]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.c
drm/i915: Move hangcheck code out from i915_irq.c
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_drv.c
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #include <linux/acpi.h>
31 #include <linux/device.h>
32 #include <linux/oom.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/pm.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/pnp.h>
38 #include <linux/slab.h>
39 #include <linux/vgaarb.h>
40 #include <linux/vga_switcheroo.h>
41 #include <linux/vt.h>
42 #include <acpi/video.h>
43
44 #include <drm/drmP.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/i915_drm.h>
47
48 #include "i915_drv.h"
49 #include "i915_trace.h"
50 #include "i915_vgpu.h"
51 #include "intel_drv.h"
52
53 static struct drm_driver driver;
54
55 static unsigned int i915_load_fail_count;
56
57 bool __i915_inject_load_failure(const char *func, int line)
58 {
59 if (i915_load_fail_count >= i915.inject_load_failure)
60 return false;
61
62 if (++i915_load_fail_count == i915.inject_load_failure) {
63 DRM_INFO("Injecting failure at checkpoint %u [%s:%d]\n",
64 i915.inject_load_failure, func, line);
65 return true;
66 }
67
68 return false;
69 }
70
71 #define FDO_BUG_URL "https://bugs.freedesktop.org/enter_bug.cgi?product=DRI"
72 #define FDO_BUG_MSG "Please file a bug at " FDO_BUG_URL " against DRM/Intel " \
73 "providing the dmesg log by booting with drm.debug=0xf"
74
75 void
76 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
77 const char *fmt, ...)
78 {
79 static bool shown_bug_once;
80 struct device *kdev = dev_priv->drm.dev;
81 bool is_error = level[1] <= KERN_ERR[1];
82 bool is_debug = level[1] == KERN_DEBUG[1];
83 struct va_format vaf;
84 va_list args;
85
86 if (is_debug && !(drm_debug & DRM_UT_DRIVER))
87 return;
88
89 va_start(args, fmt);
90
91 vaf.fmt = fmt;
92 vaf.va = &args;
93
94 dev_printk(level, kdev, "[" DRM_NAME ":%ps] %pV",
95 __builtin_return_address(0), &vaf);
96
97 if (is_error && !shown_bug_once) {
98 dev_notice(kdev, "%s", FDO_BUG_MSG);
99 shown_bug_once = true;
100 }
101
102 va_end(args);
103 }
104
105 static bool i915_error_injected(struct drm_i915_private *dev_priv)
106 {
107 return i915.inject_load_failure &&
108 i915_load_fail_count == i915.inject_load_failure;
109 }
110
111 #define i915_load_error(dev_priv, fmt, ...) \
112 __i915_printk(dev_priv, \
113 i915_error_injected(dev_priv) ? KERN_DEBUG : KERN_ERR, \
114 fmt, ##__VA_ARGS__)
115
116
117 static enum intel_pch intel_virt_detect_pch(struct drm_i915_private *dev_priv)
118 {
119 enum intel_pch ret = PCH_NOP;
120
121 /*
122 * In a virtualized passthrough environment we can be in a
123 * setup where the ISA bridge is not able to be passed through.
124 * In this case, a south bridge can be emulated and we have to
125 * make an educated guess as to which PCH is really there.
126 */
127
128 if (IS_GEN5(dev_priv)) {
129 ret = PCH_IBX;
130 DRM_DEBUG_KMS("Assuming Ibex Peak PCH\n");
131 } else if (IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv)) {
132 ret = PCH_CPT;
133 DRM_DEBUG_KMS("Assuming CouarPoint PCH\n");
134 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
135 ret = PCH_LPT;
136 DRM_DEBUG_KMS("Assuming LynxPoint PCH\n");
137 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
138 ret = PCH_SPT;
139 DRM_DEBUG_KMS("Assuming SunrisePoint PCH\n");
140 }
141
142 return ret;
143 }
144
145 static void intel_detect_pch(struct drm_device *dev)
146 {
147 struct drm_i915_private *dev_priv = to_i915(dev);
148 struct pci_dev *pch = NULL;
149
150 /* In all current cases, num_pipes is equivalent to the PCH_NOP setting
151 * (which really amounts to a PCH but no South Display).
152 */
153 if (INTEL_INFO(dev)->num_pipes == 0) {
154 dev_priv->pch_type = PCH_NOP;
155 return;
156 }
157
158 /*
159 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
160 * make graphics device passthrough work easy for VMM, that only
161 * need to expose ISA bridge to let driver know the real hardware
162 * underneath. This is a requirement from virtualization team.
163 *
164 * In some virtualized environments (e.g. XEN), there is irrelevant
165 * ISA bridge in the system. To work reliably, we should scan trhough
166 * all the ISA bridge devices and check for the first match, instead
167 * of only checking the first one.
168 */
169 while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
170 if (pch->vendor == PCI_VENDOR_ID_INTEL) {
171 unsigned short id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
172 dev_priv->pch_id = id;
173
174 if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
175 dev_priv->pch_type = PCH_IBX;
176 DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
177 WARN_ON(!IS_GEN5(dev_priv));
178 } else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
179 dev_priv->pch_type = PCH_CPT;
180 DRM_DEBUG_KMS("Found CougarPoint PCH\n");
181 WARN_ON(!(IS_GEN6(dev_priv) ||
182 IS_IVYBRIDGE(dev_priv)));
183 } else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
184 /* PantherPoint is CPT compatible */
185 dev_priv->pch_type = PCH_CPT;
186 DRM_DEBUG_KMS("Found PantherPoint PCH\n");
187 WARN_ON(!(IS_GEN6(dev_priv) ||
188 IS_IVYBRIDGE(dev_priv)));
189 } else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
190 dev_priv->pch_type = PCH_LPT;
191 DRM_DEBUG_KMS("Found LynxPoint PCH\n");
192 WARN_ON(!IS_HASWELL(dev_priv) &&
193 !IS_BROADWELL(dev_priv));
194 WARN_ON(IS_HSW_ULT(dev_priv) ||
195 IS_BDW_ULT(dev_priv));
196 } else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
197 dev_priv->pch_type = PCH_LPT;
198 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
199 WARN_ON(!IS_HASWELL(dev_priv) &&
200 !IS_BROADWELL(dev_priv));
201 WARN_ON(!IS_HSW_ULT(dev_priv) &&
202 !IS_BDW_ULT(dev_priv));
203 } else if (id == INTEL_PCH_SPT_DEVICE_ID_TYPE) {
204 dev_priv->pch_type = PCH_SPT;
205 DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
206 WARN_ON(!IS_SKYLAKE(dev_priv) &&
207 !IS_KABYLAKE(dev_priv));
208 } else if (id == INTEL_PCH_SPT_LP_DEVICE_ID_TYPE) {
209 dev_priv->pch_type = PCH_SPT;
210 DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
211 WARN_ON(!IS_SKYLAKE(dev_priv) &&
212 !IS_KABYLAKE(dev_priv));
213 } else if (id == INTEL_PCH_KBP_DEVICE_ID_TYPE) {
214 dev_priv->pch_type = PCH_KBP;
215 DRM_DEBUG_KMS("Found KabyPoint PCH\n");
216 WARN_ON(!IS_KABYLAKE(dev_priv));
217 } else if ((id == INTEL_PCH_P2X_DEVICE_ID_TYPE) ||
218 (id == INTEL_PCH_P3X_DEVICE_ID_TYPE) ||
219 ((id == INTEL_PCH_QEMU_DEVICE_ID_TYPE) &&
220 pch->subsystem_vendor ==
221 PCI_SUBVENDOR_ID_REDHAT_QUMRANET &&
222 pch->subsystem_device ==
223 PCI_SUBDEVICE_ID_QEMU)) {
224 dev_priv->pch_type =
225 intel_virt_detect_pch(dev_priv);
226 } else
227 continue;
228
229 break;
230 }
231 }
232 if (!pch)
233 DRM_DEBUG_KMS("No PCH found.\n");
234
235 pci_dev_put(pch);
236 }
237
238 static int i915_getparam(struct drm_device *dev, void *data,
239 struct drm_file *file_priv)
240 {
241 struct drm_i915_private *dev_priv = to_i915(dev);
242 struct pci_dev *pdev = dev_priv->drm.pdev;
243 drm_i915_getparam_t *param = data;
244 int value;
245
246 switch (param->param) {
247 case I915_PARAM_IRQ_ACTIVE:
248 case I915_PARAM_ALLOW_BATCHBUFFER:
249 case I915_PARAM_LAST_DISPATCH:
250 /* Reject all old ums/dri params. */
251 return -ENODEV;
252 case I915_PARAM_CHIPSET_ID:
253 value = pdev->device;
254 break;
255 case I915_PARAM_REVISION:
256 value = pdev->revision;
257 break;
258 case I915_PARAM_NUM_FENCES_AVAIL:
259 value = dev_priv->num_fence_regs;
260 break;
261 case I915_PARAM_HAS_OVERLAY:
262 value = dev_priv->overlay ? 1 : 0;
263 break;
264 case I915_PARAM_HAS_BSD:
265 value = !!dev_priv->engine[VCS];
266 break;
267 case I915_PARAM_HAS_BLT:
268 value = !!dev_priv->engine[BCS];
269 break;
270 case I915_PARAM_HAS_VEBOX:
271 value = !!dev_priv->engine[VECS];
272 break;
273 case I915_PARAM_HAS_BSD2:
274 value = !!dev_priv->engine[VCS2];
275 break;
276 case I915_PARAM_HAS_EXEC_CONSTANTS:
277 value = INTEL_GEN(dev_priv) >= 4;
278 break;
279 case I915_PARAM_HAS_LLC:
280 value = HAS_LLC(dev_priv);
281 break;
282 case I915_PARAM_HAS_WT:
283 value = HAS_WT(dev_priv);
284 break;
285 case I915_PARAM_HAS_ALIASING_PPGTT:
286 value = USES_PPGTT(dev_priv);
287 break;
288 case I915_PARAM_HAS_SEMAPHORES:
289 value = i915.semaphores;
290 break;
291 case I915_PARAM_HAS_SECURE_BATCHES:
292 value = capable(CAP_SYS_ADMIN);
293 break;
294 case I915_PARAM_CMD_PARSER_VERSION:
295 value = i915_cmd_parser_get_version(dev_priv);
296 break;
297 case I915_PARAM_SUBSLICE_TOTAL:
298 value = sseu_subslice_total(&INTEL_INFO(dev_priv)->sseu);
299 if (!value)
300 return -ENODEV;
301 break;
302 case I915_PARAM_EU_TOTAL:
303 value = INTEL_INFO(dev_priv)->sseu.eu_total;
304 if (!value)
305 return -ENODEV;
306 break;
307 case I915_PARAM_HAS_GPU_RESET:
308 value = i915.enable_hangcheck && intel_has_gpu_reset(dev_priv);
309 break;
310 case I915_PARAM_HAS_RESOURCE_STREAMER:
311 value = HAS_RESOURCE_STREAMER(dev_priv);
312 break;
313 case I915_PARAM_HAS_POOLED_EU:
314 value = HAS_POOLED_EU(dev_priv);
315 break;
316 case I915_PARAM_MIN_EU_IN_POOL:
317 value = INTEL_INFO(dev_priv)->sseu.min_eu_in_pool;
318 break;
319 case I915_PARAM_MMAP_GTT_VERSION:
320 /* Though we've started our numbering from 1, and so class all
321 * earlier versions as 0, in effect their value is undefined as
322 * the ioctl will report EINVAL for the unknown param!
323 */
324 value = i915_gem_mmap_gtt_version();
325 break;
326 case I915_PARAM_MMAP_VERSION:
327 /* Remember to bump this if the version changes! */
328 case I915_PARAM_HAS_GEM:
329 case I915_PARAM_HAS_PAGEFLIPPING:
330 case I915_PARAM_HAS_EXECBUF2: /* depends on GEM */
331 case I915_PARAM_HAS_RELAXED_FENCING:
332 case I915_PARAM_HAS_COHERENT_RINGS:
333 case I915_PARAM_HAS_RELAXED_DELTA:
334 case I915_PARAM_HAS_GEN7_SOL_RESET:
335 case I915_PARAM_HAS_WAIT_TIMEOUT:
336 case I915_PARAM_HAS_PRIME_VMAP_FLUSH:
337 case I915_PARAM_HAS_PINNED_BATCHES:
338 case I915_PARAM_HAS_EXEC_NO_RELOC:
339 case I915_PARAM_HAS_EXEC_HANDLE_LUT:
340 case I915_PARAM_HAS_COHERENT_PHYS_GTT:
341 case I915_PARAM_HAS_EXEC_SOFTPIN:
342 /* For the time being all of these are always true;
343 * if some supported hardware does not have one of these
344 * features this value needs to be provided from
345 * INTEL_INFO(), a feature macro, or similar.
346 */
347 value = 1;
348 break;
349 default:
350 DRM_DEBUG("Unknown parameter %d\n", param->param);
351 return -EINVAL;
352 }
353
354 if (put_user(value, param->value))
355 return -EFAULT;
356
357 return 0;
358 }
359
360 static int i915_get_bridge_dev(struct drm_device *dev)
361 {
362 struct drm_i915_private *dev_priv = to_i915(dev);
363
364 dev_priv->bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0));
365 if (!dev_priv->bridge_dev) {
366 DRM_ERROR("bridge device not found\n");
367 return -1;
368 }
369 return 0;
370 }
371
372 /* Allocate space for the MCH regs if needed, return nonzero on error */
373 static int
374 intel_alloc_mchbar_resource(struct drm_device *dev)
375 {
376 struct drm_i915_private *dev_priv = to_i915(dev);
377 int reg = INTEL_INFO(dev)->gen >= 4 ? MCHBAR_I965 : MCHBAR_I915;
378 u32 temp_lo, temp_hi = 0;
379 u64 mchbar_addr;
380 int ret;
381
382 if (INTEL_INFO(dev)->gen >= 4)
383 pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
384 pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
385 mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
386
387 /* If ACPI doesn't have it, assume we need to allocate it ourselves */
388 #ifdef CONFIG_PNP
389 if (mchbar_addr &&
390 pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
391 return 0;
392 #endif
393
394 /* Get some space for it */
395 dev_priv->mch_res.name = "i915 MCHBAR";
396 dev_priv->mch_res.flags = IORESOURCE_MEM;
397 ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
398 &dev_priv->mch_res,
399 MCHBAR_SIZE, MCHBAR_SIZE,
400 PCIBIOS_MIN_MEM,
401 0, pcibios_align_resource,
402 dev_priv->bridge_dev);
403 if (ret) {
404 DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
405 dev_priv->mch_res.start = 0;
406 return ret;
407 }
408
409 if (INTEL_INFO(dev)->gen >= 4)
410 pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
411 upper_32_bits(dev_priv->mch_res.start));
412
413 pci_write_config_dword(dev_priv->bridge_dev, reg,
414 lower_32_bits(dev_priv->mch_res.start));
415 return 0;
416 }
417
418 /* Setup MCHBAR if possible, return true if we should disable it again */
419 static void
420 intel_setup_mchbar(struct drm_device *dev)
421 {
422 struct drm_i915_private *dev_priv = to_i915(dev);
423 int mchbar_reg = INTEL_INFO(dev)->gen >= 4 ? MCHBAR_I965 : MCHBAR_I915;
424 u32 temp;
425 bool enabled;
426
427 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
428 return;
429
430 dev_priv->mchbar_need_disable = false;
431
432 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
433 pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
434 enabled = !!(temp & DEVEN_MCHBAR_EN);
435 } else {
436 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
437 enabled = temp & 1;
438 }
439
440 /* If it's already enabled, don't have to do anything */
441 if (enabled)
442 return;
443
444 if (intel_alloc_mchbar_resource(dev))
445 return;
446
447 dev_priv->mchbar_need_disable = true;
448
449 /* Space is allocated or reserved, so enable it. */
450 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
451 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
452 temp | DEVEN_MCHBAR_EN);
453 } else {
454 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
455 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
456 }
457 }
458
459 static void
460 intel_teardown_mchbar(struct drm_device *dev)
461 {
462 struct drm_i915_private *dev_priv = to_i915(dev);
463 int mchbar_reg = INTEL_INFO(dev)->gen >= 4 ? MCHBAR_I965 : MCHBAR_I915;
464
465 if (dev_priv->mchbar_need_disable) {
466 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
467 u32 deven_val;
468
469 pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
470 &deven_val);
471 deven_val &= ~DEVEN_MCHBAR_EN;
472 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
473 deven_val);
474 } else {
475 u32 mchbar_val;
476
477 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
478 &mchbar_val);
479 mchbar_val &= ~1;
480 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
481 mchbar_val);
482 }
483 }
484
485 if (dev_priv->mch_res.start)
486 release_resource(&dev_priv->mch_res);
487 }
488
489 /* true = enable decode, false = disable decoder */
490 static unsigned int i915_vga_set_decode(void *cookie, bool state)
491 {
492 struct drm_device *dev = cookie;
493
494 intel_modeset_vga_set_state(dev, state);
495 if (state)
496 return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
497 VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
498 else
499 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
500 }
501
502 static void i915_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
503 {
504 struct drm_device *dev = pci_get_drvdata(pdev);
505 pm_message_t pmm = { .event = PM_EVENT_SUSPEND };
506
507 if (state == VGA_SWITCHEROO_ON) {
508 pr_info("switched on\n");
509 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
510 /* i915 resume handler doesn't set to D0 */
511 pci_set_power_state(pdev, PCI_D0);
512 i915_resume_switcheroo(dev);
513 dev->switch_power_state = DRM_SWITCH_POWER_ON;
514 } else {
515 pr_info("switched off\n");
516 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
517 i915_suspend_switcheroo(dev, pmm);
518 dev->switch_power_state = DRM_SWITCH_POWER_OFF;
519 }
520 }
521
522 static bool i915_switcheroo_can_switch(struct pci_dev *pdev)
523 {
524 struct drm_device *dev = pci_get_drvdata(pdev);
525
526 /*
527 * FIXME: open_count is protected by drm_global_mutex but that would lead to
528 * locking inversion with the driver load path. And the access here is
529 * completely racy anyway. So don't bother with locking for now.
530 */
531 return dev->open_count == 0;
532 }
533
534 static const struct vga_switcheroo_client_ops i915_switcheroo_ops = {
535 .set_gpu_state = i915_switcheroo_set_state,
536 .reprobe = NULL,
537 .can_switch = i915_switcheroo_can_switch,
538 };
539
540 static void i915_gem_fini(struct drm_i915_private *dev_priv)
541 {
542 mutex_lock(&dev_priv->drm.struct_mutex);
543 i915_gem_cleanup_engines(&dev_priv->drm);
544 i915_gem_context_fini(&dev_priv->drm);
545 mutex_unlock(&dev_priv->drm.struct_mutex);
546
547 rcu_barrier();
548 flush_work(&dev_priv->mm.free_work);
549
550 WARN_ON(!list_empty(&dev_priv->context_list));
551 }
552
553 static int i915_load_modeset_init(struct drm_device *dev)
554 {
555 struct drm_i915_private *dev_priv = to_i915(dev);
556 struct pci_dev *pdev = dev_priv->drm.pdev;
557 int ret;
558
559 if (i915_inject_load_failure())
560 return -ENODEV;
561
562 ret = intel_bios_init(dev_priv);
563 if (ret)
564 DRM_INFO("failed to find VBIOS tables\n");
565
566 /* If we have > 1 VGA cards, then we need to arbitrate access
567 * to the common VGA resources.
568 *
569 * If we are a secondary display controller (!PCI_DISPLAY_CLASS_VGA),
570 * then we do not take part in VGA arbitration and the
571 * vga_client_register() fails with -ENODEV.
572 */
573 ret = vga_client_register(pdev, dev, NULL, i915_vga_set_decode);
574 if (ret && ret != -ENODEV)
575 goto out;
576
577 intel_register_dsm_handler();
578
579 ret = vga_switcheroo_register_client(pdev, &i915_switcheroo_ops, false);
580 if (ret)
581 goto cleanup_vga_client;
582
583 /* must happen before intel_power_domains_init_hw() on VLV/CHV */
584 intel_update_rawclk(dev_priv);
585
586 intel_power_domains_init_hw(dev_priv, false);
587
588 intel_csr_ucode_init(dev_priv);
589
590 ret = intel_irq_install(dev_priv);
591 if (ret)
592 goto cleanup_csr;
593
594 intel_setup_gmbus(dev);
595
596 /* Important: The output setup functions called by modeset_init need
597 * working irqs for e.g. gmbus and dp aux transfers. */
598 ret = intel_modeset_init(dev);
599 if (ret)
600 goto cleanup_irq;
601
602 intel_guc_init(dev);
603
604 ret = i915_gem_init(dev);
605 if (ret)
606 goto cleanup_irq;
607
608 intel_modeset_gem_init(dev);
609
610 if (INTEL_INFO(dev)->num_pipes == 0)
611 return 0;
612
613 ret = intel_fbdev_init(dev);
614 if (ret)
615 goto cleanup_gem;
616
617 /* Only enable hotplug handling once the fbdev is fully set up. */
618 intel_hpd_init(dev_priv);
619
620 drm_kms_helper_poll_init(dev);
621
622 return 0;
623
624 cleanup_gem:
625 if (i915_gem_suspend(dev))
626 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
627 i915_gem_fini(dev_priv);
628 cleanup_irq:
629 intel_guc_fini(dev);
630 drm_irq_uninstall(dev);
631 intel_teardown_gmbus(dev);
632 cleanup_csr:
633 intel_csr_ucode_fini(dev_priv);
634 intel_power_domains_fini(dev_priv);
635 vga_switcheroo_unregister_client(pdev);
636 cleanup_vga_client:
637 vga_client_register(pdev, NULL, NULL, NULL);
638 out:
639 return ret;
640 }
641
642 #if IS_ENABLED(CONFIG_FB)
643 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
644 {
645 struct apertures_struct *ap;
646 struct pci_dev *pdev = dev_priv->drm.pdev;
647 struct i915_ggtt *ggtt = &dev_priv->ggtt;
648 bool primary;
649 int ret;
650
651 ap = alloc_apertures(1);
652 if (!ap)
653 return -ENOMEM;
654
655 ap->ranges[0].base = ggtt->mappable_base;
656 ap->ranges[0].size = ggtt->mappable_end;
657
658 primary =
659 pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW;
660
661 ret = drm_fb_helper_remove_conflicting_framebuffers(ap, "inteldrmfb", primary);
662
663 kfree(ap);
664
665 return ret;
666 }
667 #else
668 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
669 {
670 return 0;
671 }
672 #endif
673
674 #if !defined(CONFIG_VGA_CONSOLE)
675 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
676 {
677 return 0;
678 }
679 #elif !defined(CONFIG_DUMMY_CONSOLE)
680 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
681 {
682 return -ENODEV;
683 }
684 #else
685 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
686 {
687 int ret = 0;
688
689 DRM_INFO("Replacing VGA console driver\n");
690
691 console_lock();
692 if (con_is_bound(&vga_con))
693 ret = do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES - 1, 1);
694 if (ret == 0) {
695 ret = do_unregister_con_driver(&vga_con);
696
697 /* Ignore "already unregistered". */
698 if (ret == -ENODEV)
699 ret = 0;
700 }
701 console_unlock();
702
703 return ret;
704 }
705 #endif
706
707 static void intel_init_dpio(struct drm_i915_private *dev_priv)
708 {
709 /*
710 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
711 * CHV x1 PHY (DP/HDMI D)
712 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
713 */
714 if (IS_CHERRYVIEW(dev_priv)) {
715 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
716 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
717 } else if (IS_VALLEYVIEW(dev_priv)) {
718 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
719 }
720 }
721
722 static int i915_workqueues_init(struct drm_i915_private *dev_priv)
723 {
724 /*
725 * The i915 workqueue is primarily used for batched retirement of
726 * requests (and thus managing bo) once the task has been completed
727 * by the GPU. i915_gem_retire_requests() is called directly when we
728 * need high-priority retirement, such as waiting for an explicit
729 * bo.
730 *
731 * It is also used for periodic low-priority events, such as
732 * idle-timers and recording error state.
733 *
734 * All tasks on the workqueue are expected to acquire the dev mutex
735 * so there is no point in running more than one instance of the
736 * workqueue at any time. Use an ordered one.
737 */
738 dev_priv->wq = alloc_ordered_workqueue("i915", 0);
739 if (dev_priv->wq == NULL)
740 goto out_err;
741
742 dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
743 if (dev_priv->hotplug.dp_wq == NULL)
744 goto out_free_wq;
745
746 return 0;
747
748 out_free_wq:
749 destroy_workqueue(dev_priv->wq);
750 out_err:
751 DRM_ERROR("Failed to allocate workqueues.\n");
752
753 return -ENOMEM;
754 }
755
756 static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
757 {
758 destroy_workqueue(dev_priv->hotplug.dp_wq);
759 destroy_workqueue(dev_priv->wq);
760 }
761
762 /*
763 * We don't keep the workarounds for pre-production hardware, so we expect our
764 * driver to fail on these machines in one way or another. A little warning on
765 * dmesg may help both the user and the bug triagers.
766 */
767 static void intel_detect_preproduction_hw(struct drm_i915_private *dev_priv)
768 {
769 if (IS_HSW_EARLY_SDV(dev_priv) ||
770 IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
771 DRM_ERROR("This is a pre-production stepping. "
772 "It may not be fully functional.\n");
773 }
774
775 /**
776 * i915_driver_init_early - setup state not requiring device access
777 * @dev_priv: device private
778 *
779 * Initialize everything that is a "SW-only" state, that is state not
780 * requiring accessing the device or exposing the driver via kernel internal
781 * or userspace interfaces. Example steps belonging here: lock initialization,
782 * system memory allocation, setting up device specific attributes and
783 * function hooks not requiring accessing the device.
784 */
785 static int i915_driver_init_early(struct drm_i915_private *dev_priv,
786 const struct pci_device_id *ent)
787 {
788 const struct intel_device_info *match_info =
789 (struct intel_device_info *)ent->driver_data;
790 struct intel_device_info *device_info;
791 int ret = 0;
792
793 if (i915_inject_load_failure())
794 return -ENODEV;
795
796 /* Setup the write-once "constant" device info */
797 device_info = mkwrite_device_info(dev_priv);
798 memcpy(device_info, match_info, sizeof(*device_info));
799 device_info->device_id = dev_priv->drm.pdev->device;
800
801 BUG_ON(device_info->gen > sizeof(device_info->gen_mask) * BITS_PER_BYTE);
802 device_info->gen_mask = BIT(device_info->gen - 1);
803
804 spin_lock_init(&dev_priv->irq_lock);
805 spin_lock_init(&dev_priv->gpu_error.lock);
806 mutex_init(&dev_priv->backlight_lock);
807 spin_lock_init(&dev_priv->uncore.lock);
808 spin_lock_init(&dev_priv->mm.object_stat_lock);
809 spin_lock_init(&dev_priv->mmio_flip_lock);
810 mutex_init(&dev_priv->sb_lock);
811 mutex_init(&dev_priv->modeset_restore_lock);
812 mutex_init(&dev_priv->av_mutex);
813 mutex_init(&dev_priv->wm.wm_mutex);
814 mutex_init(&dev_priv->pps_mutex);
815
816 i915_memcpy_init_early(dev_priv);
817
818 ret = i915_workqueues_init(dev_priv);
819 if (ret < 0)
820 return ret;
821
822 ret = intel_gvt_init(dev_priv);
823 if (ret < 0)
824 goto err_workqueues;
825
826 /* This must be called before any calls to HAS_PCH_* */
827 intel_detect_pch(&dev_priv->drm);
828
829 intel_pm_setup(&dev_priv->drm);
830 intel_init_dpio(dev_priv);
831 intel_power_domains_init(dev_priv);
832 intel_irq_init(dev_priv);
833 intel_hangcheck_init(dev_priv);
834 intel_init_display_hooks(dev_priv);
835 intel_init_clock_gating_hooks(dev_priv);
836 intel_init_audio_hooks(dev_priv);
837 ret = i915_gem_load_init(&dev_priv->drm);
838 if (ret < 0)
839 goto err_gvt;
840
841 intel_display_crc_init(dev_priv);
842
843 intel_device_info_dump(dev_priv);
844
845 intel_detect_preproduction_hw(dev_priv);
846
847 return 0;
848
849 err_gvt:
850 intel_gvt_cleanup(dev_priv);
851 err_workqueues:
852 i915_workqueues_cleanup(dev_priv);
853 return ret;
854 }
855
856 /**
857 * i915_driver_cleanup_early - cleanup the setup done in i915_driver_init_early()
858 * @dev_priv: device private
859 */
860 static void i915_driver_cleanup_early(struct drm_i915_private *dev_priv)
861 {
862 i915_gem_load_cleanup(&dev_priv->drm);
863 i915_workqueues_cleanup(dev_priv);
864 }
865
866 static int i915_mmio_setup(struct drm_device *dev)
867 {
868 struct drm_i915_private *dev_priv = to_i915(dev);
869 struct pci_dev *pdev = dev_priv->drm.pdev;
870 int mmio_bar;
871 int mmio_size;
872
873 mmio_bar = IS_GEN2(dev_priv) ? 1 : 0;
874 /*
875 * Before gen4, the registers and the GTT are behind different BARs.
876 * However, from gen4 onwards, the registers and the GTT are shared
877 * in the same BAR, so we want to restrict this ioremap from
878 * clobbering the GTT which we want ioremap_wc instead. Fortunately,
879 * the register BAR remains the same size for all the earlier
880 * generations up to Ironlake.
881 */
882 if (INTEL_INFO(dev)->gen < 5)
883 mmio_size = 512 * 1024;
884 else
885 mmio_size = 2 * 1024 * 1024;
886 dev_priv->regs = pci_iomap(pdev, mmio_bar, mmio_size);
887 if (dev_priv->regs == NULL) {
888 DRM_ERROR("failed to map registers\n");
889
890 return -EIO;
891 }
892
893 /* Try to make sure MCHBAR is enabled before poking at it */
894 intel_setup_mchbar(dev);
895
896 return 0;
897 }
898
899 static void i915_mmio_cleanup(struct drm_device *dev)
900 {
901 struct drm_i915_private *dev_priv = to_i915(dev);
902 struct pci_dev *pdev = dev_priv->drm.pdev;
903
904 intel_teardown_mchbar(dev);
905 pci_iounmap(pdev, dev_priv->regs);
906 }
907
908 /**
909 * i915_driver_init_mmio - setup device MMIO
910 * @dev_priv: device private
911 *
912 * Setup minimal device state necessary for MMIO accesses later in the
913 * initialization sequence. The setup here should avoid any other device-wide
914 * side effects or exposing the driver via kernel internal or user space
915 * interfaces.
916 */
917 static int i915_driver_init_mmio(struct drm_i915_private *dev_priv)
918 {
919 struct drm_device *dev = &dev_priv->drm;
920 int ret;
921
922 if (i915_inject_load_failure())
923 return -ENODEV;
924
925 if (i915_get_bridge_dev(dev))
926 return -EIO;
927
928 ret = i915_mmio_setup(dev);
929 if (ret < 0)
930 goto put_bridge;
931
932 intel_uncore_init(dev_priv);
933
934 return 0;
935
936 put_bridge:
937 pci_dev_put(dev_priv->bridge_dev);
938
939 return ret;
940 }
941
942 /**
943 * i915_driver_cleanup_mmio - cleanup the setup done in i915_driver_init_mmio()
944 * @dev_priv: device private
945 */
946 static void i915_driver_cleanup_mmio(struct drm_i915_private *dev_priv)
947 {
948 struct drm_device *dev = &dev_priv->drm;
949
950 intel_uncore_fini(dev_priv);
951 i915_mmio_cleanup(dev);
952 pci_dev_put(dev_priv->bridge_dev);
953 }
954
955 static void intel_sanitize_options(struct drm_i915_private *dev_priv)
956 {
957 i915.enable_execlists =
958 intel_sanitize_enable_execlists(dev_priv,
959 i915.enable_execlists);
960
961 /*
962 * i915.enable_ppgtt is read-only, so do an early pass to validate the
963 * user's requested state against the hardware/driver capabilities. We
964 * do this now so that we can print out any log messages once rather
965 * than every time we check intel_enable_ppgtt().
966 */
967 i915.enable_ppgtt =
968 intel_sanitize_enable_ppgtt(dev_priv, i915.enable_ppgtt);
969 DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
970
971 i915.semaphores = intel_sanitize_semaphores(dev_priv, i915.semaphores);
972 DRM_DEBUG_DRIVER("use GPU sempahores? %s\n", yesno(i915.semaphores));
973 }
974
975 /**
976 * i915_driver_init_hw - setup state requiring device access
977 * @dev_priv: device private
978 *
979 * Setup state that requires accessing the device, but doesn't require
980 * exposing the driver via kernel internal or userspace interfaces.
981 */
982 static int i915_driver_init_hw(struct drm_i915_private *dev_priv)
983 {
984 struct pci_dev *pdev = dev_priv->drm.pdev;
985 int ret;
986
987 if (i915_inject_load_failure())
988 return -ENODEV;
989
990 intel_device_info_runtime_init(dev_priv);
991
992 intel_sanitize_options(dev_priv);
993
994 ret = i915_ggtt_probe_hw(dev_priv);
995 if (ret)
996 return ret;
997
998 /* WARNING: Apparently we must kick fbdev drivers before vgacon,
999 * otherwise the vga fbdev driver falls over. */
1000 ret = i915_kick_out_firmware_fb(dev_priv);
1001 if (ret) {
1002 DRM_ERROR("failed to remove conflicting framebuffer drivers\n");
1003 goto out_ggtt;
1004 }
1005
1006 ret = i915_kick_out_vgacon(dev_priv);
1007 if (ret) {
1008 DRM_ERROR("failed to remove conflicting VGA console\n");
1009 goto out_ggtt;
1010 }
1011
1012 ret = i915_ggtt_init_hw(dev_priv);
1013 if (ret)
1014 return ret;
1015
1016 ret = i915_ggtt_enable_hw(dev_priv);
1017 if (ret) {
1018 DRM_ERROR("failed to enable GGTT\n");
1019 goto out_ggtt;
1020 }
1021
1022 pci_set_master(pdev);
1023
1024 /* overlay on gen2 is broken and can't address above 1G */
1025 if (IS_GEN2(dev_priv)) {
1026 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
1027 if (ret) {
1028 DRM_ERROR("failed to set DMA mask\n");
1029
1030 goto out_ggtt;
1031 }
1032 }
1033
1034 /* 965GM sometimes incorrectly writes to hardware status page (HWS)
1035 * using 32bit addressing, overwriting memory if HWS is located
1036 * above 4GB.
1037 *
1038 * The documentation also mentions an issue with undefined
1039 * behaviour if any general state is accessed within a page above 4GB,
1040 * which also needs to be handled carefully.
1041 */
1042 if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv)) {
1043 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1044
1045 if (ret) {
1046 DRM_ERROR("failed to set DMA mask\n");
1047
1048 goto out_ggtt;
1049 }
1050 }
1051
1052 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1053 PM_QOS_DEFAULT_VALUE);
1054
1055 intel_uncore_sanitize(dev_priv);
1056
1057 intel_opregion_setup(dev_priv);
1058
1059 i915_gem_load_init_fences(dev_priv);
1060
1061 /* On the 945G/GM, the chipset reports the MSI capability on the
1062 * integrated graphics even though the support isn't actually there
1063 * according to the published specs. It doesn't appear to function
1064 * correctly in testing on 945G.
1065 * This may be a side effect of MSI having been made available for PEG
1066 * and the registers being closely associated.
1067 *
1068 * According to chipset errata, on the 965GM, MSI interrupts may
1069 * be lost or delayed, but we use them anyways to avoid
1070 * stuck interrupts on some machines.
1071 */
1072 if (!IS_I945G(dev_priv) && !IS_I945GM(dev_priv)) {
1073 if (pci_enable_msi(pdev) < 0)
1074 DRM_DEBUG_DRIVER("can't enable MSI");
1075 }
1076
1077 return 0;
1078
1079 out_ggtt:
1080 i915_ggtt_cleanup_hw(dev_priv);
1081
1082 return ret;
1083 }
1084
1085 /**
1086 * i915_driver_cleanup_hw - cleanup the setup done in i915_driver_init_hw()
1087 * @dev_priv: device private
1088 */
1089 static void i915_driver_cleanup_hw(struct drm_i915_private *dev_priv)
1090 {
1091 struct pci_dev *pdev = dev_priv->drm.pdev;
1092
1093 if (pdev->msi_enabled)
1094 pci_disable_msi(pdev);
1095
1096 pm_qos_remove_request(&dev_priv->pm_qos);
1097 i915_ggtt_cleanup_hw(dev_priv);
1098 }
1099
1100 /**
1101 * i915_driver_register - register the driver with the rest of the system
1102 * @dev_priv: device private
1103 *
1104 * Perform any steps necessary to make the driver available via kernel
1105 * internal or userspace interfaces.
1106 */
1107 static void i915_driver_register(struct drm_i915_private *dev_priv)
1108 {
1109 struct drm_device *dev = &dev_priv->drm;
1110
1111 i915_gem_shrinker_init(dev_priv);
1112
1113 /*
1114 * Notify a valid surface after modesetting,
1115 * when running inside a VM.
1116 */
1117 if (intel_vgpu_active(dev_priv))
1118 I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1119
1120 /* Reveal our presence to userspace */
1121 if (drm_dev_register(dev, 0) == 0) {
1122 i915_debugfs_register(dev_priv);
1123 i915_guc_register(dev_priv);
1124 i915_setup_sysfs(dev_priv);
1125 } else
1126 DRM_ERROR("Failed to register driver for userspace access!\n");
1127
1128 if (INTEL_INFO(dev_priv)->num_pipes) {
1129 /* Must be done after probing outputs */
1130 intel_opregion_register(dev_priv);
1131 acpi_video_register();
1132 }
1133
1134 if (IS_GEN5(dev_priv))
1135 intel_gpu_ips_init(dev_priv);
1136
1137 i915_audio_component_init(dev_priv);
1138
1139 /*
1140 * Some ports require correctly set-up hpd registers for detection to
1141 * work properly (leading to ghost connected connector status), e.g. VGA
1142 * on gm45. Hence we can only set up the initial fbdev config after hpd
1143 * irqs are fully enabled. We do it last so that the async config
1144 * cannot run before the connectors are registered.
1145 */
1146 intel_fbdev_initial_config_async(dev);
1147 }
1148
1149 /**
1150 * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1151 * @dev_priv: device private
1152 */
1153 static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1154 {
1155 i915_audio_component_cleanup(dev_priv);
1156
1157 intel_gpu_ips_teardown();
1158 acpi_video_unregister();
1159 intel_opregion_unregister(dev_priv);
1160
1161 i915_teardown_sysfs(dev_priv);
1162 i915_guc_unregister(dev_priv);
1163 i915_debugfs_unregister(dev_priv);
1164 drm_dev_unregister(&dev_priv->drm);
1165
1166 i915_gem_shrinker_cleanup(dev_priv);
1167 }
1168
1169 /**
1170 * i915_driver_load - setup chip and create an initial config
1171 * @dev: DRM device
1172 * @flags: startup flags
1173 *
1174 * The driver load routine has to do several things:
1175 * - drive output discovery via intel_modeset_init()
1176 * - initialize the memory manager
1177 * - allocate initial config memory
1178 * - setup the DRM framebuffer with the allocated memory
1179 */
1180 int i915_driver_load(struct pci_dev *pdev, const struct pci_device_id *ent)
1181 {
1182 struct drm_i915_private *dev_priv;
1183 int ret;
1184
1185 if (i915.nuclear_pageflip)
1186 driver.driver_features |= DRIVER_ATOMIC;
1187
1188 ret = -ENOMEM;
1189 dev_priv = kzalloc(sizeof(*dev_priv), GFP_KERNEL);
1190 if (dev_priv)
1191 ret = drm_dev_init(&dev_priv->drm, &driver, &pdev->dev);
1192 if (ret) {
1193 dev_printk(KERN_ERR, &pdev->dev,
1194 "[" DRM_NAME ":%s] allocation failed\n", __func__);
1195 kfree(dev_priv);
1196 return ret;
1197 }
1198
1199 dev_priv->drm.pdev = pdev;
1200 dev_priv->drm.dev_private = dev_priv;
1201
1202 ret = pci_enable_device(pdev);
1203 if (ret)
1204 goto out_free_priv;
1205
1206 pci_set_drvdata(pdev, &dev_priv->drm);
1207
1208 ret = i915_driver_init_early(dev_priv, ent);
1209 if (ret < 0)
1210 goto out_pci_disable;
1211
1212 intel_runtime_pm_get(dev_priv);
1213
1214 ret = i915_driver_init_mmio(dev_priv);
1215 if (ret < 0)
1216 goto out_runtime_pm_put;
1217
1218 ret = i915_driver_init_hw(dev_priv);
1219 if (ret < 0)
1220 goto out_cleanup_mmio;
1221
1222 /*
1223 * TODO: move the vblank init and parts of modeset init steps into one
1224 * of the i915_driver_init_/i915_driver_register functions according
1225 * to the role/effect of the given init step.
1226 */
1227 if (INTEL_INFO(dev_priv)->num_pipes) {
1228 ret = drm_vblank_init(&dev_priv->drm,
1229 INTEL_INFO(dev_priv)->num_pipes);
1230 if (ret)
1231 goto out_cleanup_hw;
1232 }
1233
1234 ret = i915_load_modeset_init(&dev_priv->drm);
1235 if (ret < 0)
1236 goto out_cleanup_vblank;
1237
1238 i915_driver_register(dev_priv);
1239
1240 intel_runtime_pm_enable(dev_priv);
1241
1242 /* Everything is in place, we can now relax! */
1243 DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n",
1244 driver.name, driver.major, driver.minor, driver.patchlevel,
1245 driver.date, pci_name(pdev), dev_priv->drm.primary->index);
1246 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG))
1247 DRM_INFO("DRM_I915_DEBUG enabled\n");
1248 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1249 DRM_INFO("DRM_I915_DEBUG_GEM enabled\n");
1250
1251 intel_runtime_pm_put(dev_priv);
1252
1253 return 0;
1254
1255 out_cleanup_vblank:
1256 drm_vblank_cleanup(&dev_priv->drm);
1257 out_cleanup_hw:
1258 i915_driver_cleanup_hw(dev_priv);
1259 out_cleanup_mmio:
1260 i915_driver_cleanup_mmio(dev_priv);
1261 out_runtime_pm_put:
1262 intel_runtime_pm_put(dev_priv);
1263 i915_driver_cleanup_early(dev_priv);
1264 out_pci_disable:
1265 pci_disable_device(pdev);
1266 out_free_priv:
1267 i915_load_error(dev_priv, "Device initialization failed (%d)\n", ret);
1268 drm_dev_unref(&dev_priv->drm);
1269 return ret;
1270 }
1271
1272 void i915_driver_unload(struct drm_device *dev)
1273 {
1274 struct drm_i915_private *dev_priv = to_i915(dev);
1275 struct pci_dev *pdev = dev_priv->drm.pdev;
1276
1277 intel_fbdev_fini(dev);
1278
1279 if (i915_gem_suspend(dev))
1280 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
1281
1282 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1283
1284 i915_driver_unregister(dev_priv);
1285
1286 drm_vblank_cleanup(dev);
1287
1288 intel_modeset_cleanup(dev);
1289
1290 /*
1291 * free the memory space allocated for the child device
1292 * config parsed from VBT
1293 */
1294 if (dev_priv->vbt.child_dev && dev_priv->vbt.child_dev_num) {
1295 kfree(dev_priv->vbt.child_dev);
1296 dev_priv->vbt.child_dev = NULL;
1297 dev_priv->vbt.child_dev_num = 0;
1298 }
1299 kfree(dev_priv->vbt.sdvo_lvds_vbt_mode);
1300 dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
1301 kfree(dev_priv->vbt.lfp_lvds_vbt_mode);
1302 dev_priv->vbt.lfp_lvds_vbt_mode = NULL;
1303
1304 vga_switcheroo_unregister_client(pdev);
1305 vga_client_register(pdev, NULL, NULL, NULL);
1306
1307 intel_csr_ucode_fini(dev_priv);
1308
1309 /* Free error state after interrupts are fully disabled. */
1310 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1311 i915_destroy_error_state(dev);
1312
1313 /* Flush any outstanding unpin_work. */
1314 drain_workqueue(dev_priv->wq);
1315
1316 intel_guc_fini(dev);
1317 i915_gem_fini(dev_priv);
1318 intel_fbc_cleanup_cfb(dev_priv);
1319
1320 intel_power_domains_fini(dev_priv);
1321
1322 i915_driver_cleanup_hw(dev_priv);
1323 i915_driver_cleanup_mmio(dev_priv);
1324
1325 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1326
1327 i915_driver_cleanup_early(dev_priv);
1328 }
1329
1330 static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1331 {
1332 int ret;
1333
1334 ret = i915_gem_open(dev, file);
1335 if (ret)
1336 return ret;
1337
1338 return 0;
1339 }
1340
1341 /**
1342 * i915_driver_lastclose - clean up after all DRM clients have exited
1343 * @dev: DRM device
1344 *
1345 * Take care of cleaning up after all DRM clients have exited. In the
1346 * mode setting case, we want to restore the kernel's initial mode (just
1347 * in case the last client left us in a bad state).
1348 *
1349 * Additionally, in the non-mode setting case, we'll tear down the GTT
1350 * and DMA structures, since the kernel won't be using them, and clea
1351 * up any GEM state.
1352 */
1353 static void i915_driver_lastclose(struct drm_device *dev)
1354 {
1355 intel_fbdev_restore_mode(dev);
1356 vga_switcheroo_process_delayed_switch();
1357 }
1358
1359 static void i915_driver_preclose(struct drm_device *dev, struct drm_file *file)
1360 {
1361 mutex_lock(&dev->struct_mutex);
1362 i915_gem_context_close(dev, file);
1363 i915_gem_release(dev, file);
1364 mutex_unlock(&dev->struct_mutex);
1365 }
1366
1367 static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1368 {
1369 struct drm_i915_file_private *file_priv = file->driver_priv;
1370
1371 kfree(file_priv);
1372 }
1373
1374 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1375 {
1376 struct drm_device *dev = &dev_priv->drm;
1377 struct intel_encoder *encoder;
1378
1379 drm_modeset_lock_all(dev);
1380 for_each_intel_encoder(dev, encoder)
1381 if (encoder->suspend)
1382 encoder->suspend(encoder);
1383 drm_modeset_unlock_all(dev);
1384 }
1385
1386 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1387 bool rpm_resume);
1388 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1389
1390 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1391 {
1392 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
1393 if (acpi_target_system_state() < ACPI_STATE_S3)
1394 return true;
1395 #endif
1396 return false;
1397 }
1398
1399 static int i915_drm_suspend(struct drm_device *dev)
1400 {
1401 struct drm_i915_private *dev_priv = to_i915(dev);
1402 struct pci_dev *pdev = dev_priv->drm.pdev;
1403 pci_power_t opregion_target_state;
1404 int error;
1405
1406 /* ignore lid events during suspend */
1407 mutex_lock(&dev_priv->modeset_restore_lock);
1408 dev_priv->modeset_restore = MODESET_SUSPENDED;
1409 mutex_unlock(&dev_priv->modeset_restore_lock);
1410
1411 disable_rpm_wakeref_asserts(dev_priv);
1412
1413 /* We do a lot of poking in a lot of registers, make sure they work
1414 * properly. */
1415 intel_display_set_init_power(dev_priv, true);
1416
1417 drm_kms_helper_poll_disable(dev);
1418
1419 pci_save_state(pdev);
1420
1421 error = i915_gem_suspend(dev);
1422 if (error) {
1423 dev_err(&pdev->dev,
1424 "GEM idle failed, resume might fail\n");
1425 goto out;
1426 }
1427
1428 intel_guc_suspend(dev);
1429
1430 intel_display_suspend(dev);
1431
1432 intel_dp_mst_suspend(dev);
1433
1434 intel_runtime_pm_disable_interrupts(dev_priv);
1435 intel_hpd_cancel_work(dev_priv);
1436
1437 intel_suspend_encoders(dev_priv);
1438
1439 intel_suspend_hw(dev_priv);
1440
1441 i915_gem_suspend_gtt_mappings(dev);
1442
1443 i915_save_state(dev);
1444
1445 opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1446 intel_opregion_notify_adapter(dev_priv, opregion_target_state);
1447
1448 intel_uncore_forcewake_reset(dev_priv, false);
1449 intel_opregion_unregister(dev_priv);
1450
1451 intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1452
1453 dev_priv->suspend_count++;
1454
1455 intel_csr_ucode_suspend(dev_priv);
1456
1457 out:
1458 enable_rpm_wakeref_asserts(dev_priv);
1459
1460 return error;
1461 }
1462
1463 static int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
1464 {
1465 struct drm_i915_private *dev_priv = to_i915(dev);
1466 struct pci_dev *pdev = dev_priv->drm.pdev;
1467 bool fw_csr;
1468 int ret;
1469
1470 disable_rpm_wakeref_asserts(dev_priv);
1471
1472 intel_display_set_init_power(dev_priv, false);
1473
1474 fw_csr = !IS_BROXTON(dev_priv) &&
1475 suspend_to_idle(dev_priv) && dev_priv->csr.dmc_payload;
1476 /*
1477 * In case of firmware assisted context save/restore don't manually
1478 * deinit the power domains. This also means the CSR/DMC firmware will
1479 * stay active, it will power down any HW resources as required and
1480 * also enable deeper system power states that would be blocked if the
1481 * firmware was inactive.
1482 */
1483 if (!fw_csr)
1484 intel_power_domains_suspend(dev_priv);
1485
1486 ret = 0;
1487 if (IS_BROXTON(dev_priv))
1488 bxt_enable_dc9(dev_priv);
1489 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1490 hsw_enable_pc8(dev_priv);
1491 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1492 ret = vlv_suspend_complete(dev_priv);
1493
1494 if (ret) {
1495 DRM_ERROR("Suspend complete failed: %d\n", ret);
1496 if (!fw_csr)
1497 intel_power_domains_init_hw(dev_priv, true);
1498
1499 goto out;
1500 }
1501
1502 pci_disable_device(pdev);
1503 /*
1504 * During hibernation on some platforms the BIOS may try to access
1505 * the device even though it's already in D3 and hang the machine. So
1506 * leave the device in D0 on those platforms and hope the BIOS will
1507 * power down the device properly. The issue was seen on multiple old
1508 * GENs with different BIOS vendors, so having an explicit blacklist
1509 * is inpractical; apply the workaround on everything pre GEN6. The
1510 * platforms where the issue was seen:
1511 * Lenovo Thinkpad X301, X61s, X60, T60, X41
1512 * Fujitsu FSC S7110
1513 * Acer Aspire 1830T
1514 */
1515 if (!(hibernation && INTEL_INFO(dev_priv)->gen < 6))
1516 pci_set_power_state(pdev, PCI_D3hot);
1517
1518 dev_priv->suspended_to_idle = suspend_to_idle(dev_priv);
1519
1520 out:
1521 enable_rpm_wakeref_asserts(dev_priv);
1522
1523 return ret;
1524 }
1525
1526 int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
1527 {
1528 int error;
1529
1530 if (!dev) {
1531 DRM_ERROR("dev: %p\n", dev);
1532 DRM_ERROR("DRM not initialized, aborting suspend.\n");
1533 return -ENODEV;
1534 }
1535
1536 if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
1537 state.event != PM_EVENT_FREEZE))
1538 return -EINVAL;
1539
1540 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1541 return 0;
1542
1543 error = i915_drm_suspend(dev);
1544 if (error)
1545 return error;
1546
1547 return i915_drm_suspend_late(dev, false);
1548 }
1549
1550 static int i915_drm_resume(struct drm_device *dev)
1551 {
1552 struct drm_i915_private *dev_priv = to_i915(dev);
1553 int ret;
1554
1555 disable_rpm_wakeref_asserts(dev_priv);
1556 intel_sanitize_gt_powersave(dev_priv);
1557
1558 ret = i915_ggtt_enable_hw(dev_priv);
1559 if (ret)
1560 DRM_ERROR("failed to re-enable GGTT\n");
1561
1562 intel_csr_ucode_resume(dev_priv);
1563
1564 i915_gem_resume(dev);
1565
1566 i915_restore_state(dev);
1567 intel_pps_unlock_regs_wa(dev_priv);
1568 intel_opregion_setup(dev_priv);
1569
1570 intel_init_pch_refclk(dev);
1571 drm_mode_config_reset(dev);
1572
1573 /*
1574 * Interrupts have to be enabled before any batches are run. If not the
1575 * GPU will hang. i915_gem_init_hw() will initiate batches to
1576 * update/restore the context.
1577 *
1578 * Modeset enabling in intel_modeset_init_hw() also needs working
1579 * interrupts.
1580 */
1581 intel_runtime_pm_enable_interrupts(dev_priv);
1582
1583 mutex_lock(&dev->struct_mutex);
1584 if (i915_gem_init_hw(dev)) {
1585 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
1586 i915_gem_set_wedged(dev_priv);
1587 }
1588 mutex_unlock(&dev->struct_mutex);
1589
1590 intel_guc_resume(dev);
1591
1592 intel_modeset_init_hw(dev);
1593
1594 spin_lock_irq(&dev_priv->irq_lock);
1595 if (dev_priv->display.hpd_irq_setup)
1596 dev_priv->display.hpd_irq_setup(dev_priv);
1597 spin_unlock_irq(&dev_priv->irq_lock);
1598
1599 intel_dp_mst_resume(dev);
1600
1601 intel_display_resume(dev);
1602
1603 /*
1604 * ... but also need to make sure that hotplug processing
1605 * doesn't cause havoc. Like in the driver load code we don't
1606 * bother with the tiny race here where we might loose hotplug
1607 * notifications.
1608 * */
1609 intel_hpd_init(dev_priv);
1610 /* Config may have changed between suspend and resume */
1611 drm_helper_hpd_irq_event(dev);
1612
1613 intel_opregion_register(dev_priv);
1614
1615 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
1616
1617 mutex_lock(&dev_priv->modeset_restore_lock);
1618 dev_priv->modeset_restore = MODESET_DONE;
1619 mutex_unlock(&dev_priv->modeset_restore_lock);
1620
1621 intel_opregion_notify_adapter(dev_priv, PCI_D0);
1622
1623 intel_autoenable_gt_powersave(dev_priv);
1624 drm_kms_helper_poll_enable(dev);
1625
1626 enable_rpm_wakeref_asserts(dev_priv);
1627
1628 return 0;
1629 }
1630
1631 static int i915_drm_resume_early(struct drm_device *dev)
1632 {
1633 struct drm_i915_private *dev_priv = to_i915(dev);
1634 struct pci_dev *pdev = dev_priv->drm.pdev;
1635 int ret;
1636
1637 /*
1638 * We have a resume ordering issue with the snd-hda driver also
1639 * requiring our device to be power up. Due to the lack of a
1640 * parent/child relationship we currently solve this with an early
1641 * resume hook.
1642 *
1643 * FIXME: This should be solved with a special hdmi sink device or
1644 * similar so that power domains can be employed.
1645 */
1646
1647 /*
1648 * Note that we need to set the power state explicitly, since we
1649 * powered off the device during freeze and the PCI core won't power
1650 * it back up for us during thaw. Powering off the device during
1651 * freeze is not a hard requirement though, and during the
1652 * suspend/resume phases the PCI core makes sure we get here with the
1653 * device powered on. So in case we change our freeze logic and keep
1654 * the device powered we can also remove the following set power state
1655 * call.
1656 */
1657 ret = pci_set_power_state(pdev, PCI_D0);
1658 if (ret) {
1659 DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
1660 goto out;
1661 }
1662
1663 /*
1664 * Note that pci_enable_device() first enables any parent bridge
1665 * device and only then sets the power state for this device. The
1666 * bridge enabling is a nop though, since bridge devices are resumed
1667 * first. The order of enabling power and enabling the device is
1668 * imposed by the PCI core as described above, so here we preserve the
1669 * same order for the freeze/thaw phases.
1670 *
1671 * TODO: eventually we should remove pci_disable_device() /
1672 * pci_enable_enable_device() from suspend/resume. Due to how they
1673 * depend on the device enable refcount we can't anyway depend on them
1674 * disabling/enabling the device.
1675 */
1676 if (pci_enable_device(pdev)) {
1677 ret = -EIO;
1678 goto out;
1679 }
1680
1681 pci_set_master(pdev);
1682
1683 disable_rpm_wakeref_asserts(dev_priv);
1684
1685 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1686 ret = vlv_resume_prepare(dev_priv, false);
1687 if (ret)
1688 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
1689 ret);
1690
1691 intel_uncore_early_sanitize(dev_priv, true);
1692
1693 if (IS_BROXTON(dev_priv)) {
1694 if (!dev_priv->suspended_to_idle)
1695 gen9_sanitize_dc_state(dev_priv);
1696 bxt_disable_dc9(dev_priv);
1697 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1698 hsw_disable_pc8(dev_priv);
1699 }
1700
1701 intel_uncore_sanitize(dev_priv);
1702
1703 if (IS_BROXTON(dev_priv) ||
1704 !(dev_priv->suspended_to_idle && dev_priv->csr.dmc_payload))
1705 intel_power_domains_init_hw(dev_priv, true);
1706
1707 enable_rpm_wakeref_asserts(dev_priv);
1708
1709 out:
1710 dev_priv->suspended_to_idle = false;
1711
1712 return ret;
1713 }
1714
1715 int i915_resume_switcheroo(struct drm_device *dev)
1716 {
1717 int ret;
1718
1719 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1720 return 0;
1721
1722 ret = i915_drm_resume_early(dev);
1723 if (ret)
1724 return ret;
1725
1726 return i915_drm_resume(dev);
1727 }
1728
1729 static void disable_engines_irq(struct drm_i915_private *dev_priv)
1730 {
1731 struct intel_engine_cs *engine;
1732 enum intel_engine_id id;
1733
1734 /* Ensure irq handler finishes, and not run again. */
1735 disable_irq(dev_priv->drm.irq);
1736 for_each_engine(engine, dev_priv, id)
1737 tasklet_kill(&engine->irq_tasklet);
1738 }
1739
1740 static void enable_engines_irq(struct drm_i915_private *dev_priv)
1741 {
1742 enable_irq(dev_priv->drm.irq);
1743 }
1744
1745 /**
1746 * i915_reset - reset chip after a hang
1747 * @dev: drm device to reset
1748 *
1749 * Reset the chip. Useful if a hang is detected. Marks the device as wedged
1750 * on failure.
1751 *
1752 * Caller must hold the struct_mutex.
1753 *
1754 * Procedure is fairly simple:
1755 * - reset the chip using the reset reg
1756 * - re-init context state
1757 * - re-init hardware status page
1758 * - re-init ring buffer
1759 * - re-init interrupt state
1760 * - re-init display
1761 */
1762 void i915_reset(struct drm_i915_private *dev_priv)
1763 {
1764 struct drm_device *dev = &dev_priv->drm;
1765 struct i915_gpu_error *error = &dev_priv->gpu_error;
1766 int ret;
1767
1768 lockdep_assert_held(&dev->struct_mutex);
1769
1770 if (!test_and_clear_bit(I915_RESET_IN_PROGRESS, &error->flags))
1771 return;
1772
1773 /* Clear any previous failed attempts at recovery. Time to try again. */
1774 __clear_bit(I915_WEDGED, &error->flags);
1775 error->reset_count++;
1776
1777 pr_notice("drm/i915: Resetting chip after gpu hang\n");
1778
1779 disable_engines_irq(dev_priv);
1780 ret = intel_gpu_reset(dev_priv, ALL_ENGINES);
1781 enable_engines_irq(dev_priv);
1782
1783 if (ret) {
1784 if (ret != -ENODEV)
1785 DRM_ERROR("Failed to reset chip: %i\n", ret);
1786 else
1787 DRM_DEBUG_DRIVER("GPU reset disabled\n");
1788 goto error;
1789 }
1790
1791 i915_gem_reset(dev_priv);
1792 intel_overlay_reset(dev_priv);
1793
1794 /* Ok, now get things going again... */
1795
1796 /*
1797 * Everything depends on having the GTT running, so we need to start
1798 * there. Fortunately we don't need to do this unless we reset the
1799 * chip at a PCI level.
1800 *
1801 * Next we need to restore the context, but we don't use those
1802 * yet either...
1803 *
1804 * Ring buffer needs to be re-initialized in the KMS case, or if X
1805 * was running at the time of the reset (i.e. we weren't VT
1806 * switched away).
1807 */
1808 ret = i915_gem_init_hw(dev);
1809 if (ret) {
1810 DRM_ERROR("Failed hw init on reset %d\n", ret);
1811 goto error;
1812 }
1813
1814 wakeup:
1815 wake_up_bit(&error->flags, I915_RESET_IN_PROGRESS);
1816 return;
1817
1818 error:
1819 i915_gem_set_wedged(dev_priv);
1820 goto wakeup;
1821 }
1822
1823 static int i915_pm_suspend(struct device *kdev)
1824 {
1825 struct pci_dev *pdev = to_pci_dev(kdev);
1826 struct drm_device *dev = pci_get_drvdata(pdev);
1827
1828 if (!dev) {
1829 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
1830 return -ENODEV;
1831 }
1832
1833 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1834 return 0;
1835
1836 return i915_drm_suspend(dev);
1837 }
1838
1839 static int i915_pm_suspend_late(struct device *kdev)
1840 {
1841 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1842
1843 /*
1844 * We have a suspend ordering issue with the snd-hda driver also
1845 * requiring our device to be power up. Due to the lack of a
1846 * parent/child relationship we currently solve this with an late
1847 * suspend hook.
1848 *
1849 * FIXME: This should be solved with a special hdmi sink device or
1850 * similar so that power domains can be employed.
1851 */
1852 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1853 return 0;
1854
1855 return i915_drm_suspend_late(dev, false);
1856 }
1857
1858 static int i915_pm_poweroff_late(struct device *kdev)
1859 {
1860 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1861
1862 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1863 return 0;
1864
1865 return i915_drm_suspend_late(dev, true);
1866 }
1867
1868 static int i915_pm_resume_early(struct device *kdev)
1869 {
1870 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1871
1872 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1873 return 0;
1874
1875 return i915_drm_resume_early(dev);
1876 }
1877
1878 static int i915_pm_resume(struct device *kdev)
1879 {
1880 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1881
1882 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1883 return 0;
1884
1885 return i915_drm_resume(dev);
1886 }
1887
1888 /* freeze: before creating the hibernation_image */
1889 static int i915_pm_freeze(struct device *kdev)
1890 {
1891 int ret;
1892
1893 ret = i915_pm_suspend(kdev);
1894 if (ret)
1895 return ret;
1896
1897 ret = i915_gem_freeze(kdev_to_i915(kdev));
1898 if (ret)
1899 return ret;
1900
1901 return 0;
1902 }
1903
1904 static int i915_pm_freeze_late(struct device *kdev)
1905 {
1906 int ret;
1907
1908 ret = i915_pm_suspend_late(kdev);
1909 if (ret)
1910 return ret;
1911
1912 ret = i915_gem_freeze_late(kdev_to_i915(kdev));
1913 if (ret)
1914 return ret;
1915
1916 return 0;
1917 }
1918
1919 /* thaw: called after creating the hibernation image, but before turning off. */
1920 static int i915_pm_thaw_early(struct device *kdev)
1921 {
1922 return i915_pm_resume_early(kdev);
1923 }
1924
1925 static int i915_pm_thaw(struct device *kdev)
1926 {
1927 return i915_pm_resume(kdev);
1928 }
1929
1930 /* restore: called after loading the hibernation image. */
1931 static int i915_pm_restore_early(struct device *kdev)
1932 {
1933 return i915_pm_resume_early(kdev);
1934 }
1935
1936 static int i915_pm_restore(struct device *kdev)
1937 {
1938 return i915_pm_resume(kdev);
1939 }
1940
1941 /*
1942 * Save all Gunit registers that may be lost after a D3 and a subsequent
1943 * S0i[R123] transition. The list of registers needing a save/restore is
1944 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
1945 * registers in the following way:
1946 * - Driver: saved/restored by the driver
1947 * - Punit : saved/restored by the Punit firmware
1948 * - No, w/o marking: no need to save/restore, since the register is R/O or
1949 * used internally by the HW in a way that doesn't depend
1950 * keeping the content across a suspend/resume.
1951 * - Debug : used for debugging
1952 *
1953 * We save/restore all registers marked with 'Driver', with the following
1954 * exceptions:
1955 * - Registers out of use, including also registers marked with 'Debug'.
1956 * These have no effect on the driver's operation, so we don't save/restore
1957 * them to reduce the overhead.
1958 * - Registers that are fully setup by an initialization function called from
1959 * the resume path. For example many clock gating and RPS/RC6 registers.
1960 * - Registers that provide the right functionality with their reset defaults.
1961 *
1962 * TODO: Except for registers that based on the above 3 criteria can be safely
1963 * ignored, we save/restore all others, practically treating the HW context as
1964 * a black-box for the driver. Further investigation is needed to reduce the
1965 * saved/restored registers even further, by following the same 3 criteria.
1966 */
1967 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1968 {
1969 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1970 int i;
1971
1972 /* GAM 0x4000-0x4770 */
1973 s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
1974 s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
1975 s->arb_mode = I915_READ(ARB_MODE);
1976 s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
1977 s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
1978
1979 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
1980 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
1981
1982 s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
1983 s->gfx_max_req_count = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
1984
1985 s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
1986 s->ecochk = I915_READ(GAM_ECOCHK);
1987 s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
1988 s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
1989
1990 s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
1991
1992 /* MBC 0x9024-0x91D0, 0x8500 */
1993 s->g3dctl = I915_READ(VLV_G3DCTL);
1994 s->gsckgctl = I915_READ(VLV_GSCKGCTL);
1995 s->mbctl = I915_READ(GEN6_MBCTL);
1996
1997 /* GCP 0x9400-0x9424, 0x8100-0x810C */
1998 s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
1999 s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
2000 s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
2001 s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
2002 s->rstctl = I915_READ(GEN6_RSTCTL);
2003 s->misccpctl = I915_READ(GEN7_MISCCPCTL);
2004
2005 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2006 s->gfxpause = I915_READ(GEN6_GFXPAUSE);
2007 s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
2008 s->rpdeuc = I915_READ(GEN6_RPDEUC);
2009 s->ecobus = I915_READ(ECOBUS);
2010 s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
2011 s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
2012 s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
2013 s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
2014 s->rcedata = I915_READ(VLV_RCEDATA);
2015 s->spare2gh = I915_READ(VLV_SPAREG2H);
2016
2017 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2018 s->gt_imr = I915_READ(GTIMR);
2019 s->gt_ier = I915_READ(GTIER);
2020 s->pm_imr = I915_READ(GEN6_PMIMR);
2021 s->pm_ier = I915_READ(GEN6_PMIER);
2022
2023 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2024 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
2025
2026 /* GT SA CZ domain, 0x100000-0x138124 */
2027 s->tilectl = I915_READ(TILECTL);
2028 s->gt_fifoctl = I915_READ(GTFIFOCTL);
2029 s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
2030 s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2031 s->pmwgicz = I915_READ(VLV_PMWGICZ);
2032
2033 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2034 s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
2035 s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
2036 s->pcbr = I915_READ(VLV_PCBR);
2037 s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
2038
2039 /*
2040 * Not saving any of:
2041 * DFT, 0x9800-0x9EC0
2042 * SARB, 0xB000-0xB1FC
2043 * GAC, 0x5208-0x524C, 0x14000-0x14C000
2044 * PCI CFG
2045 */
2046 }
2047
2048 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2049 {
2050 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2051 u32 val;
2052 int i;
2053
2054 /* GAM 0x4000-0x4770 */
2055 I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
2056 I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
2057 I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
2058 I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
2059 I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
2060
2061 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2062 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2063
2064 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2065 I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2066
2067 I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
2068 I915_WRITE(GAM_ECOCHK, s->ecochk);
2069 I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
2070 I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
2071
2072 I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
2073
2074 /* MBC 0x9024-0x91D0, 0x8500 */
2075 I915_WRITE(VLV_G3DCTL, s->g3dctl);
2076 I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
2077 I915_WRITE(GEN6_MBCTL, s->mbctl);
2078
2079 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2080 I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
2081 I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
2082 I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
2083 I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
2084 I915_WRITE(GEN6_RSTCTL, s->rstctl);
2085 I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
2086
2087 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2088 I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
2089 I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
2090 I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
2091 I915_WRITE(ECOBUS, s->ecobus);
2092 I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
2093 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2094 I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
2095 I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
2096 I915_WRITE(VLV_RCEDATA, s->rcedata);
2097 I915_WRITE(VLV_SPAREG2H, s->spare2gh);
2098
2099 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2100 I915_WRITE(GTIMR, s->gt_imr);
2101 I915_WRITE(GTIER, s->gt_ier);
2102 I915_WRITE(GEN6_PMIMR, s->pm_imr);
2103 I915_WRITE(GEN6_PMIER, s->pm_ier);
2104
2105 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2106 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2107
2108 /* GT SA CZ domain, 0x100000-0x138124 */
2109 I915_WRITE(TILECTL, s->tilectl);
2110 I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
2111 /*
2112 * Preserve the GT allow wake and GFX force clock bit, they are not
2113 * be restored, as they are used to control the s0ix suspend/resume
2114 * sequence by the caller.
2115 */
2116 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2117 val &= VLV_GTLC_ALLOWWAKEREQ;
2118 val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2119 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2120
2121 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2122 val &= VLV_GFX_CLK_FORCE_ON_BIT;
2123 val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2124 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2125
2126 I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
2127
2128 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2129 I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
2130 I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
2131 I915_WRITE(VLV_PCBR, s->pcbr);
2132 I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
2133 }
2134
2135 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2136 {
2137 u32 val;
2138 int err;
2139
2140 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2141 val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2142 if (force_on)
2143 val |= VLV_GFX_CLK_FORCE_ON_BIT;
2144 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2145
2146 if (!force_on)
2147 return 0;
2148
2149 err = intel_wait_for_register(dev_priv,
2150 VLV_GTLC_SURVIVABILITY_REG,
2151 VLV_GFX_CLK_STATUS_BIT,
2152 VLV_GFX_CLK_STATUS_BIT,
2153 20);
2154 if (err)
2155 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2156 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2157
2158 return err;
2159 }
2160
2161 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2162 {
2163 u32 val;
2164 int err = 0;
2165
2166 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2167 val &= ~VLV_GTLC_ALLOWWAKEREQ;
2168 if (allow)
2169 val |= VLV_GTLC_ALLOWWAKEREQ;
2170 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2171 POSTING_READ(VLV_GTLC_WAKE_CTRL);
2172
2173 err = intel_wait_for_register(dev_priv,
2174 VLV_GTLC_PW_STATUS,
2175 VLV_GTLC_ALLOWWAKEACK,
2176 allow,
2177 1);
2178 if (err)
2179 DRM_ERROR("timeout disabling GT waking\n");
2180
2181 return err;
2182 }
2183
2184 static int vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2185 bool wait_for_on)
2186 {
2187 u32 mask;
2188 u32 val;
2189 int err;
2190
2191 mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2192 val = wait_for_on ? mask : 0;
2193 if ((I915_READ(VLV_GTLC_PW_STATUS) & mask) == val)
2194 return 0;
2195
2196 DRM_DEBUG_KMS("waiting for GT wells to go %s (%08x)\n",
2197 onoff(wait_for_on),
2198 I915_READ(VLV_GTLC_PW_STATUS));
2199
2200 /*
2201 * RC6 transitioning can be delayed up to 2 msec (see
2202 * valleyview_enable_rps), use 3 msec for safety.
2203 */
2204 err = intel_wait_for_register(dev_priv,
2205 VLV_GTLC_PW_STATUS, mask, val,
2206 3);
2207 if (err)
2208 DRM_ERROR("timeout waiting for GT wells to go %s\n",
2209 onoff(wait_for_on));
2210
2211 return err;
2212 }
2213
2214 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2215 {
2216 if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2217 return;
2218
2219 DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2220 I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2221 }
2222
2223 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2224 {
2225 u32 mask;
2226 int err;
2227
2228 /*
2229 * Bspec defines the following GT well on flags as debug only, so
2230 * don't treat them as hard failures.
2231 */
2232 (void)vlv_wait_for_gt_wells(dev_priv, false);
2233
2234 mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2235 WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2236
2237 vlv_check_no_gt_access(dev_priv);
2238
2239 err = vlv_force_gfx_clock(dev_priv, true);
2240 if (err)
2241 goto err1;
2242
2243 err = vlv_allow_gt_wake(dev_priv, false);
2244 if (err)
2245 goto err2;
2246
2247 if (!IS_CHERRYVIEW(dev_priv))
2248 vlv_save_gunit_s0ix_state(dev_priv);
2249
2250 err = vlv_force_gfx_clock(dev_priv, false);
2251 if (err)
2252 goto err2;
2253
2254 return 0;
2255
2256 err2:
2257 /* For safety always re-enable waking and disable gfx clock forcing */
2258 vlv_allow_gt_wake(dev_priv, true);
2259 err1:
2260 vlv_force_gfx_clock(dev_priv, false);
2261
2262 return err;
2263 }
2264
2265 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2266 bool rpm_resume)
2267 {
2268 int err;
2269 int ret;
2270
2271 /*
2272 * If any of the steps fail just try to continue, that's the best we
2273 * can do at this point. Return the first error code (which will also
2274 * leave RPM permanently disabled).
2275 */
2276 ret = vlv_force_gfx_clock(dev_priv, true);
2277
2278 if (!IS_CHERRYVIEW(dev_priv))
2279 vlv_restore_gunit_s0ix_state(dev_priv);
2280
2281 err = vlv_allow_gt_wake(dev_priv, true);
2282 if (!ret)
2283 ret = err;
2284
2285 err = vlv_force_gfx_clock(dev_priv, false);
2286 if (!ret)
2287 ret = err;
2288
2289 vlv_check_no_gt_access(dev_priv);
2290
2291 if (rpm_resume)
2292 intel_init_clock_gating(dev_priv);
2293
2294 return ret;
2295 }
2296
2297 static int intel_runtime_suspend(struct device *kdev)
2298 {
2299 struct pci_dev *pdev = to_pci_dev(kdev);
2300 struct drm_device *dev = pci_get_drvdata(pdev);
2301 struct drm_i915_private *dev_priv = to_i915(dev);
2302 int ret;
2303
2304 if (WARN_ON_ONCE(!(dev_priv->rps.enabled && intel_enable_rc6())))
2305 return -ENODEV;
2306
2307 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2308 return -ENODEV;
2309
2310 DRM_DEBUG_KMS("Suspending device\n");
2311
2312 disable_rpm_wakeref_asserts(dev_priv);
2313
2314 /*
2315 * We are safe here against re-faults, since the fault handler takes
2316 * an RPM reference.
2317 */
2318 i915_gem_runtime_suspend(dev_priv);
2319
2320 intel_guc_suspend(dev);
2321
2322 intel_runtime_pm_disable_interrupts(dev_priv);
2323
2324 ret = 0;
2325 if (IS_BROXTON(dev_priv)) {
2326 bxt_display_core_uninit(dev_priv);
2327 bxt_enable_dc9(dev_priv);
2328 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2329 hsw_enable_pc8(dev_priv);
2330 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2331 ret = vlv_suspend_complete(dev_priv);
2332 }
2333
2334 if (ret) {
2335 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2336 intel_runtime_pm_enable_interrupts(dev_priv);
2337
2338 enable_rpm_wakeref_asserts(dev_priv);
2339
2340 return ret;
2341 }
2342
2343 intel_uncore_forcewake_reset(dev_priv, false);
2344
2345 enable_rpm_wakeref_asserts(dev_priv);
2346 WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
2347
2348 if (intel_uncore_arm_unclaimed_mmio_detection(dev_priv))
2349 DRM_ERROR("Unclaimed access detected prior to suspending\n");
2350
2351 dev_priv->pm.suspended = true;
2352
2353 /*
2354 * FIXME: We really should find a document that references the arguments
2355 * used below!
2356 */
2357 if (IS_BROADWELL(dev_priv)) {
2358 /*
2359 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2360 * being detected, and the call we do at intel_runtime_resume()
2361 * won't be able to restore them. Since PCI_D3hot matches the
2362 * actual specification and appears to be working, use it.
2363 */
2364 intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2365 } else {
2366 /*
2367 * current versions of firmware which depend on this opregion
2368 * notification have repurposed the D1 definition to mean
2369 * "runtime suspended" vs. what you would normally expect (D3)
2370 * to distinguish it from notifications that might be sent via
2371 * the suspend path.
2372 */
2373 intel_opregion_notify_adapter(dev_priv, PCI_D1);
2374 }
2375
2376 assert_forcewakes_inactive(dev_priv);
2377
2378 if (!IS_VALLEYVIEW(dev_priv) || !IS_CHERRYVIEW(dev_priv))
2379 intel_hpd_poll_init(dev_priv);
2380
2381 DRM_DEBUG_KMS("Device suspended\n");
2382 return 0;
2383 }
2384
2385 static int intel_runtime_resume(struct device *kdev)
2386 {
2387 struct pci_dev *pdev = to_pci_dev(kdev);
2388 struct drm_device *dev = pci_get_drvdata(pdev);
2389 struct drm_i915_private *dev_priv = to_i915(dev);
2390 int ret = 0;
2391
2392 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2393 return -ENODEV;
2394
2395 DRM_DEBUG_KMS("Resuming device\n");
2396
2397 WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
2398 disable_rpm_wakeref_asserts(dev_priv);
2399
2400 intel_opregion_notify_adapter(dev_priv, PCI_D0);
2401 dev_priv->pm.suspended = false;
2402 if (intel_uncore_unclaimed_mmio(dev_priv))
2403 DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
2404
2405 intel_guc_resume(dev);
2406
2407 if (IS_GEN6(dev_priv))
2408 intel_init_pch_refclk(dev);
2409
2410 if (IS_BROXTON(dev_priv)) {
2411 bxt_disable_dc9(dev_priv);
2412 bxt_display_core_init(dev_priv, true);
2413 if (dev_priv->csr.dmc_payload &&
2414 (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2415 gen9_enable_dc5(dev_priv);
2416 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2417 hsw_disable_pc8(dev_priv);
2418 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2419 ret = vlv_resume_prepare(dev_priv, true);
2420 }
2421
2422 /*
2423 * No point of rolling back things in case of an error, as the best
2424 * we can do is to hope that things will still work (and disable RPM).
2425 */
2426 i915_gem_init_swizzling(dev);
2427
2428 intel_runtime_pm_enable_interrupts(dev_priv);
2429
2430 /*
2431 * On VLV/CHV display interrupts are part of the display
2432 * power well, so hpd is reinitialized from there. For
2433 * everyone else do it here.
2434 */
2435 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2436 intel_hpd_init(dev_priv);
2437
2438 enable_rpm_wakeref_asserts(dev_priv);
2439
2440 if (ret)
2441 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
2442 else
2443 DRM_DEBUG_KMS("Device resumed\n");
2444
2445 return ret;
2446 }
2447
2448 const struct dev_pm_ops i915_pm_ops = {
2449 /*
2450 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
2451 * PMSG_RESUME]
2452 */
2453 .suspend = i915_pm_suspend,
2454 .suspend_late = i915_pm_suspend_late,
2455 .resume_early = i915_pm_resume_early,
2456 .resume = i915_pm_resume,
2457
2458 /*
2459 * S4 event handlers
2460 * @freeze, @freeze_late : called (1) before creating the
2461 * hibernation image [PMSG_FREEZE] and
2462 * (2) after rebooting, before restoring
2463 * the image [PMSG_QUIESCE]
2464 * @thaw, @thaw_early : called (1) after creating the hibernation
2465 * image, before writing it [PMSG_THAW]
2466 * and (2) after failing to create or
2467 * restore the image [PMSG_RECOVER]
2468 * @poweroff, @poweroff_late: called after writing the hibernation
2469 * image, before rebooting [PMSG_HIBERNATE]
2470 * @restore, @restore_early : called after rebooting and restoring the
2471 * hibernation image [PMSG_RESTORE]
2472 */
2473 .freeze = i915_pm_freeze,
2474 .freeze_late = i915_pm_freeze_late,
2475 .thaw_early = i915_pm_thaw_early,
2476 .thaw = i915_pm_thaw,
2477 .poweroff = i915_pm_suspend,
2478 .poweroff_late = i915_pm_poweroff_late,
2479 .restore_early = i915_pm_restore_early,
2480 .restore = i915_pm_restore,
2481
2482 /* S0ix (via runtime suspend) event handlers */
2483 .runtime_suspend = intel_runtime_suspend,
2484 .runtime_resume = intel_runtime_resume,
2485 };
2486
2487 static const struct vm_operations_struct i915_gem_vm_ops = {
2488 .fault = i915_gem_fault,
2489 .open = drm_gem_vm_open,
2490 .close = drm_gem_vm_close,
2491 };
2492
2493 static const struct file_operations i915_driver_fops = {
2494 .owner = THIS_MODULE,
2495 .open = drm_open,
2496 .release = drm_release,
2497 .unlocked_ioctl = drm_ioctl,
2498 .mmap = drm_gem_mmap,
2499 .poll = drm_poll,
2500 .read = drm_read,
2501 #ifdef CONFIG_COMPAT
2502 .compat_ioctl = i915_compat_ioctl,
2503 #endif
2504 .llseek = noop_llseek,
2505 };
2506
2507 static int
2508 i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
2509 struct drm_file *file)
2510 {
2511 return -ENODEV;
2512 }
2513
2514 static const struct drm_ioctl_desc i915_ioctls[] = {
2515 DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2516 DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
2517 DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
2518 DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
2519 DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
2520 DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
2521 DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam, DRM_AUTH|DRM_RENDER_ALLOW),
2522 DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2523 DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
2524 DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
2525 DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2526 DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
2527 DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2528 DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2529 DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE, drm_noop, DRM_AUTH),
2530 DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
2531 DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2532 DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2533 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer, DRM_AUTH),
2534 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2, i915_gem_execbuffer2, DRM_AUTH|DRM_RENDER_ALLOW),
2535 DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2536 DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2537 DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2538 DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
2539 DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
2540 DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2541 DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2542 DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2543 DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
2544 DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
2545 DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
2546 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
2547 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_GTT, i915_gem_mmap_gtt_ioctl, DRM_RENDER_ALLOW),
2548 DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
2549 DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
2550 DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling, DRM_RENDER_ALLOW),
2551 DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling, DRM_RENDER_ALLOW),
2552 DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
2553 DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id, 0),
2554 DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
2555 DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2556 DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2557 DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey, DRM_MASTER|DRM_CONTROL_ALLOW),
2558 DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER|DRM_CONTROL_ALLOW),
2559 DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2560 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
2561 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
2562 DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
2563 DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
2564 DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
2565 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
2566 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
2567 };
2568
2569 static struct drm_driver driver = {
2570 /* Don't use MTRRs here; the Xserver or userspace app should
2571 * deal with them for Intel hardware.
2572 */
2573 .driver_features =
2574 DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
2575 DRIVER_RENDER | DRIVER_MODESET,
2576 .open = i915_driver_open,
2577 .lastclose = i915_driver_lastclose,
2578 .preclose = i915_driver_preclose,
2579 .postclose = i915_driver_postclose,
2580 .set_busid = drm_pci_set_busid,
2581
2582 .gem_close_object = i915_gem_close_object,
2583 .gem_free_object_unlocked = i915_gem_free_object,
2584 .gem_vm_ops = &i915_gem_vm_ops,
2585
2586 .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
2587 .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
2588 .gem_prime_export = i915_gem_prime_export,
2589 .gem_prime_import = i915_gem_prime_import,
2590
2591 .dumb_create = i915_gem_dumb_create,
2592 .dumb_map_offset = i915_gem_mmap_gtt,
2593 .dumb_destroy = drm_gem_dumb_destroy,
2594 .ioctls = i915_ioctls,
2595 .num_ioctls = ARRAY_SIZE(i915_ioctls),
2596 .fops = &i915_driver_fops,
2597 .name = DRIVER_NAME,
2598 .desc = DRIVER_DESC,
2599 .date = DRIVER_DATE,
2600 .major = DRIVER_MAJOR,
2601 .minor = DRIVER_MINOR,
2602 .patchlevel = DRIVER_PATCHLEVEL,
2603 };