]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.c
drm/i915: Make i915_save/restore_state and intel_i2c_reset take dev_priv
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_drv.c
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #include <linux/acpi.h>
31 #include <linux/device.h>
32 #include <linux/oom.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/pm.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/pnp.h>
38 #include <linux/slab.h>
39 #include <linux/vgaarb.h>
40 #include <linux/vga_switcheroo.h>
41 #include <linux/vt.h>
42 #include <acpi/video.h>
43
44 #include <drm/drmP.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/i915_drm.h>
47
48 #include "i915_drv.h"
49 #include "i915_trace.h"
50 #include "i915_vgpu.h"
51 #include "intel_drv.h"
52
53 static struct drm_driver driver;
54
55 static unsigned int i915_load_fail_count;
56
57 bool __i915_inject_load_failure(const char *func, int line)
58 {
59 if (i915_load_fail_count >= i915.inject_load_failure)
60 return false;
61
62 if (++i915_load_fail_count == i915.inject_load_failure) {
63 DRM_INFO("Injecting failure at checkpoint %u [%s:%d]\n",
64 i915.inject_load_failure, func, line);
65 return true;
66 }
67
68 return false;
69 }
70
71 #define FDO_BUG_URL "https://bugs.freedesktop.org/enter_bug.cgi?product=DRI"
72 #define FDO_BUG_MSG "Please file a bug at " FDO_BUG_URL " against DRM/Intel " \
73 "providing the dmesg log by booting with drm.debug=0xf"
74
75 void
76 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
77 const char *fmt, ...)
78 {
79 static bool shown_bug_once;
80 struct device *kdev = dev_priv->drm.dev;
81 bool is_error = level[1] <= KERN_ERR[1];
82 bool is_debug = level[1] == KERN_DEBUG[1];
83 struct va_format vaf;
84 va_list args;
85
86 if (is_debug && !(drm_debug & DRM_UT_DRIVER))
87 return;
88
89 va_start(args, fmt);
90
91 vaf.fmt = fmt;
92 vaf.va = &args;
93
94 dev_printk(level, kdev, "[" DRM_NAME ":%ps] %pV",
95 __builtin_return_address(0), &vaf);
96
97 if (is_error && !shown_bug_once) {
98 dev_notice(kdev, "%s", FDO_BUG_MSG);
99 shown_bug_once = true;
100 }
101
102 va_end(args);
103 }
104
105 static bool i915_error_injected(struct drm_i915_private *dev_priv)
106 {
107 return i915.inject_load_failure &&
108 i915_load_fail_count == i915.inject_load_failure;
109 }
110
111 #define i915_load_error(dev_priv, fmt, ...) \
112 __i915_printk(dev_priv, \
113 i915_error_injected(dev_priv) ? KERN_DEBUG : KERN_ERR, \
114 fmt, ##__VA_ARGS__)
115
116
117 static enum intel_pch intel_virt_detect_pch(struct drm_i915_private *dev_priv)
118 {
119 enum intel_pch ret = PCH_NOP;
120
121 /*
122 * In a virtualized passthrough environment we can be in a
123 * setup where the ISA bridge is not able to be passed through.
124 * In this case, a south bridge can be emulated and we have to
125 * make an educated guess as to which PCH is really there.
126 */
127
128 if (IS_GEN5(dev_priv)) {
129 ret = PCH_IBX;
130 DRM_DEBUG_KMS("Assuming Ibex Peak PCH\n");
131 } else if (IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv)) {
132 ret = PCH_CPT;
133 DRM_DEBUG_KMS("Assuming CouarPoint PCH\n");
134 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
135 ret = PCH_LPT;
136 DRM_DEBUG_KMS("Assuming LynxPoint PCH\n");
137 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
138 ret = PCH_SPT;
139 DRM_DEBUG_KMS("Assuming SunrisePoint PCH\n");
140 }
141
142 return ret;
143 }
144
145 static void intel_detect_pch(struct drm_i915_private *dev_priv)
146 {
147 struct pci_dev *pch = NULL;
148
149 /* In all current cases, num_pipes is equivalent to the PCH_NOP setting
150 * (which really amounts to a PCH but no South Display).
151 */
152 if (INTEL_INFO(dev_priv)->num_pipes == 0) {
153 dev_priv->pch_type = PCH_NOP;
154 return;
155 }
156
157 /*
158 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
159 * make graphics device passthrough work easy for VMM, that only
160 * need to expose ISA bridge to let driver know the real hardware
161 * underneath. This is a requirement from virtualization team.
162 *
163 * In some virtualized environments (e.g. XEN), there is irrelevant
164 * ISA bridge in the system. To work reliably, we should scan trhough
165 * all the ISA bridge devices and check for the first match, instead
166 * of only checking the first one.
167 */
168 while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
169 if (pch->vendor == PCI_VENDOR_ID_INTEL) {
170 unsigned short id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
171 dev_priv->pch_id = id;
172
173 if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
174 dev_priv->pch_type = PCH_IBX;
175 DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
176 WARN_ON(!IS_GEN5(dev_priv));
177 } else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
178 dev_priv->pch_type = PCH_CPT;
179 DRM_DEBUG_KMS("Found CougarPoint PCH\n");
180 WARN_ON(!(IS_GEN6(dev_priv) ||
181 IS_IVYBRIDGE(dev_priv)));
182 } else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
183 /* PantherPoint is CPT compatible */
184 dev_priv->pch_type = PCH_CPT;
185 DRM_DEBUG_KMS("Found PantherPoint PCH\n");
186 WARN_ON(!(IS_GEN6(dev_priv) ||
187 IS_IVYBRIDGE(dev_priv)));
188 } else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
189 dev_priv->pch_type = PCH_LPT;
190 DRM_DEBUG_KMS("Found LynxPoint PCH\n");
191 WARN_ON(!IS_HASWELL(dev_priv) &&
192 !IS_BROADWELL(dev_priv));
193 WARN_ON(IS_HSW_ULT(dev_priv) ||
194 IS_BDW_ULT(dev_priv));
195 } else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
196 dev_priv->pch_type = PCH_LPT;
197 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
198 WARN_ON(!IS_HASWELL(dev_priv) &&
199 !IS_BROADWELL(dev_priv));
200 WARN_ON(!IS_HSW_ULT(dev_priv) &&
201 !IS_BDW_ULT(dev_priv));
202 } else if (id == INTEL_PCH_SPT_DEVICE_ID_TYPE) {
203 dev_priv->pch_type = PCH_SPT;
204 DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
205 WARN_ON(!IS_SKYLAKE(dev_priv) &&
206 !IS_KABYLAKE(dev_priv));
207 } else if (id == INTEL_PCH_SPT_LP_DEVICE_ID_TYPE) {
208 dev_priv->pch_type = PCH_SPT;
209 DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
210 WARN_ON(!IS_SKYLAKE(dev_priv) &&
211 !IS_KABYLAKE(dev_priv));
212 } else if (id == INTEL_PCH_KBP_DEVICE_ID_TYPE) {
213 dev_priv->pch_type = PCH_KBP;
214 DRM_DEBUG_KMS("Found KabyPoint PCH\n");
215 WARN_ON(!IS_KABYLAKE(dev_priv));
216 } else if ((id == INTEL_PCH_P2X_DEVICE_ID_TYPE) ||
217 (id == INTEL_PCH_P3X_DEVICE_ID_TYPE) ||
218 ((id == INTEL_PCH_QEMU_DEVICE_ID_TYPE) &&
219 pch->subsystem_vendor ==
220 PCI_SUBVENDOR_ID_REDHAT_QUMRANET &&
221 pch->subsystem_device ==
222 PCI_SUBDEVICE_ID_QEMU)) {
223 dev_priv->pch_type =
224 intel_virt_detect_pch(dev_priv);
225 } else
226 continue;
227
228 break;
229 }
230 }
231 if (!pch)
232 DRM_DEBUG_KMS("No PCH found.\n");
233
234 pci_dev_put(pch);
235 }
236
237 static int i915_getparam(struct drm_device *dev, void *data,
238 struct drm_file *file_priv)
239 {
240 struct drm_i915_private *dev_priv = to_i915(dev);
241 struct pci_dev *pdev = dev_priv->drm.pdev;
242 drm_i915_getparam_t *param = data;
243 int value;
244
245 switch (param->param) {
246 case I915_PARAM_IRQ_ACTIVE:
247 case I915_PARAM_ALLOW_BATCHBUFFER:
248 case I915_PARAM_LAST_DISPATCH:
249 /* Reject all old ums/dri params. */
250 return -ENODEV;
251 case I915_PARAM_CHIPSET_ID:
252 value = pdev->device;
253 break;
254 case I915_PARAM_REVISION:
255 value = pdev->revision;
256 break;
257 case I915_PARAM_NUM_FENCES_AVAIL:
258 value = dev_priv->num_fence_regs;
259 break;
260 case I915_PARAM_HAS_OVERLAY:
261 value = dev_priv->overlay ? 1 : 0;
262 break;
263 case I915_PARAM_HAS_BSD:
264 value = !!dev_priv->engine[VCS];
265 break;
266 case I915_PARAM_HAS_BLT:
267 value = !!dev_priv->engine[BCS];
268 break;
269 case I915_PARAM_HAS_VEBOX:
270 value = !!dev_priv->engine[VECS];
271 break;
272 case I915_PARAM_HAS_BSD2:
273 value = !!dev_priv->engine[VCS2];
274 break;
275 case I915_PARAM_HAS_EXEC_CONSTANTS:
276 value = INTEL_GEN(dev_priv) >= 4;
277 break;
278 case I915_PARAM_HAS_LLC:
279 value = HAS_LLC(dev_priv);
280 break;
281 case I915_PARAM_HAS_WT:
282 value = HAS_WT(dev_priv);
283 break;
284 case I915_PARAM_HAS_ALIASING_PPGTT:
285 value = USES_PPGTT(dev_priv);
286 break;
287 case I915_PARAM_HAS_SEMAPHORES:
288 value = i915.semaphores;
289 break;
290 case I915_PARAM_HAS_SECURE_BATCHES:
291 value = capable(CAP_SYS_ADMIN);
292 break;
293 case I915_PARAM_CMD_PARSER_VERSION:
294 value = i915_cmd_parser_get_version(dev_priv);
295 break;
296 case I915_PARAM_SUBSLICE_TOTAL:
297 value = sseu_subslice_total(&INTEL_INFO(dev_priv)->sseu);
298 if (!value)
299 return -ENODEV;
300 break;
301 case I915_PARAM_EU_TOTAL:
302 value = INTEL_INFO(dev_priv)->sseu.eu_total;
303 if (!value)
304 return -ENODEV;
305 break;
306 case I915_PARAM_HAS_GPU_RESET:
307 value = i915.enable_hangcheck && intel_has_gpu_reset(dev_priv);
308 break;
309 case I915_PARAM_HAS_RESOURCE_STREAMER:
310 value = HAS_RESOURCE_STREAMER(dev_priv);
311 break;
312 case I915_PARAM_HAS_POOLED_EU:
313 value = HAS_POOLED_EU(dev_priv);
314 break;
315 case I915_PARAM_MIN_EU_IN_POOL:
316 value = INTEL_INFO(dev_priv)->sseu.min_eu_in_pool;
317 break;
318 case I915_PARAM_MMAP_GTT_VERSION:
319 /* Though we've started our numbering from 1, and so class all
320 * earlier versions as 0, in effect their value is undefined as
321 * the ioctl will report EINVAL for the unknown param!
322 */
323 value = i915_gem_mmap_gtt_version();
324 break;
325 case I915_PARAM_HAS_SCHEDULER:
326 value = dev_priv->engine[RCS] &&
327 dev_priv->engine[RCS]->schedule;
328 break;
329 case I915_PARAM_MMAP_VERSION:
330 /* Remember to bump this if the version changes! */
331 case I915_PARAM_HAS_GEM:
332 case I915_PARAM_HAS_PAGEFLIPPING:
333 case I915_PARAM_HAS_EXECBUF2: /* depends on GEM */
334 case I915_PARAM_HAS_RELAXED_FENCING:
335 case I915_PARAM_HAS_COHERENT_RINGS:
336 case I915_PARAM_HAS_RELAXED_DELTA:
337 case I915_PARAM_HAS_GEN7_SOL_RESET:
338 case I915_PARAM_HAS_WAIT_TIMEOUT:
339 case I915_PARAM_HAS_PRIME_VMAP_FLUSH:
340 case I915_PARAM_HAS_PINNED_BATCHES:
341 case I915_PARAM_HAS_EXEC_NO_RELOC:
342 case I915_PARAM_HAS_EXEC_HANDLE_LUT:
343 case I915_PARAM_HAS_COHERENT_PHYS_GTT:
344 case I915_PARAM_HAS_EXEC_SOFTPIN:
345 /* For the time being all of these are always true;
346 * if some supported hardware does not have one of these
347 * features this value needs to be provided from
348 * INTEL_INFO(), a feature macro, or similar.
349 */
350 value = 1;
351 break;
352 default:
353 DRM_DEBUG("Unknown parameter %d\n", param->param);
354 return -EINVAL;
355 }
356
357 if (put_user(value, param->value))
358 return -EFAULT;
359
360 return 0;
361 }
362
363 static int i915_get_bridge_dev(struct drm_i915_private *dev_priv)
364 {
365 dev_priv->bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0));
366 if (!dev_priv->bridge_dev) {
367 DRM_ERROR("bridge device not found\n");
368 return -1;
369 }
370 return 0;
371 }
372
373 /* Allocate space for the MCH regs if needed, return nonzero on error */
374 static int
375 intel_alloc_mchbar_resource(struct drm_i915_private *dev_priv)
376 {
377 int reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
378 u32 temp_lo, temp_hi = 0;
379 u64 mchbar_addr;
380 int ret;
381
382 if (INTEL_GEN(dev_priv) >= 4)
383 pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
384 pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
385 mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
386
387 /* If ACPI doesn't have it, assume we need to allocate it ourselves */
388 #ifdef CONFIG_PNP
389 if (mchbar_addr &&
390 pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
391 return 0;
392 #endif
393
394 /* Get some space for it */
395 dev_priv->mch_res.name = "i915 MCHBAR";
396 dev_priv->mch_res.flags = IORESOURCE_MEM;
397 ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
398 &dev_priv->mch_res,
399 MCHBAR_SIZE, MCHBAR_SIZE,
400 PCIBIOS_MIN_MEM,
401 0, pcibios_align_resource,
402 dev_priv->bridge_dev);
403 if (ret) {
404 DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
405 dev_priv->mch_res.start = 0;
406 return ret;
407 }
408
409 if (INTEL_GEN(dev_priv) >= 4)
410 pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
411 upper_32_bits(dev_priv->mch_res.start));
412
413 pci_write_config_dword(dev_priv->bridge_dev, reg,
414 lower_32_bits(dev_priv->mch_res.start));
415 return 0;
416 }
417
418 /* Setup MCHBAR if possible, return true if we should disable it again */
419 static void
420 intel_setup_mchbar(struct drm_i915_private *dev_priv)
421 {
422 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
423 u32 temp;
424 bool enabled;
425
426 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
427 return;
428
429 dev_priv->mchbar_need_disable = false;
430
431 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
432 pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
433 enabled = !!(temp & DEVEN_MCHBAR_EN);
434 } else {
435 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
436 enabled = temp & 1;
437 }
438
439 /* If it's already enabled, don't have to do anything */
440 if (enabled)
441 return;
442
443 if (intel_alloc_mchbar_resource(dev_priv))
444 return;
445
446 dev_priv->mchbar_need_disable = true;
447
448 /* Space is allocated or reserved, so enable it. */
449 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
450 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
451 temp | DEVEN_MCHBAR_EN);
452 } else {
453 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
454 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
455 }
456 }
457
458 static void
459 intel_teardown_mchbar(struct drm_i915_private *dev_priv)
460 {
461 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
462
463 if (dev_priv->mchbar_need_disable) {
464 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
465 u32 deven_val;
466
467 pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
468 &deven_val);
469 deven_val &= ~DEVEN_MCHBAR_EN;
470 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
471 deven_val);
472 } else {
473 u32 mchbar_val;
474
475 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
476 &mchbar_val);
477 mchbar_val &= ~1;
478 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
479 mchbar_val);
480 }
481 }
482
483 if (dev_priv->mch_res.start)
484 release_resource(&dev_priv->mch_res);
485 }
486
487 /* true = enable decode, false = disable decoder */
488 static unsigned int i915_vga_set_decode(void *cookie, bool state)
489 {
490 struct drm_i915_private *dev_priv = cookie;
491
492 intel_modeset_vga_set_state(dev_priv, state);
493 if (state)
494 return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
495 VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
496 else
497 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
498 }
499
500 static int i915_resume_switcheroo(struct drm_device *dev);
501 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
502
503 static void i915_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
504 {
505 struct drm_device *dev = pci_get_drvdata(pdev);
506 pm_message_t pmm = { .event = PM_EVENT_SUSPEND };
507
508 if (state == VGA_SWITCHEROO_ON) {
509 pr_info("switched on\n");
510 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
511 /* i915 resume handler doesn't set to D0 */
512 pci_set_power_state(pdev, PCI_D0);
513 i915_resume_switcheroo(dev);
514 dev->switch_power_state = DRM_SWITCH_POWER_ON;
515 } else {
516 pr_info("switched off\n");
517 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
518 i915_suspend_switcheroo(dev, pmm);
519 dev->switch_power_state = DRM_SWITCH_POWER_OFF;
520 }
521 }
522
523 static bool i915_switcheroo_can_switch(struct pci_dev *pdev)
524 {
525 struct drm_device *dev = pci_get_drvdata(pdev);
526
527 /*
528 * FIXME: open_count is protected by drm_global_mutex but that would lead to
529 * locking inversion with the driver load path. And the access here is
530 * completely racy anyway. So don't bother with locking for now.
531 */
532 return dev->open_count == 0;
533 }
534
535 static const struct vga_switcheroo_client_ops i915_switcheroo_ops = {
536 .set_gpu_state = i915_switcheroo_set_state,
537 .reprobe = NULL,
538 .can_switch = i915_switcheroo_can_switch,
539 };
540
541 static void i915_gem_fini(struct drm_i915_private *dev_priv)
542 {
543 mutex_lock(&dev_priv->drm.struct_mutex);
544 i915_gem_cleanup_engines(dev_priv);
545 i915_gem_context_fini(dev_priv);
546 mutex_unlock(&dev_priv->drm.struct_mutex);
547
548 rcu_barrier();
549 flush_work(&dev_priv->mm.free_work);
550
551 WARN_ON(!list_empty(&dev_priv->context_list));
552 }
553
554 static int i915_load_modeset_init(struct drm_device *dev)
555 {
556 struct drm_i915_private *dev_priv = to_i915(dev);
557 struct pci_dev *pdev = dev_priv->drm.pdev;
558 int ret;
559
560 if (i915_inject_load_failure())
561 return -ENODEV;
562
563 ret = intel_bios_init(dev_priv);
564 if (ret)
565 DRM_INFO("failed to find VBIOS tables\n");
566
567 /* If we have > 1 VGA cards, then we need to arbitrate access
568 * to the common VGA resources.
569 *
570 * If we are a secondary display controller (!PCI_DISPLAY_CLASS_VGA),
571 * then we do not take part in VGA arbitration and the
572 * vga_client_register() fails with -ENODEV.
573 */
574 ret = vga_client_register(pdev, dev_priv, NULL, i915_vga_set_decode);
575 if (ret && ret != -ENODEV)
576 goto out;
577
578 intel_register_dsm_handler();
579
580 ret = vga_switcheroo_register_client(pdev, &i915_switcheroo_ops, false);
581 if (ret)
582 goto cleanup_vga_client;
583
584 /* must happen before intel_power_domains_init_hw() on VLV/CHV */
585 intel_update_rawclk(dev_priv);
586
587 intel_power_domains_init_hw(dev_priv, false);
588
589 intel_csr_ucode_init(dev_priv);
590
591 ret = intel_irq_install(dev_priv);
592 if (ret)
593 goto cleanup_csr;
594
595 intel_setup_gmbus(dev_priv);
596
597 /* Important: The output setup functions called by modeset_init need
598 * working irqs for e.g. gmbus and dp aux transfers. */
599 ret = intel_modeset_init(dev);
600 if (ret)
601 goto cleanup_irq;
602
603 intel_guc_init(dev_priv);
604
605 ret = i915_gem_init(dev_priv);
606 if (ret)
607 goto cleanup_irq;
608
609 intel_modeset_gem_init(dev);
610
611 if (INTEL_INFO(dev_priv)->num_pipes == 0)
612 return 0;
613
614 ret = intel_fbdev_init(dev);
615 if (ret)
616 goto cleanup_gem;
617
618 /* Only enable hotplug handling once the fbdev is fully set up. */
619 intel_hpd_init(dev_priv);
620
621 drm_kms_helper_poll_init(dev);
622
623 return 0;
624
625 cleanup_gem:
626 if (i915_gem_suspend(dev_priv))
627 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
628 i915_gem_fini(dev_priv);
629 cleanup_irq:
630 intel_guc_fini(dev_priv);
631 drm_irq_uninstall(dev);
632 intel_teardown_gmbus(dev_priv);
633 cleanup_csr:
634 intel_csr_ucode_fini(dev_priv);
635 intel_power_domains_fini(dev_priv);
636 vga_switcheroo_unregister_client(pdev);
637 cleanup_vga_client:
638 vga_client_register(pdev, NULL, NULL, NULL);
639 out:
640 return ret;
641 }
642
643 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
644 {
645 struct apertures_struct *ap;
646 struct pci_dev *pdev = dev_priv->drm.pdev;
647 struct i915_ggtt *ggtt = &dev_priv->ggtt;
648 bool primary;
649 int ret;
650
651 ap = alloc_apertures(1);
652 if (!ap)
653 return -ENOMEM;
654
655 ap->ranges[0].base = ggtt->mappable_base;
656 ap->ranges[0].size = ggtt->mappable_end;
657
658 primary =
659 pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW;
660
661 ret = drm_fb_helper_remove_conflicting_framebuffers(ap, "inteldrmfb", primary);
662
663 kfree(ap);
664
665 return ret;
666 }
667
668 #if !defined(CONFIG_VGA_CONSOLE)
669 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
670 {
671 return 0;
672 }
673 #elif !defined(CONFIG_DUMMY_CONSOLE)
674 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
675 {
676 return -ENODEV;
677 }
678 #else
679 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
680 {
681 int ret = 0;
682
683 DRM_INFO("Replacing VGA console driver\n");
684
685 console_lock();
686 if (con_is_bound(&vga_con))
687 ret = do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES - 1, 1);
688 if (ret == 0) {
689 ret = do_unregister_con_driver(&vga_con);
690
691 /* Ignore "already unregistered". */
692 if (ret == -ENODEV)
693 ret = 0;
694 }
695 console_unlock();
696
697 return ret;
698 }
699 #endif
700
701 static void intel_init_dpio(struct drm_i915_private *dev_priv)
702 {
703 /*
704 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
705 * CHV x1 PHY (DP/HDMI D)
706 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
707 */
708 if (IS_CHERRYVIEW(dev_priv)) {
709 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
710 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
711 } else if (IS_VALLEYVIEW(dev_priv)) {
712 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
713 }
714 }
715
716 static int i915_workqueues_init(struct drm_i915_private *dev_priv)
717 {
718 /*
719 * The i915 workqueue is primarily used for batched retirement of
720 * requests (and thus managing bo) once the task has been completed
721 * by the GPU. i915_gem_retire_requests() is called directly when we
722 * need high-priority retirement, such as waiting for an explicit
723 * bo.
724 *
725 * It is also used for periodic low-priority events, such as
726 * idle-timers and recording error state.
727 *
728 * All tasks on the workqueue are expected to acquire the dev mutex
729 * so there is no point in running more than one instance of the
730 * workqueue at any time. Use an ordered one.
731 */
732 dev_priv->wq = alloc_ordered_workqueue("i915", 0);
733 if (dev_priv->wq == NULL)
734 goto out_err;
735
736 dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
737 if (dev_priv->hotplug.dp_wq == NULL)
738 goto out_free_wq;
739
740 return 0;
741
742 out_free_wq:
743 destroy_workqueue(dev_priv->wq);
744 out_err:
745 DRM_ERROR("Failed to allocate workqueues.\n");
746
747 return -ENOMEM;
748 }
749
750 static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
751 {
752 destroy_workqueue(dev_priv->hotplug.dp_wq);
753 destroy_workqueue(dev_priv->wq);
754 }
755
756 /*
757 * We don't keep the workarounds for pre-production hardware, so we expect our
758 * driver to fail on these machines in one way or another. A little warning on
759 * dmesg may help both the user and the bug triagers.
760 */
761 static void intel_detect_preproduction_hw(struct drm_i915_private *dev_priv)
762 {
763 if (IS_HSW_EARLY_SDV(dev_priv) ||
764 IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
765 DRM_ERROR("This is a pre-production stepping. "
766 "It may not be fully functional.\n");
767 }
768
769 /**
770 * i915_driver_init_early - setup state not requiring device access
771 * @dev_priv: device private
772 *
773 * Initialize everything that is a "SW-only" state, that is state not
774 * requiring accessing the device or exposing the driver via kernel internal
775 * or userspace interfaces. Example steps belonging here: lock initialization,
776 * system memory allocation, setting up device specific attributes and
777 * function hooks not requiring accessing the device.
778 */
779 static int i915_driver_init_early(struct drm_i915_private *dev_priv,
780 const struct pci_device_id *ent)
781 {
782 const struct intel_device_info *match_info =
783 (struct intel_device_info *)ent->driver_data;
784 struct intel_device_info *device_info;
785 int ret = 0;
786
787 if (i915_inject_load_failure())
788 return -ENODEV;
789
790 /* Setup the write-once "constant" device info */
791 device_info = mkwrite_device_info(dev_priv);
792 memcpy(device_info, match_info, sizeof(*device_info));
793 device_info->device_id = dev_priv->drm.pdev->device;
794
795 BUG_ON(device_info->gen > sizeof(device_info->gen_mask) * BITS_PER_BYTE);
796 device_info->gen_mask = BIT(device_info->gen - 1);
797
798 spin_lock_init(&dev_priv->irq_lock);
799 spin_lock_init(&dev_priv->gpu_error.lock);
800 mutex_init(&dev_priv->backlight_lock);
801 spin_lock_init(&dev_priv->uncore.lock);
802 spin_lock_init(&dev_priv->mm.object_stat_lock);
803 spin_lock_init(&dev_priv->mmio_flip_lock);
804 mutex_init(&dev_priv->sb_lock);
805 mutex_init(&dev_priv->modeset_restore_lock);
806 mutex_init(&dev_priv->av_mutex);
807 mutex_init(&dev_priv->wm.wm_mutex);
808 mutex_init(&dev_priv->pps_mutex);
809
810 intel_uc_init_early(dev_priv);
811
812 i915_memcpy_init_early(dev_priv);
813
814 ret = i915_workqueues_init(dev_priv);
815 if (ret < 0)
816 return ret;
817
818 ret = intel_gvt_init(dev_priv);
819 if (ret < 0)
820 goto err_workqueues;
821
822 /* This must be called before any calls to HAS_PCH_* */
823 intel_detect_pch(dev_priv);
824
825 intel_pm_setup(&dev_priv->drm);
826 intel_init_dpio(dev_priv);
827 intel_power_domains_init(dev_priv);
828 intel_irq_init(dev_priv);
829 intel_hangcheck_init(dev_priv);
830 intel_init_display_hooks(dev_priv);
831 intel_init_clock_gating_hooks(dev_priv);
832 intel_init_audio_hooks(dev_priv);
833 ret = i915_gem_load_init(dev_priv);
834 if (ret < 0)
835 goto err_gvt;
836
837 intel_display_crc_init(dev_priv);
838
839 intel_device_info_dump(dev_priv);
840
841 intel_detect_preproduction_hw(dev_priv);
842
843 i915_perf_init(dev_priv);
844
845 return 0;
846
847 err_gvt:
848 intel_gvt_cleanup(dev_priv);
849 err_workqueues:
850 i915_workqueues_cleanup(dev_priv);
851 return ret;
852 }
853
854 /**
855 * i915_driver_cleanup_early - cleanup the setup done in i915_driver_init_early()
856 * @dev_priv: device private
857 */
858 static void i915_driver_cleanup_early(struct drm_i915_private *dev_priv)
859 {
860 i915_perf_fini(dev_priv);
861 i915_gem_load_cleanup(dev_priv);
862 i915_workqueues_cleanup(dev_priv);
863 }
864
865 static int i915_mmio_setup(struct drm_i915_private *dev_priv)
866 {
867 struct pci_dev *pdev = dev_priv->drm.pdev;
868 int mmio_bar;
869 int mmio_size;
870
871 mmio_bar = IS_GEN2(dev_priv) ? 1 : 0;
872 /*
873 * Before gen4, the registers and the GTT are behind different BARs.
874 * However, from gen4 onwards, the registers and the GTT are shared
875 * in the same BAR, so we want to restrict this ioremap from
876 * clobbering the GTT which we want ioremap_wc instead. Fortunately,
877 * the register BAR remains the same size for all the earlier
878 * generations up to Ironlake.
879 */
880 if (INTEL_GEN(dev_priv) < 5)
881 mmio_size = 512 * 1024;
882 else
883 mmio_size = 2 * 1024 * 1024;
884 dev_priv->regs = pci_iomap(pdev, mmio_bar, mmio_size);
885 if (dev_priv->regs == NULL) {
886 DRM_ERROR("failed to map registers\n");
887
888 return -EIO;
889 }
890
891 /* Try to make sure MCHBAR is enabled before poking at it */
892 intel_setup_mchbar(dev_priv);
893
894 return 0;
895 }
896
897 static void i915_mmio_cleanup(struct drm_i915_private *dev_priv)
898 {
899 struct pci_dev *pdev = dev_priv->drm.pdev;
900
901 intel_teardown_mchbar(dev_priv);
902 pci_iounmap(pdev, dev_priv->regs);
903 }
904
905 /**
906 * i915_driver_init_mmio - setup device MMIO
907 * @dev_priv: device private
908 *
909 * Setup minimal device state necessary for MMIO accesses later in the
910 * initialization sequence. The setup here should avoid any other device-wide
911 * side effects or exposing the driver via kernel internal or user space
912 * interfaces.
913 */
914 static int i915_driver_init_mmio(struct drm_i915_private *dev_priv)
915 {
916 int ret;
917
918 if (i915_inject_load_failure())
919 return -ENODEV;
920
921 if (i915_get_bridge_dev(dev_priv))
922 return -EIO;
923
924 ret = i915_mmio_setup(dev_priv);
925 if (ret < 0)
926 goto put_bridge;
927
928 intel_uncore_init(dev_priv);
929
930 return 0;
931
932 put_bridge:
933 pci_dev_put(dev_priv->bridge_dev);
934
935 return ret;
936 }
937
938 /**
939 * i915_driver_cleanup_mmio - cleanup the setup done in i915_driver_init_mmio()
940 * @dev_priv: device private
941 */
942 static void i915_driver_cleanup_mmio(struct drm_i915_private *dev_priv)
943 {
944 intel_uncore_fini(dev_priv);
945 i915_mmio_cleanup(dev_priv);
946 pci_dev_put(dev_priv->bridge_dev);
947 }
948
949 static void intel_sanitize_options(struct drm_i915_private *dev_priv)
950 {
951 i915.enable_execlists =
952 intel_sanitize_enable_execlists(dev_priv,
953 i915.enable_execlists);
954
955 /*
956 * i915.enable_ppgtt is read-only, so do an early pass to validate the
957 * user's requested state against the hardware/driver capabilities. We
958 * do this now so that we can print out any log messages once rather
959 * than every time we check intel_enable_ppgtt().
960 */
961 i915.enable_ppgtt =
962 intel_sanitize_enable_ppgtt(dev_priv, i915.enable_ppgtt);
963 DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
964
965 i915.semaphores = intel_sanitize_semaphores(dev_priv, i915.semaphores);
966 DRM_DEBUG_DRIVER("use GPU sempahores? %s\n", yesno(i915.semaphores));
967 }
968
969 /**
970 * i915_driver_init_hw - setup state requiring device access
971 * @dev_priv: device private
972 *
973 * Setup state that requires accessing the device, but doesn't require
974 * exposing the driver via kernel internal or userspace interfaces.
975 */
976 static int i915_driver_init_hw(struct drm_i915_private *dev_priv)
977 {
978 struct pci_dev *pdev = dev_priv->drm.pdev;
979 int ret;
980
981 if (i915_inject_load_failure())
982 return -ENODEV;
983
984 intel_device_info_runtime_init(dev_priv);
985
986 intel_sanitize_options(dev_priv);
987
988 ret = i915_ggtt_probe_hw(dev_priv);
989 if (ret)
990 return ret;
991
992 /* WARNING: Apparently we must kick fbdev drivers before vgacon,
993 * otherwise the vga fbdev driver falls over. */
994 ret = i915_kick_out_firmware_fb(dev_priv);
995 if (ret) {
996 DRM_ERROR("failed to remove conflicting framebuffer drivers\n");
997 goto out_ggtt;
998 }
999
1000 ret = i915_kick_out_vgacon(dev_priv);
1001 if (ret) {
1002 DRM_ERROR("failed to remove conflicting VGA console\n");
1003 goto out_ggtt;
1004 }
1005
1006 ret = i915_ggtt_init_hw(dev_priv);
1007 if (ret)
1008 return ret;
1009
1010 ret = i915_ggtt_enable_hw(dev_priv);
1011 if (ret) {
1012 DRM_ERROR("failed to enable GGTT\n");
1013 goto out_ggtt;
1014 }
1015
1016 pci_set_master(pdev);
1017
1018 /* overlay on gen2 is broken and can't address above 1G */
1019 if (IS_GEN2(dev_priv)) {
1020 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
1021 if (ret) {
1022 DRM_ERROR("failed to set DMA mask\n");
1023
1024 goto out_ggtt;
1025 }
1026 }
1027
1028 /* 965GM sometimes incorrectly writes to hardware status page (HWS)
1029 * using 32bit addressing, overwriting memory if HWS is located
1030 * above 4GB.
1031 *
1032 * The documentation also mentions an issue with undefined
1033 * behaviour if any general state is accessed within a page above 4GB,
1034 * which also needs to be handled carefully.
1035 */
1036 if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv)) {
1037 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1038
1039 if (ret) {
1040 DRM_ERROR("failed to set DMA mask\n");
1041
1042 goto out_ggtt;
1043 }
1044 }
1045
1046 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1047 PM_QOS_DEFAULT_VALUE);
1048
1049 intel_uncore_sanitize(dev_priv);
1050
1051 intel_opregion_setup(dev_priv);
1052
1053 i915_gem_load_init_fences(dev_priv);
1054
1055 /* On the 945G/GM, the chipset reports the MSI capability on the
1056 * integrated graphics even though the support isn't actually there
1057 * according to the published specs. It doesn't appear to function
1058 * correctly in testing on 945G.
1059 * This may be a side effect of MSI having been made available for PEG
1060 * and the registers being closely associated.
1061 *
1062 * According to chipset errata, on the 965GM, MSI interrupts may
1063 * be lost or delayed, but we use them anyways to avoid
1064 * stuck interrupts on some machines.
1065 */
1066 if (!IS_I945G(dev_priv) && !IS_I945GM(dev_priv)) {
1067 if (pci_enable_msi(pdev) < 0)
1068 DRM_DEBUG_DRIVER("can't enable MSI");
1069 }
1070
1071 return 0;
1072
1073 out_ggtt:
1074 i915_ggtt_cleanup_hw(dev_priv);
1075
1076 return ret;
1077 }
1078
1079 /**
1080 * i915_driver_cleanup_hw - cleanup the setup done in i915_driver_init_hw()
1081 * @dev_priv: device private
1082 */
1083 static void i915_driver_cleanup_hw(struct drm_i915_private *dev_priv)
1084 {
1085 struct pci_dev *pdev = dev_priv->drm.pdev;
1086
1087 if (pdev->msi_enabled)
1088 pci_disable_msi(pdev);
1089
1090 pm_qos_remove_request(&dev_priv->pm_qos);
1091 i915_ggtt_cleanup_hw(dev_priv);
1092 }
1093
1094 /**
1095 * i915_driver_register - register the driver with the rest of the system
1096 * @dev_priv: device private
1097 *
1098 * Perform any steps necessary to make the driver available via kernel
1099 * internal or userspace interfaces.
1100 */
1101 static void i915_driver_register(struct drm_i915_private *dev_priv)
1102 {
1103 struct drm_device *dev = &dev_priv->drm;
1104
1105 i915_gem_shrinker_init(dev_priv);
1106
1107 /*
1108 * Notify a valid surface after modesetting,
1109 * when running inside a VM.
1110 */
1111 if (intel_vgpu_active(dev_priv))
1112 I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1113
1114 /* Reveal our presence to userspace */
1115 if (drm_dev_register(dev, 0) == 0) {
1116 i915_debugfs_register(dev_priv);
1117 i915_guc_register(dev_priv);
1118 i915_setup_sysfs(dev_priv);
1119
1120 /* Depends on sysfs having been initialized */
1121 i915_perf_register(dev_priv);
1122 } else
1123 DRM_ERROR("Failed to register driver for userspace access!\n");
1124
1125 if (INTEL_INFO(dev_priv)->num_pipes) {
1126 /* Must be done after probing outputs */
1127 intel_opregion_register(dev_priv);
1128 acpi_video_register();
1129 }
1130
1131 if (IS_GEN5(dev_priv))
1132 intel_gpu_ips_init(dev_priv);
1133
1134 i915_audio_component_init(dev_priv);
1135
1136 /*
1137 * Some ports require correctly set-up hpd registers for detection to
1138 * work properly (leading to ghost connected connector status), e.g. VGA
1139 * on gm45. Hence we can only set up the initial fbdev config after hpd
1140 * irqs are fully enabled. We do it last so that the async config
1141 * cannot run before the connectors are registered.
1142 */
1143 intel_fbdev_initial_config_async(dev);
1144 }
1145
1146 /**
1147 * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1148 * @dev_priv: device private
1149 */
1150 static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1151 {
1152 i915_audio_component_cleanup(dev_priv);
1153
1154 intel_gpu_ips_teardown();
1155 acpi_video_unregister();
1156 intel_opregion_unregister(dev_priv);
1157
1158 i915_perf_unregister(dev_priv);
1159
1160 i915_teardown_sysfs(dev_priv);
1161 i915_guc_unregister(dev_priv);
1162 i915_debugfs_unregister(dev_priv);
1163 drm_dev_unregister(&dev_priv->drm);
1164
1165 i915_gem_shrinker_cleanup(dev_priv);
1166 }
1167
1168 /**
1169 * i915_driver_load - setup chip and create an initial config
1170 * @pdev: PCI device
1171 * @ent: matching PCI ID entry
1172 *
1173 * The driver load routine has to do several things:
1174 * - drive output discovery via intel_modeset_init()
1175 * - initialize the memory manager
1176 * - allocate initial config memory
1177 * - setup the DRM framebuffer with the allocated memory
1178 */
1179 int i915_driver_load(struct pci_dev *pdev, const struct pci_device_id *ent)
1180 {
1181 struct drm_i915_private *dev_priv;
1182 int ret;
1183
1184 if (i915.nuclear_pageflip)
1185 driver.driver_features |= DRIVER_ATOMIC;
1186
1187 ret = -ENOMEM;
1188 dev_priv = kzalloc(sizeof(*dev_priv), GFP_KERNEL);
1189 if (dev_priv)
1190 ret = drm_dev_init(&dev_priv->drm, &driver, &pdev->dev);
1191 if (ret) {
1192 dev_printk(KERN_ERR, &pdev->dev,
1193 "[" DRM_NAME ":%s] allocation failed\n", __func__);
1194 kfree(dev_priv);
1195 return ret;
1196 }
1197
1198 dev_priv->drm.pdev = pdev;
1199 dev_priv->drm.dev_private = dev_priv;
1200
1201 ret = pci_enable_device(pdev);
1202 if (ret)
1203 goto out_free_priv;
1204
1205 pci_set_drvdata(pdev, &dev_priv->drm);
1206
1207 ret = i915_driver_init_early(dev_priv, ent);
1208 if (ret < 0)
1209 goto out_pci_disable;
1210
1211 intel_runtime_pm_get(dev_priv);
1212
1213 ret = i915_driver_init_mmio(dev_priv);
1214 if (ret < 0)
1215 goto out_runtime_pm_put;
1216
1217 ret = i915_driver_init_hw(dev_priv);
1218 if (ret < 0)
1219 goto out_cleanup_mmio;
1220
1221 /*
1222 * TODO: move the vblank init and parts of modeset init steps into one
1223 * of the i915_driver_init_/i915_driver_register functions according
1224 * to the role/effect of the given init step.
1225 */
1226 if (INTEL_INFO(dev_priv)->num_pipes) {
1227 ret = drm_vblank_init(&dev_priv->drm,
1228 INTEL_INFO(dev_priv)->num_pipes);
1229 if (ret)
1230 goto out_cleanup_hw;
1231 }
1232
1233 ret = i915_load_modeset_init(&dev_priv->drm);
1234 if (ret < 0)
1235 goto out_cleanup_vblank;
1236
1237 i915_driver_register(dev_priv);
1238
1239 intel_runtime_pm_enable(dev_priv);
1240
1241 /* Everything is in place, we can now relax! */
1242 DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n",
1243 driver.name, driver.major, driver.minor, driver.patchlevel,
1244 driver.date, pci_name(pdev), dev_priv->drm.primary->index);
1245 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG))
1246 DRM_INFO("DRM_I915_DEBUG enabled\n");
1247 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1248 DRM_INFO("DRM_I915_DEBUG_GEM enabled\n");
1249
1250 intel_runtime_pm_put(dev_priv);
1251
1252 return 0;
1253
1254 out_cleanup_vblank:
1255 drm_vblank_cleanup(&dev_priv->drm);
1256 out_cleanup_hw:
1257 i915_driver_cleanup_hw(dev_priv);
1258 out_cleanup_mmio:
1259 i915_driver_cleanup_mmio(dev_priv);
1260 out_runtime_pm_put:
1261 intel_runtime_pm_put(dev_priv);
1262 i915_driver_cleanup_early(dev_priv);
1263 out_pci_disable:
1264 pci_disable_device(pdev);
1265 out_free_priv:
1266 i915_load_error(dev_priv, "Device initialization failed (%d)\n", ret);
1267 drm_dev_unref(&dev_priv->drm);
1268 return ret;
1269 }
1270
1271 void i915_driver_unload(struct drm_device *dev)
1272 {
1273 struct drm_i915_private *dev_priv = to_i915(dev);
1274 struct pci_dev *pdev = dev_priv->drm.pdev;
1275
1276 intel_fbdev_fini(dev);
1277
1278 if (i915_gem_suspend(dev_priv))
1279 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
1280
1281 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1282
1283 i915_driver_unregister(dev_priv);
1284
1285 drm_vblank_cleanup(dev);
1286
1287 intel_modeset_cleanup(dev);
1288
1289 /*
1290 * free the memory space allocated for the child device
1291 * config parsed from VBT
1292 */
1293 if (dev_priv->vbt.child_dev && dev_priv->vbt.child_dev_num) {
1294 kfree(dev_priv->vbt.child_dev);
1295 dev_priv->vbt.child_dev = NULL;
1296 dev_priv->vbt.child_dev_num = 0;
1297 }
1298 kfree(dev_priv->vbt.sdvo_lvds_vbt_mode);
1299 dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
1300 kfree(dev_priv->vbt.lfp_lvds_vbt_mode);
1301 dev_priv->vbt.lfp_lvds_vbt_mode = NULL;
1302
1303 vga_switcheroo_unregister_client(pdev);
1304 vga_client_register(pdev, NULL, NULL, NULL);
1305
1306 intel_csr_ucode_fini(dev_priv);
1307
1308 /* Free error state after interrupts are fully disabled. */
1309 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1310 i915_destroy_error_state(dev_priv);
1311
1312 /* Flush any outstanding unpin_work. */
1313 drain_workqueue(dev_priv->wq);
1314
1315 intel_guc_fini(dev_priv);
1316 i915_gem_fini(dev_priv);
1317 intel_fbc_cleanup_cfb(dev_priv);
1318
1319 intel_power_domains_fini(dev_priv);
1320
1321 i915_driver_cleanup_hw(dev_priv);
1322 i915_driver_cleanup_mmio(dev_priv);
1323
1324 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1325
1326 i915_driver_cleanup_early(dev_priv);
1327 }
1328
1329 static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1330 {
1331 int ret;
1332
1333 ret = i915_gem_open(dev, file);
1334 if (ret)
1335 return ret;
1336
1337 return 0;
1338 }
1339
1340 /**
1341 * i915_driver_lastclose - clean up after all DRM clients have exited
1342 * @dev: DRM device
1343 *
1344 * Take care of cleaning up after all DRM clients have exited. In the
1345 * mode setting case, we want to restore the kernel's initial mode (just
1346 * in case the last client left us in a bad state).
1347 *
1348 * Additionally, in the non-mode setting case, we'll tear down the GTT
1349 * and DMA structures, since the kernel won't be using them, and clea
1350 * up any GEM state.
1351 */
1352 static void i915_driver_lastclose(struct drm_device *dev)
1353 {
1354 intel_fbdev_restore_mode(dev);
1355 vga_switcheroo_process_delayed_switch();
1356 }
1357
1358 static void i915_driver_preclose(struct drm_device *dev, struct drm_file *file)
1359 {
1360 mutex_lock(&dev->struct_mutex);
1361 i915_gem_context_close(dev, file);
1362 i915_gem_release(dev, file);
1363 mutex_unlock(&dev->struct_mutex);
1364 }
1365
1366 static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1367 {
1368 struct drm_i915_file_private *file_priv = file->driver_priv;
1369
1370 kfree(file_priv);
1371 }
1372
1373 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1374 {
1375 struct drm_device *dev = &dev_priv->drm;
1376 struct intel_encoder *encoder;
1377
1378 drm_modeset_lock_all(dev);
1379 for_each_intel_encoder(dev, encoder)
1380 if (encoder->suspend)
1381 encoder->suspend(encoder);
1382 drm_modeset_unlock_all(dev);
1383 }
1384
1385 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1386 bool rpm_resume);
1387 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1388
1389 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1390 {
1391 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
1392 if (acpi_target_system_state() < ACPI_STATE_S3)
1393 return true;
1394 #endif
1395 return false;
1396 }
1397
1398 static int i915_drm_suspend(struct drm_device *dev)
1399 {
1400 struct drm_i915_private *dev_priv = to_i915(dev);
1401 struct pci_dev *pdev = dev_priv->drm.pdev;
1402 pci_power_t opregion_target_state;
1403 int error;
1404
1405 /* ignore lid events during suspend */
1406 mutex_lock(&dev_priv->modeset_restore_lock);
1407 dev_priv->modeset_restore = MODESET_SUSPENDED;
1408 mutex_unlock(&dev_priv->modeset_restore_lock);
1409
1410 disable_rpm_wakeref_asserts(dev_priv);
1411
1412 /* We do a lot of poking in a lot of registers, make sure they work
1413 * properly. */
1414 intel_display_set_init_power(dev_priv, true);
1415
1416 drm_kms_helper_poll_disable(dev);
1417
1418 pci_save_state(pdev);
1419
1420 error = i915_gem_suspend(dev_priv);
1421 if (error) {
1422 dev_err(&pdev->dev,
1423 "GEM idle failed, resume might fail\n");
1424 goto out;
1425 }
1426
1427 intel_guc_suspend(dev_priv);
1428
1429 intel_display_suspend(dev);
1430
1431 intel_dp_mst_suspend(dev);
1432
1433 intel_runtime_pm_disable_interrupts(dev_priv);
1434 intel_hpd_cancel_work(dev_priv);
1435
1436 intel_suspend_encoders(dev_priv);
1437
1438 intel_suspend_hw(dev_priv);
1439
1440 i915_gem_suspend_gtt_mappings(dev_priv);
1441
1442 i915_save_state(dev_priv);
1443
1444 opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1445 intel_opregion_notify_adapter(dev_priv, opregion_target_state);
1446
1447 intel_uncore_forcewake_reset(dev_priv, false);
1448 intel_opregion_unregister(dev_priv);
1449
1450 intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1451
1452 dev_priv->suspend_count++;
1453
1454 intel_csr_ucode_suspend(dev_priv);
1455
1456 out:
1457 enable_rpm_wakeref_asserts(dev_priv);
1458
1459 return error;
1460 }
1461
1462 static int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
1463 {
1464 struct drm_i915_private *dev_priv = to_i915(dev);
1465 struct pci_dev *pdev = dev_priv->drm.pdev;
1466 bool fw_csr;
1467 int ret;
1468
1469 disable_rpm_wakeref_asserts(dev_priv);
1470
1471 intel_display_set_init_power(dev_priv, false);
1472
1473 fw_csr = !IS_BROXTON(dev_priv) &&
1474 suspend_to_idle(dev_priv) && dev_priv->csr.dmc_payload;
1475 /*
1476 * In case of firmware assisted context save/restore don't manually
1477 * deinit the power domains. This also means the CSR/DMC firmware will
1478 * stay active, it will power down any HW resources as required and
1479 * also enable deeper system power states that would be blocked if the
1480 * firmware was inactive.
1481 */
1482 if (!fw_csr)
1483 intel_power_domains_suspend(dev_priv);
1484
1485 ret = 0;
1486 if (IS_BROXTON(dev_priv))
1487 bxt_enable_dc9(dev_priv);
1488 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1489 hsw_enable_pc8(dev_priv);
1490 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1491 ret = vlv_suspend_complete(dev_priv);
1492
1493 if (ret) {
1494 DRM_ERROR("Suspend complete failed: %d\n", ret);
1495 if (!fw_csr)
1496 intel_power_domains_init_hw(dev_priv, true);
1497
1498 goto out;
1499 }
1500
1501 pci_disable_device(pdev);
1502 /*
1503 * During hibernation on some platforms the BIOS may try to access
1504 * the device even though it's already in D3 and hang the machine. So
1505 * leave the device in D0 on those platforms and hope the BIOS will
1506 * power down the device properly. The issue was seen on multiple old
1507 * GENs with different BIOS vendors, so having an explicit blacklist
1508 * is inpractical; apply the workaround on everything pre GEN6. The
1509 * platforms where the issue was seen:
1510 * Lenovo Thinkpad X301, X61s, X60, T60, X41
1511 * Fujitsu FSC S7110
1512 * Acer Aspire 1830T
1513 */
1514 if (!(hibernation && INTEL_GEN(dev_priv) < 6))
1515 pci_set_power_state(pdev, PCI_D3hot);
1516
1517 dev_priv->suspended_to_idle = suspend_to_idle(dev_priv);
1518
1519 out:
1520 enable_rpm_wakeref_asserts(dev_priv);
1521
1522 return ret;
1523 }
1524
1525 int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
1526 {
1527 int error;
1528
1529 if (!dev) {
1530 DRM_ERROR("dev: %p\n", dev);
1531 DRM_ERROR("DRM not initialized, aborting suspend.\n");
1532 return -ENODEV;
1533 }
1534
1535 if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
1536 state.event != PM_EVENT_FREEZE))
1537 return -EINVAL;
1538
1539 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1540 return 0;
1541
1542 error = i915_drm_suspend(dev);
1543 if (error)
1544 return error;
1545
1546 return i915_drm_suspend_late(dev, false);
1547 }
1548
1549 static int i915_drm_resume(struct drm_device *dev)
1550 {
1551 struct drm_i915_private *dev_priv = to_i915(dev);
1552 int ret;
1553
1554 disable_rpm_wakeref_asserts(dev_priv);
1555 intel_sanitize_gt_powersave(dev_priv);
1556
1557 ret = i915_ggtt_enable_hw(dev_priv);
1558 if (ret)
1559 DRM_ERROR("failed to re-enable GGTT\n");
1560
1561 intel_csr_ucode_resume(dev_priv);
1562
1563 i915_gem_resume(dev_priv);
1564
1565 i915_restore_state(dev_priv);
1566 intel_pps_unlock_regs_wa(dev_priv);
1567 intel_opregion_setup(dev_priv);
1568
1569 intel_init_pch_refclk(dev_priv);
1570
1571 /*
1572 * Interrupts have to be enabled before any batches are run. If not the
1573 * GPU will hang. i915_gem_init_hw() will initiate batches to
1574 * update/restore the context.
1575 *
1576 * drm_mode_config_reset() needs AUX interrupts.
1577 *
1578 * Modeset enabling in intel_modeset_init_hw() also needs working
1579 * interrupts.
1580 */
1581 intel_runtime_pm_enable_interrupts(dev_priv);
1582
1583 drm_mode_config_reset(dev);
1584
1585 mutex_lock(&dev->struct_mutex);
1586 if (i915_gem_init_hw(dev_priv)) {
1587 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
1588 i915_gem_set_wedged(dev_priv);
1589 }
1590 mutex_unlock(&dev->struct_mutex);
1591
1592 intel_guc_resume(dev_priv);
1593
1594 intel_modeset_init_hw(dev);
1595
1596 spin_lock_irq(&dev_priv->irq_lock);
1597 if (dev_priv->display.hpd_irq_setup)
1598 dev_priv->display.hpd_irq_setup(dev_priv);
1599 spin_unlock_irq(&dev_priv->irq_lock);
1600
1601 intel_dp_mst_resume(dev);
1602
1603 intel_display_resume(dev);
1604
1605 drm_kms_helper_poll_enable(dev);
1606
1607 /*
1608 * ... but also need to make sure that hotplug processing
1609 * doesn't cause havoc. Like in the driver load code we don't
1610 * bother with the tiny race here where we might loose hotplug
1611 * notifications.
1612 * */
1613 intel_hpd_init(dev_priv);
1614
1615 intel_opregion_register(dev_priv);
1616
1617 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
1618
1619 mutex_lock(&dev_priv->modeset_restore_lock);
1620 dev_priv->modeset_restore = MODESET_DONE;
1621 mutex_unlock(&dev_priv->modeset_restore_lock);
1622
1623 intel_opregion_notify_adapter(dev_priv, PCI_D0);
1624
1625 intel_autoenable_gt_powersave(dev_priv);
1626
1627 enable_rpm_wakeref_asserts(dev_priv);
1628
1629 return 0;
1630 }
1631
1632 static int i915_drm_resume_early(struct drm_device *dev)
1633 {
1634 struct drm_i915_private *dev_priv = to_i915(dev);
1635 struct pci_dev *pdev = dev_priv->drm.pdev;
1636 int ret;
1637
1638 /*
1639 * We have a resume ordering issue with the snd-hda driver also
1640 * requiring our device to be power up. Due to the lack of a
1641 * parent/child relationship we currently solve this with an early
1642 * resume hook.
1643 *
1644 * FIXME: This should be solved with a special hdmi sink device or
1645 * similar so that power domains can be employed.
1646 */
1647
1648 /*
1649 * Note that we need to set the power state explicitly, since we
1650 * powered off the device during freeze and the PCI core won't power
1651 * it back up for us during thaw. Powering off the device during
1652 * freeze is not a hard requirement though, and during the
1653 * suspend/resume phases the PCI core makes sure we get here with the
1654 * device powered on. So in case we change our freeze logic and keep
1655 * the device powered we can also remove the following set power state
1656 * call.
1657 */
1658 ret = pci_set_power_state(pdev, PCI_D0);
1659 if (ret) {
1660 DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
1661 goto out;
1662 }
1663
1664 /*
1665 * Note that pci_enable_device() first enables any parent bridge
1666 * device and only then sets the power state for this device. The
1667 * bridge enabling is a nop though, since bridge devices are resumed
1668 * first. The order of enabling power and enabling the device is
1669 * imposed by the PCI core as described above, so here we preserve the
1670 * same order for the freeze/thaw phases.
1671 *
1672 * TODO: eventually we should remove pci_disable_device() /
1673 * pci_enable_enable_device() from suspend/resume. Due to how they
1674 * depend on the device enable refcount we can't anyway depend on them
1675 * disabling/enabling the device.
1676 */
1677 if (pci_enable_device(pdev)) {
1678 ret = -EIO;
1679 goto out;
1680 }
1681
1682 pci_set_master(pdev);
1683
1684 disable_rpm_wakeref_asserts(dev_priv);
1685
1686 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1687 ret = vlv_resume_prepare(dev_priv, false);
1688 if (ret)
1689 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
1690 ret);
1691
1692 intel_uncore_early_sanitize(dev_priv, true);
1693
1694 if (IS_BROXTON(dev_priv)) {
1695 if (!dev_priv->suspended_to_idle)
1696 gen9_sanitize_dc_state(dev_priv);
1697 bxt_disable_dc9(dev_priv);
1698 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1699 hsw_disable_pc8(dev_priv);
1700 }
1701
1702 intel_uncore_sanitize(dev_priv);
1703
1704 if (IS_BROXTON(dev_priv) ||
1705 !(dev_priv->suspended_to_idle && dev_priv->csr.dmc_payload))
1706 intel_power_domains_init_hw(dev_priv, true);
1707
1708 enable_rpm_wakeref_asserts(dev_priv);
1709
1710 out:
1711 dev_priv->suspended_to_idle = false;
1712
1713 return ret;
1714 }
1715
1716 static int i915_resume_switcheroo(struct drm_device *dev)
1717 {
1718 int ret;
1719
1720 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1721 return 0;
1722
1723 ret = i915_drm_resume_early(dev);
1724 if (ret)
1725 return ret;
1726
1727 return i915_drm_resume(dev);
1728 }
1729
1730 static void disable_engines_irq(struct drm_i915_private *dev_priv)
1731 {
1732 struct intel_engine_cs *engine;
1733 enum intel_engine_id id;
1734
1735 /* Ensure irq handler finishes, and not run again. */
1736 disable_irq(dev_priv->drm.irq);
1737 for_each_engine(engine, dev_priv, id)
1738 tasklet_kill(&engine->irq_tasklet);
1739 }
1740
1741 static void enable_engines_irq(struct drm_i915_private *dev_priv)
1742 {
1743 enable_irq(dev_priv->drm.irq);
1744 }
1745
1746 /**
1747 * i915_reset - reset chip after a hang
1748 * @dev: drm device to reset
1749 *
1750 * Reset the chip. Useful if a hang is detected. Marks the device as wedged
1751 * on failure.
1752 *
1753 * Caller must hold the struct_mutex.
1754 *
1755 * Procedure is fairly simple:
1756 * - reset the chip using the reset reg
1757 * - re-init context state
1758 * - re-init hardware status page
1759 * - re-init ring buffer
1760 * - re-init interrupt state
1761 * - re-init display
1762 */
1763 void i915_reset(struct drm_i915_private *dev_priv)
1764 {
1765 struct i915_gpu_error *error = &dev_priv->gpu_error;
1766 int ret;
1767
1768 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1769
1770 if (!test_and_clear_bit(I915_RESET_IN_PROGRESS, &error->flags))
1771 return;
1772
1773 /* Clear any previous failed attempts at recovery. Time to try again. */
1774 __clear_bit(I915_WEDGED, &error->flags);
1775 error->reset_count++;
1776
1777 pr_notice("drm/i915: Resetting chip after gpu hang\n");
1778
1779 disable_engines_irq(dev_priv);
1780 ret = intel_gpu_reset(dev_priv, ALL_ENGINES);
1781 enable_engines_irq(dev_priv);
1782
1783 if (ret) {
1784 if (ret != -ENODEV)
1785 DRM_ERROR("Failed to reset chip: %i\n", ret);
1786 else
1787 DRM_DEBUG_DRIVER("GPU reset disabled\n");
1788 goto error;
1789 }
1790
1791 i915_gem_reset(dev_priv);
1792 intel_overlay_reset(dev_priv);
1793
1794 /* Ok, now get things going again... */
1795
1796 /*
1797 * Everything depends on having the GTT running, so we need to start
1798 * there. Fortunately we don't need to do this unless we reset the
1799 * chip at a PCI level.
1800 *
1801 * Next we need to restore the context, but we don't use those
1802 * yet either...
1803 *
1804 * Ring buffer needs to be re-initialized in the KMS case, or if X
1805 * was running at the time of the reset (i.e. we weren't VT
1806 * switched away).
1807 */
1808 ret = i915_gem_init_hw(dev_priv);
1809 if (ret) {
1810 DRM_ERROR("Failed hw init on reset %d\n", ret);
1811 goto error;
1812 }
1813
1814 i915_queue_hangcheck(dev_priv);
1815
1816 wakeup:
1817 wake_up_bit(&error->flags, I915_RESET_IN_PROGRESS);
1818 return;
1819
1820 error:
1821 i915_gem_set_wedged(dev_priv);
1822 goto wakeup;
1823 }
1824
1825 static int i915_pm_suspend(struct device *kdev)
1826 {
1827 struct pci_dev *pdev = to_pci_dev(kdev);
1828 struct drm_device *dev = pci_get_drvdata(pdev);
1829
1830 if (!dev) {
1831 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
1832 return -ENODEV;
1833 }
1834
1835 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1836 return 0;
1837
1838 return i915_drm_suspend(dev);
1839 }
1840
1841 static int i915_pm_suspend_late(struct device *kdev)
1842 {
1843 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1844
1845 /*
1846 * We have a suspend ordering issue with the snd-hda driver also
1847 * requiring our device to be power up. Due to the lack of a
1848 * parent/child relationship we currently solve this with an late
1849 * suspend hook.
1850 *
1851 * FIXME: This should be solved with a special hdmi sink device or
1852 * similar so that power domains can be employed.
1853 */
1854 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1855 return 0;
1856
1857 return i915_drm_suspend_late(dev, false);
1858 }
1859
1860 static int i915_pm_poweroff_late(struct device *kdev)
1861 {
1862 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1863
1864 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1865 return 0;
1866
1867 return i915_drm_suspend_late(dev, true);
1868 }
1869
1870 static int i915_pm_resume_early(struct device *kdev)
1871 {
1872 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1873
1874 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1875 return 0;
1876
1877 return i915_drm_resume_early(dev);
1878 }
1879
1880 static int i915_pm_resume(struct device *kdev)
1881 {
1882 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1883
1884 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1885 return 0;
1886
1887 return i915_drm_resume(dev);
1888 }
1889
1890 /* freeze: before creating the hibernation_image */
1891 static int i915_pm_freeze(struct device *kdev)
1892 {
1893 int ret;
1894
1895 ret = i915_pm_suspend(kdev);
1896 if (ret)
1897 return ret;
1898
1899 ret = i915_gem_freeze(kdev_to_i915(kdev));
1900 if (ret)
1901 return ret;
1902
1903 return 0;
1904 }
1905
1906 static int i915_pm_freeze_late(struct device *kdev)
1907 {
1908 int ret;
1909
1910 ret = i915_pm_suspend_late(kdev);
1911 if (ret)
1912 return ret;
1913
1914 ret = i915_gem_freeze_late(kdev_to_i915(kdev));
1915 if (ret)
1916 return ret;
1917
1918 return 0;
1919 }
1920
1921 /* thaw: called after creating the hibernation image, but before turning off. */
1922 static int i915_pm_thaw_early(struct device *kdev)
1923 {
1924 return i915_pm_resume_early(kdev);
1925 }
1926
1927 static int i915_pm_thaw(struct device *kdev)
1928 {
1929 return i915_pm_resume(kdev);
1930 }
1931
1932 /* restore: called after loading the hibernation image. */
1933 static int i915_pm_restore_early(struct device *kdev)
1934 {
1935 return i915_pm_resume_early(kdev);
1936 }
1937
1938 static int i915_pm_restore(struct device *kdev)
1939 {
1940 return i915_pm_resume(kdev);
1941 }
1942
1943 /*
1944 * Save all Gunit registers that may be lost after a D3 and a subsequent
1945 * S0i[R123] transition. The list of registers needing a save/restore is
1946 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
1947 * registers in the following way:
1948 * - Driver: saved/restored by the driver
1949 * - Punit : saved/restored by the Punit firmware
1950 * - No, w/o marking: no need to save/restore, since the register is R/O or
1951 * used internally by the HW in a way that doesn't depend
1952 * keeping the content across a suspend/resume.
1953 * - Debug : used for debugging
1954 *
1955 * We save/restore all registers marked with 'Driver', with the following
1956 * exceptions:
1957 * - Registers out of use, including also registers marked with 'Debug'.
1958 * These have no effect on the driver's operation, so we don't save/restore
1959 * them to reduce the overhead.
1960 * - Registers that are fully setup by an initialization function called from
1961 * the resume path. For example many clock gating and RPS/RC6 registers.
1962 * - Registers that provide the right functionality with their reset defaults.
1963 *
1964 * TODO: Except for registers that based on the above 3 criteria can be safely
1965 * ignored, we save/restore all others, practically treating the HW context as
1966 * a black-box for the driver. Further investigation is needed to reduce the
1967 * saved/restored registers even further, by following the same 3 criteria.
1968 */
1969 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1970 {
1971 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1972 int i;
1973
1974 /* GAM 0x4000-0x4770 */
1975 s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
1976 s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
1977 s->arb_mode = I915_READ(ARB_MODE);
1978 s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
1979 s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
1980
1981 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
1982 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
1983
1984 s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
1985 s->gfx_max_req_count = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
1986
1987 s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
1988 s->ecochk = I915_READ(GAM_ECOCHK);
1989 s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
1990 s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
1991
1992 s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
1993
1994 /* MBC 0x9024-0x91D0, 0x8500 */
1995 s->g3dctl = I915_READ(VLV_G3DCTL);
1996 s->gsckgctl = I915_READ(VLV_GSCKGCTL);
1997 s->mbctl = I915_READ(GEN6_MBCTL);
1998
1999 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2000 s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
2001 s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
2002 s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
2003 s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
2004 s->rstctl = I915_READ(GEN6_RSTCTL);
2005 s->misccpctl = I915_READ(GEN7_MISCCPCTL);
2006
2007 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2008 s->gfxpause = I915_READ(GEN6_GFXPAUSE);
2009 s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
2010 s->rpdeuc = I915_READ(GEN6_RPDEUC);
2011 s->ecobus = I915_READ(ECOBUS);
2012 s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
2013 s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
2014 s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
2015 s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
2016 s->rcedata = I915_READ(VLV_RCEDATA);
2017 s->spare2gh = I915_READ(VLV_SPAREG2H);
2018
2019 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2020 s->gt_imr = I915_READ(GTIMR);
2021 s->gt_ier = I915_READ(GTIER);
2022 s->pm_imr = I915_READ(GEN6_PMIMR);
2023 s->pm_ier = I915_READ(GEN6_PMIER);
2024
2025 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2026 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
2027
2028 /* GT SA CZ domain, 0x100000-0x138124 */
2029 s->tilectl = I915_READ(TILECTL);
2030 s->gt_fifoctl = I915_READ(GTFIFOCTL);
2031 s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
2032 s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2033 s->pmwgicz = I915_READ(VLV_PMWGICZ);
2034
2035 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2036 s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
2037 s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
2038 s->pcbr = I915_READ(VLV_PCBR);
2039 s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
2040
2041 /*
2042 * Not saving any of:
2043 * DFT, 0x9800-0x9EC0
2044 * SARB, 0xB000-0xB1FC
2045 * GAC, 0x5208-0x524C, 0x14000-0x14C000
2046 * PCI CFG
2047 */
2048 }
2049
2050 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2051 {
2052 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2053 u32 val;
2054 int i;
2055
2056 /* GAM 0x4000-0x4770 */
2057 I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
2058 I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
2059 I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
2060 I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
2061 I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
2062
2063 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2064 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2065
2066 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2067 I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2068
2069 I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
2070 I915_WRITE(GAM_ECOCHK, s->ecochk);
2071 I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
2072 I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
2073
2074 I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
2075
2076 /* MBC 0x9024-0x91D0, 0x8500 */
2077 I915_WRITE(VLV_G3DCTL, s->g3dctl);
2078 I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
2079 I915_WRITE(GEN6_MBCTL, s->mbctl);
2080
2081 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2082 I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
2083 I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
2084 I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
2085 I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
2086 I915_WRITE(GEN6_RSTCTL, s->rstctl);
2087 I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
2088
2089 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2090 I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
2091 I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
2092 I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
2093 I915_WRITE(ECOBUS, s->ecobus);
2094 I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
2095 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2096 I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
2097 I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
2098 I915_WRITE(VLV_RCEDATA, s->rcedata);
2099 I915_WRITE(VLV_SPAREG2H, s->spare2gh);
2100
2101 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2102 I915_WRITE(GTIMR, s->gt_imr);
2103 I915_WRITE(GTIER, s->gt_ier);
2104 I915_WRITE(GEN6_PMIMR, s->pm_imr);
2105 I915_WRITE(GEN6_PMIER, s->pm_ier);
2106
2107 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2108 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2109
2110 /* GT SA CZ domain, 0x100000-0x138124 */
2111 I915_WRITE(TILECTL, s->tilectl);
2112 I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
2113 /*
2114 * Preserve the GT allow wake and GFX force clock bit, they are not
2115 * be restored, as they are used to control the s0ix suspend/resume
2116 * sequence by the caller.
2117 */
2118 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2119 val &= VLV_GTLC_ALLOWWAKEREQ;
2120 val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2121 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2122
2123 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2124 val &= VLV_GFX_CLK_FORCE_ON_BIT;
2125 val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2126 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2127
2128 I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
2129
2130 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2131 I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
2132 I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
2133 I915_WRITE(VLV_PCBR, s->pcbr);
2134 I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
2135 }
2136
2137 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2138 {
2139 u32 val;
2140 int err;
2141
2142 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2143 val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2144 if (force_on)
2145 val |= VLV_GFX_CLK_FORCE_ON_BIT;
2146 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2147
2148 if (!force_on)
2149 return 0;
2150
2151 err = intel_wait_for_register(dev_priv,
2152 VLV_GTLC_SURVIVABILITY_REG,
2153 VLV_GFX_CLK_STATUS_BIT,
2154 VLV_GFX_CLK_STATUS_BIT,
2155 20);
2156 if (err)
2157 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2158 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2159
2160 return err;
2161 }
2162
2163 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2164 {
2165 u32 val;
2166 int err = 0;
2167
2168 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2169 val &= ~VLV_GTLC_ALLOWWAKEREQ;
2170 if (allow)
2171 val |= VLV_GTLC_ALLOWWAKEREQ;
2172 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2173 POSTING_READ(VLV_GTLC_WAKE_CTRL);
2174
2175 err = intel_wait_for_register(dev_priv,
2176 VLV_GTLC_PW_STATUS,
2177 VLV_GTLC_ALLOWWAKEACK,
2178 allow,
2179 1);
2180 if (err)
2181 DRM_ERROR("timeout disabling GT waking\n");
2182
2183 return err;
2184 }
2185
2186 static int vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2187 bool wait_for_on)
2188 {
2189 u32 mask;
2190 u32 val;
2191 int err;
2192
2193 mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2194 val = wait_for_on ? mask : 0;
2195 if ((I915_READ(VLV_GTLC_PW_STATUS) & mask) == val)
2196 return 0;
2197
2198 DRM_DEBUG_KMS("waiting for GT wells to go %s (%08x)\n",
2199 onoff(wait_for_on),
2200 I915_READ(VLV_GTLC_PW_STATUS));
2201
2202 /*
2203 * RC6 transitioning can be delayed up to 2 msec (see
2204 * valleyview_enable_rps), use 3 msec for safety.
2205 */
2206 err = intel_wait_for_register(dev_priv,
2207 VLV_GTLC_PW_STATUS, mask, val,
2208 3);
2209 if (err)
2210 DRM_ERROR("timeout waiting for GT wells to go %s\n",
2211 onoff(wait_for_on));
2212
2213 return err;
2214 }
2215
2216 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2217 {
2218 if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2219 return;
2220
2221 DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2222 I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2223 }
2224
2225 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2226 {
2227 u32 mask;
2228 int err;
2229
2230 /*
2231 * Bspec defines the following GT well on flags as debug only, so
2232 * don't treat them as hard failures.
2233 */
2234 (void)vlv_wait_for_gt_wells(dev_priv, false);
2235
2236 mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2237 WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2238
2239 vlv_check_no_gt_access(dev_priv);
2240
2241 err = vlv_force_gfx_clock(dev_priv, true);
2242 if (err)
2243 goto err1;
2244
2245 err = vlv_allow_gt_wake(dev_priv, false);
2246 if (err)
2247 goto err2;
2248
2249 if (!IS_CHERRYVIEW(dev_priv))
2250 vlv_save_gunit_s0ix_state(dev_priv);
2251
2252 err = vlv_force_gfx_clock(dev_priv, false);
2253 if (err)
2254 goto err2;
2255
2256 return 0;
2257
2258 err2:
2259 /* For safety always re-enable waking and disable gfx clock forcing */
2260 vlv_allow_gt_wake(dev_priv, true);
2261 err1:
2262 vlv_force_gfx_clock(dev_priv, false);
2263
2264 return err;
2265 }
2266
2267 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2268 bool rpm_resume)
2269 {
2270 int err;
2271 int ret;
2272
2273 /*
2274 * If any of the steps fail just try to continue, that's the best we
2275 * can do at this point. Return the first error code (which will also
2276 * leave RPM permanently disabled).
2277 */
2278 ret = vlv_force_gfx_clock(dev_priv, true);
2279
2280 if (!IS_CHERRYVIEW(dev_priv))
2281 vlv_restore_gunit_s0ix_state(dev_priv);
2282
2283 err = vlv_allow_gt_wake(dev_priv, true);
2284 if (!ret)
2285 ret = err;
2286
2287 err = vlv_force_gfx_clock(dev_priv, false);
2288 if (!ret)
2289 ret = err;
2290
2291 vlv_check_no_gt_access(dev_priv);
2292
2293 if (rpm_resume)
2294 intel_init_clock_gating(dev_priv);
2295
2296 return ret;
2297 }
2298
2299 static int intel_runtime_suspend(struct device *kdev)
2300 {
2301 struct pci_dev *pdev = to_pci_dev(kdev);
2302 struct drm_device *dev = pci_get_drvdata(pdev);
2303 struct drm_i915_private *dev_priv = to_i915(dev);
2304 int ret;
2305
2306 if (WARN_ON_ONCE(!(dev_priv->rps.enabled && intel_enable_rc6())))
2307 return -ENODEV;
2308
2309 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2310 return -ENODEV;
2311
2312 DRM_DEBUG_KMS("Suspending device\n");
2313
2314 disable_rpm_wakeref_asserts(dev_priv);
2315
2316 /*
2317 * We are safe here against re-faults, since the fault handler takes
2318 * an RPM reference.
2319 */
2320 i915_gem_runtime_suspend(dev_priv);
2321
2322 intel_guc_suspend(dev_priv);
2323
2324 intel_runtime_pm_disable_interrupts(dev_priv);
2325
2326 ret = 0;
2327 if (IS_BROXTON(dev_priv)) {
2328 bxt_display_core_uninit(dev_priv);
2329 bxt_enable_dc9(dev_priv);
2330 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2331 hsw_enable_pc8(dev_priv);
2332 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2333 ret = vlv_suspend_complete(dev_priv);
2334 }
2335
2336 if (ret) {
2337 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2338 intel_runtime_pm_enable_interrupts(dev_priv);
2339
2340 enable_rpm_wakeref_asserts(dev_priv);
2341
2342 return ret;
2343 }
2344
2345 intel_uncore_forcewake_reset(dev_priv, false);
2346
2347 enable_rpm_wakeref_asserts(dev_priv);
2348 WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
2349
2350 if (intel_uncore_arm_unclaimed_mmio_detection(dev_priv))
2351 DRM_ERROR("Unclaimed access detected prior to suspending\n");
2352
2353 dev_priv->pm.suspended = true;
2354
2355 /*
2356 * FIXME: We really should find a document that references the arguments
2357 * used below!
2358 */
2359 if (IS_BROADWELL(dev_priv)) {
2360 /*
2361 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2362 * being detected, and the call we do at intel_runtime_resume()
2363 * won't be able to restore them. Since PCI_D3hot matches the
2364 * actual specification and appears to be working, use it.
2365 */
2366 intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2367 } else {
2368 /*
2369 * current versions of firmware which depend on this opregion
2370 * notification have repurposed the D1 definition to mean
2371 * "runtime suspended" vs. what you would normally expect (D3)
2372 * to distinguish it from notifications that might be sent via
2373 * the suspend path.
2374 */
2375 intel_opregion_notify_adapter(dev_priv, PCI_D1);
2376 }
2377
2378 assert_forcewakes_inactive(dev_priv);
2379
2380 if (!IS_VALLEYVIEW(dev_priv) || !IS_CHERRYVIEW(dev_priv))
2381 intel_hpd_poll_init(dev_priv);
2382
2383 DRM_DEBUG_KMS("Device suspended\n");
2384 return 0;
2385 }
2386
2387 static int intel_runtime_resume(struct device *kdev)
2388 {
2389 struct pci_dev *pdev = to_pci_dev(kdev);
2390 struct drm_device *dev = pci_get_drvdata(pdev);
2391 struct drm_i915_private *dev_priv = to_i915(dev);
2392 int ret = 0;
2393
2394 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2395 return -ENODEV;
2396
2397 DRM_DEBUG_KMS("Resuming device\n");
2398
2399 WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
2400 disable_rpm_wakeref_asserts(dev_priv);
2401
2402 intel_opregion_notify_adapter(dev_priv, PCI_D0);
2403 dev_priv->pm.suspended = false;
2404 if (intel_uncore_unclaimed_mmio(dev_priv))
2405 DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
2406
2407 intel_guc_resume(dev_priv);
2408
2409 if (IS_GEN6(dev_priv))
2410 intel_init_pch_refclk(dev_priv);
2411
2412 if (IS_BROXTON(dev_priv)) {
2413 bxt_disable_dc9(dev_priv);
2414 bxt_display_core_init(dev_priv, true);
2415 if (dev_priv->csr.dmc_payload &&
2416 (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2417 gen9_enable_dc5(dev_priv);
2418 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2419 hsw_disable_pc8(dev_priv);
2420 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2421 ret = vlv_resume_prepare(dev_priv, true);
2422 }
2423
2424 /*
2425 * No point of rolling back things in case of an error, as the best
2426 * we can do is to hope that things will still work (and disable RPM).
2427 */
2428 i915_gem_init_swizzling(dev_priv);
2429
2430 intel_runtime_pm_enable_interrupts(dev_priv);
2431
2432 /*
2433 * On VLV/CHV display interrupts are part of the display
2434 * power well, so hpd is reinitialized from there. For
2435 * everyone else do it here.
2436 */
2437 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2438 intel_hpd_init(dev_priv);
2439
2440 enable_rpm_wakeref_asserts(dev_priv);
2441
2442 if (ret)
2443 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
2444 else
2445 DRM_DEBUG_KMS("Device resumed\n");
2446
2447 return ret;
2448 }
2449
2450 const struct dev_pm_ops i915_pm_ops = {
2451 /*
2452 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
2453 * PMSG_RESUME]
2454 */
2455 .suspend = i915_pm_suspend,
2456 .suspend_late = i915_pm_suspend_late,
2457 .resume_early = i915_pm_resume_early,
2458 .resume = i915_pm_resume,
2459
2460 /*
2461 * S4 event handlers
2462 * @freeze, @freeze_late : called (1) before creating the
2463 * hibernation image [PMSG_FREEZE] and
2464 * (2) after rebooting, before restoring
2465 * the image [PMSG_QUIESCE]
2466 * @thaw, @thaw_early : called (1) after creating the hibernation
2467 * image, before writing it [PMSG_THAW]
2468 * and (2) after failing to create or
2469 * restore the image [PMSG_RECOVER]
2470 * @poweroff, @poweroff_late: called after writing the hibernation
2471 * image, before rebooting [PMSG_HIBERNATE]
2472 * @restore, @restore_early : called after rebooting and restoring the
2473 * hibernation image [PMSG_RESTORE]
2474 */
2475 .freeze = i915_pm_freeze,
2476 .freeze_late = i915_pm_freeze_late,
2477 .thaw_early = i915_pm_thaw_early,
2478 .thaw = i915_pm_thaw,
2479 .poweroff = i915_pm_suspend,
2480 .poweroff_late = i915_pm_poweroff_late,
2481 .restore_early = i915_pm_restore_early,
2482 .restore = i915_pm_restore,
2483
2484 /* S0ix (via runtime suspend) event handlers */
2485 .runtime_suspend = intel_runtime_suspend,
2486 .runtime_resume = intel_runtime_resume,
2487 };
2488
2489 static const struct vm_operations_struct i915_gem_vm_ops = {
2490 .fault = i915_gem_fault,
2491 .open = drm_gem_vm_open,
2492 .close = drm_gem_vm_close,
2493 };
2494
2495 static const struct file_operations i915_driver_fops = {
2496 .owner = THIS_MODULE,
2497 .open = drm_open,
2498 .release = drm_release,
2499 .unlocked_ioctl = drm_ioctl,
2500 .mmap = drm_gem_mmap,
2501 .poll = drm_poll,
2502 .read = drm_read,
2503 .compat_ioctl = i915_compat_ioctl,
2504 .llseek = noop_llseek,
2505 };
2506
2507 static int
2508 i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
2509 struct drm_file *file)
2510 {
2511 return -ENODEV;
2512 }
2513
2514 static const struct drm_ioctl_desc i915_ioctls[] = {
2515 DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2516 DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
2517 DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
2518 DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
2519 DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
2520 DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
2521 DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam, DRM_AUTH|DRM_RENDER_ALLOW),
2522 DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2523 DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
2524 DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
2525 DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2526 DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
2527 DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2528 DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2529 DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE, drm_noop, DRM_AUTH),
2530 DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
2531 DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2532 DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2533 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer, DRM_AUTH),
2534 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2, i915_gem_execbuffer2, DRM_AUTH|DRM_RENDER_ALLOW),
2535 DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2536 DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2537 DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2538 DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
2539 DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
2540 DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2541 DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2542 DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2543 DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
2544 DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
2545 DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
2546 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
2547 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_GTT, i915_gem_mmap_gtt_ioctl, DRM_RENDER_ALLOW),
2548 DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
2549 DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
2550 DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling, DRM_RENDER_ALLOW),
2551 DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling, DRM_RENDER_ALLOW),
2552 DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
2553 DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id, 0),
2554 DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
2555 DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2556 DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2557 DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey, DRM_MASTER|DRM_CONTROL_ALLOW),
2558 DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER|DRM_CONTROL_ALLOW),
2559 DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2560 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
2561 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
2562 DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
2563 DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
2564 DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
2565 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
2566 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
2567 DRM_IOCTL_DEF_DRV(I915_PERF_OPEN, i915_perf_open_ioctl, DRM_RENDER_ALLOW),
2568 };
2569
2570 static struct drm_driver driver = {
2571 /* Don't use MTRRs here; the Xserver or userspace app should
2572 * deal with them for Intel hardware.
2573 */
2574 .driver_features =
2575 DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
2576 DRIVER_RENDER | DRIVER_MODESET,
2577 .open = i915_driver_open,
2578 .lastclose = i915_driver_lastclose,
2579 .preclose = i915_driver_preclose,
2580 .postclose = i915_driver_postclose,
2581 .set_busid = drm_pci_set_busid,
2582
2583 .gem_close_object = i915_gem_close_object,
2584 .gem_free_object_unlocked = i915_gem_free_object,
2585 .gem_vm_ops = &i915_gem_vm_ops,
2586
2587 .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
2588 .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
2589 .gem_prime_export = i915_gem_prime_export,
2590 .gem_prime_import = i915_gem_prime_import,
2591
2592 .dumb_create = i915_gem_dumb_create,
2593 .dumb_map_offset = i915_gem_mmap_gtt,
2594 .dumb_destroy = drm_gem_dumb_destroy,
2595 .ioctls = i915_ioctls,
2596 .num_ioctls = ARRAY_SIZE(i915_ioctls),
2597 .fops = &i915_driver_fops,
2598 .name = DRIVER_NAME,
2599 .desc = DRIVER_DESC,
2600 .date = DRIVER_DATE,
2601 .major = DRIVER_MAJOR,
2602 .minor = DRIVER_MINOR,
2603 .patchlevel = DRIVER_PATCHLEVEL,
2604 };