]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.c
Merge tag 'drm-intel-next-2017-11-17-1' of git://anongit.freedesktop.org/drm/drm...
[mirror_ubuntu-eoan-kernel.git] / drivers / gpu / drm / i915 / i915_drv.c
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #include <linux/acpi.h>
31 #include <linux/device.h>
32 #include <linux/oom.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/pm.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/pnp.h>
38 #include <linux/slab.h>
39 #include <linux/vgaarb.h>
40 #include <linux/vga_switcheroo.h>
41 #include <linux/vt.h>
42 #include <acpi/video.h>
43
44 #include <drm/drmP.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/drm_atomic_helper.h>
47 #include <drm/i915_drm.h>
48
49 #include "i915_drv.h"
50 #include "i915_trace.h"
51 #include "i915_vgpu.h"
52 #include "intel_drv.h"
53 #include "intel_uc.h"
54
55 static struct drm_driver driver;
56
57 static unsigned int i915_load_fail_count;
58
59 bool __i915_inject_load_failure(const char *func, int line)
60 {
61 if (i915_load_fail_count >= i915_modparams.inject_load_failure)
62 return false;
63
64 if (++i915_load_fail_count == i915_modparams.inject_load_failure) {
65 DRM_INFO("Injecting failure at checkpoint %u [%s:%d]\n",
66 i915_modparams.inject_load_failure, func, line);
67 return true;
68 }
69
70 return false;
71 }
72
73 #define FDO_BUG_URL "https://bugs.freedesktop.org/enter_bug.cgi?product=DRI"
74 #define FDO_BUG_MSG "Please file a bug at " FDO_BUG_URL " against DRM/Intel " \
75 "providing the dmesg log by booting with drm.debug=0xf"
76
77 void
78 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
79 const char *fmt, ...)
80 {
81 static bool shown_bug_once;
82 struct device *kdev = dev_priv->drm.dev;
83 bool is_error = level[1] <= KERN_ERR[1];
84 bool is_debug = level[1] == KERN_DEBUG[1];
85 struct va_format vaf;
86 va_list args;
87
88 if (is_debug && !(drm_debug & DRM_UT_DRIVER))
89 return;
90
91 va_start(args, fmt);
92
93 vaf.fmt = fmt;
94 vaf.va = &args;
95
96 dev_printk(level, kdev, "[" DRM_NAME ":%ps] %pV",
97 __builtin_return_address(0), &vaf);
98
99 if (is_error && !shown_bug_once) {
100 dev_notice(kdev, "%s", FDO_BUG_MSG);
101 shown_bug_once = true;
102 }
103
104 va_end(args);
105 }
106
107 static bool i915_error_injected(struct drm_i915_private *dev_priv)
108 {
109 return i915_modparams.inject_load_failure &&
110 i915_load_fail_count == i915_modparams.inject_load_failure;
111 }
112
113 #define i915_load_error(dev_priv, fmt, ...) \
114 __i915_printk(dev_priv, \
115 i915_error_injected(dev_priv) ? KERN_DEBUG : KERN_ERR, \
116 fmt, ##__VA_ARGS__)
117
118
119 static enum intel_pch intel_virt_detect_pch(struct drm_i915_private *dev_priv)
120 {
121 enum intel_pch ret = PCH_NOP;
122
123 /*
124 * In a virtualized passthrough environment we can be in a
125 * setup where the ISA bridge is not able to be passed through.
126 * In this case, a south bridge can be emulated and we have to
127 * make an educated guess as to which PCH is really there.
128 */
129
130 if (IS_GEN5(dev_priv)) {
131 ret = PCH_IBX;
132 DRM_DEBUG_KMS("Assuming Ibex Peak PCH\n");
133 } else if (IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv)) {
134 ret = PCH_CPT;
135 DRM_DEBUG_KMS("Assuming CougarPoint PCH\n");
136 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
137 ret = PCH_LPT;
138 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
139 dev_priv->pch_id = INTEL_PCH_LPT_LP_DEVICE_ID_TYPE;
140 else
141 dev_priv->pch_id = INTEL_PCH_LPT_DEVICE_ID_TYPE;
142 DRM_DEBUG_KMS("Assuming LynxPoint PCH\n");
143 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
144 ret = PCH_SPT;
145 DRM_DEBUG_KMS("Assuming SunrisePoint PCH\n");
146 } else if (IS_COFFEELAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) {
147 ret = PCH_CNP;
148 DRM_DEBUG_KMS("Assuming CannonPoint PCH\n");
149 }
150
151 return ret;
152 }
153
154 static void intel_detect_pch(struct drm_i915_private *dev_priv)
155 {
156 struct pci_dev *pch = NULL;
157
158 /* In all current cases, num_pipes is equivalent to the PCH_NOP setting
159 * (which really amounts to a PCH but no South Display).
160 */
161 if (INTEL_INFO(dev_priv)->num_pipes == 0) {
162 dev_priv->pch_type = PCH_NOP;
163 return;
164 }
165
166 /*
167 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
168 * make graphics device passthrough work easy for VMM, that only
169 * need to expose ISA bridge to let driver know the real hardware
170 * underneath. This is a requirement from virtualization team.
171 *
172 * In some virtualized environments (e.g. XEN), there is irrelevant
173 * ISA bridge in the system. To work reliably, we should scan trhough
174 * all the ISA bridge devices and check for the first match, instead
175 * of only checking the first one.
176 */
177 while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
178 if (pch->vendor == PCI_VENDOR_ID_INTEL) {
179 unsigned short id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
180
181 dev_priv->pch_id = id;
182
183 if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
184 dev_priv->pch_type = PCH_IBX;
185 DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
186 WARN_ON(!IS_GEN5(dev_priv));
187 } else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
188 dev_priv->pch_type = PCH_CPT;
189 DRM_DEBUG_KMS("Found CougarPoint PCH\n");
190 WARN_ON(!IS_GEN6(dev_priv) &&
191 !IS_IVYBRIDGE(dev_priv));
192 } else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
193 /* PantherPoint is CPT compatible */
194 dev_priv->pch_type = PCH_CPT;
195 DRM_DEBUG_KMS("Found PantherPoint PCH\n");
196 WARN_ON(!IS_GEN6(dev_priv) &&
197 !IS_IVYBRIDGE(dev_priv));
198 } else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
199 dev_priv->pch_type = PCH_LPT;
200 DRM_DEBUG_KMS("Found LynxPoint PCH\n");
201 WARN_ON(!IS_HASWELL(dev_priv) &&
202 !IS_BROADWELL(dev_priv));
203 WARN_ON(IS_HSW_ULT(dev_priv) ||
204 IS_BDW_ULT(dev_priv));
205 } else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
206 dev_priv->pch_type = PCH_LPT;
207 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
208 WARN_ON(!IS_HASWELL(dev_priv) &&
209 !IS_BROADWELL(dev_priv));
210 WARN_ON(!IS_HSW_ULT(dev_priv) &&
211 !IS_BDW_ULT(dev_priv));
212 } else if (id == INTEL_PCH_WPT_DEVICE_ID_TYPE) {
213 /* WildcatPoint is LPT compatible */
214 dev_priv->pch_type = PCH_LPT;
215 DRM_DEBUG_KMS("Found WildcatPoint PCH\n");
216 WARN_ON(!IS_HASWELL(dev_priv) &&
217 !IS_BROADWELL(dev_priv));
218 WARN_ON(IS_HSW_ULT(dev_priv) ||
219 IS_BDW_ULT(dev_priv));
220 } else if (id == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE) {
221 /* WildcatPoint is LPT compatible */
222 dev_priv->pch_type = PCH_LPT;
223 DRM_DEBUG_KMS("Found WildcatPoint LP PCH\n");
224 WARN_ON(!IS_HASWELL(dev_priv) &&
225 !IS_BROADWELL(dev_priv));
226 WARN_ON(!IS_HSW_ULT(dev_priv) &&
227 !IS_BDW_ULT(dev_priv));
228 } else if (id == INTEL_PCH_SPT_DEVICE_ID_TYPE) {
229 dev_priv->pch_type = PCH_SPT;
230 DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
231 WARN_ON(!IS_SKYLAKE(dev_priv) &&
232 !IS_KABYLAKE(dev_priv));
233 } else if (id == INTEL_PCH_SPT_LP_DEVICE_ID_TYPE) {
234 dev_priv->pch_type = PCH_SPT;
235 DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
236 WARN_ON(!IS_SKYLAKE(dev_priv) &&
237 !IS_KABYLAKE(dev_priv));
238 } else if (id == INTEL_PCH_KBP_DEVICE_ID_TYPE) {
239 dev_priv->pch_type = PCH_KBP;
240 DRM_DEBUG_KMS("Found Kaby Lake PCH (KBP)\n");
241 WARN_ON(!IS_SKYLAKE(dev_priv) &&
242 !IS_KABYLAKE(dev_priv) &&
243 !IS_COFFEELAKE(dev_priv));
244 } else if (id == INTEL_PCH_CNP_DEVICE_ID_TYPE) {
245 dev_priv->pch_type = PCH_CNP;
246 DRM_DEBUG_KMS("Found Cannon Lake PCH (CNP)\n");
247 WARN_ON(!IS_CANNONLAKE(dev_priv) &&
248 !IS_COFFEELAKE(dev_priv));
249 } else if (id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE) {
250 dev_priv->pch_type = PCH_CNP;
251 DRM_DEBUG_KMS("Found Cannon Lake LP PCH (CNP-LP)\n");
252 WARN_ON(!IS_CANNONLAKE(dev_priv) &&
253 !IS_COFFEELAKE(dev_priv));
254 } else if (id == INTEL_PCH_P2X_DEVICE_ID_TYPE ||
255 id == INTEL_PCH_P3X_DEVICE_ID_TYPE ||
256 (id == INTEL_PCH_QEMU_DEVICE_ID_TYPE &&
257 pch->subsystem_vendor ==
258 PCI_SUBVENDOR_ID_REDHAT_QUMRANET &&
259 pch->subsystem_device ==
260 PCI_SUBDEVICE_ID_QEMU)) {
261 dev_priv->pch_type =
262 intel_virt_detect_pch(dev_priv);
263 } else
264 continue;
265
266 break;
267 }
268 }
269 if (!pch)
270 DRM_DEBUG_KMS("No PCH found.\n");
271
272 pci_dev_put(pch);
273 }
274
275 static int i915_getparam(struct drm_device *dev, void *data,
276 struct drm_file *file_priv)
277 {
278 struct drm_i915_private *dev_priv = to_i915(dev);
279 struct pci_dev *pdev = dev_priv->drm.pdev;
280 drm_i915_getparam_t *param = data;
281 int value;
282
283 switch (param->param) {
284 case I915_PARAM_IRQ_ACTIVE:
285 case I915_PARAM_ALLOW_BATCHBUFFER:
286 case I915_PARAM_LAST_DISPATCH:
287 case I915_PARAM_HAS_EXEC_CONSTANTS:
288 /* Reject all old ums/dri params. */
289 return -ENODEV;
290 case I915_PARAM_CHIPSET_ID:
291 value = pdev->device;
292 break;
293 case I915_PARAM_REVISION:
294 value = pdev->revision;
295 break;
296 case I915_PARAM_NUM_FENCES_AVAIL:
297 value = dev_priv->num_fence_regs;
298 break;
299 case I915_PARAM_HAS_OVERLAY:
300 value = dev_priv->overlay ? 1 : 0;
301 break;
302 case I915_PARAM_HAS_BSD:
303 value = !!dev_priv->engine[VCS];
304 break;
305 case I915_PARAM_HAS_BLT:
306 value = !!dev_priv->engine[BCS];
307 break;
308 case I915_PARAM_HAS_VEBOX:
309 value = !!dev_priv->engine[VECS];
310 break;
311 case I915_PARAM_HAS_BSD2:
312 value = !!dev_priv->engine[VCS2];
313 break;
314 case I915_PARAM_HAS_LLC:
315 value = HAS_LLC(dev_priv);
316 break;
317 case I915_PARAM_HAS_WT:
318 value = HAS_WT(dev_priv);
319 break;
320 case I915_PARAM_HAS_ALIASING_PPGTT:
321 value = USES_PPGTT(dev_priv);
322 break;
323 case I915_PARAM_HAS_SEMAPHORES:
324 value = i915_modparams.semaphores;
325 break;
326 case I915_PARAM_HAS_SECURE_BATCHES:
327 value = capable(CAP_SYS_ADMIN);
328 break;
329 case I915_PARAM_CMD_PARSER_VERSION:
330 value = i915_cmd_parser_get_version(dev_priv);
331 break;
332 case I915_PARAM_SUBSLICE_TOTAL:
333 value = sseu_subslice_total(&INTEL_INFO(dev_priv)->sseu);
334 if (!value)
335 return -ENODEV;
336 break;
337 case I915_PARAM_EU_TOTAL:
338 value = INTEL_INFO(dev_priv)->sseu.eu_total;
339 if (!value)
340 return -ENODEV;
341 break;
342 case I915_PARAM_HAS_GPU_RESET:
343 value = i915_modparams.enable_hangcheck &&
344 intel_has_gpu_reset(dev_priv);
345 if (value && intel_has_reset_engine(dev_priv))
346 value = 2;
347 break;
348 case I915_PARAM_HAS_RESOURCE_STREAMER:
349 value = HAS_RESOURCE_STREAMER(dev_priv);
350 break;
351 case I915_PARAM_HAS_POOLED_EU:
352 value = HAS_POOLED_EU(dev_priv);
353 break;
354 case I915_PARAM_MIN_EU_IN_POOL:
355 value = INTEL_INFO(dev_priv)->sseu.min_eu_in_pool;
356 break;
357 case I915_PARAM_HUC_STATUS:
358 intel_runtime_pm_get(dev_priv);
359 value = I915_READ(HUC_STATUS2) & HUC_FW_VERIFIED;
360 intel_runtime_pm_put(dev_priv);
361 break;
362 case I915_PARAM_MMAP_GTT_VERSION:
363 /* Though we've started our numbering from 1, and so class all
364 * earlier versions as 0, in effect their value is undefined as
365 * the ioctl will report EINVAL for the unknown param!
366 */
367 value = i915_gem_mmap_gtt_version();
368 break;
369 case I915_PARAM_HAS_SCHEDULER:
370 value = 0;
371 if (dev_priv->engine[RCS] && dev_priv->engine[RCS]->schedule) {
372 value |= I915_SCHEDULER_CAP_ENABLED;
373 value |= I915_SCHEDULER_CAP_PRIORITY;
374
375 if (HAS_LOGICAL_RING_PREEMPTION(dev_priv) &&
376 i915_modparams.enable_execlists)
377 value |= I915_SCHEDULER_CAP_PREEMPTION;
378 }
379 break;
380
381 case I915_PARAM_MMAP_VERSION:
382 /* Remember to bump this if the version changes! */
383 case I915_PARAM_HAS_GEM:
384 case I915_PARAM_HAS_PAGEFLIPPING:
385 case I915_PARAM_HAS_EXECBUF2: /* depends on GEM */
386 case I915_PARAM_HAS_RELAXED_FENCING:
387 case I915_PARAM_HAS_COHERENT_RINGS:
388 case I915_PARAM_HAS_RELAXED_DELTA:
389 case I915_PARAM_HAS_GEN7_SOL_RESET:
390 case I915_PARAM_HAS_WAIT_TIMEOUT:
391 case I915_PARAM_HAS_PRIME_VMAP_FLUSH:
392 case I915_PARAM_HAS_PINNED_BATCHES:
393 case I915_PARAM_HAS_EXEC_NO_RELOC:
394 case I915_PARAM_HAS_EXEC_HANDLE_LUT:
395 case I915_PARAM_HAS_COHERENT_PHYS_GTT:
396 case I915_PARAM_HAS_EXEC_SOFTPIN:
397 case I915_PARAM_HAS_EXEC_ASYNC:
398 case I915_PARAM_HAS_EXEC_FENCE:
399 case I915_PARAM_HAS_EXEC_CAPTURE:
400 case I915_PARAM_HAS_EXEC_BATCH_FIRST:
401 case I915_PARAM_HAS_EXEC_FENCE_ARRAY:
402 /* For the time being all of these are always true;
403 * if some supported hardware does not have one of these
404 * features this value needs to be provided from
405 * INTEL_INFO(), a feature macro, or similar.
406 */
407 value = 1;
408 break;
409 case I915_PARAM_HAS_CONTEXT_ISOLATION:
410 value = intel_engines_has_context_isolation(dev_priv);
411 break;
412 case I915_PARAM_SLICE_MASK:
413 value = INTEL_INFO(dev_priv)->sseu.slice_mask;
414 if (!value)
415 return -ENODEV;
416 break;
417 case I915_PARAM_SUBSLICE_MASK:
418 value = INTEL_INFO(dev_priv)->sseu.subslice_mask;
419 if (!value)
420 return -ENODEV;
421 break;
422 case I915_PARAM_CS_TIMESTAMP_FREQUENCY:
423 value = 1000 * INTEL_INFO(dev_priv)->cs_timestamp_frequency_khz;
424 break;
425 default:
426 DRM_DEBUG("Unknown parameter %d\n", param->param);
427 return -EINVAL;
428 }
429
430 if (put_user(value, param->value))
431 return -EFAULT;
432
433 return 0;
434 }
435
436 static int i915_get_bridge_dev(struct drm_i915_private *dev_priv)
437 {
438 dev_priv->bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0));
439 if (!dev_priv->bridge_dev) {
440 DRM_ERROR("bridge device not found\n");
441 return -1;
442 }
443 return 0;
444 }
445
446 /* Allocate space for the MCH regs if needed, return nonzero on error */
447 static int
448 intel_alloc_mchbar_resource(struct drm_i915_private *dev_priv)
449 {
450 int reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
451 u32 temp_lo, temp_hi = 0;
452 u64 mchbar_addr;
453 int ret;
454
455 if (INTEL_GEN(dev_priv) >= 4)
456 pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
457 pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
458 mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
459
460 /* If ACPI doesn't have it, assume we need to allocate it ourselves */
461 #ifdef CONFIG_PNP
462 if (mchbar_addr &&
463 pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
464 return 0;
465 #endif
466
467 /* Get some space for it */
468 dev_priv->mch_res.name = "i915 MCHBAR";
469 dev_priv->mch_res.flags = IORESOURCE_MEM;
470 ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
471 &dev_priv->mch_res,
472 MCHBAR_SIZE, MCHBAR_SIZE,
473 PCIBIOS_MIN_MEM,
474 0, pcibios_align_resource,
475 dev_priv->bridge_dev);
476 if (ret) {
477 DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
478 dev_priv->mch_res.start = 0;
479 return ret;
480 }
481
482 if (INTEL_GEN(dev_priv) >= 4)
483 pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
484 upper_32_bits(dev_priv->mch_res.start));
485
486 pci_write_config_dword(dev_priv->bridge_dev, reg,
487 lower_32_bits(dev_priv->mch_res.start));
488 return 0;
489 }
490
491 /* Setup MCHBAR if possible, return true if we should disable it again */
492 static void
493 intel_setup_mchbar(struct drm_i915_private *dev_priv)
494 {
495 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
496 u32 temp;
497 bool enabled;
498
499 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
500 return;
501
502 dev_priv->mchbar_need_disable = false;
503
504 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
505 pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
506 enabled = !!(temp & DEVEN_MCHBAR_EN);
507 } else {
508 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
509 enabled = temp & 1;
510 }
511
512 /* If it's already enabled, don't have to do anything */
513 if (enabled)
514 return;
515
516 if (intel_alloc_mchbar_resource(dev_priv))
517 return;
518
519 dev_priv->mchbar_need_disable = true;
520
521 /* Space is allocated or reserved, so enable it. */
522 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
523 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
524 temp | DEVEN_MCHBAR_EN);
525 } else {
526 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
527 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
528 }
529 }
530
531 static void
532 intel_teardown_mchbar(struct drm_i915_private *dev_priv)
533 {
534 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
535
536 if (dev_priv->mchbar_need_disable) {
537 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
538 u32 deven_val;
539
540 pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
541 &deven_val);
542 deven_val &= ~DEVEN_MCHBAR_EN;
543 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
544 deven_val);
545 } else {
546 u32 mchbar_val;
547
548 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
549 &mchbar_val);
550 mchbar_val &= ~1;
551 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
552 mchbar_val);
553 }
554 }
555
556 if (dev_priv->mch_res.start)
557 release_resource(&dev_priv->mch_res);
558 }
559
560 /* true = enable decode, false = disable decoder */
561 static unsigned int i915_vga_set_decode(void *cookie, bool state)
562 {
563 struct drm_i915_private *dev_priv = cookie;
564
565 intel_modeset_vga_set_state(dev_priv, state);
566 if (state)
567 return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
568 VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
569 else
570 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
571 }
572
573 static int i915_resume_switcheroo(struct drm_device *dev);
574 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
575
576 static void i915_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
577 {
578 struct drm_device *dev = pci_get_drvdata(pdev);
579 pm_message_t pmm = { .event = PM_EVENT_SUSPEND };
580
581 if (state == VGA_SWITCHEROO_ON) {
582 pr_info("switched on\n");
583 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
584 /* i915 resume handler doesn't set to D0 */
585 pci_set_power_state(pdev, PCI_D0);
586 i915_resume_switcheroo(dev);
587 dev->switch_power_state = DRM_SWITCH_POWER_ON;
588 } else {
589 pr_info("switched off\n");
590 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
591 i915_suspend_switcheroo(dev, pmm);
592 dev->switch_power_state = DRM_SWITCH_POWER_OFF;
593 }
594 }
595
596 static bool i915_switcheroo_can_switch(struct pci_dev *pdev)
597 {
598 struct drm_device *dev = pci_get_drvdata(pdev);
599
600 /*
601 * FIXME: open_count is protected by drm_global_mutex but that would lead to
602 * locking inversion with the driver load path. And the access here is
603 * completely racy anyway. So don't bother with locking for now.
604 */
605 return dev->open_count == 0;
606 }
607
608 static const struct vga_switcheroo_client_ops i915_switcheroo_ops = {
609 .set_gpu_state = i915_switcheroo_set_state,
610 .reprobe = NULL,
611 .can_switch = i915_switcheroo_can_switch,
612 };
613
614 static void i915_gem_fini(struct drm_i915_private *dev_priv)
615 {
616 /* Flush any outstanding unpin_work. */
617 i915_gem_drain_workqueue(dev_priv);
618
619 mutex_lock(&dev_priv->drm.struct_mutex);
620 intel_uc_fini_hw(dev_priv);
621 i915_gem_cleanup_engines(dev_priv);
622 i915_gem_contexts_fini(dev_priv);
623 mutex_unlock(&dev_priv->drm.struct_mutex);
624
625 i915_gem_cleanup_userptr(dev_priv);
626
627 i915_gem_drain_freed_objects(dev_priv);
628
629 WARN_ON(!list_empty(&dev_priv->contexts.list));
630 }
631
632 static int i915_load_modeset_init(struct drm_device *dev)
633 {
634 struct drm_i915_private *dev_priv = to_i915(dev);
635 struct pci_dev *pdev = dev_priv->drm.pdev;
636 int ret;
637
638 if (i915_inject_load_failure())
639 return -ENODEV;
640
641 intel_bios_init(dev_priv);
642
643 /* If we have > 1 VGA cards, then we need to arbitrate access
644 * to the common VGA resources.
645 *
646 * If we are a secondary display controller (!PCI_DISPLAY_CLASS_VGA),
647 * then we do not take part in VGA arbitration and the
648 * vga_client_register() fails with -ENODEV.
649 */
650 ret = vga_client_register(pdev, dev_priv, NULL, i915_vga_set_decode);
651 if (ret && ret != -ENODEV)
652 goto out;
653
654 intel_register_dsm_handler();
655
656 ret = vga_switcheroo_register_client(pdev, &i915_switcheroo_ops, false);
657 if (ret)
658 goto cleanup_vga_client;
659
660 /* must happen before intel_power_domains_init_hw() on VLV/CHV */
661 intel_update_rawclk(dev_priv);
662
663 intel_power_domains_init_hw(dev_priv, false);
664
665 intel_csr_ucode_init(dev_priv);
666
667 ret = intel_irq_install(dev_priv);
668 if (ret)
669 goto cleanup_csr;
670
671 intel_setup_gmbus(dev_priv);
672
673 /* Important: The output setup functions called by modeset_init need
674 * working irqs for e.g. gmbus and dp aux transfers. */
675 ret = intel_modeset_init(dev);
676 if (ret)
677 goto cleanup_irq;
678
679 intel_uc_init_fw(dev_priv);
680
681 ret = i915_gem_init(dev_priv);
682 if (ret)
683 goto cleanup_uc;
684
685 intel_setup_overlay(dev_priv);
686
687 if (INTEL_INFO(dev_priv)->num_pipes == 0)
688 return 0;
689
690 ret = intel_fbdev_init(dev);
691 if (ret)
692 goto cleanup_gem;
693
694 /* Only enable hotplug handling once the fbdev is fully set up. */
695 intel_hpd_init(dev_priv);
696
697 drm_kms_helper_poll_init(dev);
698
699 return 0;
700
701 cleanup_gem:
702 if (i915_gem_suspend(dev_priv))
703 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
704 i915_gem_fini(dev_priv);
705 cleanup_uc:
706 intel_uc_fini_fw(dev_priv);
707 cleanup_irq:
708 drm_irq_uninstall(dev);
709 intel_teardown_gmbus(dev_priv);
710 cleanup_csr:
711 intel_csr_ucode_fini(dev_priv);
712 intel_power_domains_fini(dev_priv);
713 vga_switcheroo_unregister_client(pdev);
714 cleanup_vga_client:
715 vga_client_register(pdev, NULL, NULL, NULL);
716 out:
717 return ret;
718 }
719
720 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
721 {
722 struct apertures_struct *ap;
723 struct pci_dev *pdev = dev_priv->drm.pdev;
724 struct i915_ggtt *ggtt = &dev_priv->ggtt;
725 bool primary;
726 int ret;
727
728 ap = alloc_apertures(1);
729 if (!ap)
730 return -ENOMEM;
731
732 ap->ranges[0].base = ggtt->mappable_base;
733 ap->ranges[0].size = ggtt->mappable_end;
734
735 primary =
736 pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW;
737
738 ret = drm_fb_helper_remove_conflicting_framebuffers(ap, "inteldrmfb", primary);
739
740 kfree(ap);
741
742 return ret;
743 }
744
745 #if !defined(CONFIG_VGA_CONSOLE)
746 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
747 {
748 return 0;
749 }
750 #elif !defined(CONFIG_DUMMY_CONSOLE)
751 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
752 {
753 return -ENODEV;
754 }
755 #else
756 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
757 {
758 int ret = 0;
759
760 DRM_INFO("Replacing VGA console driver\n");
761
762 console_lock();
763 if (con_is_bound(&vga_con))
764 ret = do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES - 1, 1);
765 if (ret == 0) {
766 ret = do_unregister_con_driver(&vga_con);
767
768 /* Ignore "already unregistered". */
769 if (ret == -ENODEV)
770 ret = 0;
771 }
772 console_unlock();
773
774 return ret;
775 }
776 #endif
777
778 static void intel_init_dpio(struct drm_i915_private *dev_priv)
779 {
780 /*
781 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
782 * CHV x1 PHY (DP/HDMI D)
783 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
784 */
785 if (IS_CHERRYVIEW(dev_priv)) {
786 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
787 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
788 } else if (IS_VALLEYVIEW(dev_priv)) {
789 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
790 }
791 }
792
793 static int i915_workqueues_init(struct drm_i915_private *dev_priv)
794 {
795 /*
796 * The i915 workqueue is primarily used for batched retirement of
797 * requests (and thus managing bo) once the task has been completed
798 * by the GPU. i915_gem_retire_requests() is called directly when we
799 * need high-priority retirement, such as waiting for an explicit
800 * bo.
801 *
802 * It is also used for periodic low-priority events, such as
803 * idle-timers and recording error state.
804 *
805 * All tasks on the workqueue are expected to acquire the dev mutex
806 * so there is no point in running more than one instance of the
807 * workqueue at any time. Use an ordered one.
808 */
809 dev_priv->wq = alloc_ordered_workqueue("i915", 0);
810 if (dev_priv->wq == NULL)
811 goto out_err;
812
813 dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
814 if (dev_priv->hotplug.dp_wq == NULL)
815 goto out_free_wq;
816
817 return 0;
818
819 out_free_wq:
820 destroy_workqueue(dev_priv->wq);
821 out_err:
822 DRM_ERROR("Failed to allocate workqueues.\n");
823
824 return -ENOMEM;
825 }
826
827 static void i915_engines_cleanup(struct drm_i915_private *i915)
828 {
829 struct intel_engine_cs *engine;
830 enum intel_engine_id id;
831
832 for_each_engine(engine, i915, id)
833 kfree(engine);
834 }
835
836 static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
837 {
838 destroy_workqueue(dev_priv->hotplug.dp_wq);
839 destroy_workqueue(dev_priv->wq);
840 }
841
842 /*
843 * We don't keep the workarounds for pre-production hardware, so we expect our
844 * driver to fail on these machines in one way or another. A little warning on
845 * dmesg may help both the user and the bug triagers.
846 *
847 * Our policy for removing pre-production workarounds is to keep the
848 * current gen workarounds as a guide to the bring-up of the next gen
849 * (workarounds have a habit of persisting!). Anything older than that
850 * should be removed along with the complications they introduce.
851 */
852 static void intel_detect_preproduction_hw(struct drm_i915_private *dev_priv)
853 {
854 bool pre = false;
855
856 pre |= IS_HSW_EARLY_SDV(dev_priv);
857 pre |= IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0);
858 pre |= IS_BXT_REVID(dev_priv, 0, BXT_REVID_B_LAST);
859
860 if (pre) {
861 DRM_ERROR("This is a pre-production stepping. "
862 "It may not be fully functional.\n");
863 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK);
864 }
865 }
866
867 /**
868 * i915_driver_init_early - setup state not requiring device access
869 * @dev_priv: device private
870 *
871 * Initialize everything that is a "SW-only" state, that is state not
872 * requiring accessing the device or exposing the driver via kernel internal
873 * or userspace interfaces. Example steps belonging here: lock initialization,
874 * system memory allocation, setting up device specific attributes and
875 * function hooks not requiring accessing the device.
876 */
877 static int i915_driver_init_early(struct drm_i915_private *dev_priv,
878 const struct pci_device_id *ent)
879 {
880 const struct intel_device_info *match_info =
881 (struct intel_device_info *)ent->driver_data;
882 struct intel_device_info *device_info;
883 int ret = 0;
884
885 if (i915_inject_load_failure())
886 return -ENODEV;
887
888 /* Setup the write-once "constant" device info */
889 device_info = mkwrite_device_info(dev_priv);
890 memcpy(device_info, match_info, sizeof(*device_info));
891 device_info->device_id = dev_priv->drm.pdev->device;
892
893 BUILD_BUG_ON(INTEL_MAX_PLATFORMS >
894 sizeof(device_info->platform_mask) * BITS_PER_BYTE);
895 device_info->platform_mask = BIT(device_info->platform);
896
897 BUG_ON(device_info->gen > sizeof(device_info->gen_mask) * BITS_PER_BYTE);
898 device_info->gen_mask = BIT(device_info->gen - 1);
899
900 spin_lock_init(&dev_priv->irq_lock);
901 spin_lock_init(&dev_priv->gpu_error.lock);
902 mutex_init(&dev_priv->backlight_lock);
903 spin_lock_init(&dev_priv->uncore.lock);
904
905 mutex_init(&dev_priv->sb_lock);
906 mutex_init(&dev_priv->modeset_restore_lock);
907 mutex_init(&dev_priv->av_mutex);
908 mutex_init(&dev_priv->wm.wm_mutex);
909 mutex_init(&dev_priv->pps_mutex);
910
911 intel_uc_init_early(dev_priv);
912 i915_memcpy_init_early(dev_priv);
913
914 ret = i915_workqueues_init(dev_priv);
915 if (ret < 0)
916 goto err_engines;
917
918 /* This must be called before any calls to HAS_PCH_* */
919 intel_detect_pch(dev_priv);
920
921 intel_pm_setup(dev_priv);
922 intel_init_dpio(dev_priv);
923 intel_power_domains_init(dev_priv);
924 intel_irq_init(dev_priv);
925 intel_hangcheck_init(dev_priv);
926 intel_init_display_hooks(dev_priv);
927 intel_init_clock_gating_hooks(dev_priv);
928 intel_init_audio_hooks(dev_priv);
929 ret = i915_gem_load_init(dev_priv);
930 if (ret < 0)
931 goto err_irq;
932
933 intel_display_crc_init(dev_priv);
934
935 intel_device_info_dump(dev_priv);
936
937 intel_detect_preproduction_hw(dev_priv);
938
939 i915_perf_init(dev_priv);
940
941 return 0;
942
943 err_irq:
944 intel_irq_fini(dev_priv);
945 i915_workqueues_cleanup(dev_priv);
946 err_engines:
947 i915_engines_cleanup(dev_priv);
948 return ret;
949 }
950
951 /**
952 * i915_driver_cleanup_early - cleanup the setup done in i915_driver_init_early()
953 * @dev_priv: device private
954 */
955 static void i915_driver_cleanup_early(struct drm_i915_private *dev_priv)
956 {
957 i915_perf_fini(dev_priv);
958 i915_gem_load_cleanup(dev_priv);
959 intel_irq_fini(dev_priv);
960 i915_workqueues_cleanup(dev_priv);
961 i915_engines_cleanup(dev_priv);
962 }
963
964 static int i915_mmio_setup(struct drm_i915_private *dev_priv)
965 {
966 struct pci_dev *pdev = dev_priv->drm.pdev;
967 int mmio_bar;
968 int mmio_size;
969
970 mmio_bar = IS_GEN2(dev_priv) ? 1 : 0;
971 /*
972 * Before gen4, the registers and the GTT are behind different BARs.
973 * However, from gen4 onwards, the registers and the GTT are shared
974 * in the same BAR, so we want to restrict this ioremap from
975 * clobbering the GTT which we want ioremap_wc instead. Fortunately,
976 * the register BAR remains the same size for all the earlier
977 * generations up to Ironlake.
978 */
979 if (INTEL_GEN(dev_priv) < 5)
980 mmio_size = 512 * 1024;
981 else
982 mmio_size = 2 * 1024 * 1024;
983 dev_priv->regs = pci_iomap(pdev, mmio_bar, mmio_size);
984 if (dev_priv->regs == NULL) {
985 DRM_ERROR("failed to map registers\n");
986
987 return -EIO;
988 }
989
990 /* Try to make sure MCHBAR is enabled before poking at it */
991 intel_setup_mchbar(dev_priv);
992
993 return 0;
994 }
995
996 static void i915_mmio_cleanup(struct drm_i915_private *dev_priv)
997 {
998 struct pci_dev *pdev = dev_priv->drm.pdev;
999
1000 intel_teardown_mchbar(dev_priv);
1001 pci_iounmap(pdev, dev_priv->regs);
1002 }
1003
1004 /**
1005 * i915_driver_init_mmio - setup device MMIO
1006 * @dev_priv: device private
1007 *
1008 * Setup minimal device state necessary for MMIO accesses later in the
1009 * initialization sequence. The setup here should avoid any other device-wide
1010 * side effects or exposing the driver via kernel internal or user space
1011 * interfaces.
1012 */
1013 static int i915_driver_init_mmio(struct drm_i915_private *dev_priv)
1014 {
1015 int ret;
1016
1017 if (i915_inject_load_failure())
1018 return -ENODEV;
1019
1020 if (i915_get_bridge_dev(dev_priv))
1021 return -EIO;
1022
1023 ret = i915_mmio_setup(dev_priv);
1024 if (ret < 0)
1025 goto err_bridge;
1026
1027 intel_uncore_init(dev_priv);
1028
1029 intel_uc_init_mmio(dev_priv);
1030
1031 ret = intel_engines_init_mmio(dev_priv);
1032 if (ret)
1033 goto err_uncore;
1034
1035 i915_gem_init_mmio(dev_priv);
1036
1037 return 0;
1038
1039 err_uncore:
1040 intel_uncore_fini(dev_priv);
1041 err_bridge:
1042 pci_dev_put(dev_priv->bridge_dev);
1043
1044 return ret;
1045 }
1046
1047 /**
1048 * i915_driver_cleanup_mmio - cleanup the setup done in i915_driver_init_mmio()
1049 * @dev_priv: device private
1050 */
1051 static void i915_driver_cleanup_mmio(struct drm_i915_private *dev_priv)
1052 {
1053 intel_uncore_fini(dev_priv);
1054 i915_mmio_cleanup(dev_priv);
1055 pci_dev_put(dev_priv->bridge_dev);
1056 }
1057
1058 static void intel_sanitize_options(struct drm_i915_private *dev_priv)
1059 {
1060 i915_modparams.enable_execlists =
1061 intel_sanitize_enable_execlists(dev_priv,
1062 i915_modparams.enable_execlists);
1063
1064 /*
1065 * i915.enable_ppgtt is read-only, so do an early pass to validate the
1066 * user's requested state against the hardware/driver capabilities. We
1067 * do this now so that we can print out any log messages once rather
1068 * than every time we check intel_enable_ppgtt().
1069 */
1070 i915_modparams.enable_ppgtt =
1071 intel_sanitize_enable_ppgtt(dev_priv,
1072 i915_modparams.enable_ppgtt);
1073 DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915_modparams.enable_ppgtt);
1074
1075 i915_modparams.semaphores =
1076 intel_sanitize_semaphores(dev_priv, i915_modparams.semaphores);
1077 DRM_DEBUG_DRIVER("use GPU semaphores? %s\n",
1078 yesno(i915_modparams.semaphores));
1079
1080 intel_uc_sanitize_options(dev_priv);
1081
1082 intel_gvt_sanitize_options(dev_priv);
1083 }
1084
1085 /**
1086 * i915_driver_init_hw - setup state requiring device access
1087 * @dev_priv: device private
1088 *
1089 * Setup state that requires accessing the device, but doesn't require
1090 * exposing the driver via kernel internal or userspace interfaces.
1091 */
1092 static int i915_driver_init_hw(struct drm_i915_private *dev_priv)
1093 {
1094 struct pci_dev *pdev = dev_priv->drm.pdev;
1095 int ret;
1096
1097 if (i915_inject_load_failure())
1098 return -ENODEV;
1099
1100 intel_device_info_runtime_init(dev_priv);
1101
1102 intel_sanitize_options(dev_priv);
1103
1104 ret = i915_ggtt_probe_hw(dev_priv);
1105 if (ret)
1106 return ret;
1107
1108 /* WARNING: Apparently we must kick fbdev drivers before vgacon,
1109 * otherwise the vga fbdev driver falls over. */
1110 ret = i915_kick_out_firmware_fb(dev_priv);
1111 if (ret) {
1112 DRM_ERROR("failed to remove conflicting framebuffer drivers\n");
1113 goto out_ggtt;
1114 }
1115
1116 ret = i915_kick_out_vgacon(dev_priv);
1117 if (ret) {
1118 DRM_ERROR("failed to remove conflicting VGA console\n");
1119 goto out_ggtt;
1120 }
1121
1122 ret = i915_ggtt_init_hw(dev_priv);
1123 if (ret)
1124 return ret;
1125
1126 ret = i915_ggtt_enable_hw(dev_priv);
1127 if (ret) {
1128 DRM_ERROR("failed to enable GGTT\n");
1129 goto out_ggtt;
1130 }
1131
1132 pci_set_master(pdev);
1133
1134 /* overlay on gen2 is broken and can't address above 1G */
1135 if (IS_GEN2(dev_priv)) {
1136 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
1137 if (ret) {
1138 DRM_ERROR("failed to set DMA mask\n");
1139
1140 goto out_ggtt;
1141 }
1142 }
1143
1144 /* 965GM sometimes incorrectly writes to hardware status page (HWS)
1145 * using 32bit addressing, overwriting memory if HWS is located
1146 * above 4GB.
1147 *
1148 * The documentation also mentions an issue with undefined
1149 * behaviour if any general state is accessed within a page above 4GB,
1150 * which also needs to be handled carefully.
1151 */
1152 if (IS_I965G(dev_priv) || IS_I965GM(dev_priv)) {
1153 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1154
1155 if (ret) {
1156 DRM_ERROR("failed to set DMA mask\n");
1157
1158 goto out_ggtt;
1159 }
1160 }
1161
1162 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1163 PM_QOS_DEFAULT_VALUE);
1164
1165 intel_uncore_sanitize(dev_priv);
1166
1167 intel_opregion_setup(dev_priv);
1168
1169 i915_gem_load_init_fences(dev_priv);
1170
1171 /* On the 945G/GM, the chipset reports the MSI capability on the
1172 * integrated graphics even though the support isn't actually there
1173 * according to the published specs. It doesn't appear to function
1174 * correctly in testing on 945G.
1175 * This may be a side effect of MSI having been made available for PEG
1176 * and the registers being closely associated.
1177 *
1178 * According to chipset errata, on the 965GM, MSI interrupts may
1179 * be lost or delayed, and was defeatured. MSI interrupts seem to
1180 * get lost on g4x as well, and interrupt delivery seems to stay
1181 * properly dead afterwards. So we'll just disable them for all
1182 * pre-gen5 chipsets.
1183 */
1184 if (INTEL_GEN(dev_priv) >= 5) {
1185 if (pci_enable_msi(pdev) < 0)
1186 DRM_DEBUG_DRIVER("can't enable MSI");
1187 }
1188
1189 ret = intel_gvt_init(dev_priv);
1190 if (ret)
1191 goto out_ggtt;
1192
1193 return 0;
1194
1195 out_ggtt:
1196 i915_ggtt_cleanup_hw(dev_priv);
1197
1198 return ret;
1199 }
1200
1201 /**
1202 * i915_driver_cleanup_hw - cleanup the setup done in i915_driver_init_hw()
1203 * @dev_priv: device private
1204 */
1205 static void i915_driver_cleanup_hw(struct drm_i915_private *dev_priv)
1206 {
1207 struct pci_dev *pdev = dev_priv->drm.pdev;
1208
1209 if (pdev->msi_enabled)
1210 pci_disable_msi(pdev);
1211
1212 pm_qos_remove_request(&dev_priv->pm_qos);
1213 i915_ggtt_cleanup_hw(dev_priv);
1214 }
1215
1216 /**
1217 * i915_driver_register - register the driver with the rest of the system
1218 * @dev_priv: device private
1219 *
1220 * Perform any steps necessary to make the driver available via kernel
1221 * internal or userspace interfaces.
1222 */
1223 static void i915_driver_register(struct drm_i915_private *dev_priv)
1224 {
1225 struct drm_device *dev = &dev_priv->drm;
1226
1227 i915_gem_shrinker_init(dev_priv);
1228
1229 /*
1230 * Notify a valid surface after modesetting,
1231 * when running inside a VM.
1232 */
1233 if (intel_vgpu_active(dev_priv))
1234 I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1235
1236 /* Reveal our presence to userspace */
1237 if (drm_dev_register(dev, 0) == 0) {
1238 i915_debugfs_register(dev_priv);
1239 i915_guc_log_register(dev_priv);
1240 i915_setup_sysfs(dev_priv);
1241
1242 /* Depends on sysfs having been initialized */
1243 i915_perf_register(dev_priv);
1244 } else
1245 DRM_ERROR("Failed to register driver for userspace access!\n");
1246
1247 if (INTEL_INFO(dev_priv)->num_pipes) {
1248 /* Must be done after probing outputs */
1249 intel_opregion_register(dev_priv);
1250 acpi_video_register();
1251 }
1252
1253 if (IS_GEN5(dev_priv))
1254 intel_gpu_ips_init(dev_priv);
1255
1256 intel_audio_init(dev_priv);
1257
1258 /*
1259 * Some ports require correctly set-up hpd registers for detection to
1260 * work properly (leading to ghost connected connector status), e.g. VGA
1261 * on gm45. Hence we can only set up the initial fbdev config after hpd
1262 * irqs are fully enabled. We do it last so that the async config
1263 * cannot run before the connectors are registered.
1264 */
1265 intel_fbdev_initial_config_async(dev);
1266 }
1267
1268 /**
1269 * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1270 * @dev_priv: device private
1271 */
1272 static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1273 {
1274 intel_fbdev_unregister(dev_priv);
1275 intel_audio_deinit(dev_priv);
1276
1277 intel_gpu_ips_teardown();
1278 acpi_video_unregister();
1279 intel_opregion_unregister(dev_priv);
1280
1281 i915_perf_unregister(dev_priv);
1282
1283 i915_teardown_sysfs(dev_priv);
1284 i915_guc_log_unregister(dev_priv);
1285 drm_dev_unregister(&dev_priv->drm);
1286
1287 i915_gem_shrinker_cleanup(dev_priv);
1288 }
1289
1290 /**
1291 * i915_driver_load - setup chip and create an initial config
1292 * @pdev: PCI device
1293 * @ent: matching PCI ID entry
1294 *
1295 * The driver load routine has to do several things:
1296 * - drive output discovery via intel_modeset_init()
1297 * - initialize the memory manager
1298 * - allocate initial config memory
1299 * - setup the DRM framebuffer with the allocated memory
1300 */
1301 int i915_driver_load(struct pci_dev *pdev, const struct pci_device_id *ent)
1302 {
1303 const struct intel_device_info *match_info =
1304 (struct intel_device_info *)ent->driver_data;
1305 struct drm_i915_private *dev_priv;
1306 int ret;
1307
1308 /* Enable nuclear pageflip on ILK+ */
1309 if (!i915_modparams.nuclear_pageflip && match_info->gen < 5)
1310 driver.driver_features &= ~DRIVER_ATOMIC;
1311
1312 ret = -ENOMEM;
1313 dev_priv = kzalloc(sizeof(*dev_priv), GFP_KERNEL);
1314 if (dev_priv)
1315 ret = drm_dev_init(&dev_priv->drm, &driver, &pdev->dev);
1316 if (ret) {
1317 DRM_DEV_ERROR(&pdev->dev, "allocation failed\n");
1318 goto out_free;
1319 }
1320
1321 dev_priv->drm.pdev = pdev;
1322 dev_priv->drm.dev_private = dev_priv;
1323
1324 ret = pci_enable_device(pdev);
1325 if (ret)
1326 goto out_fini;
1327
1328 pci_set_drvdata(pdev, &dev_priv->drm);
1329 /*
1330 * Disable the system suspend direct complete optimization, which can
1331 * leave the device suspended skipping the driver's suspend handlers
1332 * if the device was already runtime suspended. This is needed due to
1333 * the difference in our runtime and system suspend sequence and
1334 * becaue the HDA driver may require us to enable the audio power
1335 * domain during system suspend.
1336 */
1337 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NEVER_SKIP);
1338
1339 ret = i915_driver_init_early(dev_priv, ent);
1340 if (ret < 0)
1341 goto out_pci_disable;
1342
1343 intel_runtime_pm_get(dev_priv);
1344
1345 ret = i915_driver_init_mmio(dev_priv);
1346 if (ret < 0)
1347 goto out_runtime_pm_put;
1348
1349 ret = i915_driver_init_hw(dev_priv);
1350 if (ret < 0)
1351 goto out_cleanup_mmio;
1352
1353 /*
1354 * TODO: move the vblank init and parts of modeset init steps into one
1355 * of the i915_driver_init_/i915_driver_register functions according
1356 * to the role/effect of the given init step.
1357 */
1358 if (INTEL_INFO(dev_priv)->num_pipes) {
1359 ret = drm_vblank_init(&dev_priv->drm,
1360 INTEL_INFO(dev_priv)->num_pipes);
1361 if (ret)
1362 goto out_cleanup_hw;
1363 }
1364
1365 ret = i915_load_modeset_init(&dev_priv->drm);
1366 if (ret < 0)
1367 goto out_cleanup_hw;
1368
1369 i915_driver_register(dev_priv);
1370
1371 intel_runtime_pm_enable(dev_priv);
1372
1373 intel_init_ipc(dev_priv);
1374
1375 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG))
1376 DRM_INFO("DRM_I915_DEBUG enabled\n");
1377 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1378 DRM_INFO("DRM_I915_DEBUG_GEM enabled\n");
1379
1380 intel_runtime_pm_put(dev_priv);
1381
1382 return 0;
1383
1384 out_cleanup_hw:
1385 i915_driver_cleanup_hw(dev_priv);
1386 out_cleanup_mmio:
1387 i915_driver_cleanup_mmio(dev_priv);
1388 out_runtime_pm_put:
1389 intel_runtime_pm_put(dev_priv);
1390 i915_driver_cleanup_early(dev_priv);
1391 out_pci_disable:
1392 pci_disable_device(pdev);
1393 out_fini:
1394 i915_load_error(dev_priv, "Device initialization failed (%d)\n", ret);
1395 drm_dev_fini(&dev_priv->drm);
1396 out_free:
1397 kfree(dev_priv);
1398 return ret;
1399 }
1400
1401 void i915_driver_unload(struct drm_device *dev)
1402 {
1403 struct drm_i915_private *dev_priv = to_i915(dev);
1404 struct pci_dev *pdev = dev_priv->drm.pdev;
1405
1406 i915_driver_unregister(dev_priv);
1407
1408 if (i915_gem_suspend(dev_priv))
1409 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
1410
1411 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1412
1413 drm_atomic_helper_shutdown(dev);
1414
1415 intel_gvt_cleanup(dev_priv);
1416
1417 intel_modeset_cleanup(dev);
1418
1419 /*
1420 * free the memory space allocated for the child device
1421 * config parsed from VBT
1422 */
1423 if (dev_priv->vbt.child_dev && dev_priv->vbt.child_dev_num) {
1424 kfree(dev_priv->vbt.child_dev);
1425 dev_priv->vbt.child_dev = NULL;
1426 dev_priv->vbt.child_dev_num = 0;
1427 }
1428 kfree(dev_priv->vbt.sdvo_lvds_vbt_mode);
1429 dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
1430 kfree(dev_priv->vbt.lfp_lvds_vbt_mode);
1431 dev_priv->vbt.lfp_lvds_vbt_mode = NULL;
1432
1433 vga_switcheroo_unregister_client(pdev);
1434 vga_client_register(pdev, NULL, NULL, NULL);
1435
1436 intel_csr_ucode_fini(dev_priv);
1437
1438 /* Free error state after interrupts are fully disabled. */
1439 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1440 i915_reset_error_state(dev_priv);
1441
1442 i915_gem_fini(dev_priv);
1443 intel_uc_fini_fw(dev_priv);
1444 intel_fbc_cleanup_cfb(dev_priv);
1445
1446 intel_power_domains_fini(dev_priv);
1447
1448 i915_driver_cleanup_hw(dev_priv);
1449 i915_driver_cleanup_mmio(dev_priv);
1450
1451 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1452 }
1453
1454 static void i915_driver_release(struct drm_device *dev)
1455 {
1456 struct drm_i915_private *dev_priv = to_i915(dev);
1457
1458 i915_driver_cleanup_early(dev_priv);
1459 drm_dev_fini(&dev_priv->drm);
1460
1461 kfree(dev_priv);
1462 }
1463
1464 static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1465 {
1466 struct drm_i915_private *i915 = to_i915(dev);
1467 int ret;
1468
1469 ret = i915_gem_open(i915, file);
1470 if (ret)
1471 return ret;
1472
1473 return 0;
1474 }
1475
1476 /**
1477 * i915_driver_lastclose - clean up after all DRM clients have exited
1478 * @dev: DRM device
1479 *
1480 * Take care of cleaning up after all DRM clients have exited. In the
1481 * mode setting case, we want to restore the kernel's initial mode (just
1482 * in case the last client left us in a bad state).
1483 *
1484 * Additionally, in the non-mode setting case, we'll tear down the GTT
1485 * and DMA structures, since the kernel won't be using them, and clea
1486 * up any GEM state.
1487 */
1488 static void i915_driver_lastclose(struct drm_device *dev)
1489 {
1490 intel_fbdev_restore_mode(dev);
1491 vga_switcheroo_process_delayed_switch();
1492 }
1493
1494 static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1495 {
1496 struct drm_i915_file_private *file_priv = file->driver_priv;
1497
1498 mutex_lock(&dev->struct_mutex);
1499 i915_gem_context_close(file);
1500 i915_gem_release(dev, file);
1501 mutex_unlock(&dev->struct_mutex);
1502
1503 kfree(file_priv);
1504 }
1505
1506 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1507 {
1508 struct drm_device *dev = &dev_priv->drm;
1509 struct intel_encoder *encoder;
1510
1511 drm_modeset_lock_all(dev);
1512 for_each_intel_encoder(dev, encoder)
1513 if (encoder->suspend)
1514 encoder->suspend(encoder);
1515 drm_modeset_unlock_all(dev);
1516 }
1517
1518 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1519 bool rpm_resume);
1520 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1521
1522 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1523 {
1524 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
1525 if (acpi_target_system_state() < ACPI_STATE_S3)
1526 return true;
1527 #endif
1528 return false;
1529 }
1530
1531 static int i915_drm_suspend(struct drm_device *dev)
1532 {
1533 struct drm_i915_private *dev_priv = to_i915(dev);
1534 struct pci_dev *pdev = dev_priv->drm.pdev;
1535 pci_power_t opregion_target_state;
1536 int error;
1537
1538 /* ignore lid events during suspend */
1539 mutex_lock(&dev_priv->modeset_restore_lock);
1540 dev_priv->modeset_restore = MODESET_SUSPENDED;
1541 mutex_unlock(&dev_priv->modeset_restore_lock);
1542
1543 disable_rpm_wakeref_asserts(dev_priv);
1544
1545 /* We do a lot of poking in a lot of registers, make sure they work
1546 * properly. */
1547 intel_display_set_init_power(dev_priv, true);
1548
1549 drm_kms_helper_poll_disable(dev);
1550
1551 pci_save_state(pdev);
1552
1553 error = i915_gem_suspend(dev_priv);
1554 if (error) {
1555 dev_err(&pdev->dev,
1556 "GEM idle failed, resume might fail\n");
1557 goto out;
1558 }
1559
1560 intel_display_suspend(dev);
1561
1562 intel_dp_mst_suspend(dev);
1563
1564 intel_runtime_pm_disable_interrupts(dev_priv);
1565 intel_hpd_cancel_work(dev_priv);
1566
1567 intel_suspend_encoders(dev_priv);
1568
1569 intel_suspend_hw(dev_priv);
1570
1571 i915_gem_suspend_gtt_mappings(dev_priv);
1572
1573 i915_save_state(dev_priv);
1574
1575 opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1576 intel_opregion_notify_adapter(dev_priv, opregion_target_state);
1577
1578 intel_uncore_suspend(dev_priv);
1579 intel_opregion_unregister(dev_priv);
1580
1581 intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1582
1583 dev_priv->suspend_count++;
1584
1585 intel_csr_ucode_suspend(dev_priv);
1586
1587 out:
1588 enable_rpm_wakeref_asserts(dev_priv);
1589
1590 return error;
1591 }
1592
1593 static int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
1594 {
1595 struct drm_i915_private *dev_priv = to_i915(dev);
1596 struct pci_dev *pdev = dev_priv->drm.pdev;
1597 bool fw_csr;
1598 int ret;
1599
1600 disable_rpm_wakeref_asserts(dev_priv);
1601
1602 intel_display_set_init_power(dev_priv, false);
1603
1604 fw_csr = !IS_GEN9_LP(dev_priv) && !hibernation &&
1605 suspend_to_idle(dev_priv) && dev_priv->csr.dmc_payload;
1606 /*
1607 * In case of firmware assisted context save/restore don't manually
1608 * deinit the power domains. This also means the CSR/DMC firmware will
1609 * stay active, it will power down any HW resources as required and
1610 * also enable deeper system power states that would be blocked if the
1611 * firmware was inactive.
1612 */
1613 if (!fw_csr)
1614 intel_power_domains_suspend(dev_priv);
1615
1616 ret = 0;
1617 if (IS_GEN9_LP(dev_priv))
1618 bxt_enable_dc9(dev_priv);
1619 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1620 hsw_enable_pc8(dev_priv);
1621 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1622 ret = vlv_suspend_complete(dev_priv);
1623
1624 if (ret) {
1625 DRM_ERROR("Suspend complete failed: %d\n", ret);
1626 if (!fw_csr)
1627 intel_power_domains_init_hw(dev_priv, true);
1628
1629 goto out;
1630 }
1631
1632 pci_disable_device(pdev);
1633 /*
1634 * During hibernation on some platforms the BIOS may try to access
1635 * the device even though it's already in D3 and hang the machine. So
1636 * leave the device in D0 on those platforms and hope the BIOS will
1637 * power down the device properly. The issue was seen on multiple old
1638 * GENs with different BIOS vendors, so having an explicit blacklist
1639 * is inpractical; apply the workaround on everything pre GEN6. The
1640 * platforms where the issue was seen:
1641 * Lenovo Thinkpad X301, X61s, X60, T60, X41
1642 * Fujitsu FSC S7110
1643 * Acer Aspire 1830T
1644 */
1645 if (!(hibernation && INTEL_GEN(dev_priv) < 6))
1646 pci_set_power_state(pdev, PCI_D3hot);
1647
1648 dev_priv->suspended_to_idle = suspend_to_idle(dev_priv);
1649
1650 out:
1651 enable_rpm_wakeref_asserts(dev_priv);
1652
1653 return ret;
1654 }
1655
1656 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
1657 {
1658 int error;
1659
1660 if (!dev) {
1661 DRM_ERROR("dev: %p\n", dev);
1662 DRM_ERROR("DRM not initialized, aborting suspend.\n");
1663 return -ENODEV;
1664 }
1665
1666 if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
1667 state.event != PM_EVENT_FREEZE))
1668 return -EINVAL;
1669
1670 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1671 return 0;
1672
1673 error = i915_drm_suspend(dev);
1674 if (error)
1675 return error;
1676
1677 return i915_drm_suspend_late(dev, false);
1678 }
1679
1680 static int i915_drm_resume(struct drm_device *dev)
1681 {
1682 struct drm_i915_private *dev_priv = to_i915(dev);
1683 int ret;
1684
1685 disable_rpm_wakeref_asserts(dev_priv);
1686 intel_sanitize_gt_powersave(dev_priv);
1687
1688 ret = i915_ggtt_enable_hw(dev_priv);
1689 if (ret)
1690 DRM_ERROR("failed to re-enable GGTT\n");
1691
1692 intel_csr_ucode_resume(dev_priv);
1693
1694 i915_restore_state(dev_priv);
1695 intel_pps_unlock_regs_wa(dev_priv);
1696 intel_opregion_setup(dev_priv);
1697
1698 intel_init_pch_refclk(dev_priv);
1699
1700 /*
1701 * Interrupts have to be enabled before any batches are run. If not the
1702 * GPU will hang. i915_gem_init_hw() will initiate batches to
1703 * update/restore the context.
1704 *
1705 * drm_mode_config_reset() needs AUX interrupts.
1706 *
1707 * Modeset enabling in intel_modeset_init_hw() also needs working
1708 * interrupts.
1709 */
1710 intel_runtime_pm_enable_interrupts(dev_priv);
1711
1712 drm_mode_config_reset(dev);
1713
1714 i915_gem_resume(dev_priv);
1715
1716 intel_modeset_init_hw(dev);
1717 intel_init_clock_gating(dev_priv);
1718
1719 spin_lock_irq(&dev_priv->irq_lock);
1720 if (dev_priv->display.hpd_irq_setup)
1721 dev_priv->display.hpd_irq_setup(dev_priv);
1722 spin_unlock_irq(&dev_priv->irq_lock);
1723
1724 intel_dp_mst_resume(dev);
1725
1726 intel_display_resume(dev);
1727
1728 drm_kms_helper_poll_enable(dev);
1729
1730 /*
1731 * ... but also need to make sure that hotplug processing
1732 * doesn't cause havoc. Like in the driver load code we don't
1733 * bother with the tiny race here where we might loose hotplug
1734 * notifications.
1735 * */
1736 intel_hpd_init(dev_priv);
1737
1738 intel_opregion_register(dev_priv);
1739
1740 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
1741
1742 mutex_lock(&dev_priv->modeset_restore_lock);
1743 dev_priv->modeset_restore = MODESET_DONE;
1744 mutex_unlock(&dev_priv->modeset_restore_lock);
1745
1746 intel_opregion_notify_adapter(dev_priv, PCI_D0);
1747
1748 enable_rpm_wakeref_asserts(dev_priv);
1749
1750 return 0;
1751 }
1752
1753 static int i915_drm_resume_early(struct drm_device *dev)
1754 {
1755 struct drm_i915_private *dev_priv = to_i915(dev);
1756 struct pci_dev *pdev = dev_priv->drm.pdev;
1757 int ret;
1758
1759 /*
1760 * We have a resume ordering issue with the snd-hda driver also
1761 * requiring our device to be power up. Due to the lack of a
1762 * parent/child relationship we currently solve this with an early
1763 * resume hook.
1764 *
1765 * FIXME: This should be solved with a special hdmi sink device or
1766 * similar so that power domains can be employed.
1767 */
1768
1769 /*
1770 * Note that we need to set the power state explicitly, since we
1771 * powered off the device during freeze and the PCI core won't power
1772 * it back up for us during thaw. Powering off the device during
1773 * freeze is not a hard requirement though, and during the
1774 * suspend/resume phases the PCI core makes sure we get here with the
1775 * device powered on. So in case we change our freeze logic and keep
1776 * the device powered we can also remove the following set power state
1777 * call.
1778 */
1779 ret = pci_set_power_state(pdev, PCI_D0);
1780 if (ret) {
1781 DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
1782 goto out;
1783 }
1784
1785 /*
1786 * Note that pci_enable_device() first enables any parent bridge
1787 * device and only then sets the power state for this device. The
1788 * bridge enabling is a nop though, since bridge devices are resumed
1789 * first. The order of enabling power and enabling the device is
1790 * imposed by the PCI core as described above, so here we preserve the
1791 * same order for the freeze/thaw phases.
1792 *
1793 * TODO: eventually we should remove pci_disable_device() /
1794 * pci_enable_enable_device() from suspend/resume. Due to how they
1795 * depend on the device enable refcount we can't anyway depend on them
1796 * disabling/enabling the device.
1797 */
1798 if (pci_enable_device(pdev)) {
1799 ret = -EIO;
1800 goto out;
1801 }
1802
1803 pci_set_master(pdev);
1804
1805 disable_rpm_wakeref_asserts(dev_priv);
1806
1807 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1808 ret = vlv_resume_prepare(dev_priv, false);
1809 if (ret)
1810 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
1811 ret);
1812
1813 intel_uncore_resume_early(dev_priv);
1814
1815 if (IS_GEN9_LP(dev_priv)) {
1816 if (!dev_priv->suspended_to_idle)
1817 gen9_sanitize_dc_state(dev_priv);
1818 bxt_disable_dc9(dev_priv);
1819 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1820 hsw_disable_pc8(dev_priv);
1821 }
1822
1823 intel_uncore_sanitize(dev_priv);
1824
1825 if (IS_GEN9_LP(dev_priv) ||
1826 !(dev_priv->suspended_to_idle && dev_priv->csr.dmc_payload))
1827 intel_power_domains_init_hw(dev_priv, true);
1828
1829 i915_gem_sanitize(dev_priv);
1830
1831 enable_rpm_wakeref_asserts(dev_priv);
1832
1833 out:
1834 dev_priv->suspended_to_idle = false;
1835
1836 return ret;
1837 }
1838
1839 static int i915_resume_switcheroo(struct drm_device *dev)
1840 {
1841 int ret;
1842
1843 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1844 return 0;
1845
1846 ret = i915_drm_resume_early(dev);
1847 if (ret)
1848 return ret;
1849
1850 return i915_drm_resume(dev);
1851 }
1852
1853 /**
1854 * i915_reset - reset chip after a hang
1855 * @i915: #drm_i915_private to reset
1856 * @flags: Instructions
1857 *
1858 * Reset the chip. Useful if a hang is detected. Marks the device as wedged
1859 * on failure.
1860 *
1861 * Caller must hold the struct_mutex.
1862 *
1863 * Procedure is fairly simple:
1864 * - reset the chip using the reset reg
1865 * - re-init context state
1866 * - re-init hardware status page
1867 * - re-init ring buffer
1868 * - re-init interrupt state
1869 * - re-init display
1870 */
1871 void i915_reset(struct drm_i915_private *i915, unsigned int flags)
1872 {
1873 struct i915_gpu_error *error = &i915->gpu_error;
1874 int ret;
1875
1876 lockdep_assert_held(&i915->drm.struct_mutex);
1877 GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, &error->flags));
1878
1879 if (!test_bit(I915_RESET_HANDOFF, &error->flags))
1880 return;
1881
1882 /* Clear any previous failed attempts at recovery. Time to try again. */
1883 if (!i915_gem_unset_wedged(i915))
1884 goto wakeup;
1885
1886 if (!(flags & I915_RESET_QUIET))
1887 dev_notice(i915->drm.dev, "Resetting chip after gpu hang\n");
1888 error->reset_count++;
1889
1890 disable_irq(i915->drm.irq);
1891 ret = i915_gem_reset_prepare(i915);
1892 if (ret) {
1893 DRM_ERROR("GPU recovery failed\n");
1894 intel_gpu_reset(i915, ALL_ENGINES);
1895 goto error;
1896 }
1897
1898 ret = intel_gpu_reset(i915, ALL_ENGINES);
1899 if (ret) {
1900 if (ret != -ENODEV)
1901 DRM_ERROR("Failed to reset chip: %i\n", ret);
1902 else
1903 DRM_DEBUG_DRIVER("GPU reset disabled\n");
1904 goto error;
1905 }
1906
1907 i915_gem_reset(i915);
1908 intel_overlay_reset(i915);
1909
1910 /* Ok, now get things going again... */
1911
1912 /*
1913 * Everything depends on having the GTT running, so we need to start
1914 * there.
1915 */
1916 ret = i915_ggtt_enable_hw(i915);
1917 if (ret) {
1918 DRM_ERROR("Failed to re-enable GGTT following reset %d\n", ret);
1919 goto error;
1920 }
1921
1922 /*
1923 * Next we need to restore the context, but we don't use those
1924 * yet either...
1925 *
1926 * Ring buffer needs to be re-initialized in the KMS case, or if X
1927 * was running at the time of the reset (i.e. we weren't VT
1928 * switched away).
1929 */
1930 ret = i915_gem_init_hw(i915);
1931 if (ret) {
1932 DRM_ERROR("Failed hw init on reset %d\n", ret);
1933 goto error;
1934 }
1935
1936 i915_queue_hangcheck(i915);
1937
1938 finish:
1939 i915_gem_reset_finish(i915);
1940 enable_irq(i915->drm.irq);
1941
1942 wakeup:
1943 clear_bit(I915_RESET_HANDOFF, &error->flags);
1944 wake_up_bit(&error->flags, I915_RESET_HANDOFF);
1945 return;
1946
1947 error:
1948 i915_gem_set_wedged(i915);
1949 i915_gem_retire_requests(i915);
1950 goto finish;
1951 }
1952
1953 static inline int intel_gt_reset_engine(struct drm_i915_private *dev_priv,
1954 struct intel_engine_cs *engine)
1955 {
1956 return intel_gpu_reset(dev_priv, intel_engine_flag(engine));
1957 }
1958
1959 /**
1960 * i915_reset_engine - reset GPU engine to recover from a hang
1961 * @engine: engine to reset
1962 * @flags: options
1963 *
1964 * Reset a specific GPU engine. Useful if a hang is detected.
1965 * Returns zero on successful reset or otherwise an error code.
1966 *
1967 * Procedure is:
1968 * - identifies the request that caused the hang and it is dropped
1969 * - reset engine (which will force the engine to idle)
1970 * - re-init/configure engine
1971 */
1972 int i915_reset_engine(struct intel_engine_cs *engine, unsigned int flags)
1973 {
1974 struct i915_gpu_error *error = &engine->i915->gpu_error;
1975 struct drm_i915_gem_request *active_request;
1976 int ret;
1977
1978 GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, &error->flags));
1979
1980 if (!(flags & I915_RESET_QUIET)) {
1981 dev_notice(engine->i915->drm.dev,
1982 "Resetting %s after gpu hang\n", engine->name);
1983 }
1984 error->reset_engine_count[engine->id]++;
1985
1986 active_request = i915_gem_reset_prepare_engine(engine);
1987 if (IS_ERR(active_request)) {
1988 DRM_DEBUG_DRIVER("Previous reset failed, promote to full reset\n");
1989 ret = PTR_ERR(active_request);
1990 goto out;
1991 }
1992
1993 if (!engine->i915->guc.execbuf_client)
1994 ret = intel_gt_reset_engine(engine->i915, engine);
1995 else
1996 ret = intel_guc_reset_engine(&engine->i915->guc, engine);
1997 if (ret) {
1998 /* If we fail here, we expect to fallback to a global reset */
1999 DRM_DEBUG_DRIVER("%sFailed to reset %s, ret=%d\n",
2000 engine->i915->guc.execbuf_client ? "GuC " : "",
2001 engine->name, ret);
2002 goto out;
2003 }
2004
2005 /*
2006 * The request that caused the hang is stuck on elsp, we know the
2007 * active request and can drop it, adjust head to skip the offending
2008 * request to resume executing remaining requests in the queue.
2009 */
2010 i915_gem_reset_engine(engine, active_request);
2011
2012 /*
2013 * The engine and its registers (and workarounds in case of render)
2014 * have been reset to their default values. Follow the init_ring
2015 * process to program RING_MODE, HWSP and re-enable submission.
2016 */
2017 ret = engine->init_hw(engine);
2018 if (ret)
2019 goto out;
2020
2021 out:
2022 i915_gem_reset_finish_engine(engine);
2023 return ret;
2024 }
2025
2026 static int i915_pm_suspend(struct device *kdev)
2027 {
2028 struct pci_dev *pdev = to_pci_dev(kdev);
2029 struct drm_device *dev = pci_get_drvdata(pdev);
2030
2031 if (!dev) {
2032 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
2033 return -ENODEV;
2034 }
2035
2036 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2037 return 0;
2038
2039 return i915_drm_suspend(dev);
2040 }
2041
2042 static int i915_pm_suspend_late(struct device *kdev)
2043 {
2044 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2045
2046 /*
2047 * We have a suspend ordering issue with the snd-hda driver also
2048 * requiring our device to be power up. Due to the lack of a
2049 * parent/child relationship we currently solve this with an late
2050 * suspend hook.
2051 *
2052 * FIXME: This should be solved with a special hdmi sink device or
2053 * similar so that power domains can be employed.
2054 */
2055 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2056 return 0;
2057
2058 return i915_drm_suspend_late(dev, false);
2059 }
2060
2061 static int i915_pm_poweroff_late(struct device *kdev)
2062 {
2063 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2064
2065 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2066 return 0;
2067
2068 return i915_drm_suspend_late(dev, true);
2069 }
2070
2071 static int i915_pm_resume_early(struct device *kdev)
2072 {
2073 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2074
2075 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2076 return 0;
2077
2078 return i915_drm_resume_early(dev);
2079 }
2080
2081 static int i915_pm_resume(struct device *kdev)
2082 {
2083 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2084
2085 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2086 return 0;
2087
2088 return i915_drm_resume(dev);
2089 }
2090
2091 /* freeze: before creating the hibernation_image */
2092 static int i915_pm_freeze(struct device *kdev)
2093 {
2094 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2095 int ret;
2096
2097 if (dev->switch_power_state != DRM_SWITCH_POWER_OFF) {
2098 ret = i915_drm_suspend(dev);
2099 if (ret)
2100 return ret;
2101 }
2102
2103 ret = i915_gem_freeze(kdev_to_i915(kdev));
2104 if (ret)
2105 return ret;
2106
2107 return 0;
2108 }
2109
2110 static int i915_pm_freeze_late(struct device *kdev)
2111 {
2112 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2113 int ret;
2114
2115 if (dev->switch_power_state != DRM_SWITCH_POWER_OFF) {
2116 ret = i915_drm_suspend_late(dev, true);
2117 if (ret)
2118 return ret;
2119 }
2120
2121 ret = i915_gem_freeze_late(kdev_to_i915(kdev));
2122 if (ret)
2123 return ret;
2124
2125 return 0;
2126 }
2127
2128 /* thaw: called after creating the hibernation image, but before turning off. */
2129 static int i915_pm_thaw_early(struct device *kdev)
2130 {
2131 return i915_pm_resume_early(kdev);
2132 }
2133
2134 static int i915_pm_thaw(struct device *kdev)
2135 {
2136 return i915_pm_resume(kdev);
2137 }
2138
2139 /* restore: called after loading the hibernation image. */
2140 static int i915_pm_restore_early(struct device *kdev)
2141 {
2142 return i915_pm_resume_early(kdev);
2143 }
2144
2145 static int i915_pm_restore(struct device *kdev)
2146 {
2147 return i915_pm_resume(kdev);
2148 }
2149
2150 /*
2151 * Save all Gunit registers that may be lost after a D3 and a subsequent
2152 * S0i[R123] transition. The list of registers needing a save/restore is
2153 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
2154 * registers in the following way:
2155 * - Driver: saved/restored by the driver
2156 * - Punit : saved/restored by the Punit firmware
2157 * - No, w/o marking: no need to save/restore, since the register is R/O or
2158 * used internally by the HW in a way that doesn't depend
2159 * keeping the content across a suspend/resume.
2160 * - Debug : used for debugging
2161 *
2162 * We save/restore all registers marked with 'Driver', with the following
2163 * exceptions:
2164 * - Registers out of use, including also registers marked with 'Debug'.
2165 * These have no effect on the driver's operation, so we don't save/restore
2166 * them to reduce the overhead.
2167 * - Registers that are fully setup by an initialization function called from
2168 * the resume path. For example many clock gating and RPS/RC6 registers.
2169 * - Registers that provide the right functionality with their reset defaults.
2170 *
2171 * TODO: Except for registers that based on the above 3 criteria can be safely
2172 * ignored, we save/restore all others, practically treating the HW context as
2173 * a black-box for the driver. Further investigation is needed to reduce the
2174 * saved/restored registers even further, by following the same 3 criteria.
2175 */
2176 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2177 {
2178 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2179 int i;
2180
2181 /* GAM 0x4000-0x4770 */
2182 s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
2183 s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
2184 s->arb_mode = I915_READ(ARB_MODE);
2185 s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
2186 s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
2187
2188 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2189 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
2190
2191 s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
2192 s->gfx_max_req_count = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
2193
2194 s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
2195 s->ecochk = I915_READ(GAM_ECOCHK);
2196 s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
2197 s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
2198
2199 s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
2200
2201 /* MBC 0x9024-0x91D0, 0x8500 */
2202 s->g3dctl = I915_READ(VLV_G3DCTL);
2203 s->gsckgctl = I915_READ(VLV_GSCKGCTL);
2204 s->mbctl = I915_READ(GEN6_MBCTL);
2205
2206 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2207 s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
2208 s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
2209 s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
2210 s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
2211 s->rstctl = I915_READ(GEN6_RSTCTL);
2212 s->misccpctl = I915_READ(GEN7_MISCCPCTL);
2213
2214 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2215 s->gfxpause = I915_READ(GEN6_GFXPAUSE);
2216 s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
2217 s->rpdeuc = I915_READ(GEN6_RPDEUC);
2218 s->ecobus = I915_READ(ECOBUS);
2219 s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
2220 s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
2221 s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
2222 s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
2223 s->rcedata = I915_READ(VLV_RCEDATA);
2224 s->spare2gh = I915_READ(VLV_SPAREG2H);
2225
2226 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2227 s->gt_imr = I915_READ(GTIMR);
2228 s->gt_ier = I915_READ(GTIER);
2229 s->pm_imr = I915_READ(GEN6_PMIMR);
2230 s->pm_ier = I915_READ(GEN6_PMIER);
2231
2232 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2233 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
2234
2235 /* GT SA CZ domain, 0x100000-0x138124 */
2236 s->tilectl = I915_READ(TILECTL);
2237 s->gt_fifoctl = I915_READ(GTFIFOCTL);
2238 s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
2239 s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2240 s->pmwgicz = I915_READ(VLV_PMWGICZ);
2241
2242 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2243 s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
2244 s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
2245 s->pcbr = I915_READ(VLV_PCBR);
2246 s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
2247
2248 /*
2249 * Not saving any of:
2250 * DFT, 0x9800-0x9EC0
2251 * SARB, 0xB000-0xB1FC
2252 * GAC, 0x5208-0x524C, 0x14000-0x14C000
2253 * PCI CFG
2254 */
2255 }
2256
2257 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2258 {
2259 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2260 u32 val;
2261 int i;
2262
2263 /* GAM 0x4000-0x4770 */
2264 I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
2265 I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
2266 I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
2267 I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
2268 I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
2269
2270 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2271 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2272
2273 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2274 I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2275
2276 I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
2277 I915_WRITE(GAM_ECOCHK, s->ecochk);
2278 I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
2279 I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
2280
2281 I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
2282
2283 /* MBC 0x9024-0x91D0, 0x8500 */
2284 I915_WRITE(VLV_G3DCTL, s->g3dctl);
2285 I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
2286 I915_WRITE(GEN6_MBCTL, s->mbctl);
2287
2288 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2289 I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
2290 I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
2291 I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
2292 I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
2293 I915_WRITE(GEN6_RSTCTL, s->rstctl);
2294 I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
2295
2296 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2297 I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
2298 I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
2299 I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
2300 I915_WRITE(ECOBUS, s->ecobus);
2301 I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
2302 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2303 I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
2304 I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
2305 I915_WRITE(VLV_RCEDATA, s->rcedata);
2306 I915_WRITE(VLV_SPAREG2H, s->spare2gh);
2307
2308 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2309 I915_WRITE(GTIMR, s->gt_imr);
2310 I915_WRITE(GTIER, s->gt_ier);
2311 I915_WRITE(GEN6_PMIMR, s->pm_imr);
2312 I915_WRITE(GEN6_PMIER, s->pm_ier);
2313
2314 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2315 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2316
2317 /* GT SA CZ domain, 0x100000-0x138124 */
2318 I915_WRITE(TILECTL, s->tilectl);
2319 I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
2320 /*
2321 * Preserve the GT allow wake and GFX force clock bit, they are not
2322 * be restored, as they are used to control the s0ix suspend/resume
2323 * sequence by the caller.
2324 */
2325 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2326 val &= VLV_GTLC_ALLOWWAKEREQ;
2327 val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2328 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2329
2330 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2331 val &= VLV_GFX_CLK_FORCE_ON_BIT;
2332 val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2333 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2334
2335 I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
2336
2337 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2338 I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
2339 I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
2340 I915_WRITE(VLV_PCBR, s->pcbr);
2341 I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
2342 }
2343
2344 static int vlv_wait_for_pw_status(struct drm_i915_private *dev_priv,
2345 u32 mask, u32 val)
2346 {
2347 /* The HW does not like us polling for PW_STATUS frequently, so
2348 * use the sleeping loop rather than risk the busy spin within
2349 * intel_wait_for_register().
2350 *
2351 * Transitioning between RC6 states should be at most 2ms (see
2352 * valleyview_enable_rps) so use a 3ms timeout.
2353 */
2354 return wait_for((I915_READ_NOTRACE(VLV_GTLC_PW_STATUS) & mask) == val,
2355 3);
2356 }
2357
2358 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2359 {
2360 u32 val;
2361 int err;
2362
2363 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2364 val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2365 if (force_on)
2366 val |= VLV_GFX_CLK_FORCE_ON_BIT;
2367 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2368
2369 if (!force_on)
2370 return 0;
2371
2372 err = intel_wait_for_register(dev_priv,
2373 VLV_GTLC_SURVIVABILITY_REG,
2374 VLV_GFX_CLK_STATUS_BIT,
2375 VLV_GFX_CLK_STATUS_BIT,
2376 20);
2377 if (err)
2378 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2379 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2380
2381 return err;
2382 }
2383
2384 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2385 {
2386 u32 mask;
2387 u32 val;
2388 int err;
2389
2390 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2391 val &= ~VLV_GTLC_ALLOWWAKEREQ;
2392 if (allow)
2393 val |= VLV_GTLC_ALLOWWAKEREQ;
2394 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2395 POSTING_READ(VLV_GTLC_WAKE_CTRL);
2396
2397 mask = VLV_GTLC_ALLOWWAKEACK;
2398 val = allow ? mask : 0;
2399
2400 err = vlv_wait_for_pw_status(dev_priv, mask, val);
2401 if (err)
2402 DRM_ERROR("timeout disabling GT waking\n");
2403
2404 return err;
2405 }
2406
2407 static void vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2408 bool wait_for_on)
2409 {
2410 u32 mask;
2411 u32 val;
2412
2413 mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2414 val = wait_for_on ? mask : 0;
2415
2416 /*
2417 * RC6 transitioning can be delayed up to 2 msec (see
2418 * valleyview_enable_rps), use 3 msec for safety.
2419 */
2420 if (vlv_wait_for_pw_status(dev_priv, mask, val))
2421 DRM_ERROR("timeout waiting for GT wells to go %s\n",
2422 onoff(wait_for_on));
2423 }
2424
2425 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2426 {
2427 if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2428 return;
2429
2430 DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2431 I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2432 }
2433
2434 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2435 {
2436 u32 mask;
2437 int err;
2438
2439 /*
2440 * Bspec defines the following GT well on flags as debug only, so
2441 * don't treat them as hard failures.
2442 */
2443 vlv_wait_for_gt_wells(dev_priv, false);
2444
2445 mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2446 WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2447
2448 vlv_check_no_gt_access(dev_priv);
2449
2450 err = vlv_force_gfx_clock(dev_priv, true);
2451 if (err)
2452 goto err1;
2453
2454 err = vlv_allow_gt_wake(dev_priv, false);
2455 if (err)
2456 goto err2;
2457
2458 if (!IS_CHERRYVIEW(dev_priv))
2459 vlv_save_gunit_s0ix_state(dev_priv);
2460
2461 err = vlv_force_gfx_clock(dev_priv, false);
2462 if (err)
2463 goto err2;
2464
2465 return 0;
2466
2467 err2:
2468 /* For safety always re-enable waking and disable gfx clock forcing */
2469 vlv_allow_gt_wake(dev_priv, true);
2470 err1:
2471 vlv_force_gfx_clock(dev_priv, false);
2472
2473 return err;
2474 }
2475
2476 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2477 bool rpm_resume)
2478 {
2479 int err;
2480 int ret;
2481
2482 /*
2483 * If any of the steps fail just try to continue, that's the best we
2484 * can do at this point. Return the first error code (which will also
2485 * leave RPM permanently disabled).
2486 */
2487 ret = vlv_force_gfx_clock(dev_priv, true);
2488
2489 if (!IS_CHERRYVIEW(dev_priv))
2490 vlv_restore_gunit_s0ix_state(dev_priv);
2491
2492 err = vlv_allow_gt_wake(dev_priv, true);
2493 if (!ret)
2494 ret = err;
2495
2496 err = vlv_force_gfx_clock(dev_priv, false);
2497 if (!ret)
2498 ret = err;
2499
2500 vlv_check_no_gt_access(dev_priv);
2501
2502 if (rpm_resume)
2503 intel_init_clock_gating(dev_priv);
2504
2505 return ret;
2506 }
2507
2508 static int intel_runtime_suspend(struct device *kdev)
2509 {
2510 struct pci_dev *pdev = to_pci_dev(kdev);
2511 struct drm_device *dev = pci_get_drvdata(pdev);
2512 struct drm_i915_private *dev_priv = to_i915(dev);
2513 int ret;
2514
2515 if (WARN_ON_ONCE(!(dev_priv->gt_pm.rc6.enabled && intel_rc6_enabled())))
2516 return -ENODEV;
2517
2518 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2519 return -ENODEV;
2520
2521 DRM_DEBUG_KMS("Suspending device\n");
2522
2523 disable_rpm_wakeref_asserts(dev_priv);
2524
2525 /*
2526 * We are safe here against re-faults, since the fault handler takes
2527 * an RPM reference.
2528 */
2529 i915_gem_runtime_suspend(dev_priv);
2530
2531 intel_guc_suspend(dev_priv);
2532
2533 intel_runtime_pm_disable_interrupts(dev_priv);
2534
2535 intel_uncore_suspend(dev_priv);
2536
2537 ret = 0;
2538 if (IS_GEN9_LP(dev_priv)) {
2539 bxt_display_core_uninit(dev_priv);
2540 bxt_enable_dc9(dev_priv);
2541 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2542 hsw_enable_pc8(dev_priv);
2543 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2544 ret = vlv_suspend_complete(dev_priv);
2545 }
2546
2547 if (ret) {
2548 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2549 intel_uncore_runtime_resume(dev_priv);
2550
2551 intel_runtime_pm_enable_interrupts(dev_priv);
2552
2553 enable_rpm_wakeref_asserts(dev_priv);
2554
2555 return ret;
2556 }
2557
2558 enable_rpm_wakeref_asserts(dev_priv);
2559 WARN_ON_ONCE(atomic_read(&dev_priv->runtime_pm.wakeref_count));
2560
2561 if (intel_uncore_arm_unclaimed_mmio_detection(dev_priv))
2562 DRM_ERROR("Unclaimed access detected prior to suspending\n");
2563
2564 dev_priv->runtime_pm.suspended = true;
2565
2566 /*
2567 * FIXME: We really should find a document that references the arguments
2568 * used below!
2569 */
2570 if (IS_BROADWELL(dev_priv)) {
2571 /*
2572 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2573 * being detected, and the call we do at intel_runtime_resume()
2574 * won't be able to restore them. Since PCI_D3hot matches the
2575 * actual specification and appears to be working, use it.
2576 */
2577 intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2578 } else {
2579 /*
2580 * current versions of firmware which depend on this opregion
2581 * notification have repurposed the D1 definition to mean
2582 * "runtime suspended" vs. what you would normally expect (D3)
2583 * to distinguish it from notifications that might be sent via
2584 * the suspend path.
2585 */
2586 intel_opregion_notify_adapter(dev_priv, PCI_D1);
2587 }
2588
2589 assert_forcewakes_inactive(dev_priv);
2590
2591 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2592 intel_hpd_poll_init(dev_priv);
2593
2594 DRM_DEBUG_KMS("Device suspended\n");
2595 return 0;
2596 }
2597
2598 static int intel_runtime_resume(struct device *kdev)
2599 {
2600 struct pci_dev *pdev = to_pci_dev(kdev);
2601 struct drm_device *dev = pci_get_drvdata(pdev);
2602 struct drm_i915_private *dev_priv = to_i915(dev);
2603 int ret = 0;
2604
2605 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2606 return -ENODEV;
2607
2608 DRM_DEBUG_KMS("Resuming device\n");
2609
2610 WARN_ON_ONCE(atomic_read(&dev_priv->runtime_pm.wakeref_count));
2611 disable_rpm_wakeref_asserts(dev_priv);
2612
2613 intel_opregion_notify_adapter(dev_priv, PCI_D0);
2614 dev_priv->runtime_pm.suspended = false;
2615 if (intel_uncore_unclaimed_mmio(dev_priv))
2616 DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
2617
2618 intel_guc_resume(dev_priv);
2619
2620 if (IS_GEN9_LP(dev_priv)) {
2621 bxt_disable_dc9(dev_priv);
2622 bxt_display_core_init(dev_priv, true);
2623 if (dev_priv->csr.dmc_payload &&
2624 (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2625 gen9_enable_dc5(dev_priv);
2626 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2627 hsw_disable_pc8(dev_priv);
2628 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2629 ret = vlv_resume_prepare(dev_priv, true);
2630 }
2631
2632 intel_uncore_runtime_resume(dev_priv);
2633
2634 /*
2635 * No point of rolling back things in case of an error, as the best
2636 * we can do is to hope that things will still work (and disable RPM).
2637 */
2638 i915_gem_init_swizzling(dev_priv);
2639 i915_gem_restore_fences(dev_priv);
2640
2641 intel_runtime_pm_enable_interrupts(dev_priv);
2642
2643 /*
2644 * On VLV/CHV display interrupts are part of the display
2645 * power well, so hpd is reinitialized from there. For
2646 * everyone else do it here.
2647 */
2648 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2649 intel_hpd_init(dev_priv);
2650
2651 intel_enable_ipc(dev_priv);
2652
2653 enable_rpm_wakeref_asserts(dev_priv);
2654
2655 if (ret)
2656 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
2657 else
2658 DRM_DEBUG_KMS("Device resumed\n");
2659
2660 return ret;
2661 }
2662
2663 const struct dev_pm_ops i915_pm_ops = {
2664 /*
2665 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
2666 * PMSG_RESUME]
2667 */
2668 .suspend = i915_pm_suspend,
2669 .suspend_late = i915_pm_suspend_late,
2670 .resume_early = i915_pm_resume_early,
2671 .resume = i915_pm_resume,
2672
2673 /*
2674 * S4 event handlers
2675 * @freeze, @freeze_late : called (1) before creating the
2676 * hibernation image [PMSG_FREEZE] and
2677 * (2) after rebooting, before restoring
2678 * the image [PMSG_QUIESCE]
2679 * @thaw, @thaw_early : called (1) after creating the hibernation
2680 * image, before writing it [PMSG_THAW]
2681 * and (2) after failing to create or
2682 * restore the image [PMSG_RECOVER]
2683 * @poweroff, @poweroff_late: called after writing the hibernation
2684 * image, before rebooting [PMSG_HIBERNATE]
2685 * @restore, @restore_early : called after rebooting and restoring the
2686 * hibernation image [PMSG_RESTORE]
2687 */
2688 .freeze = i915_pm_freeze,
2689 .freeze_late = i915_pm_freeze_late,
2690 .thaw_early = i915_pm_thaw_early,
2691 .thaw = i915_pm_thaw,
2692 .poweroff = i915_pm_suspend,
2693 .poweroff_late = i915_pm_poweroff_late,
2694 .restore_early = i915_pm_restore_early,
2695 .restore = i915_pm_restore,
2696
2697 /* S0ix (via runtime suspend) event handlers */
2698 .runtime_suspend = intel_runtime_suspend,
2699 .runtime_resume = intel_runtime_resume,
2700 };
2701
2702 static const struct vm_operations_struct i915_gem_vm_ops = {
2703 .fault = i915_gem_fault,
2704 .open = drm_gem_vm_open,
2705 .close = drm_gem_vm_close,
2706 };
2707
2708 static const struct file_operations i915_driver_fops = {
2709 .owner = THIS_MODULE,
2710 .open = drm_open,
2711 .release = drm_release,
2712 .unlocked_ioctl = drm_ioctl,
2713 .mmap = drm_gem_mmap,
2714 .poll = drm_poll,
2715 .read = drm_read,
2716 .compat_ioctl = i915_compat_ioctl,
2717 .llseek = noop_llseek,
2718 };
2719
2720 static int
2721 i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
2722 struct drm_file *file)
2723 {
2724 return -ENODEV;
2725 }
2726
2727 static const struct drm_ioctl_desc i915_ioctls[] = {
2728 DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2729 DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
2730 DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
2731 DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
2732 DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
2733 DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
2734 DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam, DRM_AUTH|DRM_RENDER_ALLOW),
2735 DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2736 DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
2737 DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
2738 DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2739 DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
2740 DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2741 DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2742 DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE, drm_noop, DRM_AUTH),
2743 DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
2744 DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2745 DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2746 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer, DRM_AUTH),
2747 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2_WR, i915_gem_execbuffer2, DRM_AUTH|DRM_RENDER_ALLOW),
2748 DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2749 DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2750 DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2751 DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
2752 DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
2753 DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2754 DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2755 DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2756 DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
2757 DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
2758 DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
2759 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
2760 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_GTT, i915_gem_mmap_gtt_ioctl, DRM_RENDER_ALLOW),
2761 DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
2762 DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
2763 DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling_ioctl, DRM_RENDER_ALLOW),
2764 DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling_ioctl, DRM_RENDER_ALLOW),
2765 DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
2766 DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id, 0),
2767 DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
2768 DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2769 DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2770 DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey, DRM_MASTER|DRM_CONTROL_ALLOW),
2771 DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER|DRM_CONTROL_ALLOW),
2772 DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2773 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
2774 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
2775 DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
2776 DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
2777 DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
2778 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
2779 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
2780 DRM_IOCTL_DEF_DRV(I915_PERF_OPEN, i915_perf_open_ioctl, DRM_RENDER_ALLOW),
2781 DRM_IOCTL_DEF_DRV(I915_PERF_ADD_CONFIG, i915_perf_add_config_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
2782 DRM_IOCTL_DEF_DRV(I915_PERF_REMOVE_CONFIG, i915_perf_remove_config_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
2783 };
2784
2785 static struct drm_driver driver = {
2786 /* Don't use MTRRs here; the Xserver or userspace app should
2787 * deal with them for Intel hardware.
2788 */
2789 .driver_features =
2790 DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
2791 DRIVER_RENDER | DRIVER_MODESET | DRIVER_ATOMIC | DRIVER_SYNCOBJ,
2792 .release = i915_driver_release,
2793 .open = i915_driver_open,
2794 .lastclose = i915_driver_lastclose,
2795 .postclose = i915_driver_postclose,
2796
2797 .gem_close_object = i915_gem_close_object,
2798 .gem_free_object_unlocked = i915_gem_free_object,
2799 .gem_vm_ops = &i915_gem_vm_ops,
2800
2801 .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
2802 .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
2803 .gem_prime_export = i915_gem_prime_export,
2804 .gem_prime_import = i915_gem_prime_import,
2805
2806 .dumb_create = i915_gem_dumb_create,
2807 .dumb_map_offset = i915_gem_mmap_gtt,
2808 .ioctls = i915_ioctls,
2809 .num_ioctls = ARRAY_SIZE(i915_ioctls),
2810 .fops = &i915_driver_fops,
2811 .name = DRIVER_NAME,
2812 .desc = DRIVER_DESC,
2813 .date = DRIVER_DATE,
2814 .major = DRIVER_MAJOR,
2815 .minor = DRIVER_MINOR,
2816 .patchlevel = DRIVER_PATCHLEVEL,
2817 };
2818
2819 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2820 #include "selftests/mock_drm.c"
2821 #endif