]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.c
Merge remote-tracking branch 'regulator/fix/max77802' into regulator-linus
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_drv.c
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #include <linux/acpi.h>
31 #include <linux/device.h>
32 #include <linux/oom.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/pm.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/pnp.h>
38 #include <linux/slab.h>
39 #include <linux/vgaarb.h>
40 #include <linux/vga_switcheroo.h>
41 #include <linux/vt.h>
42 #include <acpi/video.h>
43
44 #include <drm/drmP.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/drm_atomic_helper.h>
47 #include <drm/i915_drm.h>
48
49 #include "i915_drv.h"
50 #include "i915_trace.h"
51 #include "i915_vgpu.h"
52 #include "intel_drv.h"
53 #include "intel_uc.h"
54
55 static struct drm_driver driver;
56
57 static unsigned int i915_load_fail_count;
58
59 bool __i915_inject_load_failure(const char *func, int line)
60 {
61 if (i915_load_fail_count >= i915.inject_load_failure)
62 return false;
63
64 if (++i915_load_fail_count == i915.inject_load_failure) {
65 DRM_INFO("Injecting failure at checkpoint %u [%s:%d]\n",
66 i915.inject_load_failure, func, line);
67 return true;
68 }
69
70 return false;
71 }
72
73 #define FDO_BUG_URL "https://bugs.freedesktop.org/enter_bug.cgi?product=DRI"
74 #define FDO_BUG_MSG "Please file a bug at " FDO_BUG_URL " against DRM/Intel " \
75 "providing the dmesg log by booting with drm.debug=0xf"
76
77 void
78 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
79 const char *fmt, ...)
80 {
81 static bool shown_bug_once;
82 struct device *kdev = dev_priv->drm.dev;
83 bool is_error = level[1] <= KERN_ERR[1];
84 bool is_debug = level[1] == KERN_DEBUG[1];
85 struct va_format vaf;
86 va_list args;
87
88 if (is_debug && !(drm_debug & DRM_UT_DRIVER))
89 return;
90
91 va_start(args, fmt);
92
93 vaf.fmt = fmt;
94 vaf.va = &args;
95
96 dev_printk(level, kdev, "[" DRM_NAME ":%ps] %pV",
97 __builtin_return_address(0), &vaf);
98
99 if (is_error && !shown_bug_once) {
100 dev_notice(kdev, "%s", FDO_BUG_MSG);
101 shown_bug_once = true;
102 }
103
104 va_end(args);
105 }
106
107 static bool i915_error_injected(struct drm_i915_private *dev_priv)
108 {
109 return i915.inject_load_failure &&
110 i915_load_fail_count == i915.inject_load_failure;
111 }
112
113 #define i915_load_error(dev_priv, fmt, ...) \
114 __i915_printk(dev_priv, \
115 i915_error_injected(dev_priv) ? KERN_DEBUG : KERN_ERR, \
116 fmt, ##__VA_ARGS__)
117
118
119 static enum intel_pch intel_virt_detect_pch(struct drm_i915_private *dev_priv)
120 {
121 enum intel_pch ret = PCH_NOP;
122
123 /*
124 * In a virtualized passthrough environment we can be in a
125 * setup where the ISA bridge is not able to be passed through.
126 * In this case, a south bridge can be emulated and we have to
127 * make an educated guess as to which PCH is really there.
128 */
129
130 if (IS_GEN5(dev_priv)) {
131 ret = PCH_IBX;
132 DRM_DEBUG_KMS("Assuming Ibex Peak PCH\n");
133 } else if (IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv)) {
134 ret = PCH_CPT;
135 DRM_DEBUG_KMS("Assuming CouarPoint PCH\n");
136 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
137 ret = PCH_LPT;
138 DRM_DEBUG_KMS("Assuming LynxPoint PCH\n");
139 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
140 ret = PCH_SPT;
141 DRM_DEBUG_KMS("Assuming SunrisePoint PCH\n");
142 }
143
144 return ret;
145 }
146
147 static void intel_detect_pch(struct drm_i915_private *dev_priv)
148 {
149 struct pci_dev *pch = NULL;
150
151 /* In all current cases, num_pipes is equivalent to the PCH_NOP setting
152 * (which really amounts to a PCH but no South Display).
153 */
154 if (INTEL_INFO(dev_priv)->num_pipes == 0) {
155 dev_priv->pch_type = PCH_NOP;
156 return;
157 }
158
159 /*
160 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
161 * make graphics device passthrough work easy for VMM, that only
162 * need to expose ISA bridge to let driver know the real hardware
163 * underneath. This is a requirement from virtualization team.
164 *
165 * In some virtualized environments (e.g. XEN), there is irrelevant
166 * ISA bridge in the system. To work reliably, we should scan trhough
167 * all the ISA bridge devices and check for the first match, instead
168 * of only checking the first one.
169 */
170 while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
171 if (pch->vendor == PCI_VENDOR_ID_INTEL) {
172 unsigned short id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
173 dev_priv->pch_id = id;
174
175 if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
176 dev_priv->pch_type = PCH_IBX;
177 DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
178 WARN_ON(!IS_GEN5(dev_priv));
179 } else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
180 dev_priv->pch_type = PCH_CPT;
181 DRM_DEBUG_KMS("Found CougarPoint PCH\n");
182 WARN_ON(!(IS_GEN6(dev_priv) ||
183 IS_IVYBRIDGE(dev_priv)));
184 } else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
185 /* PantherPoint is CPT compatible */
186 dev_priv->pch_type = PCH_CPT;
187 DRM_DEBUG_KMS("Found PantherPoint PCH\n");
188 WARN_ON(!(IS_GEN6(dev_priv) ||
189 IS_IVYBRIDGE(dev_priv)));
190 } else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
191 dev_priv->pch_type = PCH_LPT;
192 DRM_DEBUG_KMS("Found LynxPoint PCH\n");
193 WARN_ON(!IS_HASWELL(dev_priv) &&
194 !IS_BROADWELL(dev_priv));
195 WARN_ON(IS_HSW_ULT(dev_priv) ||
196 IS_BDW_ULT(dev_priv));
197 } else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
198 dev_priv->pch_type = PCH_LPT;
199 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
200 WARN_ON(!IS_HASWELL(dev_priv) &&
201 !IS_BROADWELL(dev_priv));
202 WARN_ON(!IS_HSW_ULT(dev_priv) &&
203 !IS_BDW_ULT(dev_priv));
204 } else if (id == INTEL_PCH_SPT_DEVICE_ID_TYPE) {
205 dev_priv->pch_type = PCH_SPT;
206 DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
207 WARN_ON(!IS_SKYLAKE(dev_priv) &&
208 !IS_KABYLAKE(dev_priv));
209 } else if (id == INTEL_PCH_SPT_LP_DEVICE_ID_TYPE) {
210 dev_priv->pch_type = PCH_SPT;
211 DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
212 WARN_ON(!IS_SKYLAKE(dev_priv) &&
213 !IS_KABYLAKE(dev_priv));
214 } else if (id == INTEL_PCH_KBP_DEVICE_ID_TYPE) {
215 dev_priv->pch_type = PCH_KBP;
216 DRM_DEBUG_KMS("Found KabyPoint PCH\n");
217 WARN_ON(!IS_SKYLAKE(dev_priv) &&
218 !IS_KABYLAKE(dev_priv));
219 } else if ((id == INTEL_PCH_P2X_DEVICE_ID_TYPE) ||
220 (id == INTEL_PCH_P3X_DEVICE_ID_TYPE) ||
221 ((id == INTEL_PCH_QEMU_DEVICE_ID_TYPE) &&
222 pch->subsystem_vendor ==
223 PCI_SUBVENDOR_ID_REDHAT_QUMRANET &&
224 pch->subsystem_device ==
225 PCI_SUBDEVICE_ID_QEMU)) {
226 dev_priv->pch_type =
227 intel_virt_detect_pch(dev_priv);
228 } else
229 continue;
230
231 break;
232 }
233 }
234 if (!pch)
235 DRM_DEBUG_KMS("No PCH found.\n");
236
237 pci_dev_put(pch);
238 }
239
240 static int i915_getparam(struct drm_device *dev, void *data,
241 struct drm_file *file_priv)
242 {
243 struct drm_i915_private *dev_priv = to_i915(dev);
244 struct pci_dev *pdev = dev_priv->drm.pdev;
245 drm_i915_getparam_t *param = data;
246 int value;
247
248 switch (param->param) {
249 case I915_PARAM_IRQ_ACTIVE:
250 case I915_PARAM_ALLOW_BATCHBUFFER:
251 case I915_PARAM_LAST_DISPATCH:
252 case I915_PARAM_HAS_EXEC_CONSTANTS:
253 /* Reject all old ums/dri params. */
254 return -ENODEV;
255 case I915_PARAM_CHIPSET_ID:
256 value = pdev->device;
257 break;
258 case I915_PARAM_REVISION:
259 value = pdev->revision;
260 break;
261 case I915_PARAM_NUM_FENCES_AVAIL:
262 value = dev_priv->num_fence_regs;
263 break;
264 case I915_PARAM_HAS_OVERLAY:
265 value = dev_priv->overlay ? 1 : 0;
266 break;
267 case I915_PARAM_HAS_BSD:
268 value = !!dev_priv->engine[VCS];
269 break;
270 case I915_PARAM_HAS_BLT:
271 value = !!dev_priv->engine[BCS];
272 break;
273 case I915_PARAM_HAS_VEBOX:
274 value = !!dev_priv->engine[VECS];
275 break;
276 case I915_PARAM_HAS_BSD2:
277 value = !!dev_priv->engine[VCS2];
278 break;
279 case I915_PARAM_HAS_LLC:
280 value = HAS_LLC(dev_priv);
281 break;
282 case I915_PARAM_HAS_WT:
283 value = HAS_WT(dev_priv);
284 break;
285 case I915_PARAM_HAS_ALIASING_PPGTT:
286 value = USES_PPGTT(dev_priv);
287 break;
288 case I915_PARAM_HAS_SEMAPHORES:
289 value = i915.semaphores;
290 break;
291 case I915_PARAM_HAS_SECURE_BATCHES:
292 value = capable(CAP_SYS_ADMIN);
293 break;
294 case I915_PARAM_CMD_PARSER_VERSION:
295 value = i915_cmd_parser_get_version(dev_priv);
296 break;
297 case I915_PARAM_SUBSLICE_TOTAL:
298 value = sseu_subslice_total(&INTEL_INFO(dev_priv)->sseu);
299 if (!value)
300 return -ENODEV;
301 break;
302 case I915_PARAM_EU_TOTAL:
303 value = INTEL_INFO(dev_priv)->sseu.eu_total;
304 if (!value)
305 return -ENODEV;
306 break;
307 case I915_PARAM_HAS_GPU_RESET:
308 value = i915.enable_hangcheck && intel_has_gpu_reset(dev_priv);
309 break;
310 case I915_PARAM_HAS_RESOURCE_STREAMER:
311 value = HAS_RESOURCE_STREAMER(dev_priv);
312 break;
313 case I915_PARAM_HAS_POOLED_EU:
314 value = HAS_POOLED_EU(dev_priv);
315 break;
316 case I915_PARAM_MIN_EU_IN_POOL:
317 value = INTEL_INFO(dev_priv)->sseu.min_eu_in_pool;
318 break;
319 case I915_PARAM_HUC_STATUS:
320 intel_runtime_pm_get(dev_priv);
321 value = I915_READ(HUC_STATUS2) & HUC_FW_VERIFIED;
322 intel_runtime_pm_put(dev_priv);
323 break;
324 case I915_PARAM_MMAP_GTT_VERSION:
325 /* Though we've started our numbering from 1, and so class all
326 * earlier versions as 0, in effect their value is undefined as
327 * the ioctl will report EINVAL for the unknown param!
328 */
329 value = i915_gem_mmap_gtt_version();
330 break;
331 case I915_PARAM_HAS_SCHEDULER:
332 value = dev_priv->engine[RCS] &&
333 dev_priv->engine[RCS]->schedule;
334 break;
335 case I915_PARAM_MMAP_VERSION:
336 /* Remember to bump this if the version changes! */
337 case I915_PARAM_HAS_GEM:
338 case I915_PARAM_HAS_PAGEFLIPPING:
339 case I915_PARAM_HAS_EXECBUF2: /* depends on GEM */
340 case I915_PARAM_HAS_RELAXED_FENCING:
341 case I915_PARAM_HAS_COHERENT_RINGS:
342 case I915_PARAM_HAS_RELAXED_DELTA:
343 case I915_PARAM_HAS_GEN7_SOL_RESET:
344 case I915_PARAM_HAS_WAIT_TIMEOUT:
345 case I915_PARAM_HAS_PRIME_VMAP_FLUSH:
346 case I915_PARAM_HAS_PINNED_BATCHES:
347 case I915_PARAM_HAS_EXEC_NO_RELOC:
348 case I915_PARAM_HAS_EXEC_HANDLE_LUT:
349 case I915_PARAM_HAS_COHERENT_PHYS_GTT:
350 case I915_PARAM_HAS_EXEC_SOFTPIN:
351 case I915_PARAM_HAS_EXEC_ASYNC:
352 case I915_PARAM_HAS_EXEC_FENCE:
353 /* For the time being all of these are always true;
354 * if some supported hardware does not have one of these
355 * features this value needs to be provided from
356 * INTEL_INFO(), a feature macro, or similar.
357 */
358 value = 1;
359 break;
360 default:
361 DRM_DEBUG("Unknown parameter %d\n", param->param);
362 return -EINVAL;
363 }
364
365 if (put_user(value, param->value))
366 return -EFAULT;
367
368 return 0;
369 }
370
371 static int i915_get_bridge_dev(struct drm_i915_private *dev_priv)
372 {
373 dev_priv->bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0));
374 if (!dev_priv->bridge_dev) {
375 DRM_ERROR("bridge device not found\n");
376 return -1;
377 }
378 return 0;
379 }
380
381 /* Allocate space for the MCH regs if needed, return nonzero on error */
382 static int
383 intel_alloc_mchbar_resource(struct drm_i915_private *dev_priv)
384 {
385 int reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
386 u32 temp_lo, temp_hi = 0;
387 u64 mchbar_addr;
388 int ret;
389
390 if (INTEL_GEN(dev_priv) >= 4)
391 pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
392 pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
393 mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
394
395 /* If ACPI doesn't have it, assume we need to allocate it ourselves */
396 #ifdef CONFIG_PNP
397 if (mchbar_addr &&
398 pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
399 return 0;
400 #endif
401
402 /* Get some space for it */
403 dev_priv->mch_res.name = "i915 MCHBAR";
404 dev_priv->mch_res.flags = IORESOURCE_MEM;
405 ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
406 &dev_priv->mch_res,
407 MCHBAR_SIZE, MCHBAR_SIZE,
408 PCIBIOS_MIN_MEM,
409 0, pcibios_align_resource,
410 dev_priv->bridge_dev);
411 if (ret) {
412 DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
413 dev_priv->mch_res.start = 0;
414 return ret;
415 }
416
417 if (INTEL_GEN(dev_priv) >= 4)
418 pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
419 upper_32_bits(dev_priv->mch_res.start));
420
421 pci_write_config_dword(dev_priv->bridge_dev, reg,
422 lower_32_bits(dev_priv->mch_res.start));
423 return 0;
424 }
425
426 /* Setup MCHBAR if possible, return true if we should disable it again */
427 static void
428 intel_setup_mchbar(struct drm_i915_private *dev_priv)
429 {
430 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
431 u32 temp;
432 bool enabled;
433
434 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
435 return;
436
437 dev_priv->mchbar_need_disable = false;
438
439 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
440 pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
441 enabled = !!(temp & DEVEN_MCHBAR_EN);
442 } else {
443 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
444 enabled = temp & 1;
445 }
446
447 /* If it's already enabled, don't have to do anything */
448 if (enabled)
449 return;
450
451 if (intel_alloc_mchbar_resource(dev_priv))
452 return;
453
454 dev_priv->mchbar_need_disable = true;
455
456 /* Space is allocated or reserved, so enable it. */
457 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
458 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
459 temp | DEVEN_MCHBAR_EN);
460 } else {
461 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
462 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
463 }
464 }
465
466 static void
467 intel_teardown_mchbar(struct drm_i915_private *dev_priv)
468 {
469 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
470
471 if (dev_priv->mchbar_need_disable) {
472 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
473 u32 deven_val;
474
475 pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
476 &deven_val);
477 deven_val &= ~DEVEN_MCHBAR_EN;
478 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
479 deven_val);
480 } else {
481 u32 mchbar_val;
482
483 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
484 &mchbar_val);
485 mchbar_val &= ~1;
486 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
487 mchbar_val);
488 }
489 }
490
491 if (dev_priv->mch_res.start)
492 release_resource(&dev_priv->mch_res);
493 }
494
495 /* true = enable decode, false = disable decoder */
496 static unsigned int i915_vga_set_decode(void *cookie, bool state)
497 {
498 struct drm_i915_private *dev_priv = cookie;
499
500 intel_modeset_vga_set_state(dev_priv, state);
501 if (state)
502 return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
503 VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
504 else
505 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
506 }
507
508 static int i915_resume_switcheroo(struct drm_device *dev);
509 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
510
511 static void i915_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
512 {
513 struct drm_device *dev = pci_get_drvdata(pdev);
514 pm_message_t pmm = { .event = PM_EVENT_SUSPEND };
515
516 if (state == VGA_SWITCHEROO_ON) {
517 pr_info("switched on\n");
518 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
519 /* i915 resume handler doesn't set to D0 */
520 pci_set_power_state(pdev, PCI_D0);
521 i915_resume_switcheroo(dev);
522 dev->switch_power_state = DRM_SWITCH_POWER_ON;
523 } else {
524 pr_info("switched off\n");
525 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
526 i915_suspend_switcheroo(dev, pmm);
527 dev->switch_power_state = DRM_SWITCH_POWER_OFF;
528 }
529 }
530
531 static bool i915_switcheroo_can_switch(struct pci_dev *pdev)
532 {
533 struct drm_device *dev = pci_get_drvdata(pdev);
534
535 /*
536 * FIXME: open_count is protected by drm_global_mutex but that would lead to
537 * locking inversion with the driver load path. And the access here is
538 * completely racy anyway. So don't bother with locking for now.
539 */
540 return dev->open_count == 0;
541 }
542
543 static const struct vga_switcheroo_client_ops i915_switcheroo_ops = {
544 .set_gpu_state = i915_switcheroo_set_state,
545 .reprobe = NULL,
546 .can_switch = i915_switcheroo_can_switch,
547 };
548
549 static void i915_gem_fini(struct drm_i915_private *dev_priv)
550 {
551 mutex_lock(&dev_priv->drm.struct_mutex);
552 intel_uc_fini_hw(dev_priv);
553 i915_gem_cleanup_engines(dev_priv);
554 i915_gem_context_fini(dev_priv);
555 mutex_unlock(&dev_priv->drm.struct_mutex);
556
557 i915_gem_drain_freed_objects(dev_priv);
558
559 WARN_ON(!list_empty(&dev_priv->context_list));
560 }
561
562 static int i915_load_modeset_init(struct drm_device *dev)
563 {
564 struct drm_i915_private *dev_priv = to_i915(dev);
565 struct pci_dev *pdev = dev_priv->drm.pdev;
566 int ret;
567
568 if (i915_inject_load_failure())
569 return -ENODEV;
570
571 intel_bios_init(dev_priv);
572
573 /* If we have > 1 VGA cards, then we need to arbitrate access
574 * to the common VGA resources.
575 *
576 * If we are a secondary display controller (!PCI_DISPLAY_CLASS_VGA),
577 * then we do not take part in VGA arbitration and the
578 * vga_client_register() fails with -ENODEV.
579 */
580 ret = vga_client_register(pdev, dev_priv, NULL, i915_vga_set_decode);
581 if (ret && ret != -ENODEV)
582 goto out;
583
584 intel_register_dsm_handler();
585
586 ret = vga_switcheroo_register_client(pdev, &i915_switcheroo_ops, false);
587 if (ret)
588 goto cleanup_vga_client;
589
590 /* must happen before intel_power_domains_init_hw() on VLV/CHV */
591 intel_update_rawclk(dev_priv);
592
593 intel_power_domains_init_hw(dev_priv, false);
594
595 intel_csr_ucode_init(dev_priv);
596
597 ret = intel_irq_install(dev_priv);
598 if (ret)
599 goto cleanup_csr;
600
601 intel_setup_gmbus(dev_priv);
602
603 /* Important: The output setup functions called by modeset_init need
604 * working irqs for e.g. gmbus and dp aux transfers. */
605 ret = intel_modeset_init(dev);
606 if (ret)
607 goto cleanup_irq;
608
609 intel_uc_init_fw(dev_priv);
610
611 ret = i915_gem_init(dev_priv);
612 if (ret)
613 goto cleanup_uc;
614
615 intel_modeset_gem_init(dev);
616
617 if (INTEL_INFO(dev_priv)->num_pipes == 0)
618 return 0;
619
620 ret = intel_fbdev_init(dev);
621 if (ret)
622 goto cleanup_gem;
623
624 /* Only enable hotplug handling once the fbdev is fully set up. */
625 intel_hpd_init(dev_priv);
626
627 drm_kms_helper_poll_init(dev);
628
629 return 0;
630
631 cleanup_gem:
632 if (i915_gem_suspend(dev_priv))
633 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
634 i915_gem_fini(dev_priv);
635 cleanup_uc:
636 intel_uc_fini_fw(dev_priv);
637 cleanup_irq:
638 drm_irq_uninstall(dev);
639 intel_teardown_gmbus(dev_priv);
640 cleanup_csr:
641 intel_csr_ucode_fini(dev_priv);
642 intel_power_domains_fini(dev_priv);
643 vga_switcheroo_unregister_client(pdev);
644 cleanup_vga_client:
645 vga_client_register(pdev, NULL, NULL, NULL);
646 out:
647 return ret;
648 }
649
650 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
651 {
652 struct apertures_struct *ap;
653 struct pci_dev *pdev = dev_priv->drm.pdev;
654 struct i915_ggtt *ggtt = &dev_priv->ggtt;
655 bool primary;
656 int ret;
657
658 ap = alloc_apertures(1);
659 if (!ap)
660 return -ENOMEM;
661
662 ap->ranges[0].base = ggtt->mappable_base;
663 ap->ranges[0].size = ggtt->mappable_end;
664
665 primary =
666 pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW;
667
668 ret = drm_fb_helper_remove_conflicting_framebuffers(ap, "inteldrmfb", primary);
669
670 kfree(ap);
671
672 return ret;
673 }
674
675 #if !defined(CONFIG_VGA_CONSOLE)
676 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
677 {
678 return 0;
679 }
680 #elif !defined(CONFIG_DUMMY_CONSOLE)
681 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
682 {
683 return -ENODEV;
684 }
685 #else
686 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
687 {
688 int ret = 0;
689
690 DRM_INFO("Replacing VGA console driver\n");
691
692 console_lock();
693 if (con_is_bound(&vga_con))
694 ret = do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES - 1, 1);
695 if (ret == 0) {
696 ret = do_unregister_con_driver(&vga_con);
697
698 /* Ignore "already unregistered". */
699 if (ret == -ENODEV)
700 ret = 0;
701 }
702 console_unlock();
703
704 return ret;
705 }
706 #endif
707
708 static void intel_init_dpio(struct drm_i915_private *dev_priv)
709 {
710 /*
711 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
712 * CHV x1 PHY (DP/HDMI D)
713 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
714 */
715 if (IS_CHERRYVIEW(dev_priv)) {
716 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
717 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
718 } else if (IS_VALLEYVIEW(dev_priv)) {
719 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
720 }
721 }
722
723 static int i915_workqueues_init(struct drm_i915_private *dev_priv)
724 {
725 /*
726 * The i915 workqueue is primarily used for batched retirement of
727 * requests (and thus managing bo) once the task has been completed
728 * by the GPU. i915_gem_retire_requests() is called directly when we
729 * need high-priority retirement, such as waiting for an explicit
730 * bo.
731 *
732 * It is also used for periodic low-priority events, such as
733 * idle-timers and recording error state.
734 *
735 * All tasks on the workqueue are expected to acquire the dev mutex
736 * so there is no point in running more than one instance of the
737 * workqueue at any time. Use an ordered one.
738 */
739 dev_priv->wq = alloc_ordered_workqueue("i915", 0);
740 if (dev_priv->wq == NULL)
741 goto out_err;
742
743 dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
744 if (dev_priv->hotplug.dp_wq == NULL)
745 goto out_free_wq;
746
747 return 0;
748
749 out_free_wq:
750 destroy_workqueue(dev_priv->wq);
751 out_err:
752 DRM_ERROR("Failed to allocate workqueues.\n");
753
754 return -ENOMEM;
755 }
756
757 static void i915_engines_cleanup(struct drm_i915_private *i915)
758 {
759 struct intel_engine_cs *engine;
760 enum intel_engine_id id;
761
762 for_each_engine(engine, i915, id)
763 kfree(engine);
764 }
765
766 static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
767 {
768 destroy_workqueue(dev_priv->hotplug.dp_wq);
769 destroy_workqueue(dev_priv->wq);
770 }
771
772 /*
773 * We don't keep the workarounds for pre-production hardware, so we expect our
774 * driver to fail on these machines in one way or another. A little warning on
775 * dmesg may help both the user and the bug triagers.
776 */
777 static void intel_detect_preproduction_hw(struct drm_i915_private *dev_priv)
778 {
779 bool pre = false;
780
781 pre |= IS_HSW_EARLY_SDV(dev_priv);
782 pre |= IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0);
783 pre |= IS_BXT_REVID(dev_priv, 0, BXT_REVID_B_LAST);
784
785 if (pre) {
786 DRM_ERROR("This is a pre-production stepping. "
787 "It may not be fully functional.\n");
788 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK);
789 }
790 }
791
792 /**
793 * i915_driver_init_early - setup state not requiring device access
794 * @dev_priv: device private
795 *
796 * Initialize everything that is a "SW-only" state, that is state not
797 * requiring accessing the device or exposing the driver via kernel internal
798 * or userspace interfaces. Example steps belonging here: lock initialization,
799 * system memory allocation, setting up device specific attributes and
800 * function hooks not requiring accessing the device.
801 */
802 static int i915_driver_init_early(struct drm_i915_private *dev_priv,
803 const struct pci_device_id *ent)
804 {
805 const struct intel_device_info *match_info =
806 (struct intel_device_info *)ent->driver_data;
807 struct intel_device_info *device_info;
808 int ret = 0;
809
810 if (i915_inject_load_failure())
811 return -ENODEV;
812
813 /* Setup the write-once "constant" device info */
814 device_info = mkwrite_device_info(dev_priv);
815 memcpy(device_info, match_info, sizeof(*device_info));
816 device_info->device_id = dev_priv->drm.pdev->device;
817
818 BUG_ON(device_info->gen > sizeof(device_info->gen_mask) * BITS_PER_BYTE);
819 device_info->gen_mask = BIT(device_info->gen - 1);
820
821 spin_lock_init(&dev_priv->irq_lock);
822 spin_lock_init(&dev_priv->gpu_error.lock);
823 mutex_init(&dev_priv->backlight_lock);
824 spin_lock_init(&dev_priv->uncore.lock);
825
826 spin_lock_init(&dev_priv->mm.object_stat_lock);
827 spin_lock_init(&dev_priv->mmio_flip_lock);
828 mutex_init(&dev_priv->sb_lock);
829 mutex_init(&dev_priv->modeset_restore_lock);
830 mutex_init(&dev_priv->av_mutex);
831 mutex_init(&dev_priv->wm.wm_mutex);
832 mutex_init(&dev_priv->pps_mutex);
833
834 intel_uc_init_early(dev_priv);
835 i915_memcpy_init_early(dev_priv);
836
837 ret = intel_engines_init_early(dev_priv);
838 if (ret)
839 return ret;
840
841 ret = i915_workqueues_init(dev_priv);
842 if (ret < 0)
843 goto err_engines;
844
845 /* This must be called before any calls to HAS_PCH_* */
846 intel_detect_pch(dev_priv);
847
848 intel_pm_setup(dev_priv);
849 intel_init_dpio(dev_priv);
850 intel_power_domains_init(dev_priv);
851 intel_irq_init(dev_priv);
852 intel_hangcheck_init(dev_priv);
853 intel_init_display_hooks(dev_priv);
854 intel_init_clock_gating_hooks(dev_priv);
855 intel_init_audio_hooks(dev_priv);
856 ret = i915_gem_load_init(dev_priv);
857 if (ret < 0)
858 goto err_workqueues;
859
860 intel_display_crc_init(dev_priv);
861
862 intel_device_info_dump(dev_priv);
863
864 intel_detect_preproduction_hw(dev_priv);
865
866 i915_perf_init(dev_priv);
867
868 return 0;
869
870 err_workqueues:
871 i915_workqueues_cleanup(dev_priv);
872 err_engines:
873 i915_engines_cleanup(dev_priv);
874 return ret;
875 }
876
877 /**
878 * i915_driver_cleanup_early - cleanup the setup done in i915_driver_init_early()
879 * @dev_priv: device private
880 */
881 static void i915_driver_cleanup_early(struct drm_i915_private *dev_priv)
882 {
883 i915_perf_fini(dev_priv);
884 i915_gem_load_cleanup(dev_priv);
885 i915_workqueues_cleanup(dev_priv);
886 i915_engines_cleanup(dev_priv);
887 }
888
889 static int i915_mmio_setup(struct drm_i915_private *dev_priv)
890 {
891 struct pci_dev *pdev = dev_priv->drm.pdev;
892 int mmio_bar;
893 int mmio_size;
894
895 mmio_bar = IS_GEN2(dev_priv) ? 1 : 0;
896 /*
897 * Before gen4, the registers and the GTT are behind different BARs.
898 * However, from gen4 onwards, the registers and the GTT are shared
899 * in the same BAR, so we want to restrict this ioremap from
900 * clobbering the GTT which we want ioremap_wc instead. Fortunately,
901 * the register BAR remains the same size for all the earlier
902 * generations up to Ironlake.
903 */
904 if (INTEL_GEN(dev_priv) < 5)
905 mmio_size = 512 * 1024;
906 else
907 mmio_size = 2 * 1024 * 1024;
908 dev_priv->regs = pci_iomap(pdev, mmio_bar, mmio_size);
909 if (dev_priv->regs == NULL) {
910 DRM_ERROR("failed to map registers\n");
911
912 return -EIO;
913 }
914
915 /* Try to make sure MCHBAR is enabled before poking at it */
916 intel_setup_mchbar(dev_priv);
917
918 return 0;
919 }
920
921 static void i915_mmio_cleanup(struct drm_i915_private *dev_priv)
922 {
923 struct pci_dev *pdev = dev_priv->drm.pdev;
924
925 intel_teardown_mchbar(dev_priv);
926 pci_iounmap(pdev, dev_priv->regs);
927 }
928
929 /**
930 * i915_driver_init_mmio - setup device MMIO
931 * @dev_priv: device private
932 *
933 * Setup minimal device state necessary for MMIO accesses later in the
934 * initialization sequence. The setup here should avoid any other device-wide
935 * side effects or exposing the driver via kernel internal or user space
936 * interfaces.
937 */
938 static int i915_driver_init_mmio(struct drm_i915_private *dev_priv)
939 {
940 int ret;
941
942 if (i915_inject_load_failure())
943 return -ENODEV;
944
945 if (i915_get_bridge_dev(dev_priv))
946 return -EIO;
947
948 ret = i915_mmio_setup(dev_priv);
949 if (ret < 0)
950 goto put_bridge;
951
952 intel_uncore_init(dev_priv);
953 i915_gem_init_mmio(dev_priv);
954
955 return 0;
956
957 put_bridge:
958 pci_dev_put(dev_priv->bridge_dev);
959
960 return ret;
961 }
962
963 /**
964 * i915_driver_cleanup_mmio - cleanup the setup done in i915_driver_init_mmio()
965 * @dev_priv: device private
966 */
967 static void i915_driver_cleanup_mmio(struct drm_i915_private *dev_priv)
968 {
969 intel_uncore_fini(dev_priv);
970 i915_mmio_cleanup(dev_priv);
971 pci_dev_put(dev_priv->bridge_dev);
972 }
973
974 static void intel_sanitize_options(struct drm_i915_private *dev_priv)
975 {
976 i915.enable_execlists =
977 intel_sanitize_enable_execlists(dev_priv,
978 i915.enable_execlists);
979
980 /*
981 * i915.enable_ppgtt is read-only, so do an early pass to validate the
982 * user's requested state against the hardware/driver capabilities. We
983 * do this now so that we can print out any log messages once rather
984 * than every time we check intel_enable_ppgtt().
985 */
986 i915.enable_ppgtt =
987 intel_sanitize_enable_ppgtt(dev_priv, i915.enable_ppgtt);
988 DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
989
990 i915.semaphores = intel_sanitize_semaphores(dev_priv, i915.semaphores);
991 DRM_DEBUG_DRIVER("use GPU semaphores? %s\n", yesno(i915.semaphores));
992
993 intel_uc_sanitize_options(dev_priv);
994 }
995
996 /**
997 * i915_driver_init_hw - setup state requiring device access
998 * @dev_priv: device private
999 *
1000 * Setup state that requires accessing the device, but doesn't require
1001 * exposing the driver via kernel internal or userspace interfaces.
1002 */
1003 static int i915_driver_init_hw(struct drm_i915_private *dev_priv)
1004 {
1005 struct pci_dev *pdev = dev_priv->drm.pdev;
1006 int ret;
1007
1008 if (i915_inject_load_failure())
1009 return -ENODEV;
1010
1011 intel_device_info_runtime_init(dev_priv);
1012
1013 intel_sanitize_options(dev_priv);
1014
1015 ret = i915_ggtt_probe_hw(dev_priv);
1016 if (ret)
1017 return ret;
1018
1019 /* WARNING: Apparently we must kick fbdev drivers before vgacon,
1020 * otherwise the vga fbdev driver falls over. */
1021 ret = i915_kick_out_firmware_fb(dev_priv);
1022 if (ret) {
1023 DRM_ERROR("failed to remove conflicting framebuffer drivers\n");
1024 goto out_ggtt;
1025 }
1026
1027 ret = i915_kick_out_vgacon(dev_priv);
1028 if (ret) {
1029 DRM_ERROR("failed to remove conflicting VGA console\n");
1030 goto out_ggtt;
1031 }
1032
1033 ret = i915_ggtt_init_hw(dev_priv);
1034 if (ret)
1035 return ret;
1036
1037 ret = i915_ggtt_enable_hw(dev_priv);
1038 if (ret) {
1039 DRM_ERROR("failed to enable GGTT\n");
1040 goto out_ggtt;
1041 }
1042
1043 pci_set_master(pdev);
1044
1045 /* overlay on gen2 is broken and can't address above 1G */
1046 if (IS_GEN2(dev_priv)) {
1047 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
1048 if (ret) {
1049 DRM_ERROR("failed to set DMA mask\n");
1050
1051 goto out_ggtt;
1052 }
1053 }
1054
1055 /* 965GM sometimes incorrectly writes to hardware status page (HWS)
1056 * using 32bit addressing, overwriting memory if HWS is located
1057 * above 4GB.
1058 *
1059 * The documentation also mentions an issue with undefined
1060 * behaviour if any general state is accessed within a page above 4GB,
1061 * which also needs to be handled carefully.
1062 */
1063 if (IS_I965G(dev_priv) || IS_I965GM(dev_priv)) {
1064 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1065
1066 if (ret) {
1067 DRM_ERROR("failed to set DMA mask\n");
1068
1069 goto out_ggtt;
1070 }
1071 }
1072
1073 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1074 PM_QOS_DEFAULT_VALUE);
1075
1076 intel_uncore_sanitize(dev_priv);
1077
1078 intel_opregion_setup(dev_priv);
1079
1080 i915_gem_load_init_fences(dev_priv);
1081
1082 /* On the 945G/GM, the chipset reports the MSI capability on the
1083 * integrated graphics even though the support isn't actually there
1084 * according to the published specs. It doesn't appear to function
1085 * correctly in testing on 945G.
1086 * This may be a side effect of MSI having been made available for PEG
1087 * and the registers being closely associated.
1088 *
1089 * According to chipset errata, on the 965GM, MSI interrupts may
1090 * be lost or delayed, but we use them anyways to avoid
1091 * stuck interrupts on some machines.
1092 */
1093 if (!IS_I945G(dev_priv) && !IS_I945GM(dev_priv)) {
1094 if (pci_enable_msi(pdev) < 0)
1095 DRM_DEBUG_DRIVER("can't enable MSI");
1096 }
1097
1098 ret = intel_gvt_init(dev_priv);
1099 if (ret)
1100 goto out_ggtt;
1101
1102 return 0;
1103
1104 out_ggtt:
1105 i915_ggtt_cleanup_hw(dev_priv);
1106
1107 return ret;
1108 }
1109
1110 /**
1111 * i915_driver_cleanup_hw - cleanup the setup done in i915_driver_init_hw()
1112 * @dev_priv: device private
1113 */
1114 static void i915_driver_cleanup_hw(struct drm_i915_private *dev_priv)
1115 {
1116 struct pci_dev *pdev = dev_priv->drm.pdev;
1117
1118 if (pdev->msi_enabled)
1119 pci_disable_msi(pdev);
1120
1121 pm_qos_remove_request(&dev_priv->pm_qos);
1122 i915_ggtt_cleanup_hw(dev_priv);
1123 }
1124
1125 /**
1126 * i915_driver_register - register the driver with the rest of the system
1127 * @dev_priv: device private
1128 *
1129 * Perform any steps necessary to make the driver available via kernel
1130 * internal or userspace interfaces.
1131 */
1132 static void i915_driver_register(struct drm_i915_private *dev_priv)
1133 {
1134 struct drm_device *dev = &dev_priv->drm;
1135
1136 i915_gem_shrinker_init(dev_priv);
1137
1138 /*
1139 * Notify a valid surface after modesetting,
1140 * when running inside a VM.
1141 */
1142 if (intel_vgpu_active(dev_priv))
1143 I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1144
1145 /* Reveal our presence to userspace */
1146 if (drm_dev_register(dev, 0) == 0) {
1147 i915_debugfs_register(dev_priv);
1148 i915_guc_log_register(dev_priv);
1149 i915_setup_sysfs(dev_priv);
1150
1151 /* Depends on sysfs having been initialized */
1152 i915_perf_register(dev_priv);
1153 } else
1154 DRM_ERROR("Failed to register driver for userspace access!\n");
1155
1156 if (INTEL_INFO(dev_priv)->num_pipes) {
1157 /* Must be done after probing outputs */
1158 intel_opregion_register(dev_priv);
1159 acpi_video_register();
1160 }
1161
1162 if (IS_GEN5(dev_priv))
1163 intel_gpu_ips_init(dev_priv);
1164
1165 intel_audio_init(dev_priv);
1166
1167 /*
1168 * Some ports require correctly set-up hpd registers for detection to
1169 * work properly (leading to ghost connected connector status), e.g. VGA
1170 * on gm45. Hence we can only set up the initial fbdev config after hpd
1171 * irqs are fully enabled. We do it last so that the async config
1172 * cannot run before the connectors are registered.
1173 */
1174 intel_fbdev_initial_config_async(dev);
1175 }
1176
1177 /**
1178 * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1179 * @dev_priv: device private
1180 */
1181 static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1182 {
1183 intel_audio_deinit(dev_priv);
1184
1185 intel_gpu_ips_teardown();
1186 acpi_video_unregister();
1187 intel_opregion_unregister(dev_priv);
1188
1189 i915_perf_unregister(dev_priv);
1190
1191 i915_teardown_sysfs(dev_priv);
1192 i915_guc_log_unregister(dev_priv);
1193 drm_dev_unregister(&dev_priv->drm);
1194
1195 i915_gem_shrinker_cleanup(dev_priv);
1196 }
1197
1198 /**
1199 * i915_driver_load - setup chip and create an initial config
1200 * @pdev: PCI device
1201 * @ent: matching PCI ID entry
1202 *
1203 * The driver load routine has to do several things:
1204 * - drive output discovery via intel_modeset_init()
1205 * - initialize the memory manager
1206 * - allocate initial config memory
1207 * - setup the DRM framebuffer with the allocated memory
1208 */
1209 int i915_driver_load(struct pci_dev *pdev, const struct pci_device_id *ent)
1210 {
1211 const struct intel_device_info *match_info =
1212 (struct intel_device_info *)ent->driver_data;
1213 struct drm_i915_private *dev_priv;
1214 int ret;
1215
1216 /* Enable nuclear pageflip on ILK+, except vlv/chv */
1217 if (!i915.nuclear_pageflip &&
1218 (match_info->gen < 5 || match_info->has_gmch_display))
1219 driver.driver_features &= ~DRIVER_ATOMIC;
1220
1221 ret = -ENOMEM;
1222 dev_priv = kzalloc(sizeof(*dev_priv), GFP_KERNEL);
1223 if (dev_priv)
1224 ret = drm_dev_init(&dev_priv->drm, &driver, &pdev->dev);
1225 if (ret) {
1226 DRM_DEV_ERROR(&pdev->dev, "allocation failed\n");
1227 goto out_free;
1228 }
1229
1230 dev_priv->drm.pdev = pdev;
1231 dev_priv->drm.dev_private = dev_priv;
1232
1233 ret = pci_enable_device(pdev);
1234 if (ret)
1235 goto out_fini;
1236
1237 pci_set_drvdata(pdev, &dev_priv->drm);
1238 /*
1239 * Disable the system suspend direct complete optimization, which can
1240 * leave the device suspended skipping the driver's suspend handlers
1241 * if the device was already runtime suspended. This is needed due to
1242 * the difference in our runtime and system suspend sequence and
1243 * becaue the HDA driver may require us to enable the audio power
1244 * domain during system suspend.
1245 */
1246 pdev->dev_flags |= PCI_DEV_FLAGS_NEEDS_RESUME;
1247
1248 ret = i915_driver_init_early(dev_priv, ent);
1249 if (ret < 0)
1250 goto out_pci_disable;
1251
1252 intel_runtime_pm_get(dev_priv);
1253
1254 ret = i915_driver_init_mmio(dev_priv);
1255 if (ret < 0)
1256 goto out_runtime_pm_put;
1257
1258 ret = i915_driver_init_hw(dev_priv);
1259 if (ret < 0)
1260 goto out_cleanup_mmio;
1261
1262 /*
1263 * TODO: move the vblank init and parts of modeset init steps into one
1264 * of the i915_driver_init_/i915_driver_register functions according
1265 * to the role/effect of the given init step.
1266 */
1267 if (INTEL_INFO(dev_priv)->num_pipes) {
1268 ret = drm_vblank_init(&dev_priv->drm,
1269 INTEL_INFO(dev_priv)->num_pipes);
1270 if (ret)
1271 goto out_cleanup_hw;
1272 }
1273
1274 ret = i915_load_modeset_init(&dev_priv->drm);
1275 if (ret < 0)
1276 goto out_cleanup_vblank;
1277
1278 i915_driver_register(dev_priv);
1279
1280 intel_runtime_pm_enable(dev_priv);
1281
1282 dev_priv->ipc_enabled = false;
1283
1284 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG))
1285 DRM_INFO("DRM_I915_DEBUG enabled\n");
1286 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1287 DRM_INFO("DRM_I915_DEBUG_GEM enabled\n");
1288
1289 intel_runtime_pm_put(dev_priv);
1290
1291 return 0;
1292
1293 out_cleanup_vblank:
1294 drm_vblank_cleanup(&dev_priv->drm);
1295 out_cleanup_hw:
1296 i915_driver_cleanup_hw(dev_priv);
1297 out_cleanup_mmio:
1298 i915_driver_cleanup_mmio(dev_priv);
1299 out_runtime_pm_put:
1300 intel_runtime_pm_put(dev_priv);
1301 i915_driver_cleanup_early(dev_priv);
1302 out_pci_disable:
1303 pci_disable_device(pdev);
1304 out_fini:
1305 i915_load_error(dev_priv, "Device initialization failed (%d)\n", ret);
1306 drm_dev_fini(&dev_priv->drm);
1307 out_free:
1308 kfree(dev_priv);
1309 return ret;
1310 }
1311
1312 void i915_driver_unload(struct drm_device *dev)
1313 {
1314 struct drm_i915_private *dev_priv = to_i915(dev);
1315 struct pci_dev *pdev = dev_priv->drm.pdev;
1316
1317 intel_fbdev_fini(dev);
1318
1319 if (i915_gem_suspend(dev_priv))
1320 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
1321
1322 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1323
1324 drm_atomic_helper_shutdown(dev);
1325
1326 intel_gvt_cleanup(dev_priv);
1327
1328 i915_driver_unregister(dev_priv);
1329
1330 drm_vblank_cleanup(dev);
1331
1332 intel_modeset_cleanup(dev);
1333
1334 /*
1335 * free the memory space allocated for the child device
1336 * config parsed from VBT
1337 */
1338 if (dev_priv->vbt.child_dev && dev_priv->vbt.child_dev_num) {
1339 kfree(dev_priv->vbt.child_dev);
1340 dev_priv->vbt.child_dev = NULL;
1341 dev_priv->vbt.child_dev_num = 0;
1342 }
1343 kfree(dev_priv->vbt.sdvo_lvds_vbt_mode);
1344 dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
1345 kfree(dev_priv->vbt.lfp_lvds_vbt_mode);
1346 dev_priv->vbt.lfp_lvds_vbt_mode = NULL;
1347
1348 vga_switcheroo_unregister_client(pdev);
1349 vga_client_register(pdev, NULL, NULL, NULL);
1350
1351 intel_csr_ucode_fini(dev_priv);
1352
1353 /* Free error state after interrupts are fully disabled. */
1354 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1355 i915_reset_error_state(dev_priv);
1356
1357 /* Flush any outstanding unpin_work. */
1358 drain_workqueue(dev_priv->wq);
1359
1360 i915_gem_fini(dev_priv);
1361 intel_uc_fini_fw(dev_priv);
1362 intel_fbc_cleanup_cfb(dev_priv);
1363
1364 intel_power_domains_fini(dev_priv);
1365
1366 i915_driver_cleanup_hw(dev_priv);
1367 i915_driver_cleanup_mmio(dev_priv);
1368
1369 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1370 }
1371
1372 static void i915_driver_release(struct drm_device *dev)
1373 {
1374 struct drm_i915_private *dev_priv = to_i915(dev);
1375
1376 i915_driver_cleanup_early(dev_priv);
1377 drm_dev_fini(&dev_priv->drm);
1378
1379 kfree(dev_priv);
1380 }
1381
1382 static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1383 {
1384 int ret;
1385
1386 ret = i915_gem_open(dev, file);
1387 if (ret)
1388 return ret;
1389
1390 return 0;
1391 }
1392
1393 /**
1394 * i915_driver_lastclose - clean up after all DRM clients have exited
1395 * @dev: DRM device
1396 *
1397 * Take care of cleaning up after all DRM clients have exited. In the
1398 * mode setting case, we want to restore the kernel's initial mode (just
1399 * in case the last client left us in a bad state).
1400 *
1401 * Additionally, in the non-mode setting case, we'll tear down the GTT
1402 * and DMA structures, since the kernel won't be using them, and clea
1403 * up any GEM state.
1404 */
1405 static void i915_driver_lastclose(struct drm_device *dev)
1406 {
1407 intel_fbdev_restore_mode(dev);
1408 vga_switcheroo_process_delayed_switch();
1409 }
1410
1411 static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1412 {
1413 struct drm_i915_file_private *file_priv = file->driver_priv;
1414
1415 mutex_lock(&dev->struct_mutex);
1416 i915_gem_context_close(dev, file);
1417 i915_gem_release(dev, file);
1418 mutex_unlock(&dev->struct_mutex);
1419
1420 kfree(file_priv);
1421 }
1422
1423 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1424 {
1425 struct drm_device *dev = &dev_priv->drm;
1426 struct intel_encoder *encoder;
1427
1428 drm_modeset_lock_all(dev);
1429 for_each_intel_encoder(dev, encoder)
1430 if (encoder->suspend)
1431 encoder->suspend(encoder);
1432 drm_modeset_unlock_all(dev);
1433 }
1434
1435 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1436 bool rpm_resume);
1437 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1438
1439 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1440 {
1441 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
1442 if (acpi_target_system_state() < ACPI_STATE_S3)
1443 return true;
1444 #endif
1445 return false;
1446 }
1447
1448 static int i915_drm_suspend(struct drm_device *dev)
1449 {
1450 struct drm_i915_private *dev_priv = to_i915(dev);
1451 struct pci_dev *pdev = dev_priv->drm.pdev;
1452 pci_power_t opregion_target_state;
1453 int error;
1454
1455 /* ignore lid events during suspend */
1456 mutex_lock(&dev_priv->modeset_restore_lock);
1457 dev_priv->modeset_restore = MODESET_SUSPENDED;
1458 mutex_unlock(&dev_priv->modeset_restore_lock);
1459
1460 disable_rpm_wakeref_asserts(dev_priv);
1461
1462 /* We do a lot of poking in a lot of registers, make sure they work
1463 * properly. */
1464 intel_display_set_init_power(dev_priv, true);
1465
1466 drm_kms_helper_poll_disable(dev);
1467
1468 pci_save_state(pdev);
1469
1470 error = i915_gem_suspend(dev_priv);
1471 if (error) {
1472 dev_err(&pdev->dev,
1473 "GEM idle failed, resume might fail\n");
1474 goto out;
1475 }
1476
1477 intel_display_suspend(dev);
1478
1479 intel_dp_mst_suspend(dev);
1480
1481 intel_runtime_pm_disable_interrupts(dev_priv);
1482 intel_hpd_cancel_work(dev_priv);
1483
1484 intel_suspend_encoders(dev_priv);
1485
1486 intel_suspend_hw(dev_priv);
1487
1488 i915_gem_suspend_gtt_mappings(dev_priv);
1489
1490 i915_save_state(dev_priv);
1491
1492 opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1493 intel_opregion_notify_adapter(dev_priv, opregion_target_state);
1494
1495 intel_uncore_suspend(dev_priv);
1496 intel_opregion_unregister(dev_priv);
1497
1498 intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1499
1500 dev_priv->suspend_count++;
1501
1502 intel_csr_ucode_suspend(dev_priv);
1503
1504 out:
1505 enable_rpm_wakeref_asserts(dev_priv);
1506
1507 return error;
1508 }
1509
1510 static int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
1511 {
1512 struct drm_i915_private *dev_priv = to_i915(dev);
1513 struct pci_dev *pdev = dev_priv->drm.pdev;
1514 bool fw_csr;
1515 int ret;
1516
1517 disable_rpm_wakeref_asserts(dev_priv);
1518
1519 intel_display_set_init_power(dev_priv, false);
1520
1521 fw_csr = !IS_GEN9_LP(dev_priv) &&
1522 suspend_to_idle(dev_priv) && dev_priv->csr.dmc_payload;
1523 /*
1524 * In case of firmware assisted context save/restore don't manually
1525 * deinit the power domains. This also means the CSR/DMC firmware will
1526 * stay active, it will power down any HW resources as required and
1527 * also enable deeper system power states that would be blocked if the
1528 * firmware was inactive.
1529 */
1530 if (!fw_csr)
1531 intel_power_domains_suspend(dev_priv);
1532
1533 ret = 0;
1534 if (IS_GEN9_LP(dev_priv))
1535 bxt_enable_dc9(dev_priv);
1536 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1537 hsw_enable_pc8(dev_priv);
1538 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1539 ret = vlv_suspend_complete(dev_priv);
1540
1541 if (ret) {
1542 DRM_ERROR("Suspend complete failed: %d\n", ret);
1543 if (!fw_csr)
1544 intel_power_domains_init_hw(dev_priv, true);
1545
1546 goto out;
1547 }
1548
1549 pci_disable_device(pdev);
1550 /*
1551 * During hibernation on some platforms the BIOS may try to access
1552 * the device even though it's already in D3 and hang the machine. So
1553 * leave the device in D0 on those platforms and hope the BIOS will
1554 * power down the device properly. The issue was seen on multiple old
1555 * GENs with different BIOS vendors, so having an explicit blacklist
1556 * is inpractical; apply the workaround on everything pre GEN6. The
1557 * platforms where the issue was seen:
1558 * Lenovo Thinkpad X301, X61s, X60, T60, X41
1559 * Fujitsu FSC S7110
1560 * Acer Aspire 1830T
1561 */
1562 if (!(hibernation && INTEL_GEN(dev_priv) < 6))
1563 pci_set_power_state(pdev, PCI_D3hot);
1564
1565 dev_priv->suspended_to_idle = suspend_to_idle(dev_priv);
1566
1567 out:
1568 enable_rpm_wakeref_asserts(dev_priv);
1569
1570 return ret;
1571 }
1572
1573 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
1574 {
1575 int error;
1576
1577 if (!dev) {
1578 DRM_ERROR("dev: %p\n", dev);
1579 DRM_ERROR("DRM not initialized, aborting suspend.\n");
1580 return -ENODEV;
1581 }
1582
1583 if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
1584 state.event != PM_EVENT_FREEZE))
1585 return -EINVAL;
1586
1587 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1588 return 0;
1589
1590 error = i915_drm_suspend(dev);
1591 if (error)
1592 return error;
1593
1594 return i915_drm_suspend_late(dev, false);
1595 }
1596
1597 static int i915_drm_resume(struct drm_device *dev)
1598 {
1599 struct drm_i915_private *dev_priv = to_i915(dev);
1600 int ret;
1601
1602 disable_rpm_wakeref_asserts(dev_priv);
1603 intel_sanitize_gt_powersave(dev_priv);
1604
1605 ret = i915_ggtt_enable_hw(dev_priv);
1606 if (ret)
1607 DRM_ERROR("failed to re-enable GGTT\n");
1608
1609 intel_csr_ucode_resume(dev_priv);
1610
1611 i915_gem_resume(dev_priv);
1612
1613 i915_restore_state(dev_priv);
1614 intel_pps_unlock_regs_wa(dev_priv);
1615 intel_opregion_setup(dev_priv);
1616
1617 intel_init_pch_refclk(dev_priv);
1618
1619 /*
1620 * Interrupts have to be enabled before any batches are run. If not the
1621 * GPU will hang. i915_gem_init_hw() will initiate batches to
1622 * update/restore the context.
1623 *
1624 * drm_mode_config_reset() needs AUX interrupts.
1625 *
1626 * Modeset enabling in intel_modeset_init_hw() also needs working
1627 * interrupts.
1628 */
1629 intel_runtime_pm_enable_interrupts(dev_priv);
1630
1631 drm_mode_config_reset(dev);
1632
1633 mutex_lock(&dev->struct_mutex);
1634 if (i915_gem_init_hw(dev_priv)) {
1635 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
1636 i915_gem_set_wedged(dev_priv);
1637 }
1638 mutex_unlock(&dev->struct_mutex);
1639
1640 intel_guc_resume(dev_priv);
1641
1642 intel_modeset_init_hw(dev);
1643
1644 spin_lock_irq(&dev_priv->irq_lock);
1645 if (dev_priv->display.hpd_irq_setup)
1646 dev_priv->display.hpd_irq_setup(dev_priv);
1647 spin_unlock_irq(&dev_priv->irq_lock);
1648
1649 intel_dp_mst_resume(dev);
1650
1651 intel_display_resume(dev);
1652
1653 drm_kms_helper_poll_enable(dev);
1654
1655 /*
1656 * ... but also need to make sure that hotplug processing
1657 * doesn't cause havoc. Like in the driver load code we don't
1658 * bother with the tiny race here where we might loose hotplug
1659 * notifications.
1660 * */
1661 intel_hpd_init(dev_priv);
1662
1663 intel_opregion_register(dev_priv);
1664
1665 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
1666
1667 mutex_lock(&dev_priv->modeset_restore_lock);
1668 dev_priv->modeset_restore = MODESET_DONE;
1669 mutex_unlock(&dev_priv->modeset_restore_lock);
1670
1671 intel_opregion_notify_adapter(dev_priv, PCI_D0);
1672
1673 intel_autoenable_gt_powersave(dev_priv);
1674
1675 enable_rpm_wakeref_asserts(dev_priv);
1676
1677 return 0;
1678 }
1679
1680 static int i915_drm_resume_early(struct drm_device *dev)
1681 {
1682 struct drm_i915_private *dev_priv = to_i915(dev);
1683 struct pci_dev *pdev = dev_priv->drm.pdev;
1684 int ret;
1685
1686 /*
1687 * We have a resume ordering issue with the snd-hda driver also
1688 * requiring our device to be power up. Due to the lack of a
1689 * parent/child relationship we currently solve this with an early
1690 * resume hook.
1691 *
1692 * FIXME: This should be solved with a special hdmi sink device or
1693 * similar so that power domains can be employed.
1694 */
1695
1696 /*
1697 * Note that we need to set the power state explicitly, since we
1698 * powered off the device during freeze and the PCI core won't power
1699 * it back up for us during thaw. Powering off the device during
1700 * freeze is not a hard requirement though, and during the
1701 * suspend/resume phases the PCI core makes sure we get here with the
1702 * device powered on. So in case we change our freeze logic and keep
1703 * the device powered we can also remove the following set power state
1704 * call.
1705 */
1706 ret = pci_set_power_state(pdev, PCI_D0);
1707 if (ret) {
1708 DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
1709 goto out;
1710 }
1711
1712 /*
1713 * Note that pci_enable_device() first enables any parent bridge
1714 * device and only then sets the power state for this device. The
1715 * bridge enabling is a nop though, since bridge devices are resumed
1716 * first. The order of enabling power and enabling the device is
1717 * imposed by the PCI core as described above, so here we preserve the
1718 * same order for the freeze/thaw phases.
1719 *
1720 * TODO: eventually we should remove pci_disable_device() /
1721 * pci_enable_enable_device() from suspend/resume. Due to how they
1722 * depend on the device enable refcount we can't anyway depend on them
1723 * disabling/enabling the device.
1724 */
1725 if (pci_enable_device(pdev)) {
1726 ret = -EIO;
1727 goto out;
1728 }
1729
1730 pci_set_master(pdev);
1731
1732 disable_rpm_wakeref_asserts(dev_priv);
1733
1734 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1735 ret = vlv_resume_prepare(dev_priv, false);
1736 if (ret)
1737 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
1738 ret);
1739
1740 intel_uncore_resume_early(dev_priv);
1741
1742 if (IS_GEN9_LP(dev_priv)) {
1743 if (!dev_priv->suspended_to_idle)
1744 gen9_sanitize_dc_state(dev_priv);
1745 bxt_disable_dc9(dev_priv);
1746 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1747 hsw_disable_pc8(dev_priv);
1748 }
1749
1750 intel_uncore_sanitize(dev_priv);
1751
1752 if (IS_GEN9_LP(dev_priv) ||
1753 !(dev_priv->suspended_to_idle && dev_priv->csr.dmc_payload))
1754 intel_power_domains_init_hw(dev_priv, true);
1755
1756 i915_gem_sanitize(dev_priv);
1757
1758 enable_rpm_wakeref_asserts(dev_priv);
1759
1760 out:
1761 dev_priv->suspended_to_idle = false;
1762
1763 return ret;
1764 }
1765
1766 static int i915_resume_switcheroo(struct drm_device *dev)
1767 {
1768 int ret;
1769
1770 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1771 return 0;
1772
1773 ret = i915_drm_resume_early(dev);
1774 if (ret)
1775 return ret;
1776
1777 return i915_drm_resume(dev);
1778 }
1779
1780 /**
1781 * i915_reset - reset chip after a hang
1782 * @dev_priv: device private to reset
1783 *
1784 * Reset the chip. Useful if a hang is detected. Marks the device as wedged
1785 * on failure.
1786 *
1787 * Caller must hold the struct_mutex.
1788 *
1789 * Procedure is fairly simple:
1790 * - reset the chip using the reset reg
1791 * - re-init context state
1792 * - re-init hardware status page
1793 * - re-init ring buffer
1794 * - re-init interrupt state
1795 * - re-init display
1796 */
1797 void i915_reset(struct drm_i915_private *dev_priv)
1798 {
1799 struct i915_gpu_error *error = &dev_priv->gpu_error;
1800 int ret;
1801
1802 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1803 GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, &error->flags));
1804
1805 if (!test_bit(I915_RESET_HANDOFF, &error->flags))
1806 return;
1807
1808 /* Clear any previous failed attempts at recovery. Time to try again. */
1809 if (!i915_gem_unset_wedged(dev_priv))
1810 goto wakeup;
1811
1812 error->reset_count++;
1813
1814 pr_notice("drm/i915: Resetting chip after gpu hang\n");
1815 disable_irq(dev_priv->drm.irq);
1816 ret = i915_gem_reset_prepare(dev_priv);
1817 if (ret) {
1818 DRM_ERROR("GPU recovery failed\n");
1819 intel_gpu_reset(dev_priv, ALL_ENGINES);
1820 goto error;
1821 }
1822
1823 ret = intel_gpu_reset(dev_priv, ALL_ENGINES);
1824 if (ret) {
1825 if (ret != -ENODEV)
1826 DRM_ERROR("Failed to reset chip: %i\n", ret);
1827 else
1828 DRM_DEBUG_DRIVER("GPU reset disabled\n");
1829 goto error;
1830 }
1831
1832 i915_gem_reset(dev_priv);
1833 intel_overlay_reset(dev_priv);
1834
1835 /* Ok, now get things going again... */
1836
1837 /*
1838 * Everything depends on having the GTT running, so we need to start
1839 * there. Fortunately we don't need to do this unless we reset the
1840 * chip at a PCI level.
1841 *
1842 * Next we need to restore the context, but we don't use those
1843 * yet either...
1844 *
1845 * Ring buffer needs to be re-initialized in the KMS case, or if X
1846 * was running at the time of the reset (i.e. we weren't VT
1847 * switched away).
1848 */
1849 ret = i915_gem_init_hw(dev_priv);
1850 if (ret) {
1851 DRM_ERROR("Failed hw init on reset %d\n", ret);
1852 goto error;
1853 }
1854
1855 i915_queue_hangcheck(dev_priv);
1856
1857 finish:
1858 i915_gem_reset_finish(dev_priv);
1859 enable_irq(dev_priv->drm.irq);
1860
1861 wakeup:
1862 clear_bit(I915_RESET_HANDOFF, &error->flags);
1863 wake_up_bit(&error->flags, I915_RESET_HANDOFF);
1864 return;
1865
1866 error:
1867 i915_gem_set_wedged(dev_priv);
1868 goto finish;
1869 }
1870
1871 static int i915_pm_suspend(struct device *kdev)
1872 {
1873 struct pci_dev *pdev = to_pci_dev(kdev);
1874 struct drm_device *dev = pci_get_drvdata(pdev);
1875
1876 if (!dev) {
1877 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
1878 return -ENODEV;
1879 }
1880
1881 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1882 return 0;
1883
1884 return i915_drm_suspend(dev);
1885 }
1886
1887 static int i915_pm_suspend_late(struct device *kdev)
1888 {
1889 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1890
1891 /*
1892 * We have a suspend ordering issue with the snd-hda driver also
1893 * requiring our device to be power up. Due to the lack of a
1894 * parent/child relationship we currently solve this with an late
1895 * suspend hook.
1896 *
1897 * FIXME: This should be solved with a special hdmi sink device or
1898 * similar so that power domains can be employed.
1899 */
1900 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1901 return 0;
1902
1903 return i915_drm_suspend_late(dev, false);
1904 }
1905
1906 static int i915_pm_poweroff_late(struct device *kdev)
1907 {
1908 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1909
1910 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1911 return 0;
1912
1913 return i915_drm_suspend_late(dev, true);
1914 }
1915
1916 static int i915_pm_resume_early(struct device *kdev)
1917 {
1918 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1919
1920 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1921 return 0;
1922
1923 return i915_drm_resume_early(dev);
1924 }
1925
1926 static int i915_pm_resume(struct device *kdev)
1927 {
1928 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1929
1930 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1931 return 0;
1932
1933 return i915_drm_resume(dev);
1934 }
1935
1936 /* freeze: before creating the hibernation_image */
1937 static int i915_pm_freeze(struct device *kdev)
1938 {
1939 int ret;
1940
1941 ret = i915_pm_suspend(kdev);
1942 if (ret)
1943 return ret;
1944
1945 ret = i915_gem_freeze(kdev_to_i915(kdev));
1946 if (ret)
1947 return ret;
1948
1949 return 0;
1950 }
1951
1952 static int i915_pm_freeze_late(struct device *kdev)
1953 {
1954 int ret;
1955
1956 ret = i915_pm_suspend_late(kdev);
1957 if (ret)
1958 return ret;
1959
1960 ret = i915_gem_freeze_late(kdev_to_i915(kdev));
1961 if (ret)
1962 return ret;
1963
1964 return 0;
1965 }
1966
1967 /* thaw: called after creating the hibernation image, but before turning off. */
1968 static int i915_pm_thaw_early(struct device *kdev)
1969 {
1970 return i915_pm_resume_early(kdev);
1971 }
1972
1973 static int i915_pm_thaw(struct device *kdev)
1974 {
1975 return i915_pm_resume(kdev);
1976 }
1977
1978 /* restore: called after loading the hibernation image. */
1979 static int i915_pm_restore_early(struct device *kdev)
1980 {
1981 return i915_pm_resume_early(kdev);
1982 }
1983
1984 static int i915_pm_restore(struct device *kdev)
1985 {
1986 return i915_pm_resume(kdev);
1987 }
1988
1989 /*
1990 * Save all Gunit registers that may be lost after a D3 and a subsequent
1991 * S0i[R123] transition. The list of registers needing a save/restore is
1992 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
1993 * registers in the following way:
1994 * - Driver: saved/restored by the driver
1995 * - Punit : saved/restored by the Punit firmware
1996 * - No, w/o marking: no need to save/restore, since the register is R/O or
1997 * used internally by the HW in a way that doesn't depend
1998 * keeping the content across a suspend/resume.
1999 * - Debug : used for debugging
2000 *
2001 * We save/restore all registers marked with 'Driver', with the following
2002 * exceptions:
2003 * - Registers out of use, including also registers marked with 'Debug'.
2004 * These have no effect on the driver's operation, so we don't save/restore
2005 * them to reduce the overhead.
2006 * - Registers that are fully setup by an initialization function called from
2007 * the resume path. For example many clock gating and RPS/RC6 registers.
2008 * - Registers that provide the right functionality with their reset defaults.
2009 *
2010 * TODO: Except for registers that based on the above 3 criteria can be safely
2011 * ignored, we save/restore all others, practically treating the HW context as
2012 * a black-box for the driver. Further investigation is needed to reduce the
2013 * saved/restored registers even further, by following the same 3 criteria.
2014 */
2015 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2016 {
2017 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2018 int i;
2019
2020 /* GAM 0x4000-0x4770 */
2021 s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
2022 s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
2023 s->arb_mode = I915_READ(ARB_MODE);
2024 s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
2025 s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
2026
2027 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2028 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
2029
2030 s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
2031 s->gfx_max_req_count = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
2032
2033 s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
2034 s->ecochk = I915_READ(GAM_ECOCHK);
2035 s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
2036 s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
2037
2038 s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
2039
2040 /* MBC 0x9024-0x91D0, 0x8500 */
2041 s->g3dctl = I915_READ(VLV_G3DCTL);
2042 s->gsckgctl = I915_READ(VLV_GSCKGCTL);
2043 s->mbctl = I915_READ(GEN6_MBCTL);
2044
2045 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2046 s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
2047 s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
2048 s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
2049 s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
2050 s->rstctl = I915_READ(GEN6_RSTCTL);
2051 s->misccpctl = I915_READ(GEN7_MISCCPCTL);
2052
2053 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2054 s->gfxpause = I915_READ(GEN6_GFXPAUSE);
2055 s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
2056 s->rpdeuc = I915_READ(GEN6_RPDEUC);
2057 s->ecobus = I915_READ(ECOBUS);
2058 s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
2059 s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
2060 s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
2061 s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
2062 s->rcedata = I915_READ(VLV_RCEDATA);
2063 s->spare2gh = I915_READ(VLV_SPAREG2H);
2064
2065 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2066 s->gt_imr = I915_READ(GTIMR);
2067 s->gt_ier = I915_READ(GTIER);
2068 s->pm_imr = I915_READ(GEN6_PMIMR);
2069 s->pm_ier = I915_READ(GEN6_PMIER);
2070
2071 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2072 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
2073
2074 /* GT SA CZ domain, 0x100000-0x138124 */
2075 s->tilectl = I915_READ(TILECTL);
2076 s->gt_fifoctl = I915_READ(GTFIFOCTL);
2077 s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
2078 s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2079 s->pmwgicz = I915_READ(VLV_PMWGICZ);
2080
2081 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2082 s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
2083 s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
2084 s->pcbr = I915_READ(VLV_PCBR);
2085 s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
2086
2087 /*
2088 * Not saving any of:
2089 * DFT, 0x9800-0x9EC0
2090 * SARB, 0xB000-0xB1FC
2091 * GAC, 0x5208-0x524C, 0x14000-0x14C000
2092 * PCI CFG
2093 */
2094 }
2095
2096 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2097 {
2098 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2099 u32 val;
2100 int i;
2101
2102 /* GAM 0x4000-0x4770 */
2103 I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
2104 I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
2105 I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
2106 I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
2107 I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
2108
2109 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2110 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2111
2112 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2113 I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2114
2115 I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
2116 I915_WRITE(GAM_ECOCHK, s->ecochk);
2117 I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
2118 I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
2119
2120 I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
2121
2122 /* MBC 0x9024-0x91D0, 0x8500 */
2123 I915_WRITE(VLV_G3DCTL, s->g3dctl);
2124 I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
2125 I915_WRITE(GEN6_MBCTL, s->mbctl);
2126
2127 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2128 I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
2129 I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
2130 I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
2131 I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
2132 I915_WRITE(GEN6_RSTCTL, s->rstctl);
2133 I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
2134
2135 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2136 I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
2137 I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
2138 I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
2139 I915_WRITE(ECOBUS, s->ecobus);
2140 I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
2141 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2142 I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
2143 I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
2144 I915_WRITE(VLV_RCEDATA, s->rcedata);
2145 I915_WRITE(VLV_SPAREG2H, s->spare2gh);
2146
2147 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2148 I915_WRITE(GTIMR, s->gt_imr);
2149 I915_WRITE(GTIER, s->gt_ier);
2150 I915_WRITE(GEN6_PMIMR, s->pm_imr);
2151 I915_WRITE(GEN6_PMIER, s->pm_ier);
2152
2153 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2154 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2155
2156 /* GT SA CZ domain, 0x100000-0x138124 */
2157 I915_WRITE(TILECTL, s->tilectl);
2158 I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
2159 /*
2160 * Preserve the GT allow wake and GFX force clock bit, they are not
2161 * be restored, as they are used to control the s0ix suspend/resume
2162 * sequence by the caller.
2163 */
2164 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2165 val &= VLV_GTLC_ALLOWWAKEREQ;
2166 val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2167 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2168
2169 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2170 val &= VLV_GFX_CLK_FORCE_ON_BIT;
2171 val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2172 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2173
2174 I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
2175
2176 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2177 I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
2178 I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
2179 I915_WRITE(VLV_PCBR, s->pcbr);
2180 I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
2181 }
2182
2183 static int vlv_wait_for_pw_status(struct drm_i915_private *dev_priv,
2184 u32 mask, u32 val)
2185 {
2186 /* The HW does not like us polling for PW_STATUS frequently, so
2187 * use the sleeping loop rather than risk the busy spin within
2188 * intel_wait_for_register().
2189 *
2190 * Transitioning between RC6 states should be at most 2ms (see
2191 * valleyview_enable_rps) so use a 3ms timeout.
2192 */
2193 return wait_for((I915_READ_NOTRACE(VLV_GTLC_PW_STATUS) & mask) == val,
2194 3);
2195 }
2196
2197 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2198 {
2199 u32 val;
2200 int err;
2201
2202 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2203 val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2204 if (force_on)
2205 val |= VLV_GFX_CLK_FORCE_ON_BIT;
2206 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2207
2208 if (!force_on)
2209 return 0;
2210
2211 err = intel_wait_for_register(dev_priv,
2212 VLV_GTLC_SURVIVABILITY_REG,
2213 VLV_GFX_CLK_STATUS_BIT,
2214 VLV_GFX_CLK_STATUS_BIT,
2215 20);
2216 if (err)
2217 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2218 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2219
2220 return err;
2221 }
2222
2223 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2224 {
2225 u32 mask;
2226 u32 val;
2227 int err;
2228
2229 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2230 val &= ~VLV_GTLC_ALLOWWAKEREQ;
2231 if (allow)
2232 val |= VLV_GTLC_ALLOWWAKEREQ;
2233 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2234 POSTING_READ(VLV_GTLC_WAKE_CTRL);
2235
2236 mask = VLV_GTLC_ALLOWWAKEACK;
2237 val = allow ? mask : 0;
2238
2239 err = vlv_wait_for_pw_status(dev_priv, mask, val);
2240 if (err)
2241 DRM_ERROR("timeout disabling GT waking\n");
2242
2243 return err;
2244 }
2245
2246 static void vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2247 bool wait_for_on)
2248 {
2249 u32 mask;
2250 u32 val;
2251
2252 mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2253 val = wait_for_on ? mask : 0;
2254
2255 /*
2256 * RC6 transitioning can be delayed up to 2 msec (see
2257 * valleyview_enable_rps), use 3 msec for safety.
2258 */
2259 if (vlv_wait_for_pw_status(dev_priv, mask, val))
2260 DRM_ERROR("timeout waiting for GT wells to go %s\n",
2261 onoff(wait_for_on));
2262 }
2263
2264 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2265 {
2266 if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2267 return;
2268
2269 DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2270 I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2271 }
2272
2273 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2274 {
2275 u32 mask;
2276 int err;
2277
2278 /*
2279 * Bspec defines the following GT well on flags as debug only, so
2280 * don't treat them as hard failures.
2281 */
2282 vlv_wait_for_gt_wells(dev_priv, false);
2283
2284 mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2285 WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2286
2287 vlv_check_no_gt_access(dev_priv);
2288
2289 err = vlv_force_gfx_clock(dev_priv, true);
2290 if (err)
2291 goto err1;
2292
2293 err = vlv_allow_gt_wake(dev_priv, false);
2294 if (err)
2295 goto err2;
2296
2297 if (!IS_CHERRYVIEW(dev_priv))
2298 vlv_save_gunit_s0ix_state(dev_priv);
2299
2300 err = vlv_force_gfx_clock(dev_priv, false);
2301 if (err)
2302 goto err2;
2303
2304 return 0;
2305
2306 err2:
2307 /* For safety always re-enable waking and disable gfx clock forcing */
2308 vlv_allow_gt_wake(dev_priv, true);
2309 err1:
2310 vlv_force_gfx_clock(dev_priv, false);
2311
2312 return err;
2313 }
2314
2315 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2316 bool rpm_resume)
2317 {
2318 int err;
2319 int ret;
2320
2321 /*
2322 * If any of the steps fail just try to continue, that's the best we
2323 * can do at this point. Return the first error code (which will also
2324 * leave RPM permanently disabled).
2325 */
2326 ret = vlv_force_gfx_clock(dev_priv, true);
2327
2328 if (!IS_CHERRYVIEW(dev_priv))
2329 vlv_restore_gunit_s0ix_state(dev_priv);
2330
2331 err = vlv_allow_gt_wake(dev_priv, true);
2332 if (!ret)
2333 ret = err;
2334
2335 err = vlv_force_gfx_clock(dev_priv, false);
2336 if (!ret)
2337 ret = err;
2338
2339 vlv_check_no_gt_access(dev_priv);
2340
2341 if (rpm_resume)
2342 intel_init_clock_gating(dev_priv);
2343
2344 return ret;
2345 }
2346
2347 static int intel_runtime_suspend(struct device *kdev)
2348 {
2349 struct pci_dev *pdev = to_pci_dev(kdev);
2350 struct drm_device *dev = pci_get_drvdata(pdev);
2351 struct drm_i915_private *dev_priv = to_i915(dev);
2352 int ret;
2353
2354 if (WARN_ON_ONCE(!(dev_priv->rps.enabled && intel_enable_rc6())))
2355 return -ENODEV;
2356
2357 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2358 return -ENODEV;
2359
2360 DRM_DEBUG_KMS("Suspending device\n");
2361
2362 disable_rpm_wakeref_asserts(dev_priv);
2363
2364 /*
2365 * We are safe here against re-faults, since the fault handler takes
2366 * an RPM reference.
2367 */
2368 i915_gem_runtime_suspend(dev_priv);
2369
2370 intel_guc_suspend(dev_priv);
2371
2372 intel_runtime_pm_disable_interrupts(dev_priv);
2373
2374 ret = 0;
2375 if (IS_GEN9_LP(dev_priv)) {
2376 bxt_display_core_uninit(dev_priv);
2377 bxt_enable_dc9(dev_priv);
2378 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2379 hsw_enable_pc8(dev_priv);
2380 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2381 ret = vlv_suspend_complete(dev_priv);
2382 }
2383
2384 if (ret) {
2385 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2386 intel_runtime_pm_enable_interrupts(dev_priv);
2387
2388 enable_rpm_wakeref_asserts(dev_priv);
2389
2390 return ret;
2391 }
2392
2393 intel_uncore_suspend(dev_priv);
2394
2395 enable_rpm_wakeref_asserts(dev_priv);
2396 WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
2397
2398 if (intel_uncore_arm_unclaimed_mmio_detection(dev_priv))
2399 DRM_ERROR("Unclaimed access detected prior to suspending\n");
2400
2401 dev_priv->pm.suspended = true;
2402
2403 /*
2404 * FIXME: We really should find a document that references the arguments
2405 * used below!
2406 */
2407 if (IS_BROADWELL(dev_priv)) {
2408 /*
2409 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2410 * being detected, and the call we do at intel_runtime_resume()
2411 * won't be able to restore them. Since PCI_D3hot matches the
2412 * actual specification and appears to be working, use it.
2413 */
2414 intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2415 } else {
2416 /*
2417 * current versions of firmware which depend on this opregion
2418 * notification have repurposed the D1 definition to mean
2419 * "runtime suspended" vs. what you would normally expect (D3)
2420 * to distinguish it from notifications that might be sent via
2421 * the suspend path.
2422 */
2423 intel_opregion_notify_adapter(dev_priv, PCI_D1);
2424 }
2425
2426 assert_forcewakes_inactive(dev_priv);
2427
2428 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2429 intel_hpd_poll_init(dev_priv);
2430
2431 DRM_DEBUG_KMS("Device suspended\n");
2432 return 0;
2433 }
2434
2435 static int intel_runtime_resume(struct device *kdev)
2436 {
2437 struct pci_dev *pdev = to_pci_dev(kdev);
2438 struct drm_device *dev = pci_get_drvdata(pdev);
2439 struct drm_i915_private *dev_priv = to_i915(dev);
2440 int ret = 0;
2441
2442 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2443 return -ENODEV;
2444
2445 DRM_DEBUG_KMS("Resuming device\n");
2446
2447 WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
2448 disable_rpm_wakeref_asserts(dev_priv);
2449
2450 intel_opregion_notify_adapter(dev_priv, PCI_D0);
2451 dev_priv->pm.suspended = false;
2452 if (intel_uncore_unclaimed_mmio(dev_priv))
2453 DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
2454
2455 intel_guc_resume(dev_priv);
2456
2457 if (IS_GEN6(dev_priv))
2458 intel_init_pch_refclk(dev_priv);
2459
2460 if (IS_GEN9_LP(dev_priv)) {
2461 bxt_disable_dc9(dev_priv);
2462 bxt_display_core_init(dev_priv, true);
2463 if (dev_priv->csr.dmc_payload &&
2464 (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2465 gen9_enable_dc5(dev_priv);
2466 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2467 hsw_disable_pc8(dev_priv);
2468 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2469 ret = vlv_resume_prepare(dev_priv, true);
2470 }
2471
2472 /*
2473 * No point of rolling back things in case of an error, as the best
2474 * we can do is to hope that things will still work (and disable RPM).
2475 */
2476 i915_gem_init_swizzling(dev_priv);
2477 i915_gem_restore_fences(dev_priv);
2478
2479 intel_runtime_pm_enable_interrupts(dev_priv);
2480
2481 /*
2482 * On VLV/CHV display interrupts are part of the display
2483 * power well, so hpd is reinitialized from there. For
2484 * everyone else do it here.
2485 */
2486 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2487 intel_hpd_init(dev_priv);
2488
2489 enable_rpm_wakeref_asserts(dev_priv);
2490
2491 if (ret)
2492 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
2493 else
2494 DRM_DEBUG_KMS("Device resumed\n");
2495
2496 return ret;
2497 }
2498
2499 const struct dev_pm_ops i915_pm_ops = {
2500 /*
2501 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
2502 * PMSG_RESUME]
2503 */
2504 .suspend = i915_pm_suspend,
2505 .suspend_late = i915_pm_suspend_late,
2506 .resume_early = i915_pm_resume_early,
2507 .resume = i915_pm_resume,
2508
2509 /*
2510 * S4 event handlers
2511 * @freeze, @freeze_late : called (1) before creating the
2512 * hibernation image [PMSG_FREEZE] and
2513 * (2) after rebooting, before restoring
2514 * the image [PMSG_QUIESCE]
2515 * @thaw, @thaw_early : called (1) after creating the hibernation
2516 * image, before writing it [PMSG_THAW]
2517 * and (2) after failing to create or
2518 * restore the image [PMSG_RECOVER]
2519 * @poweroff, @poweroff_late: called after writing the hibernation
2520 * image, before rebooting [PMSG_HIBERNATE]
2521 * @restore, @restore_early : called after rebooting and restoring the
2522 * hibernation image [PMSG_RESTORE]
2523 */
2524 .freeze = i915_pm_freeze,
2525 .freeze_late = i915_pm_freeze_late,
2526 .thaw_early = i915_pm_thaw_early,
2527 .thaw = i915_pm_thaw,
2528 .poweroff = i915_pm_suspend,
2529 .poweroff_late = i915_pm_poweroff_late,
2530 .restore_early = i915_pm_restore_early,
2531 .restore = i915_pm_restore,
2532
2533 /* S0ix (via runtime suspend) event handlers */
2534 .runtime_suspend = intel_runtime_suspend,
2535 .runtime_resume = intel_runtime_resume,
2536 };
2537
2538 static const struct vm_operations_struct i915_gem_vm_ops = {
2539 .fault = i915_gem_fault,
2540 .open = drm_gem_vm_open,
2541 .close = drm_gem_vm_close,
2542 };
2543
2544 static const struct file_operations i915_driver_fops = {
2545 .owner = THIS_MODULE,
2546 .open = drm_open,
2547 .release = drm_release,
2548 .unlocked_ioctl = drm_ioctl,
2549 .mmap = drm_gem_mmap,
2550 .poll = drm_poll,
2551 .read = drm_read,
2552 .compat_ioctl = i915_compat_ioctl,
2553 .llseek = noop_llseek,
2554 };
2555
2556 static int
2557 i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
2558 struct drm_file *file)
2559 {
2560 return -ENODEV;
2561 }
2562
2563 static const struct drm_ioctl_desc i915_ioctls[] = {
2564 DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2565 DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
2566 DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
2567 DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
2568 DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
2569 DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
2570 DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam, DRM_AUTH|DRM_RENDER_ALLOW),
2571 DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2572 DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
2573 DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
2574 DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2575 DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
2576 DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2577 DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2578 DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE, drm_noop, DRM_AUTH),
2579 DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
2580 DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2581 DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2582 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer, DRM_AUTH),
2583 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2_WR, i915_gem_execbuffer2, DRM_AUTH|DRM_RENDER_ALLOW),
2584 DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2585 DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2586 DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2587 DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
2588 DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
2589 DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2590 DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2591 DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2592 DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
2593 DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
2594 DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
2595 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
2596 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_GTT, i915_gem_mmap_gtt_ioctl, DRM_RENDER_ALLOW),
2597 DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
2598 DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
2599 DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling_ioctl, DRM_RENDER_ALLOW),
2600 DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling_ioctl, DRM_RENDER_ALLOW),
2601 DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
2602 DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id, 0),
2603 DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
2604 DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2605 DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2606 DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey, DRM_MASTER|DRM_CONTROL_ALLOW),
2607 DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER|DRM_CONTROL_ALLOW),
2608 DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2609 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
2610 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
2611 DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
2612 DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
2613 DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
2614 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
2615 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
2616 DRM_IOCTL_DEF_DRV(I915_PERF_OPEN, i915_perf_open_ioctl, DRM_RENDER_ALLOW),
2617 };
2618
2619 static struct drm_driver driver = {
2620 /* Don't use MTRRs here; the Xserver or userspace app should
2621 * deal with them for Intel hardware.
2622 */
2623 .driver_features =
2624 DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
2625 DRIVER_RENDER | DRIVER_MODESET | DRIVER_ATOMIC,
2626 .release = i915_driver_release,
2627 .open = i915_driver_open,
2628 .lastclose = i915_driver_lastclose,
2629 .postclose = i915_driver_postclose,
2630 .set_busid = drm_pci_set_busid,
2631
2632 .gem_close_object = i915_gem_close_object,
2633 .gem_free_object_unlocked = i915_gem_free_object,
2634 .gem_vm_ops = &i915_gem_vm_ops,
2635
2636 .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
2637 .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
2638 .gem_prime_export = i915_gem_prime_export,
2639 .gem_prime_import = i915_gem_prime_import,
2640
2641 .dumb_create = i915_gem_dumb_create,
2642 .dumb_map_offset = i915_gem_mmap_gtt,
2643 .dumb_destroy = drm_gem_dumb_destroy,
2644 .ioctls = i915_ioctls,
2645 .num_ioctls = ARRAY_SIZE(i915_ioctls),
2646 .fops = &i915_driver_fops,
2647 .name = DRIVER_NAME,
2648 .desc = DRIVER_DESC,
2649 .date = DRIVER_DATE,
2650 .major = DRIVER_MAJOR,
2651 .minor = DRIVER_MINOR,
2652 .patchlevel = DRIVER_PATCHLEVEL,
2653 };
2654
2655 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2656 #include "selftests/mock_drm.c"
2657 #endif