]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.c
BackMerge tag 'v4.12-rc5' into drm-next
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_drv.c
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #include <linux/acpi.h>
31 #include <linux/device.h>
32 #include <linux/oom.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/pm.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/pnp.h>
38 #include <linux/slab.h>
39 #include <linux/vgaarb.h>
40 #include <linux/vga_switcheroo.h>
41 #include <linux/vt.h>
42 #include <acpi/video.h>
43
44 #include <drm/drmP.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/drm_atomic_helper.h>
47 #include <drm/i915_drm.h>
48
49 #include "i915_drv.h"
50 #include "i915_trace.h"
51 #include "i915_vgpu.h"
52 #include "intel_drv.h"
53 #include "intel_uc.h"
54
55 static struct drm_driver driver;
56
57 static unsigned int i915_load_fail_count;
58
59 bool __i915_inject_load_failure(const char *func, int line)
60 {
61 if (i915_load_fail_count >= i915.inject_load_failure)
62 return false;
63
64 if (++i915_load_fail_count == i915.inject_load_failure) {
65 DRM_INFO("Injecting failure at checkpoint %u [%s:%d]\n",
66 i915.inject_load_failure, func, line);
67 return true;
68 }
69
70 return false;
71 }
72
73 #define FDO_BUG_URL "https://bugs.freedesktop.org/enter_bug.cgi?product=DRI"
74 #define FDO_BUG_MSG "Please file a bug at " FDO_BUG_URL " against DRM/Intel " \
75 "providing the dmesg log by booting with drm.debug=0xf"
76
77 void
78 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
79 const char *fmt, ...)
80 {
81 static bool shown_bug_once;
82 struct device *kdev = dev_priv->drm.dev;
83 bool is_error = level[1] <= KERN_ERR[1];
84 bool is_debug = level[1] == KERN_DEBUG[1];
85 struct va_format vaf;
86 va_list args;
87
88 if (is_debug && !(drm_debug & DRM_UT_DRIVER))
89 return;
90
91 va_start(args, fmt);
92
93 vaf.fmt = fmt;
94 vaf.va = &args;
95
96 dev_printk(level, kdev, "[" DRM_NAME ":%ps] %pV",
97 __builtin_return_address(0), &vaf);
98
99 if (is_error && !shown_bug_once) {
100 dev_notice(kdev, "%s", FDO_BUG_MSG);
101 shown_bug_once = true;
102 }
103
104 va_end(args);
105 }
106
107 static bool i915_error_injected(struct drm_i915_private *dev_priv)
108 {
109 return i915.inject_load_failure &&
110 i915_load_fail_count == i915.inject_load_failure;
111 }
112
113 #define i915_load_error(dev_priv, fmt, ...) \
114 __i915_printk(dev_priv, \
115 i915_error_injected(dev_priv) ? KERN_DEBUG : KERN_ERR, \
116 fmt, ##__VA_ARGS__)
117
118
119 static enum intel_pch intel_virt_detect_pch(struct drm_i915_private *dev_priv)
120 {
121 enum intel_pch ret = PCH_NOP;
122
123 /*
124 * In a virtualized passthrough environment we can be in a
125 * setup where the ISA bridge is not able to be passed through.
126 * In this case, a south bridge can be emulated and we have to
127 * make an educated guess as to which PCH is really there.
128 */
129
130 if (IS_GEN5(dev_priv)) {
131 ret = PCH_IBX;
132 DRM_DEBUG_KMS("Assuming Ibex Peak PCH\n");
133 } else if (IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv)) {
134 ret = PCH_CPT;
135 DRM_DEBUG_KMS("Assuming CouarPoint PCH\n");
136 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
137 ret = PCH_LPT;
138 DRM_DEBUG_KMS("Assuming LynxPoint PCH\n");
139 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
140 ret = PCH_SPT;
141 DRM_DEBUG_KMS("Assuming SunrisePoint PCH\n");
142 }
143
144 return ret;
145 }
146
147 static void intel_detect_pch(struct drm_i915_private *dev_priv)
148 {
149 struct pci_dev *pch = NULL;
150
151 /* In all current cases, num_pipes is equivalent to the PCH_NOP setting
152 * (which really amounts to a PCH but no South Display).
153 */
154 if (INTEL_INFO(dev_priv)->num_pipes == 0) {
155 dev_priv->pch_type = PCH_NOP;
156 return;
157 }
158
159 /*
160 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
161 * make graphics device passthrough work easy for VMM, that only
162 * need to expose ISA bridge to let driver know the real hardware
163 * underneath. This is a requirement from virtualization team.
164 *
165 * In some virtualized environments (e.g. XEN), there is irrelevant
166 * ISA bridge in the system. To work reliably, we should scan trhough
167 * all the ISA bridge devices and check for the first match, instead
168 * of only checking the first one.
169 */
170 while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
171 if (pch->vendor == PCI_VENDOR_ID_INTEL) {
172 unsigned short id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
173 dev_priv->pch_id = id;
174
175 if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
176 dev_priv->pch_type = PCH_IBX;
177 DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
178 WARN_ON(!IS_GEN5(dev_priv));
179 } else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
180 dev_priv->pch_type = PCH_CPT;
181 DRM_DEBUG_KMS("Found CougarPoint PCH\n");
182 WARN_ON(!(IS_GEN6(dev_priv) ||
183 IS_IVYBRIDGE(dev_priv)));
184 } else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
185 /* PantherPoint is CPT compatible */
186 dev_priv->pch_type = PCH_CPT;
187 DRM_DEBUG_KMS("Found PantherPoint PCH\n");
188 WARN_ON(!(IS_GEN6(dev_priv) ||
189 IS_IVYBRIDGE(dev_priv)));
190 } else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
191 dev_priv->pch_type = PCH_LPT;
192 DRM_DEBUG_KMS("Found LynxPoint PCH\n");
193 WARN_ON(!IS_HASWELL(dev_priv) &&
194 !IS_BROADWELL(dev_priv));
195 WARN_ON(IS_HSW_ULT(dev_priv) ||
196 IS_BDW_ULT(dev_priv));
197 } else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
198 dev_priv->pch_type = PCH_LPT;
199 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
200 WARN_ON(!IS_HASWELL(dev_priv) &&
201 !IS_BROADWELL(dev_priv));
202 WARN_ON(!IS_HSW_ULT(dev_priv) &&
203 !IS_BDW_ULT(dev_priv));
204 } else if (id == INTEL_PCH_SPT_DEVICE_ID_TYPE) {
205 dev_priv->pch_type = PCH_SPT;
206 DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
207 WARN_ON(!IS_SKYLAKE(dev_priv) &&
208 !IS_KABYLAKE(dev_priv));
209 } else if (id == INTEL_PCH_SPT_LP_DEVICE_ID_TYPE) {
210 dev_priv->pch_type = PCH_SPT;
211 DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
212 WARN_ON(!IS_SKYLAKE(dev_priv) &&
213 !IS_KABYLAKE(dev_priv));
214 } else if (id == INTEL_PCH_KBP_DEVICE_ID_TYPE) {
215 dev_priv->pch_type = PCH_KBP;
216 DRM_DEBUG_KMS("Found KabyPoint PCH\n");
217 WARN_ON(!IS_SKYLAKE(dev_priv) &&
218 !IS_KABYLAKE(dev_priv));
219 } else if ((id == INTEL_PCH_P2X_DEVICE_ID_TYPE) ||
220 (id == INTEL_PCH_P3X_DEVICE_ID_TYPE) ||
221 ((id == INTEL_PCH_QEMU_DEVICE_ID_TYPE) &&
222 pch->subsystem_vendor ==
223 PCI_SUBVENDOR_ID_REDHAT_QUMRANET &&
224 pch->subsystem_device ==
225 PCI_SUBDEVICE_ID_QEMU)) {
226 dev_priv->pch_type =
227 intel_virt_detect_pch(dev_priv);
228 } else
229 continue;
230
231 break;
232 }
233 }
234 if (!pch)
235 DRM_DEBUG_KMS("No PCH found.\n");
236
237 pci_dev_put(pch);
238 }
239
240 static int i915_getparam(struct drm_device *dev, void *data,
241 struct drm_file *file_priv)
242 {
243 struct drm_i915_private *dev_priv = to_i915(dev);
244 struct pci_dev *pdev = dev_priv->drm.pdev;
245 drm_i915_getparam_t *param = data;
246 int value;
247
248 switch (param->param) {
249 case I915_PARAM_IRQ_ACTIVE:
250 case I915_PARAM_ALLOW_BATCHBUFFER:
251 case I915_PARAM_LAST_DISPATCH:
252 case I915_PARAM_HAS_EXEC_CONSTANTS:
253 /* Reject all old ums/dri params. */
254 return -ENODEV;
255 case I915_PARAM_CHIPSET_ID:
256 value = pdev->device;
257 break;
258 case I915_PARAM_REVISION:
259 value = pdev->revision;
260 break;
261 case I915_PARAM_NUM_FENCES_AVAIL:
262 value = dev_priv->num_fence_regs;
263 break;
264 case I915_PARAM_HAS_OVERLAY:
265 value = dev_priv->overlay ? 1 : 0;
266 break;
267 case I915_PARAM_HAS_BSD:
268 value = !!dev_priv->engine[VCS];
269 break;
270 case I915_PARAM_HAS_BLT:
271 value = !!dev_priv->engine[BCS];
272 break;
273 case I915_PARAM_HAS_VEBOX:
274 value = !!dev_priv->engine[VECS];
275 break;
276 case I915_PARAM_HAS_BSD2:
277 value = !!dev_priv->engine[VCS2];
278 break;
279 case I915_PARAM_HAS_LLC:
280 value = HAS_LLC(dev_priv);
281 break;
282 case I915_PARAM_HAS_WT:
283 value = HAS_WT(dev_priv);
284 break;
285 case I915_PARAM_HAS_ALIASING_PPGTT:
286 value = USES_PPGTT(dev_priv);
287 break;
288 case I915_PARAM_HAS_SEMAPHORES:
289 value = i915.semaphores;
290 break;
291 case I915_PARAM_HAS_SECURE_BATCHES:
292 value = capable(CAP_SYS_ADMIN);
293 break;
294 case I915_PARAM_CMD_PARSER_VERSION:
295 value = i915_cmd_parser_get_version(dev_priv);
296 break;
297 case I915_PARAM_SUBSLICE_TOTAL:
298 value = sseu_subslice_total(&INTEL_INFO(dev_priv)->sseu);
299 if (!value)
300 return -ENODEV;
301 break;
302 case I915_PARAM_EU_TOTAL:
303 value = INTEL_INFO(dev_priv)->sseu.eu_total;
304 if (!value)
305 return -ENODEV;
306 break;
307 case I915_PARAM_HAS_GPU_RESET:
308 value = i915.enable_hangcheck && intel_has_gpu_reset(dev_priv);
309 break;
310 case I915_PARAM_HAS_RESOURCE_STREAMER:
311 value = HAS_RESOURCE_STREAMER(dev_priv);
312 break;
313 case I915_PARAM_HAS_POOLED_EU:
314 value = HAS_POOLED_EU(dev_priv);
315 break;
316 case I915_PARAM_MIN_EU_IN_POOL:
317 value = INTEL_INFO(dev_priv)->sseu.min_eu_in_pool;
318 break;
319 case I915_PARAM_HUC_STATUS:
320 intel_runtime_pm_get(dev_priv);
321 value = I915_READ(HUC_STATUS2) & HUC_FW_VERIFIED;
322 intel_runtime_pm_put(dev_priv);
323 break;
324 case I915_PARAM_MMAP_GTT_VERSION:
325 /* Though we've started our numbering from 1, and so class all
326 * earlier versions as 0, in effect their value is undefined as
327 * the ioctl will report EINVAL for the unknown param!
328 */
329 value = i915_gem_mmap_gtt_version();
330 break;
331 case I915_PARAM_HAS_SCHEDULER:
332 value = dev_priv->engine[RCS] &&
333 dev_priv->engine[RCS]->schedule;
334 break;
335 case I915_PARAM_MMAP_VERSION:
336 /* Remember to bump this if the version changes! */
337 case I915_PARAM_HAS_GEM:
338 case I915_PARAM_HAS_PAGEFLIPPING:
339 case I915_PARAM_HAS_EXECBUF2: /* depends on GEM */
340 case I915_PARAM_HAS_RELAXED_FENCING:
341 case I915_PARAM_HAS_COHERENT_RINGS:
342 case I915_PARAM_HAS_RELAXED_DELTA:
343 case I915_PARAM_HAS_GEN7_SOL_RESET:
344 case I915_PARAM_HAS_WAIT_TIMEOUT:
345 case I915_PARAM_HAS_PRIME_VMAP_FLUSH:
346 case I915_PARAM_HAS_PINNED_BATCHES:
347 case I915_PARAM_HAS_EXEC_NO_RELOC:
348 case I915_PARAM_HAS_EXEC_HANDLE_LUT:
349 case I915_PARAM_HAS_COHERENT_PHYS_GTT:
350 case I915_PARAM_HAS_EXEC_SOFTPIN:
351 case I915_PARAM_HAS_EXEC_ASYNC:
352 case I915_PARAM_HAS_EXEC_FENCE:
353 case I915_PARAM_HAS_EXEC_CAPTURE:
354 /* For the time being all of these are always true;
355 * if some supported hardware does not have one of these
356 * features this value needs to be provided from
357 * INTEL_INFO(), a feature macro, or similar.
358 */
359 value = 1;
360 break;
361 default:
362 DRM_DEBUG("Unknown parameter %d\n", param->param);
363 return -EINVAL;
364 }
365
366 if (put_user(value, param->value))
367 return -EFAULT;
368
369 return 0;
370 }
371
372 static int i915_get_bridge_dev(struct drm_i915_private *dev_priv)
373 {
374 dev_priv->bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0));
375 if (!dev_priv->bridge_dev) {
376 DRM_ERROR("bridge device not found\n");
377 return -1;
378 }
379 return 0;
380 }
381
382 /* Allocate space for the MCH regs if needed, return nonzero on error */
383 static int
384 intel_alloc_mchbar_resource(struct drm_i915_private *dev_priv)
385 {
386 int reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
387 u32 temp_lo, temp_hi = 0;
388 u64 mchbar_addr;
389 int ret;
390
391 if (INTEL_GEN(dev_priv) >= 4)
392 pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
393 pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
394 mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
395
396 /* If ACPI doesn't have it, assume we need to allocate it ourselves */
397 #ifdef CONFIG_PNP
398 if (mchbar_addr &&
399 pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
400 return 0;
401 #endif
402
403 /* Get some space for it */
404 dev_priv->mch_res.name = "i915 MCHBAR";
405 dev_priv->mch_res.flags = IORESOURCE_MEM;
406 ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
407 &dev_priv->mch_res,
408 MCHBAR_SIZE, MCHBAR_SIZE,
409 PCIBIOS_MIN_MEM,
410 0, pcibios_align_resource,
411 dev_priv->bridge_dev);
412 if (ret) {
413 DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
414 dev_priv->mch_res.start = 0;
415 return ret;
416 }
417
418 if (INTEL_GEN(dev_priv) >= 4)
419 pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
420 upper_32_bits(dev_priv->mch_res.start));
421
422 pci_write_config_dword(dev_priv->bridge_dev, reg,
423 lower_32_bits(dev_priv->mch_res.start));
424 return 0;
425 }
426
427 /* Setup MCHBAR if possible, return true if we should disable it again */
428 static void
429 intel_setup_mchbar(struct drm_i915_private *dev_priv)
430 {
431 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
432 u32 temp;
433 bool enabled;
434
435 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
436 return;
437
438 dev_priv->mchbar_need_disable = false;
439
440 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
441 pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
442 enabled = !!(temp & DEVEN_MCHBAR_EN);
443 } else {
444 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
445 enabled = temp & 1;
446 }
447
448 /* If it's already enabled, don't have to do anything */
449 if (enabled)
450 return;
451
452 if (intel_alloc_mchbar_resource(dev_priv))
453 return;
454
455 dev_priv->mchbar_need_disable = true;
456
457 /* Space is allocated or reserved, so enable it. */
458 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
459 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
460 temp | DEVEN_MCHBAR_EN);
461 } else {
462 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
463 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
464 }
465 }
466
467 static void
468 intel_teardown_mchbar(struct drm_i915_private *dev_priv)
469 {
470 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
471
472 if (dev_priv->mchbar_need_disable) {
473 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
474 u32 deven_val;
475
476 pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
477 &deven_val);
478 deven_val &= ~DEVEN_MCHBAR_EN;
479 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
480 deven_val);
481 } else {
482 u32 mchbar_val;
483
484 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
485 &mchbar_val);
486 mchbar_val &= ~1;
487 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
488 mchbar_val);
489 }
490 }
491
492 if (dev_priv->mch_res.start)
493 release_resource(&dev_priv->mch_res);
494 }
495
496 /* true = enable decode, false = disable decoder */
497 static unsigned int i915_vga_set_decode(void *cookie, bool state)
498 {
499 struct drm_i915_private *dev_priv = cookie;
500
501 intel_modeset_vga_set_state(dev_priv, state);
502 if (state)
503 return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
504 VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
505 else
506 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
507 }
508
509 static int i915_resume_switcheroo(struct drm_device *dev);
510 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
511
512 static void i915_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
513 {
514 struct drm_device *dev = pci_get_drvdata(pdev);
515 pm_message_t pmm = { .event = PM_EVENT_SUSPEND };
516
517 if (state == VGA_SWITCHEROO_ON) {
518 pr_info("switched on\n");
519 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
520 /* i915 resume handler doesn't set to D0 */
521 pci_set_power_state(pdev, PCI_D0);
522 i915_resume_switcheroo(dev);
523 dev->switch_power_state = DRM_SWITCH_POWER_ON;
524 } else {
525 pr_info("switched off\n");
526 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
527 i915_suspend_switcheroo(dev, pmm);
528 dev->switch_power_state = DRM_SWITCH_POWER_OFF;
529 }
530 }
531
532 static bool i915_switcheroo_can_switch(struct pci_dev *pdev)
533 {
534 struct drm_device *dev = pci_get_drvdata(pdev);
535
536 /*
537 * FIXME: open_count is protected by drm_global_mutex but that would lead to
538 * locking inversion with the driver load path. And the access here is
539 * completely racy anyway. So don't bother with locking for now.
540 */
541 return dev->open_count == 0;
542 }
543
544 static const struct vga_switcheroo_client_ops i915_switcheroo_ops = {
545 .set_gpu_state = i915_switcheroo_set_state,
546 .reprobe = NULL,
547 .can_switch = i915_switcheroo_can_switch,
548 };
549
550 static void i915_gem_fini(struct drm_i915_private *dev_priv)
551 {
552 mutex_lock(&dev_priv->drm.struct_mutex);
553 intel_uc_fini_hw(dev_priv);
554 i915_gem_cleanup_engines(dev_priv);
555 i915_gem_context_fini(dev_priv);
556 mutex_unlock(&dev_priv->drm.struct_mutex);
557
558 i915_gem_drain_freed_objects(dev_priv);
559
560 WARN_ON(!list_empty(&dev_priv->context_list));
561 }
562
563 static int i915_load_modeset_init(struct drm_device *dev)
564 {
565 struct drm_i915_private *dev_priv = to_i915(dev);
566 struct pci_dev *pdev = dev_priv->drm.pdev;
567 int ret;
568
569 if (i915_inject_load_failure())
570 return -ENODEV;
571
572 intel_bios_init(dev_priv);
573
574 /* If we have > 1 VGA cards, then we need to arbitrate access
575 * to the common VGA resources.
576 *
577 * If we are a secondary display controller (!PCI_DISPLAY_CLASS_VGA),
578 * then we do not take part in VGA arbitration and the
579 * vga_client_register() fails with -ENODEV.
580 */
581 ret = vga_client_register(pdev, dev_priv, NULL, i915_vga_set_decode);
582 if (ret && ret != -ENODEV)
583 goto out;
584
585 intel_register_dsm_handler();
586
587 ret = vga_switcheroo_register_client(pdev, &i915_switcheroo_ops, false);
588 if (ret)
589 goto cleanup_vga_client;
590
591 /* must happen before intel_power_domains_init_hw() on VLV/CHV */
592 intel_update_rawclk(dev_priv);
593
594 intel_power_domains_init_hw(dev_priv, false);
595
596 intel_csr_ucode_init(dev_priv);
597
598 ret = intel_irq_install(dev_priv);
599 if (ret)
600 goto cleanup_csr;
601
602 intel_setup_gmbus(dev_priv);
603
604 /* Important: The output setup functions called by modeset_init need
605 * working irqs for e.g. gmbus and dp aux transfers. */
606 ret = intel_modeset_init(dev);
607 if (ret)
608 goto cleanup_irq;
609
610 intel_uc_init_fw(dev_priv);
611
612 ret = i915_gem_init(dev_priv);
613 if (ret)
614 goto cleanup_uc;
615
616 intel_modeset_gem_init(dev);
617
618 if (INTEL_INFO(dev_priv)->num_pipes == 0)
619 return 0;
620
621 ret = intel_fbdev_init(dev);
622 if (ret)
623 goto cleanup_gem;
624
625 /* Only enable hotplug handling once the fbdev is fully set up. */
626 intel_hpd_init(dev_priv);
627
628 drm_kms_helper_poll_init(dev);
629
630 return 0;
631
632 cleanup_gem:
633 if (i915_gem_suspend(dev_priv))
634 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
635 i915_gem_fini(dev_priv);
636 cleanup_uc:
637 intel_uc_fini_fw(dev_priv);
638 cleanup_irq:
639 drm_irq_uninstall(dev);
640 intel_teardown_gmbus(dev_priv);
641 cleanup_csr:
642 intel_csr_ucode_fini(dev_priv);
643 intel_power_domains_fini(dev_priv);
644 vga_switcheroo_unregister_client(pdev);
645 cleanup_vga_client:
646 vga_client_register(pdev, NULL, NULL, NULL);
647 out:
648 return ret;
649 }
650
651 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
652 {
653 struct apertures_struct *ap;
654 struct pci_dev *pdev = dev_priv->drm.pdev;
655 struct i915_ggtt *ggtt = &dev_priv->ggtt;
656 bool primary;
657 int ret;
658
659 ap = alloc_apertures(1);
660 if (!ap)
661 return -ENOMEM;
662
663 ap->ranges[0].base = ggtt->mappable_base;
664 ap->ranges[0].size = ggtt->mappable_end;
665
666 primary =
667 pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW;
668
669 ret = drm_fb_helper_remove_conflicting_framebuffers(ap, "inteldrmfb", primary);
670
671 kfree(ap);
672
673 return ret;
674 }
675
676 #if !defined(CONFIG_VGA_CONSOLE)
677 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
678 {
679 return 0;
680 }
681 #elif !defined(CONFIG_DUMMY_CONSOLE)
682 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
683 {
684 return -ENODEV;
685 }
686 #else
687 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
688 {
689 int ret = 0;
690
691 DRM_INFO("Replacing VGA console driver\n");
692
693 console_lock();
694 if (con_is_bound(&vga_con))
695 ret = do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES - 1, 1);
696 if (ret == 0) {
697 ret = do_unregister_con_driver(&vga_con);
698
699 /* Ignore "already unregistered". */
700 if (ret == -ENODEV)
701 ret = 0;
702 }
703 console_unlock();
704
705 return ret;
706 }
707 #endif
708
709 static void intel_init_dpio(struct drm_i915_private *dev_priv)
710 {
711 /*
712 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
713 * CHV x1 PHY (DP/HDMI D)
714 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
715 */
716 if (IS_CHERRYVIEW(dev_priv)) {
717 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
718 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
719 } else if (IS_VALLEYVIEW(dev_priv)) {
720 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
721 }
722 }
723
724 static int i915_workqueues_init(struct drm_i915_private *dev_priv)
725 {
726 /*
727 * The i915 workqueue is primarily used for batched retirement of
728 * requests (and thus managing bo) once the task has been completed
729 * by the GPU. i915_gem_retire_requests() is called directly when we
730 * need high-priority retirement, such as waiting for an explicit
731 * bo.
732 *
733 * It is also used for periodic low-priority events, such as
734 * idle-timers and recording error state.
735 *
736 * All tasks on the workqueue are expected to acquire the dev mutex
737 * so there is no point in running more than one instance of the
738 * workqueue at any time. Use an ordered one.
739 */
740 dev_priv->wq = alloc_ordered_workqueue("i915", 0);
741 if (dev_priv->wq == NULL)
742 goto out_err;
743
744 dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
745 if (dev_priv->hotplug.dp_wq == NULL)
746 goto out_free_wq;
747
748 return 0;
749
750 out_free_wq:
751 destroy_workqueue(dev_priv->wq);
752 out_err:
753 DRM_ERROR("Failed to allocate workqueues.\n");
754
755 return -ENOMEM;
756 }
757
758 static void i915_engines_cleanup(struct drm_i915_private *i915)
759 {
760 struct intel_engine_cs *engine;
761 enum intel_engine_id id;
762
763 for_each_engine(engine, i915, id)
764 kfree(engine);
765 }
766
767 static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
768 {
769 destroy_workqueue(dev_priv->hotplug.dp_wq);
770 destroy_workqueue(dev_priv->wq);
771 }
772
773 /*
774 * We don't keep the workarounds for pre-production hardware, so we expect our
775 * driver to fail on these machines in one way or another. A little warning on
776 * dmesg may help both the user and the bug triagers.
777 */
778 static void intel_detect_preproduction_hw(struct drm_i915_private *dev_priv)
779 {
780 bool pre = false;
781
782 pre |= IS_HSW_EARLY_SDV(dev_priv);
783 pre |= IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0);
784 pre |= IS_BXT_REVID(dev_priv, 0, BXT_REVID_B_LAST);
785
786 if (pre) {
787 DRM_ERROR("This is a pre-production stepping. "
788 "It may not be fully functional.\n");
789 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK);
790 }
791 }
792
793 /**
794 * i915_driver_init_early - setup state not requiring device access
795 * @dev_priv: device private
796 *
797 * Initialize everything that is a "SW-only" state, that is state not
798 * requiring accessing the device or exposing the driver via kernel internal
799 * or userspace interfaces. Example steps belonging here: lock initialization,
800 * system memory allocation, setting up device specific attributes and
801 * function hooks not requiring accessing the device.
802 */
803 static int i915_driver_init_early(struct drm_i915_private *dev_priv,
804 const struct pci_device_id *ent)
805 {
806 const struct intel_device_info *match_info =
807 (struct intel_device_info *)ent->driver_data;
808 struct intel_device_info *device_info;
809 int ret = 0;
810
811 if (i915_inject_load_failure())
812 return -ENODEV;
813
814 /* Setup the write-once "constant" device info */
815 device_info = mkwrite_device_info(dev_priv);
816 memcpy(device_info, match_info, sizeof(*device_info));
817 device_info->device_id = dev_priv->drm.pdev->device;
818
819 BUG_ON(device_info->gen > sizeof(device_info->gen_mask) * BITS_PER_BYTE);
820 device_info->gen_mask = BIT(device_info->gen - 1);
821
822 spin_lock_init(&dev_priv->irq_lock);
823 spin_lock_init(&dev_priv->gpu_error.lock);
824 mutex_init(&dev_priv->backlight_lock);
825 spin_lock_init(&dev_priv->uncore.lock);
826
827 spin_lock_init(&dev_priv->mm.object_stat_lock);
828 spin_lock_init(&dev_priv->mmio_flip_lock);
829 mutex_init(&dev_priv->sb_lock);
830 mutex_init(&dev_priv->modeset_restore_lock);
831 mutex_init(&dev_priv->av_mutex);
832 mutex_init(&dev_priv->wm.wm_mutex);
833 mutex_init(&dev_priv->pps_mutex);
834
835 intel_uc_init_early(dev_priv);
836 i915_memcpy_init_early(dev_priv);
837
838 ret = i915_workqueues_init(dev_priv);
839 if (ret < 0)
840 goto err_engines;
841
842 /* This must be called before any calls to HAS_PCH_* */
843 intel_detect_pch(dev_priv);
844
845 intel_pm_setup(dev_priv);
846 intel_init_dpio(dev_priv);
847 intel_power_domains_init(dev_priv);
848 intel_irq_init(dev_priv);
849 intel_hangcheck_init(dev_priv);
850 intel_init_display_hooks(dev_priv);
851 intel_init_clock_gating_hooks(dev_priv);
852 intel_init_audio_hooks(dev_priv);
853 ret = i915_gem_load_init(dev_priv);
854 if (ret < 0)
855 goto err_irq;
856
857 intel_display_crc_init(dev_priv);
858
859 intel_device_info_dump(dev_priv);
860
861 intel_detect_preproduction_hw(dev_priv);
862
863 i915_perf_init(dev_priv);
864
865 return 0;
866
867 err_irq:
868 intel_irq_fini(dev_priv);
869 i915_workqueues_cleanup(dev_priv);
870 err_engines:
871 i915_engines_cleanup(dev_priv);
872 return ret;
873 }
874
875 /**
876 * i915_driver_cleanup_early - cleanup the setup done in i915_driver_init_early()
877 * @dev_priv: device private
878 */
879 static void i915_driver_cleanup_early(struct drm_i915_private *dev_priv)
880 {
881 i915_perf_fini(dev_priv);
882 i915_gem_load_cleanup(dev_priv);
883 intel_irq_fini(dev_priv);
884 i915_workqueues_cleanup(dev_priv);
885 i915_engines_cleanup(dev_priv);
886 }
887
888 static int i915_mmio_setup(struct drm_i915_private *dev_priv)
889 {
890 struct pci_dev *pdev = dev_priv->drm.pdev;
891 int mmio_bar;
892 int mmio_size;
893
894 mmio_bar = IS_GEN2(dev_priv) ? 1 : 0;
895 /*
896 * Before gen4, the registers and the GTT are behind different BARs.
897 * However, from gen4 onwards, the registers and the GTT are shared
898 * in the same BAR, so we want to restrict this ioremap from
899 * clobbering the GTT which we want ioremap_wc instead. Fortunately,
900 * the register BAR remains the same size for all the earlier
901 * generations up to Ironlake.
902 */
903 if (INTEL_GEN(dev_priv) < 5)
904 mmio_size = 512 * 1024;
905 else
906 mmio_size = 2 * 1024 * 1024;
907 dev_priv->regs = pci_iomap(pdev, mmio_bar, mmio_size);
908 if (dev_priv->regs == NULL) {
909 DRM_ERROR("failed to map registers\n");
910
911 return -EIO;
912 }
913
914 /* Try to make sure MCHBAR is enabled before poking at it */
915 intel_setup_mchbar(dev_priv);
916
917 return 0;
918 }
919
920 static void i915_mmio_cleanup(struct drm_i915_private *dev_priv)
921 {
922 struct pci_dev *pdev = dev_priv->drm.pdev;
923
924 intel_teardown_mchbar(dev_priv);
925 pci_iounmap(pdev, dev_priv->regs);
926 }
927
928 /**
929 * i915_driver_init_mmio - setup device MMIO
930 * @dev_priv: device private
931 *
932 * Setup minimal device state necessary for MMIO accesses later in the
933 * initialization sequence. The setup here should avoid any other device-wide
934 * side effects or exposing the driver via kernel internal or user space
935 * interfaces.
936 */
937 static int i915_driver_init_mmio(struct drm_i915_private *dev_priv)
938 {
939 int ret;
940
941 if (i915_inject_load_failure())
942 return -ENODEV;
943
944 if (i915_get_bridge_dev(dev_priv))
945 return -EIO;
946
947 ret = i915_mmio_setup(dev_priv);
948 if (ret < 0)
949 goto err_bridge;
950
951 intel_uncore_init(dev_priv);
952
953 ret = intel_engines_init_mmio(dev_priv);
954 if (ret)
955 goto err_uncore;
956
957 i915_gem_init_mmio(dev_priv);
958
959 return 0;
960
961 err_uncore:
962 intel_uncore_fini(dev_priv);
963 err_bridge:
964 pci_dev_put(dev_priv->bridge_dev);
965
966 return ret;
967 }
968
969 /**
970 * i915_driver_cleanup_mmio - cleanup the setup done in i915_driver_init_mmio()
971 * @dev_priv: device private
972 */
973 static void i915_driver_cleanup_mmio(struct drm_i915_private *dev_priv)
974 {
975 intel_uncore_fini(dev_priv);
976 i915_mmio_cleanup(dev_priv);
977 pci_dev_put(dev_priv->bridge_dev);
978 }
979
980 static void intel_sanitize_options(struct drm_i915_private *dev_priv)
981 {
982 i915.enable_execlists =
983 intel_sanitize_enable_execlists(dev_priv,
984 i915.enable_execlists);
985
986 /*
987 * i915.enable_ppgtt is read-only, so do an early pass to validate the
988 * user's requested state against the hardware/driver capabilities. We
989 * do this now so that we can print out any log messages once rather
990 * than every time we check intel_enable_ppgtt().
991 */
992 i915.enable_ppgtt =
993 intel_sanitize_enable_ppgtt(dev_priv, i915.enable_ppgtt);
994 DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
995
996 i915.semaphores = intel_sanitize_semaphores(dev_priv, i915.semaphores);
997 DRM_DEBUG_DRIVER("use GPU semaphores? %s\n", yesno(i915.semaphores));
998
999 intel_uc_sanitize_options(dev_priv);
1000 }
1001
1002 /**
1003 * i915_driver_init_hw - setup state requiring device access
1004 * @dev_priv: device private
1005 *
1006 * Setup state that requires accessing the device, but doesn't require
1007 * exposing the driver via kernel internal or userspace interfaces.
1008 */
1009 static int i915_driver_init_hw(struct drm_i915_private *dev_priv)
1010 {
1011 struct pci_dev *pdev = dev_priv->drm.pdev;
1012 int ret;
1013
1014 if (i915_inject_load_failure())
1015 return -ENODEV;
1016
1017 intel_device_info_runtime_init(dev_priv);
1018
1019 intel_sanitize_options(dev_priv);
1020
1021 ret = i915_ggtt_probe_hw(dev_priv);
1022 if (ret)
1023 return ret;
1024
1025 /* WARNING: Apparently we must kick fbdev drivers before vgacon,
1026 * otherwise the vga fbdev driver falls over. */
1027 ret = i915_kick_out_firmware_fb(dev_priv);
1028 if (ret) {
1029 DRM_ERROR("failed to remove conflicting framebuffer drivers\n");
1030 goto out_ggtt;
1031 }
1032
1033 ret = i915_kick_out_vgacon(dev_priv);
1034 if (ret) {
1035 DRM_ERROR("failed to remove conflicting VGA console\n");
1036 goto out_ggtt;
1037 }
1038
1039 ret = i915_ggtt_init_hw(dev_priv);
1040 if (ret)
1041 return ret;
1042
1043 ret = i915_ggtt_enable_hw(dev_priv);
1044 if (ret) {
1045 DRM_ERROR("failed to enable GGTT\n");
1046 goto out_ggtt;
1047 }
1048
1049 pci_set_master(pdev);
1050
1051 /* overlay on gen2 is broken and can't address above 1G */
1052 if (IS_GEN2(dev_priv)) {
1053 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
1054 if (ret) {
1055 DRM_ERROR("failed to set DMA mask\n");
1056
1057 goto out_ggtt;
1058 }
1059 }
1060
1061 /* 965GM sometimes incorrectly writes to hardware status page (HWS)
1062 * using 32bit addressing, overwriting memory if HWS is located
1063 * above 4GB.
1064 *
1065 * The documentation also mentions an issue with undefined
1066 * behaviour if any general state is accessed within a page above 4GB,
1067 * which also needs to be handled carefully.
1068 */
1069 if (IS_I965G(dev_priv) || IS_I965GM(dev_priv)) {
1070 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1071
1072 if (ret) {
1073 DRM_ERROR("failed to set DMA mask\n");
1074
1075 goto out_ggtt;
1076 }
1077 }
1078
1079 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1080 PM_QOS_DEFAULT_VALUE);
1081
1082 intel_uncore_sanitize(dev_priv);
1083
1084 intel_opregion_setup(dev_priv);
1085
1086 i915_gem_load_init_fences(dev_priv);
1087
1088 /* On the 945G/GM, the chipset reports the MSI capability on the
1089 * integrated graphics even though the support isn't actually there
1090 * according to the published specs. It doesn't appear to function
1091 * correctly in testing on 945G.
1092 * This may be a side effect of MSI having been made available for PEG
1093 * and the registers being closely associated.
1094 *
1095 * According to chipset errata, on the 965GM, MSI interrupts may
1096 * be lost or delayed, but we use them anyways to avoid
1097 * stuck interrupts on some machines.
1098 */
1099 if (!IS_I945G(dev_priv) && !IS_I945GM(dev_priv)) {
1100 if (pci_enable_msi(pdev) < 0)
1101 DRM_DEBUG_DRIVER("can't enable MSI");
1102 }
1103
1104 ret = intel_gvt_init(dev_priv);
1105 if (ret)
1106 goto out_ggtt;
1107
1108 return 0;
1109
1110 out_ggtt:
1111 i915_ggtt_cleanup_hw(dev_priv);
1112
1113 return ret;
1114 }
1115
1116 /**
1117 * i915_driver_cleanup_hw - cleanup the setup done in i915_driver_init_hw()
1118 * @dev_priv: device private
1119 */
1120 static void i915_driver_cleanup_hw(struct drm_i915_private *dev_priv)
1121 {
1122 struct pci_dev *pdev = dev_priv->drm.pdev;
1123
1124 if (pdev->msi_enabled)
1125 pci_disable_msi(pdev);
1126
1127 pm_qos_remove_request(&dev_priv->pm_qos);
1128 i915_ggtt_cleanup_hw(dev_priv);
1129 }
1130
1131 /**
1132 * i915_driver_register - register the driver with the rest of the system
1133 * @dev_priv: device private
1134 *
1135 * Perform any steps necessary to make the driver available via kernel
1136 * internal or userspace interfaces.
1137 */
1138 static void i915_driver_register(struct drm_i915_private *dev_priv)
1139 {
1140 struct drm_device *dev = &dev_priv->drm;
1141
1142 i915_gem_shrinker_init(dev_priv);
1143
1144 /*
1145 * Notify a valid surface after modesetting,
1146 * when running inside a VM.
1147 */
1148 if (intel_vgpu_active(dev_priv))
1149 I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1150
1151 /* Reveal our presence to userspace */
1152 if (drm_dev_register(dev, 0) == 0) {
1153 i915_debugfs_register(dev_priv);
1154 i915_guc_log_register(dev_priv);
1155 i915_setup_sysfs(dev_priv);
1156
1157 /* Depends on sysfs having been initialized */
1158 i915_perf_register(dev_priv);
1159 } else
1160 DRM_ERROR("Failed to register driver for userspace access!\n");
1161
1162 if (INTEL_INFO(dev_priv)->num_pipes) {
1163 /* Must be done after probing outputs */
1164 intel_opregion_register(dev_priv);
1165 acpi_video_register();
1166 }
1167
1168 if (IS_GEN5(dev_priv))
1169 intel_gpu_ips_init(dev_priv);
1170
1171 intel_audio_init(dev_priv);
1172
1173 /*
1174 * Some ports require correctly set-up hpd registers for detection to
1175 * work properly (leading to ghost connected connector status), e.g. VGA
1176 * on gm45. Hence we can only set up the initial fbdev config after hpd
1177 * irqs are fully enabled. We do it last so that the async config
1178 * cannot run before the connectors are registered.
1179 */
1180 intel_fbdev_initial_config_async(dev);
1181 }
1182
1183 /**
1184 * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1185 * @dev_priv: device private
1186 */
1187 static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1188 {
1189 intel_audio_deinit(dev_priv);
1190
1191 intel_gpu_ips_teardown();
1192 acpi_video_unregister();
1193 intel_opregion_unregister(dev_priv);
1194
1195 i915_perf_unregister(dev_priv);
1196
1197 i915_teardown_sysfs(dev_priv);
1198 i915_guc_log_unregister(dev_priv);
1199 drm_dev_unregister(&dev_priv->drm);
1200
1201 i915_gem_shrinker_cleanup(dev_priv);
1202 }
1203
1204 /**
1205 * i915_driver_load - setup chip and create an initial config
1206 * @pdev: PCI device
1207 * @ent: matching PCI ID entry
1208 *
1209 * The driver load routine has to do several things:
1210 * - drive output discovery via intel_modeset_init()
1211 * - initialize the memory manager
1212 * - allocate initial config memory
1213 * - setup the DRM framebuffer with the allocated memory
1214 */
1215 int i915_driver_load(struct pci_dev *pdev, const struct pci_device_id *ent)
1216 {
1217 const struct intel_device_info *match_info =
1218 (struct intel_device_info *)ent->driver_data;
1219 struct drm_i915_private *dev_priv;
1220 int ret;
1221
1222 /* Enable nuclear pageflip on ILK+ */
1223 if (!i915.nuclear_pageflip && match_info->gen < 5)
1224 driver.driver_features &= ~DRIVER_ATOMIC;
1225
1226 ret = -ENOMEM;
1227 dev_priv = kzalloc(sizeof(*dev_priv), GFP_KERNEL);
1228 if (dev_priv)
1229 ret = drm_dev_init(&dev_priv->drm, &driver, &pdev->dev);
1230 if (ret) {
1231 DRM_DEV_ERROR(&pdev->dev, "allocation failed\n");
1232 goto out_free;
1233 }
1234
1235 dev_priv->drm.pdev = pdev;
1236 dev_priv->drm.dev_private = dev_priv;
1237
1238 ret = pci_enable_device(pdev);
1239 if (ret)
1240 goto out_fini;
1241
1242 pci_set_drvdata(pdev, &dev_priv->drm);
1243 /*
1244 * Disable the system suspend direct complete optimization, which can
1245 * leave the device suspended skipping the driver's suspend handlers
1246 * if the device was already runtime suspended. This is needed due to
1247 * the difference in our runtime and system suspend sequence and
1248 * becaue the HDA driver may require us to enable the audio power
1249 * domain during system suspend.
1250 */
1251 pdev->dev_flags |= PCI_DEV_FLAGS_NEEDS_RESUME;
1252
1253 ret = i915_driver_init_early(dev_priv, ent);
1254 if (ret < 0)
1255 goto out_pci_disable;
1256
1257 intel_runtime_pm_get(dev_priv);
1258
1259 ret = i915_driver_init_mmio(dev_priv);
1260 if (ret < 0)
1261 goto out_runtime_pm_put;
1262
1263 ret = i915_driver_init_hw(dev_priv);
1264 if (ret < 0)
1265 goto out_cleanup_mmio;
1266
1267 /*
1268 * TODO: move the vblank init and parts of modeset init steps into one
1269 * of the i915_driver_init_/i915_driver_register functions according
1270 * to the role/effect of the given init step.
1271 */
1272 if (INTEL_INFO(dev_priv)->num_pipes) {
1273 ret = drm_vblank_init(&dev_priv->drm,
1274 INTEL_INFO(dev_priv)->num_pipes);
1275 if (ret)
1276 goto out_cleanup_hw;
1277 }
1278
1279 ret = i915_load_modeset_init(&dev_priv->drm);
1280 if (ret < 0)
1281 goto out_cleanup_vblank;
1282
1283 i915_driver_register(dev_priv);
1284
1285 intel_runtime_pm_enable(dev_priv);
1286
1287 dev_priv->ipc_enabled = false;
1288
1289 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG))
1290 DRM_INFO("DRM_I915_DEBUG enabled\n");
1291 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1292 DRM_INFO("DRM_I915_DEBUG_GEM enabled\n");
1293
1294 intel_runtime_pm_put(dev_priv);
1295
1296 return 0;
1297
1298 out_cleanup_vblank:
1299 drm_vblank_cleanup(&dev_priv->drm);
1300 out_cleanup_hw:
1301 i915_driver_cleanup_hw(dev_priv);
1302 out_cleanup_mmio:
1303 i915_driver_cleanup_mmio(dev_priv);
1304 out_runtime_pm_put:
1305 intel_runtime_pm_put(dev_priv);
1306 i915_driver_cleanup_early(dev_priv);
1307 out_pci_disable:
1308 pci_disable_device(pdev);
1309 out_fini:
1310 i915_load_error(dev_priv, "Device initialization failed (%d)\n", ret);
1311 drm_dev_fini(&dev_priv->drm);
1312 out_free:
1313 kfree(dev_priv);
1314 return ret;
1315 }
1316
1317 void i915_driver_unload(struct drm_device *dev)
1318 {
1319 struct drm_i915_private *dev_priv = to_i915(dev);
1320 struct pci_dev *pdev = dev_priv->drm.pdev;
1321
1322 intel_fbdev_fini(dev);
1323
1324 if (i915_gem_suspend(dev_priv))
1325 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
1326
1327 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1328
1329 drm_atomic_helper_shutdown(dev);
1330
1331 intel_gvt_cleanup(dev_priv);
1332
1333 i915_driver_unregister(dev_priv);
1334
1335 drm_vblank_cleanup(dev);
1336
1337 intel_modeset_cleanup(dev);
1338
1339 /*
1340 * free the memory space allocated for the child device
1341 * config parsed from VBT
1342 */
1343 if (dev_priv->vbt.child_dev && dev_priv->vbt.child_dev_num) {
1344 kfree(dev_priv->vbt.child_dev);
1345 dev_priv->vbt.child_dev = NULL;
1346 dev_priv->vbt.child_dev_num = 0;
1347 }
1348 kfree(dev_priv->vbt.sdvo_lvds_vbt_mode);
1349 dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
1350 kfree(dev_priv->vbt.lfp_lvds_vbt_mode);
1351 dev_priv->vbt.lfp_lvds_vbt_mode = NULL;
1352
1353 vga_switcheroo_unregister_client(pdev);
1354 vga_client_register(pdev, NULL, NULL, NULL);
1355
1356 intel_csr_ucode_fini(dev_priv);
1357
1358 /* Free error state after interrupts are fully disabled. */
1359 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1360 i915_reset_error_state(dev_priv);
1361
1362 /* Flush any outstanding unpin_work. */
1363 drain_workqueue(dev_priv->wq);
1364
1365 i915_gem_fini(dev_priv);
1366 intel_uc_fini_fw(dev_priv);
1367 intel_fbc_cleanup_cfb(dev_priv);
1368
1369 intel_power_domains_fini(dev_priv);
1370
1371 i915_driver_cleanup_hw(dev_priv);
1372 i915_driver_cleanup_mmio(dev_priv);
1373
1374 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1375 }
1376
1377 static void i915_driver_release(struct drm_device *dev)
1378 {
1379 struct drm_i915_private *dev_priv = to_i915(dev);
1380
1381 i915_driver_cleanup_early(dev_priv);
1382 drm_dev_fini(&dev_priv->drm);
1383
1384 kfree(dev_priv);
1385 }
1386
1387 static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1388 {
1389 int ret;
1390
1391 ret = i915_gem_open(dev, file);
1392 if (ret)
1393 return ret;
1394
1395 return 0;
1396 }
1397
1398 /**
1399 * i915_driver_lastclose - clean up after all DRM clients have exited
1400 * @dev: DRM device
1401 *
1402 * Take care of cleaning up after all DRM clients have exited. In the
1403 * mode setting case, we want to restore the kernel's initial mode (just
1404 * in case the last client left us in a bad state).
1405 *
1406 * Additionally, in the non-mode setting case, we'll tear down the GTT
1407 * and DMA structures, since the kernel won't be using them, and clea
1408 * up any GEM state.
1409 */
1410 static void i915_driver_lastclose(struct drm_device *dev)
1411 {
1412 intel_fbdev_restore_mode(dev);
1413 vga_switcheroo_process_delayed_switch();
1414 }
1415
1416 static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1417 {
1418 struct drm_i915_file_private *file_priv = file->driver_priv;
1419
1420 mutex_lock(&dev->struct_mutex);
1421 i915_gem_context_close(dev, file);
1422 i915_gem_release(dev, file);
1423 mutex_unlock(&dev->struct_mutex);
1424
1425 kfree(file_priv);
1426 }
1427
1428 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1429 {
1430 struct drm_device *dev = &dev_priv->drm;
1431 struct intel_encoder *encoder;
1432
1433 drm_modeset_lock_all(dev);
1434 for_each_intel_encoder(dev, encoder)
1435 if (encoder->suspend)
1436 encoder->suspend(encoder);
1437 drm_modeset_unlock_all(dev);
1438 }
1439
1440 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1441 bool rpm_resume);
1442 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1443
1444 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1445 {
1446 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
1447 if (acpi_target_system_state() < ACPI_STATE_S3)
1448 return true;
1449 #endif
1450 return false;
1451 }
1452
1453 static int i915_drm_suspend(struct drm_device *dev)
1454 {
1455 struct drm_i915_private *dev_priv = to_i915(dev);
1456 struct pci_dev *pdev = dev_priv->drm.pdev;
1457 pci_power_t opregion_target_state;
1458 int error;
1459
1460 /* ignore lid events during suspend */
1461 mutex_lock(&dev_priv->modeset_restore_lock);
1462 dev_priv->modeset_restore = MODESET_SUSPENDED;
1463 mutex_unlock(&dev_priv->modeset_restore_lock);
1464
1465 disable_rpm_wakeref_asserts(dev_priv);
1466
1467 /* We do a lot of poking in a lot of registers, make sure they work
1468 * properly. */
1469 intel_display_set_init_power(dev_priv, true);
1470
1471 drm_kms_helper_poll_disable(dev);
1472
1473 pci_save_state(pdev);
1474
1475 error = i915_gem_suspend(dev_priv);
1476 if (error) {
1477 dev_err(&pdev->dev,
1478 "GEM idle failed, resume might fail\n");
1479 goto out;
1480 }
1481
1482 intel_display_suspend(dev);
1483
1484 intel_dp_mst_suspend(dev);
1485
1486 intel_runtime_pm_disable_interrupts(dev_priv);
1487 intel_hpd_cancel_work(dev_priv);
1488
1489 intel_suspend_encoders(dev_priv);
1490
1491 intel_suspend_hw(dev_priv);
1492
1493 i915_gem_suspend_gtt_mappings(dev_priv);
1494
1495 i915_save_state(dev_priv);
1496
1497 opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1498 intel_opregion_notify_adapter(dev_priv, opregion_target_state);
1499
1500 intel_uncore_suspend(dev_priv);
1501 intel_opregion_unregister(dev_priv);
1502
1503 intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1504
1505 dev_priv->suspend_count++;
1506
1507 intel_csr_ucode_suspend(dev_priv);
1508
1509 out:
1510 enable_rpm_wakeref_asserts(dev_priv);
1511
1512 return error;
1513 }
1514
1515 static int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
1516 {
1517 struct drm_i915_private *dev_priv = to_i915(dev);
1518 struct pci_dev *pdev = dev_priv->drm.pdev;
1519 bool fw_csr;
1520 int ret;
1521
1522 disable_rpm_wakeref_asserts(dev_priv);
1523
1524 intel_display_set_init_power(dev_priv, false);
1525
1526 fw_csr = !IS_GEN9_LP(dev_priv) &&
1527 suspend_to_idle(dev_priv) && dev_priv->csr.dmc_payload;
1528 /*
1529 * In case of firmware assisted context save/restore don't manually
1530 * deinit the power domains. This also means the CSR/DMC firmware will
1531 * stay active, it will power down any HW resources as required and
1532 * also enable deeper system power states that would be blocked if the
1533 * firmware was inactive.
1534 */
1535 if (!fw_csr)
1536 intel_power_domains_suspend(dev_priv);
1537
1538 ret = 0;
1539 if (IS_GEN9_LP(dev_priv))
1540 bxt_enable_dc9(dev_priv);
1541 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1542 hsw_enable_pc8(dev_priv);
1543 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1544 ret = vlv_suspend_complete(dev_priv);
1545
1546 if (ret) {
1547 DRM_ERROR("Suspend complete failed: %d\n", ret);
1548 if (!fw_csr)
1549 intel_power_domains_init_hw(dev_priv, true);
1550
1551 goto out;
1552 }
1553
1554 pci_disable_device(pdev);
1555 /*
1556 * During hibernation on some platforms the BIOS may try to access
1557 * the device even though it's already in D3 and hang the machine. So
1558 * leave the device in D0 on those platforms and hope the BIOS will
1559 * power down the device properly. The issue was seen on multiple old
1560 * GENs with different BIOS vendors, so having an explicit blacklist
1561 * is inpractical; apply the workaround on everything pre GEN6. The
1562 * platforms where the issue was seen:
1563 * Lenovo Thinkpad X301, X61s, X60, T60, X41
1564 * Fujitsu FSC S7110
1565 * Acer Aspire 1830T
1566 */
1567 if (!(hibernation && INTEL_GEN(dev_priv) < 6))
1568 pci_set_power_state(pdev, PCI_D3hot);
1569
1570 dev_priv->suspended_to_idle = suspend_to_idle(dev_priv);
1571
1572 out:
1573 enable_rpm_wakeref_asserts(dev_priv);
1574
1575 return ret;
1576 }
1577
1578 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
1579 {
1580 int error;
1581
1582 if (!dev) {
1583 DRM_ERROR("dev: %p\n", dev);
1584 DRM_ERROR("DRM not initialized, aborting suspend.\n");
1585 return -ENODEV;
1586 }
1587
1588 if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
1589 state.event != PM_EVENT_FREEZE))
1590 return -EINVAL;
1591
1592 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1593 return 0;
1594
1595 error = i915_drm_suspend(dev);
1596 if (error)
1597 return error;
1598
1599 return i915_drm_suspend_late(dev, false);
1600 }
1601
1602 static int i915_drm_resume(struct drm_device *dev)
1603 {
1604 struct drm_i915_private *dev_priv = to_i915(dev);
1605 int ret;
1606
1607 disable_rpm_wakeref_asserts(dev_priv);
1608 intel_sanitize_gt_powersave(dev_priv);
1609
1610 ret = i915_ggtt_enable_hw(dev_priv);
1611 if (ret)
1612 DRM_ERROR("failed to re-enable GGTT\n");
1613
1614 intel_csr_ucode_resume(dev_priv);
1615
1616 i915_gem_resume(dev_priv);
1617
1618 i915_restore_state(dev_priv);
1619 intel_pps_unlock_regs_wa(dev_priv);
1620 intel_opregion_setup(dev_priv);
1621
1622 intel_init_pch_refclk(dev_priv);
1623
1624 /*
1625 * Interrupts have to be enabled before any batches are run. If not the
1626 * GPU will hang. i915_gem_init_hw() will initiate batches to
1627 * update/restore the context.
1628 *
1629 * drm_mode_config_reset() needs AUX interrupts.
1630 *
1631 * Modeset enabling in intel_modeset_init_hw() also needs working
1632 * interrupts.
1633 */
1634 intel_runtime_pm_enable_interrupts(dev_priv);
1635
1636 drm_mode_config_reset(dev);
1637
1638 mutex_lock(&dev->struct_mutex);
1639 if (i915_gem_init_hw(dev_priv)) {
1640 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
1641 i915_gem_set_wedged(dev_priv);
1642 }
1643 mutex_unlock(&dev->struct_mutex);
1644
1645 intel_guc_resume(dev_priv);
1646
1647 intel_modeset_init_hw(dev);
1648
1649 spin_lock_irq(&dev_priv->irq_lock);
1650 if (dev_priv->display.hpd_irq_setup)
1651 dev_priv->display.hpd_irq_setup(dev_priv);
1652 spin_unlock_irq(&dev_priv->irq_lock);
1653
1654 intel_dp_mst_resume(dev);
1655
1656 intel_display_resume(dev);
1657
1658 drm_kms_helper_poll_enable(dev);
1659
1660 /*
1661 * ... but also need to make sure that hotplug processing
1662 * doesn't cause havoc. Like in the driver load code we don't
1663 * bother with the tiny race here where we might loose hotplug
1664 * notifications.
1665 * */
1666 intel_hpd_init(dev_priv);
1667
1668 intel_opregion_register(dev_priv);
1669
1670 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
1671
1672 mutex_lock(&dev_priv->modeset_restore_lock);
1673 dev_priv->modeset_restore = MODESET_DONE;
1674 mutex_unlock(&dev_priv->modeset_restore_lock);
1675
1676 intel_opregion_notify_adapter(dev_priv, PCI_D0);
1677
1678 intel_autoenable_gt_powersave(dev_priv);
1679
1680 enable_rpm_wakeref_asserts(dev_priv);
1681
1682 return 0;
1683 }
1684
1685 static int i915_drm_resume_early(struct drm_device *dev)
1686 {
1687 struct drm_i915_private *dev_priv = to_i915(dev);
1688 struct pci_dev *pdev = dev_priv->drm.pdev;
1689 int ret;
1690
1691 /*
1692 * We have a resume ordering issue with the snd-hda driver also
1693 * requiring our device to be power up. Due to the lack of a
1694 * parent/child relationship we currently solve this with an early
1695 * resume hook.
1696 *
1697 * FIXME: This should be solved with a special hdmi sink device or
1698 * similar so that power domains can be employed.
1699 */
1700
1701 /*
1702 * Note that we need to set the power state explicitly, since we
1703 * powered off the device during freeze and the PCI core won't power
1704 * it back up for us during thaw. Powering off the device during
1705 * freeze is not a hard requirement though, and during the
1706 * suspend/resume phases the PCI core makes sure we get here with the
1707 * device powered on. So in case we change our freeze logic and keep
1708 * the device powered we can also remove the following set power state
1709 * call.
1710 */
1711 ret = pci_set_power_state(pdev, PCI_D0);
1712 if (ret) {
1713 DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
1714 goto out;
1715 }
1716
1717 /*
1718 * Note that pci_enable_device() first enables any parent bridge
1719 * device and only then sets the power state for this device. The
1720 * bridge enabling is a nop though, since bridge devices are resumed
1721 * first. The order of enabling power and enabling the device is
1722 * imposed by the PCI core as described above, so here we preserve the
1723 * same order for the freeze/thaw phases.
1724 *
1725 * TODO: eventually we should remove pci_disable_device() /
1726 * pci_enable_enable_device() from suspend/resume. Due to how they
1727 * depend on the device enable refcount we can't anyway depend on them
1728 * disabling/enabling the device.
1729 */
1730 if (pci_enable_device(pdev)) {
1731 ret = -EIO;
1732 goto out;
1733 }
1734
1735 pci_set_master(pdev);
1736
1737 disable_rpm_wakeref_asserts(dev_priv);
1738
1739 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1740 ret = vlv_resume_prepare(dev_priv, false);
1741 if (ret)
1742 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
1743 ret);
1744
1745 intel_uncore_resume_early(dev_priv);
1746
1747 if (IS_GEN9_LP(dev_priv)) {
1748 if (!dev_priv->suspended_to_idle)
1749 gen9_sanitize_dc_state(dev_priv);
1750 bxt_disable_dc9(dev_priv);
1751 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1752 hsw_disable_pc8(dev_priv);
1753 }
1754
1755 intel_uncore_sanitize(dev_priv);
1756
1757 if (IS_GEN9_LP(dev_priv) ||
1758 !(dev_priv->suspended_to_idle && dev_priv->csr.dmc_payload))
1759 intel_power_domains_init_hw(dev_priv, true);
1760
1761 i915_gem_sanitize(dev_priv);
1762
1763 enable_rpm_wakeref_asserts(dev_priv);
1764
1765 out:
1766 dev_priv->suspended_to_idle = false;
1767
1768 return ret;
1769 }
1770
1771 static int i915_resume_switcheroo(struct drm_device *dev)
1772 {
1773 int ret;
1774
1775 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1776 return 0;
1777
1778 ret = i915_drm_resume_early(dev);
1779 if (ret)
1780 return ret;
1781
1782 return i915_drm_resume(dev);
1783 }
1784
1785 /**
1786 * i915_reset - reset chip after a hang
1787 * @dev_priv: device private to reset
1788 *
1789 * Reset the chip. Useful if a hang is detected. Marks the device as wedged
1790 * on failure.
1791 *
1792 * Caller must hold the struct_mutex.
1793 *
1794 * Procedure is fairly simple:
1795 * - reset the chip using the reset reg
1796 * - re-init context state
1797 * - re-init hardware status page
1798 * - re-init ring buffer
1799 * - re-init interrupt state
1800 * - re-init display
1801 */
1802 void i915_reset(struct drm_i915_private *dev_priv)
1803 {
1804 struct i915_gpu_error *error = &dev_priv->gpu_error;
1805 int ret;
1806
1807 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1808 GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, &error->flags));
1809
1810 if (!test_bit(I915_RESET_HANDOFF, &error->flags))
1811 return;
1812
1813 /* Clear any previous failed attempts at recovery. Time to try again. */
1814 if (!i915_gem_unset_wedged(dev_priv))
1815 goto wakeup;
1816
1817 error->reset_count++;
1818
1819 pr_notice("drm/i915: Resetting chip after gpu hang\n");
1820 disable_irq(dev_priv->drm.irq);
1821 ret = i915_gem_reset_prepare(dev_priv);
1822 if (ret) {
1823 DRM_ERROR("GPU recovery failed\n");
1824 intel_gpu_reset(dev_priv, ALL_ENGINES);
1825 goto error;
1826 }
1827
1828 ret = intel_gpu_reset(dev_priv, ALL_ENGINES);
1829 if (ret) {
1830 if (ret != -ENODEV)
1831 DRM_ERROR("Failed to reset chip: %i\n", ret);
1832 else
1833 DRM_DEBUG_DRIVER("GPU reset disabled\n");
1834 goto error;
1835 }
1836
1837 i915_gem_reset(dev_priv);
1838 intel_overlay_reset(dev_priv);
1839
1840 /* Ok, now get things going again... */
1841
1842 /*
1843 * Everything depends on having the GTT running, so we need to start
1844 * there. Fortunately we don't need to do this unless we reset the
1845 * chip at a PCI level.
1846 *
1847 * Next we need to restore the context, but we don't use those
1848 * yet either...
1849 *
1850 * Ring buffer needs to be re-initialized in the KMS case, or if X
1851 * was running at the time of the reset (i.e. we weren't VT
1852 * switched away).
1853 */
1854 ret = i915_gem_init_hw(dev_priv);
1855 if (ret) {
1856 DRM_ERROR("Failed hw init on reset %d\n", ret);
1857 goto error;
1858 }
1859
1860 i915_queue_hangcheck(dev_priv);
1861
1862 finish:
1863 i915_gem_reset_finish(dev_priv);
1864 enable_irq(dev_priv->drm.irq);
1865
1866 wakeup:
1867 clear_bit(I915_RESET_HANDOFF, &error->flags);
1868 wake_up_bit(&error->flags, I915_RESET_HANDOFF);
1869 return;
1870
1871 error:
1872 i915_gem_set_wedged(dev_priv);
1873 goto finish;
1874 }
1875
1876 static int i915_pm_suspend(struct device *kdev)
1877 {
1878 struct pci_dev *pdev = to_pci_dev(kdev);
1879 struct drm_device *dev = pci_get_drvdata(pdev);
1880
1881 if (!dev) {
1882 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
1883 return -ENODEV;
1884 }
1885
1886 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1887 return 0;
1888
1889 return i915_drm_suspend(dev);
1890 }
1891
1892 static int i915_pm_suspend_late(struct device *kdev)
1893 {
1894 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1895
1896 /*
1897 * We have a suspend ordering issue with the snd-hda driver also
1898 * requiring our device to be power up. Due to the lack of a
1899 * parent/child relationship we currently solve this with an late
1900 * suspend hook.
1901 *
1902 * FIXME: This should be solved with a special hdmi sink device or
1903 * similar so that power domains can be employed.
1904 */
1905 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1906 return 0;
1907
1908 return i915_drm_suspend_late(dev, false);
1909 }
1910
1911 static int i915_pm_poweroff_late(struct device *kdev)
1912 {
1913 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1914
1915 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1916 return 0;
1917
1918 return i915_drm_suspend_late(dev, true);
1919 }
1920
1921 static int i915_pm_resume_early(struct device *kdev)
1922 {
1923 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1924
1925 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1926 return 0;
1927
1928 return i915_drm_resume_early(dev);
1929 }
1930
1931 static int i915_pm_resume(struct device *kdev)
1932 {
1933 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1934
1935 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1936 return 0;
1937
1938 return i915_drm_resume(dev);
1939 }
1940
1941 /* freeze: before creating the hibernation_image */
1942 static int i915_pm_freeze(struct device *kdev)
1943 {
1944 int ret;
1945
1946 ret = i915_pm_suspend(kdev);
1947 if (ret)
1948 return ret;
1949
1950 ret = i915_gem_freeze(kdev_to_i915(kdev));
1951 if (ret)
1952 return ret;
1953
1954 return 0;
1955 }
1956
1957 static int i915_pm_freeze_late(struct device *kdev)
1958 {
1959 int ret;
1960
1961 ret = i915_pm_suspend_late(kdev);
1962 if (ret)
1963 return ret;
1964
1965 ret = i915_gem_freeze_late(kdev_to_i915(kdev));
1966 if (ret)
1967 return ret;
1968
1969 return 0;
1970 }
1971
1972 /* thaw: called after creating the hibernation image, but before turning off. */
1973 static int i915_pm_thaw_early(struct device *kdev)
1974 {
1975 return i915_pm_resume_early(kdev);
1976 }
1977
1978 static int i915_pm_thaw(struct device *kdev)
1979 {
1980 return i915_pm_resume(kdev);
1981 }
1982
1983 /* restore: called after loading the hibernation image. */
1984 static int i915_pm_restore_early(struct device *kdev)
1985 {
1986 return i915_pm_resume_early(kdev);
1987 }
1988
1989 static int i915_pm_restore(struct device *kdev)
1990 {
1991 return i915_pm_resume(kdev);
1992 }
1993
1994 /*
1995 * Save all Gunit registers that may be lost after a D3 and a subsequent
1996 * S0i[R123] transition. The list of registers needing a save/restore is
1997 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
1998 * registers in the following way:
1999 * - Driver: saved/restored by the driver
2000 * - Punit : saved/restored by the Punit firmware
2001 * - No, w/o marking: no need to save/restore, since the register is R/O or
2002 * used internally by the HW in a way that doesn't depend
2003 * keeping the content across a suspend/resume.
2004 * - Debug : used for debugging
2005 *
2006 * We save/restore all registers marked with 'Driver', with the following
2007 * exceptions:
2008 * - Registers out of use, including also registers marked with 'Debug'.
2009 * These have no effect on the driver's operation, so we don't save/restore
2010 * them to reduce the overhead.
2011 * - Registers that are fully setup by an initialization function called from
2012 * the resume path. For example many clock gating and RPS/RC6 registers.
2013 * - Registers that provide the right functionality with their reset defaults.
2014 *
2015 * TODO: Except for registers that based on the above 3 criteria can be safely
2016 * ignored, we save/restore all others, practically treating the HW context as
2017 * a black-box for the driver. Further investigation is needed to reduce the
2018 * saved/restored registers even further, by following the same 3 criteria.
2019 */
2020 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2021 {
2022 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2023 int i;
2024
2025 /* GAM 0x4000-0x4770 */
2026 s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
2027 s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
2028 s->arb_mode = I915_READ(ARB_MODE);
2029 s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
2030 s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
2031
2032 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2033 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
2034
2035 s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
2036 s->gfx_max_req_count = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
2037
2038 s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
2039 s->ecochk = I915_READ(GAM_ECOCHK);
2040 s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
2041 s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
2042
2043 s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
2044
2045 /* MBC 0x9024-0x91D0, 0x8500 */
2046 s->g3dctl = I915_READ(VLV_G3DCTL);
2047 s->gsckgctl = I915_READ(VLV_GSCKGCTL);
2048 s->mbctl = I915_READ(GEN6_MBCTL);
2049
2050 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2051 s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
2052 s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
2053 s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
2054 s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
2055 s->rstctl = I915_READ(GEN6_RSTCTL);
2056 s->misccpctl = I915_READ(GEN7_MISCCPCTL);
2057
2058 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2059 s->gfxpause = I915_READ(GEN6_GFXPAUSE);
2060 s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
2061 s->rpdeuc = I915_READ(GEN6_RPDEUC);
2062 s->ecobus = I915_READ(ECOBUS);
2063 s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
2064 s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
2065 s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
2066 s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
2067 s->rcedata = I915_READ(VLV_RCEDATA);
2068 s->spare2gh = I915_READ(VLV_SPAREG2H);
2069
2070 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2071 s->gt_imr = I915_READ(GTIMR);
2072 s->gt_ier = I915_READ(GTIER);
2073 s->pm_imr = I915_READ(GEN6_PMIMR);
2074 s->pm_ier = I915_READ(GEN6_PMIER);
2075
2076 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2077 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
2078
2079 /* GT SA CZ domain, 0x100000-0x138124 */
2080 s->tilectl = I915_READ(TILECTL);
2081 s->gt_fifoctl = I915_READ(GTFIFOCTL);
2082 s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
2083 s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2084 s->pmwgicz = I915_READ(VLV_PMWGICZ);
2085
2086 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2087 s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
2088 s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
2089 s->pcbr = I915_READ(VLV_PCBR);
2090 s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
2091
2092 /*
2093 * Not saving any of:
2094 * DFT, 0x9800-0x9EC0
2095 * SARB, 0xB000-0xB1FC
2096 * GAC, 0x5208-0x524C, 0x14000-0x14C000
2097 * PCI CFG
2098 */
2099 }
2100
2101 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2102 {
2103 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2104 u32 val;
2105 int i;
2106
2107 /* GAM 0x4000-0x4770 */
2108 I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
2109 I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
2110 I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
2111 I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
2112 I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
2113
2114 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2115 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2116
2117 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2118 I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2119
2120 I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
2121 I915_WRITE(GAM_ECOCHK, s->ecochk);
2122 I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
2123 I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
2124
2125 I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
2126
2127 /* MBC 0x9024-0x91D0, 0x8500 */
2128 I915_WRITE(VLV_G3DCTL, s->g3dctl);
2129 I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
2130 I915_WRITE(GEN6_MBCTL, s->mbctl);
2131
2132 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2133 I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
2134 I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
2135 I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
2136 I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
2137 I915_WRITE(GEN6_RSTCTL, s->rstctl);
2138 I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
2139
2140 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2141 I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
2142 I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
2143 I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
2144 I915_WRITE(ECOBUS, s->ecobus);
2145 I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
2146 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2147 I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
2148 I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
2149 I915_WRITE(VLV_RCEDATA, s->rcedata);
2150 I915_WRITE(VLV_SPAREG2H, s->spare2gh);
2151
2152 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2153 I915_WRITE(GTIMR, s->gt_imr);
2154 I915_WRITE(GTIER, s->gt_ier);
2155 I915_WRITE(GEN6_PMIMR, s->pm_imr);
2156 I915_WRITE(GEN6_PMIER, s->pm_ier);
2157
2158 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2159 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2160
2161 /* GT SA CZ domain, 0x100000-0x138124 */
2162 I915_WRITE(TILECTL, s->tilectl);
2163 I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
2164 /*
2165 * Preserve the GT allow wake and GFX force clock bit, they are not
2166 * be restored, as they are used to control the s0ix suspend/resume
2167 * sequence by the caller.
2168 */
2169 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2170 val &= VLV_GTLC_ALLOWWAKEREQ;
2171 val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2172 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2173
2174 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2175 val &= VLV_GFX_CLK_FORCE_ON_BIT;
2176 val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2177 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2178
2179 I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
2180
2181 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2182 I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
2183 I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
2184 I915_WRITE(VLV_PCBR, s->pcbr);
2185 I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
2186 }
2187
2188 static int vlv_wait_for_pw_status(struct drm_i915_private *dev_priv,
2189 u32 mask, u32 val)
2190 {
2191 /* The HW does not like us polling for PW_STATUS frequently, so
2192 * use the sleeping loop rather than risk the busy spin within
2193 * intel_wait_for_register().
2194 *
2195 * Transitioning between RC6 states should be at most 2ms (see
2196 * valleyview_enable_rps) so use a 3ms timeout.
2197 */
2198 return wait_for((I915_READ_NOTRACE(VLV_GTLC_PW_STATUS) & mask) == val,
2199 3);
2200 }
2201
2202 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2203 {
2204 u32 val;
2205 int err;
2206
2207 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2208 val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2209 if (force_on)
2210 val |= VLV_GFX_CLK_FORCE_ON_BIT;
2211 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2212
2213 if (!force_on)
2214 return 0;
2215
2216 err = intel_wait_for_register(dev_priv,
2217 VLV_GTLC_SURVIVABILITY_REG,
2218 VLV_GFX_CLK_STATUS_BIT,
2219 VLV_GFX_CLK_STATUS_BIT,
2220 20);
2221 if (err)
2222 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2223 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2224
2225 return err;
2226 }
2227
2228 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2229 {
2230 u32 mask;
2231 u32 val;
2232 int err;
2233
2234 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2235 val &= ~VLV_GTLC_ALLOWWAKEREQ;
2236 if (allow)
2237 val |= VLV_GTLC_ALLOWWAKEREQ;
2238 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2239 POSTING_READ(VLV_GTLC_WAKE_CTRL);
2240
2241 mask = VLV_GTLC_ALLOWWAKEACK;
2242 val = allow ? mask : 0;
2243
2244 err = vlv_wait_for_pw_status(dev_priv, mask, val);
2245 if (err)
2246 DRM_ERROR("timeout disabling GT waking\n");
2247
2248 return err;
2249 }
2250
2251 static void vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2252 bool wait_for_on)
2253 {
2254 u32 mask;
2255 u32 val;
2256
2257 mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2258 val = wait_for_on ? mask : 0;
2259
2260 /*
2261 * RC6 transitioning can be delayed up to 2 msec (see
2262 * valleyview_enable_rps), use 3 msec for safety.
2263 */
2264 if (vlv_wait_for_pw_status(dev_priv, mask, val))
2265 DRM_ERROR("timeout waiting for GT wells to go %s\n",
2266 onoff(wait_for_on));
2267 }
2268
2269 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2270 {
2271 if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2272 return;
2273
2274 DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2275 I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2276 }
2277
2278 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2279 {
2280 u32 mask;
2281 int err;
2282
2283 /*
2284 * Bspec defines the following GT well on flags as debug only, so
2285 * don't treat them as hard failures.
2286 */
2287 vlv_wait_for_gt_wells(dev_priv, false);
2288
2289 mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2290 WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2291
2292 vlv_check_no_gt_access(dev_priv);
2293
2294 err = vlv_force_gfx_clock(dev_priv, true);
2295 if (err)
2296 goto err1;
2297
2298 err = vlv_allow_gt_wake(dev_priv, false);
2299 if (err)
2300 goto err2;
2301
2302 if (!IS_CHERRYVIEW(dev_priv))
2303 vlv_save_gunit_s0ix_state(dev_priv);
2304
2305 err = vlv_force_gfx_clock(dev_priv, false);
2306 if (err)
2307 goto err2;
2308
2309 return 0;
2310
2311 err2:
2312 /* For safety always re-enable waking and disable gfx clock forcing */
2313 vlv_allow_gt_wake(dev_priv, true);
2314 err1:
2315 vlv_force_gfx_clock(dev_priv, false);
2316
2317 return err;
2318 }
2319
2320 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2321 bool rpm_resume)
2322 {
2323 int err;
2324 int ret;
2325
2326 /*
2327 * If any of the steps fail just try to continue, that's the best we
2328 * can do at this point. Return the first error code (which will also
2329 * leave RPM permanently disabled).
2330 */
2331 ret = vlv_force_gfx_clock(dev_priv, true);
2332
2333 if (!IS_CHERRYVIEW(dev_priv))
2334 vlv_restore_gunit_s0ix_state(dev_priv);
2335
2336 err = vlv_allow_gt_wake(dev_priv, true);
2337 if (!ret)
2338 ret = err;
2339
2340 err = vlv_force_gfx_clock(dev_priv, false);
2341 if (!ret)
2342 ret = err;
2343
2344 vlv_check_no_gt_access(dev_priv);
2345
2346 if (rpm_resume)
2347 intel_init_clock_gating(dev_priv);
2348
2349 return ret;
2350 }
2351
2352 static int intel_runtime_suspend(struct device *kdev)
2353 {
2354 struct pci_dev *pdev = to_pci_dev(kdev);
2355 struct drm_device *dev = pci_get_drvdata(pdev);
2356 struct drm_i915_private *dev_priv = to_i915(dev);
2357 int ret;
2358
2359 if (WARN_ON_ONCE(!(dev_priv->rps.enabled && intel_enable_rc6())))
2360 return -ENODEV;
2361
2362 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2363 return -ENODEV;
2364
2365 DRM_DEBUG_KMS("Suspending device\n");
2366
2367 disable_rpm_wakeref_asserts(dev_priv);
2368
2369 /*
2370 * We are safe here against re-faults, since the fault handler takes
2371 * an RPM reference.
2372 */
2373 i915_gem_runtime_suspend(dev_priv);
2374
2375 intel_guc_suspend(dev_priv);
2376
2377 intel_runtime_pm_disable_interrupts(dev_priv);
2378
2379 ret = 0;
2380 if (IS_GEN9_LP(dev_priv)) {
2381 bxt_display_core_uninit(dev_priv);
2382 bxt_enable_dc9(dev_priv);
2383 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2384 hsw_enable_pc8(dev_priv);
2385 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2386 ret = vlv_suspend_complete(dev_priv);
2387 }
2388
2389 if (ret) {
2390 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2391 intel_runtime_pm_enable_interrupts(dev_priv);
2392
2393 enable_rpm_wakeref_asserts(dev_priv);
2394
2395 return ret;
2396 }
2397
2398 intel_uncore_suspend(dev_priv);
2399
2400 enable_rpm_wakeref_asserts(dev_priv);
2401 WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
2402
2403 if (intel_uncore_arm_unclaimed_mmio_detection(dev_priv))
2404 DRM_ERROR("Unclaimed access detected prior to suspending\n");
2405
2406 dev_priv->pm.suspended = true;
2407
2408 /*
2409 * FIXME: We really should find a document that references the arguments
2410 * used below!
2411 */
2412 if (IS_BROADWELL(dev_priv)) {
2413 /*
2414 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2415 * being detected, and the call we do at intel_runtime_resume()
2416 * won't be able to restore them. Since PCI_D3hot matches the
2417 * actual specification and appears to be working, use it.
2418 */
2419 intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2420 } else {
2421 /*
2422 * current versions of firmware which depend on this opregion
2423 * notification have repurposed the D1 definition to mean
2424 * "runtime suspended" vs. what you would normally expect (D3)
2425 * to distinguish it from notifications that might be sent via
2426 * the suspend path.
2427 */
2428 intel_opregion_notify_adapter(dev_priv, PCI_D1);
2429 }
2430
2431 assert_forcewakes_inactive(dev_priv);
2432
2433 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2434 intel_hpd_poll_init(dev_priv);
2435
2436 DRM_DEBUG_KMS("Device suspended\n");
2437 return 0;
2438 }
2439
2440 static int intel_runtime_resume(struct device *kdev)
2441 {
2442 struct pci_dev *pdev = to_pci_dev(kdev);
2443 struct drm_device *dev = pci_get_drvdata(pdev);
2444 struct drm_i915_private *dev_priv = to_i915(dev);
2445 int ret = 0;
2446
2447 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2448 return -ENODEV;
2449
2450 DRM_DEBUG_KMS("Resuming device\n");
2451
2452 WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
2453 disable_rpm_wakeref_asserts(dev_priv);
2454
2455 intel_opregion_notify_adapter(dev_priv, PCI_D0);
2456 dev_priv->pm.suspended = false;
2457 if (intel_uncore_unclaimed_mmio(dev_priv))
2458 DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
2459
2460 intel_guc_resume(dev_priv);
2461
2462 if (IS_GEN6(dev_priv))
2463 intel_init_pch_refclk(dev_priv);
2464
2465 if (IS_GEN9_LP(dev_priv)) {
2466 bxt_disable_dc9(dev_priv);
2467 bxt_display_core_init(dev_priv, true);
2468 if (dev_priv->csr.dmc_payload &&
2469 (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2470 gen9_enable_dc5(dev_priv);
2471 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2472 hsw_disable_pc8(dev_priv);
2473 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2474 ret = vlv_resume_prepare(dev_priv, true);
2475 }
2476
2477 /*
2478 * No point of rolling back things in case of an error, as the best
2479 * we can do is to hope that things will still work (and disable RPM).
2480 */
2481 i915_gem_init_swizzling(dev_priv);
2482 i915_gem_restore_fences(dev_priv);
2483
2484 intel_runtime_pm_enable_interrupts(dev_priv);
2485
2486 /*
2487 * On VLV/CHV display interrupts are part of the display
2488 * power well, so hpd is reinitialized from there. For
2489 * everyone else do it here.
2490 */
2491 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2492 intel_hpd_init(dev_priv);
2493
2494 enable_rpm_wakeref_asserts(dev_priv);
2495
2496 if (ret)
2497 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
2498 else
2499 DRM_DEBUG_KMS("Device resumed\n");
2500
2501 return ret;
2502 }
2503
2504 const struct dev_pm_ops i915_pm_ops = {
2505 /*
2506 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
2507 * PMSG_RESUME]
2508 */
2509 .suspend = i915_pm_suspend,
2510 .suspend_late = i915_pm_suspend_late,
2511 .resume_early = i915_pm_resume_early,
2512 .resume = i915_pm_resume,
2513
2514 /*
2515 * S4 event handlers
2516 * @freeze, @freeze_late : called (1) before creating the
2517 * hibernation image [PMSG_FREEZE] and
2518 * (2) after rebooting, before restoring
2519 * the image [PMSG_QUIESCE]
2520 * @thaw, @thaw_early : called (1) after creating the hibernation
2521 * image, before writing it [PMSG_THAW]
2522 * and (2) after failing to create or
2523 * restore the image [PMSG_RECOVER]
2524 * @poweroff, @poweroff_late: called after writing the hibernation
2525 * image, before rebooting [PMSG_HIBERNATE]
2526 * @restore, @restore_early : called after rebooting and restoring the
2527 * hibernation image [PMSG_RESTORE]
2528 */
2529 .freeze = i915_pm_freeze,
2530 .freeze_late = i915_pm_freeze_late,
2531 .thaw_early = i915_pm_thaw_early,
2532 .thaw = i915_pm_thaw,
2533 .poweroff = i915_pm_suspend,
2534 .poweroff_late = i915_pm_poweroff_late,
2535 .restore_early = i915_pm_restore_early,
2536 .restore = i915_pm_restore,
2537
2538 /* S0ix (via runtime suspend) event handlers */
2539 .runtime_suspend = intel_runtime_suspend,
2540 .runtime_resume = intel_runtime_resume,
2541 };
2542
2543 static const struct vm_operations_struct i915_gem_vm_ops = {
2544 .fault = i915_gem_fault,
2545 .open = drm_gem_vm_open,
2546 .close = drm_gem_vm_close,
2547 };
2548
2549 static const struct file_operations i915_driver_fops = {
2550 .owner = THIS_MODULE,
2551 .open = drm_open,
2552 .release = drm_release,
2553 .unlocked_ioctl = drm_ioctl,
2554 .mmap = drm_gem_mmap,
2555 .poll = drm_poll,
2556 .read = drm_read,
2557 .compat_ioctl = i915_compat_ioctl,
2558 .llseek = noop_llseek,
2559 };
2560
2561 static int
2562 i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
2563 struct drm_file *file)
2564 {
2565 return -ENODEV;
2566 }
2567
2568 static const struct drm_ioctl_desc i915_ioctls[] = {
2569 DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2570 DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
2571 DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
2572 DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
2573 DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
2574 DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
2575 DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam, DRM_AUTH|DRM_RENDER_ALLOW),
2576 DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2577 DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
2578 DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
2579 DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2580 DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
2581 DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2582 DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2583 DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE, drm_noop, DRM_AUTH),
2584 DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
2585 DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2586 DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2587 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer, DRM_AUTH),
2588 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2_WR, i915_gem_execbuffer2, DRM_AUTH|DRM_RENDER_ALLOW),
2589 DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2590 DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2591 DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2592 DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
2593 DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
2594 DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2595 DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2596 DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2597 DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
2598 DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
2599 DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
2600 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
2601 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_GTT, i915_gem_mmap_gtt_ioctl, DRM_RENDER_ALLOW),
2602 DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
2603 DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
2604 DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling_ioctl, DRM_RENDER_ALLOW),
2605 DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling_ioctl, DRM_RENDER_ALLOW),
2606 DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
2607 DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id, 0),
2608 DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
2609 DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2610 DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2611 DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey, DRM_MASTER|DRM_CONTROL_ALLOW),
2612 DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER|DRM_CONTROL_ALLOW),
2613 DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2614 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
2615 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
2616 DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
2617 DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
2618 DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
2619 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
2620 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
2621 DRM_IOCTL_DEF_DRV(I915_PERF_OPEN, i915_perf_open_ioctl, DRM_RENDER_ALLOW),
2622 };
2623
2624 static struct drm_driver driver = {
2625 /* Don't use MTRRs here; the Xserver or userspace app should
2626 * deal with them for Intel hardware.
2627 */
2628 .driver_features =
2629 DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
2630 DRIVER_RENDER | DRIVER_MODESET | DRIVER_ATOMIC,
2631 .release = i915_driver_release,
2632 .open = i915_driver_open,
2633 .lastclose = i915_driver_lastclose,
2634 .postclose = i915_driver_postclose,
2635 .set_busid = drm_pci_set_busid,
2636
2637 .gem_close_object = i915_gem_close_object,
2638 .gem_free_object_unlocked = i915_gem_free_object,
2639 .gem_vm_ops = &i915_gem_vm_ops,
2640
2641 .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
2642 .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
2643 .gem_prime_export = i915_gem_prime_export,
2644 .gem_prime_import = i915_gem_prime_import,
2645
2646 .dumb_create = i915_gem_dumb_create,
2647 .dumb_map_offset = i915_gem_mmap_gtt,
2648 .dumb_destroy = drm_gem_dumb_destroy,
2649 .ioctls = i915_ioctls,
2650 .num_ioctls = ARRAY_SIZE(i915_ioctls),
2651 .fops = &i915_driver_fops,
2652 .name = DRIVER_NAME,
2653 .desc = DRIVER_DESC,
2654 .date = DRIVER_DATE,
2655 .major = DRIVER_MAJOR,
2656 .minor = DRIVER_MINOR,
2657 .patchlevel = DRIVER_PATCHLEVEL,
2658 };
2659
2660 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2661 #include "selftests/mock_drm.c"
2662 #endif