]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.c
drm: Remove unused drm_device from drm_gem_object_lookup()
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_drv.c
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #include <linux/device.h>
31 #include <linux/acpi.h>
32 #include <drm/drmP.h>
33 #include <drm/i915_drm.h>
34 #include "i915_drv.h"
35 #include "i915_trace.h"
36 #include "intel_drv.h"
37
38 #include <linux/apple-gmux.h>
39 #include <linux/console.h>
40 #include <linux/module.h>
41 #include <linux/pm_runtime.h>
42 #include <linux/vgaarb.h>
43 #include <linux/vga_switcheroo.h>
44 #include <drm/drm_crtc_helper.h>
45
46 static struct drm_driver driver;
47
48 #define GEN_DEFAULT_PIPEOFFSETS \
49 .pipe_offsets = { PIPE_A_OFFSET, PIPE_B_OFFSET, \
50 PIPE_C_OFFSET, PIPE_EDP_OFFSET }, \
51 .trans_offsets = { TRANSCODER_A_OFFSET, TRANSCODER_B_OFFSET, \
52 TRANSCODER_C_OFFSET, TRANSCODER_EDP_OFFSET }, \
53 .palette_offsets = { PALETTE_A_OFFSET, PALETTE_B_OFFSET }
54
55 #define GEN_CHV_PIPEOFFSETS \
56 .pipe_offsets = { PIPE_A_OFFSET, PIPE_B_OFFSET, \
57 CHV_PIPE_C_OFFSET }, \
58 .trans_offsets = { TRANSCODER_A_OFFSET, TRANSCODER_B_OFFSET, \
59 CHV_TRANSCODER_C_OFFSET, }, \
60 .palette_offsets = { PALETTE_A_OFFSET, PALETTE_B_OFFSET, \
61 CHV_PALETTE_C_OFFSET }
62
63 #define CURSOR_OFFSETS \
64 .cursor_offsets = { CURSOR_A_OFFSET, CURSOR_B_OFFSET, CHV_CURSOR_C_OFFSET }
65
66 #define IVB_CURSOR_OFFSETS \
67 .cursor_offsets = { CURSOR_A_OFFSET, IVB_CURSOR_B_OFFSET, IVB_CURSOR_C_OFFSET }
68
69 #define BDW_COLORS \
70 .color = { .degamma_lut_size = 512, .gamma_lut_size = 512 }
71 #define CHV_COLORS \
72 .color = { .degamma_lut_size = 65, .gamma_lut_size = 257 }
73
74 static const struct intel_device_info intel_i830_info = {
75 .gen = 2, .is_mobile = 1, .cursor_needs_physical = 1, .num_pipes = 2,
76 .has_overlay = 1, .overlay_needs_physical = 1,
77 .ring_mask = RENDER_RING,
78 GEN_DEFAULT_PIPEOFFSETS,
79 CURSOR_OFFSETS,
80 };
81
82 static const struct intel_device_info intel_845g_info = {
83 .gen = 2, .num_pipes = 1,
84 .has_overlay = 1, .overlay_needs_physical = 1,
85 .ring_mask = RENDER_RING,
86 GEN_DEFAULT_PIPEOFFSETS,
87 CURSOR_OFFSETS,
88 };
89
90 static const struct intel_device_info intel_i85x_info = {
91 .gen = 2, .is_i85x = 1, .is_mobile = 1, .num_pipes = 2,
92 .cursor_needs_physical = 1,
93 .has_overlay = 1, .overlay_needs_physical = 1,
94 .has_fbc = 1,
95 .ring_mask = RENDER_RING,
96 GEN_DEFAULT_PIPEOFFSETS,
97 CURSOR_OFFSETS,
98 };
99
100 static const struct intel_device_info intel_i865g_info = {
101 .gen = 2, .num_pipes = 1,
102 .has_overlay = 1, .overlay_needs_physical = 1,
103 .ring_mask = RENDER_RING,
104 GEN_DEFAULT_PIPEOFFSETS,
105 CURSOR_OFFSETS,
106 };
107
108 static const struct intel_device_info intel_i915g_info = {
109 .gen = 3, .is_i915g = 1, .cursor_needs_physical = 1, .num_pipes = 2,
110 .has_overlay = 1, .overlay_needs_physical = 1,
111 .ring_mask = RENDER_RING,
112 GEN_DEFAULT_PIPEOFFSETS,
113 CURSOR_OFFSETS,
114 };
115 static const struct intel_device_info intel_i915gm_info = {
116 .gen = 3, .is_mobile = 1, .num_pipes = 2,
117 .cursor_needs_physical = 1,
118 .has_overlay = 1, .overlay_needs_physical = 1,
119 .supports_tv = 1,
120 .has_fbc = 1,
121 .ring_mask = RENDER_RING,
122 GEN_DEFAULT_PIPEOFFSETS,
123 CURSOR_OFFSETS,
124 };
125 static const struct intel_device_info intel_i945g_info = {
126 .gen = 3, .has_hotplug = 1, .cursor_needs_physical = 1, .num_pipes = 2,
127 .has_overlay = 1, .overlay_needs_physical = 1,
128 .ring_mask = RENDER_RING,
129 GEN_DEFAULT_PIPEOFFSETS,
130 CURSOR_OFFSETS,
131 };
132 static const struct intel_device_info intel_i945gm_info = {
133 .gen = 3, .is_i945gm = 1, .is_mobile = 1, .num_pipes = 2,
134 .has_hotplug = 1, .cursor_needs_physical = 1,
135 .has_overlay = 1, .overlay_needs_physical = 1,
136 .supports_tv = 1,
137 .has_fbc = 1,
138 .ring_mask = RENDER_RING,
139 GEN_DEFAULT_PIPEOFFSETS,
140 CURSOR_OFFSETS,
141 };
142
143 static const struct intel_device_info intel_i965g_info = {
144 .gen = 4, .is_broadwater = 1, .num_pipes = 2,
145 .has_hotplug = 1,
146 .has_overlay = 1,
147 .ring_mask = RENDER_RING,
148 GEN_DEFAULT_PIPEOFFSETS,
149 CURSOR_OFFSETS,
150 };
151
152 static const struct intel_device_info intel_i965gm_info = {
153 .gen = 4, .is_crestline = 1, .num_pipes = 2,
154 .is_mobile = 1, .has_fbc = 1, .has_hotplug = 1,
155 .has_overlay = 1,
156 .supports_tv = 1,
157 .ring_mask = RENDER_RING,
158 GEN_DEFAULT_PIPEOFFSETS,
159 CURSOR_OFFSETS,
160 };
161
162 static const struct intel_device_info intel_g33_info = {
163 .gen = 3, .is_g33 = 1, .num_pipes = 2,
164 .need_gfx_hws = 1, .has_hotplug = 1,
165 .has_overlay = 1,
166 .ring_mask = RENDER_RING,
167 GEN_DEFAULT_PIPEOFFSETS,
168 CURSOR_OFFSETS,
169 };
170
171 static const struct intel_device_info intel_g45_info = {
172 .gen = 4, .is_g4x = 1, .need_gfx_hws = 1, .num_pipes = 2,
173 .has_pipe_cxsr = 1, .has_hotplug = 1,
174 .ring_mask = RENDER_RING | BSD_RING,
175 GEN_DEFAULT_PIPEOFFSETS,
176 CURSOR_OFFSETS,
177 };
178
179 static const struct intel_device_info intel_gm45_info = {
180 .gen = 4, .is_g4x = 1, .num_pipes = 2,
181 .is_mobile = 1, .need_gfx_hws = 1, .has_fbc = 1,
182 .has_pipe_cxsr = 1, .has_hotplug = 1,
183 .supports_tv = 1,
184 .ring_mask = RENDER_RING | BSD_RING,
185 GEN_DEFAULT_PIPEOFFSETS,
186 CURSOR_OFFSETS,
187 };
188
189 static const struct intel_device_info intel_pineview_info = {
190 .gen = 3, .is_g33 = 1, .is_pineview = 1, .is_mobile = 1, .num_pipes = 2,
191 .need_gfx_hws = 1, .has_hotplug = 1,
192 .has_overlay = 1,
193 GEN_DEFAULT_PIPEOFFSETS,
194 CURSOR_OFFSETS,
195 };
196
197 static const struct intel_device_info intel_ironlake_d_info = {
198 .gen = 5, .num_pipes = 2,
199 .need_gfx_hws = 1, .has_hotplug = 1,
200 .ring_mask = RENDER_RING | BSD_RING,
201 GEN_DEFAULT_PIPEOFFSETS,
202 CURSOR_OFFSETS,
203 };
204
205 static const struct intel_device_info intel_ironlake_m_info = {
206 .gen = 5, .is_mobile = 1, .num_pipes = 2,
207 .need_gfx_hws = 1, .has_hotplug = 1,
208 .has_fbc = 1,
209 .ring_mask = RENDER_RING | BSD_RING,
210 GEN_DEFAULT_PIPEOFFSETS,
211 CURSOR_OFFSETS,
212 };
213
214 static const struct intel_device_info intel_sandybridge_d_info = {
215 .gen = 6, .num_pipes = 2,
216 .need_gfx_hws = 1, .has_hotplug = 1,
217 .has_fbc = 1,
218 .ring_mask = RENDER_RING | BSD_RING | BLT_RING,
219 .has_llc = 1,
220 GEN_DEFAULT_PIPEOFFSETS,
221 CURSOR_OFFSETS,
222 };
223
224 static const struct intel_device_info intel_sandybridge_m_info = {
225 .gen = 6, .is_mobile = 1, .num_pipes = 2,
226 .need_gfx_hws = 1, .has_hotplug = 1,
227 .has_fbc = 1,
228 .ring_mask = RENDER_RING | BSD_RING | BLT_RING,
229 .has_llc = 1,
230 GEN_DEFAULT_PIPEOFFSETS,
231 CURSOR_OFFSETS,
232 };
233
234 #define GEN7_FEATURES \
235 .gen = 7, .num_pipes = 3, \
236 .need_gfx_hws = 1, .has_hotplug = 1, \
237 .has_fbc = 1, \
238 .ring_mask = RENDER_RING | BSD_RING | BLT_RING, \
239 .has_llc = 1, \
240 GEN_DEFAULT_PIPEOFFSETS, \
241 IVB_CURSOR_OFFSETS
242
243 static const struct intel_device_info intel_ivybridge_d_info = {
244 GEN7_FEATURES,
245 .is_ivybridge = 1,
246 };
247
248 static const struct intel_device_info intel_ivybridge_m_info = {
249 GEN7_FEATURES,
250 .is_ivybridge = 1,
251 .is_mobile = 1,
252 };
253
254 static const struct intel_device_info intel_ivybridge_q_info = {
255 GEN7_FEATURES,
256 .is_ivybridge = 1,
257 .num_pipes = 0, /* legal, last one wins */
258 };
259
260 #define VLV_FEATURES \
261 .gen = 7, .num_pipes = 2, \
262 .need_gfx_hws = 1, .has_hotplug = 1, \
263 .ring_mask = RENDER_RING | BSD_RING | BLT_RING, \
264 .display_mmio_offset = VLV_DISPLAY_BASE, \
265 GEN_DEFAULT_PIPEOFFSETS, \
266 CURSOR_OFFSETS
267
268 static const struct intel_device_info intel_valleyview_m_info = {
269 VLV_FEATURES,
270 .is_valleyview = 1,
271 .is_mobile = 1,
272 };
273
274 static const struct intel_device_info intel_valleyview_d_info = {
275 VLV_FEATURES,
276 .is_valleyview = 1,
277 };
278
279 #define HSW_FEATURES \
280 GEN7_FEATURES, \
281 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING, \
282 .has_ddi = 1, \
283 .has_fpga_dbg = 1
284
285 static const struct intel_device_info intel_haswell_d_info = {
286 HSW_FEATURES,
287 .is_haswell = 1,
288 };
289
290 static const struct intel_device_info intel_haswell_m_info = {
291 HSW_FEATURES,
292 .is_haswell = 1,
293 .is_mobile = 1,
294 };
295
296 #define BDW_FEATURES \
297 HSW_FEATURES, \
298 BDW_COLORS
299
300 static const struct intel_device_info intel_broadwell_d_info = {
301 BDW_FEATURES,
302 .gen = 8,
303 };
304
305 static const struct intel_device_info intel_broadwell_m_info = {
306 BDW_FEATURES,
307 .gen = 8, .is_mobile = 1,
308 };
309
310 static const struct intel_device_info intel_broadwell_gt3d_info = {
311 BDW_FEATURES,
312 .gen = 8,
313 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
314 };
315
316 static const struct intel_device_info intel_broadwell_gt3m_info = {
317 BDW_FEATURES,
318 .gen = 8, .is_mobile = 1,
319 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
320 };
321
322 static const struct intel_device_info intel_cherryview_info = {
323 .gen = 8, .num_pipes = 3,
324 .need_gfx_hws = 1, .has_hotplug = 1,
325 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
326 .is_cherryview = 1,
327 .display_mmio_offset = VLV_DISPLAY_BASE,
328 GEN_CHV_PIPEOFFSETS,
329 CURSOR_OFFSETS,
330 CHV_COLORS,
331 };
332
333 static const struct intel_device_info intel_skylake_info = {
334 BDW_FEATURES,
335 .is_skylake = 1,
336 .gen = 9,
337 };
338
339 static const struct intel_device_info intel_skylake_gt3_info = {
340 BDW_FEATURES,
341 .is_skylake = 1,
342 .gen = 9,
343 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
344 };
345
346 static const struct intel_device_info intel_broxton_info = {
347 .is_preliminary = 1,
348 .is_broxton = 1,
349 .gen = 9,
350 .need_gfx_hws = 1, .has_hotplug = 1,
351 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING,
352 .num_pipes = 3,
353 .has_ddi = 1,
354 .has_fpga_dbg = 1,
355 .has_fbc = 1,
356 GEN_DEFAULT_PIPEOFFSETS,
357 IVB_CURSOR_OFFSETS,
358 BDW_COLORS,
359 };
360
361 static const struct intel_device_info intel_kabylake_info = {
362 BDW_FEATURES,
363 .is_kabylake = 1,
364 .gen = 9,
365 };
366
367 static const struct intel_device_info intel_kabylake_gt3_info = {
368 BDW_FEATURES,
369 .is_kabylake = 1,
370 .gen = 9,
371 .ring_mask = RENDER_RING | BSD_RING | BLT_RING | VEBOX_RING | BSD2_RING,
372 };
373
374 /*
375 * Make sure any device matches here are from most specific to most
376 * general. For example, since the Quanta match is based on the subsystem
377 * and subvendor IDs, we need it to come before the more general IVB
378 * PCI ID matches, otherwise we'll use the wrong info struct above.
379 */
380 static const struct pci_device_id pciidlist[] = {
381 INTEL_I830_IDS(&intel_i830_info),
382 INTEL_I845G_IDS(&intel_845g_info),
383 INTEL_I85X_IDS(&intel_i85x_info),
384 INTEL_I865G_IDS(&intel_i865g_info),
385 INTEL_I915G_IDS(&intel_i915g_info),
386 INTEL_I915GM_IDS(&intel_i915gm_info),
387 INTEL_I945G_IDS(&intel_i945g_info),
388 INTEL_I945GM_IDS(&intel_i945gm_info),
389 INTEL_I965G_IDS(&intel_i965g_info),
390 INTEL_G33_IDS(&intel_g33_info),
391 INTEL_I965GM_IDS(&intel_i965gm_info),
392 INTEL_GM45_IDS(&intel_gm45_info),
393 INTEL_G45_IDS(&intel_g45_info),
394 INTEL_PINEVIEW_IDS(&intel_pineview_info),
395 INTEL_IRONLAKE_D_IDS(&intel_ironlake_d_info),
396 INTEL_IRONLAKE_M_IDS(&intel_ironlake_m_info),
397 INTEL_SNB_D_IDS(&intel_sandybridge_d_info),
398 INTEL_SNB_M_IDS(&intel_sandybridge_m_info),
399 INTEL_IVB_Q_IDS(&intel_ivybridge_q_info), /* must be first IVB */
400 INTEL_IVB_M_IDS(&intel_ivybridge_m_info),
401 INTEL_IVB_D_IDS(&intel_ivybridge_d_info),
402 INTEL_HSW_D_IDS(&intel_haswell_d_info),
403 INTEL_HSW_M_IDS(&intel_haswell_m_info),
404 INTEL_VLV_M_IDS(&intel_valleyview_m_info),
405 INTEL_VLV_D_IDS(&intel_valleyview_d_info),
406 INTEL_BDW_GT12M_IDS(&intel_broadwell_m_info),
407 INTEL_BDW_GT12D_IDS(&intel_broadwell_d_info),
408 INTEL_BDW_GT3M_IDS(&intel_broadwell_gt3m_info),
409 INTEL_BDW_GT3D_IDS(&intel_broadwell_gt3d_info),
410 INTEL_CHV_IDS(&intel_cherryview_info),
411 INTEL_SKL_GT1_IDS(&intel_skylake_info),
412 INTEL_SKL_GT2_IDS(&intel_skylake_info),
413 INTEL_SKL_GT3_IDS(&intel_skylake_gt3_info),
414 INTEL_SKL_GT4_IDS(&intel_skylake_gt3_info),
415 INTEL_BXT_IDS(&intel_broxton_info),
416 INTEL_KBL_GT1_IDS(&intel_kabylake_info),
417 INTEL_KBL_GT2_IDS(&intel_kabylake_info),
418 INTEL_KBL_GT3_IDS(&intel_kabylake_gt3_info),
419 INTEL_KBL_GT4_IDS(&intel_kabylake_gt3_info),
420 {0, 0, 0}
421 };
422
423 MODULE_DEVICE_TABLE(pci, pciidlist);
424
425 static enum intel_pch intel_virt_detect_pch(struct drm_device *dev)
426 {
427 enum intel_pch ret = PCH_NOP;
428
429 /*
430 * In a virtualized passthrough environment we can be in a
431 * setup where the ISA bridge is not able to be passed through.
432 * In this case, a south bridge can be emulated and we have to
433 * make an educated guess as to which PCH is really there.
434 */
435
436 if (IS_GEN5(dev)) {
437 ret = PCH_IBX;
438 DRM_DEBUG_KMS("Assuming Ibex Peak PCH\n");
439 } else if (IS_GEN6(dev) || IS_IVYBRIDGE(dev)) {
440 ret = PCH_CPT;
441 DRM_DEBUG_KMS("Assuming CouarPoint PCH\n");
442 } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
443 ret = PCH_LPT;
444 DRM_DEBUG_KMS("Assuming LynxPoint PCH\n");
445 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
446 ret = PCH_SPT;
447 DRM_DEBUG_KMS("Assuming SunrisePoint PCH\n");
448 }
449
450 return ret;
451 }
452
453 void intel_detect_pch(struct drm_device *dev)
454 {
455 struct drm_i915_private *dev_priv = dev->dev_private;
456 struct pci_dev *pch = NULL;
457
458 /* In all current cases, num_pipes is equivalent to the PCH_NOP setting
459 * (which really amounts to a PCH but no South Display).
460 */
461 if (INTEL_INFO(dev)->num_pipes == 0) {
462 dev_priv->pch_type = PCH_NOP;
463 return;
464 }
465
466 /*
467 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
468 * make graphics device passthrough work easy for VMM, that only
469 * need to expose ISA bridge to let driver know the real hardware
470 * underneath. This is a requirement from virtualization team.
471 *
472 * In some virtualized environments (e.g. XEN), there is irrelevant
473 * ISA bridge in the system. To work reliably, we should scan trhough
474 * all the ISA bridge devices and check for the first match, instead
475 * of only checking the first one.
476 */
477 while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
478 if (pch->vendor == PCI_VENDOR_ID_INTEL) {
479 unsigned short id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
480 dev_priv->pch_id = id;
481
482 if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
483 dev_priv->pch_type = PCH_IBX;
484 DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
485 WARN_ON(!IS_GEN5(dev));
486 } else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
487 dev_priv->pch_type = PCH_CPT;
488 DRM_DEBUG_KMS("Found CougarPoint PCH\n");
489 WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
490 } else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
491 /* PantherPoint is CPT compatible */
492 dev_priv->pch_type = PCH_CPT;
493 DRM_DEBUG_KMS("Found PantherPoint PCH\n");
494 WARN_ON(!(IS_GEN6(dev) || IS_IVYBRIDGE(dev)));
495 } else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
496 dev_priv->pch_type = PCH_LPT;
497 DRM_DEBUG_KMS("Found LynxPoint PCH\n");
498 WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev));
499 WARN_ON(IS_HSW_ULT(dev) || IS_BDW_ULT(dev));
500 } else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
501 dev_priv->pch_type = PCH_LPT;
502 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
503 WARN_ON(!IS_HASWELL(dev) && !IS_BROADWELL(dev));
504 WARN_ON(!IS_HSW_ULT(dev) && !IS_BDW_ULT(dev));
505 } else if (id == INTEL_PCH_SPT_DEVICE_ID_TYPE) {
506 dev_priv->pch_type = PCH_SPT;
507 DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
508 WARN_ON(!IS_SKYLAKE(dev) &&
509 !IS_KABYLAKE(dev));
510 } else if (id == INTEL_PCH_SPT_LP_DEVICE_ID_TYPE) {
511 dev_priv->pch_type = PCH_SPT;
512 DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
513 WARN_ON(!IS_SKYLAKE(dev) &&
514 !IS_KABYLAKE(dev));
515 } else if ((id == INTEL_PCH_P2X_DEVICE_ID_TYPE) ||
516 (id == INTEL_PCH_P3X_DEVICE_ID_TYPE) ||
517 ((id == INTEL_PCH_QEMU_DEVICE_ID_TYPE) &&
518 pch->subsystem_vendor == 0x1af4 &&
519 pch->subsystem_device == 0x1100)) {
520 dev_priv->pch_type = intel_virt_detect_pch(dev);
521 } else
522 continue;
523
524 break;
525 }
526 }
527 if (!pch)
528 DRM_DEBUG_KMS("No PCH found.\n");
529
530 pci_dev_put(pch);
531 }
532
533 bool i915_semaphore_is_enabled(struct drm_device *dev)
534 {
535 if (INTEL_INFO(dev)->gen < 6)
536 return false;
537
538 if (i915.semaphores >= 0)
539 return i915.semaphores;
540
541 /* TODO: make semaphores and Execlists play nicely together */
542 if (i915.enable_execlists)
543 return false;
544
545 /* Until we get further testing... */
546 if (IS_GEN8(dev))
547 return false;
548
549 #ifdef CONFIG_INTEL_IOMMU
550 /* Enable semaphores on SNB when IO remapping is off */
551 if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
552 return false;
553 #endif
554
555 return true;
556 }
557
558 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
559 {
560 struct drm_device *dev = dev_priv->dev;
561 struct intel_encoder *encoder;
562
563 drm_modeset_lock_all(dev);
564 for_each_intel_encoder(dev, encoder)
565 if (encoder->suspend)
566 encoder->suspend(encoder);
567 drm_modeset_unlock_all(dev);
568 }
569
570 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
571 bool rpm_resume);
572 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
573
574 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
575 {
576 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
577 if (acpi_target_system_state() < ACPI_STATE_S3)
578 return true;
579 #endif
580 return false;
581 }
582
583 static int i915_drm_suspend(struct drm_device *dev)
584 {
585 struct drm_i915_private *dev_priv = dev->dev_private;
586 pci_power_t opregion_target_state;
587 int error;
588
589 /* ignore lid events during suspend */
590 mutex_lock(&dev_priv->modeset_restore_lock);
591 dev_priv->modeset_restore = MODESET_SUSPENDED;
592 mutex_unlock(&dev_priv->modeset_restore_lock);
593
594 disable_rpm_wakeref_asserts(dev_priv);
595
596 /* We do a lot of poking in a lot of registers, make sure they work
597 * properly. */
598 intel_display_set_init_power(dev_priv, true);
599
600 drm_kms_helper_poll_disable(dev);
601
602 pci_save_state(dev->pdev);
603
604 error = i915_gem_suspend(dev);
605 if (error) {
606 dev_err(&dev->pdev->dev,
607 "GEM idle failed, resume might fail\n");
608 goto out;
609 }
610
611 intel_guc_suspend(dev);
612
613 intel_suspend_gt_powersave(dev);
614
615 intel_display_suspend(dev);
616
617 intel_dp_mst_suspend(dev);
618
619 intel_runtime_pm_disable_interrupts(dev_priv);
620 intel_hpd_cancel_work(dev_priv);
621
622 intel_suspend_encoders(dev_priv);
623
624 intel_suspend_hw(dev);
625
626 i915_gem_suspend_gtt_mappings(dev);
627
628 i915_save_state(dev);
629
630 opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
631 intel_opregion_notify_adapter(dev, opregion_target_state);
632
633 intel_uncore_forcewake_reset(dev, false);
634 intel_opregion_fini(dev);
635
636 intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
637
638 dev_priv->suspend_count++;
639
640 intel_display_set_init_power(dev_priv, false);
641
642 intel_csr_ucode_suspend(dev_priv);
643
644 out:
645 enable_rpm_wakeref_asserts(dev_priv);
646
647 return error;
648 }
649
650 static int i915_drm_suspend_late(struct drm_device *drm_dev, bool hibernation)
651 {
652 struct drm_i915_private *dev_priv = drm_dev->dev_private;
653 bool fw_csr;
654 int ret;
655
656 disable_rpm_wakeref_asserts(dev_priv);
657
658 fw_csr = !IS_BROXTON(dev_priv) &&
659 suspend_to_idle(dev_priv) && dev_priv->csr.dmc_payload;
660 /*
661 * In case of firmware assisted context save/restore don't manually
662 * deinit the power domains. This also means the CSR/DMC firmware will
663 * stay active, it will power down any HW resources as required and
664 * also enable deeper system power states that would be blocked if the
665 * firmware was inactive.
666 */
667 if (!fw_csr)
668 intel_power_domains_suspend(dev_priv);
669
670 ret = 0;
671 if (IS_BROXTON(dev_priv))
672 bxt_enable_dc9(dev_priv);
673 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
674 hsw_enable_pc8(dev_priv);
675 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
676 ret = vlv_suspend_complete(dev_priv);
677
678 if (ret) {
679 DRM_ERROR("Suspend complete failed: %d\n", ret);
680 if (!fw_csr)
681 intel_power_domains_init_hw(dev_priv, true);
682
683 goto out;
684 }
685
686 pci_disable_device(drm_dev->pdev);
687 /*
688 * During hibernation on some platforms the BIOS may try to access
689 * the device even though it's already in D3 and hang the machine. So
690 * leave the device in D0 on those platforms and hope the BIOS will
691 * power down the device properly. The issue was seen on multiple old
692 * GENs with different BIOS vendors, so having an explicit blacklist
693 * is inpractical; apply the workaround on everything pre GEN6. The
694 * platforms where the issue was seen:
695 * Lenovo Thinkpad X301, X61s, X60, T60, X41
696 * Fujitsu FSC S7110
697 * Acer Aspire 1830T
698 */
699 if (!(hibernation && INTEL_INFO(dev_priv)->gen < 6))
700 pci_set_power_state(drm_dev->pdev, PCI_D3hot);
701
702 dev_priv->suspended_to_idle = suspend_to_idle(dev_priv);
703
704 out:
705 enable_rpm_wakeref_asserts(dev_priv);
706
707 return ret;
708 }
709
710 int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
711 {
712 int error;
713
714 if (!dev || !dev->dev_private) {
715 DRM_ERROR("dev: %p\n", dev);
716 DRM_ERROR("DRM not initialized, aborting suspend.\n");
717 return -ENODEV;
718 }
719
720 if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
721 state.event != PM_EVENT_FREEZE))
722 return -EINVAL;
723
724 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
725 return 0;
726
727 error = i915_drm_suspend(dev);
728 if (error)
729 return error;
730
731 return i915_drm_suspend_late(dev, false);
732 }
733
734 static int i915_drm_resume(struct drm_device *dev)
735 {
736 struct drm_i915_private *dev_priv = dev->dev_private;
737
738 disable_rpm_wakeref_asserts(dev_priv);
739
740 intel_csr_ucode_resume(dev_priv);
741
742 mutex_lock(&dev->struct_mutex);
743 i915_gem_restore_gtt_mappings(dev);
744 mutex_unlock(&dev->struct_mutex);
745
746 i915_restore_state(dev);
747 intel_opregion_setup(dev);
748
749 intel_init_pch_refclk(dev);
750 drm_mode_config_reset(dev);
751
752 /*
753 * Interrupts have to be enabled before any batches are run. If not the
754 * GPU will hang. i915_gem_init_hw() will initiate batches to
755 * update/restore the context.
756 *
757 * Modeset enabling in intel_modeset_init_hw() also needs working
758 * interrupts.
759 */
760 intel_runtime_pm_enable_interrupts(dev_priv);
761
762 mutex_lock(&dev->struct_mutex);
763 if (i915_gem_init_hw(dev)) {
764 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
765 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
766 }
767 mutex_unlock(&dev->struct_mutex);
768
769 intel_guc_resume(dev);
770
771 intel_modeset_init_hw(dev);
772
773 spin_lock_irq(&dev_priv->irq_lock);
774 if (dev_priv->display.hpd_irq_setup)
775 dev_priv->display.hpd_irq_setup(dev);
776 spin_unlock_irq(&dev_priv->irq_lock);
777
778 intel_dp_mst_resume(dev);
779
780 intel_display_resume(dev);
781
782 /*
783 * ... but also need to make sure that hotplug processing
784 * doesn't cause havoc. Like in the driver load code we don't
785 * bother with the tiny race here where we might loose hotplug
786 * notifications.
787 * */
788 intel_hpd_init(dev_priv);
789 /* Config may have changed between suspend and resume */
790 drm_helper_hpd_irq_event(dev);
791
792 intel_opregion_init(dev);
793
794 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
795
796 mutex_lock(&dev_priv->modeset_restore_lock);
797 dev_priv->modeset_restore = MODESET_DONE;
798 mutex_unlock(&dev_priv->modeset_restore_lock);
799
800 intel_opregion_notify_adapter(dev, PCI_D0);
801
802 drm_kms_helper_poll_enable(dev);
803
804 enable_rpm_wakeref_asserts(dev_priv);
805
806 return 0;
807 }
808
809 static int i915_drm_resume_early(struct drm_device *dev)
810 {
811 struct drm_i915_private *dev_priv = dev->dev_private;
812 int ret;
813
814 /*
815 * We have a resume ordering issue with the snd-hda driver also
816 * requiring our device to be power up. Due to the lack of a
817 * parent/child relationship we currently solve this with an early
818 * resume hook.
819 *
820 * FIXME: This should be solved with a special hdmi sink device or
821 * similar so that power domains can be employed.
822 */
823
824 /*
825 * Note that we need to set the power state explicitly, since we
826 * powered off the device during freeze and the PCI core won't power
827 * it back up for us during thaw. Powering off the device during
828 * freeze is not a hard requirement though, and during the
829 * suspend/resume phases the PCI core makes sure we get here with the
830 * device powered on. So in case we change our freeze logic and keep
831 * the device powered we can also remove the following set power state
832 * call.
833 */
834 ret = pci_set_power_state(dev->pdev, PCI_D0);
835 if (ret) {
836 DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
837 goto out;
838 }
839
840 /*
841 * Note that pci_enable_device() first enables any parent bridge
842 * device and only then sets the power state for this device. The
843 * bridge enabling is a nop though, since bridge devices are resumed
844 * first. The order of enabling power and enabling the device is
845 * imposed by the PCI core as described above, so here we preserve the
846 * same order for the freeze/thaw phases.
847 *
848 * TODO: eventually we should remove pci_disable_device() /
849 * pci_enable_enable_device() from suspend/resume. Due to how they
850 * depend on the device enable refcount we can't anyway depend on them
851 * disabling/enabling the device.
852 */
853 if (pci_enable_device(dev->pdev)) {
854 ret = -EIO;
855 goto out;
856 }
857
858 pci_set_master(dev->pdev);
859
860 disable_rpm_wakeref_asserts(dev_priv);
861
862 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
863 ret = vlv_resume_prepare(dev_priv, false);
864 if (ret)
865 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
866 ret);
867
868 intel_uncore_early_sanitize(dev, true);
869
870 if (IS_BROXTON(dev)) {
871 if (!dev_priv->suspended_to_idle)
872 gen9_sanitize_dc_state(dev_priv);
873 bxt_disable_dc9(dev_priv);
874 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
875 hsw_disable_pc8(dev_priv);
876 }
877
878 intel_uncore_sanitize(dev);
879
880 if (IS_BROXTON(dev_priv) ||
881 !(dev_priv->suspended_to_idle && dev_priv->csr.dmc_payload))
882 intel_power_domains_init_hw(dev_priv, true);
883
884 enable_rpm_wakeref_asserts(dev_priv);
885
886 out:
887 dev_priv->suspended_to_idle = false;
888
889 return ret;
890 }
891
892 int i915_resume_switcheroo(struct drm_device *dev)
893 {
894 int ret;
895
896 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
897 return 0;
898
899 ret = i915_drm_resume_early(dev);
900 if (ret)
901 return ret;
902
903 return i915_drm_resume(dev);
904 }
905
906 /**
907 * i915_reset - reset chip after a hang
908 * @dev: drm device to reset
909 *
910 * Reset the chip. Useful if a hang is detected. Returns zero on successful
911 * reset or otherwise an error code.
912 *
913 * Procedure is fairly simple:
914 * - reset the chip using the reset reg
915 * - re-init context state
916 * - re-init hardware status page
917 * - re-init ring buffer
918 * - re-init interrupt state
919 * - re-init display
920 */
921 int i915_reset(struct drm_device *dev)
922 {
923 struct drm_i915_private *dev_priv = dev->dev_private;
924 struct i915_gpu_error *error = &dev_priv->gpu_error;
925 unsigned reset_counter;
926 int ret;
927
928 intel_reset_gt_powersave(dev);
929
930 mutex_lock(&dev->struct_mutex);
931
932 /* Clear any previous failed attempts at recovery. Time to try again. */
933 atomic_andnot(I915_WEDGED, &error->reset_counter);
934
935 /* Clear the reset-in-progress flag and increment the reset epoch. */
936 reset_counter = atomic_inc_return(&error->reset_counter);
937 if (WARN_ON(__i915_reset_in_progress(reset_counter))) {
938 ret = -EIO;
939 goto error;
940 }
941
942 i915_gem_reset(dev);
943
944 ret = intel_gpu_reset(dev, ALL_ENGINES);
945
946 /* Also reset the gpu hangman. */
947 if (error->stop_rings != 0) {
948 DRM_INFO("Simulated gpu hang, resetting stop_rings\n");
949 error->stop_rings = 0;
950 if (ret == -ENODEV) {
951 DRM_INFO("Reset not implemented, but ignoring "
952 "error for simulated gpu hangs\n");
953 ret = 0;
954 }
955 }
956
957 if (i915_stop_ring_allow_warn(dev_priv))
958 pr_notice("drm/i915: Resetting chip after gpu hang\n");
959
960 if (ret) {
961 if (ret != -ENODEV)
962 DRM_ERROR("Failed to reset chip: %i\n", ret);
963 else
964 DRM_DEBUG_DRIVER("GPU reset disabled\n");
965 goto error;
966 }
967
968 intel_overlay_reset(dev_priv);
969
970 /* Ok, now get things going again... */
971
972 /*
973 * Everything depends on having the GTT running, so we need to start
974 * there. Fortunately we don't need to do this unless we reset the
975 * chip at a PCI level.
976 *
977 * Next we need to restore the context, but we don't use those
978 * yet either...
979 *
980 * Ring buffer needs to be re-initialized in the KMS case, or if X
981 * was running at the time of the reset (i.e. we weren't VT
982 * switched away).
983 */
984 ret = i915_gem_init_hw(dev);
985 if (ret) {
986 DRM_ERROR("Failed hw init on reset %d\n", ret);
987 goto error;
988 }
989
990 mutex_unlock(&dev->struct_mutex);
991
992 /*
993 * rps/rc6 re-init is necessary to restore state lost after the
994 * reset and the re-install of gt irqs. Skip for ironlake per
995 * previous concerns that it doesn't respond well to some forms
996 * of re-init after reset.
997 */
998 if (INTEL_INFO(dev)->gen > 5)
999 intel_enable_gt_powersave(dev);
1000
1001 return 0;
1002
1003 error:
1004 atomic_or(I915_WEDGED, &error->reset_counter);
1005 mutex_unlock(&dev->struct_mutex);
1006 return ret;
1007 }
1008
1009 static int i915_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1010 {
1011 struct intel_device_info *intel_info =
1012 (struct intel_device_info *) ent->driver_data;
1013
1014 if (IS_PRELIMINARY_HW(intel_info) && !i915.preliminary_hw_support) {
1015 DRM_INFO("This hardware requires preliminary hardware support.\n"
1016 "See CONFIG_DRM_I915_PRELIMINARY_HW_SUPPORT, and/or modparam preliminary_hw_support\n");
1017 return -ENODEV;
1018 }
1019
1020 /* Only bind to function 0 of the device. Early generations
1021 * used function 1 as a placeholder for multi-head. This causes
1022 * us confusion instead, especially on the systems where both
1023 * functions have the same PCI-ID!
1024 */
1025 if (PCI_FUNC(pdev->devfn))
1026 return -ENODEV;
1027
1028 /*
1029 * apple-gmux is needed on dual GPU MacBook Pro
1030 * to probe the panel if we're the inactive GPU.
1031 */
1032 if (IS_ENABLED(CONFIG_VGA_ARB) && IS_ENABLED(CONFIG_VGA_SWITCHEROO) &&
1033 apple_gmux_present() && pdev != vga_default_device() &&
1034 !vga_switcheroo_handler_flags())
1035 return -EPROBE_DEFER;
1036
1037 return drm_get_pci_dev(pdev, ent, &driver);
1038 }
1039
1040 static void
1041 i915_pci_remove(struct pci_dev *pdev)
1042 {
1043 struct drm_device *dev = pci_get_drvdata(pdev);
1044
1045 drm_put_dev(dev);
1046 }
1047
1048 static int i915_pm_suspend(struct device *dev)
1049 {
1050 struct pci_dev *pdev = to_pci_dev(dev);
1051 struct drm_device *drm_dev = pci_get_drvdata(pdev);
1052
1053 if (!drm_dev || !drm_dev->dev_private) {
1054 dev_err(dev, "DRM not initialized, aborting suspend.\n");
1055 return -ENODEV;
1056 }
1057
1058 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1059 return 0;
1060
1061 return i915_drm_suspend(drm_dev);
1062 }
1063
1064 static int i915_pm_suspend_late(struct device *dev)
1065 {
1066 struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1067
1068 /*
1069 * We have a suspend ordering issue with the snd-hda driver also
1070 * requiring our device to be power up. Due to the lack of a
1071 * parent/child relationship we currently solve this with an late
1072 * suspend hook.
1073 *
1074 * FIXME: This should be solved with a special hdmi sink device or
1075 * similar so that power domains can be employed.
1076 */
1077 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1078 return 0;
1079
1080 return i915_drm_suspend_late(drm_dev, false);
1081 }
1082
1083 static int i915_pm_poweroff_late(struct device *dev)
1084 {
1085 struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1086
1087 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1088 return 0;
1089
1090 return i915_drm_suspend_late(drm_dev, true);
1091 }
1092
1093 static int i915_pm_resume_early(struct device *dev)
1094 {
1095 struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1096
1097 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1098 return 0;
1099
1100 return i915_drm_resume_early(drm_dev);
1101 }
1102
1103 static int i915_pm_resume(struct device *dev)
1104 {
1105 struct drm_device *drm_dev = dev_to_i915(dev)->dev;
1106
1107 if (drm_dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1108 return 0;
1109
1110 return i915_drm_resume(drm_dev);
1111 }
1112
1113 /*
1114 * Save all Gunit registers that may be lost after a D3 and a subsequent
1115 * S0i[R123] transition. The list of registers needing a save/restore is
1116 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
1117 * registers in the following way:
1118 * - Driver: saved/restored by the driver
1119 * - Punit : saved/restored by the Punit firmware
1120 * - No, w/o marking: no need to save/restore, since the register is R/O or
1121 * used internally by the HW in a way that doesn't depend
1122 * keeping the content across a suspend/resume.
1123 * - Debug : used for debugging
1124 *
1125 * We save/restore all registers marked with 'Driver', with the following
1126 * exceptions:
1127 * - Registers out of use, including also registers marked with 'Debug'.
1128 * These have no effect on the driver's operation, so we don't save/restore
1129 * them to reduce the overhead.
1130 * - Registers that are fully setup by an initialization function called from
1131 * the resume path. For example many clock gating and RPS/RC6 registers.
1132 * - Registers that provide the right functionality with their reset defaults.
1133 *
1134 * TODO: Except for registers that based on the above 3 criteria can be safely
1135 * ignored, we save/restore all others, practically treating the HW context as
1136 * a black-box for the driver. Further investigation is needed to reduce the
1137 * saved/restored registers even further, by following the same 3 criteria.
1138 */
1139 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1140 {
1141 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1142 int i;
1143
1144 /* GAM 0x4000-0x4770 */
1145 s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
1146 s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
1147 s->arb_mode = I915_READ(ARB_MODE);
1148 s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
1149 s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
1150
1151 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
1152 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
1153
1154 s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
1155 s->gfx_max_req_count = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
1156
1157 s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
1158 s->ecochk = I915_READ(GAM_ECOCHK);
1159 s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
1160 s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
1161
1162 s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
1163
1164 /* MBC 0x9024-0x91D0, 0x8500 */
1165 s->g3dctl = I915_READ(VLV_G3DCTL);
1166 s->gsckgctl = I915_READ(VLV_GSCKGCTL);
1167 s->mbctl = I915_READ(GEN6_MBCTL);
1168
1169 /* GCP 0x9400-0x9424, 0x8100-0x810C */
1170 s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
1171 s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
1172 s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
1173 s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
1174 s->rstctl = I915_READ(GEN6_RSTCTL);
1175 s->misccpctl = I915_READ(GEN7_MISCCPCTL);
1176
1177 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
1178 s->gfxpause = I915_READ(GEN6_GFXPAUSE);
1179 s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
1180 s->rpdeuc = I915_READ(GEN6_RPDEUC);
1181 s->ecobus = I915_READ(ECOBUS);
1182 s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
1183 s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
1184 s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
1185 s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
1186 s->rcedata = I915_READ(VLV_RCEDATA);
1187 s->spare2gh = I915_READ(VLV_SPAREG2H);
1188
1189 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
1190 s->gt_imr = I915_READ(GTIMR);
1191 s->gt_ier = I915_READ(GTIER);
1192 s->pm_imr = I915_READ(GEN6_PMIMR);
1193 s->pm_ier = I915_READ(GEN6_PMIER);
1194
1195 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
1196 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
1197
1198 /* GT SA CZ domain, 0x100000-0x138124 */
1199 s->tilectl = I915_READ(TILECTL);
1200 s->gt_fifoctl = I915_READ(GTFIFOCTL);
1201 s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
1202 s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1203 s->pmwgicz = I915_READ(VLV_PMWGICZ);
1204
1205 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
1206 s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
1207 s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
1208 s->pcbr = I915_READ(VLV_PCBR);
1209 s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
1210
1211 /*
1212 * Not saving any of:
1213 * DFT, 0x9800-0x9EC0
1214 * SARB, 0xB000-0xB1FC
1215 * GAC, 0x5208-0x524C, 0x14000-0x14C000
1216 * PCI CFG
1217 */
1218 }
1219
1220 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1221 {
1222 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1223 u32 val;
1224 int i;
1225
1226 /* GAM 0x4000-0x4770 */
1227 I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
1228 I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
1229 I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
1230 I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
1231 I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
1232
1233 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
1234 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
1235
1236 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
1237 I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
1238
1239 I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
1240 I915_WRITE(GAM_ECOCHK, s->ecochk);
1241 I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
1242 I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
1243
1244 I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
1245
1246 /* MBC 0x9024-0x91D0, 0x8500 */
1247 I915_WRITE(VLV_G3DCTL, s->g3dctl);
1248 I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
1249 I915_WRITE(GEN6_MBCTL, s->mbctl);
1250
1251 /* GCP 0x9400-0x9424, 0x8100-0x810C */
1252 I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
1253 I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
1254 I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
1255 I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
1256 I915_WRITE(GEN6_RSTCTL, s->rstctl);
1257 I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
1258
1259 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
1260 I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
1261 I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
1262 I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
1263 I915_WRITE(ECOBUS, s->ecobus);
1264 I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
1265 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
1266 I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
1267 I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
1268 I915_WRITE(VLV_RCEDATA, s->rcedata);
1269 I915_WRITE(VLV_SPAREG2H, s->spare2gh);
1270
1271 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
1272 I915_WRITE(GTIMR, s->gt_imr);
1273 I915_WRITE(GTIER, s->gt_ier);
1274 I915_WRITE(GEN6_PMIMR, s->pm_imr);
1275 I915_WRITE(GEN6_PMIER, s->pm_ier);
1276
1277 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
1278 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
1279
1280 /* GT SA CZ domain, 0x100000-0x138124 */
1281 I915_WRITE(TILECTL, s->tilectl);
1282 I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
1283 /*
1284 * Preserve the GT allow wake and GFX force clock bit, they are not
1285 * be restored, as they are used to control the s0ix suspend/resume
1286 * sequence by the caller.
1287 */
1288 val = I915_READ(VLV_GTLC_WAKE_CTRL);
1289 val &= VLV_GTLC_ALLOWWAKEREQ;
1290 val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
1291 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
1292
1293 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1294 val &= VLV_GFX_CLK_FORCE_ON_BIT;
1295 val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
1296 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
1297
1298 I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
1299
1300 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
1301 I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
1302 I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
1303 I915_WRITE(VLV_PCBR, s->pcbr);
1304 I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
1305 }
1306
1307 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
1308 {
1309 u32 val;
1310 int err;
1311
1312 #define COND (I915_READ(VLV_GTLC_SURVIVABILITY_REG) & VLV_GFX_CLK_STATUS_BIT)
1313
1314 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
1315 val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
1316 if (force_on)
1317 val |= VLV_GFX_CLK_FORCE_ON_BIT;
1318 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
1319
1320 if (!force_on)
1321 return 0;
1322
1323 err = wait_for(COND, 20);
1324 if (err)
1325 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
1326 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
1327
1328 return err;
1329 #undef COND
1330 }
1331
1332 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
1333 {
1334 u32 val;
1335 int err = 0;
1336
1337 val = I915_READ(VLV_GTLC_WAKE_CTRL);
1338 val &= ~VLV_GTLC_ALLOWWAKEREQ;
1339 if (allow)
1340 val |= VLV_GTLC_ALLOWWAKEREQ;
1341 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
1342 POSTING_READ(VLV_GTLC_WAKE_CTRL);
1343
1344 #define COND (!!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEACK) == \
1345 allow)
1346 err = wait_for(COND, 1);
1347 if (err)
1348 DRM_ERROR("timeout disabling GT waking\n");
1349 return err;
1350 #undef COND
1351 }
1352
1353 static int vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
1354 bool wait_for_on)
1355 {
1356 u32 mask;
1357 u32 val;
1358 int err;
1359
1360 mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
1361 val = wait_for_on ? mask : 0;
1362 #define COND ((I915_READ(VLV_GTLC_PW_STATUS) & mask) == val)
1363 if (COND)
1364 return 0;
1365
1366 DRM_DEBUG_KMS("waiting for GT wells to go %s (%08x)\n",
1367 onoff(wait_for_on),
1368 I915_READ(VLV_GTLC_PW_STATUS));
1369
1370 /*
1371 * RC6 transitioning can be delayed up to 2 msec (see
1372 * valleyview_enable_rps), use 3 msec for safety.
1373 */
1374 err = wait_for(COND, 3);
1375 if (err)
1376 DRM_ERROR("timeout waiting for GT wells to go %s\n",
1377 onoff(wait_for_on));
1378
1379 return err;
1380 #undef COND
1381 }
1382
1383 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
1384 {
1385 if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
1386 return;
1387
1388 DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
1389 I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
1390 }
1391
1392 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
1393 {
1394 u32 mask;
1395 int err;
1396
1397 /*
1398 * Bspec defines the following GT well on flags as debug only, so
1399 * don't treat them as hard failures.
1400 */
1401 (void)vlv_wait_for_gt_wells(dev_priv, false);
1402
1403 mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
1404 WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
1405
1406 vlv_check_no_gt_access(dev_priv);
1407
1408 err = vlv_force_gfx_clock(dev_priv, true);
1409 if (err)
1410 goto err1;
1411
1412 err = vlv_allow_gt_wake(dev_priv, false);
1413 if (err)
1414 goto err2;
1415
1416 if (!IS_CHERRYVIEW(dev_priv))
1417 vlv_save_gunit_s0ix_state(dev_priv);
1418
1419 err = vlv_force_gfx_clock(dev_priv, false);
1420 if (err)
1421 goto err2;
1422
1423 return 0;
1424
1425 err2:
1426 /* For safety always re-enable waking and disable gfx clock forcing */
1427 vlv_allow_gt_wake(dev_priv, true);
1428 err1:
1429 vlv_force_gfx_clock(dev_priv, false);
1430
1431 return err;
1432 }
1433
1434 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1435 bool rpm_resume)
1436 {
1437 struct drm_device *dev = dev_priv->dev;
1438 int err;
1439 int ret;
1440
1441 /*
1442 * If any of the steps fail just try to continue, that's the best we
1443 * can do at this point. Return the first error code (which will also
1444 * leave RPM permanently disabled).
1445 */
1446 ret = vlv_force_gfx_clock(dev_priv, true);
1447
1448 if (!IS_CHERRYVIEW(dev_priv))
1449 vlv_restore_gunit_s0ix_state(dev_priv);
1450
1451 err = vlv_allow_gt_wake(dev_priv, true);
1452 if (!ret)
1453 ret = err;
1454
1455 err = vlv_force_gfx_clock(dev_priv, false);
1456 if (!ret)
1457 ret = err;
1458
1459 vlv_check_no_gt_access(dev_priv);
1460
1461 if (rpm_resume) {
1462 intel_init_clock_gating(dev);
1463 i915_gem_restore_fences(dev);
1464 }
1465
1466 return ret;
1467 }
1468
1469 static int intel_runtime_suspend(struct device *device)
1470 {
1471 struct pci_dev *pdev = to_pci_dev(device);
1472 struct drm_device *dev = pci_get_drvdata(pdev);
1473 struct drm_i915_private *dev_priv = dev->dev_private;
1474 int ret;
1475
1476 if (WARN_ON_ONCE(!(dev_priv->rps.enabled && intel_enable_rc6(dev))))
1477 return -ENODEV;
1478
1479 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
1480 return -ENODEV;
1481
1482 DRM_DEBUG_KMS("Suspending device\n");
1483
1484 /*
1485 * We could deadlock here in case another thread holding struct_mutex
1486 * calls RPM suspend concurrently, since the RPM suspend will wait
1487 * first for this RPM suspend to finish. In this case the concurrent
1488 * RPM resume will be followed by its RPM suspend counterpart. Still
1489 * for consistency return -EAGAIN, which will reschedule this suspend.
1490 */
1491 if (!mutex_trylock(&dev->struct_mutex)) {
1492 DRM_DEBUG_KMS("device lock contention, deffering suspend\n");
1493 /*
1494 * Bump the expiration timestamp, otherwise the suspend won't
1495 * be rescheduled.
1496 */
1497 pm_runtime_mark_last_busy(device);
1498
1499 return -EAGAIN;
1500 }
1501
1502 disable_rpm_wakeref_asserts(dev_priv);
1503
1504 /*
1505 * We are safe here against re-faults, since the fault handler takes
1506 * an RPM reference.
1507 */
1508 i915_gem_release_all_mmaps(dev_priv);
1509 mutex_unlock(&dev->struct_mutex);
1510
1511 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1512
1513 intel_guc_suspend(dev);
1514
1515 intel_suspend_gt_powersave(dev);
1516 intel_runtime_pm_disable_interrupts(dev_priv);
1517
1518 ret = 0;
1519 if (IS_BROXTON(dev_priv)) {
1520 bxt_display_core_uninit(dev_priv);
1521 bxt_enable_dc9(dev_priv);
1522 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1523 hsw_enable_pc8(dev_priv);
1524 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1525 ret = vlv_suspend_complete(dev_priv);
1526 }
1527
1528 if (ret) {
1529 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
1530 intel_runtime_pm_enable_interrupts(dev_priv);
1531
1532 enable_rpm_wakeref_asserts(dev_priv);
1533
1534 return ret;
1535 }
1536
1537 intel_uncore_forcewake_reset(dev, false);
1538
1539 enable_rpm_wakeref_asserts(dev_priv);
1540 WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
1541
1542 if (intel_uncore_arm_unclaimed_mmio_detection(dev_priv))
1543 DRM_ERROR("Unclaimed access detected prior to suspending\n");
1544
1545 dev_priv->pm.suspended = true;
1546
1547 /*
1548 * FIXME: We really should find a document that references the arguments
1549 * used below!
1550 */
1551 if (IS_BROADWELL(dev)) {
1552 /*
1553 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
1554 * being detected, and the call we do at intel_runtime_resume()
1555 * won't be able to restore them. Since PCI_D3hot matches the
1556 * actual specification and appears to be working, use it.
1557 */
1558 intel_opregion_notify_adapter(dev, PCI_D3hot);
1559 } else {
1560 /*
1561 * current versions of firmware which depend on this opregion
1562 * notification have repurposed the D1 definition to mean
1563 * "runtime suspended" vs. what you would normally expect (D3)
1564 * to distinguish it from notifications that might be sent via
1565 * the suspend path.
1566 */
1567 intel_opregion_notify_adapter(dev, PCI_D1);
1568 }
1569
1570 assert_forcewakes_inactive(dev_priv);
1571
1572 DRM_DEBUG_KMS("Device suspended\n");
1573 return 0;
1574 }
1575
1576 static int intel_runtime_resume(struct device *device)
1577 {
1578 struct pci_dev *pdev = to_pci_dev(device);
1579 struct drm_device *dev = pci_get_drvdata(pdev);
1580 struct drm_i915_private *dev_priv = dev->dev_private;
1581 int ret = 0;
1582
1583 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev)))
1584 return -ENODEV;
1585
1586 DRM_DEBUG_KMS("Resuming device\n");
1587
1588 WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
1589 disable_rpm_wakeref_asserts(dev_priv);
1590
1591 intel_opregion_notify_adapter(dev, PCI_D0);
1592 dev_priv->pm.suspended = false;
1593 if (intel_uncore_unclaimed_mmio(dev_priv))
1594 DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
1595
1596 intel_guc_resume(dev);
1597
1598 if (IS_GEN6(dev_priv))
1599 intel_init_pch_refclk(dev);
1600
1601 if (IS_BROXTON(dev)) {
1602 bxt_disable_dc9(dev_priv);
1603 bxt_display_core_init(dev_priv, true);
1604 if (dev_priv->csr.dmc_payload &&
1605 (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
1606 gen9_enable_dc5(dev_priv);
1607 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1608 hsw_disable_pc8(dev_priv);
1609 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1610 ret = vlv_resume_prepare(dev_priv, true);
1611 }
1612
1613 /*
1614 * No point of rolling back things in case of an error, as the best
1615 * we can do is to hope that things will still work (and disable RPM).
1616 */
1617 i915_gem_init_swizzling(dev);
1618 gen6_update_ring_freq(dev);
1619
1620 intel_runtime_pm_enable_interrupts(dev_priv);
1621
1622 /*
1623 * On VLV/CHV display interrupts are part of the display
1624 * power well, so hpd is reinitialized from there. For
1625 * everyone else do it here.
1626 */
1627 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
1628 intel_hpd_init(dev_priv);
1629
1630 intel_enable_gt_powersave(dev);
1631
1632 enable_rpm_wakeref_asserts(dev_priv);
1633
1634 if (ret)
1635 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
1636 else
1637 DRM_DEBUG_KMS("Device resumed\n");
1638
1639 return ret;
1640 }
1641
1642 static const struct dev_pm_ops i915_pm_ops = {
1643 /*
1644 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
1645 * PMSG_RESUME]
1646 */
1647 .suspend = i915_pm_suspend,
1648 .suspend_late = i915_pm_suspend_late,
1649 .resume_early = i915_pm_resume_early,
1650 .resume = i915_pm_resume,
1651
1652 /*
1653 * S4 event handlers
1654 * @freeze, @freeze_late : called (1) before creating the
1655 * hibernation image [PMSG_FREEZE] and
1656 * (2) after rebooting, before restoring
1657 * the image [PMSG_QUIESCE]
1658 * @thaw, @thaw_early : called (1) after creating the hibernation
1659 * image, before writing it [PMSG_THAW]
1660 * and (2) after failing to create or
1661 * restore the image [PMSG_RECOVER]
1662 * @poweroff, @poweroff_late: called after writing the hibernation
1663 * image, before rebooting [PMSG_HIBERNATE]
1664 * @restore, @restore_early : called after rebooting and restoring the
1665 * hibernation image [PMSG_RESTORE]
1666 */
1667 .freeze = i915_pm_suspend,
1668 .freeze_late = i915_pm_suspend_late,
1669 .thaw_early = i915_pm_resume_early,
1670 .thaw = i915_pm_resume,
1671 .poweroff = i915_pm_suspend,
1672 .poweroff_late = i915_pm_poweroff_late,
1673 .restore_early = i915_pm_resume_early,
1674 .restore = i915_pm_resume,
1675
1676 /* S0ix (via runtime suspend) event handlers */
1677 .runtime_suspend = intel_runtime_suspend,
1678 .runtime_resume = intel_runtime_resume,
1679 };
1680
1681 static const struct vm_operations_struct i915_gem_vm_ops = {
1682 .fault = i915_gem_fault,
1683 .open = drm_gem_vm_open,
1684 .close = drm_gem_vm_close,
1685 };
1686
1687 static const struct file_operations i915_driver_fops = {
1688 .owner = THIS_MODULE,
1689 .open = drm_open,
1690 .release = drm_release,
1691 .unlocked_ioctl = drm_ioctl,
1692 .mmap = drm_gem_mmap,
1693 .poll = drm_poll,
1694 .read = drm_read,
1695 #ifdef CONFIG_COMPAT
1696 .compat_ioctl = i915_compat_ioctl,
1697 #endif
1698 .llseek = noop_llseek,
1699 };
1700
1701 static struct drm_driver driver = {
1702 /* Don't use MTRRs here; the Xserver or userspace app should
1703 * deal with them for Intel hardware.
1704 */
1705 .driver_features =
1706 DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
1707 DRIVER_RENDER | DRIVER_MODESET,
1708 .load = i915_driver_load,
1709 .unload = i915_driver_unload,
1710 .open = i915_driver_open,
1711 .lastclose = i915_driver_lastclose,
1712 .preclose = i915_driver_preclose,
1713 .postclose = i915_driver_postclose,
1714 .set_busid = drm_pci_set_busid,
1715
1716 #if defined(CONFIG_DEBUG_FS)
1717 .debugfs_init = i915_debugfs_init,
1718 .debugfs_cleanup = i915_debugfs_cleanup,
1719 #endif
1720 .gem_free_object = i915_gem_free_object,
1721 .gem_vm_ops = &i915_gem_vm_ops,
1722
1723 .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
1724 .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
1725 .gem_prime_export = i915_gem_prime_export,
1726 .gem_prime_import = i915_gem_prime_import,
1727
1728 .dumb_create = i915_gem_dumb_create,
1729 .dumb_map_offset = i915_gem_mmap_gtt,
1730 .dumb_destroy = drm_gem_dumb_destroy,
1731 .ioctls = i915_ioctls,
1732 .fops = &i915_driver_fops,
1733 .name = DRIVER_NAME,
1734 .desc = DRIVER_DESC,
1735 .date = DRIVER_DATE,
1736 .major = DRIVER_MAJOR,
1737 .minor = DRIVER_MINOR,
1738 .patchlevel = DRIVER_PATCHLEVEL,
1739 };
1740
1741 static struct pci_driver i915_pci_driver = {
1742 .name = DRIVER_NAME,
1743 .id_table = pciidlist,
1744 .probe = i915_pci_probe,
1745 .remove = i915_pci_remove,
1746 .driver.pm = &i915_pm_ops,
1747 };
1748
1749 static int __init i915_init(void)
1750 {
1751 driver.num_ioctls = i915_max_ioctl;
1752
1753 /*
1754 * Enable KMS by default, unless explicitly overriden by
1755 * either the i915.modeset prarameter or by the
1756 * vga_text_mode_force boot option.
1757 */
1758
1759 if (i915.modeset == 0)
1760 driver.driver_features &= ~DRIVER_MODESET;
1761
1762 if (vgacon_text_force() && i915.modeset == -1)
1763 driver.driver_features &= ~DRIVER_MODESET;
1764
1765 if (!(driver.driver_features & DRIVER_MODESET)) {
1766 /* Silently fail loading to not upset userspace. */
1767 DRM_DEBUG_DRIVER("KMS and UMS disabled.\n");
1768 return 0;
1769 }
1770
1771 if (i915.nuclear_pageflip)
1772 driver.driver_features |= DRIVER_ATOMIC;
1773
1774 return drm_pci_init(&driver, &i915_pci_driver);
1775 }
1776
1777 static void __exit i915_exit(void)
1778 {
1779 if (!(driver.driver_features & DRIVER_MODESET))
1780 return; /* Never loaded a driver. */
1781
1782 drm_pci_exit(&driver, &i915_pci_driver);
1783 }
1784
1785 module_init(i915_init);
1786 module_exit(i915_exit);
1787
1788 MODULE_AUTHOR("Tungsten Graphics, Inc.");
1789 MODULE_AUTHOR("Intel Corporation");
1790
1791 MODULE_DESCRIPTION(DRIVER_DESC);
1792 MODULE_LICENSE("GPL and additional rights");