]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.c
drm/i915: Remove intel_flip_work infrastructure
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_drv.c
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #include <linux/acpi.h>
31 #include <linux/device.h>
32 #include <linux/oom.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/pm.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/pnp.h>
38 #include <linux/slab.h>
39 #include <linux/vgaarb.h>
40 #include <linux/vga_switcheroo.h>
41 #include <linux/vt.h>
42 #include <acpi/video.h>
43
44 #include <drm/drmP.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/drm_atomic_helper.h>
47 #include <drm/i915_drm.h>
48
49 #include "i915_drv.h"
50 #include "i915_trace.h"
51 #include "i915_vgpu.h"
52 #include "intel_drv.h"
53 #include "intel_uc.h"
54
55 static struct drm_driver driver;
56
57 static unsigned int i915_load_fail_count;
58
59 bool __i915_inject_load_failure(const char *func, int line)
60 {
61 if (i915_load_fail_count >= i915.inject_load_failure)
62 return false;
63
64 if (++i915_load_fail_count == i915.inject_load_failure) {
65 DRM_INFO("Injecting failure at checkpoint %u [%s:%d]\n",
66 i915.inject_load_failure, func, line);
67 return true;
68 }
69
70 return false;
71 }
72
73 #define FDO_BUG_URL "https://bugs.freedesktop.org/enter_bug.cgi?product=DRI"
74 #define FDO_BUG_MSG "Please file a bug at " FDO_BUG_URL " against DRM/Intel " \
75 "providing the dmesg log by booting with drm.debug=0xf"
76
77 void
78 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
79 const char *fmt, ...)
80 {
81 static bool shown_bug_once;
82 struct device *kdev = dev_priv->drm.dev;
83 bool is_error = level[1] <= KERN_ERR[1];
84 bool is_debug = level[1] == KERN_DEBUG[1];
85 struct va_format vaf;
86 va_list args;
87
88 if (is_debug && !(drm_debug & DRM_UT_DRIVER))
89 return;
90
91 va_start(args, fmt);
92
93 vaf.fmt = fmt;
94 vaf.va = &args;
95
96 dev_printk(level, kdev, "[" DRM_NAME ":%ps] %pV",
97 __builtin_return_address(0), &vaf);
98
99 if (is_error && !shown_bug_once) {
100 dev_notice(kdev, "%s", FDO_BUG_MSG);
101 shown_bug_once = true;
102 }
103
104 va_end(args);
105 }
106
107 static bool i915_error_injected(struct drm_i915_private *dev_priv)
108 {
109 return i915.inject_load_failure &&
110 i915_load_fail_count == i915.inject_load_failure;
111 }
112
113 #define i915_load_error(dev_priv, fmt, ...) \
114 __i915_printk(dev_priv, \
115 i915_error_injected(dev_priv) ? KERN_DEBUG : KERN_ERR, \
116 fmt, ##__VA_ARGS__)
117
118
119 static enum intel_pch intel_virt_detect_pch(struct drm_i915_private *dev_priv)
120 {
121 enum intel_pch ret = PCH_NOP;
122
123 /*
124 * In a virtualized passthrough environment we can be in a
125 * setup where the ISA bridge is not able to be passed through.
126 * In this case, a south bridge can be emulated and we have to
127 * make an educated guess as to which PCH is really there.
128 */
129
130 if (IS_GEN5(dev_priv)) {
131 ret = PCH_IBX;
132 DRM_DEBUG_KMS("Assuming Ibex Peak PCH\n");
133 } else if (IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv)) {
134 ret = PCH_CPT;
135 DRM_DEBUG_KMS("Assuming CougarPoint PCH\n");
136 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
137 ret = PCH_LPT;
138 if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
139 dev_priv->pch_id = INTEL_PCH_LPT_LP_DEVICE_ID_TYPE;
140 else
141 dev_priv->pch_id = INTEL_PCH_LPT_DEVICE_ID_TYPE;
142 DRM_DEBUG_KMS("Assuming LynxPoint PCH\n");
143 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
144 ret = PCH_SPT;
145 DRM_DEBUG_KMS("Assuming SunrisePoint PCH\n");
146 } else if (IS_COFFEELAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) {
147 ret = PCH_CNP;
148 DRM_DEBUG_KMS("Assuming CannonPoint PCH\n");
149 }
150
151 return ret;
152 }
153
154 static void intel_detect_pch(struct drm_i915_private *dev_priv)
155 {
156 struct pci_dev *pch = NULL;
157
158 /* In all current cases, num_pipes is equivalent to the PCH_NOP setting
159 * (which really amounts to a PCH but no South Display).
160 */
161 if (INTEL_INFO(dev_priv)->num_pipes == 0) {
162 dev_priv->pch_type = PCH_NOP;
163 return;
164 }
165
166 /*
167 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
168 * make graphics device passthrough work easy for VMM, that only
169 * need to expose ISA bridge to let driver know the real hardware
170 * underneath. This is a requirement from virtualization team.
171 *
172 * In some virtualized environments (e.g. XEN), there is irrelevant
173 * ISA bridge in the system. To work reliably, we should scan trhough
174 * all the ISA bridge devices and check for the first match, instead
175 * of only checking the first one.
176 */
177 while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
178 if (pch->vendor == PCI_VENDOR_ID_INTEL) {
179 unsigned short id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
180
181 dev_priv->pch_id = id;
182
183 if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
184 dev_priv->pch_type = PCH_IBX;
185 DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
186 WARN_ON(!IS_GEN5(dev_priv));
187 } else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
188 dev_priv->pch_type = PCH_CPT;
189 DRM_DEBUG_KMS("Found CougarPoint PCH\n");
190 WARN_ON(!IS_GEN6(dev_priv) &&
191 !IS_IVYBRIDGE(dev_priv));
192 } else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
193 /* PantherPoint is CPT compatible */
194 dev_priv->pch_type = PCH_CPT;
195 DRM_DEBUG_KMS("Found PantherPoint PCH\n");
196 WARN_ON(!IS_GEN6(dev_priv) &&
197 !IS_IVYBRIDGE(dev_priv));
198 } else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
199 dev_priv->pch_type = PCH_LPT;
200 DRM_DEBUG_KMS("Found LynxPoint PCH\n");
201 WARN_ON(!IS_HASWELL(dev_priv) &&
202 !IS_BROADWELL(dev_priv));
203 WARN_ON(IS_HSW_ULT(dev_priv) ||
204 IS_BDW_ULT(dev_priv));
205 } else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
206 dev_priv->pch_type = PCH_LPT;
207 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
208 WARN_ON(!IS_HASWELL(dev_priv) &&
209 !IS_BROADWELL(dev_priv));
210 WARN_ON(!IS_HSW_ULT(dev_priv) &&
211 !IS_BDW_ULT(dev_priv));
212 } else if (id == INTEL_PCH_WPT_DEVICE_ID_TYPE) {
213 /* WildcatPoint is LPT compatible */
214 dev_priv->pch_type = PCH_LPT;
215 DRM_DEBUG_KMS("Found WildcatPoint PCH\n");
216 WARN_ON(!IS_HASWELL(dev_priv) &&
217 !IS_BROADWELL(dev_priv));
218 WARN_ON(IS_HSW_ULT(dev_priv) ||
219 IS_BDW_ULT(dev_priv));
220 } else if (id == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE) {
221 /* WildcatPoint is LPT compatible */
222 dev_priv->pch_type = PCH_LPT;
223 DRM_DEBUG_KMS("Found WildcatPoint LP PCH\n");
224 WARN_ON(!IS_HASWELL(dev_priv) &&
225 !IS_BROADWELL(dev_priv));
226 WARN_ON(!IS_HSW_ULT(dev_priv) &&
227 !IS_BDW_ULT(dev_priv));
228 } else if (id == INTEL_PCH_SPT_DEVICE_ID_TYPE) {
229 dev_priv->pch_type = PCH_SPT;
230 DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
231 WARN_ON(!IS_SKYLAKE(dev_priv) &&
232 !IS_KABYLAKE(dev_priv));
233 } else if (id == INTEL_PCH_SPT_LP_DEVICE_ID_TYPE) {
234 dev_priv->pch_type = PCH_SPT;
235 DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
236 WARN_ON(!IS_SKYLAKE(dev_priv) &&
237 !IS_KABYLAKE(dev_priv));
238 } else if (id == INTEL_PCH_KBP_DEVICE_ID_TYPE) {
239 dev_priv->pch_type = PCH_KBP;
240 DRM_DEBUG_KMS("Found KabyPoint PCH\n");
241 WARN_ON(!IS_SKYLAKE(dev_priv) &&
242 !IS_KABYLAKE(dev_priv));
243 } else if (id == INTEL_PCH_CNP_DEVICE_ID_TYPE) {
244 dev_priv->pch_type = PCH_CNP;
245 DRM_DEBUG_KMS("Found CannonPoint PCH\n");
246 WARN_ON(!IS_CANNONLAKE(dev_priv) &&
247 !IS_COFFEELAKE(dev_priv));
248 } else if (id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE) {
249 dev_priv->pch_type = PCH_CNP;
250 DRM_DEBUG_KMS("Found CannonPoint LP PCH\n");
251 WARN_ON(!IS_CANNONLAKE(dev_priv) &&
252 !IS_COFFEELAKE(dev_priv));
253 } else if (id == INTEL_PCH_P2X_DEVICE_ID_TYPE ||
254 id == INTEL_PCH_P3X_DEVICE_ID_TYPE ||
255 (id == INTEL_PCH_QEMU_DEVICE_ID_TYPE &&
256 pch->subsystem_vendor ==
257 PCI_SUBVENDOR_ID_REDHAT_QUMRANET &&
258 pch->subsystem_device ==
259 PCI_SUBDEVICE_ID_QEMU)) {
260 dev_priv->pch_type =
261 intel_virt_detect_pch(dev_priv);
262 } else
263 continue;
264
265 break;
266 }
267 }
268 if (!pch)
269 DRM_DEBUG_KMS("No PCH found.\n");
270
271 pci_dev_put(pch);
272 }
273
274 static int i915_getparam(struct drm_device *dev, void *data,
275 struct drm_file *file_priv)
276 {
277 struct drm_i915_private *dev_priv = to_i915(dev);
278 struct pci_dev *pdev = dev_priv->drm.pdev;
279 drm_i915_getparam_t *param = data;
280 int value;
281
282 switch (param->param) {
283 case I915_PARAM_IRQ_ACTIVE:
284 case I915_PARAM_ALLOW_BATCHBUFFER:
285 case I915_PARAM_LAST_DISPATCH:
286 case I915_PARAM_HAS_EXEC_CONSTANTS:
287 /* Reject all old ums/dri params. */
288 return -ENODEV;
289 case I915_PARAM_CHIPSET_ID:
290 value = pdev->device;
291 break;
292 case I915_PARAM_REVISION:
293 value = pdev->revision;
294 break;
295 case I915_PARAM_NUM_FENCES_AVAIL:
296 value = dev_priv->num_fence_regs;
297 break;
298 case I915_PARAM_HAS_OVERLAY:
299 value = dev_priv->overlay ? 1 : 0;
300 break;
301 case I915_PARAM_HAS_BSD:
302 value = !!dev_priv->engine[VCS];
303 break;
304 case I915_PARAM_HAS_BLT:
305 value = !!dev_priv->engine[BCS];
306 break;
307 case I915_PARAM_HAS_VEBOX:
308 value = !!dev_priv->engine[VECS];
309 break;
310 case I915_PARAM_HAS_BSD2:
311 value = !!dev_priv->engine[VCS2];
312 break;
313 case I915_PARAM_HAS_LLC:
314 value = HAS_LLC(dev_priv);
315 break;
316 case I915_PARAM_HAS_WT:
317 value = HAS_WT(dev_priv);
318 break;
319 case I915_PARAM_HAS_ALIASING_PPGTT:
320 value = USES_PPGTT(dev_priv);
321 break;
322 case I915_PARAM_HAS_SEMAPHORES:
323 value = i915.semaphores;
324 break;
325 case I915_PARAM_HAS_SECURE_BATCHES:
326 value = capable(CAP_SYS_ADMIN);
327 break;
328 case I915_PARAM_CMD_PARSER_VERSION:
329 value = i915_cmd_parser_get_version(dev_priv);
330 break;
331 case I915_PARAM_SUBSLICE_TOTAL:
332 value = sseu_subslice_total(&INTEL_INFO(dev_priv)->sseu);
333 if (!value)
334 return -ENODEV;
335 break;
336 case I915_PARAM_EU_TOTAL:
337 value = INTEL_INFO(dev_priv)->sseu.eu_total;
338 if (!value)
339 return -ENODEV;
340 break;
341 case I915_PARAM_HAS_GPU_RESET:
342 value = i915.enable_hangcheck && intel_has_gpu_reset(dev_priv);
343 if (value && intel_has_reset_engine(dev_priv))
344 value = 2;
345 break;
346 case I915_PARAM_HAS_RESOURCE_STREAMER:
347 value = HAS_RESOURCE_STREAMER(dev_priv);
348 break;
349 case I915_PARAM_HAS_POOLED_EU:
350 value = HAS_POOLED_EU(dev_priv);
351 break;
352 case I915_PARAM_MIN_EU_IN_POOL:
353 value = INTEL_INFO(dev_priv)->sseu.min_eu_in_pool;
354 break;
355 case I915_PARAM_HUC_STATUS:
356 intel_runtime_pm_get(dev_priv);
357 value = I915_READ(HUC_STATUS2) & HUC_FW_VERIFIED;
358 intel_runtime_pm_put(dev_priv);
359 break;
360 case I915_PARAM_MMAP_GTT_VERSION:
361 /* Though we've started our numbering from 1, and so class all
362 * earlier versions as 0, in effect their value is undefined as
363 * the ioctl will report EINVAL for the unknown param!
364 */
365 value = i915_gem_mmap_gtt_version();
366 break;
367 case I915_PARAM_HAS_SCHEDULER:
368 value = dev_priv->engine[RCS] &&
369 dev_priv->engine[RCS]->schedule;
370 break;
371 case I915_PARAM_MMAP_VERSION:
372 /* Remember to bump this if the version changes! */
373 case I915_PARAM_HAS_GEM:
374 case I915_PARAM_HAS_PAGEFLIPPING:
375 case I915_PARAM_HAS_EXECBUF2: /* depends on GEM */
376 case I915_PARAM_HAS_RELAXED_FENCING:
377 case I915_PARAM_HAS_COHERENT_RINGS:
378 case I915_PARAM_HAS_RELAXED_DELTA:
379 case I915_PARAM_HAS_GEN7_SOL_RESET:
380 case I915_PARAM_HAS_WAIT_TIMEOUT:
381 case I915_PARAM_HAS_PRIME_VMAP_FLUSH:
382 case I915_PARAM_HAS_PINNED_BATCHES:
383 case I915_PARAM_HAS_EXEC_NO_RELOC:
384 case I915_PARAM_HAS_EXEC_HANDLE_LUT:
385 case I915_PARAM_HAS_COHERENT_PHYS_GTT:
386 case I915_PARAM_HAS_EXEC_SOFTPIN:
387 case I915_PARAM_HAS_EXEC_ASYNC:
388 case I915_PARAM_HAS_EXEC_FENCE:
389 case I915_PARAM_HAS_EXEC_CAPTURE:
390 case I915_PARAM_HAS_EXEC_BATCH_FIRST:
391 /* For the time being all of these are always true;
392 * if some supported hardware does not have one of these
393 * features this value needs to be provided from
394 * INTEL_INFO(), a feature macro, or similar.
395 */
396 value = 1;
397 break;
398 case I915_PARAM_SLICE_MASK:
399 value = INTEL_INFO(dev_priv)->sseu.slice_mask;
400 if (!value)
401 return -ENODEV;
402 break;
403 case I915_PARAM_SUBSLICE_MASK:
404 value = INTEL_INFO(dev_priv)->sseu.subslice_mask;
405 if (!value)
406 return -ENODEV;
407 break;
408 default:
409 DRM_DEBUG("Unknown parameter %d\n", param->param);
410 return -EINVAL;
411 }
412
413 if (put_user(value, param->value))
414 return -EFAULT;
415
416 return 0;
417 }
418
419 static int i915_get_bridge_dev(struct drm_i915_private *dev_priv)
420 {
421 dev_priv->bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0));
422 if (!dev_priv->bridge_dev) {
423 DRM_ERROR("bridge device not found\n");
424 return -1;
425 }
426 return 0;
427 }
428
429 /* Allocate space for the MCH regs if needed, return nonzero on error */
430 static int
431 intel_alloc_mchbar_resource(struct drm_i915_private *dev_priv)
432 {
433 int reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
434 u32 temp_lo, temp_hi = 0;
435 u64 mchbar_addr;
436 int ret;
437
438 if (INTEL_GEN(dev_priv) >= 4)
439 pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
440 pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
441 mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
442
443 /* If ACPI doesn't have it, assume we need to allocate it ourselves */
444 #ifdef CONFIG_PNP
445 if (mchbar_addr &&
446 pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
447 return 0;
448 #endif
449
450 /* Get some space for it */
451 dev_priv->mch_res.name = "i915 MCHBAR";
452 dev_priv->mch_res.flags = IORESOURCE_MEM;
453 ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
454 &dev_priv->mch_res,
455 MCHBAR_SIZE, MCHBAR_SIZE,
456 PCIBIOS_MIN_MEM,
457 0, pcibios_align_resource,
458 dev_priv->bridge_dev);
459 if (ret) {
460 DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
461 dev_priv->mch_res.start = 0;
462 return ret;
463 }
464
465 if (INTEL_GEN(dev_priv) >= 4)
466 pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
467 upper_32_bits(dev_priv->mch_res.start));
468
469 pci_write_config_dword(dev_priv->bridge_dev, reg,
470 lower_32_bits(dev_priv->mch_res.start));
471 return 0;
472 }
473
474 /* Setup MCHBAR if possible, return true if we should disable it again */
475 static void
476 intel_setup_mchbar(struct drm_i915_private *dev_priv)
477 {
478 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
479 u32 temp;
480 bool enabled;
481
482 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
483 return;
484
485 dev_priv->mchbar_need_disable = false;
486
487 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
488 pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
489 enabled = !!(temp & DEVEN_MCHBAR_EN);
490 } else {
491 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
492 enabled = temp & 1;
493 }
494
495 /* If it's already enabled, don't have to do anything */
496 if (enabled)
497 return;
498
499 if (intel_alloc_mchbar_resource(dev_priv))
500 return;
501
502 dev_priv->mchbar_need_disable = true;
503
504 /* Space is allocated or reserved, so enable it. */
505 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
506 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
507 temp | DEVEN_MCHBAR_EN);
508 } else {
509 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
510 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
511 }
512 }
513
514 static void
515 intel_teardown_mchbar(struct drm_i915_private *dev_priv)
516 {
517 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
518
519 if (dev_priv->mchbar_need_disable) {
520 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
521 u32 deven_val;
522
523 pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
524 &deven_val);
525 deven_val &= ~DEVEN_MCHBAR_EN;
526 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
527 deven_val);
528 } else {
529 u32 mchbar_val;
530
531 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
532 &mchbar_val);
533 mchbar_val &= ~1;
534 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
535 mchbar_val);
536 }
537 }
538
539 if (dev_priv->mch_res.start)
540 release_resource(&dev_priv->mch_res);
541 }
542
543 /* true = enable decode, false = disable decoder */
544 static unsigned int i915_vga_set_decode(void *cookie, bool state)
545 {
546 struct drm_i915_private *dev_priv = cookie;
547
548 intel_modeset_vga_set_state(dev_priv, state);
549 if (state)
550 return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
551 VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
552 else
553 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
554 }
555
556 static int i915_resume_switcheroo(struct drm_device *dev);
557 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
558
559 static void i915_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
560 {
561 struct drm_device *dev = pci_get_drvdata(pdev);
562 pm_message_t pmm = { .event = PM_EVENT_SUSPEND };
563
564 if (state == VGA_SWITCHEROO_ON) {
565 pr_info("switched on\n");
566 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
567 /* i915 resume handler doesn't set to D0 */
568 pci_set_power_state(pdev, PCI_D0);
569 i915_resume_switcheroo(dev);
570 dev->switch_power_state = DRM_SWITCH_POWER_ON;
571 } else {
572 pr_info("switched off\n");
573 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
574 i915_suspend_switcheroo(dev, pmm);
575 dev->switch_power_state = DRM_SWITCH_POWER_OFF;
576 }
577 }
578
579 static bool i915_switcheroo_can_switch(struct pci_dev *pdev)
580 {
581 struct drm_device *dev = pci_get_drvdata(pdev);
582
583 /*
584 * FIXME: open_count is protected by drm_global_mutex but that would lead to
585 * locking inversion with the driver load path. And the access here is
586 * completely racy anyway. So don't bother with locking for now.
587 */
588 return dev->open_count == 0;
589 }
590
591 static const struct vga_switcheroo_client_ops i915_switcheroo_ops = {
592 .set_gpu_state = i915_switcheroo_set_state,
593 .reprobe = NULL,
594 .can_switch = i915_switcheroo_can_switch,
595 };
596
597 static void i915_gem_fini(struct drm_i915_private *dev_priv)
598 {
599 /* Flush any outstanding unpin_work. */
600 i915_gem_drain_workqueue(dev_priv);
601
602 mutex_lock(&dev_priv->drm.struct_mutex);
603 intel_uc_fini_hw(dev_priv);
604 i915_gem_cleanup_engines(dev_priv);
605 i915_gem_contexts_fini(dev_priv);
606 i915_gem_cleanup_userptr(dev_priv);
607 mutex_unlock(&dev_priv->drm.struct_mutex);
608
609 i915_gem_drain_freed_objects(dev_priv);
610
611 WARN_ON(!list_empty(&dev_priv->contexts.list));
612 }
613
614 static int i915_load_modeset_init(struct drm_device *dev)
615 {
616 struct drm_i915_private *dev_priv = to_i915(dev);
617 struct pci_dev *pdev = dev_priv->drm.pdev;
618 int ret;
619
620 if (i915_inject_load_failure())
621 return -ENODEV;
622
623 intel_bios_init(dev_priv);
624
625 /* If we have > 1 VGA cards, then we need to arbitrate access
626 * to the common VGA resources.
627 *
628 * If we are a secondary display controller (!PCI_DISPLAY_CLASS_VGA),
629 * then we do not take part in VGA arbitration and the
630 * vga_client_register() fails with -ENODEV.
631 */
632 ret = vga_client_register(pdev, dev_priv, NULL, i915_vga_set_decode);
633 if (ret && ret != -ENODEV)
634 goto out;
635
636 intel_register_dsm_handler();
637
638 ret = vga_switcheroo_register_client(pdev, &i915_switcheroo_ops, false);
639 if (ret)
640 goto cleanup_vga_client;
641
642 /* must happen before intel_power_domains_init_hw() on VLV/CHV */
643 intel_update_rawclk(dev_priv);
644
645 intel_power_domains_init_hw(dev_priv, false);
646
647 intel_csr_ucode_init(dev_priv);
648
649 ret = intel_irq_install(dev_priv);
650 if (ret)
651 goto cleanup_csr;
652
653 intel_setup_gmbus(dev_priv);
654
655 /* Important: The output setup functions called by modeset_init need
656 * working irqs for e.g. gmbus and dp aux transfers. */
657 ret = intel_modeset_init(dev);
658 if (ret)
659 goto cleanup_irq;
660
661 intel_uc_init_fw(dev_priv);
662
663 ret = i915_gem_init(dev_priv);
664 if (ret)
665 goto cleanup_uc;
666
667 intel_modeset_gem_init(dev);
668
669 if (INTEL_INFO(dev_priv)->num_pipes == 0)
670 return 0;
671
672 ret = intel_fbdev_init(dev);
673 if (ret)
674 goto cleanup_gem;
675
676 /* Only enable hotplug handling once the fbdev is fully set up. */
677 intel_hpd_init(dev_priv);
678
679 drm_kms_helper_poll_init(dev);
680
681 return 0;
682
683 cleanup_gem:
684 if (i915_gem_suspend(dev_priv))
685 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
686 i915_gem_fini(dev_priv);
687 cleanup_uc:
688 intel_uc_fini_fw(dev_priv);
689 cleanup_irq:
690 drm_irq_uninstall(dev);
691 intel_teardown_gmbus(dev_priv);
692 cleanup_csr:
693 intel_csr_ucode_fini(dev_priv);
694 intel_power_domains_fini(dev_priv);
695 vga_switcheroo_unregister_client(pdev);
696 cleanup_vga_client:
697 vga_client_register(pdev, NULL, NULL, NULL);
698 out:
699 return ret;
700 }
701
702 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
703 {
704 struct apertures_struct *ap;
705 struct pci_dev *pdev = dev_priv->drm.pdev;
706 struct i915_ggtt *ggtt = &dev_priv->ggtt;
707 bool primary;
708 int ret;
709
710 ap = alloc_apertures(1);
711 if (!ap)
712 return -ENOMEM;
713
714 ap->ranges[0].base = ggtt->mappable_base;
715 ap->ranges[0].size = ggtt->mappable_end;
716
717 primary =
718 pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW;
719
720 ret = drm_fb_helper_remove_conflicting_framebuffers(ap, "inteldrmfb", primary);
721
722 kfree(ap);
723
724 return ret;
725 }
726
727 #if !defined(CONFIG_VGA_CONSOLE)
728 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
729 {
730 return 0;
731 }
732 #elif !defined(CONFIG_DUMMY_CONSOLE)
733 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
734 {
735 return -ENODEV;
736 }
737 #else
738 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
739 {
740 int ret = 0;
741
742 DRM_INFO("Replacing VGA console driver\n");
743
744 console_lock();
745 if (con_is_bound(&vga_con))
746 ret = do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES - 1, 1);
747 if (ret == 0) {
748 ret = do_unregister_con_driver(&vga_con);
749
750 /* Ignore "already unregistered". */
751 if (ret == -ENODEV)
752 ret = 0;
753 }
754 console_unlock();
755
756 return ret;
757 }
758 #endif
759
760 static void intel_init_dpio(struct drm_i915_private *dev_priv)
761 {
762 /*
763 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
764 * CHV x1 PHY (DP/HDMI D)
765 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
766 */
767 if (IS_CHERRYVIEW(dev_priv)) {
768 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
769 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
770 } else if (IS_VALLEYVIEW(dev_priv)) {
771 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
772 }
773 }
774
775 static int i915_workqueues_init(struct drm_i915_private *dev_priv)
776 {
777 /*
778 * The i915 workqueue is primarily used for batched retirement of
779 * requests (and thus managing bo) once the task has been completed
780 * by the GPU. i915_gem_retire_requests() is called directly when we
781 * need high-priority retirement, such as waiting for an explicit
782 * bo.
783 *
784 * It is also used for periodic low-priority events, such as
785 * idle-timers and recording error state.
786 *
787 * All tasks on the workqueue are expected to acquire the dev mutex
788 * so there is no point in running more than one instance of the
789 * workqueue at any time. Use an ordered one.
790 */
791 dev_priv->wq = alloc_ordered_workqueue("i915", 0);
792 if (dev_priv->wq == NULL)
793 goto out_err;
794
795 dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
796 if (dev_priv->hotplug.dp_wq == NULL)
797 goto out_free_wq;
798
799 return 0;
800
801 out_free_wq:
802 destroy_workqueue(dev_priv->wq);
803 out_err:
804 DRM_ERROR("Failed to allocate workqueues.\n");
805
806 return -ENOMEM;
807 }
808
809 static void i915_engines_cleanup(struct drm_i915_private *i915)
810 {
811 struct intel_engine_cs *engine;
812 enum intel_engine_id id;
813
814 for_each_engine(engine, i915, id)
815 kfree(engine);
816 }
817
818 static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
819 {
820 destroy_workqueue(dev_priv->hotplug.dp_wq);
821 destroy_workqueue(dev_priv->wq);
822 }
823
824 /*
825 * We don't keep the workarounds for pre-production hardware, so we expect our
826 * driver to fail on these machines in one way or another. A little warning on
827 * dmesg may help both the user and the bug triagers.
828 */
829 static void intel_detect_preproduction_hw(struct drm_i915_private *dev_priv)
830 {
831 bool pre = false;
832
833 pre |= IS_HSW_EARLY_SDV(dev_priv);
834 pre |= IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0);
835 pre |= IS_BXT_REVID(dev_priv, 0, BXT_REVID_B_LAST);
836
837 if (pre) {
838 DRM_ERROR("This is a pre-production stepping. "
839 "It may not be fully functional.\n");
840 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK);
841 }
842 }
843
844 /**
845 * i915_driver_init_early - setup state not requiring device access
846 * @dev_priv: device private
847 *
848 * Initialize everything that is a "SW-only" state, that is state not
849 * requiring accessing the device or exposing the driver via kernel internal
850 * or userspace interfaces. Example steps belonging here: lock initialization,
851 * system memory allocation, setting up device specific attributes and
852 * function hooks not requiring accessing the device.
853 */
854 static int i915_driver_init_early(struct drm_i915_private *dev_priv,
855 const struct pci_device_id *ent)
856 {
857 const struct intel_device_info *match_info =
858 (struct intel_device_info *)ent->driver_data;
859 struct intel_device_info *device_info;
860 int ret = 0;
861
862 if (i915_inject_load_failure())
863 return -ENODEV;
864
865 /* Setup the write-once "constant" device info */
866 device_info = mkwrite_device_info(dev_priv);
867 memcpy(device_info, match_info, sizeof(*device_info));
868 device_info->device_id = dev_priv->drm.pdev->device;
869
870 BUG_ON(device_info->gen > sizeof(device_info->gen_mask) * BITS_PER_BYTE);
871 device_info->gen_mask = BIT(device_info->gen - 1);
872
873 spin_lock_init(&dev_priv->irq_lock);
874 spin_lock_init(&dev_priv->gpu_error.lock);
875 mutex_init(&dev_priv->backlight_lock);
876 spin_lock_init(&dev_priv->uncore.lock);
877
878 spin_lock_init(&dev_priv->mm.object_stat_lock);
879 mutex_init(&dev_priv->sb_lock);
880 mutex_init(&dev_priv->modeset_restore_lock);
881 mutex_init(&dev_priv->av_mutex);
882 mutex_init(&dev_priv->wm.wm_mutex);
883 mutex_init(&dev_priv->pps_mutex);
884
885 intel_uc_init_early(dev_priv);
886 i915_memcpy_init_early(dev_priv);
887
888 ret = i915_workqueues_init(dev_priv);
889 if (ret < 0)
890 goto err_engines;
891
892 /* This must be called before any calls to HAS_PCH_* */
893 intel_detect_pch(dev_priv);
894
895 intel_pm_setup(dev_priv);
896 intel_init_dpio(dev_priv);
897 intel_power_domains_init(dev_priv);
898 intel_irq_init(dev_priv);
899 intel_hangcheck_init(dev_priv);
900 intel_init_display_hooks(dev_priv);
901 intel_init_clock_gating_hooks(dev_priv);
902 intel_init_audio_hooks(dev_priv);
903 ret = i915_gem_load_init(dev_priv);
904 if (ret < 0)
905 goto err_irq;
906
907 intel_display_crc_init(dev_priv);
908
909 intel_device_info_dump(dev_priv);
910
911 intel_detect_preproduction_hw(dev_priv);
912
913 i915_perf_init(dev_priv);
914
915 return 0;
916
917 err_irq:
918 intel_irq_fini(dev_priv);
919 i915_workqueues_cleanup(dev_priv);
920 err_engines:
921 i915_engines_cleanup(dev_priv);
922 return ret;
923 }
924
925 /**
926 * i915_driver_cleanup_early - cleanup the setup done in i915_driver_init_early()
927 * @dev_priv: device private
928 */
929 static void i915_driver_cleanup_early(struct drm_i915_private *dev_priv)
930 {
931 i915_perf_fini(dev_priv);
932 i915_gem_load_cleanup(dev_priv);
933 intel_irq_fini(dev_priv);
934 i915_workqueues_cleanup(dev_priv);
935 i915_engines_cleanup(dev_priv);
936 }
937
938 static int i915_mmio_setup(struct drm_i915_private *dev_priv)
939 {
940 struct pci_dev *pdev = dev_priv->drm.pdev;
941 int mmio_bar;
942 int mmio_size;
943
944 mmio_bar = IS_GEN2(dev_priv) ? 1 : 0;
945 /*
946 * Before gen4, the registers and the GTT are behind different BARs.
947 * However, from gen4 onwards, the registers and the GTT are shared
948 * in the same BAR, so we want to restrict this ioremap from
949 * clobbering the GTT which we want ioremap_wc instead. Fortunately,
950 * the register BAR remains the same size for all the earlier
951 * generations up to Ironlake.
952 */
953 if (INTEL_GEN(dev_priv) < 5)
954 mmio_size = 512 * 1024;
955 else
956 mmio_size = 2 * 1024 * 1024;
957 dev_priv->regs = pci_iomap(pdev, mmio_bar, mmio_size);
958 if (dev_priv->regs == NULL) {
959 DRM_ERROR("failed to map registers\n");
960
961 return -EIO;
962 }
963
964 /* Try to make sure MCHBAR is enabled before poking at it */
965 intel_setup_mchbar(dev_priv);
966
967 return 0;
968 }
969
970 static void i915_mmio_cleanup(struct drm_i915_private *dev_priv)
971 {
972 struct pci_dev *pdev = dev_priv->drm.pdev;
973
974 intel_teardown_mchbar(dev_priv);
975 pci_iounmap(pdev, dev_priv->regs);
976 }
977
978 /**
979 * i915_driver_init_mmio - setup device MMIO
980 * @dev_priv: device private
981 *
982 * Setup minimal device state necessary for MMIO accesses later in the
983 * initialization sequence. The setup here should avoid any other device-wide
984 * side effects or exposing the driver via kernel internal or user space
985 * interfaces.
986 */
987 static int i915_driver_init_mmio(struct drm_i915_private *dev_priv)
988 {
989 int ret;
990
991 if (i915_inject_load_failure())
992 return -ENODEV;
993
994 if (i915_get_bridge_dev(dev_priv))
995 return -EIO;
996
997 ret = i915_mmio_setup(dev_priv);
998 if (ret < 0)
999 goto err_bridge;
1000
1001 intel_uncore_init(dev_priv);
1002
1003 ret = intel_engines_init_mmio(dev_priv);
1004 if (ret)
1005 goto err_uncore;
1006
1007 i915_gem_init_mmio(dev_priv);
1008
1009 return 0;
1010
1011 err_uncore:
1012 intel_uncore_fini(dev_priv);
1013 err_bridge:
1014 pci_dev_put(dev_priv->bridge_dev);
1015
1016 return ret;
1017 }
1018
1019 /**
1020 * i915_driver_cleanup_mmio - cleanup the setup done in i915_driver_init_mmio()
1021 * @dev_priv: device private
1022 */
1023 static void i915_driver_cleanup_mmio(struct drm_i915_private *dev_priv)
1024 {
1025 intel_uncore_fini(dev_priv);
1026 i915_mmio_cleanup(dev_priv);
1027 pci_dev_put(dev_priv->bridge_dev);
1028 }
1029
1030 static void intel_sanitize_options(struct drm_i915_private *dev_priv)
1031 {
1032 i915.enable_execlists =
1033 intel_sanitize_enable_execlists(dev_priv,
1034 i915.enable_execlists);
1035
1036 /*
1037 * i915.enable_ppgtt is read-only, so do an early pass to validate the
1038 * user's requested state against the hardware/driver capabilities. We
1039 * do this now so that we can print out any log messages once rather
1040 * than every time we check intel_enable_ppgtt().
1041 */
1042 i915.enable_ppgtt =
1043 intel_sanitize_enable_ppgtt(dev_priv, i915.enable_ppgtt);
1044 DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
1045
1046 i915.semaphores = intel_sanitize_semaphores(dev_priv, i915.semaphores);
1047 DRM_DEBUG_DRIVER("use GPU semaphores? %s\n", yesno(i915.semaphores));
1048
1049 intel_uc_sanitize_options(dev_priv);
1050
1051 intel_gvt_sanitize_options(dev_priv);
1052 }
1053
1054 /**
1055 * i915_driver_init_hw - setup state requiring device access
1056 * @dev_priv: device private
1057 *
1058 * Setup state that requires accessing the device, but doesn't require
1059 * exposing the driver via kernel internal or userspace interfaces.
1060 */
1061 static int i915_driver_init_hw(struct drm_i915_private *dev_priv)
1062 {
1063 struct pci_dev *pdev = dev_priv->drm.pdev;
1064 int ret;
1065
1066 if (i915_inject_load_failure())
1067 return -ENODEV;
1068
1069 intel_device_info_runtime_init(dev_priv);
1070
1071 intel_sanitize_options(dev_priv);
1072
1073 ret = i915_ggtt_probe_hw(dev_priv);
1074 if (ret)
1075 return ret;
1076
1077 /* WARNING: Apparently we must kick fbdev drivers before vgacon,
1078 * otherwise the vga fbdev driver falls over. */
1079 ret = i915_kick_out_firmware_fb(dev_priv);
1080 if (ret) {
1081 DRM_ERROR("failed to remove conflicting framebuffer drivers\n");
1082 goto out_ggtt;
1083 }
1084
1085 ret = i915_kick_out_vgacon(dev_priv);
1086 if (ret) {
1087 DRM_ERROR("failed to remove conflicting VGA console\n");
1088 goto out_ggtt;
1089 }
1090
1091 ret = i915_ggtt_init_hw(dev_priv);
1092 if (ret)
1093 return ret;
1094
1095 ret = i915_ggtt_enable_hw(dev_priv);
1096 if (ret) {
1097 DRM_ERROR("failed to enable GGTT\n");
1098 goto out_ggtt;
1099 }
1100
1101 pci_set_master(pdev);
1102
1103 /* overlay on gen2 is broken and can't address above 1G */
1104 if (IS_GEN2(dev_priv)) {
1105 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
1106 if (ret) {
1107 DRM_ERROR("failed to set DMA mask\n");
1108
1109 goto out_ggtt;
1110 }
1111 }
1112
1113 /* 965GM sometimes incorrectly writes to hardware status page (HWS)
1114 * using 32bit addressing, overwriting memory if HWS is located
1115 * above 4GB.
1116 *
1117 * The documentation also mentions an issue with undefined
1118 * behaviour if any general state is accessed within a page above 4GB,
1119 * which also needs to be handled carefully.
1120 */
1121 if (IS_I965G(dev_priv) || IS_I965GM(dev_priv)) {
1122 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1123
1124 if (ret) {
1125 DRM_ERROR("failed to set DMA mask\n");
1126
1127 goto out_ggtt;
1128 }
1129 }
1130
1131 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1132 PM_QOS_DEFAULT_VALUE);
1133
1134 intel_uncore_sanitize(dev_priv);
1135
1136 intel_opregion_setup(dev_priv);
1137
1138 i915_gem_load_init_fences(dev_priv);
1139
1140 /* On the 945G/GM, the chipset reports the MSI capability on the
1141 * integrated graphics even though the support isn't actually there
1142 * according to the published specs. It doesn't appear to function
1143 * correctly in testing on 945G.
1144 * This may be a side effect of MSI having been made available for PEG
1145 * and the registers being closely associated.
1146 *
1147 * According to chipset errata, on the 965GM, MSI interrupts may
1148 * be lost or delayed, and was defeatured. MSI interrupts seem to
1149 * get lost on g4x as well, and interrupt delivery seems to stay
1150 * properly dead afterwards. So we'll just disable them for all
1151 * pre-gen5 chipsets.
1152 */
1153 if (INTEL_GEN(dev_priv) >= 5) {
1154 if (pci_enable_msi(pdev) < 0)
1155 DRM_DEBUG_DRIVER("can't enable MSI");
1156 }
1157
1158 ret = intel_gvt_init(dev_priv);
1159 if (ret)
1160 goto out_ggtt;
1161
1162 return 0;
1163
1164 out_ggtt:
1165 i915_ggtt_cleanup_hw(dev_priv);
1166
1167 return ret;
1168 }
1169
1170 /**
1171 * i915_driver_cleanup_hw - cleanup the setup done in i915_driver_init_hw()
1172 * @dev_priv: device private
1173 */
1174 static void i915_driver_cleanup_hw(struct drm_i915_private *dev_priv)
1175 {
1176 struct pci_dev *pdev = dev_priv->drm.pdev;
1177
1178 if (pdev->msi_enabled)
1179 pci_disable_msi(pdev);
1180
1181 pm_qos_remove_request(&dev_priv->pm_qos);
1182 i915_ggtt_cleanup_hw(dev_priv);
1183 }
1184
1185 /**
1186 * i915_driver_register - register the driver with the rest of the system
1187 * @dev_priv: device private
1188 *
1189 * Perform any steps necessary to make the driver available via kernel
1190 * internal or userspace interfaces.
1191 */
1192 static void i915_driver_register(struct drm_i915_private *dev_priv)
1193 {
1194 struct drm_device *dev = &dev_priv->drm;
1195
1196 i915_gem_shrinker_init(dev_priv);
1197
1198 /*
1199 * Notify a valid surface after modesetting,
1200 * when running inside a VM.
1201 */
1202 if (intel_vgpu_active(dev_priv))
1203 I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1204
1205 /* Reveal our presence to userspace */
1206 if (drm_dev_register(dev, 0) == 0) {
1207 i915_debugfs_register(dev_priv);
1208 i915_guc_log_register(dev_priv);
1209 i915_setup_sysfs(dev_priv);
1210
1211 /* Depends on sysfs having been initialized */
1212 i915_perf_register(dev_priv);
1213 } else
1214 DRM_ERROR("Failed to register driver for userspace access!\n");
1215
1216 if (INTEL_INFO(dev_priv)->num_pipes) {
1217 /* Must be done after probing outputs */
1218 intel_opregion_register(dev_priv);
1219 acpi_video_register();
1220 }
1221
1222 if (IS_GEN5(dev_priv))
1223 intel_gpu_ips_init(dev_priv);
1224
1225 intel_audio_init(dev_priv);
1226
1227 /*
1228 * Some ports require correctly set-up hpd registers for detection to
1229 * work properly (leading to ghost connected connector status), e.g. VGA
1230 * on gm45. Hence we can only set up the initial fbdev config after hpd
1231 * irqs are fully enabled. We do it last so that the async config
1232 * cannot run before the connectors are registered.
1233 */
1234 intel_fbdev_initial_config_async(dev);
1235 }
1236
1237 /**
1238 * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1239 * @dev_priv: device private
1240 */
1241 static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1242 {
1243 intel_fbdev_unregister(dev_priv);
1244 intel_audio_deinit(dev_priv);
1245
1246 intel_gpu_ips_teardown();
1247 acpi_video_unregister();
1248 intel_opregion_unregister(dev_priv);
1249
1250 i915_perf_unregister(dev_priv);
1251
1252 i915_teardown_sysfs(dev_priv);
1253 i915_guc_log_unregister(dev_priv);
1254 drm_dev_unregister(&dev_priv->drm);
1255
1256 i915_gem_shrinker_cleanup(dev_priv);
1257 }
1258
1259 /**
1260 * i915_driver_load - setup chip and create an initial config
1261 * @pdev: PCI device
1262 * @ent: matching PCI ID entry
1263 *
1264 * The driver load routine has to do several things:
1265 * - drive output discovery via intel_modeset_init()
1266 * - initialize the memory manager
1267 * - allocate initial config memory
1268 * - setup the DRM framebuffer with the allocated memory
1269 */
1270 int i915_driver_load(struct pci_dev *pdev, const struct pci_device_id *ent)
1271 {
1272 const struct intel_device_info *match_info =
1273 (struct intel_device_info *)ent->driver_data;
1274 struct drm_i915_private *dev_priv;
1275 int ret;
1276
1277 /* Enable nuclear pageflip on ILK+ */
1278 if (!i915.nuclear_pageflip && match_info->gen < 5)
1279 driver.driver_features &= ~DRIVER_ATOMIC;
1280
1281 ret = -ENOMEM;
1282 dev_priv = kzalloc(sizeof(*dev_priv), GFP_KERNEL);
1283 if (dev_priv)
1284 ret = drm_dev_init(&dev_priv->drm, &driver, &pdev->dev);
1285 if (ret) {
1286 DRM_DEV_ERROR(&pdev->dev, "allocation failed\n");
1287 goto out_free;
1288 }
1289
1290 dev_priv->drm.pdev = pdev;
1291 dev_priv->drm.dev_private = dev_priv;
1292
1293 ret = pci_enable_device(pdev);
1294 if (ret)
1295 goto out_fini;
1296
1297 pci_set_drvdata(pdev, &dev_priv->drm);
1298 /*
1299 * Disable the system suspend direct complete optimization, which can
1300 * leave the device suspended skipping the driver's suspend handlers
1301 * if the device was already runtime suspended. This is needed due to
1302 * the difference in our runtime and system suspend sequence and
1303 * becaue the HDA driver may require us to enable the audio power
1304 * domain during system suspend.
1305 */
1306 pdev->dev_flags |= PCI_DEV_FLAGS_NEEDS_RESUME;
1307
1308 ret = i915_driver_init_early(dev_priv, ent);
1309 if (ret < 0)
1310 goto out_pci_disable;
1311
1312 intel_runtime_pm_get(dev_priv);
1313
1314 ret = i915_driver_init_mmio(dev_priv);
1315 if (ret < 0)
1316 goto out_runtime_pm_put;
1317
1318 ret = i915_driver_init_hw(dev_priv);
1319 if (ret < 0)
1320 goto out_cleanup_mmio;
1321
1322 /*
1323 * TODO: move the vblank init and parts of modeset init steps into one
1324 * of the i915_driver_init_/i915_driver_register functions according
1325 * to the role/effect of the given init step.
1326 */
1327 if (INTEL_INFO(dev_priv)->num_pipes) {
1328 ret = drm_vblank_init(&dev_priv->drm,
1329 INTEL_INFO(dev_priv)->num_pipes);
1330 if (ret)
1331 goto out_cleanup_hw;
1332 }
1333
1334 ret = i915_load_modeset_init(&dev_priv->drm);
1335 if (ret < 0)
1336 goto out_cleanup_vblank;
1337
1338 i915_driver_register(dev_priv);
1339
1340 intel_runtime_pm_enable(dev_priv);
1341
1342 dev_priv->ipc_enabled = false;
1343
1344 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG))
1345 DRM_INFO("DRM_I915_DEBUG enabled\n");
1346 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1347 DRM_INFO("DRM_I915_DEBUG_GEM enabled\n");
1348
1349 intel_runtime_pm_put(dev_priv);
1350
1351 return 0;
1352
1353 out_cleanup_vblank:
1354 drm_vblank_cleanup(&dev_priv->drm);
1355 out_cleanup_hw:
1356 i915_driver_cleanup_hw(dev_priv);
1357 out_cleanup_mmio:
1358 i915_driver_cleanup_mmio(dev_priv);
1359 out_runtime_pm_put:
1360 intel_runtime_pm_put(dev_priv);
1361 i915_driver_cleanup_early(dev_priv);
1362 out_pci_disable:
1363 pci_disable_device(pdev);
1364 out_fini:
1365 i915_load_error(dev_priv, "Device initialization failed (%d)\n", ret);
1366 drm_dev_fini(&dev_priv->drm);
1367 out_free:
1368 kfree(dev_priv);
1369 return ret;
1370 }
1371
1372 void i915_driver_unload(struct drm_device *dev)
1373 {
1374 struct drm_i915_private *dev_priv = to_i915(dev);
1375 struct pci_dev *pdev = dev_priv->drm.pdev;
1376
1377 i915_driver_unregister(dev_priv);
1378
1379 if (i915_gem_suspend(dev_priv))
1380 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
1381
1382 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1383
1384 drm_atomic_helper_shutdown(dev);
1385
1386 intel_gvt_cleanup(dev_priv);
1387
1388 drm_vblank_cleanup(dev);
1389
1390 intel_modeset_cleanup(dev);
1391
1392 /*
1393 * free the memory space allocated for the child device
1394 * config parsed from VBT
1395 */
1396 if (dev_priv->vbt.child_dev && dev_priv->vbt.child_dev_num) {
1397 kfree(dev_priv->vbt.child_dev);
1398 dev_priv->vbt.child_dev = NULL;
1399 dev_priv->vbt.child_dev_num = 0;
1400 }
1401 kfree(dev_priv->vbt.sdvo_lvds_vbt_mode);
1402 dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
1403 kfree(dev_priv->vbt.lfp_lvds_vbt_mode);
1404 dev_priv->vbt.lfp_lvds_vbt_mode = NULL;
1405
1406 vga_switcheroo_unregister_client(pdev);
1407 vga_client_register(pdev, NULL, NULL, NULL);
1408
1409 intel_csr_ucode_fini(dev_priv);
1410
1411 /* Free error state after interrupts are fully disabled. */
1412 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1413 i915_reset_error_state(dev_priv);
1414
1415 i915_gem_fini(dev_priv);
1416 intel_uc_fini_fw(dev_priv);
1417 intel_fbc_cleanup_cfb(dev_priv);
1418
1419 intel_power_domains_fini(dev_priv);
1420
1421 i915_driver_cleanup_hw(dev_priv);
1422 i915_driver_cleanup_mmio(dev_priv);
1423
1424 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1425 }
1426
1427 static void i915_driver_release(struct drm_device *dev)
1428 {
1429 struct drm_i915_private *dev_priv = to_i915(dev);
1430
1431 i915_driver_cleanup_early(dev_priv);
1432 drm_dev_fini(&dev_priv->drm);
1433
1434 kfree(dev_priv);
1435 }
1436
1437 static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1438 {
1439 struct drm_i915_private *i915 = to_i915(dev);
1440 int ret;
1441
1442 ret = i915_gem_open(i915, file);
1443 if (ret)
1444 return ret;
1445
1446 return 0;
1447 }
1448
1449 /**
1450 * i915_driver_lastclose - clean up after all DRM clients have exited
1451 * @dev: DRM device
1452 *
1453 * Take care of cleaning up after all DRM clients have exited. In the
1454 * mode setting case, we want to restore the kernel's initial mode (just
1455 * in case the last client left us in a bad state).
1456 *
1457 * Additionally, in the non-mode setting case, we'll tear down the GTT
1458 * and DMA structures, since the kernel won't be using them, and clea
1459 * up any GEM state.
1460 */
1461 static void i915_driver_lastclose(struct drm_device *dev)
1462 {
1463 intel_fbdev_restore_mode(dev);
1464 vga_switcheroo_process_delayed_switch();
1465 }
1466
1467 static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1468 {
1469 struct drm_i915_file_private *file_priv = file->driver_priv;
1470
1471 mutex_lock(&dev->struct_mutex);
1472 i915_gem_context_close(file);
1473 i915_gem_release(dev, file);
1474 mutex_unlock(&dev->struct_mutex);
1475
1476 kfree(file_priv);
1477 }
1478
1479 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1480 {
1481 struct drm_device *dev = &dev_priv->drm;
1482 struct intel_encoder *encoder;
1483
1484 drm_modeset_lock_all(dev);
1485 for_each_intel_encoder(dev, encoder)
1486 if (encoder->suspend)
1487 encoder->suspend(encoder);
1488 drm_modeset_unlock_all(dev);
1489 }
1490
1491 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1492 bool rpm_resume);
1493 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1494
1495 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1496 {
1497 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
1498 if (acpi_target_system_state() < ACPI_STATE_S3)
1499 return true;
1500 #endif
1501 return false;
1502 }
1503
1504 static int i915_drm_suspend(struct drm_device *dev)
1505 {
1506 struct drm_i915_private *dev_priv = to_i915(dev);
1507 struct pci_dev *pdev = dev_priv->drm.pdev;
1508 pci_power_t opregion_target_state;
1509 int error;
1510
1511 /* ignore lid events during suspend */
1512 mutex_lock(&dev_priv->modeset_restore_lock);
1513 dev_priv->modeset_restore = MODESET_SUSPENDED;
1514 mutex_unlock(&dev_priv->modeset_restore_lock);
1515
1516 disable_rpm_wakeref_asserts(dev_priv);
1517
1518 /* We do a lot of poking in a lot of registers, make sure they work
1519 * properly. */
1520 intel_display_set_init_power(dev_priv, true);
1521
1522 drm_kms_helper_poll_disable(dev);
1523
1524 pci_save_state(pdev);
1525
1526 error = i915_gem_suspend(dev_priv);
1527 if (error) {
1528 dev_err(&pdev->dev,
1529 "GEM idle failed, resume might fail\n");
1530 goto out;
1531 }
1532
1533 intel_display_suspend(dev);
1534
1535 intel_dp_mst_suspend(dev);
1536
1537 intel_runtime_pm_disable_interrupts(dev_priv);
1538 intel_hpd_cancel_work(dev_priv);
1539
1540 intel_suspend_encoders(dev_priv);
1541
1542 intel_suspend_hw(dev_priv);
1543
1544 i915_gem_suspend_gtt_mappings(dev_priv);
1545
1546 i915_save_state(dev_priv);
1547
1548 opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1549 intel_opregion_notify_adapter(dev_priv, opregion_target_state);
1550
1551 intel_uncore_suspend(dev_priv);
1552 intel_opregion_unregister(dev_priv);
1553
1554 intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1555
1556 dev_priv->suspend_count++;
1557
1558 intel_csr_ucode_suspend(dev_priv);
1559
1560 out:
1561 enable_rpm_wakeref_asserts(dev_priv);
1562
1563 return error;
1564 }
1565
1566 static int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
1567 {
1568 struct drm_i915_private *dev_priv = to_i915(dev);
1569 struct pci_dev *pdev = dev_priv->drm.pdev;
1570 bool fw_csr;
1571 int ret;
1572
1573 disable_rpm_wakeref_asserts(dev_priv);
1574
1575 intel_display_set_init_power(dev_priv, false);
1576
1577 fw_csr = !IS_GEN9_LP(dev_priv) &&
1578 suspend_to_idle(dev_priv) && dev_priv->csr.dmc_payload;
1579 /*
1580 * In case of firmware assisted context save/restore don't manually
1581 * deinit the power domains. This also means the CSR/DMC firmware will
1582 * stay active, it will power down any HW resources as required and
1583 * also enable deeper system power states that would be blocked if the
1584 * firmware was inactive.
1585 */
1586 if (!fw_csr)
1587 intel_power_domains_suspend(dev_priv);
1588
1589 ret = 0;
1590 if (IS_GEN9_LP(dev_priv))
1591 bxt_enable_dc9(dev_priv);
1592 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1593 hsw_enable_pc8(dev_priv);
1594 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1595 ret = vlv_suspend_complete(dev_priv);
1596
1597 if (ret) {
1598 DRM_ERROR("Suspend complete failed: %d\n", ret);
1599 if (!fw_csr)
1600 intel_power_domains_init_hw(dev_priv, true);
1601
1602 goto out;
1603 }
1604
1605 pci_disable_device(pdev);
1606 /*
1607 * During hibernation on some platforms the BIOS may try to access
1608 * the device even though it's already in D3 and hang the machine. So
1609 * leave the device in D0 on those platforms and hope the BIOS will
1610 * power down the device properly. The issue was seen on multiple old
1611 * GENs with different BIOS vendors, so having an explicit blacklist
1612 * is inpractical; apply the workaround on everything pre GEN6. The
1613 * platforms where the issue was seen:
1614 * Lenovo Thinkpad X301, X61s, X60, T60, X41
1615 * Fujitsu FSC S7110
1616 * Acer Aspire 1830T
1617 */
1618 if (!(hibernation && INTEL_GEN(dev_priv) < 6))
1619 pci_set_power_state(pdev, PCI_D3hot);
1620
1621 dev_priv->suspended_to_idle = suspend_to_idle(dev_priv);
1622
1623 out:
1624 enable_rpm_wakeref_asserts(dev_priv);
1625
1626 return ret;
1627 }
1628
1629 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
1630 {
1631 int error;
1632
1633 if (!dev) {
1634 DRM_ERROR("dev: %p\n", dev);
1635 DRM_ERROR("DRM not initialized, aborting suspend.\n");
1636 return -ENODEV;
1637 }
1638
1639 if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
1640 state.event != PM_EVENT_FREEZE))
1641 return -EINVAL;
1642
1643 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1644 return 0;
1645
1646 error = i915_drm_suspend(dev);
1647 if (error)
1648 return error;
1649
1650 return i915_drm_suspend_late(dev, false);
1651 }
1652
1653 static int i915_drm_resume(struct drm_device *dev)
1654 {
1655 struct drm_i915_private *dev_priv = to_i915(dev);
1656 int ret;
1657
1658 disable_rpm_wakeref_asserts(dev_priv);
1659 intel_sanitize_gt_powersave(dev_priv);
1660
1661 ret = i915_ggtt_enable_hw(dev_priv);
1662 if (ret)
1663 DRM_ERROR("failed to re-enable GGTT\n");
1664
1665 intel_csr_ucode_resume(dev_priv);
1666
1667 i915_gem_resume(dev_priv);
1668
1669 i915_restore_state(dev_priv);
1670 intel_pps_unlock_regs_wa(dev_priv);
1671 intel_opregion_setup(dev_priv);
1672
1673 intel_init_pch_refclk(dev_priv);
1674
1675 /*
1676 * Interrupts have to be enabled before any batches are run. If not the
1677 * GPU will hang. i915_gem_init_hw() will initiate batches to
1678 * update/restore the context.
1679 *
1680 * drm_mode_config_reset() needs AUX interrupts.
1681 *
1682 * Modeset enabling in intel_modeset_init_hw() also needs working
1683 * interrupts.
1684 */
1685 intel_runtime_pm_enable_interrupts(dev_priv);
1686
1687 drm_mode_config_reset(dev);
1688
1689 mutex_lock(&dev->struct_mutex);
1690 if (i915_gem_init_hw(dev_priv)) {
1691 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
1692 i915_gem_set_wedged(dev_priv);
1693 }
1694 mutex_unlock(&dev->struct_mutex);
1695
1696 intel_guc_resume(dev_priv);
1697
1698 intel_modeset_init_hw(dev);
1699
1700 spin_lock_irq(&dev_priv->irq_lock);
1701 if (dev_priv->display.hpd_irq_setup)
1702 dev_priv->display.hpd_irq_setup(dev_priv);
1703 spin_unlock_irq(&dev_priv->irq_lock);
1704
1705 intel_dp_mst_resume(dev);
1706
1707 intel_display_resume(dev);
1708
1709 drm_kms_helper_poll_enable(dev);
1710
1711 /*
1712 * ... but also need to make sure that hotplug processing
1713 * doesn't cause havoc. Like in the driver load code we don't
1714 * bother with the tiny race here where we might loose hotplug
1715 * notifications.
1716 * */
1717 intel_hpd_init(dev_priv);
1718
1719 intel_opregion_register(dev_priv);
1720
1721 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
1722
1723 mutex_lock(&dev_priv->modeset_restore_lock);
1724 dev_priv->modeset_restore = MODESET_DONE;
1725 mutex_unlock(&dev_priv->modeset_restore_lock);
1726
1727 intel_opregion_notify_adapter(dev_priv, PCI_D0);
1728
1729 intel_autoenable_gt_powersave(dev_priv);
1730
1731 enable_rpm_wakeref_asserts(dev_priv);
1732
1733 return 0;
1734 }
1735
1736 static int i915_drm_resume_early(struct drm_device *dev)
1737 {
1738 struct drm_i915_private *dev_priv = to_i915(dev);
1739 struct pci_dev *pdev = dev_priv->drm.pdev;
1740 int ret;
1741
1742 /*
1743 * We have a resume ordering issue with the snd-hda driver also
1744 * requiring our device to be power up. Due to the lack of a
1745 * parent/child relationship we currently solve this with an early
1746 * resume hook.
1747 *
1748 * FIXME: This should be solved with a special hdmi sink device or
1749 * similar so that power domains can be employed.
1750 */
1751
1752 /*
1753 * Note that we need to set the power state explicitly, since we
1754 * powered off the device during freeze and the PCI core won't power
1755 * it back up for us during thaw. Powering off the device during
1756 * freeze is not a hard requirement though, and during the
1757 * suspend/resume phases the PCI core makes sure we get here with the
1758 * device powered on. So in case we change our freeze logic and keep
1759 * the device powered we can also remove the following set power state
1760 * call.
1761 */
1762 ret = pci_set_power_state(pdev, PCI_D0);
1763 if (ret) {
1764 DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
1765 goto out;
1766 }
1767
1768 /*
1769 * Note that pci_enable_device() first enables any parent bridge
1770 * device and only then sets the power state for this device. The
1771 * bridge enabling is a nop though, since bridge devices are resumed
1772 * first. The order of enabling power and enabling the device is
1773 * imposed by the PCI core as described above, so here we preserve the
1774 * same order for the freeze/thaw phases.
1775 *
1776 * TODO: eventually we should remove pci_disable_device() /
1777 * pci_enable_enable_device() from suspend/resume. Due to how they
1778 * depend on the device enable refcount we can't anyway depend on them
1779 * disabling/enabling the device.
1780 */
1781 if (pci_enable_device(pdev)) {
1782 ret = -EIO;
1783 goto out;
1784 }
1785
1786 pci_set_master(pdev);
1787
1788 disable_rpm_wakeref_asserts(dev_priv);
1789
1790 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1791 ret = vlv_resume_prepare(dev_priv, false);
1792 if (ret)
1793 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
1794 ret);
1795
1796 intel_uncore_resume_early(dev_priv);
1797
1798 if (IS_GEN9_LP(dev_priv)) {
1799 if (!dev_priv->suspended_to_idle)
1800 gen9_sanitize_dc_state(dev_priv);
1801 bxt_disable_dc9(dev_priv);
1802 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1803 hsw_disable_pc8(dev_priv);
1804 }
1805
1806 intel_uncore_sanitize(dev_priv);
1807
1808 if (IS_GEN9_LP(dev_priv) ||
1809 !(dev_priv->suspended_to_idle && dev_priv->csr.dmc_payload))
1810 intel_power_domains_init_hw(dev_priv, true);
1811
1812 i915_gem_sanitize(dev_priv);
1813
1814 enable_rpm_wakeref_asserts(dev_priv);
1815
1816 out:
1817 dev_priv->suspended_to_idle = false;
1818
1819 return ret;
1820 }
1821
1822 static int i915_resume_switcheroo(struct drm_device *dev)
1823 {
1824 int ret;
1825
1826 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1827 return 0;
1828
1829 ret = i915_drm_resume_early(dev);
1830 if (ret)
1831 return ret;
1832
1833 return i915_drm_resume(dev);
1834 }
1835
1836 /**
1837 * i915_reset - reset chip after a hang
1838 * @dev_priv: device private to reset
1839 *
1840 * Reset the chip. Useful if a hang is detected. Marks the device as wedged
1841 * on failure.
1842 *
1843 * Caller must hold the struct_mutex.
1844 *
1845 * Procedure is fairly simple:
1846 * - reset the chip using the reset reg
1847 * - re-init context state
1848 * - re-init hardware status page
1849 * - re-init ring buffer
1850 * - re-init interrupt state
1851 * - re-init display
1852 */
1853 void i915_reset(struct drm_i915_private *dev_priv)
1854 {
1855 struct i915_gpu_error *error = &dev_priv->gpu_error;
1856 int ret;
1857
1858 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1859 GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, &error->flags));
1860
1861 if (!test_bit(I915_RESET_HANDOFF, &error->flags))
1862 return;
1863
1864 /* Clear any previous failed attempts at recovery. Time to try again. */
1865 if (!i915_gem_unset_wedged(dev_priv))
1866 goto wakeup;
1867
1868 error->reset_count++;
1869
1870 pr_notice("drm/i915: Resetting chip after gpu hang\n");
1871 disable_irq(dev_priv->drm.irq);
1872 ret = i915_gem_reset_prepare(dev_priv);
1873 if (ret) {
1874 DRM_ERROR("GPU recovery failed\n");
1875 intel_gpu_reset(dev_priv, ALL_ENGINES);
1876 goto error;
1877 }
1878
1879 ret = intel_gpu_reset(dev_priv, ALL_ENGINES);
1880 if (ret) {
1881 if (ret != -ENODEV)
1882 DRM_ERROR("Failed to reset chip: %i\n", ret);
1883 else
1884 DRM_DEBUG_DRIVER("GPU reset disabled\n");
1885 goto error;
1886 }
1887
1888 i915_gem_reset(dev_priv);
1889 intel_overlay_reset(dev_priv);
1890
1891 /* Ok, now get things going again... */
1892
1893 /*
1894 * Everything depends on having the GTT running, so we need to start
1895 * there. Fortunately we don't need to do this unless we reset the
1896 * chip at a PCI level.
1897 *
1898 * Next we need to restore the context, but we don't use those
1899 * yet either...
1900 *
1901 * Ring buffer needs to be re-initialized in the KMS case, or if X
1902 * was running at the time of the reset (i.e. we weren't VT
1903 * switched away).
1904 */
1905 ret = i915_gem_init_hw(dev_priv);
1906 if (ret) {
1907 DRM_ERROR("Failed hw init on reset %d\n", ret);
1908 goto error;
1909 }
1910
1911 i915_queue_hangcheck(dev_priv);
1912
1913 finish:
1914 i915_gem_reset_finish(dev_priv);
1915 enable_irq(dev_priv->drm.irq);
1916
1917 wakeup:
1918 clear_bit(I915_RESET_HANDOFF, &error->flags);
1919 wake_up_bit(&error->flags, I915_RESET_HANDOFF);
1920 return;
1921
1922 error:
1923 i915_gem_set_wedged(dev_priv);
1924 i915_gem_retire_requests(dev_priv);
1925 goto finish;
1926 }
1927
1928 /**
1929 * i915_reset_engine - reset GPU engine to recover from a hang
1930 * @engine: engine to reset
1931 *
1932 * Reset a specific GPU engine. Useful if a hang is detected.
1933 * Returns zero on successful reset or otherwise an error code.
1934 *
1935 * Procedure is:
1936 * - identifies the request that caused the hang and it is dropped
1937 * - reset engine (which will force the engine to idle)
1938 * - re-init/configure engine
1939 */
1940 int i915_reset_engine(struct intel_engine_cs *engine)
1941 {
1942 struct i915_gpu_error *error = &engine->i915->gpu_error;
1943 struct drm_i915_gem_request *active_request;
1944 int ret;
1945
1946 GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, &error->flags));
1947
1948 DRM_DEBUG_DRIVER("resetting %s\n", engine->name);
1949
1950 active_request = i915_gem_reset_prepare_engine(engine);
1951 if (IS_ERR(active_request)) {
1952 DRM_DEBUG_DRIVER("Previous reset failed, promote to full reset\n");
1953 ret = PTR_ERR(active_request);
1954 goto out;
1955 }
1956
1957 /*
1958 * The request that caused the hang is stuck on elsp, we know the
1959 * active request and can drop it, adjust head to skip the offending
1960 * request to resume executing remaining requests in the queue.
1961 */
1962 i915_gem_reset_engine(engine, active_request);
1963
1964 /* Finally, reset just this engine. */
1965 ret = intel_gpu_reset(engine->i915, intel_engine_flag(engine));
1966
1967 i915_gem_reset_finish_engine(engine);
1968
1969 if (ret) {
1970 /* If we fail here, we expect to fallback to a global reset */
1971 DRM_DEBUG_DRIVER("Failed to reset %s, ret=%d\n",
1972 engine->name, ret);
1973 goto out;
1974 }
1975
1976 /*
1977 * The engine and its registers (and workarounds in case of render)
1978 * have been reset to their default values. Follow the init_ring
1979 * process to program RING_MODE, HWSP and re-enable submission.
1980 */
1981 ret = engine->init_hw(engine);
1982 if (ret)
1983 goto out;
1984
1985 error->reset_engine_count[engine->id]++;
1986 out:
1987 return ret;
1988 }
1989
1990 static int i915_pm_suspend(struct device *kdev)
1991 {
1992 struct pci_dev *pdev = to_pci_dev(kdev);
1993 struct drm_device *dev = pci_get_drvdata(pdev);
1994
1995 if (!dev) {
1996 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
1997 return -ENODEV;
1998 }
1999
2000 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2001 return 0;
2002
2003 return i915_drm_suspend(dev);
2004 }
2005
2006 static int i915_pm_suspend_late(struct device *kdev)
2007 {
2008 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2009
2010 /*
2011 * We have a suspend ordering issue with the snd-hda driver also
2012 * requiring our device to be power up. Due to the lack of a
2013 * parent/child relationship we currently solve this with an late
2014 * suspend hook.
2015 *
2016 * FIXME: This should be solved with a special hdmi sink device or
2017 * similar so that power domains can be employed.
2018 */
2019 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2020 return 0;
2021
2022 return i915_drm_suspend_late(dev, false);
2023 }
2024
2025 static int i915_pm_poweroff_late(struct device *kdev)
2026 {
2027 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2028
2029 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2030 return 0;
2031
2032 return i915_drm_suspend_late(dev, true);
2033 }
2034
2035 static int i915_pm_resume_early(struct device *kdev)
2036 {
2037 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2038
2039 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2040 return 0;
2041
2042 return i915_drm_resume_early(dev);
2043 }
2044
2045 static int i915_pm_resume(struct device *kdev)
2046 {
2047 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2048
2049 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2050 return 0;
2051
2052 return i915_drm_resume(dev);
2053 }
2054
2055 /* freeze: before creating the hibernation_image */
2056 static int i915_pm_freeze(struct device *kdev)
2057 {
2058 int ret;
2059
2060 ret = i915_pm_suspend(kdev);
2061 if (ret)
2062 return ret;
2063
2064 ret = i915_gem_freeze(kdev_to_i915(kdev));
2065 if (ret)
2066 return ret;
2067
2068 return 0;
2069 }
2070
2071 static int i915_pm_freeze_late(struct device *kdev)
2072 {
2073 int ret;
2074
2075 ret = i915_pm_suspend_late(kdev);
2076 if (ret)
2077 return ret;
2078
2079 ret = i915_gem_freeze_late(kdev_to_i915(kdev));
2080 if (ret)
2081 return ret;
2082
2083 return 0;
2084 }
2085
2086 /* thaw: called after creating the hibernation image, but before turning off. */
2087 static int i915_pm_thaw_early(struct device *kdev)
2088 {
2089 return i915_pm_resume_early(kdev);
2090 }
2091
2092 static int i915_pm_thaw(struct device *kdev)
2093 {
2094 return i915_pm_resume(kdev);
2095 }
2096
2097 /* restore: called after loading the hibernation image. */
2098 static int i915_pm_restore_early(struct device *kdev)
2099 {
2100 return i915_pm_resume_early(kdev);
2101 }
2102
2103 static int i915_pm_restore(struct device *kdev)
2104 {
2105 return i915_pm_resume(kdev);
2106 }
2107
2108 /*
2109 * Save all Gunit registers that may be lost after a D3 and a subsequent
2110 * S0i[R123] transition. The list of registers needing a save/restore is
2111 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
2112 * registers in the following way:
2113 * - Driver: saved/restored by the driver
2114 * - Punit : saved/restored by the Punit firmware
2115 * - No, w/o marking: no need to save/restore, since the register is R/O or
2116 * used internally by the HW in a way that doesn't depend
2117 * keeping the content across a suspend/resume.
2118 * - Debug : used for debugging
2119 *
2120 * We save/restore all registers marked with 'Driver', with the following
2121 * exceptions:
2122 * - Registers out of use, including also registers marked with 'Debug'.
2123 * These have no effect on the driver's operation, so we don't save/restore
2124 * them to reduce the overhead.
2125 * - Registers that are fully setup by an initialization function called from
2126 * the resume path. For example many clock gating and RPS/RC6 registers.
2127 * - Registers that provide the right functionality with their reset defaults.
2128 *
2129 * TODO: Except for registers that based on the above 3 criteria can be safely
2130 * ignored, we save/restore all others, practically treating the HW context as
2131 * a black-box for the driver. Further investigation is needed to reduce the
2132 * saved/restored registers even further, by following the same 3 criteria.
2133 */
2134 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2135 {
2136 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2137 int i;
2138
2139 /* GAM 0x4000-0x4770 */
2140 s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
2141 s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
2142 s->arb_mode = I915_READ(ARB_MODE);
2143 s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
2144 s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
2145
2146 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2147 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
2148
2149 s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
2150 s->gfx_max_req_count = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
2151
2152 s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
2153 s->ecochk = I915_READ(GAM_ECOCHK);
2154 s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
2155 s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
2156
2157 s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
2158
2159 /* MBC 0x9024-0x91D0, 0x8500 */
2160 s->g3dctl = I915_READ(VLV_G3DCTL);
2161 s->gsckgctl = I915_READ(VLV_GSCKGCTL);
2162 s->mbctl = I915_READ(GEN6_MBCTL);
2163
2164 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2165 s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
2166 s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
2167 s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
2168 s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
2169 s->rstctl = I915_READ(GEN6_RSTCTL);
2170 s->misccpctl = I915_READ(GEN7_MISCCPCTL);
2171
2172 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2173 s->gfxpause = I915_READ(GEN6_GFXPAUSE);
2174 s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
2175 s->rpdeuc = I915_READ(GEN6_RPDEUC);
2176 s->ecobus = I915_READ(ECOBUS);
2177 s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
2178 s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
2179 s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
2180 s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
2181 s->rcedata = I915_READ(VLV_RCEDATA);
2182 s->spare2gh = I915_READ(VLV_SPAREG2H);
2183
2184 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2185 s->gt_imr = I915_READ(GTIMR);
2186 s->gt_ier = I915_READ(GTIER);
2187 s->pm_imr = I915_READ(GEN6_PMIMR);
2188 s->pm_ier = I915_READ(GEN6_PMIER);
2189
2190 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2191 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
2192
2193 /* GT SA CZ domain, 0x100000-0x138124 */
2194 s->tilectl = I915_READ(TILECTL);
2195 s->gt_fifoctl = I915_READ(GTFIFOCTL);
2196 s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
2197 s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2198 s->pmwgicz = I915_READ(VLV_PMWGICZ);
2199
2200 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2201 s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
2202 s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
2203 s->pcbr = I915_READ(VLV_PCBR);
2204 s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
2205
2206 /*
2207 * Not saving any of:
2208 * DFT, 0x9800-0x9EC0
2209 * SARB, 0xB000-0xB1FC
2210 * GAC, 0x5208-0x524C, 0x14000-0x14C000
2211 * PCI CFG
2212 */
2213 }
2214
2215 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2216 {
2217 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2218 u32 val;
2219 int i;
2220
2221 /* GAM 0x4000-0x4770 */
2222 I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
2223 I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
2224 I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
2225 I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
2226 I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
2227
2228 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2229 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2230
2231 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2232 I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2233
2234 I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
2235 I915_WRITE(GAM_ECOCHK, s->ecochk);
2236 I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
2237 I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
2238
2239 I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
2240
2241 /* MBC 0x9024-0x91D0, 0x8500 */
2242 I915_WRITE(VLV_G3DCTL, s->g3dctl);
2243 I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
2244 I915_WRITE(GEN6_MBCTL, s->mbctl);
2245
2246 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2247 I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
2248 I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
2249 I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
2250 I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
2251 I915_WRITE(GEN6_RSTCTL, s->rstctl);
2252 I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
2253
2254 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2255 I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
2256 I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
2257 I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
2258 I915_WRITE(ECOBUS, s->ecobus);
2259 I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
2260 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2261 I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
2262 I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
2263 I915_WRITE(VLV_RCEDATA, s->rcedata);
2264 I915_WRITE(VLV_SPAREG2H, s->spare2gh);
2265
2266 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2267 I915_WRITE(GTIMR, s->gt_imr);
2268 I915_WRITE(GTIER, s->gt_ier);
2269 I915_WRITE(GEN6_PMIMR, s->pm_imr);
2270 I915_WRITE(GEN6_PMIER, s->pm_ier);
2271
2272 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2273 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2274
2275 /* GT SA CZ domain, 0x100000-0x138124 */
2276 I915_WRITE(TILECTL, s->tilectl);
2277 I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
2278 /*
2279 * Preserve the GT allow wake and GFX force clock bit, they are not
2280 * be restored, as they are used to control the s0ix suspend/resume
2281 * sequence by the caller.
2282 */
2283 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2284 val &= VLV_GTLC_ALLOWWAKEREQ;
2285 val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2286 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2287
2288 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2289 val &= VLV_GFX_CLK_FORCE_ON_BIT;
2290 val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2291 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2292
2293 I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
2294
2295 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2296 I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
2297 I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
2298 I915_WRITE(VLV_PCBR, s->pcbr);
2299 I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
2300 }
2301
2302 static int vlv_wait_for_pw_status(struct drm_i915_private *dev_priv,
2303 u32 mask, u32 val)
2304 {
2305 /* The HW does not like us polling for PW_STATUS frequently, so
2306 * use the sleeping loop rather than risk the busy spin within
2307 * intel_wait_for_register().
2308 *
2309 * Transitioning between RC6 states should be at most 2ms (see
2310 * valleyview_enable_rps) so use a 3ms timeout.
2311 */
2312 return wait_for((I915_READ_NOTRACE(VLV_GTLC_PW_STATUS) & mask) == val,
2313 3);
2314 }
2315
2316 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2317 {
2318 u32 val;
2319 int err;
2320
2321 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2322 val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2323 if (force_on)
2324 val |= VLV_GFX_CLK_FORCE_ON_BIT;
2325 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2326
2327 if (!force_on)
2328 return 0;
2329
2330 err = intel_wait_for_register(dev_priv,
2331 VLV_GTLC_SURVIVABILITY_REG,
2332 VLV_GFX_CLK_STATUS_BIT,
2333 VLV_GFX_CLK_STATUS_BIT,
2334 20);
2335 if (err)
2336 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2337 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2338
2339 return err;
2340 }
2341
2342 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2343 {
2344 u32 mask;
2345 u32 val;
2346 int err;
2347
2348 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2349 val &= ~VLV_GTLC_ALLOWWAKEREQ;
2350 if (allow)
2351 val |= VLV_GTLC_ALLOWWAKEREQ;
2352 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2353 POSTING_READ(VLV_GTLC_WAKE_CTRL);
2354
2355 mask = VLV_GTLC_ALLOWWAKEACK;
2356 val = allow ? mask : 0;
2357
2358 err = vlv_wait_for_pw_status(dev_priv, mask, val);
2359 if (err)
2360 DRM_ERROR("timeout disabling GT waking\n");
2361
2362 return err;
2363 }
2364
2365 static void vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2366 bool wait_for_on)
2367 {
2368 u32 mask;
2369 u32 val;
2370
2371 mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2372 val = wait_for_on ? mask : 0;
2373
2374 /*
2375 * RC6 transitioning can be delayed up to 2 msec (see
2376 * valleyview_enable_rps), use 3 msec for safety.
2377 */
2378 if (vlv_wait_for_pw_status(dev_priv, mask, val))
2379 DRM_ERROR("timeout waiting for GT wells to go %s\n",
2380 onoff(wait_for_on));
2381 }
2382
2383 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2384 {
2385 if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2386 return;
2387
2388 DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2389 I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2390 }
2391
2392 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2393 {
2394 u32 mask;
2395 int err;
2396
2397 /*
2398 * Bspec defines the following GT well on flags as debug only, so
2399 * don't treat them as hard failures.
2400 */
2401 vlv_wait_for_gt_wells(dev_priv, false);
2402
2403 mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2404 WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2405
2406 vlv_check_no_gt_access(dev_priv);
2407
2408 err = vlv_force_gfx_clock(dev_priv, true);
2409 if (err)
2410 goto err1;
2411
2412 err = vlv_allow_gt_wake(dev_priv, false);
2413 if (err)
2414 goto err2;
2415
2416 if (!IS_CHERRYVIEW(dev_priv))
2417 vlv_save_gunit_s0ix_state(dev_priv);
2418
2419 err = vlv_force_gfx_clock(dev_priv, false);
2420 if (err)
2421 goto err2;
2422
2423 return 0;
2424
2425 err2:
2426 /* For safety always re-enable waking and disable gfx clock forcing */
2427 vlv_allow_gt_wake(dev_priv, true);
2428 err1:
2429 vlv_force_gfx_clock(dev_priv, false);
2430
2431 return err;
2432 }
2433
2434 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2435 bool rpm_resume)
2436 {
2437 int err;
2438 int ret;
2439
2440 /*
2441 * If any of the steps fail just try to continue, that's the best we
2442 * can do at this point. Return the first error code (which will also
2443 * leave RPM permanently disabled).
2444 */
2445 ret = vlv_force_gfx_clock(dev_priv, true);
2446
2447 if (!IS_CHERRYVIEW(dev_priv))
2448 vlv_restore_gunit_s0ix_state(dev_priv);
2449
2450 err = vlv_allow_gt_wake(dev_priv, true);
2451 if (!ret)
2452 ret = err;
2453
2454 err = vlv_force_gfx_clock(dev_priv, false);
2455 if (!ret)
2456 ret = err;
2457
2458 vlv_check_no_gt_access(dev_priv);
2459
2460 if (rpm_resume)
2461 intel_init_clock_gating(dev_priv);
2462
2463 return ret;
2464 }
2465
2466 static int intel_runtime_suspend(struct device *kdev)
2467 {
2468 struct pci_dev *pdev = to_pci_dev(kdev);
2469 struct drm_device *dev = pci_get_drvdata(pdev);
2470 struct drm_i915_private *dev_priv = to_i915(dev);
2471 int ret;
2472
2473 if (WARN_ON_ONCE(!(dev_priv->rps.enabled && intel_enable_rc6())))
2474 return -ENODEV;
2475
2476 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2477 return -ENODEV;
2478
2479 DRM_DEBUG_KMS("Suspending device\n");
2480
2481 disable_rpm_wakeref_asserts(dev_priv);
2482
2483 /*
2484 * We are safe here against re-faults, since the fault handler takes
2485 * an RPM reference.
2486 */
2487 i915_gem_runtime_suspend(dev_priv);
2488
2489 intel_guc_suspend(dev_priv);
2490
2491 intel_runtime_pm_disable_interrupts(dev_priv);
2492
2493 ret = 0;
2494 if (IS_GEN9_LP(dev_priv)) {
2495 bxt_display_core_uninit(dev_priv);
2496 bxt_enable_dc9(dev_priv);
2497 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2498 hsw_enable_pc8(dev_priv);
2499 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2500 ret = vlv_suspend_complete(dev_priv);
2501 }
2502
2503 if (ret) {
2504 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2505 intel_runtime_pm_enable_interrupts(dev_priv);
2506
2507 enable_rpm_wakeref_asserts(dev_priv);
2508
2509 return ret;
2510 }
2511
2512 intel_uncore_suspend(dev_priv);
2513
2514 enable_rpm_wakeref_asserts(dev_priv);
2515 WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
2516
2517 if (intel_uncore_arm_unclaimed_mmio_detection(dev_priv))
2518 DRM_ERROR("Unclaimed access detected prior to suspending\n");
2519
2520 dev_priv->pm.suspended = true;
2521
2522 /*
2523 * FIXME: We really should find a document that references the arguments
2524 * used below!
2525 */
2526 if (IS_BROADWELL(dev_priv)) {
2527 /*
2528 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2529 * being detected, and the call we do at intel_runtime_resume()
2530 * won't be able to restore them. Since PCI_D3hot matches the
2531 * actual specification and appears to be working, use it.
2532 */
2533 intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2534 } else {
2535 /*
2536 * current versions of firmware which depend on this opregion
2537 * notification have repurposed the D1 definition to mean
2538 * "runtime suspended" vs. what you would normally expect (D3)
2539 * to distinguish it from notifications that might be sent via
2540 * the suspend path.
2541 */
2542 intel_opregion_notify_adapter(dev_priv, PCI_D1);
2543 }
2544
2545 assert_forcewakes_inactive(dev_priv);
2546
2547 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2548 intel_hpd_poll_init(dev_priv);
2549
2550 DRM_DEBUG_KMS("Device suspended\n");
2551 return 0;
2552 }
2553
2554 static int intel_runtime_resume(struct device *kdev)
2555 {
2556 struct pci_dev *pdev = to_pci_dev(kdev);
2557 struct drm_device *dev = pci_get_drvdata(pdev);
2558 struct drm_i915_private *dev_priv = to_i915(dev);
2559 int ret = 0;
2560
2561 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2562 return -ENODEV;
2563
2564 DRM_DEBUG_KMS("Resuming device\n");
2565
2566 WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
2567 disable_rpm_wakeref_asserts(dev_priv);
2568
2569 intel_opregion_notify_adapter(dev_priv, PCI_D0);
2570 dev_priv->pm.suspended = false;
2571 if (intel_uncore_unclaimed_mmio(dev_priv))
2572 DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
2573
2574 intel_guc_resume(dev_priv);
2575
2576 if (IS_GEN9_LP(dev_priv)) {
2577 bxt_disable_dc9(dev_priv);
2578 bxt_display_core_init(dev_priv, true);
2579 if (dev_priv->csr.dmc_payload &&
2580 (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2581 gen9_enable_dc5(dev_priv);
2582 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2583 hsw_disable_pc8(dev_priv);
2584 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2585 ret = vlv_resume_prepare(dev_priv, true);
2586 }
2587
2588 /*
2589 * No point of rolling back things in case of an error, as the best
2590 * we can do is to hope that things will still work (and disable RPM).
2591 */
2592 i915_gem_init_swizzling(dev_priv);
2593 i915_gem_restore_fences(dev_priv);
2594
2595 intel_runtime_pm_enable_interrupts(dev_priv);
2596
2597 /*
2598 * On VLV/CHV display interrupts are part of the display
2599 * power well, so hpd is reinitialized from there. For
2600 * everyone else do it here.
2601 */
2602 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2603 intel_hpd_init(dev_priv);
2604
2605 enable_rpm_wakeref_asserts(dev_priv);
2606
2607 if (ret)
2608 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
2609 else
2610 DRM_DEBUG_KMS("Device resumed\n");
2611
2612 return ret;
2613 }
2614
2615 const struct dev_pm_ops i915_pm_ops = {
2616 /*
2617 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
2618 * PMSG_RESUME]
2619 */
2620 .suspend = i915_pm_suspend,
2621 .suspend_late = i915_pm_suspend_late,
2622 .resume_early = i915_pm_resume_early,
2623 .resume = i915_pm_resume,
2624
2625 /*
2626 * S4 event handlers
2627 * @freeze, @freeze_late : called (1) before creating the
2628 * hibernation image [PMSG_FREEZE] and
2629 * (2) after rebooting, before restoring
2630 * the image [PMSG_QUIESCE]
2631 * @thaw, @thaw_early : called (1) after creating the hibernation
2632 * image, before writing it [PMSG_THAW]
2633 * and (2) after failing to create or
2634 * restore the image [PMSG_RECOVER]
2635 * @poweroff, @poweroff_late: called after writing the hibernation
2636 * image, before rebooting [PMSG_HIBERNATE]
2637 * @restore, @restore_early : called after rebooting and restoring the
2638 * hibernation image [PMSG_RESTORE]
2639 */
2640 .freeze = i915_pm_freeze,
2641 .freeze_late = i915_pm_freeze_late,
2642 .thaw_early = i915_pm_thaw_early,
2643 .thaw = i915_pm_thaw,
2644 .poweroff = i915_pm_suspend,
2645 .poweroff_late = i915_pm_poweroff_late,
2646 .restore_early = i915_pm_restore_early,
2647 .restore = i915_pm_restore,
2648
2649 /* S0ix (via runtime suspend) event handlers */
2650 .runtime_suspend = intel_runtime_suspend,
2651 .runtime_resume = intel_runtime_resume,
2652 };
2653
2654 static const struct vm_operations_struct i915_gem_vm_ops = {
2655 .fault = i915_gem_fault,
2656 .open = drm_gem_vm_open,
2657 .close = drm_gem_vm_close,
2658 };
2659
2660 static const struct file_operations i915_driver_fops = {
2661 .owner = THIS_MODULE,
2662 .open = drm_open,
2663 .release = drm_release,
2664 .unlocked_ioctl = drm_ioctl,
2665 .mmap = drm_gem_mmap,
2666 .poll = drm_poll,
2667 .read = drm_read,
2668 .compat_ioctl = i915_compat_ioctl,
2669 .llseek = noop_llseek,
2670 };
2671
2672 static int
2673 i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
2674 struct drm_file *file)
2675 {
2676 return -ENODEV;
2677 }
2678
2679 static const struct drm_ioctl_desc i915_ioctls[] = {
2680 DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2681 DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
2682 DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
2683 DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
2684 DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
2685 DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
2686 DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam, DRM_AUTH|DRM_RENDER_ALLOW),
2687 DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2688 DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
2689 DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
2690 DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2691 DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
2692 DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2693 DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2694 DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE, drm_noop, DRM_AUTH),
2695 DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
2696 DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2697 DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2698 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer, DRM_AUTH),
2699 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2_WR, i915_gem_execbuffer2, DRM_AUTH|DRM_RENDER_ALLOW),
2700 DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2701 DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2702 DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2703 DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
2704 DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
2705 DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2706 DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2707 DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2708 DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
2709 DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
2710 DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
2711 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
2712 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_GTT, i915_gem_mmap_gtt_ioctl, DRM_RENDER_ALLOW),
2713 DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
2714 DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
2715 DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling_ioctl, DRM_RENDER_ALLOW),
2716 DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling_ioctl, DRM_RENDER_ALLOW),
2717 DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
2718 DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id, 0),
2719 DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
2720 DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2721 DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2722 DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey, DRM_MASTER|DRM_CONTROL_ALLOW),
2723 DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER|DRM_CONTROL_ALLOW),
2724 DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2725 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
2726 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
2727 DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
2728 DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
2729 DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
2730 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
2731 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
2732 DRM_IOCTL_DEF_DRV(I915_PERF_OPEN, i915_perf_open_ioctl, DRM_RENDER_ALLOW),
2733 };
2734
2735 static struct drm_driver driver = {
2736 /* Don't use MTRRs here; the Xserver or userspace app should
2737 * deal with them for Intel hardware.
2738 */
2739 .driver_features =
2740 DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
2741 DRIVER_RENDER | DRIVER_MODESET | DRIVER_ATOMIC,
2742 .release = i915_driver_release,
2743 .open = i915_driver_open,
2744 .lastclose = i915_driver_lastclose,
2745 .postclose = i915_driver_postclose,
2746 .set_busid = drm_pci_set_busid,
2747
2748 .gem_close_object = i915_gem_close_object,
2749 .gem_free_object_unlocked = i915_gem_free_object,
2750 .gem_vm_ops = &i915_gem_vm_ops,
2751
2752 .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
2753 .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
2754 .gem_prime_export = i915_gem_prime_export,
2755 .gem_prime_import = i915_gem_prime_import,
2756
2757 .dumb_create = i915_gem_dumb_create,
2758 .dumb_map_offset = i915_gem_mmap_gtt,
2759 .dumb_destroy = drm_gem_dumb_destroy,
2760 .ioctls = i915_ioctls,
2761 .num_ioctls = ARRAY_SIZE(i915_ioctls),
2762 .fops = &i915_driver_fops,
2763 .name = DRIVER_NAME,
2764 .desc = DRIVER_DESC,
2765 .date = DRIVER_DATE,
2766 .major = DRIVER_MAJOR,
2767 .minor = DRIVER_MINOR,
2768 .patchlevel = DRIVER_PATCHLEVEL,
2769 };
2770
2771 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2772 #include "selftests/mock_drm.c"
2773 #endif