]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.c
iio: imu: inv_mpu6050: test whoami first and against all known values
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_drv.c
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #include <linux/acpi.h>
31 #include <linux/device.h>
32 #include <linux/oom.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/pm.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/pnp.h>
38 #include <linux/slab.h>
39 #include <linux/vgaarb.h>
40 #include <linux/vga_switcheroo.h>
41 #include <linux/vt.h>
42 #include <acpi/video.h>
43
44 #include <drm/drmP.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/drm_atomic_helper.h>
47 #include <drm/i915_drm.h>
48
49 #include "i915_drv.h"
50 #include "i915_trace.h"
51 #include "i915_vgpu.h"
52 #include "intel_drv.h"
53 #include "intel_uc.h"
54
55 static struct drm_driver driver;
56
57 static unsigned int i915_load_fail_count;
58
59 bool __i915_inject_load_failure(const char *func, int line)
60 {
61 if (i915_load_fail_count >= i915.inject_load_failure)
62 return false;
63
64 if (++i915_load_fail_count == i915.inject_load_failure) {
65 DRM_INFO("Injecting failure at checkpoint %u [%s:%d]\n",
66 i915.inject_load_failure, func, line);
67 return true;
68 }
69
70 return false;
71 }
72
73 #define FDO_BUG_URL "https://bugs.freedesktop.org/enter_bug.cgi?product=DRI"
74 #define FDO_BUG_MSG "Please file a bug at " FDO_BUG_URL " against DRM/Intel " \
75 "providing the dmesg log by booting with drm.debug=0xf"
76
77 void
78 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
79 const char *fmt, ...)
80 {
81 static bool shown_bug_once;
82 struct device *kdev = dev_priv->drm.dev;
83 bool is_error = level[1] <= KERN_ERR[1];
84 bool is_debug = level[1] == KERN_DEBUG[1];
85 struct va_format vaf;
86 va_list args;
87
88 if (is_debug && !(drm_debug & DRM_UT_DRIVER))
89 return;
90
91 va_start(args, fmt);
92
93 vaf.fmt = fmt;
94 vaf.va = &args;
95
96 dev_printk(level, kdev, "[" DRM_NAME ":%ps] %pV",
97 __builtin_return_address(0), &vaf);
98
99 if (is_error && !shown_bug_once) {
100 dev_notice(kdev, "%s", FDO_BUG_MSG);
101 shown_bug_once = true;
102 }
103
104 va_end(args);
105 }
106
107 static bool i915_error_injected(struct drm_i915_private *dev_priv)
108 {
109 return i915.inject_load_failure &&
110 i915_load_fail_count == i915.inject_load_failure;
111 }
112
113 #define i915_load_error(dev_priv, fmt, ...) \
114 __i915_printk(dev_priv, \
115 i915_error_injected(dev_priv) ? KERN_DEBUG : KERN_ERR, \
116 fmt, ##__VA_ARGS__)
117
118
119 static enum intel_pch intel_virt_detect_pch(struct drm_i915_private *dev_priv)
120 {
121 enum intel_pch ret = PCH_NOP;
122
123 /*
124 * In a virtualized passthrough environment we can be in a
125 * setup where the ISA bridge is not able to be passed through.
126 * In this case, a south bridge can be emulated and we have to
127 * make an educated guess as to which PCH is really there.
128 */
129
130 if (IS_GEN5(dev_priv)) {
131 ret = PCH_IBX;
132 DRM_DEBUG_KMS("Assuming Ibex Peak PCH\n");
133 } else if (IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv)) {
134 ret = PCH_CPT;
135 DRM_DEBUG_KMS("Assuming CouarPoint PCH\n");
136 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
137 ret = PCH_LPT;
138 DRM_DEBUG_KMS("Assuming LynxPoint PCH\n");
139 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
140 ret = PCH_SPT;
141 DRM_DEBUG_KMS("Assuming SunrisePoint PCH\n");
142 }
143
144 return ret;
145 }
146
147 static void intel_detect_pch(struct drm_i915_private *dev_priv)
148 {
149 struct pci_dev *pch = NULL;
150
151 /* In all current cases, num_pipes is equivalent to the PCH_NOP setting
152 * (which really amounts to a PCH but no South Display).
153 */
154 if (INTEL_INFO(dev_priv)->num_pipes == 0) {
155 dev_priv->pch_type = PCH_NOP;
156 return;
157 }
158
159 /*
160 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
161 * make graphics device passthrough work easy for VMM, that only
162 * need to expose ISA bridge to let driver know the real hardware
163 * underneath. This is a requirement from virtualization team.
164 *
165 * In some virtualized environments (e.g. XEN), there is irrelevant
166 * ISA bridge in the system. To work reliably, we should scan trhough
167 * all the ISA bridge devices and check for the first match, instead
168 * of only checking the first one.
169 */
170 while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
171 if (pch->vendor == PCI_VENDOR_ID_INTEL) {
172 unsigned short id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
173 dev_priv->pch_id = id;
174
175 if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
176 dev_priv->pch_type = PCH_IBX;
177 DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
178 WARN_ON(!IS_GEN5(dev_priv));
179 } else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
180 dev_priv->pch_type = PCH_CPT;
181 DRM_DEBUG_KMS("Found CougarPoint PCH\n");
182 WARN_ON(!(IS_GEN6(dev_priv) ||
183 IS_IVYBRIDGE(dev_priv)));
184 } else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
185 /* PantherPoint is CPT compatible */
186 dev_priv->pch_type = PCH_CPT;
187 DRM_DEBUG_KMS("Found PantherPoint PCH\n");
188 WARN_ON(!(IS_GEN6(dev_priv) ||
189 IS_IVYBRIDGE(dev_priv)));
190 } else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
191 dev_priv->pch_type = PCH_LPT;
192 DRM_DEBUG_KMS("Found LynxPoint PCH\n");
193 WARN_ON(!IS_HASWELL(dev_priv) &&
194 !IS_BROADWELL(dev_priv));
195 WARN_ON(IS_HSW_ULT(dev_priv) ||
196 IS_BDW_ULT(dev_priv));
197 } else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
198 dev_priv->pch_type = PCH_LPT;
199 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
200 WARN_ON(!IS_HASWELL(dev_priv) &&
201 !IS_BROADWELL(dev_priv));
202 WARN_ON(!IS_HSW_ULT(dev_priv) &&
203 !IS_BDW_ULT(dev_priv));
204 } else if (id == INTEL_PCH_SPT_DEVICE_ID_TYPE) {
205 dev_priv->pch_type = PCH_SPT;
206 DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
207 WARN_ON(!IS_SKYLAKE(dev_priv) &&
208 !IS_KABYLAKE(dev_priv));
209 } else if (id == INTEL_PCH_SPT_LP_DEVICE_ID_TYPE) {
210 dev_priv->pch_type = PCH_SPT;
211 DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
212 WARN_ON(!IS_SKYLAKE(dev_priv) &&
213 !IS_KABYLAKE(dev_priv));
214 } else if (id == INTEL_PCH_KBP_DEVICE_ID_TYPE) {
215 dev_priv->pch_type = PCH_KBP;
216 DRM_DEBUG_KMS("Found KabyPoint PCH\n");
217 WARN_ON(!IS_SKYLAKE(dev_priv) &&
218 !IS_KABYLAKE(dev_priv));
219 } else if ((id == INTEL_PCH_P2X_DEVICE_ID_TYPE) ||
220 (id == INTEL_PCH_P3X_DEVICE_ID_TYPE) ||
221 ((id == INTEL_PCH_QEMU_DEVICE_ID_TYPE) &&
222 pch->subsystem_vendor ==
223 PCI_SUBVENDOR_ID_REDHAT_QUMRANET &&
224 pch->subsystem_device ==
225 PCI_SUBDEVICE_ID_QEMU)) {
226 dev_priv->pch_type =
227 intel_virt_detect_pch(dev_priv);
228 } else
229 continue;
230
231 break;
232 }
233 }
234 if (!pch)
235 DRM_DEBUG_KMS("No PCH found.\n");
236
237 pci_dev_put(pch);
238 }
239
240 static int i915_getparam(struct drm_device *dev, void *data,
241 struct drm_file *file_priv)
242 {
243 struct drm_i915_private *dev_priv = to_i915(dev);
244 struct pci_dev *pdev = dev_priv->drm.pdev;
245 drm_i915_getparam_t *param = data;
246 int value;
247
248 switch (param->param) {
249 case I915_PARAM_IRQ_ACTIVE:
250 case I915_PARAM_ALLOW_BATCHBUFFER:
251 case I915_PARAM_LAST_DISPATCH:
252 case I915_PARAM_HAS_EXEC_CONSTANTS:
253 /* Reject all old ums/dri params. */
254 return -ENODEV;
255 case I915_PARAM_CHIPSET_ID:
256 value = pdev->device;
257 break;
258 case I915_PARAM_REVISION:
259 value = pdev->revision;
260 break;
261 case I915_PARAM_NUM_FENCES_AVAIL:
262 value = dev_priv->num_fence_regs;
263 break;
264 case I915_PARAM_HAS_OVERLAY:
265 value = dev_priv->overlay ? 1 : 0;
266 break;
267 case I915_PARAM_HAS_BSD:
268 value = !!dev_priv->engine[VCS];
269 break;
270 case I915_PARAM_HAS_BLT:
271 value = !!dev_priv->engine[BCS];
272 break;
273 case I915_PARAM_HAS_VEBOX:
274 value = !!dev_priv->engine[VECS];
275 break;
276 case I915_PARAM_HAS_BSD2:
277 value = !!dev_priv->engine[VCS2];
278 break;
279 case I915_PARAM_HAS_LLC:
280 value = HAS_LLC(dev_priv);
281 break;
282 case I915_PARAM_HAS_WT:
283 value = HAS_WT(dev_priv);
284 break;
285 case I915_PARAM_HAS_ALIASING_PPGTT:
286 value = USES_PPGTT(dev_priv);
287 break;
288 case I915_PARAM_HAS_SEMAPHORES:
289 value = i915.semaphores;
290 break;
291 case I915_PARAM_HAS_SECURE_BATCHES:
292 value = capable(CAP_SYS_ADMIN);
293 break;
294 case I915_PARAM_CMD_PARSER_VERSION:
295 value = i915_cmd_parser_get_version(dev_priv);
296 break;
297 case I915_PARAM_SUBSLICE_TOTAL:
298 value = sseu_subslice_total(&INTEL_INFO(dev_priv)->sseu);
299 if (!value)
300 return -ENODEV;
301 break;
302 case I915_PARAM_EU_TOTAL:
303 value = INTEL_INFO(dev_priv)->sseu.eu_total;
304 if (!value)
305 return -ENODEV;
306 break;
307 case I915_PARAM_HAS_GPU_RESET:
308 value = i915.enable_hangcheck && intel_has_gpu_reset(dev_priv);
309 break;
310 case I915_PARAM_HAS_RESOURCE_STREAMER:
311 value = HAS_RESOURCE_STREAMER(dev_priv);
312 break;
313 case I915_PARAM_HAS_POOLED_EU:
314 value = HAS_POOLED_EU(dev_priv);
315 break;
316 case I915_PARAM_MIN_EU_IN_POOL:
317 value = INTEL_INFO(dev_priv)->sseu.min_eu_in_pool;
318 break;
319 case I915_PARAM_HUC_STATUS:
320 intel_runtime_pm_get(dev_priv);
321 value = I915_READ(HUC_STATUS2) & HUC_FW_VERIFIED;
322 intel_runtime_pm_put(dev_priv);
323 break;
324 case I915_PARAM_MMAP_GTT_VERSION:
325 /* Though we've started our numbering from 1, and so class all
326 * earlier versions as 0, in effect their value is undefined as
327 * the ioctl will report EINVAL for the unknown param!
328 */
329 value = i915_gem_mmap_gtt_version();
330 break;
331 case I915_PARAM_HAS_SCHEDULER:
332 value = dev_priv->engine[RCS] &&
333 dev_priv->engine[RCS]->schedule;
334 break;
335 case I915_PARAM_MMAP_VERSION:
336 /* Remember to bump this if the version changes! */
337 case I915_PARAM_HAS_GEM:
338 case I915_PARAM_HAS_PAGEFLIPPING:
339 case I915_PARAM_HAS_EXECBUF2: /* depends on GEM */
340 case I915_PARAM_HAS_RELAXED_FENCING:
341 case I915_PARAM_HAS_COHERENT_RINGS:
342 case I915_PARAM_HAS_RELAXED_DELTA:
343 case I915_PARAM_HAS_GEN7_SOL_RESET:
344 case I915_PARAM_HAS_WAIT_TIMEOUT:
345 case I915_PARAM_HAS_PRIME_VMAP_FLUSH:
346 case I915_PARAM_HAS_PINNED_BATCHES:
347 case I915_PARAM_HAS_EXEC_NO_RELOC:
348 case I915_PARAM_HAS_EXEC_HANDLE_LUT:
349 case I915_PARAM_HAS_COHERENT_PHYS_GTT:
350 case I915_PARAM_HAS_EXEC_SOFTPIN:
351 case I915_PARAM_HAS_EXEC_ASYNC:
352 case I915_PARAM_HAS_EXEC_FENCE:
353 /* For the time being all of these are always true;
354 * if some supported hardware does not have one of these
355 * features this value needs to be provided from
356 * INTEL_INFO(), a feature macro, or similar.
357 */
358 value = 1;
359 break;
360 default:
361 DRM_DEBUG("Unknown parameter %d\n", param->param);
362 return -EINVAL;
363 }
364
365 if (put_user(value, param->value))
366 return -EFAULT;
367
368 return 0;
369 }
370
371 static int i915_get_bridge_dev(struct drm_i915_private *dev_priv)
372 {
373 dev_priv->bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0));
374 if (!dev_priv->bridge_dev) {
375 DRM_ERROR("bridge device not found\n");
376 return -1;
377 }
378 return 0;
379 }
380
381 /* Allocate space for the MCH regs if needed, return nonzero on error */
382 static int
383 intel_alloc_mchbar_resource(struct drm_i915_private *dev_priv)
384 {
385 int reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
386 u32 temp_lo, temp_hi = 0;
387 u64 mchbar_addr;
388 int ret;
389
390 if (INTEL_GEN(dev_priv) >= 4)
391 pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
392 pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
393 mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
394
395 /* If ACPI doesn't have it, assume we need to allocate it ourselves */
396 #ifdef CONFIG_PNP
397 if (mchbar_addr &&
398 pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
399 return 0;
400 #endif
401
402 /* Get some space for it */
403 dev_priv->mch_res.name = "i915 MCHBAR";
404 dev_priv->mch_res.flags = IORESOURCE_MEM;
405 ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
406 &dev_priv->mch_res,
407 MCHBAR_SIZE, MCHBAR_SIZE,
408 PCIBIOS_MIN_MEM,
409 0, pcibios_align_resource,
410 dev_priv->bridge_dev);
411 if (ret) {
412 DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
413 dev_priv->mch_res.start = 0;
414 return ret;
415 }
416
417 if (INTEL_GEN(dev_priv) >= 4)
418 pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
419 upper_32_bits(dev_priv->mch_res.start));
420
421 pci_write_config_dword(dev_priv->bridge_dev, reg,
422 lower_32_bits(dev_priv->mch_res.start));
423 return 0;
424 }
425
426 /* Setup MCHBAR if possible, return true if we should disable it again */
427 static void
428 intel_setup_mchbar(struct drm_i915_private *dev_priv)
429 {
430 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
431 u32 temp;
432 bool enabled;
433
434 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
435 return;
436
437 dev_priv->mchbar_need_disable = false;
438
439 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
440 pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
441 enabled = !!(temp & DEVEN_MCHBAR_EN);
442 } else {
443 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
444 enabled = temp & 1;
445 }
446
447 /* If it's already enabled, don't have to do anything */
448 if (enabled)
449 return;
450
451 if (intel_alloc_mchbar_resource(dev_priv))
452 return;
453
454 dev_priv->mchbar_need_disable = true;
455
456 /* Space is allocated or reserved, so enable it. */
457 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
458 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
459 temp | DEVEN_MCHBAR_EN);
460 } else {
461 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
462 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
463 }
464 }
465
466 static void
467 intel_teardown_mchbar(struct drm_i915_private *dev_priv)
468 {
469 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
470
471 if (dev_priv->mchbar_need_disable) {
472 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
473 u32 deven_val;
474
475 pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
476 &deven_val);
477 deven_val &= ~DEVEN_MCHBAR_EN;
478 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
479 deven_val);
480 } else {
481 u32 mchbar_val;
482
483 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
484 &mchbar_val);
485 mchbar_val &= ~1;
486 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
487 mchbar_val);
488 }
489 }
490
491 if (dev_priv->mch_res.start)
492 release_resource(&dev_priv->mch_res);
493 }
494
495 /* true = enable decode, false = disable decoder */
496 static unsigned int i915_vga_set_decode(void *cookie, bool state)
497 {
498 struct drm_i915_private *dev_priv = cookie;
499
500 intel_modeset_vga_set_state(dev_priv, state);
501 if (state)
502 return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
503 VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
504 else
505 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
506 }
507
508 static int i915_resume_switcheroo(struct drm_device *dev);
509 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
510
511 static void i915_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
512 {
513 struct drm_device *dev = pci_get_drvdata(pdev);
514 pm_message_t pmm = { .event = PM_EVENT_SUSPEND };
515
516 if (state == VGA_SWITCHEROO_ON) {
517 pr_info("switched on\n");
518 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
519 /* i915 resume handler doesn't set to D0 */
520 pci_set_power_state(pdev, PCI_D0);
521 i915_resume_switcheroo(dev);
522 dev->switch_power_state = DRM_SWITCH_POWER_ON;
523 } else {
524 pr_info("switched off\n");
525 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
526 i915_suspend_switcheroo(dev, pmm);
527 dev->switch_power_state = DRM_SWITCH_POWER_OFF;
528 }
529 }
530
531 static bool i915_switcheroo_can_switch(struct pci_dev *pdev)
532 {
533 struct drm_device *dev = pci_get_drvdata(pdev);
534
535 /*
536 * FIXME: open_count is protected by drm_global_mutex but that would lead to
537 * locking inversion with the driver load path. And the access here is
538 * completely racy anyway. So don't bother with locking for now.
539 */
540 return dev->open_count == 0;
541 }
542
543 static const struct vga_switcheroo_client_ops i915_switcheroo_ops = {
544 .set_gpu_state = i915_switcheroo_set_state,
545 .reprobe = NULL,
546 .can_switch = i915_switcheroo_can_switch,
547 };
548
549 static void i915_gem_fini(struct drm_i915_private *dev_priv)
550 {
551 mutex_lock(&dev_priv->drm.struct_mutex);
552 intel_uc_fini_hw(dev_priv);
553 i915_gem_cleanup_engines(dev_priv);
554 i915_gem_context_fini(dev_priv);
555 mutex_unlock(&dev_priv->drm.struct_mutex);
556
557 i915_gem_drain_freed_objects(dev_priv);
558
559 WARN_ON(!list_empty(&dev_priv->context_list));
560 }
561
562 static int i915_load_modeset_init(struct drm_device *dev)
563 {
564 struct drm_i915_private *dev_priv = to_i915(dev);
565 struct pci_dev *pdev = dev_priv->drm.pdev;
566 int ret;
567
568 if (i915_inject_load_failure())
569 return -ENODEV;
570
571 intel_bios_init(dev_priv);
572
573 /* If we have > 1 VGA cards, then we need to arbitrate access
574 * to the common VGA resources.
575 *
576 * If we are a secondary display controller (!PCI_DISPLAY_CLASS_VGA),
577 * then we do not take part in VGA arbitration and the
578 * vga_client_register() fails with -ENODEV.
579 */
580 ret = vga_client_register(pdev, dev_priv, NULL, i915_vga_set_decode);
581 if (ret && ret != -ENODEV)
582 goto out;
583
584 intel_register_dsm_handler();
585
586 ret = vga_switcheroo_register_client(pdev, &i915_switcheroo_ops, false);
587 if (ret)
588 goto cleanup_vga_client;
589
590 /* must happen before intel_power_domains_init_hw() on VLV/CHV */
591 intel_update_rawclk(dev_priv);
592
593 intel_power_domains_init_hw(dev_priv, false);
594
595 intel_csr_ucode_init(dev_priv);
596
597 ret = intel_irq_install(dev_priv);
598 if (ret)
599 goto cleanup_csr;
600
601 intel_setup_gmbus(dev_priv);
602
603 /* Important: The output setup functions called by modeset_init need
604 * working irqs for e.g. gmbus and dp aux transfers. */
605 ret = intel_modeset_init(dev);
606 if (ret)
607 goto cleanup_irq;
608
609 intel_uc_init_fw(dev_priv);
610
611 ret = i915_gem_init(dev_priv);
612 if (ret)
613 goto cleanup_uc;
614
615 intel_modeset_gem_init(dev);
616
617 if (INTEL_INFO(dev_priv)->num_pipes == 0)
618 return 0;
619
620 ret = intel_fbdev_init(dev);
621 if (ret)
622 goto cleanup_gem;
623
624 /* Only enable hotplug handling once the fbdev is fully set up. */
625 intel_hpd_init(dev_priv);
626
627 drm_kms_helper_poll_init(dev);
628
629 return 0;
630
631 cleanup_gem:
632 if (i915_gem_suspend(dev_priv))
633 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
634 i915_gem_fini(dev_priv);
635 cleanup_uc:
636 intel_uc_fini_fw(dev_priv);
637 cleanup_irq:
638 drm_irq_uninstall(dev);
639 intel_teardown_gmbus(dev_priv);
640 cleanup_csr:
641 intel_csr_ucode_fini(dev_priv);
642 intel_power_domains_fini(dev_priv);
643 vga_switcheroo_unregister_client(pdev);
644 cleanup_vga_client:
645 vga_client_register(pdev, NULL, NULL, NULL);
646 out:
647 return ret;
648 }
649
650 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
651 {
652 struct apertures_struct *ap;
653 struct pci_dev *pdev = dev_priv->drm.pdev;
654 struct i915_ggtt *ggtt = &dev_priv->ggtt;
655 bool primary;
656 int ret;
657
658 ap = alloc_apertures(1);
659 if (!ap)
660 return -ENOMEM;
661
662 ap->ranges[0].base = ggtt->mappable_base;
663 ap->ranges[0].size = ggtt->mappable_end;
664
665 primary =
666 pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW;
667
668 ret = drm_fb_helper_remove_conflicting_framebuffers(ap, "inteldrmfb", primary);
669
670 kfree(ap);
671
672 return ret;
673 }
674
675 #if !defined(CONFIG_VGA_CONSOLE)
676 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
677 {
678 return 0;
679 }
680 #elif !defined(CONFIG_DUMMY_CONSOLE)
681 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
682 {
683 return -ENODEV;
684 }
685 #else
686 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
687 {
688 int ret = 0;
689
690 DRM_INFO("Replacing VGA console driver\n");
691
692 console_lock();
693 if (con_is_bound(&vga_con))
694 ret = do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES - 1, 1);
695 if (ret == 0) {
696 ret = do_unregister_con_driver(&vga_con);
697
698 /* Ignore "already unregistered". */
699 if (ret == -ENODEV)
700 ret = 0;
701 }
702 console_unlock();
703
704 return ret;
705 }
706 #endif
707
708 static void intel_init_dpio(struct drm_i915_private *dev_priv)
709 {
710 /*
711 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
712 * CHV x1 PHY (DP/HDMI D)
713 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
714 */
715 if (IS_CHERRYVIEW(dev_priv)) {
716 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
717 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
718 } else if (IS_VALLEYVIEW(dev_priv)) {
719 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
720 }
721 }
722
723 static int i915_workqueues_init(struct drm_i915_private *dev_priv)
724 {
725 /*
726 * The i915 workqueue is primarily used for batched retirement of
727 * requests (and thus managing bo) once the task has been completed
728 * by the GPU. i915_gem_retire_requests() is called directly when we
729 * need high-priority retirement, such as waiting for an explicit
730 * bo.
731 *
732 * It is also used for periodic low-priority events, such as
733 * idle-timers and recording error state.
734 *
735 * All tasks on the workqueue are expected to acquire the dev mutex
736 * so there is no point in running more than one instance of the
737 * workqueue at any time. Use an ordered one.
738 */
739 dev_priv->wq = alloc_ordered_workqueue("i915", 0);
740 if (dev_priv->wq == NULL)
741 goto out_err;
742
743 dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
744 if (dev_priv->hotplug.dp_wq == NULL)
745 goto out_free_wq;
746
747 return 0;
748
749 out_free_wq:
750 destroy_workqueue(dev_priv->wq);
751 out_err:
752 DRM_ERROR("Failed to allocate workqueues.\n");
753
754 return -ENOMEM;
755 }
756
757 static void i915_engines_cleanup(struct drm_i915_private *i915)
758 {
759 struct intel_engine_cs *engine;
760 enum intel_engine_id id;
761
762 for_each_engine(engine, i915, id)
763 kfree(engine);
764 }
765
766 static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
767 {
768 destroy_workqueue(dev_priv->hotplug.dp_wq);
769 destroy_workqueue(dev_priv->wq);
770 }
771
772 /*
773 * We don't keep the workarounds for pre-production hardware, so we expect our
774 * driver to fail on these machines in one way or another. A little warning on
775 * dmesg may help both the user and the bug triagers.
776 */
777 static void intel_detect_preproduction_hw(struct drm_i915_private *dev_priv)
778 {
779 bool pre = false;
780
781 pre |= IS_HSW_EARLY_SDV(dev_priv);
782 pre |= IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0);
783 pre |= IS_BXT_REVID(dev_priv, 0, BXT_REVID_B_LAST);
784
785 if (pre) {
786 DRM_ERROR("This is a pre-production stepping. "
787 "It may not be fully functional.\n");
788 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK);
789 }
790 }
791
792 /**
793 * i915_driver_init_early - setup state not requiring device access
794 * @dev_priv: device private
795 *
796 * Initialize everything that is a "SW-only" state, that is state not
797 * requiring accessing the device or exposing the driver via kernel internal
798 * or userspace interfaces. Example steps belonging here: lock initialization,
799 * system memory allocation, setting up device specific attributes and
800 * function hooks not requiring accessing the device.
801 */
802 static int i915_driver_init_early(struct drm_i915_private *dev_priv,
803 const struct pci_device_id *ent)
804 {
805 const struct intel_device_info *match_info =
806 (struct intel_device_info *)ent->driver_data;
807 struct intel_device_info *device_info;
808 int ret = 0;
809
810 if (i915_inject_load_failure())
811 return -ENODEV;
812
813 /* Setup the write-once "constant" device info */
814 device_info = mkwrite_device_info(dev_priv);
815 memcpy(device_info, match_info, sizeof(*device_info));
816 device_info->device_id = dev_priv->drm.pdev->device;
817
818 BUG_ON(device_info->gen > sizeof(device_info->gen_mask) * BITS_PER_BYTE);
819 device_info->gen_mask = BIT(device_info->gen - 1);
820
821 spin_lock_init(&dev_priv->irq_lock);
822 spin_lock_init(&dev_priv->gpu_error.lock);
823 mutex_init(&dev_priv->backlight_lock);
824 spin_lock_init(&dev_priv->uncore.lock);
825
826 spin_lock_init(&dev_priv->mm.object_stat_lock);
827 spin_lock_init(&dev_priv->mmio_flip_lock);
828 mutex_init(&dev_priv->sb_lock);
829 mutex_init(&dev_priv->modeset_restore_lock);
830 mutex_init(&dev_priv->av_mutex);
831 mutex_init(&dev_priv->wm.wm_mutex);
832 mutex_init(&dev_priv->pps_mutex);
833
834 intel_uc_init_early(dev_priv);
835 i915_memcpy_init_early(dev_priv);
836
837 ret = intel_engines_init_early(dev_priv);
838 if (ret)
839 return ret;
840
841 ret = i915_workqueues_init(dev_priv);
842 if (ret < 0)
843 goto err_engines;
844
845 /* This must be called before any calls to HAS_PCH_* */
846 intel_detect_pch(dev_priv);
847
848 intel_pm_setup(dev_priv);
849 intel_init_dpio(dev_priv);
850 intel_power_domains_init(dev_priv);
851 intel_irq_init(dev_priv);
852 intel_hangcheck_init(dev_priv);
853 intel_init_display_hooks(dev_priv);
854 intel_init_clock_gating_hooks(dev_priv);
855 intel_init_audio_hooks(dev_priv);
856 ret = i915_gem_load_init(dev_priv);
857 if (ret < 0)
858 goto err_workqueues;
859
860 intel_display_crc_init(dev_priv);
861
862 intel_device_info_dump(dev_priv);
863
864 intel_detect_preproduction_hw(dev_priv);
865
866 i915_perf_init(dev_priv);
867
868 return 0;
869
870 err_workqueues:
871 i915_workqueues_cleanup(dev_priv);
872 err_engines:
873 i915_engines_cleanup(dev_priv);
874 return ret;
875 }
876
877 /**
878 * i915_driver_cleanup_early - cleanup the setup done in i915_driver_init_early()
879 * @dev_priv: device private
880 */
881 static void i915_driver_cleanup_early(struct drm_i915_private *dev_priv)
882 {
883 i915_perf_fini(dev_priv);
884 i915_gem_load_cleanup(dev_priv);
885 i915_workqueues_cleanup(dev_priv);
886 i915_engines_cleanup(dev_priv);
887 }
888
889 static int i915_mmio_setup(struct drm_i915_private *dev_priv)
890 {
891 struct pci_dev *pdev = dev_priv->drm.pdev;
892 int mmio_bar;
893 int mmio_size;
894
895 mmio_bar = IS_GEN2(dev_priv) ? 1 : 0;
896 /*
897 * Before gen4, the registers and the GTT are behind different BARs.
898 * However, from gen4 onwards, the registers and the GTT are shared
899 * in the same BAR, so we want to restrict this ioremap from
900 * clobbering the GTT which we want ioremap_wc instead. Fortunately,
901 * the register BAR remains the same size for all the earlier
902 * generations up to Ironlake.
903 */
904 if (INTEL_GEN(dev_priv) < 5)
905 mmio_size = 512 * 1024;
906 else
907 mmio_size = 2 * 1024 * 1024;
908 dev_priv->regs = pci_iomap(pdev, mmio_bar, mmio_size);
909 if (dev_priv->regs == NULL) {
910 DRM_ERROR("failed to map registers\n");
911
912 return -EIO;
913 }
914
915 /* Try to make sure MCHBAR is enabled before poking at it */
916 intel_setup_mchbar(dev_priv);
917
918 return 0;
919 }
920
921 static void i915_mmio_cleanup(struct drm_i915_private *dev_priv)
922 {
923 struct pci_dev *pdev = dev_priv->drm.pdev;
924
925 intel_teardown_mchbar(dev_priv);
926 pci_iounmap(pdev, dev_priv->regs);
927 }
928
929 /**
930 * i915_driver_init_mmio - setup device MMIO
931 * @dev_priv: device private
932 *
933 * Setup minimal device state necessary for MMIO accesses later in the
934 * initialization sequence. The setup here should avoid any other device-wide
935 * side effects or exposing the driver via kernel internal or user space
936 * interfaces.
937 */
938 static int i915_driver_init_mmio(struct drm_i915_private *dev_priv)
939 {
940 int ret;
941
942 if (i915_inject_load_failure())
943 return -ENODEV;
944
945 if (i915_get_bridge_dev(dev_priv))
946 return -EIO;
947
948 ret = i915_mmio_setup(dev_priv);
949 if (ret < 0)
950 goto put_bridge;
951
952 intel_uncore_init(dev_priv);
953 i915_gem_init_mmio(dev_priv);
954
955 return 0;
956
957 put_bridge:
958 pci_dev_put(dev_priv->bridge_dev);
959
960 return ret;
961 }
962
963 /**
964 * i915_driver_cleanup_mmio - cleanup the setup done in i915_driver_init_mmio()
965 * @dev_priv: device private
966 */
967 static void i915_driver_cleanup_mmio(struct drm_i915_private *dev_priv)
968 {
969 intel_uncore_fini(dev_priv);
970 i915_mmio_cleanup(dev_priv);
971 pci_dev_put(dev_priv->bridge_dev);
972 }
973
974 static void intel_sanitize_options(struct drm_i915_private *dev_priv)
975 {
976 i915.enable_execlists =
977 intel_sanitize_enable_execlists(dev_priv,
978 i915.enable_execlists);
979
980 /*
981 * i915.enable_ppgtt is read-only, so do an early pass to validate the
982 * user's requested state against the hardware/driver capabilities. We
983 * do this now so that we can print out any log messages once rather
984 * than every time we check intel_enable_ppgtt().
985 */
986 i915.enable_ppgtt =
987 intel_sanitize_enable_ppgtt(dev_priv, i915.enable_ppgtt);
988 DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
989
990 i915.semaphores = intel_sanitize_semaphores(dev_priv, i915.semaphores);
991 DRM_DEBUG_DRIVER("use GPU semaphores? %s\n", yesno(i915.semaphores));
992
993 intel_uc_sanitize_options(dev_priv);
994 }
995
996 /**
997 * i915_driver_init_hw - setup state requiring device access
998 * @dev_priv: device private
999 *
1000 * Setup state that requires accessing the device, but doesn't require
1001 * exposing the driver via kernel internal or userspace interfaces.
1002 */
1003 static int i915_driver_init_hw(struct drm_i915_private *dev_priv)
1004 {
1005 struct pci_dev *pdev = dev_priv->drm.pdev;
1006 int ret;
1007
1008 if (i915_inject_load_failure())
1009 return -ENODEV;
1010
1011 intel_device_info_runtime_init(dev_priv);
1012
1013 intel_sanitize_options(dev_priv);
1014
1015 ret = i915_ggtt_probe_hw(dev_priv);
1016 if (ret)
1017 return ret;
1018
1019 /* WARNING: Apparently we must kick fbdev drivers before vgacon,
1020 * otherwise the vga fbdev driver falls over. */
1021 ret = i915_kick_out_firmware_fb(dev_priv);
1022 if (ret) {
1023 DRM_ERROR("failed to remove conflicting framebuffer drivers\n");
1024 goto out_ggtt;
1025 }
1026
1027 ret = i915_kick_out_vgacon(dev_priv);
1028 if (ret) {
1029 DRM_ERROR("failed to remove conflicting VGA console\n");
1030 goto out_ggtt;
1031 }
1032
1033 ret = i915_ggtt_init_hw(dev_priv);
1034 if (ret)
1035 return ret;
1036
1037 ret = i915_ggtt_enable_hw(dev_priv);
1038 if (ret) {
1039 DRM_ERROR("failed to enable GGTT\n");
1040 goto out_ggtt;
1041 }
1042
1043 pci_set_master(pdev);
1044
1045 /* overlay on gen2 is broken and can't address above 1G */
1046 if (IS_GEN2(dev_priv)) {
1047 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
1048 if (ret) {
1049 DRM_ERROR("failed to set DMA mask\n");
1050
1051 goto out_ggtt;
1052 }
1053 }
1054
1055 /* 965GM sometimes incorrectly writes to hardware status page (HWS)
1056 * using 32bit addressing, overwriting memory if HWS is located
1057 * above 4GB.
1058 *
1059 * The documentation also mentions an issue with undefined
1060 * behaviour if any general state is accessed within a page above 4GB,
1061 * which also needs to be handled carefully.
1062 */
1063 if (IS_I965G(dev_priv) || IS_I965GM(dev_priv)) {
1064 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1065
1066 if (ret) {
1067 DRM_ERROR("failed to set DMA mask\n");
1068
1069 goto out_ggtt;
1070 }
1071 }
1072
1073 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1074 PM_QOS_DEFAULT_VALUE);
1075
1076 intel_uncore_sanitize(dev_priv);
1077
1078 intel_opregion_setup(dev_priv);
1079
1080 i915_gem_load_init_fences(dev_priv);
1081
1082 /* On the 945G/GM, the chipset reports the MSI capability on the
1083 * integrated graphics even though the support isn't actually there
1084 * according to the published specs. It doesn't appear to function
1085 * correctly in testing on 945G.
1086 * This may be a side effect of MSI having been made available for PEG
1087 * and the registers being closely associated.
1088 *
1089 * According to chipset errata, on the 965GM, MSI interrupts may
1090 * be lost or delayed, but we use them anyways to avoid
1091 * stuck interrupts on some machines.
1092 */
1093 if (!IS_I945G(dev_priv) && !IS_I945GM(dev_priv)) {
1094 if (pci_enable_msi(pdev) < 0)
1095 DRM_DEBUG_DRIVER("can't enable MSI");
1096 }
1097
1098 ret = intel_gvt_init(dev_priv);
1099 if (ret)
1100 goto out_ggtt;
1101
1102 return 0;
1103
1104 out_ggtt:
1105 i915_ggtt_cleanup_hw(dev_priv);
1106
1107 return ret;
1108 }
1109
1110 /**
1111 * i915_driver_cleanup_hw - cleanup the setup done in i915_driver_init_hw()
1112 * @dev_priv: device private
1113 */
1114 static void i915_driver_cleanup_hw(struct drm_i915_private *dev_priv)
1115 {
1116 struct pci_dev *pdev = dev_priv->drm.pdev;
1117
1118 if (pdev->msi_enabled)
1119 pci_disable_msi(pdev);
1120
1121 pm_qos_remove_request(&dev_priv->pm_qos);
1122 i915_ggtt_cleanup_hw(dev_priv);
1123 }
1124
1125 /**
1126 * i915_driver_register - register the driver with the rest of the system
1127 * @dev_priv: device private
1128 *
1129 * Perform any steps necessary to make the driver available via kernel
1130 * internal or userspace interfaces.
1131 */
1132 static void i915_driver_register(struct drm_i915_private *dev_priv)
1133 {
1134 struct drm_device *dev = &dev_priv->drm;
1135
1136 i915_gem_shrinker_init(dev_priv);
1137
1138 /*
1139 * Notify a valid surface after modesetting,
1140 * when running inside a VM.
1141 */
1142 if (intel_vgpu_active(dev_priv))
1143 I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1144
1145 /* Reveal our presence to userspace */
1146 if (drm_dev_register(dev, 0) == 0) {
1147 i915_debugfs_register(dev_priv);
1148 i915_guc_log_register(dev_priv);
1149 i915_setup_sysfs(dev_priv);
1150
1151 /* Depends on sysfs having been initialized */
1152 i915_perf_register(dev_priv);
1153 } else
1154 DRM_ERROR("Failed to register driver for userspace access!\n");
1155
1156 if (INTEL_INFO(dev_priv)->num_pipes) {
1157 /* Must be done after probing outputs */
1158 intel_opregion_register(dev_priv);
1159 acpi_video_register();
1160 }
1161
1162 if (IS_GEN5(dev_priv))
1163 intel_gpu_ips_init(dev_priv);
1164
1165 intel_audio_init(dev_priv);
1166
1167 /*
1168 * Some ports require correctly set-up hpd registers for detection to
1169 * work properly (leading to ghost connected connector status), e.g. VGA
1170 * on gm45. Hence we can only set up the initial fbdev config after hpd
1171 * irqs are fully enabled. We do it last so that the async config
1172 * cannot run before the connectors are registered.
1173 */
1174 intel_fbdev_initial_config_async(dev);
1175 }
1176
1177 /**
1178 * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1179 * @dev_priv: device private
1180 */
1181 static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1182 {
1183 intel_audio_deinit(dev_priv);
1184
1185 intel_gpu_ips_teardown();
1186 acpi_video_unregister();
1187 intel_opregion_unregister(dev_priv);
1188
1189 i915_perf_unregister(dev_priv);
1190
1191 i915_teardown_sysfs(dev_priv);
1192 i915_guc_log_unregister(dev_priv);
1193 drm_dev_unregister(&dev_priv->drm);
1194
1195 i915_gem_shrinker_cleanup(dev_priv);
1196 }
1197
1198 /**
1199 * i915_driver_load - setup chip and create an initial config
1200 * @pdev: PCI device
1201 * @ent: matching PCI ID entry
1202 *
1203 * The driver load routine has to do several things:
1204 * - drive output discovery via intel_modeset_init()
1205 * - initialize the memory manager
1206 * - allocate initial config memory
1207 * - setup the DRM framebuffer with the allocated memory
1208 */
1209 int i915_driver_load(struct pci_dev *pdev, const struct pci_device_id *ent)
1210 {
1211 const struct intel_device_info *match_info =
1212 (struct intel_device_info *)ent->driver_data;
1213 struct drm_i915_private *dev_priv;
1214 int ret;
1215
1216 /* Enable nuclear pageflip on ILK+, except vlv/chv */
1217 if (!i915.nuclear_pageflip &&
1218 (match_info->gen < 5 || match_info->has_gmch_display))
1219 driver.driver_features &= ~DRIVER_ATOMIC;
1220
1221 ret = -ENOMEM;
1222 dev_priv = kzalloc(sizeof(*dev_priv), GFP_KERNEL);
1223 if (dev_priv)
1224 ret = drm_dev_init(&dev_priv->drm, &driver, &pdev->dev);
1225 if (ret) {
1226 DRM_DEV_ERROR(&pdev->dev, "allocation failed\n");
1227 goto out_free;
1228 }
1229
1230 dev_priv->drm.pdev = pdev;
1231 dev_priv->drm.dev_private = dev_priv;
1232
1233 ret = pci_enable_device(pdev);
1234 if (ret)
1235 goto out_fini;
1236
1237 pci_set_drvdata(pdev, &dev_priv->drm);
1238
1239 ret = i915_driver_init_early(dev_priv, ent);
1240 if (ret < 0)
1241 goto out_pci_disable;
1242
1243 intel_runtime_pm_get(dev_priv);
1244
1245 ret = i915_driver_init_mmio(dev_priv);
1246 if (ret < 0)
1247 goto out_runtime_pm_put;
1248
1249 ret = i915_driver_init_hw(dev_priv);
1250 if (ret < 0)
1251 goto out_cleanup_mmio;
1252
1253 /*
1254 * TODO: move the vblank init and parts of modeset init steps into one
1255 * of the i915_driver_init_/i915_driver_register functions according
1256 * to the role/effect of the given init step.
1257 */
1258 if (INTEL_INFO(dev_priv)->num_pipes) {
1259 ret = drm_vblank_init(&dev_priv->drm,
1260 INTEL_INFO(dev_priv)->num_pipes);
1261 if (ret)
1262 goto out_cleanup_hw;
1263 }
1264
1265 ret = i915_load_modeset_init(&dev_priv->drm);
1266 if (ret < 0)
1267 goto out_cleanup_vblank;
1268
1269 i915_driver_register(dev_priv);
1270
1271 intel_runtime_pm_enable(dev_priv);
1272
1273 dev_priv->ipc_enabled = false;
1274
1275 /* Everything is in place, we can now relax! */
1276 DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n",
1277 driver.name, driver.major, driver.minor, driver.patchlevel,
1278 driver.date, pci_name(pdev), dev_priv->drm.primary->index);
1279 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG))
1280 DRM_INFO("DRM_I915_DEBUG enabled\n");
1281 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1282 DRM_INFO("DRM_I915_DEBUG_GEM enabled\n");
1283
1284 intel_runtime_pm_put(dev_priv);
1285
1286 return 0;
1287
1288 out_cleanup_vblank:
1289 drm_vblank_cleanup(&dev_priv->drm);
1290 out_cleanup_hw:
1291 i915_driver_cleanup_hw(dev_priv);
1292 out_cleanup_mmio:
1293 i915_driver_cleanup_mmio(dev_priv);
1294 out_runtime_pm_put:
1295 intel_runtime_pm_put(dev_priv);
1296 i915_driver_cleanup_early(dev_priv);
1297 out_pci_disable:
1298 pci_disable_device(pdev);
1299 out_fini:
1300 i915_load_error(dev_priv, "Device initialization failed (%d)\n", ret);
1301 drm_dev_fini(&dev_priv->drm);
1302 out_free:
1303 kfree(dev_priv);
1304 return ret;
1305 }
1306
1307 void i915_driver_unload(struct drm_device *dev)
1308 {
1309 struct drm_i915_private *dev_priv = to_i915(dev);
1310 struct pci_dev *pdev = dev_priv->drm.pdev;
1311
1312 intel_fbdev_fini(dev);
1313
1314 if (i915_gem_suspend(dev_priv))
1315 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
1316
1317 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1318
1319 drm_atomic_helper_shutdown(dev);
1320
1321 intel_gvt_cleanup(dev_priv);
1322
1323 i915_driver_unregister(dev_priv);
1324
1325 drm_vblank_cleanup(dev);
1326
1327 intel_modeset_cleanup(dev);
1328
1329 /*
1330 * free the memory space allocated for the child device
1331 * config parsed from VBT
1332 */
1333 if (dev_priv->vbt.child_dev && dev_priv->vbt.child_dev_num) {
1334 kfree(dev_priv->vbt.child_dev);
1335 dev_priv->vbt.child_dev = NULL;
1336 dev_priv->vbt.child_dev_num = 0;
1337 }
1338 kfree(dev_priv->vbt.sdvo_lvds_vbt_mode);
1339 dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
1340 kfree(dev_priv->vbt.lfp_lvds_vbt_mode);
1341 dev_priv->vbt.lfp_lvds_vbt_mode = NULL;
1342
1343 vga_switcheroo_unregister_client(pdev);
1344 vga_client_register(pdev, NULL, NULL, NULL);
1345
1346 intel_csr_ucode_fini(dev_priv);
1347
1348 /* Free error state after interrupts are fully disabled. */
1349 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1350 i915_reset_error_state(dev_priv);
1351
1352 /* Flush any outstanding unpin_work. */
1353 drain_workqueue(dev_priv->wq);
1354
1355 i915_gem_fini(dev_priv);
1356 intel_uc_fini_fw(dev_priv);
1357 intel_fbc_cleanup_cfb(dev_priv);
1358
1359 intel_power_domains_fini(dev_priv);
1360
1361 i915_driver_cleanup_hw(dev_priv);
1362 i915_driver_cleanup_mmio(dev_priv);
1363
1364 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1365 }
1366
1367 static void i915_driver_release(struct drm_device *dev)
1368 {
1369 struct drm_i915_private *dev_priv = to_i915(dev);
1370
1371 i915_driver_cleanup_early(dev_priv);
1372 drm_dev_fini(&dev_priv->drm);
1373
1374 kfree(dev_priv);
1375 }
1376
1377 static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1378 {
1379 int ret;
1380
1381 ret = i915_gem_open(dev, file);
1382 if (ret)
1383 return ret;
1384
1385 return 0;
1386 }
1387
1388 /**
1389 * i915_driver_lastclose - clean up after all DRM clients have exited
1390 * @dev: DRM device
1391 *
1392 * Take care of cleaning up after all DRM clients have exited. In the
1393 * mode setting case, we want to restore the kernel's initial mode (just
1394 * in case the last client left us in a bad state).
1395 *
1396 * Additionally, in the non-mode setting case, we'll tear down the GTT
1397 * and DMA structures, since the kernel won't be using them, and clea
1398 * up any GEM state.
1399 */
1400 static void i915_driver_lastclose(struct drm_device *dev)
1401 {
1402 intel_fbdev_restore_mode(dev);
1403 vga_switcheroo_process_delayed_switch();
1404 }
1405
1406 static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1407 {
1408 struct drm_i915_file_private *file_priv = file->driver_priv;
1409
1410 mutex_lock(&dev->struct_mutex);
1411 i915_gem_context_close(dev, file);
1412 i915_gem_release(dev, file);
1413 mutex_unlock(&dev->struct_mutex);
1414
1415 kfree(file_priv);
1416 }
1417
1418 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1419 {
1420 struct drm_device *dev = &dev_priv->drm;
1421 struct intel_encoder *encoder;
1422
1423 drm_modeset_lock_all(dev);
1424 for_each_intel_encoder(dev, encoder)
1425 if (encoder->suspend)
1426 encoder->suspend(encoder);
1427 drm_modeset_unlock_all(dev);
1428 }
1429
1430 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1431 bool rpm_resume);
1432 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1433
1434 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1435 {
1436 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
1437 if (acpi_target_system_state() < ACPI_STATE_S3)
1438 return true;
1439 #endif
1440 return false;
1441 }
1442
1443 static int i915_drm_suspend(struct drm_device *dev)
1444 {
1445 struct drm_i915_private *dev_priv = to_i915(dev);
1446 struct pci_dev *pdev = dev_priv->drm.pdev;
1447 pci_power_t opregion_target_state;
1448 int error;
1449
1450 /* ignore lid events during suspend */
1451 mutex_lock(&dev_priv->modeset_restore_lock);
1452 dev_priv->modeset_restore = MODESET_SUSPENDED;
1453 mutex_unlock(&dev_priv->modeset_restore_lock);
1454
1455 disable_rpm_wakeref_asserts(dev_priv);
1456
1457 /* We do a lot of poking in a lot of registers, make sure they work
1458 * properly. */
1459 intel_display_set_init_power(dev_priv, true);
1460
1461 drm_kms_helper_poll_disable(dev);
1462
1463 pci_save_state(pdev);
1464
1465 error = i915_gem_suspend(dev_priv);
1466 if (error) {
1467 dev_err(&pdev->dev,
1468 "GEM idle failed, resume might fail\n");
1469 goto out;
1470 }
1471
1472 intel_display_suspend(dev);
1473
1474 intel_dp_mst_suspend(dev);
1475
1476 intel_runtime_pm_disable_interrupts(dev_priv);
1477 intel_hpd_cancel_work(dev_priv);
1478
1479 intel_suspend_encoders(dev_priv);
1480
1481 intel_suspend_hw(dev_priv);
1482
1483 i915_gem_suspend_gtt_mappings(dev_priv);
1484
1485 i915_save_state(dev_priv);
1486
1487 opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1488 intel_opregion_notify_adapter(dev_priv, opregion_target_state);
1489
1490 intel_uncore_suspend(dev_priv);
1491 intel_opregion_unregister(dev_priv);
1492
1493 intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1494
1495 dev_priv->suspend_count++;
1496
1497 intel_csr_ucode_suspend(dev_priv);
1498
1499 out:
1500 enable_rpm_wakeref_asserts(dev_priv);
1501
1502 return error;
1503 }
1504
1505 static int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
1506 {
1507 struct drm_i915_private *dev_priv = to_i915(dev);
1508 struct pci_dev *pdev = dev_priv->drm.pdev;
1509 bool fw_csr;
1510 int ret;
1511
1512 disable_rpm_wakeref_asserts(dev_priv);
1513
1514 intel_display_set_init_power(dev_priv, false);
1515
1516 fw_csr = !IS_GEN9_LP(dev_priv) &&
1517 suspend_to_idle(dev_priv) && dev_priv->csr.dmc_payload;
1518 /*
1519 * In case of firmware assisted context save/restore don't manually
1520 * deinit the power domains. This also means the CSR/DMC firmware will
1521 * stay active, it will power down any HW resources as required and
1522 * also enable deeper system power states that would be blocked if the
1523 * firmware was inactive.
1524 */
1525 if (!fw_csr)
1526 intel_power_domains_suspend(dev_priv);
1527
1528 ret = 0;
1529 if (IS_GEN9_LP(dev_priv))
1530 bxt_enable_dc9(dev_priv);
1531 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1532 hsw_enable_pc8(dev_priv);
1533 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1534 ret = vlv_suspend_complete(dev_priv);
1535
1536 if (ret) {
1537 DRM_ERROR("Suspend complete failed: %d\n", ret);
1538 if (!fw_csr)
1539 intel_power_domains_init_hw(dev_priv, true);
1540
1541 goto out;
1542 }
1543
1544 pci_disable_device(pdev);
1545 /*
1546 * During hibernation on some platforms the BIOS may try to access
1547 * the device even though it's already in D3 and hang the machine. So
1548 * leave the device in D0 on those platforms and hope the BIOS will
1549 * power down the device properly. The issue was seen on multiple old
1550 * GENs with different BIOS vendors, so having an explicit blacklist
1551 * is inpractical; apply the workaround on everything pre GEN6. The
1552 * platforms where the issue was seen:
1553 * Lenovo Thinkpad X301, X61s, X60, T60, X41
1554 * Fujitsu FSC S7110
1555 * Acer Aspire 1830T
1556 */
1557 if (!(hibernation && INTEL_GEN(dev_priv) < 6))
1558 pci_set_power_state(pdev, PCI_D3hot);
1559
1560 dev_priv->suspended_to_idle = suspend_to_idle(dev_priv);
1561
1562 out:
1563 enable_rpm_wakeref_asserts(dev_priv);
1564
1565 return ret;
1566 }
1567
1568 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
1569 {
1570 int error;
1571
1572 if (!dev) {
1573 DRM_ERROR("dev: %p\n", dev);
1574 DRM_ERROR("DRM not initialized, aborting suspend.\n");
1575 return -ENODEV;
1576 }
1577
1578 if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
1579 state.event != PM_EVENT_FREEZE))
1580 return -EINVAL;
1581
1582 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1583 return 0;
1584
1585 error = i915_drm_suspend(dev);
1586 if (error)
1587 return error;
1588
1589 return i915_drm_suspend_late(dev, false);
1590 }
1591
1592 static int i915_drm_resume(struct drm_device *dev)
1593 {
1594 struct drm_i915_private *dev_priv = to_i915(dev);
1595 int ret;
1596
1597 disable_rpm_wakeref_asserts(dev_priv);
1598 intel_sanitize_gt_powersave(dev_priv);
1599
1600 ret = i915_ggtt_enable_hw(dev_priv);
1601 if (ret)
1602 DRM_ERROR("failed to re-enable GGTT\n");
1603
1604 intel_csr_ucode_resume(dev_priv);
1605
1606 i915_gem_resume(dev_priv);
1607
1608 i915_restore_state(dev_priv);
1609 intel_pps_unlock_regs_wa(dev_priv);
1610 intel_opregion_setup(dev_priv);
1611
1612 intel_init_pch_refclk(dev_priv);
1613
1614 /*
1615 * Interrupts have to be enabled before any batches are run. If not the
1616 * GPU will hang. i915_gem_init_hw() will initiate batches to
1617 * update/restore the context.
1618 *
1619 * drm_mode_config_reset() needs AUX interrupts.
1620 *
1621 * Modeset enabling in intel_modeset_init_hw() also needs working
1622 * interrupts.
1623 */
1624 intel_runtime_pm_enable_interrupts(dev_priv);
1625
1626 drm_mode_config_reset(dev);
1627
1628 mutex_lock(&dev->struct_mutex);
1629 if (i915_gem_init_hw(dev_priv)) {
1630 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
1631 i915_gem_set_wedged(dev_priv);
1632 }
1633 mutex_unlock(&dev->struct_mutex);
1634
1635 intel_guc_resume(dev_priv);
1636
1637 intel_modeset_init_hw(dev);
1638
1639 spin_lock_irq(&dev_priv->irq_lock);
1640 if (dev_priv->display.hpd_irq_setup)
1641 dev_priv->display.hpd_irq_setup(dev_priv);
1642 spin_unlock_irq(&dev_priv->irq_lock);
1643
1644 intel_dp_mst_resume(dev);
1645
1646 intel_display_resume(dev);
1647
1648 drm_kms_helper_poll_enable(dev);
1649
1650 /*
1651 * ... but also need to make sure that hotplug processing
1652 * doesn't cause havoc. Like in the driver load code we don't
1653 * bother with the tiny race here where we might loose hotplug
1654 * notifications.
1655 * */
1656 intel_hpd_init(dev_priv);
1657
1658 intel_opregion_register(dev_priv);
1659
1660 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
1661
1662 mutex_lock(&dev_priv->modeset_restore_lock);
1663 dev_priv->modeset_restore = MODESET_DONE;
1664 mutex_unlock(&dev_priv->modeset_restore_lock);
1665
1666 intel_opregion_notify_adapter(dev_priv, PCI_D0);
1667
1668 intel_autoenable_gt_powersave(dev_priv);
1669
1670 enable_rpm_wakeref_asserts(dev_priv);
1671
1672 return 0;
1673 }
1674
1675 static int i915_drm_resume_early(struct drm_device *dev)
1676 {
1677 struct drm_i915_private *dev_priv = to_i915(dev);
1678 struct pci_dev *pdev = dev_priv->drm.pdev;
1679 int ret;
1680
1681 /*
1682 * We have a resume ordering issue with the snd-hda driver also
1683 * requiring our device to be power up. Due to the lack of a
1684 * parent/child relationship we currently solve this with an early
1685 * resume hook.
1686 *
1687 * FIXME: This should be solved with a special hdmi sink device or
1688 * similar so that power domains can be employed.
1689 */
1690
1691 /*
1692 * Note that we need to set the power state explicitly, since we
1693 * powered off the device during freeze and the PCI core won't power
1694 * it back up for us during thaw. Powering off the device during
1695 * freeze is not a hard requirement though, and during the
1696 * suspend/resume phases the PCI core makes sure we get here with the
1697 * device powered on. So in case we change our freeze logic and keep
1698 * the device powered we can also remove the following set power state
1699 * call.
1700 */
1701 ret = pci_set_power_state(pdev, PCI_D0);
1702 if (ret) {
1703 DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
1704 goto out;
1705 }
1706
1707 /*
1708 * Note that pci_enable_device() first enables any parent bridge
1709 * device and only then sets the power state for this device. The
1710 * bridge enabling is a nop though, since bridge devices are resumed
1711 * first. The order of enabling power and enabling the device is
1712 * imposed by the PCI core as described above, so here we preserve the
1713 * same order for the freeze/thaw phases.
1714 *
1715 * TODO: eventually we should remove pci_disable_device() /
1716 * pci_enable_enable_device() from suspend/resume. Due to how they
1717 * depend on the device enable refcount we can't anyway depend on them
1718 * disabling/enabling the device.
1719 */
1720 if (pci_enable_device(pdev)) {
1721 ret = -EIO;
1722 goto out;
1723 }
1724
1725 pci_set_master(pdev);
1726
1727 disable_rpm_wakeref_asserts(dev_priv);
1728
1729 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1730 ret = vlv_resume_prepare(dev_priv, false);
1731 if (ret)
1732 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
1733 ret);
1734
1735 intel_uncore_resume_early(dev_priv);
1736
1737 if (IS_GEN9_LP(dev_priv)) {
1738 if (!dev_priv->suspended_to_idle)
1739 gen9_sanitize_dc_state(dev_priv);
1740 bxt_disable_dc9(dev_priv);
1741 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1742 hsw_disable_pc8(dev_priv);
1743 }
1744
1745 intel_uncore_sanitize(dev_priv);
1746
1747 if (IS_GEN9_LP(dev_priv) ||
1748 !(dev_priv->suspended_to_idle && dev_priv->csr.dmc_payload))
1749 intel_power_domains_init_hw(dev_priv, true);
1750
1751 i915_gem_sanitize(dev_priv);
1752
1753 enable_rpm_wakeref_asserts(dev_priv);
1754
1755 out:
1756 dev_priv->suspended_to_idle = false;
1757
1758 return ret;
1759 }
1760
1761 static int i915_resume_switcheroo(struct drm_device *dev)
1762 {
1763 int ret;
1764
1765 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1766 return 0;
1767
1768 ret = i915_drm_resume_early(dev);
1769 if (ret)
1770 return ret;
1771
1772 return i915_drm_resume(dev);
1773 }
1774
1775 /**
1776 * i915_reset - reset chip after a hang
1777 * @dev_priv: device private to reset
1778 *
1779 * Reset the chip. Useful if a hang is detected. Marks the device as wedged
1780 * on failure.
1781 *
1782 * Caller must hold the struct_mutex.
1783 *
1784 * Procedure is fairly simple:
1785 * - reset the chip using the reset reg
1786 * - re-init context state
1787 * - re-init hardware status page
1788 * - re-init ring buffer
1789 * - re-init interrupt state
1790 * - re-init display
1791 */
1792 void i915_reset(struct drm_i915_private *dev_priv)
1793 {
1794 struct i915_gpu_error *error = &dev_priv->gpu_error;
1795 int ret;
1796
1797 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1798 GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, &error->flags));
1799
1800 if (!test_bit(I915_RESET_HANDOFF, &error->flags))
1801 return;
1802
1803 /* Clear any previous failed attempts at recovery. Time to try again. */
1804 if (!i915_gem_unset_wedged(dev_priv))
1805 goto wakeup;
1806
1807 error->reset_count++;
1808
1809 pr_notice("drm/i915: Resetting chip after gpu hang\n");
1810 disable_irq(dev_priv->drm.irq);
1811 ret = i915_gem_reset_prepare(dev_priv);
1812 if (ret) {
1813 DRM_ERROR("GPU recovery failed\n");
1814 intel_gpu_reset(dev_priv, ALL_ENGINES);
1815 goto error;
1816 }
1817
1818 ret = intel_gpu_reset(dev_priv, ALL_ENGINES);
1819 if (ret) {
1820 if (ret != -ENODEV)
1821 DRM_ERROR("Failed to reset chip: %i\n", ret);
1822 else
1823 DRM_DEBUG_DRIVER("GPU reset disabled\n");
1824 goto error;
1825 }
1826
1827 i915_gem_reset(dev_priv);
1828 intel_overlay_reset(dev_priv);
1829
1830 /* Ok, now get things going again... */
1831
1832 /*
1833 * Everything depends on having the GTT running, so we need to start
1834 * there. Fortunately we don't need to do this unless we reset the
1835 * chip at a PCI level.
1836 *
1837 * Next we need to restore the context, but we don't use those
1838 * yet either...
1839 *
1840 * Ring buffer needs to be re-initialized in the KMS case, or if X
1841 * was running at the time of the reset (i.e. we weren't VT
1842 * switched away).
1843 */
1844 ret = i915_gem_init_hw(dev_priv);
1845 if (ret) {
1846 DRM_ERROR("Failed hw init on reset %d\n", ret);
1847 goto error;
1848 }
1849
1850 i915_queue_hangcheck(dev_priv);
1851
1852 finish:
1853 i915_gem_reset_finish(dev_priv);
1854 enable_irq(dev_priv->drm.irq);
1855
1856 wakeup:
1857 clear_bit(I915_RESET_HANDOFF, &error->flags);
1858 wake_up_bit(&error->flags, I915_RESET_HANDOFF);
1859 return;
1860
1861 error:
1862 i915_gem_set_wedged(dev_priv);
1863 goto finish;
1864 }
1865
1866 static int i915_pm_suspend(struct device *kdev)
1867 {
1868 struct pci_dev *pdev = to_pci_dev(kdev);
1869 struct drm_device *dev = pci_get_drvdata(pdev);
1870
1871 if (!dev) {
1872 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
1873 return -ENODEV;
1874 }
1875
1876 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1877 return 0;
1878
1879 return i915_drm_suspend(dev);
1880 }
1881
1882 static int i915_pm_suspend_late(struct device *kdev)
1883 {
1884 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1885
1886 /*
1887 * We have a suspend ordering issue with the snd-hda driver also
1888 * requiring our device to be power up. Due to the lack of a
1889 * parent/child relationship we currently solve this with an late
1890 * suspend hook.
1891 *
1892 * FIXME: This should be solved with a special hdmi sink device or
1893 * similar so that power domains can be employed.
1894 */
1895 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1896 return 0;
1897
1898 return i915_drm_suspend_late(dev, false);
1899 }
1900
1901 static int i915_pm_poweroff_late(struct device *kdev)
1902 {
1903 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1904
1905 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1906 return 0;
1907
1908 return i915_drm_suspend_late(dev, true);
1909 }
1910
1911 static int i915_pm_resume_early(struct device *kdev)
1912 {
1913 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1914
1915 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1916 return 0;
1917
1918 return i915_drm_resume_early(dev);
1919 }
1920
1921 static int i915_pm_resume(struct device *kdev)
1922 {
1923 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1924
1925 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1926 return 0;
1927
1928 return i915_drm_resume(dev);
1929 }
1930
1931 /* freeze: before creating the hibernation_image */
1932 static int i915_pm_freeze(struct device *kdev)
1933 {
1934 int ret;
1935
1936 ret = i915_pm_suspend(kdev);
1937 if (ret)
1938 return ret;
1939
1940 ret = i915_gem_freeze(kdev_to_i915(kdev));
1941 if (ret)
1942 return ret;
1943
1944 return 0;
1945 }
1946
1947 static int i915_pm_freeze_late(struct device *kdev)
1948 {
1949 int ret;
1950
1951 ret = i915_pm_suspend_late(kdev);
1952 if (ret)
1953 return ret;
1954
1955 ret = i915_gem_freeze_late(kdev_to_i915(kdev));
1956 if (ret)
1957 return ret;
1958
1959 return 0;
1960 }
1961
1962 /* thaw: called after creating the hibernation image, but before turning off. */
1963 static int i915_pm_thaw_early(struct device *kdev)
1964 {
1965 return i915_pm_resume_early(kdev);
1966 }
1967
1968 static int i915_pm_thaw(struct device *kdev)
1969 {
1970 return i915_pm_resume(kdev);
1971 }
1972
1973 /* restore: called after loading the hibernation image. */
1974 static int i915_pm_restore_early(struct device *kdev)
1975 {
1976 return i915_pm_resume_early(kdev);
1977 }
1978
1979 static int i915_pm_restore(struct device *kdev)
1980 {
1981 return i915_pm_resume(kdev);
1982 }
1983
1984 /*
1985 * Save all Gunit registers that may be lost after a D3 and a subsequent
1986 * S0i[R123] transition. The list of registers needing a save/restore is
1987 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
1988 * registers in the following way:
1989 * - Driver: saved/restored by the driver
1990 * - Punit : saved/restored by the Punit firmware
1991 * - No, w/o marking: no need to save/restore, since the register is R/O or
1992 * used internally by the HW in a way that doesn't depend
1993 * keeping the content across a suspend/resume.
1994 * - Debug : used for debugging
1995 *
1996 * We save/restore all registers marked with 'Driver', with the following
1997 * exceptions:
1998 * - Registers out of use, including also registers marked with 'Debug'.
1999 * These have no effect on the driver's operation, so we don't save/restore
2000 * them to reduce the overhead.
2001 * - Registers that are fully setup by an initialization function called from
2002 * the resume path. For example many clock gating and RPS/RC6 registers.
2003 * - Registers that provide the right functionality with their reset defaults.
2004 *
2005 * TODO: Except for registers that based on the above 3 criteria can be safely
2006 * ignored, we save/restore all others, practically treating the HW context as
2007 * a black-box for the driver. Further investigation is needed to reduce the
2008 * saved/restored registers even further, by following the same 3 criteria.
2009 */
2010 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2011 {
2012 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2013 int i;
2014
2015 /* GAM 0x4000-0x4770 */
2016 s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
2017 s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
2018 s->arb_mode = I915_READ(ARB_MODE);
2019 s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
2020 s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
2021
2022 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2023 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
2024
2025 s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
2026 s->gfx_max_req_count = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
2027
2028 s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
2029 s->ecochk = I915_READ(GAM_ECOCHK);
2030 s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
2031 s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
2032
2033 s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
2034
2035 /* MBC 0x9024-0x91D0, 0x8500 */
2036 s->g3dctl = I915_READ(VLV_G3DCTL);
2037 s->gsckgctl = I915_READ(VLV_GSCKGCTL);
2038 s->mbctl = I915_READ(GEN6_MBCTL);
2039
2040 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2041 s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
2042 s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
2043 s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
2044 s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
2045 s->rstctl = I915_READ(GEN6_RSTCTL);
2046 s->misccpctl = I915_READ(GEN7_MISCCPCTL);
2047
2048 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2049 s->gfxpause = I915_READ(GEN6_GFXPAUSE);
2050 s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
2051 s->rpdeuc = I915_READ(GEN6_RPDEUC);
2052 s->ecobus = I915_READ(ECOBUS);
2053 s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
2054 s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
2055 s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
2056 s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
2057 s->rcedata = I915_READ(VLV_RCEDATA);
2058 s->spare2gh = I915_READ(VLV_SPAREG2H);
2059
2060 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2061 s->gt_imr = I915_READ(GTIMR);
2062 s->gt_ier = I915_READ(GTIER);
2063 s->pm_imr = I915_READ(GEN6_PMIMR);
2064 s->pm_ier = I915_READ(GEN6_PMIER);
2065
2066 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2067 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
2068
2069 /* GT SA CZ domain, 0x100000-0x138124 */
2070 s->tilectl = I915_READ(TILECTL);
2071 s->gt_fifoctl = I915_READ(GTFIFOCTL);
2072 s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
2073 s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2074 s->pmwgicz = I915_READ(VLV_PMWGICZ);
2075
2076 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2077 s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
2078 s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
2079 s->pcbr = I915_READ(VLV_PCBR);
2080 s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
2081
2082 /*
2083 * Not saving any of:
2084 * DFT, 0x9800-0x9EC0
2085 * SARB, 0xB000-0xB1FC
2086 * GAC, 0x5208-0x524C, 0x14000-0x14C000
2087 * PCI CFG
2088 */
2089 }
2090
2091 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2092 {
2093 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2094 u32 val;
2095 int i;
2096
2097 /* GAM 0x4000-0x4770 */
2098 I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
2099 I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
2100 I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
2101 I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
2102 I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
2103
2104 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2105 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2106
2107 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2108 I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2109
2110 I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
2111 I915_WRITE(GAM_ECOCHK, s->ecochk);
2112 I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
2113 I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
2114
2115 I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
2116
2117 /* MBC 0x9024-0x91D0, 0x8500 */
2118 I915_WRITE(VLV_G3DCTL, s->g3dctl);
2119 I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
2120 I915_WRITE(GEN6_MBCTL, s->mbctl);
2121
2122 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2123 I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
2124 I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
2125 I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
2126 I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
2127 I915_WRITE(GEN6_RSTCTL, s->rstctl);
2128 I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
2129
2130 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2131 I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
2132 I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
2133 I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
2134 I915_WRITE(ECOBUS, s->ecobus);
2135 I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
2136 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2137 I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
2138 I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
2139 I915_WRITE(VLV_RCEDATA, s->rcedata);
2140 I915_WRITE(VLV_SPAREG2H, s->spare2gh);
2141
2142 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2143 I915_WRITE(GTIMR, s->gt_imr);
2144 I915_WRITE(GTIER, s->gt_ier);
2145 I915_WRITE(GEN6_PMIMR, s->pm_imr);
2146 I915_WRITE(GEN6_PMIER, s->pm_ier);
2147
2148 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2149 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2150
2151 /* GT SA CZ domain, 0x100000-0x138124 */
2152 I915_WRITE(TILECTL, s->tilectl);
2153 I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
2154 /*
2155 * Preserve the GT allow wake and GFX force clock bit, they are not
2156 * be restored, as they are used to control the s0ix suspend/resume
2157 * sequence by the caller.
2158 */
2159 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2160 val &= VLV_GTLC_ALLOWWAKEREQ;
2161 val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2162 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2163
2164 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2165 val &= VLV_GFX_CLK_FORCE_ON_BIT;
2166 val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2167 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2168
2169 I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
2170
2171 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2172 I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
2173 I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
2174 I915_WRITE(VLV_PCBR, s->pcbr);
2175 I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
2176 }
2177
2178 static int vlv_wait_for_pw_status(struct drm_i915_private *dev_priv,
2179 u32 mask, u32 val)
2180 {
2181 /* The HW does not like us polling for PW_STATUS frequently, so
2182 * use the sleeping loop rather than risk the busy spin within
2183 * intel_wait_for_register().
2184 *
2185 * Transitioning between RC6 states should be at most 2ms (see
2186 * valleyview_enable_rps) so use a 3ms timeout.
2187 */
2188 return wait_for((I915_READ_NOTRACE(VLV_GTLC_PW_STATUS) & mask) == val,
2189 3);
2190 }
2191
2192 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2193 {
2194 u32 val;
2195 int err;
2196
2197 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2198 val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2199 if (force_on)
2200 val |= VLV_GFX_CLK_FORCE_ON_BIT;
2201 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2202
2203 if (!force_on)
2204 return 0;
2205
2206 err = intel_wait_for_register(dev_priv,
2207 VLV_GTLC_SURVIVABILITY_REG,
2208 VLV_GFX_CLK_STATUS_BIT,
2209 VLV_GFX_CLK_STATUS_BIT,
2210 20);
2211 if (err)
2212 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2213 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2214
2215 return err;
2216 }
2217
2218 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2219 {
2220 u32 mask;
2221 u32 val;
2222 int err;
2223
2224 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2225 val &= ~VLV_GTLC_ALLOWWAKEREQ;
2226 if (allow)
2227 val |= VLV_GTLC_ALLOWWAKEREQ;
2228 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2229 POSTING_READ(VLV_GTLC_WAKE_CTRL);
2230
2231 mask = VLV_GTLC_ALLOWWAKEACK;
2232 val = allow ? mask : 0;
2233
2234 err = vlv_wait_for_pw_status(dev_priv, mask, val);
2235 if (err)
2236 DRM_ERROR("timeout disabling GT waking\n");
2237
2238 return err;
2239 }
2240
2241 static void vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2242 bool wait_for_on)
2243 {
2244 u32 mask;
2245 u32 val;
2246
2247 mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2248 val = wait_for_on ? mask : 0;
2249
2250 /*
2251 * RC6 transitioning can be delayed up to 2 msec (see
2252 * valleyview_enable_rps), use 3 msec for safety.
2253 */
2254 if (vlv_wait_for_pw_status(dev_priv, mask, val))
2255 DRM_ERROR("timeout waiting for GT wells to go %s\n",
2256 onoff(wait_for_on));
2257 }
2258
2259 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2260 {
2261 if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2262 return;
2263
2264 DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2265 I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2266 }
2267
2268 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2269 {
2270 u32 mask;
2271 int err;
2272
2273 /*
2274 * Bspec defines the following GT well on flags as debug only, so
2275 * don't treat them as hard failures.
2276 */
2277 vlv_wait_for_gt_wells(dev_priv, false);
2278
2279 mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2280 WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2281
2282 vlv_check_no_gt_access(dev_priv);
2283
2284 err = vlv_force_gfx_clock(dev_priv, true);
2285 if (err)
2286 goto err1;
2287
2288 err = vlv_allow_gt_wake(dev_priv, false);
2289 if (err)
2290 goto err2;
2291
2292 if (!IS_CHERRYVIEW(dev_priv))
2293 vlv_save_gunit_s0ix_state(dev_priv);
2294
2295 err = vlv_force_gfx_clock(dev_priv, false);
2296 if (err)
2297 goto err2;
2298
2299 return 0;
2300
2301 err2:
2302 /* For safety always re-enable waking and disable gfx clock forcing */
2303 vlv_allow_gt_wake(dev_priv, true);
2304 err1:
2305 vlv_force_gfx_clock(dev_priv, false);
2306
2307 return err;
2308 }
2309
2310 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2311 bool rpm_resume)
2312 {
2313 int err;
2314 int ret;
2315
2316 /*
2317 * If any of the steps fail just try to continue, that's the best we
2318 * can do at this point. Return the first error code (which will also
2319 * leave RPM permanently disabled).
2320 */
2321 ret = vlv_force_gfx_clock(dev_priv, true);
2322
2323 if (!IS_CHERRYVIEW(dev_priv))
2324 vlv_restore_gunit_s0ix_state(dev_priv);
2325
2326 err = vlv_allow_gt_wake(dev_priv, true);
2327 if (!ret)
2328 ret = err;
2329
2330 err = vlv_force_gfx_clock(dev_priv, false);
2331 if (!ret)
2332 ret = err;
2333
2334 vlv_check_no_gt_access(dev_priv);
2335
2336 if (rpm_resume)
2337 intel_init_clock_gating(dev_priv);
2338
2339 return ret;
2340 }
2341
2342 static int intel_runtime_suspend(struct device *kdev)
2343 {
2344 struct pci_dev *pdev = to_pci_dev(kdev);
2345 struct drm_device *dev = pci_get_drvdata(pdev);
2346 struct drm_i915_private *dev_priv = to_i915(dev);
2347 int ret;
2348
2349 if (WARN_ON_ONCE(!(dev_priv->rps.enabled && intel_enable_rc6())))
2350 return -ENODEV;
2351
2352 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2353 return -ENODEV;
2354
2355 DRM_DEBUG_KMS("Suspending device\n");
2356
2357 disable_rpm_wakeref_asserts(dev_priv);
2358
2359 /*
2360 * We are safe here against re-faults, since the fault handler takes
2361 * an RPM reference.
2362 */
2363 i915_gem_runtime_suspend(dev_priv);
2364
2365 intel_guc_suspend(dev_priv);
2366
2367 intel_runtime_pm_disable_interrupts(dev_priv);
2368
2369 ret = 0;
2370 if (IS_GEN9_LP(dev_priv)) {
2371 bxt_display_core_uninit(dev_priv);
2372 bxt_enable_dc9(dev_priv);
2373 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2374 hsw_enable_pc8(dev_priv);
2375 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2376 ret = vlv_suspend_complete(dev_priv);
2377 }
2378
2379 if (ret) {
2380 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2381 intel_runtime_pm_enable_interrupts(dev_priv);
2382
2383 enable_rpm_wakeref_asserts(dev_priv);
2384
2385 return ret;
2386 }
2387
2388 intel_uncore_suspend(dev_priv);
2389
2390 enable_rpm_wakeref_asserts(dev_priv);
2391 WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
2392
2393 if (intel_uncore_arm_unclaimed_mmio_detection(dev_priv))
2394 DRM_ERROR("Unclaimed access detected prior to suspending\n");
2395
2396 dev_priv->pm.suspended = true;
2397
2398 /*
2399 * FIXME: We really should find a document that references the arguments
2400 * used below!
2401 */
2402 if (IS_BROADWELL(dev_priv)) {
2403 /*
2404 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2405 * being detected, and the call we do at intel_runtime_resume()
2406 * won't be able to restore them. Since PCI_D3hot matches the
2407 * actual specification and appears to be working, use it.
2408 */
2409 intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2410 } else {
2411 /*
2412 * current versions of firmware which depend on this opregion
2413 * notification have repurposed the D1 definition to mean
2414 * "runtime suspended" vs. what you would normally expect (D3)
2415 * to distinguish it from notifications that might be sent via
2416 * the suspend path.
2417 */
2418 intel_opregion_notify_adapter(dev_priv, PCI_D1);
2419 }
2420
2421 assert_forcewakes_inactive(dev_priv);
2422
2423 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2424 intel_hpd_poll_init(dev_priv);
2425
2426 DRM_DEBUG_KMS("Device suspended\n");
2427 return 0;
2428 }
2429
2430 static int intel_runtime_resume(struct device *kdev)
2431 {
2432 struct pci_dev *pdev = to_pci_dev(kdev);
2433 struct drm_device *dev = pci_get_drvdata(pdev);
2434 struct drm_i915_private *dev_priv = to_i915(dev);
2435 int ret = 0;
2436
2437 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2438 return -ENODEV;
2439
2440 DRM_DEBUG_KMS("Resuming device\n");
2441
2442 WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
2443 disable_rpm_wakeref_asserts(dev_priv);
2444
2445 intel_opregion_notify_adapter(dev_priv, PCI_D0);
2446 dev_priv->pm.suspended = false;
2447 if (intel_uncore_unclaimed_mmio(dev_priv))
2448 DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
2449
2450 intel_guc_resume(dev_priv);
2451
2452 if (IS_GEN6(dev_priv))
2453 intel_init_pch_refclk(dev_priv);
2454
2455 if (IS_GEN9_LP(dev_priv)) {
2456 bxt_disable_dc9(dev_priv);
2457 bxt_display_core_init(dev_priv, true);
2458 if (dev_priv->csr.dmc_payload &&
2459 (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2460 gen9_enable_dc5(dev_priv);
2461 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2462 hsw_disable_pc8(dev_priv);
2463 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2464 ret = vlv_resume_prepare(dev_priv, true);
2465 }
2466
2467 /*
2468 * No point of rolling back things in case of an error, as the best
2469 * we can do is to hope that things will still work (and disable RPM).
2470 */
2471 i915_gem_init_swizzling(dev_priv);
2472 i915_gem_restore_fences(dev_priv);
2473
2474 intel_runtime_pm_enable_interrupts(dev_priv);
2475
2476 /*
2477 * On VLV/CHV display interrupts are part of the display
2478 * power well, so hpd is reinitialized from there. For
2479 * everyone else do it here.
2480 */
2481 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2482 intel_hpd_init(dev_priv);
2483
2484 enable_rpm_wakeref_asserts(dev_priv);
2485
2486 if (ret)
2487 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
2488 else
2489 DRM_DEBUG_KMS("Device resumed\n");
2490
2491 return ret;
2492 }
2493
2494 const struct dev_pm_ops i915_pm_ops = {
2495 /*
2496 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
2497 * PMSG_RESUME]
2498 */
2499 .suspend = i915_pm_suspend,
2500 .suspend_late = i915_pm_suspend_late,
2501 .resume_early = i915_pm_resume_early,
2502 .resume = i915_pm_resume,
2503
2504 /*
2505 * S4 event handlers
2506 * @freeze, @freeze_late : called (1) before creating the
2507 * hibernation image [PMSG_FREEZE] and
2508 * (2) after rebooting, before restoring
2509 * the image [PMSG_QUIESCE]
2510 * @thaw, @thaw_early : called (1) after creating the hibernation
2511 * image, before writing it [PMSG_THAW]
2512 * and (2) after failing to create or
2513 * restore the image [PMSG_RECOVER]
2514 * @poweroff, @poweroff_late: called after writing the hibernation
2515 * image, before rebooting [PMSG_HIBERNATE]
2516 * @restore, @restore_early : called after rebooting and restoring the
2517 * hibernation image [PMSG_RESTORE]
2518 */
2519 .freeze = i915_pm_freeze,
2520 .freeze_late = i915_pm_freeze_late,
2521 .thaw_early = i915_pm_thaw_early,
2522 .thaw = i915_pm_thaw,
2523 .poweroff = i915_pm_suspend,
2524 .poweroff_late = i915_pm_poweroff_late,
2525 .restore_early = i915_pm_restore_early,
2526 .restore = i915_pm_restore,
2527
2528 /* S0ix (via runtime suspend) event handlers */
2529 .runtime_suspend = intel_runtime_suspend,
2530 .runtime_resume = intel_runtime_resume,
2531 };
2532
2533 static const struct vm_operations_struct i915_gem_vm_ops = {
2534 .fault = i915_gem_fault,
2535 .open = drm_gem_vm_open,
2536 .close = drm_gem_vm_close,
2537 };
2538
2539 static const struct file_operations i915_driver_fops = {
2540 .owner = THIS_MODULE,
2541 .open = drm_open,
2542 .release = drm_release,
2543 .unlocked_ioctl = drm_ioctl,
2544 .mmap = drm_gem_mmap,
2545 .poll = drm_poll,
2546 .read = drm_read,
2547 .compat_ioctl = i915_compat_ioctl,
2548 .llseek = noop_llseek,
2549 };
2550
2551 static int
2552 i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
2553 struct drm_file *file)
2554 {
2555 return -ENODEV;
2556 }
2557
2558 static const struct drm_ioctl_desc i915_ioctls[] = {
2559 DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2560 DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
2561 DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
2562 DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
2563 DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
2564 DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
2565 DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam, DRM_AUTH|DRM_RENDER_ALLOW),
2566 DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2567 DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
2568 DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
2569 DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2570 DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
2571 DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2572 DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2573 DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE, drm_noop, DRM_AUTH),
2574 DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
2575 DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2576 DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2577 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer, DRM_AUTH),
2578 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2_WR, i915_gem_execbuffer2, DRM_AUTH|DRM_RENDER_ALLOW),
2579 DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2580 DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2581 DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2582 DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
2583 DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
2584 DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2585 DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2586 DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2587 DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
2588 DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
2589 DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
2590 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
2591 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_GTT, i915_gem_mmap_gtt_ioctl, DRM_RENDER_ALLOW),
2592 DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
2593 DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
2594 DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling_ioctl, DRM_RENDER_ALLOW),
2595 DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling_ioctl, DRM_RENDER_ALLOW),
2596 DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
2597 DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id, 0),
2598 DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
2599 DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2600 DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2601 DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey, DRM_MASTER|DRM_CONTROL_ALLOW),
2602 DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER|DRM_CONTROL_ALLOW),
2603 DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2604 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
2605 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
2606 DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
2607 DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
2608 DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
2609 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
2610 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
2611 DRM_IOCTL_DEF_DRV(I915_PERF_OPEN, i915_perf_open_ioctl, DRM_RENDER_ALLOW),
2612 };
2613
2614 static struct drm_driver driver = {
2615 /* Don't use MTRRs here; the Xserver or userspace app should
2616 * deal with them for Intel hardware.
2617 */
2618 .driver_features =
2619 DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
2620 DRIVER_RENDER | DRIVER_MODESET | DRIVER_ATOMIC,
2621 .release = i915_driver_release,
2622 .open = i915_driver_open,
2623 .lastclose = i915_driver_lastclose,
2624 .postclose = i915_driver_postclose,
2625 .set_busid = drm_pci_set_busid,
2626
2627 .gem_close_object = i915_gem_close_object,
2628 .gem_free_object_unlocked = i915_gem_free_object,
2629 .gem_vm_ops = &i915_gem_vm_ops,
2630
2631 .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
2632 .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
2633 .gem_prime_export = i915_gem_prime_export,
2634 .gem_prime_import = i915_gem_prime_import,
2635
2636 .dumb_create = i915_gem_dumb_create,
2637 .dumb_map_offset = i915_gem_mmap_gtt,
2638 .dumb_destroy = drm_gem_dumb_destroy,
2639 .ioctls = i915_ioctls,
2640 .num_ioctls = ARRAY_SIZE(i915_ioctls),
2641 .fops = &i915_driver_fops,
2642 .name = DRIVER_NAME,
2643 .desc = DRIVER_DESC,
2644 .date = DRIVER_DATE,
2645 .major = DRIVER_MAJOR,
2646 .minor = DRIVER_MINOR,
2647 .patchlevel = DRIVER_PATCHLEVEL,
2648 };
2649
2650 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2651 #include "selftests/mock_drm.c"
2652 #endif