel_plane;
3012
3013 for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3014 struct drm_plane_state *state;
3015 struct drm_plane *plane = &intel_plane->base;
3016
3017 if (!plane->state) {
3018 seq_puts(m, "plane->state is NULL!\n");
3019 continue;
3020 }
3021
3022 state = plane->state;
3023
3024 seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3025 plane->base.id,
3026 plane_type(intel_plane->base.type),
3027 state->crtc_x, state->crtc_y,
3028 state->crtc_w, state->crtc_h,
3029 (state->src_x >> 16),
3030 ((state->src_x & 0xffff) * 15625) >> 10,
3031 (state->src_y >> 16),
3032 ((state->src_y & 0xffff) * 15625) >> 10,
3033 (state->src_w >> 16),
3034 ((state->src_w & 0xffff) * 15625) >> 10,
3035 (state->src_h >> 16),
3036 ((state->src_h & 0xffff) * 15625) >> 10,
3037 state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A",
3038 plane_rotation(state->rotation));
3039 }
3040 }
3041
3042 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3043 {
3044 struct intel_crtc_state *pipe_config;
3045 int num_scalers = intel_crtc->num_scalers;
3046 int i;
3047
3048 pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3049
3050 /* Not all platformas have a scaler */
3051 if (num_scalers) {
3052 seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3053 num_scalers,
3054 pipe_config->scaler_state.scaler_users,
3055 pipe_config->scaler_state.scaler_id);
3056
3057 for (i = 0; i < SKL_NUM_SCALERS; i++) {
3058 struct intel_scaler *sc =
3059 &pipe_config->scaler_state.scalers[i];
3060
3061 seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3062 i, yesno(sc->in_use), sc->mode);
3063 }
3064 seq_puts(m, "\n");
3065 } else {
3066 seq_puts(m, "\tNo scalers available on this platform\n");
3067 }
3068 }
3069
3070 static int i915_display_info(struct seq_file *m, void *unused)
3071 {
3072 struct drm_info_node *node = m->private;
3073 struct drm_device *dev = node->minor->dev;
3074 struct drm_i915_private *dev_priv = dev->dev_private;
3075 struct intel_crtc *crtc;
3076 struct drm_connector *connector;
3077
3078 intel_runtime_pm_get(dev_priv);
3079 drm_modeset_lock_all(dev);
3080 seq_printf(m, "CRTC info\n");
3081 seq_printf(m, "---------\n");
3082 for_each_intel_crtc(dev, crtc) {
3083 bool active;
3084 struct intel_crtc_state *pipe_config;
3085 int x, y;
3086
3087 pipe_config = to_intel_crtc_state(crtc->base.state);
3088
3089 seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3090 crtc->base.base.id, pipe_name(crtc->pipe),
3091 yesno(pipe_config->base.active),
3092 pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3093 yesno(pipe_config->dither), pipe_config->pipe_bpp);
3094
3095 if (pipe_config->base.active) {
3096 intel_crtc_info(m, crtc);
3097
3098 active = cursor_position(dev, crtc->pipe, &x, &y);
3099 seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3100 yesno(crtc->cursor_base),
3101 x, y, crtc->base.cursor->state->crtc_w,
3102 crtc->base.cursor->state->crtc_h,
3103 crtc->cursor_addr, yesno(active));
3104 intel_scaler_info(m, crtc);
3105 intel_plane_info(m, crtc);
3106 }
3107
3108 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3109 yesno(!crtc->cpu_fifo_underrun_disabled),
3110 yesno(!crtc->pch_fifo_underrun_disabled));
3111 }
3112
3113 seq_printf(m, "\n");
3114 seq_printf(m, "Connector info\n");
3115 seq_printf(m, "--------------\n");
3116 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3117 intel_connector_info(m, connector);
3118 }
3119 drm_modeset_unlock_all(dev);
3120 intel_runtime_pm_put(dev_priv);
3121
3122 return 0;
3123 }
3124
3125 static int i915_semaphore_status(struct seq_file *m, void *unused)
3126 {
3127 struct drm_info_node *node = (struct drm_info_node *) m->private;
3128 struct drm_device *dev = node->minor->dev;
3129 struct drm_i915_private *dev_priv = dev->dev_private;
3130 struct intel_engine_cs *ring;
3131 int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
3132 int i, j, ret;
3133
3134 if (!i915_semaphore_is_enabled(dev)) {
3135 seq_puts(m, "Semaphores are disabled\n");
3136 return 0;
3137 }
3138
3139 ret = mutex_lock_interruptible(&dev->struct_mutex);
3140 if (ret)
3141 return ret;
3142 intel_runtime_pm_get(dev_priv);
3143
3144 if (IS_BROADWELL(dev)) {
3145 struct page *page;
3146 uint64_t *seqno;
3147
3148 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
3149
3150 seqno = (uint64_t *)kmap_atomic(page);
3151 for_each_ring(ring, dev_priv, i) {
3152 uint64_t offset;
3153
3154 seq_printf(m, "%s\n", ring->name);
3155
3156 seq_puts(m, " Last signal:");
3157 for (j = 0; j < num_rings; j++) {
3158 offset = i * I915_NUM_RINGS + j;
3159 seq_printf(m, "0x%08llx (0x%02llx) ",
3160 seqno[offset], offset * 8);
3161 }
3162 seq_putc(m, '\n');
3163
3164 seq_puts(m, " Last wait: ");
3165 for (j = 0; j < num_rings; j++) {
3166 offset = i + (j * I915_NUM_RINGS);
3167 seq_printf(m, "0x%08llx (0x%02llx) ",
3168 seqno[offset], offset * 8);
3169 }
3170 seq_putc(m, '\n');
3171
3172 }
3173 kunmap_atomic(seqno);
3174 } else {
3175 seq_puts(m, " Last signal:");
3176 for_each_ring(ring, dev_priv, i)
3177 for (j = 0; j < num_rings; j++)
3178 seq_printf(m, "0x%08x\n",
3179 I915_READ(ring->semaphore.mbox.signal[j]));
3180 seq_putc(m, '\n');
3181 }
3182
3183 seq_puts(m, "\nSync seqno:\n");
3184 for_each_ring(ring, dev_priv, i) {
3185 for (j = 0; j < num_rings; j++) {
3186 seq_printf(m, " 0x%08x ", ring->semaphore.sync_seqno[j]);
3187 }
3188 seq_putc(m, '\n');
3189 }
3190 seq_putc(m, '\n');
3191
3192 intel_runtime_pm_put(dev_priv);
3193 mutex_unlock(&dev->struct_mutex);
3194 return 0;
3195 }
3196
3197 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3198 {
3199 struct drm_info_node *node = (struct drm_info_node *) m->private;
3200 struct drm_device *dev = node->minor->dev;
3201 struct drm_i915_private *dev_priv = dev->dev_private;
3202 int i;
3203
3204 drm_modeset_lock_all(dev);
3205 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3206 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3207
3208 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3209 seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
3210 pll->config.crtc_mask, pll->active, yesno(pll->on));
3211 seq_printf(m, " tracked hardware state:\n");
3212 seq_printf(m, " dpll: 0x%08x\n", pll->config.hw_state.dpll);
3213 seq_printf(m, " dpll_md: 0x%08x\n",
3214 pll->config.hw_state.dpll_md);
3215 seq_printf(m, " fp0: 0x%08x\n", pll->config.hw_state.fp0);
3216 seq_printf(m, " fp1: 0x%08x\n", pll->config.hw_state.fp1);
3217 seq_printf(m, " wrpll: 0x%08x\n", pll->config.hw_state.wrpll);
3218 }
3219 drm_modeset_unlock_all(dev);
3220
3221 return 0;
3222 }
3223
3224 static int i915_wa_registers(struct seq_file *m, void *unused)
3225 {
3226 int i;
3227 int ret;
3228 struct intel_engine_cs *ring;
3229 struct drm_info_node *node = (struct drm_info_node *) m->private;
3230 struct drm_device *dev = node->minor->dev;
3231 struct drm_i915_private *dev_priv = dev->dev_private;
3232 struct i915_workarounds *workarounds = &dev_priv->workarounds;
3233
3234 ret = mutex_lock_interruptible(&dev->struct_mutex);
3235 if (ret)
3236 return ret;
3237
3238 intel_runtime_pm_get(dev_priv);
3239
3240 seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3241 for_each_ring(ring, dev_priv, i)
3242 seq_printf(m, "HW whitelist count for %s: %d\n",
3243 ring->name, workarounds->hw_whitelist_count[i]);
3244 for (i = 0; i < workarounds->count; ++i) {
3245 i915_reg_t addr;
3246 u32 mask, value, read;
3247 bool ok;
3248
3249 addr = workarounds->reg[i].addr;
3250 mask = workarounds->reg[i].mask;
3251 value = workarounds->reg[i].value;
3252 read = I915_READ(addr);
3253 ok = (value & mask) == (read & mask);
3254 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3255 i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3256 }
3257
3258 intel_runtime_pm_put(dev_priv);
3259 mutex_unlock(&dev->struct_mutex);
3260
3261 return 0;
3262 }
3263
3264 static int i915_ddb_info(struct seq_file *m, void *unused)
3265 {
3266 struct drm_info_node *node = m->private;
3267 struct drm_device *dev = node->minor->dev;
3268 struct drm_i915_private *dev_priv = dev->dev_private;
3269 struct skl_ddb_allocation *ddb;
3270 struct skl_ddb_entry *entry;
3271 enum pipe pipe;
3272 int plane;
3273
3274 if (INTEL_INFO(dev)->gen < 9)
3275 return 0;
3276
3277 drm_modeset_lock_all(dev);
3278
3279 ddb = &dev_priv->wm.skl_hw.ddb;
3280
3281 seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3282
3283 for_each_pipe(dev_priv, pipe) {
3284 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3285
3286 for_each_plane(dev_priv, pipe, plane) {
3287 entry = &ddb->plane[pipe][plane];
3288 seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
3289 entry->start, entry->end,
3290 skl_ddb_entry_size(entry));
3291 }
3292
3293 entry = &ddb->plane[pipe][PLANE_CURSOR];
3294 seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
3295 entry->end, skl_ddb_entry_size(entry));
3296 }
3297
3298 drm_modeset_unlock_all(dev);
3299
3300 return 0;
3301 }
3302
3303 static void drrs_status_per_crtc(struct seq_file *m,
3304 struct drm_device *dev, struct intel_crtc *intel_crtc)
3305 {
3306 struct intel_encoder *intel_encoder;
3307 struct drm_i915_private *dev_priv = dev->dev_private;
3308 struct i915_drrs *drrs = &dev_priv->drrs;
3309 int vrefresh = 0;
3310
3311 for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
3312 /* Encoder connected on this CRTC */
3313 switch (intel_encoder->type) {
3314 case INTEL_OUTPUT_EDP:
3315 seq_puts(m, "eDP:\n");
3316 break;
3317 case INTEL_OUTPUT_DSI:
3318 seq_puts(m, "DSI:\n");
3319 break;
3320 case INTEL_OUTPUT_HDMI:
3321 seq_puts(m, "HDMI:\n");
3322 break;
3323 case INTEL_OUTPUT_DISPLAYPORT:
3324 seq_puts(m, "DP:\n");
3325 break;
3326 default:
3327 seq_printf(m, "Other encoder (id=%d).\n",
3328 intel_encoder->type);
3329 return;
3330 }
3331 }
3332
3333 if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3334 seq_puts(m, "\tVBT: DRRS_type: Static");
3335 else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3336 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3337 else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3338 seq_puts(m, "\tVBT: DRRS_type: None");
3339 else
3340 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3341
3342 seq_puts(m, "\n\n");
3343
3344 if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3345 struct intel_panel *panel;
3346
3347 mutex_lock(&drrs->mutex);
3348 /* DRRS Supported */
3349 seq_puts(m, "\tDRRS Supported: Yes\n");
3350
3351 /* disable_drrs() will make drrs->dp NULL */
3352 if (!drrs->dp) {
3353 seq_puts(m, "Idleness DRRS: Disabled");
3354 mutex_unlock(&drrs->mutex);
3355 return;
3356 }
3357
3358 panel = &drrs->dp->attached_connector->panel;
3359 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3360 drrs->busy_frontbuffer_bits);
3361
3362 seq_puts(m, "\n\t\t");
3363 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3364 seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3365 vrefresh = panel->fixed_mode->vrefresh;
3366 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3367 seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3368 vrefresh = panel->downclock_mode->vrefresh;
3369 } else {
3370 seq_printf(m, "DRRS_State: Unknown(%d)\n",
3371 drrs->refresh_rate_type);
3372 mutex_unlock(&drrs->mutex);
3373 return;
3374 }
3375 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3376
3377 seq_puts(m, "\n\t\t");
3378 mutex_unlock(&drrs->mutex);
3379 } else {
3380 /* DRRS not supported. Print the VBT parameter*/
3381 seq_puts(m, "\tDRRS Supported : No");
3382 }
3383 seq_puts(m, "\n");
3384 }
3385
3386 static int i915_drrs_status(struct seq_file *m, void *unused)
3387 {
3388 struct drm_info_node *node = m->private;
3389 struct drm_device *dev = node->minor->dev;
3390 struct intel_crtc *intel_crtc;
3391 int active_crtc_cnt = 0;
3392
3393 for_each_intel_crtc(dev, intel_crtc) {
3394 drm_modeset_lock(&intel_crtc->base.mutex, NULL);
3395
3396 if (intel_crtc->base.state->active) {
3397 active_crtc_cnt++;
3398 seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
3399
3400 drrs_status_per_crtc(m, dev, intel_crtc);
3401 }
3402
3403 drm_modeset_unlock(&intel_crtc->base.mutex);
3404 }
3405
3406 if (!active_crtc_cnt)
3407 seq_puts(m, "No active crtc found\n");
3408
3409 return 0;
3410 }
3411
3412 struct pipe_crc_info {
3413 const char *name;
3414 struct drm_device *dev;
3415 enum pipe pipe;
3416 };
3417
3418 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3419 {
3420 struct drm_info_node *node = (struct drm_info_node *) m->private;
3421 struct drm_device *dev = node->minor->dev;
3422 struct drm_encoder *encoder;
3423 struct intel_encoder *intel_encoder;
3424 struct intel_digital_port *intel_dig_port;
3425 drm_modeset_lock_all(dev);
3426 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3427 intel_encoder = to_intel_encoder(encoder);
3428 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
3429 continue;
3430 intel_dig_port = enc_to_dig_port(encoder);
3431 if (!intel_dig_port->dp.can_mst)
3432 continue;
3433
3434 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3435 }
3436 drm_modeset_unlock_all(dev);
3437 return 0;
3438 }
3439
3440 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3441 {
3442 struct pipe_crc_info *info = inode->i_private;
3443 struct drm_i915_private *dev_priv = info->dev->dev_private;
3444 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3445
3446 if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3447 return -ENODEV;
3448
3449 spin_lock_irq(&pipe_crc->lock);
3450
3451 if (pipe_crc->opened) {
3452 spin_unlock_irq(&pipe_crc->lock);
3453 return -EBUSY; /* already open */
3454 }
3455
3456 pipe_crc->opened = true;
3457 filep->private_data = inode->i_private;
3458
3459 spin_unlock_irq(&pipe_crc->lock);
3460
3461 return 0;
3462 }
3463
3464 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3465 {
3466 struct pipe_crc_info *info = inode->i_private;
3467 struct drm_i915_private *dev_priv = info->dev->dev_private;
3468 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3469
3470 spin_lock_irq(&pipe_crc->lock);
3471 pipe_crc->opened = false;
3472 spin_unlock_irq(&pipe_crc->lock);
3473
3474 return 0;
3475 }
3476
3477 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3478 #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
3479 /* account for \'0' */
3480 #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
3481
3482 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3483 {
3484 assert_spin_locked(&pipe_crc->lock);
3485 return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3486 INTEL_PIPE_CRC_ENTRIES_NR);
3487 }
3488
3489 static ssize_t
3490 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3491 loff_t *pos)
3492 {
3493 struct pipe_crc_info *info = filep->private_data;
3494 struct drm_device *dev = info->dev;
3495 struct drm_i915_private *dev_priv = dev->dev_private;
3496 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3497 char buf[PIPE_CRC_BUFFER_LEN];
3498 int n_entries;
3499 ssize_t bytes_read;
3500
3501 /*
3502 * Don't allow user space to provide buffers not big enough to hold
3503 * a line of data.
3504 */
3505 if (count < PIPE_CRC_LINE_LEN)
3506 return -EINVAL;
3507
3508 if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3509 return 0;
3510
3511 /* nothing to read */
3512 spin_lock_irq(&pipe_crc->lock);
3513 while (pipe_crc_data_count(pipe_crc) == 0) {
3514 int ret;
3515
3516 if (filep->f_flags & O_NONBLOCK) {
3517 spin_unlock_irq(&pipe_crc->lock);
3518 return -EAGAIN;
3519 }
3520
3521 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3522 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3523 if (ret) {
3524 spin_unlock_irq(&pipe_crc->lock);
3525 return ret;
3526 }
3527 }
3528
3529 /* We now have one or more entries to read */
3530 n_entries = count / PIPE_CRC_LINE_LEN;
3531
3532 bytes_read = 0;
3533 while (n_entries > 0) {
3534 struct intel_pipe_crc_entry *entry =
3535 &pipe_crc->entries[pipe_crc->tail];
3536 int ret;
3537
3538 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3539 INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3540 break;
3541
3542 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3543 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3544
3545 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3546 "%8u %8x %8x %8x %8x %8x\n",
3547 entry->frame, entry->crc[0],
3548 entry->crc[1], entry->crc[2],
3549 entry->crc[3], entry->crc[4]);
3550
3551 spin_unlock_irq(&pipe_crc->lock);
3552
3553 ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3554 if (ret == PIPE_CRC_LINE_LEN)
3555 return -EFAULT;
3556
3557 user_buf += PIPE_CRC_LINE_LEN;
3558 n_entries--;
3559
3560 spin_lock_irq(&pipe_crc->lock);
3561 }
3562
3563 spin_unlock_irq(&pipe_crc->lock);
3564
3565 return bytes_read;
3566 }
3567
3568 static const struct file_operations i915_pipe_crc_fops = {
3569 .owner = THIS_MODULE,
3570 .open = i915_pipe_crc_open,
3571 .read = i915_pipe_crc_read,
3572 .release = i915_pipe_crc_release,
3573 };
3574
3575 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3576 {
3577 .name = "i915_pipe_A_crc",
3578 .pipe = PIPE_A,
3579 },
3580 {
3581 .name = "i915_pipe_B_crc",
3582 .pipe = PIPE_B,
3583 },
3584 {
3585 .name = "i915_pipe_C_crc",
3586 .pipe = PIPE_C,
3587 },
3588 };
3589
3590 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3591 enum pipe pipe)
3592 {
3593 struct drm_device *dev = minor->dev;
3594 struct dentry *ent;
3595 struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3596
3597 info->dev = dev;
3598 ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3599 &i915_pipe_crc_fops);
3600 if (!ent)
3601 return -ENOMEM;
3602
3603 return drm_add_fake_info_node(minor, ent, info);
3604 }
3605
3606 static const char * const pipe_crc_sources[] = {
3607 "none",
3608 "plane1",
3609 "plane2",
3610 "pf",
3611 "pipe",
3612 "TV",
3613 "DP-B",
3614 "DP-C",
3615 "DP-D",
3616 "auto",
3617 };
3618
3619 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3620 {
3621 BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3622 return pipe_crc_sources[source];
3623 }
3624
3625 static int display_crc_ctl_show(struct seq_file *m, void *data)
3626 {
3627 struct drm_device *dev = m->private;
3628 struct drm_i915_private *dev_priv = dev->dev_private;
3629 int i;
3630
3631 for (i = 0; i < I915_MAX_PIPES; i++)
3632 seq_printf(m, "%c %s\n", pipe_name(i),
3633 pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3634
3635 return 0;
3636 }
3637
3638 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3639 {
3640 struct drm_device *dev = inode->i_private;
3641
3642 return single_open(file, display_crc_ctl_show, dev);
3643 }
3644
3645 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3646 uint32_t *val)
3647 {
3648 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3649 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3650
3651 switch (*source) {
3652 case INTEL_PIPE_CRC_SOURCE_PIPE:
3653 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3654 break;
3655 case INTEL_PIPE_CRC_SOURCE_NONE:
3656 *val = 0;
3657 break;
3658 default:
3659 return -EINVAL;
3660 }
3661
3662 return 0;
3663 }
3664
3665 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3666 enum intel_pipe_crc_source *source)
3667 {
3668 struct intel_encoder *encoder;
3669 struct intel_crtc *crtc;
3670 struct intel_digital_port *dig_port;
3671 int ret = 0;
3672
3673 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3674
3675 drm_modeset_lock_all(dev);
3676 for_each_intel_encoder(dev, encoder) {
3677 if (!encoder->base.crtc)
3678 continue;
3679
3680 crtc = to_intel_crtc(encoder->base.crtc);
3681
3682 if (crtc->pipe != pipe)
3683 continue;
3684
3685 switch (encoder->type) {
3686 case INTEL_OUTPUT_TVOUT:
3687 *source = INTEL_PIPE_CRC_SOURCE_TV;
3688 break;
3689 case INTEL_OUTPUT_DISPLAYPORT:
3690 case INTEL_OUTPUT_EDP:
3691 dig_port = enc_to_dig_port(&encoder->base);
3692 switch (dig_port->port) {
3693 case PORT_B:
3694 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3695 break;
3696 case PORT_C:
3697 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3698 break;
3699 case PORT_D:
3700 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3701 break;
3702 default:
3703 WARN(1, "nonexisting DP port %c\n",
3704 port_name(dig_port->port));
3705 break;
3706 }
3707 break;
3708 default:
3709 break;
3710 }
3711 }
3712 drm_modeset_unlock_all(dev);
3713
3714 return ret;
3715 }
3716
3717 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3718 enum pipe pipe,
3719 enum intel_pipe_crc_source *source,
3720 uint32_t *val)
3721 {
3722 struct drm_i915_private *dev_priv = dev->dev_private;
3723 bool need_stable_symbols = false;
3724
3725 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3726 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3727 if (ret)
3728 return ret;
3729 }
3730
3731 switch (*source) {
3732 case INTEL_PIPE_CRC_SOURCE_PIPE:
3733 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3734 break;
3735 case INTEL_PIPE_CRC_SOURCE_DP_B:
3736 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3737 need_stable_symbols = true;
3738 break;
3739 case INTEL_PIPE_CRC_SOURCE_DP_C:
3740 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3741 need_stable_symbols = true;
3742 break;
3743 case INTEL_PIPE_CRC_SOURCE_DP_D:
3744 if (!IS_CHERRYVIEW(dev))
3745 return -EINVAL;
3746 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3747 need_stable_symbols = true;
3748 break;
3749 case INTEL_PIPE_CRC_SOURCE_NONE:
3750 *val = 0;
3751 break;
3752 default:
3753 return -EINVAL;
3754 }
3755
3756 /*
3757 * When the pipe CRC tap point is after the transcoders we need
3758 * to tweak symbol-level features to produce a deterministic series of
3759 * symbols for a given frame. We need to reset those features only once
3760 * a frame (instead of every nth symbol):
3761 * - DC-balance: used to ensure a better clock recovery from the data
3762 * link (SDVO)
3763 * - DisplayPort scrambling: used for EMI reduction
3764 */
3765 if (need_stable_symbols) {
3766 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3767
3768 tmp |= DC_BALANCE_RESET_VLV;
3769 switch (pipe) {
3770 case PIPE_A:
3771 tmp |= PIPE_A_SCRAMBLE_RESET;
3772 break;
3773 case PIPE_B:
3774 tmp |= PIPE_B_SCRAMBLE_RESET;
3775 break;
3776 case PIPE_C:
3777 tmp |= PIPE_C_SCRAMBLE_RESET;
3778 break;
3779 default:
3780 return -EINVAL;
3781 }
3782 I915_WRITE(PORT_DFT2_G4X, tmp);
3783 }
3784
3785 return 0;
3786 }
3787
3788 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3789 enum pipe pipe,
3790 enum intel_pipe_crc_source *source,
3791 uint32_t *val)
3792 {
3793 struct drm_i915_private *dev_priv = dev->dev_private;
3794 bool need_stable_symbols = false;
3795
3796 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3797 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3798 if (ret)
3799 return ret;
3800 }
3801
3802 switch (*source) {
3803 case INTEL_PIPE_CRC_SOURCE_PIPE:
3804 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3805 break;
3806 case INTEL_PIPE_CRC_SOURCE_TV:
3807 if (!SUPPORTS_TV(dev))
3808 return -EINVAL;
3809 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3810 break;
3811 case INTEL_PIPE_CRC_SOURCE_DP_B:
3812 if (!IS_G4X(dev))
3813 return -EINVAL;
3814 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3815 need_stable_symbols = true;
3816 break;
3817 case INTEL_PIPE_CRC_SOURCE_DP_C:
3818 if (!IS_G4X(dev))
3819 return -EINVAL;
3820 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3821 need_stable_symbols = true;
3822 break;
3823 case INTEL_PIPE_CRC_SOURCE_DP_D:
3824 if (!IS_G4X(dev))
3825 return -EINVAL;
3826 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3827 need_stable_symbols = true;
3828 break;
3829 case INTEL_PIPE_CRC_SOURCE_NONE:
3830 *val = 0;
3831 break;
3832 default:
3833 return -EINVAL;
3834 }
3835
3836 /*
3837 * When the pipe CRC tap point is after the transcoders we need
3838 * to tweak symbol-level features to produce a deterministic series of
3839 * symbols for a given frame. We need to reset those features only once
3840 * a frame (instead of every nth symbol):
3841 * - DC-balance: used to ensure a better clock recovery from the data
3842 * link (SDVO)
3843 * - DisplayPort scrambling: used for EMI reduction
3844 */
3845 if (need_stable_symbols) {
3846 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3847
3848 WARN_ON(!IS_G4X(dev));
3849
3850 I915_WRITE(PORT_DFT_I9XX,
3851 I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3852
3853 if (pipe == PIPE_A)
3854 tmp |= PIPE_A_SCRAMBLE_RESET;
3855 else
3856 tmp |= PIPE_B_SCRAMBLE_RESET;
3857
3858 I915_WRITE(PORT_DFT2_G4X, tmp);
3859 }
3860
3861 return 0;
3862 }
3863
3864 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3865 enum pipe pipe)
3866 {
3867 struct drm_i915_private *dev_priv = dev->dev_private;
3868 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3869
3870 switch (pipe) {
3871 case PIPE_A:
3872 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3873 break;
3874 case PIPE_B:
3875 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3876 break;
3877 case PIPE_C:
3878 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3879 break;
3880 default:
3881 return;
3882 }
3883 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3884 tmp &= ~DC_BALANCE_RESET_VLV;
3885 I915_WRITE(PORT_DFT2_G4X, tmp);
3886
3887 }
3888
3889 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3890 enum pipe pipe)
3891 {
3892 struct drm_i915_private *dev_priv = dev->dev_private;
3893 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3894
3895 if (pipe == PIPE_A)
3896 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3897 else
3898 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3899 I915_WRITE(PORT_DFT2_G4X, tmp);
3900
3901 if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3902 I915_WRITE(PORT_DFT_I9XX,
3903 I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3904 }
3905 }
3906
3907 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3908 uint32_t *val)
3909 {
3910 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3911 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3912
3913 switch (*source) {
3914 case INTEL_PIPE_CRC_SOURCE_PLANE1:
3915 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3916 break;
3917 case INTEL_PIPE_CRC_SOURCE_PLANE2:
3918 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3919 break;
3920 case INTEL_PIPE_CRC_SOURCE_PIPE:
3921 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3922 break;
3923 case INTEL_PIPE_CRC_SOURCE_NONE:
3924 *val = 0;
3925 break;
3926 default:
3927 return -EINVAL;
3928 }
3929
3930 return 0;
3931 }
3932
3933 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
3934 {
3935 struct drm_i915_private *dev_priv = dev->dev_private;
3936 struct intel_crtc *crtc =
3937 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3938 struct intel_crtc_state *pipe_config;
3939 struct drm_atomic_state *state;
3940 int ret = 0;
3941
3942 drm_modeset_lock_all(dev);
3943 state = drm_atomic_state_alloc(dev);
3944 if (!state) {
3945 ret = -ENOMEM;
3946 goto out;
3947 }
3948
3949 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
3950 pipe_config = intel_atomic_get_crtc_state(state, crtc);
3951 if (IS_ERR(pipe_config)) {
3952 ret = PTR_ERR(pipe_config);
3953 goto out;
3954 }
3955
3956 pipe_config->pch_pfit.force_thru = enable;
3957 if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
3958 pipe_config->pch_pfit.enabled != enable)
3959 pipe_config->base.connectors_changed = true;
3960
3961 ret = drm_atomic_commit(state);
3962 out:
3963 drm_modeset_unlock_all(dev);
3964 WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
3965 if (ret)
3966 drm_atomic_state_free(state);
3967 }
3968
3969 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3970 enum pipe pipe,
3971 enum intel_pipe_crc_source *source,
3972 uint32_t *val)
3973 {
3974 if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3975 *source = INTEL_PIPE_CRC_SOURCE_PF;
3976
3977 switch (*source) {
3978 case INTEL_PIPE_CRC_SOURCE_PLANE1:
3979 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3980 break;
3981 case INTEL_PIPE_CRC_SOURCE_PLANE2:
3982 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3983 break;
3984 case INTEL_PIPE_CRC_SOURCE_PF:
3985 if (IS_HASWELL(dev) && pipe == PIPE_A)
3986 hsw_trans_edp_pipe_A_crc_wa(dev, true);
3987
3988 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3989 break;
3990 case INTEL_PIPE_CRC_SOURCE_NONE:
3991 *val = 0;
3992 break;
3993 default:
3994 return -EINVAL;
3995 }
3996
3997 return 0;
3998 }
3999
4000 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
4001 enum intel_pipe_crc_source source)
4002 {
4003 struct drm_i915_private *dev_priv = dev->dev_private;
4004 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4005 struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
4006 pipe));
4007 u32 val = 0; /* shut up gcc */
4008 int ret;
4009
4010 if (pipe_crc->source == source)
4011 return 0;
4012
4013 /* forbid changing the source without going back to 'none' */
4014 if (pipe_crc->source && source)
4015 return -EINVAL;
4016
4017 if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) {
4018 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
4019 return -EIO;
4020 }
4021
4022 if (IS_GEN2(dev))
4023 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
4024 else if (INTEL_INFO(dev)->gen < 5)
4025 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4026 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4027 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4028 else if (IS_GEN5(dev) || IS_GEN6(dev))
4029 ret = ilk_pipe_crc_ctl_reg(&source, &val);
4030 else
4031 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4032
4033 if (ret != 0)
4034 return ret;
4035
4036 /* none -> real source transition */
4037 if (source) {
4038 struct intel_pipe_crc_entry *entries;
4039
4040 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
4041 pipe_name(pipe), pipe_crc_source_name(source));
4042
4043 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
4044 sizeof(pipe_crc->entries[0]),
4045 GFP_KERNEL);
4046 if (!entries)
4047 return -ENOMEM;
4048
4049 /*
4050 * When IPS gets enabled, the pipe CRC changes. Since IPS gets
4051 * enabled and disabled dynamically based on package C states,
4052 * user space can't make reliable use of the CRCs, so let's just
4053 * completely disable it.
4054 */
4055 hsw_disable_ips(crtc);
4056
4057 spin_lock_irq(&pipe_crc->lock);
4058 kfree(pipe_crc->entries);
4059 pipe_crc->entries = entries;
4060 pipe_crc->head = 0;
4061 pipe_crc->tail = 0;
4062 spin_unlock_irq(&pipe_crc->lock);
4063 }
4064
4065 pipe_crc->source = source;
4066
4067 I915_WRITE(PIPE_CRC_CTL(pipe), val);
4068 POSTING_READ(PIPE_CRC_CTL(pipe));
4069
4070 /* real source -> none transition */
4071 if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
4072 struct intel_pipe_crc_entry *entries;
4073 struct intel_crtc *crtc =
4074 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
4075
4076 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
4077 pipe_name(pipe));
4078
4079 drm_modeset_lock(&crtc->base.mutex, NULL);
4080 if (crtc->base.state->active)
4081 intel_wait_for_vblank(dev, pipe);
4082 drm_modeset_unlock(&crtc->base.mutex);
4083
4084 spin_lock_irq(&pipe_crc->lock);
4085 entries = pipe_crc->entries;
4086 pipe_crc->entries = NULL;
4087 pipe_crc->head = 0;
4088 pipe_crc->tail = 0;
4089 spin_unlock_irq(&pipe_crc->lock);
4090
4091 kfree(entries);
4092
4093 if (IS_G4X(dev))
4094 g4x_undo_pipe_scramble_reset(dev, pipe);
4095 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4096 vlv_undo_pipe_scramble_reset(dev, pipe);
4097 else if (IS_HASWELL(dev) && pipe == PIPE_A)
4098 hsw_trans_edp_pipe_A_crc_wa(dev, false);
4099
4100 hsw_enable_ips(crtc);
4101 }
4102
4103 return 0;
4104 }
4105
4106 /*
4107 * Parse pipe CRC command strings:
4108 * command: wsp* object wsp+ name wsp+ source wsp*
4109 * object: 'pipe'
4110 * name: (A | B | C)
4111 * source: (none | plane1 | plane2 | pf)
4112 * wsp: (#0x20 | #0x9 | #0xA)+
4113 *
4114 * eg.:
4115 * "pipe A plane1" -> Start CRC computations on plane1 of pipe A
4116 * "pipe A none" -> Stop CRC
4117 */
4118 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
4119 {
4120 int n_words = 0;
4121
4122 while (*buf) {
4123 char *end;
4124
4125 /* skip leading white space */
4126 buf = skip_spaces(buf);
4127 if (!*buf)
4128 break; /* end of buffer */
4129
4130 /* find end of word */
4131 for (end = buf; *end && !isspace(*end); end++)
4132 ;
4133
4134 if (n_words == max_words) {
4135 DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4136 max_words);
4137 return -EINVAL; /* ran out of words[] before bytes */
4138 }
4139
4140 if (*end)
4141 *end++ = '\0';
4142 words[n_words++] = buf;
4143 buf = end;
4144 }
4145
4146 return n_words;
4147 }
4148
4149 enum intel_pipe_crc_object {
4150 PIPE_CRC_OBJECT_PIPE,
4151 };
4152
4153 static const char * const pipe_crc_objects[] = {
4154 "pipe",
4155 };
4156
4157 static int
4158 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4159 {
4160 int i;
4161
4162 for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4163 if (!strcmp(buf, pipe_crc_objects[i])) {
4164 *o = i;
4165 return 0;
4166 }
4167
4168 return -EINVAL;
4169 }
4170
4171 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4172 {
4173 const char name = buf[0];
4174
4175 if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4176 return -EINVAL;
4177
4178 *pipe = name - 'A';
4179
4180 return 0;
4181 }
4182
4183 static int
4184 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4185 {
4186 int i;
4187
4188 for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4189 if (!strcmp(buf, pipe_crc_sources[i])) {
4190 *s = i;
4191 return 0;
4192 }
4193
4194 return -EINVAL;
4195 }
4196
4197 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
4198 {
4199 #define N_WORDS 3
4200 int n_words;
4201 char *words[N_WORDS];
4202 enum pipe pipe;
4203 enum intel_pipe_crc_object object;
4204 enum intel_pipe_crc_source source;
4205
4206 n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4207 if (n_words != N_WORDS) {
4208 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4209 N_WORDS);
4210 return -EINVAL;
4211 }
4212
4213 if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4214 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4215 return -EINVAL;
4216 }
4217
4218 if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4219 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4220 return -EINVAL;
4221 }
4222
4223 if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4224 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4225 return -EINVAL;
4226 }
4227
4228 return pipe_crc_set_source(dev, pipe, source);
4229 }
4230
4231 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4232 size_t len, loff_t *offp)
4233 {
4234 struct seq_file *m = file->private_data;
4235 struct drm_device *dev = m->private;
4236 char *tmpbuf;
4237 int ret;
4238
4239 if (len == 0)
4240 return 0;
4241
4242 if (len > PAGE_SIZE - 1) {
4243 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4244 PAGE_SIZE);
4245 return -E2BIG;
4246 }
4247
4248 tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4249 if (!tmpbuf)
4250 return -ENOMEM;
4251
4252 if (copy_from_user(tmpbuf, ubuf, len)) {
4253 ret = -EFAULT;
4254 goto out;
4255 }
4256 tmpbuf[len] = '\0';
4257
4258 ret = display_crc_ctl_parse(dev, tmpbuf, len);
4259
4260 out:
4261 kfree(tmpbuf);
4262 if (ret < 0)
4263 return ret;
4264
4265 *offp += len;
4266 return len;
4267 }
4268
4269 static const struct file_operations i915_display_crc_ctl_fops = {
4270 .owner = THIS_MODULE,
4271 .open = display_crc_ctl_open,
4272 .read = seq_read,
4273 .llseek = seq_lseek,
4274 .release = single_release,
4275 .write = display_crc_ctl_write
4276 };
4277
4278 static ssize_t i915_displayport_test_active_write(struct file *file,
4279 const char __user *ubuf,
4280 size_t len, loff_t *offp)
4281 {
4282 char *input_buffer;
4283 int status = 0;
4284 struct drm_device *dev;
4285 struct drm_connector *connector;
4286 struct list_head *connector_list;
4287 struct intel_dp *intel_dp;
4288 int val = 0;
4289
4290 dev = ((struct seq_file *)file->private_data)->private;
4291
4292 connector_list = &dev->mode_config.connector_list;
4293
4294 if (len == 0)
4295 return 0;
4296
4297 input_buffer = kmalloc(len + 1, GFP_KERNEL);
4298 if (!input_buffer)
4299 return -ENOMEM;
4300
4301 if (copy_from_user(input_buffer, ubuf, len)) {
4302 status = -EFAULT;
4303 goto out;
4304 }
4305
4306 input_buffer[len] = '\0';
4307 DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4308
4309 list_for_each_entry(connector, connector_list, head) {
4310
4311 if (connector->connector_type !=
4312 DRM_MODE_CONNECTOR_DisplayPort)
4313 continue;
4314
4315 if (connector->status == connector_status_connected &&
4316 connector->encoder != NULL) {
4317 intel_dp = enc_to_intel_dp(connector->encoder);
4318 status = kstrtoint(input_buffer, 10, &val);
4319 if (status < 0)
4320 goto out;
4321 DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4322 /* To prevent erroneous activation of the compliance
4323 * testing code, only accept an actual value of 1 here
4324 */
4325 if (val == 1)
4326 intel_dp->compliance_test_active = 1;
4327 else
4328 intel_dp->compliance_test_active = 0;
4329 }
4330 }
4331 out:
4332 kfree(input_buffer);
4333 if (status < 0)
4334 return status;
4335
4336 *offp += len;
4337 return len;
4338 }
4339
4340 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4341 {
4342 struct drm_device *dev = m->private;
4343 struct drm_connector *connector;
4344 struct list_head *connector_list = &dev->mode_config.connector_list;
4345 struct intel_dp *intel_dp;
4346
4347 list_for_each_entry(connector, connector_list, head) {
4348
4349 if (connector->connector_type !=
4350 DRM_MODE_CONNECTOR_DisplayPort)
4351 continue;
4352
4353 if (connector->status == connector_status_connected &&
4354 connector->encoder != NULL) {
4355 intel_dp = enc_to_intel_dp(connector->encoder);
4356 if (intel_dp->compliance_test_active)
4357 seq_puts(m, "1");
4358 else
4359 seq_puts(m, "0");
4360 } else
4361 seq_puts(m, "0");
4362 }
4363
4364 return 0;
4365 }
4366
4367 static int i915_displayport_test_active_open(struct inode *inode,
4368 struct file *file)
4369 {
4370 struct drm_device *dev = inode->i_private;
4371
4372 return single_open(file, i915_displayport_test_active_show, dev);
4373 }
4374
4375 static const struct file_operations i915_displayport_test_active_fops = {
4376 .owner = THIS_MODULE,
4377 .open = i915_displayport_test_active_open,
4378 .read = seq_read,
4379 .llseek = seq_lseek,
4380 .release = single_release,
4381 .write = i915_displayport_test_active_write
4382 };
4383
4384 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4385 {
4386 struct drm_device *dev = m->private;
4387 struct drm_connector *connector;
4388 struct list_head *connector_list = &dev->mode_config.connector_list;
4389 struct intel_dp *intel_dp;
4390
4391 list_for_each_entry(connector, connector_list, head) {
4392
4393 if (connector->connector_type !=
4394 DRM_MODE_CONNECTOR_DisplayPort)
4395 continue;
4396
4397 if (connector->status == connector_status_connected &&
4398 connector->encoder != NULL) {
4399 intel_dp = enc_to_intel_dp(connector->encoder);
4400 seq_printf(m, "%lx", intel_dp->compliance_test_data);
4401 } else
4402 seq_puts(m, "0");
4403 }
4404
4405 return 0;
4406 }
4407 static int i915_displayport_test_data_open(struct inode *inode,
4408 struct file *file)
4409 {
4410 struct drm_device *dev = inode->i_private;
4411
4412 return single_open(file, i915_displayport_test_data_show, dev);
4413 }
4414
4415 static const struct file_operations i915_displayport_test_data_fops = {
4416 .owner = THIS_MODULE,
4417 .open = i915_displayport_test_data_open,
4418 .read = seq_read,
4419 .llseek = seq_lseek,
4420 .release = single_release
4421 };
4422
4423 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4424 {
4425 struct drm_device *dev = m->private;
4426 struct drm_connector *connector;
4427 struct list_head *connector_list = &dev->mode_config.connector_list;
4428 struct intel_dp *intel_dp;
4429
4430 list_for_each_entry(connector, connector_list, head) {
4431
4432 if (connector->connector_type !=
4433 DRM_MODE_CONNECTOR_DisplayPort)
4434 continue;
4435
4436 if (connector->status == connector_status_connected &&
4437 connector->encoder != NULL) {
4438 intel_dp = enc_to_intel_dp(connector->encoder);
4439 seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4440 } else
4441 seq_puts(m, "0");
4442 }
4443
4444 return 0;
4445 }
4446
4447 static int i915_displayport_test_type_open(struct inode *inode,
4448 struct file *file)
4449 {
4450 struct drm_device *dev = inode->i_private;
4451
4452 return single_open(file, i915_displayport_test_type_show, dev);
4453 }
4454
4455 static const struct file_operations i915_displayport_test_type_fops = {
4456 .owner = THIS_MODULE,
4457 .open = i915_displayport_test_type_open,
4458 .read = seq_read,
4459 .llseek = seq_lseek,
4460 .release = single_release
4461 };
4462
4463 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4464 {
4465 struct drm_device *dev = m->private;
4466 int level;
4467 int num_levels;
4468
4469 if (IS_CHERRYVIEW(dev))
4470 num_levels = 3;
4471 else if (IS_VALLEYVIEW(dev))
4472 num_levels = 1;
4473 else
4474 num_levels = ilk_wm_max_level(dev) + 1;
4475
4476 drm_modeset_lock_all(dev);
4477
4478 for (level = 0; level < num_levels; level++) {
4479 unsigned int latency = wm[level];
4480
4481 /*
4482 * - WM1+ latency values in 0.5us units
4483 * - latencies are in us on gen9/vlv/chv
4484 */
4485 if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev) ||
4486 IS_CHERRYVIEW(dev))
4487 latency *= 10;
4488 else if (level > 0)
4489 latency *= 5;
4490
4491 seq_printf(m, "WM%d %u (%u.%u usec)\n",
4492 level, wm[level], latency / 10, latency % 10);
4493 }
4494
4495 drm_modeset_unlock_all(dev);
4496 }
4497
4498 static int pri_wm_latency_show(struct seq_file *m, void *data)
4499 {
4500 struct drm_device *dev = m->private;
4501 struct drm_i915_private *dev_priv = dev->dev_private;
4502 const uint16_t *latencies;
4503
4504 if (INTEL_INFO(dev)->gen >= 9)
4505 latencies = dev_priv->wm.skl_latency;
4506 else
4507 latencies = to_i915(dev)->wm.pri_latency;
4508
4509 wm_latency_show(m, latencies);
4510
4511 return 0;
4512 }
4513
4514 static int spr_wm_latency_show(struct seq_file *m, void *data)
4515 {
4516 struct drm_device *dev = m->private;
4517 struct drm_i915_private *dev_priv = dev->dev_private;
4518 const uint16_t *latencies;
4519
4520 if (INTEL_INFO(dev)->gen >= 9)
4521 latencies = dev_priv->wm.skl_latency;
4522 else
4523 latencies = to_i915(dev)->wm.spr_latency;
4524
4525 wm_latency_show(m, latencies);
4526
4527 return 0;
4528 }
4529
4530 static int cur_wm_latency_show(struct seq_file *m, void *data)
4531 {
4532 struct drm_device *dev = m->private;
4533 struct drm_i915_private *dev_priv = dev->dev_private;
4534 const uint16_t *latencies;
4535
4536 if (INTEL_INFO(dev)->gen >= 9)
4537 latencies = dev_priv->wm.skl_latency;
4538 else
4539 latencies = to_i915(dev)->wm.cur_latency;
4540
4541 wm_latency_show(m, latencies);
4542
4543 return 0;
4544 }
4545
4546 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4547 {
4548 struct drm_device *dev = inode->i_private;
4549
4550 if (INTEL_INFO(dev)->gen < 5)
4551 return -ENODEV;
4552
4553 return single_open(file, pri_wm_latency_show, dev);
4554 }
4555
4556 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4557 {
4558 struct drm_device *dev = inode->i_private;
4559
4560 if (HAS_GMCH_DISPLAY(dev))
4561 return -ENODEV;
4562
4563 return single_open(file, spr_wm_latency_show, dev);
4564 }
4565
4566 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4567 {
4568 struct drm_device *dev = inode->i_private;
4569
4570 if (HAS_GMCH_DISPLAY(dev))
4571 return -ENODEV;
4572
4573 return single_open(file, cur_wm_latency_show, dev);
4574 }
4575
4576 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4577 size_t len, loff_t *offp, uint16_t wm[8])
4578 {
4579 struct seq_file *m = file->private_data;
4580 struct drm_device *dev = m->private;
4581 uint16_t new[8] = { 0 };
4582 int num_levels;
4583 int level;
4584 int ret;
4585 char tmp[32];
4586
4587 if (IS_CHERRYVIEW(dev))
4588 num_levels = 3;
4589 else if (IS_VALLEYVIEW(dev))
4590 num_levels = 1;
4591 else
4592 num_levels = ilk_wm_max_level(dev) + 1;
4593
4594 if (len >= sizeof(tmp))
4595 return -EINVAL;
4596
4597 if (copy_from_user(tmp, ubuf, len))
4598 return -EFAULT;
4599
4600 tmp[len] = '\0';
4601
4602 ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4603 &new[0], &new[1], &new[2], &new[3],
4604 &new[4], &new[5], &new[6], &new[7]);
4605 if (ret != num_levels)
4606 return -EINVAL;
4607
4608 drm_modeset_lock_all(dev);
4609
4610 for (level = 0; level < num_levels; level++)
4611 wm[level] = new[level];
4612
4613 drm_modeset_unlock_all(dev);
4614
4615 return len;
4616 }
4617
4618
4619 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4620 size_t len, loff_t *offp)
4621 {
4622 struct seq_file *m = file->private_data;
4623 struct drm_device *dev = m->private;
4624 struct drm_i915_private *dev_priv = dev->dev_private;
4625 uint16_t *latencies;
4626
4627 if (INTEL_INFO(dev)->gen >= 9)
4628 latencies = dev_priv->wm.skl_latency;
4629 else
4630 latencies = to_i915(dev)->wm.pri_latency;
4631
4632 return wm_latency_write(file, ubuf, len, offp, latencies);
4633 }
4634
4635 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4636 size_t len, loff_t *offp)
4637 {
4638 struct seq_file *m = file->private_data;
4639 struct drm_device *dev = m->private;
4640 struct drm_i915_private *dev_priv = dev->dev_private;
4641 uint16_t *latencies;
4642
4643 if (INTEL_INFO(dev)->gen >= 9)
4644 latencies = dev_priv->wm.skl_latency;
4645 else
4646 latencies = to_i915(dev)->wm.spr_latency;
4647
4648 return wm_latency_write(file, ubuf, len, offp, latencies);
4649 }
4650
4651 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4652 size_t len, loff_t *offp)
4653 {
4654 struct seq_file *m = file->private_data;
4655 struct drm_device *dev = m->private;
4656 struct drm_i915_private *dev_priv = dev->dev_private;
4657 uint16_t *latencies;
4658
4659 if (INTEL_INFO(dev)->gen >= 9)
4660 latencies = dev_priv->wm.skl_latency;
4661 else
4662 latencies = to_i915(dev)->wm.cur_latency;
4663
4664 return wm_latency_write(file, ubuf, len, offp, latencies);
4665 }
4666
4667 static const struct file_operations i915_pri_wm_latency_fops = {
4668 .owner = THIS_MODULE,
4669 .open = pri_wm_latency_open,
4670 .read = seq_read,
4671 .llseek = seq_lseek,
4672 .release = single_release,
4673 .write = pri_wm_latency_write
4674 };
4675
4676 static const struct file_operations i915_spr_wm_latency_fops = {
4677 .owner = THIS_MODULE,
4678 .open = spr_wm_latency_open,
4679 .read = seq_read,
4680 .llseek = seq_lseek,
4681 .release = single_release,
4682 .write = spr_wm_latency_write
4683 };
4684
4685 static const struct file_operations i915_cur_wm_latency_fops = {
4686 .owner = THIS_MODULE,
4687 .open = cur_wm_latency_open,
4688 .read = seq_read,
4689 .llseek = seq_lseek,
4690 .release = single_release,
4691 .write = cur_wm_latency_write
4692 };
4693
4694 static int
4695 i915_wedged_get(void *data, u64 *val)
4696 {
4697 struct drm_device *dev = data;
4698 struct drm_i915_private *dev_priv = dev->dev_private;
4699
4700 *val = atomic_read(&dev_priv->gpu_error.reset_counter);
4701
4702 return 0;
4703 }
4704
4705 static int
4706 i915_wedged_set(void *data, u64 val)
4707 {
4708 struct drm_device *dev = data;
4709 struct drm_i915_private *dev_priv = dev->dev_private;
4710
4711 /*
4712 * There is no safeguard against this debugfs entry colliding
4713 * with the hangcheck calling same i915_handle_error() in
4714 * parallel, causing an explosion. For now we assume that the
4715 * test harness is responsible enough not to inject gpu hangs
4716 * while it is writing to 'i915_wedged'
4717 */
4718
4719 if (i915_reset_in_progress(&dev_priv->gpu_error))
4720 return -EAGAIN;
4721
4722 intel_runtime_pm_get(dev_priv);
4723
4724 i915_handle_error(dev, val,
4725 "Manually setting wedged to %llu", val);
4726
4727 intel_runtime_pm_put(dev_priv);
4728
4729 return 0;
4730 }
4731
4732 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4733 i915_wedged_get, i915_wedged_set,
4734 "%llu\n");
4735
4736 static int
4737 i915_ring_stop_get(void *data, u64 *val)
4738 {
4739 struct drm_device *dev = data;
4740 struct drm_i915_private *dev_priv = dev->dev_private;
4741
4742 *val = dev_priv->gpu_error.stop_rings;
4743
4744 return 0;
4745 }
4746
4747 static int
4748 i915_ring_stop_set(void *data, u64 val)
4749 {
4750 struct drm_device *dev = data;
4751 struct drm_i915_private *dev_priv = dev->dev_private;
4752 int ret;
4753
4754 DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4755
4756 ret = mutex_lock_interruptible(&dev->struct_mutex);
4757 if (ret)
4758 return ret;
4759
4760 dev_priv->gpu_error.stop_rings = val;
4761 mutex_unlock(&dev->struct_mutex);
4762
4763 return 0;
4764 }
4765
4766 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4767 i915_ring_stop_get, i915_ring_stop_set,
4768 "0x%08llx\n");
4769
4770 static int
4771 i915_ring_missed_irq_get(void *data, u64 *val)
4772 {
4773 struct drm_device *dev = data;
4774 struct drm_i915_private *dev_priv = dev->dev_private;
4775
4776 *val = dev_priv->gpu_error.missed_irq_rings;
4777 return 0;
4778 }
4779
4780 static int
4781 i915_ring_missed_irq_set(void *data, u64 val)
4782 {
4783 struct drm_device *dev = data;
4784 struct drm_i915_private *dev_priv = dev->dev_private;
4785 int ret;
4786
4787 /* Lock against concurrent debugfs callers */
4788 ret = mutex_lock_interruptible(&dev->struct_mutex);
4789 if (ret)
4790 return ret;
4791 dev_priv->gpu_error.missed_irq_rings = val;
4792 mutex_unlock(&dev->struct_mutex);
4793
4794 return 0;
4795 }
4796
4797 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4798 i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4799 "0x%08llx\n");
4800
4801 static int
4802 i915_ring_test_irq_get(void *data, u64 *val)
4803 {
4804 struct drm_device *dev = data;
4805 struct drm_i915_private *dev_priv = dev->dev_private;
4806
4807 *val = dev_priv->gpu_error.test_irq_rings;
4808
4809 return 0;
4810 }
4811
4812 static int
4813 i915_ring_test_irq_set(void *data, u64 val)
4814 {
4815 struct drm_device *dev = data;
4816 struct drm_i915_private *dev_priv = dev->dev_private;
4817 int ret;
4818
4819 DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4820
4821 /* Lock against concurrent debugfs callers */
4822 ret = mutex_lock_interruptible(&dev->struct_mutex);
4823 if (ret)
4824 return ret;
4825
4826 dev_priv->gpu_error.test_irq_rings = val;
4827 mutex_unlock(&dev->struct_mutex);
4828
4829 return 0;
4830 }
4831
4832 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4833 i915_ring_test_irq_get, i915_ring_test_irq_set,
4834 "0x%08llx\n");
4835
4836 #define DROP_UNBOUND 0x1
4837 #define DROP_BOUND 0x2
4838 #define DROP_RETIRE 0x4
4839 #define DROP_ACTIVE 0x8
4840 #define DROP_ALL (DROP_UNBOUND | \
4841 DROP_BOUND | \
4842 DROP_RETIRE | \
4843 DROP_ACTIVE)
4844 static int
4845 i915_drop_caches_get(void *data, u64 *val)
4846 {
4847 *val = DROP_ALL;
4848
4849 return 0;
4850 }
4851
4852 static int
4853 i915_drop_caches_set(void *data, u64 val)
4854 {
4855 struct drm_device *dev = data;
4856 struct drm_i915_private *dev_priv = dev->dev_private;
4857 int ret;
4858
4859 DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4860
4861 /* No need to check and wait for gpu resets, only libdrm auto-restarts
4862 * on ioctls on -EAGAIN. */
4863 ret = mutex_lock_interruptible(&dev->struct_mutex);
4864 if (ret)
4865 return ret;
4866
4867 if (val & DROP_ACTIVE) {
4868 ret = i915_gpu_idle(dev);
4869 if (ret)
4870 goto unlock;
4871 }
4872
4873 if (val & (DROP_RETIRE | DROP_ACTIVE))
4874 i915_gem_retire_requests(dev);
4875
4876 if (val & DROP_BOUND)
4877 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4878
4879 if (val & DROP_UNBOUND)
4880 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4881
4882 unlock:
4883 mutex_unlock(&dev->struct_mutex);
4884
4885 return ret;
4886 }
4887
4888 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4889 i915_drop_caches_get, i915_drop_caches_set,
4890 "0x%08llx\n");
4891
4892 static int
4893 i915_max_freq_get(void *data, u64 *val)
4894 {
4895 struct drm_device *dev = data;
4896 struct drm_i915_private *dev_priv = dev->dev_private;
4897 int ret;
4898
4899 if (INTEL_INFO(dev)->gen < 6)
4900 return -ENODEV;
4901
4902 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4903
4904 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4905 if (ret)
4906 return ret;
4907
4908 *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4909 mutex_unlock(&dev_priv->rps.hw_lock);
4910
4911 return 0;
4912 }
4913
4914 static int
4915 i915_max_freq_set(void *data, u64 val)
4916 {
4917 struct drm_device *dev = data;
4918 struct drm_i915_private *dev_priv = dev->dev_private;
4919 u32 hw_max, hw_min;
4920 int ret;
4921
4922 if (INTEL_INFO(dev)->gen < 6)
4923 return -ENODEV;
4924
4925 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4926
4927 DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4928
4929 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4930 if (ret)
4931 return ret;
4932
4933 /*
4934 * Turbo will still be enabled, but won't go above the set value.
4935 */
4936 val = intel_freq_opcode(dev_priv, val);
4937
4938 hw_max = dev_priv->rps.max_freq;
4939 hw_min = dev_priv->rps.min_freq;
4940
4941 if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4942 mutex_unlock(&dev_priv->rps.hw_lock);
4943 return -EINVAL;
4944 }
4945
4946 dev_priv->rps.max_freq_softlimit = val;
4947
4948 intel_set_rps(dev, val);
4949
4950 mutex_unlock(&dev_priv->rps.hw_lock);
4951
4952 return 0;
4953 }
4954
4955 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4956 i915_max_freq_get, i915_max_freq_set,
4957 "%llu\n");
4958
4959 static int
4960 i915_min_freq_get(void *data, u64 *val)
4961 {
4962 struct drm_device *dev = data;
4963 struct drm_i915_private *dev_priv = dev->dev_private;
4964 int ret;
4965
4966 if (INTEL_INFO(dev)->gen < 6)
4967 return -ENODEV;
4968
4969 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4970
4971 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4972 if (ret)
4973 return ret;
4974
4975 *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4976 mutex_unlock(&dev_priv->rps.hw_lock);
4977
4978 return 0;
4979 }
4980
4981 static int
4982 i915_min_freq_set(void *data, u64 val)
4983 {
4984 struct drm_device *dev = data;
4985 struct drm_i915_private *dev_priv = dev->dev_private;
4986 u32 hw_max, hw_min;
4987 int ret;
4988
4989 if (INTEL_INFO(dev)->gen < 6)
4990 return -ENODEV;
4991
4992 flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4993
4994 DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4995
4996 ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4997 if (ret)
4998 return ret;
4999
5000 /*
5001 * Turbo will still be enabled, but won't go below the set value.
5002 */
5003 val = intel_freq_opcode(dev_priv, val);
5004
5005 hw_max = dev_priv->rps.max_freq;
5006 hw_min = dev_priv->rps.min_freq;
5007
5008 if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
5009 mutex_unlock(&dev_priv->rps.hw_lock);
5010 return -EINVAL;
5011 }
5012
5013 dev_priv->rps.min_freq_softlimit = val;
5014
5015 intel_set_rps(dev, val);
5016
5017 mutex_unlock(&dev_priv->rps.hw_lock);
5018
5019 return 0;
5020 }
5021
5022 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
5023 i915_min_freq_get, i915_min_freq_set,
5024 "%llu\n");
5025
5026 static int
5027 i915_cache_sharing_get(void *data, u64 *val)
5028 {
5029 struct drm_device *dev = data;
5030 struct drm_i915_private *dev_priv = dev->dev_private;
5031 u32 snpcr;
5032 int ret;
5033
5034 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5035 return -ENODEV;
5036
5037 ret = mutex_lock_interruptible(&dev->struct_mutex);
5038 if (ret)
5039 return ret;
5040 intel_runtime_pm_get(dev_priv);
5041
5042 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5043
5044 intel_runtime_pm_put(dev_priv);
5045 mutex_unlock(&dev_priv->dev->struct_mutex);
5046
5047 *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
5048
5049 return 0;
5050 }
5051
5052 static int
5053 i915_cache_sharing_set(void *data, u64 val)
5054 {
5055 struct drm_device *dev = data;
5056 struct drm_i915_private *dev_priv = dev->dev_private;
5057 u32 snpcr;
5058
5059 if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5060 return -ENODEV;
5061
5062 if (val > 3)
5063 return -EINVAL;
5064
5065 intel_runtime_pm_get(dev_priv);
5066 DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
5067
5068 /* Update the cache sharing policy here as well */
5069 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5070 snpcr &= ~GEN6_MBC_SNPCR_MASK;
5071 snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
5072 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5073
5074 intel_runtime_pm_put(dev_priv);
5075 return 0;
5076 }
5077
5078 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
5079 i915_cache_sharing_get, i915_cache_sharing_set,
5080 "%llu\n");
5081
5082 struct sseu_dev_status {
5083 unsigned int slice_total;
5084 unsigned int subslice_total;
5085 unsigned int subslice_per_slice;
5086 unsigned int eu_total;
5087 unsigned int eu_per_subslice;
5088 };
5089
5090 static void cherryview_sseu_device_status(struct drm_device *dev,
5091 struct sseu_dev_status *stat)
5092 {
5093 struct drm_i915_private *dev_priv = dev->dev_private;
5094 int ss_max = 2;
5095 int ss;
5096 u32 sig1[ss_max], sig2[ss_max];
5097
5098 sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
5099 sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
5100 sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
5101 sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
5102
5103 for (ss = 0; ss < ss_max; ss++) {
5104 unsigned int eu_cnt;
5105
5106 if (sig1[ss] & CHV_SS_PG_ENABLE)
5107 /* skip disabled subslice */
5108 continue;
5109
5110 stat->slice_total = 1;
5111 stat->subslice_per_slice++;
5112 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
5113 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
5114 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
5115 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
5116 stat->eu_total += eu_cnt;
5117 stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
5118 }
5119 stat->subslice_total = stat->subslice_per_slice;
5120 }
5121
5122 static void gen9_sseu_device_status(struct drm_device *dev,
5123 struct sseu_dev_status *stat)
5124 {
5125 struct drm_i915_private *dev_priv = dev->dev_private;
5126 int s_max = 3, ss_max = 4;
5127 int s, ss;
5128 u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5129
5130 /* BXT has a single slice and at most 3 subslices. */
5131 if (IS_BROXTON(dev)) {
5132 s_max = 1;
5133 ss_max = 3;
5134 }
5135
5136 for (s = 0; s < s_max; s++) {
5137 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5138 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5139 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5140 }
5141
5142 eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5143 GEN9_PGCTL_SSA_EU19_ACK |
5144 GEN9_PGCTL_SSA_EU210_ACK |
5145 GEN9_PGCTL_SSA_EU311_ACK;
5146 eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5147 GEN9_PGCTL_SSB_EU19_ACK |
5148 GEN9_PGCTL_SSB_EU210_ACK |
5149 GEN9_PGCTL_SSB_EU311_ACK;
5150
5151 for (s = 0; s < s_max; s++) {
5152 unsigned int ss_cnt = 0;
5153
5154 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5155 /* skip disabled slice */
5156 continue;
5157
5158 stat->slice_total++;
5159
5160 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
5161 ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
5162
5163 for (ss = 0; ss < ss_max; ss++) {
5164 unsigned int eu_cnt;
5165
5166 if (IS_BROXTON(dev) &&
5167 !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5168 /* skip disabled subslice */
5169 continue;
5170
5171 if (IS_BROXTON(dev))
5172 ss_cnt++;
5173
5174 eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5175 eu_mask[ss%2]);
5176 stat->eu_total += eu_cnt;
5177 stat->eu_per_subslice = max(stat->eu_per_subslice,
5178 eu_cnt);
5179 }
5180
5181 stat->subslice_total += ss_cnt;
5182 stat->subslice_per_slice = max(stat->subslice_per_slice,
5183 ss_cnt);
5184 }
5185 }
5186
5187 static void broadwell_sseu_device_status(struct drm_device *dev,
5188 struct sseu_dev_status *stat)
5189 {
5190 struct drm_i915_private *dev_priv = dev->dev_private;
5191 int s;
5192 u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5193
5194 stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
5195
5196 if (stat->slice_total) {
5197 stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
5198 stat->subslice_total = stat->slice_total *
5199 stat->subslice_per_slice;
5200 stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
5201 stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
5202
5203 /* subtract fused off EU(s) from enabled slice(s) */
5204 for (s = 0; s < stat->slice_total; s++) {
5205 u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
5206
5207 stat->eu_total -= hweight8(subslice_7eu);
5208 }
5209 }
5210 }
5211
5212 static int i915_sseu_status(struct seq_file *m, void *unused)
5213 {
5214 struct drm_info_node *node = (struct drm_info_node *) m->private;
5215 struct drm_device *dev = node->minor->dev;
5216 struct sseu_dev_status stat;
5217
5218 if (INTEL_INFO(dev)->gen < 8)
5219 return -ENODEV;
5220
5221 seq_puts(m, "SSEU Device Info\n");
5222 seq_printf(m, " Available Slice Total: %u\n",
5223 INTEL_INFO(dev)->slice_total);
5224 seq_printf(m, " Available Subslice Total: %u\n",
5225 INTEL_INFO(dev)->subslice_total);
5226 seq_printf(m, " Available Subslice Per Slice: %u\n",
5227 INTEL_INFO(dev)->subslice_per_slice);
5228 seq_printf(m, " Available EU Total: %u\n",
5229 INTEL_INFO(dev)->eu_total);
5230 seq_printf(m, " Available EU Per Subslice: %u\n",
5231 INTEL_INFO(dev)->eu_per_subslice);
5232 seq_printf(m, " Has Slice Power Gating: %s\n",
5233 yesno(INTEL_INFO(dev)->has_slice_pg));
5234 seq_printf(m, " Has Subslice Power Gating: %s\n",
5235 yesno(INTEL_INFO(dev)->has_subslice_pg));
5236 seq_printf(m, " Has EU Power Gating: %s\n",
5237 yesno(INTEL_INFO(dev)->has_eu_pg));
5238
5239 seq_puts(m, "SSEU Device Status\n");
5240 memset(&stat, 0, sizeof(stat));
5241 if (IS_CHERRYVIEW(dev)) {
5242 cherryview_sseu_device_status(dev, &stat);
5243 } else if (IS_BROADWELL(dev)) {
5244 broadwell_sseu_device_status(dev, &stat);
5245 } else if (INTEL_INFO(dev)->gen >= 9) {
5246 gen9_sseu_device_status(dev, &stat);
5247 }
5248 seq_printf(m, " Enabled Slice Total: %u\n",
5249 stat.slice_total);
5250 seq_printf(m, " Enabled Subslice Total: %u\n",
5251 stat.subslice_total);
5252 seq_printf(m, " Enabled Subslice Per Slice: %u\n",
5253 stat.subslice_per_slice);
5254 seq_printf(m, " Enabled EU Total: %u\n",
5255 stat.eu_total);
5256 seq_printf(m, " Enabled EU Per Subslice: %u\n",
5257 stat.eu_per_subslice);
5258
5259 return 0;
5260 }
5261
5262 static int i915_forcewake_open(struct inode *inode, struct file *file)
5263 {
5264 struct drm_device *dev = inode->i_private;
5265 struct drm_i915_private *dev_priv = dev->dev_private;
5266
5267 if (INTEL_INFO(dev)->gen < 6)
5268 return 0;
5269
5270 intel_runtime_pm_get(dev_priv);
5271 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5272
5273 return 0;
5274 }
5275
5276 static int i915_forcewake_release(struct inode *inode, struct file *file)
5277 {
5278 struct drm_device *dev = inode->i_private;
5279 struct drm_i915_private *dev_priv = dev->dev_private;
5280
5281 if (INTEL_INFO(dev)->gen < 6)
5282 return 0;
5283
5284 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5285 intel_runtime_pm_put(dev_priv);
5286
5287 return 0;
5288 }
5289
5290 static const struct file_operations i915_forcewake_fops = {
5291 .owner = THIS_MODULE,
5292 .open = i915_forcewake_open,
5293 .release = i915_forcewake_release,
5294 };
5295
5296 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5297 {
5298 struct drm_device *dev = minor->dev;
5299 struct dentry *ent;
5300
5301 ent = debugfs_create_file("i915_forcewake_user",
5302 S_IRUSR,
5303 root, dev,
5304 &i915_forcewake_fops);
5305 if (!ent)
5306 return -ENOMEM;
5307
5308 return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5309 }
5310
5311 static int i915_debugfs_create(struct dentry *root,
5312 struct drm_minor *minor,
5313 const char *name,
5314 const struct file_operations *fops)
5315 {
5316 struct drm_device *dev = minor->dev;
5317 struct dentry *ent;
5318
5319 ent = debugfs_create_file(name,
5320 S_IRUGO | S_IWUSR,
5321 root, dev,
5322 fops);
5323 if (!ent)
5324 return -ENOMEM;
5325
5326 return drm_add_fake_info_node(minor, ent, fops);
5327 }
5328
5329 static const struct drm_info_list i915_debugfs_list[] = {
5330 {"i915_capabilities", i915_capabilities, 0},
5331 {"i915_gem_objects", i915_gem_object_info, 0},
5332 {"i915_gem_gtt", i915_gem_gtt_info, 0},
5333 {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
5334 {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
5335 {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
5336 {"i915_gem_stolen", i915_gem_stolen_list_info },
5337 {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5338 {"i915_gem_request", i915_gem_request_info, 0},
5339 {"i915_gem_seqno", i915_gem_seqno_info, 0},
5340 {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5341 {"i915_gem_interrupt", i915_interrupt_info, 0},
5342 {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5343 {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5344 {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5345 {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5346 {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5347 {"i915_guc_info", i915_guc_info, 0},
5348 {"i915_guc_load_status", i915_guc_load_status_info, 0},
5349 {"i915_guc_log_dump", i915_guc_log_dump, 0},
5350 {"i915_frequency_info", i915_frequency_info, 0},
5351 {"i915_hangcheck_info", i915_hangcheck_info, 0},
5352 {"i915_drpc_info", i915_drpc_info, 0},
5353 {"i915_emon_status", i915_emon_status, 0},
5354 {"i915_ring_freq_table", i915_ring_freq_table, 0},
5355 {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5356 {"i915_fbc_status", i915_fbc_status, 0},
5357 {"i915_ips_status", i915_ips_status, 0},
5358 {"i915_sr_status", i915_sr_status, 0},
5359 {"i915_opregion", i915_opregion, 0},
5360 {"i915_vbt", i915_vbt, 0},
5361 {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5362 {"i915_context_status", i915_context_status, 0},
5363 {"i915_dump_lrc", i915_dump_lrc, 0},
5364 {"i915_execlists", i915_execlists, 0},
5365 {"i915_forcewake_domains", i915_forcewake_domains, 0},
5366 {"i915_swizzle_info", i915_swizzle_info, 0},
5367 {"i915_ppgtt_info", i915_ppgtt_info, 0},
5368 {"i915_llc", i915_llc, 0},
5369 {"i915_edp_psr_status", i915_edp_psr_status, 0},
5370 {"i915_sink_crc_eDP1", i915_sink_crc, 0},
5371 {"i915_energy_uJ", i915_energy_uJ, 0},
5372 {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5373 {"i915_power_domain_info", i915_power_domain_info, 0},
5374 {"i915_dmc_info", i915_dmc_info, 0},
5375 {"i915_display_info", i915_display_info, 0},
5376 {"i915_semaphore_status", i915_semaphore_status, 0},
5377 {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5378 {"i915_dp_mst_info", i915_dp_mst_info, 0},
5379 {"i915_wa_registers", i915_wa_registers, 0},
5380 {"i915_ddb_info", i915_ddb_info, 0},
5381 {"i915_sseu_status", i915_sseu_status, 0},
5382 {"i915_drrs_status", i915_drrs_status, 0},
5383 {"i915_rps_boost_info", i915_rps_boost_info, 0},
5384 };
5385 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5386
5387 static const struct i915_debugfs_files {
5388 const char *name;
5389 const struct file_operations *fops;
5390 } i915_debugfs_files[] = {
5391 {"i915_wedged", &i915_wedged_fops},
5392 {"i915_max_freq", &i915_max_freq_fops},
5393 {"i915_min_freq", &i915_min_freq_fops},
5394 {"i915_cache_sharing", &i915_cache_sharing_fops},
5395 {"i915_ring_stop", &i915_ring_stop_fops},
5396 {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5397 {"i915_ring_test_irq", &i915_ring_test_irq_fops},
5398 {"i915_gem_drop_caches", &i915_drop_caches_fops},
5399 {"i915_error_state", &i915_error_state_fops},
5400 {"i915_next_seqno", &i915_next_seqno_fops},
5401 {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5402 {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5403 {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5404 {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5405 {"i915_fbc_false_color", &i915_fbc_fc_fops},
5406 {"i915_dp_test_data", &i915_displayport_test_data_fops},
5407 {"i915_dp_test_type", &i915_displayport_test_type_fops},
5408 {"i915_dp_test_active", &i915_displayport_test_active_fops}
5409 };
5410
5411 void intel_display_crc_init(struct drm_device *dev)
5412 {
5413 struct drm_i915_private *dev_priv = dev->dev_private;
5414 enum pipe pipe;
5415
5416 for_each_pipe(dev_priv, pipe) {
5417 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5418
5419 pipe_crc->opened = false;
5420 spin_lock_init(&pipe_crc->lock);
5421 init_waitqueue_head(&pipe_crc->wq);
5422 }
5423 }
5424
5425 int i915_debugfs_init(struct drm_minor *minor)
5426 {
5427 int ret, i;
5428
5429 ret = i915_forcewake_create(minor->debugfs_root, minor);
5430 if (ret)
5431 return ret;
5432
5433 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5434 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5435 if (ret)
5436 return ret;
5437 }
5438
5439 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5440 ret = i915_debugfs_create(minor->debugfs_root, minor,
5441 i915_debugfs_files[i].name,
5442 i915_debugfs_files[i].fops);
5443 if (ret)
5444 return ret;
5445 }
5446
5447 return drm_debugfs_create_files(i915_debugfs_list,
5448 I915_DEBUGFS_ENTRIES,
5449 minor->debugfs_root, minor);
5450 }
5451
5452 void i915_debugfs_cleanup(struct drm_minor *minor)
5453 {
5454 int i;
5455
5456 drm_debugfs_remove_files(i915_debugfs_list,
5457 I915_DEBUGFS_ENTRIES, minor);
5458
5459 drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
5460 1, minor);
5461
5462 for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5463 struct drm_info_list *info_list =
5464 (struct drm_info_list *)&i915_pipe_crc_data[i];
5465
5466 drm_debugfs_remove_files(info_list, 1, minor);
5467 }
5468
5469 for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5470 struct drm_info_list *info_list =
5471 (struct drm_info_list *) i915_debugfs_files[i].fops;
5472
5473 drm_debugfs_remove_files(info_list, 1, minor);
5474 }
5475 }
5476
5477 struct dpcd_block {
5478 /* DPCD dump start address. */
5479 unsigned int offset;
5480 /* DPCD dump end address, inclusive. If unset, .size will be used. */
5481 unsigned int end;
5482 /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5483 size_t size;
5484 /* Only valid for eDP. */
5485 bool edp;
5486 };
5487
5488 static const struct dpcd_block i915_dpcd_debug[] = {
5489 { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5490 { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5491 { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5492 { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5493 { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5494 { .offset = DP_SET_POWER },
5495 { .offset = DP_EDP_DPCD_REV },
5496 { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5497 { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5498 { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5499 };
5500
5501 static int i915_dpcd_show(struct seq_file *m, void *data)
5502 {
5503 struct drm_connector *connector = m->private;
5504 struct intel_dp *intel_dp =
5505 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5506 uint8_t buf[16];
5507 ssize_t err;
5508 int i;
5509
5510 if (connector->status != connector_status_connected)
5511 return -ENODEV;
5512
5513 for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5514 const struct dpcd_block *b = &i915_dpcd_debug[i];
5515 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5516
5517 if (b->edp &&
5518 connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5519 continue;
5520
5521 /* low tech for now */
5522 if (WARN_ON(size > sizeof(buf)))
5523 continue;
5524
5525 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5526 if (err <= 0) {
5527 DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5528 size, b->offset, err);
5529 continue;
5530 }
5531
5532 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5533 }
5534
5535 return 0;
5536 }
5537
5538 static int i915_dpcd_open(struct inode *inode, struct file *file)
5539 {
5540 return single_open(file, i915_dpcd_show, inode->i_private);
5541 }
5542
5543 static const struct file_operations i915_dpcd_fops = {
5544 .owner = THIS_MODULE,
5545 .open = i915_dpcd_open,
5546 .read = seq_read,
5547 .llseek = seq_lseek,
5548 .release = single_release,
5549 };
5550
5551 /**
5552 * i915_debugfs_connector_add - add i915 specific connector debugfs files
5553 * @connector: pointer to a registered drm_connector
5554 *
5555 * Cleanup will be done by drm_connector_unregister() through a call to
5556 * drm_debugfs_connector_remove().
5557 *
5558 * Returns 0 on success, negative error codes on error.
5559 */
5560 int i915_debugfs_connector_add(struct drm_connector *connector)
5561 {
5562 struct dentry *root = connector->debugfs_entry;
5563
5564 /* The connector must have been registered beforehands. */
5565 if (!root)
5566 return -ENODEV;
5567
5568 if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5569 connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5570 debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
5571 &i915_dpcd_fops);
5572
5573 return 0;
5574 }