]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.c
spi: allow registering empty spi_board_info lists
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_drv.c
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #include <linux/acpi.h>
31 #include <linux/device.h>
32 #include <linux/oom.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/pm.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/pnp.h>
38 #include <linux/slab.h>
39 #include <linux/vgaarb.h>
40 #include <linux/vga_switcheroo.h>
41 #include <linux/vt.h>
42 #include <acpi/video.h>
43
44 #include <drm/drmP.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/i915_drm.h>
47
48 #include "i915_drv.h"
49 #include "i915_trace.h"
50 #include "i915_vgpu.h"
51 #include "intel_drv.h"
52 #include "intel_uc.h"
53
54 static struct drm_driver driver;
55
56 static unsigned int i915_load_fail_count;
57
58 bool __i915_inject_load_failure(const char *func, int line)
59 {
60 if (i915_load_fail_count >= i915.inject_load_failure)
61 return false;
62
63 if (++i915_load_fail_count == i915.inject_load_failure) {
64 DRM_INFO("Injecting failure at checkpoint %u [%s:%d]\n",
65 i915.inject_load_failure, func, line);
66 return true;
67 }
68
69 return false;
70 }
71
72 #define FDO_BUG_URL "https://bugs.freedesktop.org/enter_bug.cgi?product=DRI"
73 #define FDO_BUG_MSG "Please file a bug at " FDO_BUG_URL " against DRM/Intel " \
74 "providing the dmesg log by booting with drm.debug=0xf"
75
76 void
77 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
78 const char *fmt, ...)
79 {
80 static bool shown_bug_once;
81 struct device *kdev = dev_priv->drm.dev;
82 bool is_error = level[1] <= KERN_ERR[1];
83 bool is_debug = level[1] == KERN_DEBUG[1];
84 struct va_format vaf;
85 va_list args;
86
87 if (is_debug && !(drm_debug & DRM_UT_DRIVER))
88 return;
89
90 va_start(args, fmt);
91
92 vaf.fmt = fmt;
93 vaf.va = &args;
94
95 dev_printk(level, kdev, "[" DRM_NAME ":%ps] %pV",
96 __builtin_return_address(0), &vaf);
97
98 if (is_error && !shown_bug_once) {
99 dev_notice(kdev, "%s", FDO_BUG_MSG);
100 shown_bug_once = true;
101 }
102
103 va_end(args);
104 }
105
106 static bool i915_error_injected(struct drm_i915_private *dev_priv)
107 {
108 return i915.inject_load_failure &&
109 i915_load_fail_count == i915.inject_load_failure;
110 }
111
112 #define i915_load_error(dev_priv, fmt, ...) \
113 __i915_printk(dev_priv, \
114 i915_error_injected(dev_priv) ? KERN_DEBUG : KERN_ERR, \
115 fmt, ##__VA_ARGS__)
116
117
118 static enum intel_pch intel_virt_detect_pch(struct drm_i915_private *dev_priv)
119 {
120 enum intel_pch ret = PCH_NOP;
121
122 /*
123 * In a virtualized passthrough environment we can be in a
124 * setup where the ISA bridge is not able to be passed through.
125 * In this case, a south bridge can be emulated and we have to
126 * make an educated guess as to which PCH is really there.
127 */
128
129 if (IS_GEN5(dev_priv)) {
130 ret = PCH_IBX;
131 DRM_DEBUG_KMS("Assuming Ibex Peak PCH\n");
132 } else if (IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv)) {
133 ret = PCH_CPT;
134 DRM_DEBUG_KMS("Assuming CouarPoint PCH\n");
135 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
136 ret = PCH_LPT;
137 DRM_DEBUG_KMS("Assuming LynxPoint PCH\n");
138 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
139 ret = PCH_SPT;
140 DRM_DEBUG_KMS("Assuming SunrisePoint PCH\n");
141 }
142
143 return ret;
144 }
145
146 static void intel_detect_pch(struct drm_i915_private *dev_priv)
147 {
148 struct pci_dev *pch = NULL;
149
150 /* In all current cases, num_pipes is equivalent to the PCH_NOP setting
151 * (which really amounts to a PCH but no South Display).
152 */
153 if (INTEL_INFO(dev_priv)->num_pipes == 0) {
154 dev_priv->pch_type = PCH_NOP;
155 return;
156 }
157
158 /*
159 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
160 * make graphics device passthrough work easy for VMM, that only
161 * need to expose ISA bridge to let driver know the real hardware
162 * underneath. This is a requirement from virtualization team.
163 *
164 * In some virtualized environments (e.g. XEN), there is irrelevant
165 * ISA bridge in the system. To work reliably, we should scan trhough
166 * all the ISA bridge devices and check for the first match, instead
167 * of only checking the first one.
168 */
169 while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
170 if (pch->vendor == PCI_VENDOR_ID_INTEL) {
171 unsigned short id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
172 dev_priv->pch_id = id;
173
174 if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
175 dev_priv->pch_type = PCH_IBX;
176 DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
177 WARN_ON(!IS_GEN5(dev_priv));
178 } else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
179 dev_priv->pch_type = PCH_CPT;
180 DRM_DEBUG_KMS("Found CougarPoint PCH\n");
181 WARN_ON(!(IS_GEN6(dev_priv) ||
182 IS_IVYBRIDGE(dev_priv)));
183 } else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
184 /* PantherPoint is CPT compatible */
185 dev_priv->pch_type = PCH_CPT;
186 DRM_DEBUG_KMS("Found PantherPoint PCH\n");
187 WARN_ON(!(IS_GEN6(dev_priv) ||
188 IS_IVYBRIDGE(dev_priv)));
189 } else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
190 dev_priv->pch_type = PCH_LPT;
191 DRM_DEBUG_KMS("Found LynxPoint PCH\n");
192 WARN_ON(!IS_HASWELL(dev_priv) &&
193 !IS_BROADWELL(dev_priv));
194 WARN_ON(IS_HSW_ULT(dev_priv) ||
195 IS_BDW_ULT(dev_priv));
196 } else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
197 dev_priv->pch_type = PCH_LPT;
198 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
199 WARN_ON(!IS_HASWELL(dev_priv) &&
200 !IS_BROADWELL(dev_priv));
201 WARN_ON(!IS_HSW_ULT(dev_priv) &&
202 !IS_BDW_ULT(dev_priv));
203 } else if (id == INTEL_PCH_SPT_DEVICE_ID_TYPE) {
204 dev_priv->pch_type = PCH_SPT;
205 DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
206 WARN_ON(!IS_SKYLAKE(dev_priv) &&
207 !IS_KABYLAKE(dev_priv));
208 } else if (id == INTEL_PCH_SPT_LP_DEVICE_ID_TYPE) {
209 dev_priv->pch_type = PCH_SPT;
210 DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
211 WARN_ON(!IS_SKYLAKE(dev_priv) &&
212 !IS_KABYLAKE(dev_priv));
213 } else if (id == INTEL_PCH_KBP_DEVICE_ID_TYPE) {
214 dev_priv->pch_type = PCH_KBP;
215 DRM_DEBUG_KMS("Found KabyPoint PCH\n");
216 WARN_ON(!IS_SKYLAKE(dev_priv) &&
217 !IS_KABYLAKE(dev_priv));
218 } else if ((id == INTEL_PCH_P2X_DEVICE_ID_TYPE) ||
219 (id == INTEL_PCH_P3X_DEVICE_ID_TYPE) ||
220 ((id == INTEL_PCH_QEMU_DEVICE_ID_TYPE) &&
221 pch->subsystem_vendor ==
222 PCI_SUBVENDOR_ID_REDHAT_QUMRANET &&
223 pch->subsystem_device ==
224 PCI_SUBDEVICE_ID_QEMU)) {
225 dev_priv->pch_type =
226 intel_virt_detect_pch(dev_priv);
227 } else
228 continue;
229
230 break;
231 }
232 }
233 if (!pch)
234 DRM_DEBUG_KMS("No PCH found.\n");
235
236 pci_dev_put(pch);
237 }
238
239 static int i915_getparam(struct drm_device *dev, void *data,
240 struct drm_file *file_priv)
241 {
242 struct drm_i915_private *dev_priv = to_i915(dev);
243 struct pci_dev *pdev = dev_priv->drm.pdev;
244 drm_i915_getparam_t *param = data;
245 int value;
246
247 switch (param->param) {
248 case I915_PARAM_IRQ_ACTIVE:
249 case I915_PARAM_ALLOW_BATCHBUFFER:
250 case I915_PARAM_LAST_DISPATCH:
251 /* Reject all old ums/dri params. */
252 return -ENODEV;
253 case I915_PARAM_CHIPSET_ID:
254 value = pdev->device;
255 break;
256 case I915_PARAM_REVISION:
257 value = pdev->revision;
258 break;
259 case I915_PARAM_NUM_FENCES_AVAIL:
260 value = dev_priv->num_fence_regs;
261 break;
262 case I915_PARAM_HAS_OVERLAY:
263 value = dev_priv->overlay ? 1 : 0;
264 break;
265 case I915_PARAM_HAS_BSD:
266 value = !!dev_priv->engine[VCS];
267 break;
268 case I915_PARAM_HAS_BLT:
269 value = !!dev_priv->engine[BCS];
270 break;
271 case I915_PARAM_HAS_VEBOX:
272 value = !!dev_priv->engine[VECS];
273 break;
274 case I915_PARAM_HAS_BSD2:
275 value = !!dev_priv->engine[VCS2];
276 break;
277 case I915_PARAM_HAS_EXEC_CONSTANTS:
278 value = INTEL_GEN(dev_priv) >= 4;
279 break;
280 case I915_PARAM_HAS_LLC:
281 value = HAS_LLC(dev_priv);
282 break;
283 case I915_PARAM_HAS_WT:
284 value = HAS_WT(dev_priv);
285 break;
286 case I915_PARAM_HAS_ALIASING_PPGTT:
287 value = USES_PPGTT(dev_priv);
288 break;
289 case I915_PARAM_HAS_SEMAPHORES:
290 value = i915.semaphores;
291 break;
292 case I915_PARAM_HAS_SECURE_BATCHES:
293 value = capable(CAP_SYS_ADMIN);
294 break;
295 case I915_PARAM_CMD_PARSER_VERSION:
296 value = i915_cmd_parser_get_version(dev_priv);
297 break;
298 case I915_PARAM_SUBSLICE_TOTAL:
299 value = sseu_subslice_total(&INTEL_INFO(dev_priv)->sseu);
300 if (!value)
301 return -ENODEV;
302 break;
303 case I915_PARAM_EU_TOTAL:
304 value = INTEL_INFO(dev_priv)->sseu.eu_total;
305 if (!value)
306 return -ENODEV;
307 break;
308 case I915_PARAM_HAS_GPU_RESET:
309 value = i915.enable_hangcheck && intel_has_gpu_reset(dev_priv);
310 break;
311 case I915_PARAM_HAS_RESOURCE_STREAMER:
312 value = HAS_RESOURCE_STREAMER(dev_priv);
313 break;
314 case I915_PARAM_HAS_POOLED_EU:
315 value = HAS_POOLED_EU(dev_priv);
316 break;
317 case I915_PARAM_MIN_EU_IN_POOL:
318 value = INTEL_INFO(dev_priv)->sseu.min_eu_in_pool;
319 break;
320 case I915_PARAM_HUC_STATUS:
321 /* The register is already force-woken. We dont need
322 * any rpm here
323 */
324 value = I915_READ(HUC_STATUS2) & HUC_FW_VERIFIED;
325 break;
326 case I915_PARAM_MMAP_GTT_VERSION:
327 /* Though we've started our numbering from 1, and so class all
328 * earlier versions as 0, in effect their value is undefined as
329 * the ioctl will report EINVAL for the unknown param!
330 */
331 value = i915_gem_mmap_gtt_version();
332 break;
333 case I915_PARAM_HAS_SCHEDULER:
334 value = dev_priv->engine[RCS] &&
335 dev_priv->engine[RCS]->schedule;
336 break;
337 case I915_PARAM_MMAP_VERSION:
338 /* Remember to bump this if the version changes! */
339 case I915_PARAM_HAS_GEM:
340 case I915_PARAM_HAS_PAGEFLIPPING:
341 case I915_PARAM_HAS_EXECBUF2: /* depends on GEM */
342 case I915_PARAM_HAS_RELAXED_FENCING:
343 case I915_PARAM_HAS_COHERENT_RINGS:
344 case I915_PARAM_HAS_RELAXED_DELTA:
345 case I915_PARAM_HAS_GEN7_SOL_RESET:
346 case I915_PARAM_HAS_WAIT_TIMEOUT:
347 case I915_PARAM_HAS_PRIME_VMAP_FLUSH:
348 case I915_PARAM_HAS_PINNED_BATCHES:
349 case I915_PARAM_HAS_EXEC_NO_RELOC:
350 case I915_PARAM_HAS_EXEC_HANDLE_LUT:
351 case I915_PARAM_HAS_COHERENT_PHYS_GTT:
352 case I915_PARAM_HAS_EXEC_SOFTPIN:
353 /* For the time being all of these are always true;
354 * if some supported hardware does not have one of these
355 * features this value needs to be provided from
356 * INTEL_INFO(), a feature macro, or similar.
357 */
358 value = 1;
359 break;
360 default:
361 DRM_DEBUG("Unknown parameter %d\n", param->param);
362 return -EINVAL;
363 }
364
365 if (put_user(value, param->value))
366 return -EFAULT;
367
368 return 0;
369 }
370
371 static int i915_get_bridge_dev(struct drm_i915_private *dev_priv)
372 {
373 dev_priv->bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0));
374 if (!dev_priv->bridge_dev) {
375 DRM_ERROR("bridge device not found\n");
376 return -1;
377 }
378 return 0;
379 }
380
381 /* Allocate space for the MCH regs if needed, return nonzero on error */
382 static int
383 intel_alloc_mchbar_resource(struct drm_i915_private *dev_priv)
384 {
385 int reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
386 u32 temp_lo, temp_hi = 0;
387 u64 mchbar_addr;
388 int ret;
389
390 if (INTEL_GEN(dev_priv) >= 4)
391 pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
392 pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
393 mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
394
395 /* If ACPI doesn't have it, assume we need to allocate it ourselves */
396 #ifdef CONFIG_PNP
397 if (mchbar_addr &&
398 pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
399 return 0;
400 #endif
401
402 /* Get some space for it */
403 dev_priv->mch_res.name = "i915 MCHBAR";
404 dev_priv->mch_res.flags = IORESOURCE_MEM;
405 ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
406 &dev_priv->mch_res,
407 MCHBAR_SIZE, MCHBAR_SIZE,
408 PCIBIOS_MIN_MEM,
409 0, pcibios_align_resource,
410 dev_priv->bridge_dev);
411 if (ret) {
412 DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
413 dev_priv->mch_res.start = 0;
414 return ret;
415 }
416
417 if (INTEL_GEN(dev_priv) >= 4)
418 pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
419 upper_32_bits(dev_priv->mch_res.start));
420
421 pci_write_config_dword(dev_priv->bridge_dev, reg,
422 lower_32_bits(dev_priv->mch_res.start));
423 return 0;
424 }
425
426 /* Setup MCHBAR if possible, return true if we should disable it again */
427 static void
428 intel_setup_mchbar(struct drm_i915_private *dev_priv)
429 {
430 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
431 u32 temp;
432 bool enabled;
433
434 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
435 return;
436
437 dev_priv->mchbar_need_disable = false;
438
439 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
440 pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
441 enabled = !!(temp & DEVEN_MCHBAR_EN);
442 } else {
443 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
444 enabled = temp & 1;
445 }
446
447 /* If it's already enabled, don't have to do anything */
448 if (enabled)
449 return;
450
451 if (intel_alloc_mchbar_resource(dev_priv))
452 return;
453
454 dev_priv->mchbar_need_disable = true;
455
456 /* Space is allocated or reserved, so enable it. */
457 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
458 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
459 temp | DEVEN_MCHBAR_EN);
460 } else {
461 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
462 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
463 }
464 }
465
466 static void
467 intel_teardown_mchbar(struct drm_i915_private *dev_priv)
468 {
469 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
470
471 if (dev_priv->mchbar_need_disable) {
472 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
473 u32 deven_val;
474
475 pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
476 &deven_val);
477 deven_val &= ~DEVEN_MCHBAR_EN;
478 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
479 deven_val);
480 } else {
481 u32 mchbar_val;
482
483 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
484 &mchbar_val);
485 mchbar_val &= ~1;
486 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
487 mchbar_val);
488 }
489 }
490
491 if (dev_priv->mch_res.start)
492 release_resource(&dev_priv->mch_res);
493 }
494
495 /* true = enable decode, false = disable decoder */
496 static unsigned int i915_vga_set_decode(void *cookie, bool state)
497 {
498 struct drm_i915_private *dev_priv = cookie;
499
500 intel_modeset_vga_set_state(dev_priv, state);
501 if (state)
502 return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
503 VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
504 else
505 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
506 }
507
508 static int i915_resume_switcheroo(struct drm_device *dev);
509 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
510
511 static void i915_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
512 {
513 struct drm_device *dev = pci_get_drvdata(pdev);
514 pm_message_t pmm = { .event = PM_EVENT_SUSPEND };
515
516 if (state == VGA_SWITCHEROO_ON) {
517 pr_info("switched on\n");
518 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
519 /* i915 resume handler doesn't set to D0 */
520 pci_set_power_state(pdev, PCI_D0);
521 i915_resume_switcheroo(dev);
522 dev->switch_power_state = DRM_SWITCH_POWER_ON;
523 } else {
524 pr_info("switched off\n");
525 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
526 i915_suspend_switcheroo(dev, pmm);
527 dev->switch_power_state = DRM_SWITCH_POWER_OFF;
528 }
529 }
530
531 static bool i915_switcheroo_can_switch(struct pci_dev *pdev)
532 {
533 struct drm_device *dev = pci_get_drvdata(pdev);
534
535 /*
536 * FIXME: open_count is protected by drm_global_mutex but that would lead to
537 * locking inversion with the driver load path. And the access here is
538 * completely racy anyway. So don't bother with locking for now.
539 */
540 return dev->open_count == 0;
541 }
542
543 static const struct vga_switcheroo_client_ops i915_switcheroo_ops = {
544 .set_gpu_state = i915_switcheroo_set_state,
545 .reprobe = NULL,
546 .can_switch = i915_switcheroo_can_switch,
547 };
548
549 static void i915_gem_fini(struct drm_i915_private *dev_priv)
550 {
551 mutex_lock(&dev_priv->drm.struct_mutex);
552 i915_gem_cleanup_engines(dev_priv);
553 i915_gem_context_fini(dev_priv);
554 mutex_unlock(&dev_priv->drm.struct_mutex);
555
556 i915_gem_drain_freed_objects(dev_priv);
557
558 WARN_ON(!list_empty(&dev_priv->context_list));
559 }
560
561 static int i915_load_modeset_init(struct drm_device *dev)
562 {
563 struct drm_i915_private *dev_priv = to_i915(dev);
564 struct pci_dev *pdev = dev_priv->drm.pdev;
565 int ret;
566
567 if (i915_inject_load_failure())
568 return -ENODEV;
569
570 ret = intel_bios_init(dev_priv);
571 if (ret)
572 DRM_INFO("failed to find VBIOS tables\n");
573
574 /* If we have > 1 VGA cards, then we need to arbitrate access
575 * to the common VGA resources.
576 *
577 * If we are a secondary display controller (!PCI_DISPLAY_CLASS_VGA),
578 * then we do not take part in VGA arbitration and the
579 * vga_client_register() fails with -ENODEV.
580 */
581 ret = vga_client_register(pdev, dev_priv, NULL, i915_vga_set_decode);
582 if (ret && ret != -ENODEV)
583 goto out;
584
585 intel_register_dsm_handler();
586
587 ret = vga_switcheroo_register_client(pdev, &i915_switcheroo_ops, false);
588 if (ret)
589 goto cleanup_vga_client;
590
591 /* must happen before intel_power_domains_init_hw() on VLV/CHV */
592 intel_update_rawclk(dev_priv);
593
594 intel_power_domains_init_hw(dev_priv, false);
595
596 intel_csr_ucode_init(dev_priv);
597
598 ret = intel_irq_install(dev_priv);
599 if (ret)
600 goto cleanup_csr;
601
602 intel_setup_gmbus(dev_priv);
603
604 /* Important: The output setup functions called by modeset_init need
605 * working irqs for e.g. gmbus and dp aux transfers. */
606 ret = intel_modeset_init(dev);
607 if (ret)
608 goto cleanup_irq;
609
610 intel_huc_init(dev_priv);
611 intel_guc_init(dev_priv);
612
613 ret = i915_gem_init(dev_priv);
614 if (ret)
615 goto cleanup_irq;
616
617 intel_modeset_gem_init(dev);
618
619 if (INTEL_INFO(dev_priv)->num_pipes == 0)
620 return 0;
621
622 ret = intel_fbdev_init(dev);
623 if (ret)
624 goto cleanup_gem;
625
626 /* Only enable hotplug handling once the fbdev is fully set up. */
627 intel_hpd_init(dev_priv);
628
629 drm_kms_helper_poll_init(dev);
630
631 return 0;
632
633 cleanup_gem:
634 if (i915_gem_suspend(dev_priv))
635 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
636 i915_gem_fini(dev_priv);
637 cleanup_irq:
638 intel_guc_fini(dev_priv);
639 intel_huc_fini(dev_priv);
640 drm_irq_uninstall(dev);
641 intel_teardown_gmbus(dev_priv);
642 cleanup_csr:
643 intel_csr_ucode_fini(dev_priv);
644 intel_power_domains_fini(dev_priv);
645 vga_switcheroo_unregister_client(pdev);
646 cleanup_vga_client:
647 vga_client_register(pdev, NULL, NULL, NULL);
648 out:
649 return ret;
650 }
651
652 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
653 {
654 struct apertures_struct *ap;
655 struct pci_dev *pdev = dev_priv->drm.pdev;
656 struct i915_ggtt *ggtt = &dev_priv->ggtt;
657 bool primary;
658 int ret;
659
660 ap = alloc_apertures(1);
661 if (!ap)
662 return -ENOMEM;
663
664 ap->ranges[0].base = ggtt->mappable_base;
665 ap->ranges[0].size = ggtt->mappable_end;
666
667 primary =
668 pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW;
669
670 ret = drm_fb_helper_remove_conflicting_framebuffers(ap, "inteldrmfb", primary);
671
672 kfree(ap);
673
674 return ret;
675 }
676
677 #if !defined(CONFIG_VGA_CONSOLE)
678 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
679 {
680 return 0;
681 }
682 #elif !defined(CONFIG_DUMMY_CONSOLE)
683 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
684 {
685 return -ENODEV;
686 }
687 #else
688 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
689 {
690 int ret = 0;
691
692 DRM_INFO("Replacing VGA console driver\n");
693
694 console_lock();
695 if (con_is_bound(&vga_con))
696 ret = do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES - 1, 1);
697 if (ret == 0) {
698 ret = do_unregister_con_driver(&vga_con);
699
700 /* Ignore "already unregistered". */
701 if (ret == -ENODEV)
702 ret = 0;
703 }
704 console_unlock();
705
706 return ret;
707 }
708 #endif
709
710 static void intel_init_dpio(struct drm_i915_private *dev_priv)
711 {
712 /*
713 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
714 * CHV x1 PHY (DP/HDMI D)
715 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
716 */
717 if (IS_CHERRYVIEW(dev_priv)) {
718 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
719 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
720 } else if (IS_VALLEYVIEW(dev_priv)) {
721 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
722 }
723 }
724
725 static int i915_workqueues_init(struct drm_i915_private *dev_priv)
726 {
727 /*
728 * The i915 workqueue is primarily used for batched retirement of
729 * requests (and thus managing bo) once the task has been completed
730 * by the GPU. i915_gem_retire_requests() is called directly when we
731 * need high-priority retirement, such as waiting for an explicit
732 * bo.
733 *
734 * It is also used for periodic low-priority events, such as
735 * idle-timers and recording error state.
736 *
737 * All tasks on the workqueue are expected to acquire the dev mutex
738 * so there is no point in running more than one instance of the
739 * workqueue at any time. Use an ordered one.
740 */
741 dev_priv->wq = alloc_ordered_workqueue("i915", 0);
742 if (dev_priv->wq == NULL)
743 goto out_err;
744
745 dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
746 if (dev_priv->hotplug.dp_wq == NULL)
747 goto out_free_wq;
748
749 return 0;
750
751 out_free_wq:
752 destroy_workqueue(dev_priv->wq);
753 out_err:
754 DRM_ERROR("Failed to allocate workqueues.\n");
755
756 return -ENOMEM;
757 }
758
759 static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
760 {
761 destroy_workqueue(dev_priv->hotplug.dp_wq);
762 destroy_workqueue(dev_priv->wq);
763 }
764
765 /*
766 * We don't keep the workarounds for pre-production hardware, so we expect our
767 * driver to fail on these machines in one way or another. A little warning on
768 * dmesg may help both the user and the bug triagers.
769 */
770 static void intel_detect_preproduction_hw(struct drm_i915_private *dev_priv)
771 {
772 if (IS_HSW_EARLY_SDV(dev_priv) ||
773 IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
774 DRM_ERROR("This is a pre-production stepping. "
775 "It may not be fully functional.\n");
776 }
777
778 /**
779 * i915_driver_init_early - setup state not requiring device access
780 * @dev_priv: device private
781 *
782 * Initialize everything that is a "SW-only" state, that is state not
783 * requiring accessing the device or exposing the driver via kernel internal
784 * or userspace interfaces. Example steps belonging here: lock initialization,
785 * system memory allocation, setting up device specific attributes and
786 * function hooks not requiring accessing the device.
787 */
788 static int i915_driver_init_early(struct drm_i915_private *dev_priv,
789 const struct pci_device_id *ent)
790 {
791 const struct intel_device_info *match_info =
792 (struct intel_device_info *)ent->driver_data;
793 struct intel_device_info *device_info;
794 int ret = 0;
795
796 if (i915_inject_load_failure())
797 return -ENODEV;
798
799 /* Setup the write-once "constant" device info */
800 device_info = mkwrite_device_info(dev_priv);
801 memcpy(device_info, match_info, sizeof(*device_info));
802 device_info->device_id = dev_priv->drm.pdev->device;
803
804 BUG_ON(device_info->gen > sizeof(device_info->gen_mask) * BITS_PER_BYTE);
805 device_info->gen_mask = BIT(device_info->gen - 1);
806
807 spin_lock_init(&dev_priv->irq_lock);
808 spin_lock_init(&dev_priv->gpu_error.lock);
809 mutex_init(&dev_priv->backlight_lock);
810 spin_lock_init(&dev_priv->uncore.lock);
811 spin_lock_init(&dev_priv->mm.object_stat_lock);
812 spin_lock_init(&dev_priv->mmio_flip_lock);
813 spin_lock_init(&dev_priv->wm.dsparb_lock);
814 mutex_init(&dev_priv->sb_lock);
815 mutex_init(&dev_priv->modeset_restore_lock);
816 mutex_init(&dev_priv->av_mutex);
817 mutex_init(&dev_priv->wm.wm_mutex);
818 mutex_init(&dev_priv->pps_mutex);
819
820 intel_uc_init_early(dev_priv);
821
822 i915_memcpy_init_early(dev_priv);
823
824 ret = i915_workqueues_init(dev_priv);
825 if (ret < 0)
826 return ret;
827
828 /* This must be called before any calls to HAS_PCH_* */
829 intel_detect_pch(dev_priv);
830
831 intel_pm_setup(dev_priv);
832 intel_init_dpio(dev_priv);
833 intel_power_domains_init(dev_priv);
834 intel_irq_init(dev_priv);
835 intel_hangcheck_init(dev_priv);
836 intel_init_display_hooks(dev_priv);
837 intel_init_clock_gating_hooks(dev_priv);
838 intel_init_audio_hooks(dev_priv);
839 ret = i915_gem_load_init(dev_priv);
840 if (ret < 0)
841 goto err_workqueues;
842
843 intel_display_crc_init(dev_priv);
844
845 intel_device_info_dump(dev_priv);
846
847 intel_detect_preproduction_hw(dev_priv);
848
849 i915_perf_init(dev_priv);
850
851 return 0;
852
853 err_workqueues:
854 i915_workqueues_cleanup(dev_priv);
855 return ret;
856 }
857
858 /**
859 * i915_driver_cleanup_early - cleanup the setup done in i915_driver_init_early()
860 * @dev_priv: device private
861 */
862 static void i915_driver_cleanup_early(struct drm_i915_private *dev_priv)
863 {
864 i915_perf_fini(dev_priv);
865 i915_gem_load_cleanup(dev_priv);
866 i915_workqueues_cleanup(dev_priv);
867 }
868
869 static int i915_mmio_setup(struct drm_i915_private *dev_priv)
870 {
871 struct pci_dev *pdev = dev_priv->drm.pdev;
872 int mmio_bar;
873 int mmio_size;
874
875 mmio_bar = IS_GEN2(dev_priv) ? 1 : 0;
876 /*
877 * Before gen4, the registers and the GTT are behind different BARs.
878 * However, from gen4 onwards, the registers and the GTT are shared
879 * in the same BAR, so we want to restrict this ioremap from
880 * clobbering the GTT which we want ioremap_wc instead. Fortunately,
881 * the register BAR remains the same size for all the earlier
882 * generations up to Ironlake.
883 */
884 if (INTEL_GEN(dev_priv) < 5)
885 mmio_size = 512 * 1024;
886 else
887 mmio_size = 2 * 1024 * 1024;
888 dev_priv->regs = pci_iomap(pdev, mmio_bar, mmio_size);
889 if (dev_priv->regs == NULL) {
890 DRM_ERROR("failed to map registers\n");
891
892 return -EIO;
893 }
894
895 /* Try to make sure MCHBAR is enabled before poking at it */
896 intel_setup_mchbar(dev_priv);
897
898 return 0;
899 }
900
901 static void i915_mmio_cleanup(struct drm_i915_private *dev_priv)
902 {
903 struct pci_dev *pdev = dev_priv->drm.pdev;
904
905 intel_teardown_mchbar(dev_priv);
906 pci_iounmap(pdev, dev_priv->regs);
907 }
908
909 /**
910 * i915_driver_init_mmio - setup device MMIO
911 * @dev_priv: device private
912 *
913 * Setup minimal device state necessary for MMIO accesses later in the
914 * initialization sequence. The setup here should avoid any other device-wide
915 * side effects or exposing the driver via kernel internal or user space
916 * interfaces.
917 */
918 static int i915_driver_init_mmio(struct drm_i915_private *dev_priv)
919 {
920 int ret;
921
922 if (i915_inject_load_failure())
923 return -ENODEV;
924
925 if (i915_get_bridge_dev(dev_priv))
926 return -EIO;
927
928 ret = i915_mmio_setup(dev_priv);
929 if (ret < 0)
930 goto put_bridge;
931
932 intel_uncore_init(dev_priv);
933
934 return 0;
935
936 put_bridge:
937 pci_dev_put(dev_priv->bridge_dev);
938
939 return ret;
940 }
941
942 /**
943 * i915_driver_cleanup_mmio - cleanup the setup done in i915_driver_init_mmio()
944 * @dev_priv: device private
945 */
946 static void i915_driver_cleanup_mmio(struct drm_i915_private *dev_priv)
947 {
948 intel_uncore_fini(dev_priv);
949 i915_mmio_cleanup(dev_priv);
950 pci_dev_put(dev_priv->bridge_dev);
951 }
952
953 static void intel_sanitize_options(struct drm_i915_private *dev_priv)
954 {
955 i915.enable_execlists =
956 intel_sanitize_enable_execlists(dev_priv,
957 i915.enable_execlists);
958
959 /*
960 * i915.enable_ppgtt is read-only, so do an early pass to validate the
961 * user's requested state against the hardware/driver capabilities. We
962 * do this now so that we can print out any log messages once rather
963 * than every time we check intel_enable_ppgtt().
964 */
965 i915.enable_ppgtt =
966 intel_sanitize_enable_ppgtt(dev_priv, i915.enable_ppgtt);
967 DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
968
969 i915.semaphores = intel_sanitize_semaphores(dev_priv, i915.semaphores);
970 DRM_DEBUG_DRIVER("use GPU sempahores? %s\n", yesno(i915.semaphores));
971 }
972
973 /**
974 * i915_driver_init_hw - setup state requiring device access
975 * @dev_priv: device private
976 *
977 * Setup state that requires accessing the device, but doesn't require
978 * exposing the driver via kernel internal or userspace interfaces.
979 */
980 static int i915_driver_init_hw(struct drm_i915_private *dev_priv)
981 {
982 struct pci_dev *pdev = dev_priv->drm.pdev;
983 int ret;
984
985 if (i915_inject_load_failure())
986 return -ENODEV;
987
988 intel_device_info_runtime_init(dev_priv);
989
990 intel_sanitize_options(dev_priv);
991
992 ret = i915_ggtt_probe_hw(dev_priv);
993 if (ret)
994 return ret;
995
996 /* WARNING: Apparently we must kick fbdev drivers before vgacon,
997 * otherwise the vga fbdev driver falls over. */
998 ret = i915_kick_out_firmware_fb(dev_priv);
999 if (ret) {
1000 DRM_ERROR("failed to remove conflicting framebuffer drivers\n");
1001 goto out_ggtt;
1002 }
1003
1004 ret = i915_kick_out_vgacon(dev_priv);
1005 if (ret) {
1006 DRM_ERROR("failed to remove conflicting VGA console\n");
1007 goto out_ggtt;
1008 }
1009
1010 ret = i915_ggtt_init_hw(dev_priv);
1011 if (ret)
1012 return ret;
1013
1014 ret = i915_ggtt_enable_hw(dev_priv);
1015 if (ret) {
1016 DRM_ERROR("failed to enable GGTT\n");
1017 goto out_ggtt;
1018 }
1019
1020 pci_set_master(pdev);
1021
1022 /* overlay on gen2 is broken and can't address above 1G */
1023 if (IS_GEN2(dev_priv)) {
1024 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
1025 if (ret) {
1026 DRM_ERROR("failed to set DMA mask\n");
1027
1028 goto out_ggtt;
1029 }
1030 }
1031
1032 /* 965GM sometimes incorrectly writes to hardware status page (HWS)
1033 * using 32bit addressing, overwriting memory if HWS is located
1034 * above 4GB.
1035 *
1036 * The documentation also mentions an issue with undefined
1037 * behaviour if any general state is accessed within a page above 4GB,
1038 * which also needs to be handled carefully.
1039 */
1040 if (IS_I965G(dev_priv) || IS_I965GM(dev_priv)) {
1041 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1042
1043 if (ret) {
1044 DRM_ERROR("failed to set DMA mask\n");
1045
1046 goto out_ggtt;
1047 }
1048 }
1049
1050 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1051 PM_QOS_DEFAULT_VALUE);
1052
1053 intel_uncore_sanitize(dev_priv);
1054
1055 intel_opregion_setup(dev_priv);
1056
1057 i915_gem_load_init_fences(dev_priv);
1058
1059 /* On the 945G/GM, the chipset reports the MSI capability on the
1060 * integrated graphics even though the support isn't actually there
1061 * according to the published specs. It doesn't appear to function
1062 * correctly in testing on 945G.
1063 * This may be a side effect of MSI having been made available for PEG
1064 * and the registers being closely associated.
1065 *
1066 * According to chipset errata, on the 965GM, MSI interrupts may
1067 * be lost or delayed, but we use them anyways to avoid
1068 * stuck interrupts on some machines.
1069 */
1070 if (!IS_I945G(dev_priv) && !IS_I945GM(dev_priv)) {
1071 if (pci_enable_msi(pdev) < 0)
1072 DRM_DEBUG_DRIVER("can't enable MSI");
1073 }
1074
1075 ret = intel_gvt_init(dev_priv);
1076 if (ret)
1077 goto out_ggtt;
1078
1079 return 0;
1080
1081 out_ggtt:
1082 i915_ggtt_cleanup_hw(dev_priv);
1083
1084 return ret;
1085 }
1086
1087 /**
1088 * i915_driver_cleanup_hw - cleanup the setup done in i915_driver_init_hw()
1089 * @dev_priv: device private
1090 */
1091 static void i915_driver_cleanup_hw(struct drm_i915_private *dev_priv)
1092 {
1093 struct pci_dev *pdev = dev_priv->drm.pdev;
1094
1095 if (pdev->msi_enabled)
1096 pci_disable_msi(pdev);
1097
1098 pm_qos_remove_request(&dev_priv->pm_qos);
1099 i915_ggtt_cleanup_hw(dev_priv);
1100 }
1101
1102 /**
1103 * i915_driver_register - register the driver with the rest of the system
1104 * @dev_priv: device private
1105 *
1106 * Perform any steps necessary to make the driver available via kernel
1107 * internal or userspace interfaces.
1108 */
1109 static void i915_driver_register(struct drm_i915_private *dev_priv)
1110 {
1111 struct drm_device *dev = &dev_priv->drm;
1112
1113 i915_gem_shrinker_init(dev_priv);
1114
1115 /*
1116 * Notify a valid surface after modesetting,
1117 * when running inside a VM.
1118 */
1119 if (intel_vgpu_active(dev_priv))
1120 I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1121
1122 /* Reveal our presence to userspace */
1123 if (drm_dev_register(dev, 0) == 0) {
1124 i915_debugfs_register(dev_priv);
1125 i915_guc_log_register(dev_priv);
1126 i915_setup_sysfs(dev_priv);
1127
1128 /* Depends on sysfs having been initialized */
1129 i915_perf_register(dev_priv);
1130 } else
1131 DRM_ERROR("Failed to register driver for userspace access!\n");
1132
1133 if (INTEL_INFO(dev_priv)->num_pipes) {
1134 /* Must be done after probing outputs */
1135 intel_opregion_register(dev_priv);
1136 acpi_video_register();
1137 }
1138
1139 if (IS_GEN5(dev_priv))
1140 intel_gpu_ips_init(dev_priv);
1141
1142 intel_audio_init(dev_priv);
1143
1144 /*
1145 * Some ports require correctly set-up hpd registers for detection to
1146 * work properly (leading to ghost connected connector status), e.g. VGA
1147 * on gm45. Hence we can only set up the initial fbdev config after hpd
1148 * irqs are fully enabled. We do it last so that the async config
1149 * cannot run before the connectors are registered.
1150 */
1151 intel_fbdev_initial_config_async(dev);
1152 }
1153
1154 /**
1155 * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1156 * @dev_priv: device private
1157 */
1158 static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1159 {
1160 intel_audio_deinit(dev_priv);
1161
1162 intel_gpu_ips_teardown();
1163 acpi_video_unregister();
1164 intel_opregion_unregister(dev_priv);
1165
1166 i915_perf_unregister(dev_priv);
1167
1168 i915_teardown_sysfs(dev_priv);
1169 i915_guc_log_unregister(dev_priv);
1170 i915_debugfs_unregister(dev_priv);
1171 drm_dev_unregister(&dev_priv->drm);
1172
1173 i915_gem_shrinker_cleanup(dev_priv);
1174 }
1175
1176 /**
1177 * i915_driver_load - setup chip and create an initial config
1178 * @pdev: PCI device
1179 * @ent: matching PCI ID entry
1180 *
1181 * The driver load routine has to do several things:
1182 * - drive output discovery via intel_modeset_init()
1183 * - initialize the memory manager
1184 * - allocate initial config memory
1185 * - setup the DRM framebuffer with the allocated memory
1186 */
1187 int i915_driver_load(struct pci_dev *pdev, const struct pci_device_id *ent)
1188 {
1189 struct drm_i915_private *dev_priv;
1190 int ret;
1191
1192 if (i915.nuclear_pageflip)
1193 driver.driver_features |= DRIVER_ATOMIC;
1194
1195 ret = -ENOMEM;
1196 dev_priv = kzalloc(sizeof(*dev_priv), GFP_KERNEL);
1197 if (dev_priv)
1198 ret = drm_dev_init(&dev_priv->drm, &driver, &pdev->dev);
1199 if (ret) {
1200 DRM_DEV_ERROR(&pdev->dev, "allocation failed\n");
1201 kfree(dev_priv);
1202 return ret;
1203 }
1204
1205 dev_priv->drm.pdev = pdev;
1206 dev_priv->drm.dev_private = dev_priv;
1207
1208 ret = pci_enable_device(pdev);
1209 if (ret)
1210 goto out_free_priv;
1211
1212 pci_set_drvdata(pdev, &dev_priv->drm);
1213
1214 ret = i915_driver_init_early(dev_priv, ent);
1215 if (ret < 0)
1216 goto out_pci_disable;
1217
1218 intel_runtime_pm_get(dev_priv);
1219
1220 ret = i915_driver_init_mmio(dev_priv);
1221 if (ret < 0)
1222 goto out_runtime_pm_put;
1223
1224 ret = i915_driver_init_hw(dev_priv);
1225 if (ret < 0)
1226 goto out_cleanup_mmio;
1227
1228 /*
1229 * TODO: move the vblank init and parts of modeset init steps into one
1230 * of the i915_driver_init_/i915_driver_register functions according
1231 * to the role/effect of the given init step.
1232 */
1233 if (INTEL_INFO(dev_priv)->num_pipes) {
1234 ret = drm_vblank_init(&dev_priv->drm,
1235 INTEL_INFO(dev_priv)->num_pipes);
1236 if (ret)
1237 goto out_cleanup_hw;
1238 }
1239
1240 ret = i915_load_modeset_init(&dev_priv->drm);
1241 if (ret < 0)
1242 goto out_cleanup_vblank;
1243
1244 i915_driver_register(dev_priv);
1245
1246 intel_runtime_pm_enable(dev_priv);
1247
1248 dev_priv->ipc_enabled = false;
1249
1250 /* Everything is in place, we can now relax! */
1251 DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n",
1252 driver.name, driver.major, driver.minor, driver.patchlevel,
1253 driver.date, pci_name(pdev), dev_priv->drm.primary->index);
1254 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG))
1255 DRM_INFO("DRM_I915_DEBUG enabled\n");
1256 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1257 DRM_INFO("DRM_I915_DEBUG_GEM enabled\n");
1258
1259 intel_runtime_pm_put(dev_priv);
1260
1261 return 0;
1262
1263 out_cleanup_vblank:
1264 drm_vblank_cleanup(&dev_priv->drm);
1265 out_cleanup_hw:
1266 i915_driver_cleanup_hw(dev_priv);
1267 out_cleanup_mmio:
1268 i915_driver_cleanup_mmio(dev_priv);
1269 out_runtime_pm_put:
1270 intel_runtime_pm_put(dev_priv);
1271 i915_driver_cleanup_early(dev_priv);
1272 out_pci_disable:
1273 pci_disable_device(pdev);
1274 out_free_priv:
1275 i915_load_error(dev_priv, "Device initialization failed (%d)\n", ret);
1276 drm_dev_unref(&dev_priv->drm);
1277 return ret;
1278 }
1279
1280 void i915_driver_unload(struct drm_device *dev)
1281 {
1282 struct drm_i915_private *dev_priv = to_i915(dev);
1283 struct pci_dev *pdev = dev_priv->drm.pdev;
1284
1285 intel_fbdev_fini(dev);
1286
1287 if (i915_gem_suspend(dev_priv))
1288 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
1289
1290 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1291
1292 intel_gvt_cleanup(dev_priv);
1293
1294 i915_driver_unregister(dev_priv);
1295
1296 drm_vblank_cleanup(dev);
1297
1298 intel_modeset_cleanup(dev);
1299
1300 /*
1301 * free the memory space allocated for the child device
1302 * config parsed from VBT
1303 */
1304 if (dev_priv->vbt.child_dev && dev_priv->vbt.child_dev_num) {
1305 kfree(dev_priv->vbt.child_dev);
1306 dev_priv->vbt.child_dev = NULL;
1307 dev_priv->vbt.child_dev_num = 0;
1308 }
1309 kfree(dev_priv->vbt.sdvo_lvds_vbt_mode);
1310 dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
1311 kfree(dev_priv->vbt.lfp_lvds_vbt_mode);
1312 dev_priv->vbt.lfp_lvds_vbt_mode = NULL;
1313
1314 vga_switcheroo_unregister_client(pdev);
1315 vga_client_register(pdev, NULL, NULL, NULL);
1316
1317 intel_csr_ucode_fini(dev_priv);
1318
1319 /* Free error state after interrupts are fully disabled. */
1320 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1321 i915_destroy_error_state(dev_priv);
1322
1323 /* Flush any outstanding unpin_work. */
1324 drain_workqueue(dev_priv->wq);
1325
1326 intel_guc_fini(dev_priv);
1327 intel_huc_fini(dev_priv);
1328 i915_gem_fini(dev_priv);
1329 intel_fbc_cleanup_cfb(dev_priv);
1330
1331 intel_power_domains_fini(dev_priv);
1332
1333 i915_driver_cleanup_hw(dev_priv);
1334 i915_driver_cleanup_mmio(dev_priv);
1335
1336 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1337
1338 i915_driver_cleanup_early(dev_priv);
1339 }
1340
1341 static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1342 {
1343 int ret;
1344
1345 ret = i915_gem_open(dev, file);
1346 if (ret)
1347 return ret;
1348
1349 return 0;
1350 }
1351
1352 /**
1353 * i915_driver_lastclose - clean up after all DRM clients have exited
1354 * @dev: DRM device
1355 *
1356 * Take care of cleaning up after all DRM clients have exited. In the
1357 * mode setting case, we want to restore the kernel's initial mode (just
1358 * in case the last client left us in a bad state).
1359 *
1360 * Additionally, in the non-mode setting case, we'll tear down the GTT
1361 * and DMA structures, since the kernel won't be using them, and clea
1362 * up any GEM state.
1363 */
1364 static void i915_driver_lastclose(struct drm_device *dev)
1365 {
1366 intel_fbdev_restore_mode(dev);
1367 vga_switcheroo_process_delayed_switch();
1368 }
1369
1370 static void i915_driver_preclose(struct drm_device *dev, struct drm_file *file)
1371 {
1372 mutex_lock(&dev->struct_mutex);
1373 i915_gem_context_close(dev, file);
1374 i915_gem_release(dev, file);
1375 mutex_unlock(&dev->struct_mutex);
1376 }
1377
1378 static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1379 {
1380 struct drm_i915_file_private *file_priv = file->driver_priv;
1381
1382 kfree(file_priv);
1383 }
1384
1385 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1386 {
1387 struct drm_device *dev = &dev_priv->drm;
1388 struct intel_encoder *encoder;
1389
1390 drm_modeset_lock_all(dev);
1391 for_each_intel_encoder(dev, encoder)
1392 if (encoder->suspend)
1393 encoder->suspend(encoder);
1394 drm_modeset_unlock_all(dev);
1395 }
1396
1397 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1398 bool rpm_resume);
1399 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1400
1401 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1402 {
1403 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
1404 if (acpi_target_system_state() < ACPI_STATE_S3)
1405 return true;
1406 #endif
1407 return false;
1408 }
1409
1410 static int i915_drm_suspend(struct drm_device *dev)
1411 {
1412 struct drm_i915_private *dev_priv = to_i915(dev);
1413 struct pci_dev *pdev = dev_priv->drm.pdev;
1414 pci_power_t opregion_target_state;
1415 int error;
1416
1417 /* ignore lid events during suspend */
1418 mutex_lock(&dev_priv->modeset_restore_lock);
1419 dev_priv->modeset_restore = MODESET_SUSPENDED;
1420 mutex_unlock(&dev_priv->modeset_restore_lock);
1421
1422 disable_rpm_wakeref_asserts(dev_priv);
1423
1424 /* We do a lot of poking in a lot of registers, make sure they work
1425 * properly. */
1426 intel_display_set_init_power(dev_priv, true);
1427
1428 drm_kms_helper_poll_disable(dev);
1429
1430 pci_save_state(pdev);
1431
1432 error = i915_gem_suspend(dev_priv);
1433 if (error) {
1434 dev_err(&pdev->dev,
1435 "GEM idle failed, resume might fail\n");
1436 goto out;
1437 }
1438
1439 intel_guc_suspend(dev_priv);
1440
1441 intel_display_suspend(dev);
1442
1443 intel_dp_mst_suspend(dev);
1444
1445 intel_runtime_pm_disable_interrupts(dev_priv);
1446 intel_hpd_cancel_work(dev_priv);
1447
1448 intel_suspend_encoders(dev_priv);
1449
1450 intel_suspend_hw(dev_priv);
1451
1452 i915_gem_suspend_gtt_mappings(dev_priv);
1453
1454 i915_save_state(dev_priv);
1455
1456 opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1457 intel_opregion_notify_adapter(dev_priv, opregion_target_state);
1458
1459 intel_uncore_forcewake_reset(dev_priv, false);
1460 intel_opregion_unregister(dev_priv);
1461
1462 intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1463
1464 dev_priv->suspend_count++;
1465
1466 intel_csr_ucode_suspend(dev_priv);
1467
1468 out:
1469 enable_rpm_wakeref_asserts(dev_priv);
1470
1471 return error;
1472 }
1473
1474 static int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
1475 {
1476 struct drm_i915_private *dev_priv = to_i915(dev);
1477 struct pci_dev *pdev = dev_priv->drm.pdev;
1478 bool fw_csr;
1479 int ret;
1480
1481 disable_rpm_wakeref_asserts(dev_priv);
1482
1483 intel_display_set_init_power(dev_priv, false);
1484
1485 fw_csr = !IS_GEN9_LP(dev_priv) &&
1486 suspend_to_idle(dev_priv) && dev_priv->csr.dmc_payload;
1487 /*
1488 * In case of firmware assisted context save/restore don't manually
1489 * deinit the power domains. This also means the CSR/DMC firmware will
1490 * stay active, it will power down any HW resources as required and
1491 * also enable deeper system power states that would be blocked if the
1492 * firmware was inactive.
1493 */
1494 if (!fw_csr)
1495 intel_power_domains_suspend(dev_priv);
1496
1497 ret = 0;
1498 if (IS_GEN9_LP(dev_priv))
1499 bxt_enable_dc9(dev_priv);
1500 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1501 hsw_enable_pc8(dev_priv);
1502 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1503 ret = vlv_suspend_complete(dev_priv);
1504
1505 if (ret) {
1506 DRM_ERROR("Suspend complete failed: %d\n", ret);
1507 if (!fw_csr)
1508 intel_power_domains_init_hw(dev_priv, true);
1509
1510 goto out;
1511 }
1512
1513 pci_disable_device(pdev);
1514 /*
1515 * During hibernation on some platforms the BIOS may try to access
1516 * the device even though it's already in D3 and hang the machine. So
1517 * leave the device in D0 on those platforms and hope the BIOS will
1518 * power down the device properly. The issue was seen on multiple old
1519 * GENs with different BIOS vendors, so having an explicit blacklist
1520 * is inpractical; apply the workaround on everything pre GEN6. The
1521 * platforms where the issue was seen:
1522 * Lenovo Thinkpad X301, X61s, X60, T60, X41
1523 * Fujitsu FSC S7110
1524 * Acer Aspire 1830T
1525 */
1526 if (!(hibernation && INTEL_GEN(dev_priv) < 6))
1527 pci_set_power_state(pdev, PCI_D3hot);
1528
1529 dev_priv->suspended_to_idle = suspend_to_idle(dev_priv);
1530
1531 out:
1532 enable_rpm_wakeref_asserts(dev_priv);
1533
1534 return ret;
1535 }
1536
1537 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
1538 {
1539 int error;
1540
1541 if (!dev) {
1542 DRM_ERROR("dev: %p\n", dev);
1543 DRM_ERROR("DRM not initialized, aborting suspend.\n");
1544 return -ENODEV;
1545 }
1546
1547 if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
1548 state.event != PM_EVENT_FREEZE))
1549 return -EINVAL;
1550
1551 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1552 return 0;
1553
1554 error = i915_drm_suspend(dev);
1555 if (error)
1556 return error;
1557
1558 return i915_drm_suspend_late(dev, false);
1559 }
1560
1561 static int i915_drm_resume(struct drm_device *dev)
1562 {
1563 struct drm_i915_private *dev_priv = to_i915(dev);
1564 int ret;
1565
1566 disable_rpm_wakeref_asserts(dev_priv);
1567 intel_sanitize_gt_powersave(dev_priv);
1568
1569 ret = i915_ggtt_enable_hw(dev_priv);
1570 if (ret)
1571 DRM_ERROR("failed to re-enable GGTT\n");
1572
1573 intel_csr_ucode_resume(dev_priv);
1574
1575 i915_gem_resume(dev_priv);
1576
1577 i915_restore_state(dev_priv);
1578 intel_pps_unlock_regs_wa(dev_priv);
1579 intel_opregion_setup(dev_priv);
1580
1581 intel_init_pch_refclk(dev_priv);
1582
1583 /*
1584 * Interrupts have to be enabled before any batches are run. If not the
1585 * GPU will hang. i915_gem_init_hw() will initiate batches to
1586 * update/restore the context.
1587 *
1588 * drm_mode_config_reset() needs AUX interrupts.
1589 *
1590 * Modeset enabling in intel_modeset_init_hw() also needs working
1591 * interrupts.
1592 */
1593 intel_runtime_pm_enable_interrupts(dev_priv);
1594
1595 drm_mode_config_reset(dev);
1596
1597 mutex_lock(&dev->struct_mutex);
1598 if (i915_gem_init_hw(dev_priv)) {
1599 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
1600 i915_gem_set_wedged(dev_priv);
1601 }
1602 mutex_unlock(&dev->struct_mutex);
1603
1604 intel_guc_resume(dev_priv);
1605
1606 intel_modeset_init_hw(dev);
1607
1608 spin_lock_irq(&dev_priv->irq_lock);
1609 if (dev_priv->display.hpd_irq_setup)
1610 dev_priv->display.hpd_irq_setup(dev_priv);
1611 spin_unlock_irq(&dev_priv->irq_lock);
1612
1613 intel_dp_mst_resume(dev);
1614
1615 intel_display_resume(dev);
1616
1617 drm_kms_helper_poll_enable(dev);
1618
1619 /*
1620 * ... but also need to make sure that hotplug processing
1621 * doesn't cause havoc. Like in the driver load code we don't
1622 * bother with the tiny race here where we might loose hotplug
1623 * notifications.
1624 * */
1625 intel_hpd_init(dev_priv);
1626
1627 intel_opregion_register(dev_priv);
1628
1629 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
1630
1631 mutex_lock(&dev_priv->modeset_restore_lock);
1632 dev_priv->modeset_restore = MODESET_DONE;
1633 mutex_unlock(&dev_priv->modeset_restore_lock);
1634
1635 intel_opregion_notify_adapter(dev_priv, PCI_D0);
1636
1637 intel_autoenable_gt_powersave(dev_priv);
1638
1639 enable_rpm_wakeref_asserts(dev_priv);
1640
1641 return 0;
1642 }
1643
1644 static int i915_drm_resume_early(struct drm_device *dev)
1645 {
1646 struct drm_i915_private *dev_priv = to_i915(dev);
1647 struct pci_dev *pdev = dev_priv->drm.pdev;
1648 int ret;
1649
1650 /*
1651 * We have a resume ordering issue with the snd-hda driver also
1652 * requiring our device to be power up. Due to the lack of a
1653 * parent/child relationship we currently solve this with an early
1654 * resume hook.
1655 *
1656 * FIXME: This should be solved with a special hdmi sink device or
1657 * similar so that power domains can be employed.
1658 */
1659
1660 /*
1661 * Note that we need to set the power state explicitly, since we
1662 * powered off the device during freeze and the PCI core won't power
1663 * it back up for us during thaw. Powering off the device during
1664 * freeze is not a hard requirement though, and during the
1665 * suspend/resume phases the PCI core makes sure we get here with the
1666 * device powered on. So in case we change our freeze logic and keep
1667 * the device powered we can also remove the following set power state
1668 * call.
1669 */
1670 ret = pci_set_power_state(pdev, PCI_D0);
1671 if (ret) {
1672 DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
1673 goto out;
1674 }
1675
1676 /*
1677 * Note that pci_enable_device() first enables any parent bridge
1678 * device and only then sets the power state for this device. The
1679 * bridge enabling is a nop though, since bridge devices are resumed
1680 * first. The order of enabling power and enabling the device is
1681 * imposed by the PCI core as described above, so here we preserve the
1682 * same order for the freeze/thaw phases.
1683 *
1684 * TODO: eventually we should remove pci_disable_device() /
1685 * pci_enable_enable_device() from suspend/resume. Due to how they
1686 * depend on the device enable refcount we can't anyway depend on them
1687 * disabling/enabling the device.
1688 */
1689 if (pci_enable_device(pdev)) {
1690 ret = -EIO;
1691 goto out;
1692 }
1693
1694 pci_set_master(pdev);
1695
1696 disable_rpm_wakeref_asserts(dev_priv);
1697
1698 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1699 ret = vlv_resume_prepare(dev_priv, false);
1700 if (ret)
1701 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
1702 ret);
1703
1704 intel_uncore_early_sanitize(dev_priv, true);
1705
1706 if (IS_GEN9_LP(dev_priv)) {
1707 if (!dev_priv->suspended_to_idle)
1708 gen9_sanitize_dc_state(dev_priv);
1709 bxt_disable_dc9(dev_priv);
1710 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1711 hsw_disable_pc8(dev_priv);
1712 }
1713
1714 intel_uncore_sanitize(dev_priv);
1715
1716 if (IS_GEN9_LP(dev_priv) ||
1717 !(dev_priv->suspended_to_idle && dev_priv->csr.dmc_payload))
1718 intel_power_domains_init_hw(dev_priv, true);
1719
1720 enable_rpm_wakeref_asserts(dev_priv);
1721
1722 out:
1723 dev_priv->suspended_to_idle = false;
1724
1725 return ret;
1726 }
1727
1728 static int i915_resume_switcheroo(struct drm_device *dev)
1729 {
1730 int ret;
1731
1732 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1733 return 0;
1734
1735 ret = i915_drm_resume_early(dev);
1736 if (ret)
1737 return ret;
1738
1739 return i915_drm_resume(dev);
1740 }
1741
1742 /**
1743 * i915_reset - reset chip after a hang
1744 * @dev_priv: device private to reset
1745 *
1746 * Reset the chip. Useful if a hang is detected. Marks the device as wedged
1747 * on failure.
1748 *
1749 * Caller must hold the struct_mutex.
1750 *
1751 * Procedure is fairly simple:
1752 * - reset the chip using the reset reg
1753 * - re-init context state
1754 * - re-init hardware status page
1755 * - re-init ring buffer
1756 * - re-init interrupt state
1757 * - re-init display
1758 */
1759 void i915_reset(struct drm_i915_private *dev_priv)
1760 {
1761 struct i915_gpu_error *error = &dev_priv->gpu_error;
1762 int ret;
1763
1764 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1765
1766 if (!test_and_clear_bit(I915_RESET_IN_PROGRESS, &error->flags))
1767 return;
1768
1769 /* Clear any previous failed attempts at recovery. Time to try again. */
1770 __clear_bit(I915_WEDGED, &error->flags);
1771 error->reset_count++;
1772
1773 pr_notice("drm/i915: Resetting chip after gpu hang\n");
1774 disable_irq(dev_priv->drm.irq);
1775 ret = i915_gem_reset_prepare(dev_priv);
1776 if (ret) {
1777 DRM_ERROR("GPU recovery failed\n");
1778 intel_gpu_reset(dev_priv, ALL_ENGINES);
1779 goto error;
1780 }
1781
1782 ret = intel_gpu_reset(dev_priv, ALL_ENGINES);
1783 if (ret) {
1784 if (ret != -ENODEV)
1785 DRM_ERROR("Failed to reset chip: %i\n", ret);
1786 else
1787 DRM_DEBUG_DRIVER("GPU reset disabled\n");
1788 goto error;
1789 }
1790
1791 i915_gem_reset_finish(dev_priv);
1792 intel_overlay_reset(dev_priv);
1793
1794 /* Ok, now get things going again... */
1795
1796 /*
1797 * Everything depends on having the GTT running, so we need to start
1798 * there. Fortunately we don't need to do this unless we reset the
1799 * chip at a PCI level.
1800 *
1801 * Next we need to restore the context, but we don't use those
1802 * yet either...
1803 *
1804 * Ring buffer needs to be re-initialized in the KMS case, or if X
1805 * was running at the time of the reset (i.e. we weren't VT
1806 * switched away).
1807 */
1808 ret = i915_gem_init_hw(dev_priv);
1809 if (ret) {
1810 DRM_ERROR("Failed hw init on reset %d\n", ret);
1811 goto error;
1812 }
1813
1814 i915_queue_hangcheck(dev_priv);
1815
1816 wakeup:
1817 enable_irq(dev_priv->drm.irq);
1818 wake_up_bit(&error->flags, I915_RESET_IN_PROGRESS);
1819 return;
1820
1821 error:
1822 i915_gem_set_wedged(dev_priv);
1823 goto wakeup;
1824 }
1825
1826 static int i915_pm_suspend(struct device *kdev)
1827 {
1828 struct pci_dev *pdev = to_pci_dev(kdev);
1829 struct drm_device *dev = pci_get_drvdata(pdev);
1830
1831 if (!dev) {
1832 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
1833 return -ENODEV;
1834 }
1835
1836 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1837 return 0;
1838
1839 return i915_drm_suspend(dev);
1840 }
1841
1842 static int i915_pm_suspend_late(struct device *kdev)
1843 {
1844 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1845
1846 /*
1847 * We have a suspend ordering issue with the snd-hda driver also
1848 * requiring our device to be power up. Due to the lack of a
1849 * parent/child relationship we currently solve this with an late
1850 * suspend hook.
1851 *
1852 * FIXME: This should be solved with a special hdmi sink device or
1853 * similar so that power domains can be employed.
1854 */
1855 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1856 return 0;
1857
1858 return i915_drm_suspend_late(dev, false);
1859 }
1860
1861 static int i915_pm_poweroff_late(struct device *kdev)
1862 {
1863 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1864
1865 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1866 return 0;
1867
1868 return i915_drm_suspend_late(dev, true);
1869 }
1870
1871 static int i915_pm_resume_early(struct device *kdev)
1872 {
1873 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1874
1875 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1876 return 0;
1877
1878 return i915_drm_resume_early(dev);
1879 }
1880
1881 static int i915_pm_resume(struct device *kdev)
1882 {
1883 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1884
1885 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1886 return 0;
1887
1888 return i915_drm_resume(dev);
1889 }
1890
1891 /* freeze: before creating the hibernation_image */
1892 static int i915_pm_freeze(struct device *kdev)
1893 {
1894 int ret;
1895
1896 ret = i915_pm_suspend(kdev);
1897 if (ret)
1898 return ret;
1899
1900 ret = i915_gem_freeze(kdev_to_i915(kdev));
1901 if (ret)
1902 return ret;
1903
1904 return 0;
1905 }
1906
1907 static int i915_pm_freeze_late(struct device *kdev)
1908 {
1909 int ret;
1910
1911 ret = i915_pm_suspend_late(kdev);
1912 if (ret)
1913 return ret;
1914
1915 ret = i915_gem_freeze_late(kdev_to_i915(kdev));
1916 if (ret)
1917 return ret;
1918
1919 return 0;
1920 }
1921
1922 /* thaw: called after creating the hibernation image, but before turning off. */
1923 static int i915_pm_thaw_early(struct device *kdev)
1924 {
1925 return i915_pm_resume_early(kdev);
1926 }
1927
1928 static int i915_pm_thaw(struct device *kdev)
1929 {
1930 return i915_pm_resume(kdev);
1931 }
1932
1933 /* restore: called after loading the hibernation image. */
1934 static int i915_pm_restore_early(struct device *kdev)
1935 {
1936 return i915_pm_resume_early(kdev);
1937 }
1938
1939 static int i915_pm_restore(struct device *kdev)
1940 {
1941 return i915_pm_resume(kdev);
1942 }
1943
1944 /*
1945 * Save all Gunit registers that may be lost after a D3 and a subsequent
1946 * S0i[R123] transition. The list of registers needing a save/restore is
1947 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
1948 * registers in the following way:
1949 * - Driver: saved/restored by the driver
1950 * - Punit : saved/restored by the Punit firmware
1951 * - No, w/o marking: no need to save/restore, since the register is R/O or
1952 * used internally by the HW in a way that doesn't depend
1953 * keeping the content across a suspend/resume.
1954 * - Debug : used for debugging
1955 *
1956 * We save/restore all registers marked with 'Driver', with the following
1957 * exceptions:
1958 * - Registers out of use, including also registers marked with 'Debug'.
1959 * These have no effect on the driver's operation, so we don't save/restore
1960 * them to reduce the overhead.
1961 * - Registers that are fully setup by an initialization function called from
1962 * the resume path. For example many clock gating and RPS/RC6 registers.
1963 * - Registers that provide the right functionality with their reset defaults.
1964 *
1965 * TODO: Except for registers that based on the above 3 criteria can be safely
1966 * ignored, we save/restore all others, practically treating the HW context as
1967 * a black-box for the driver. Further investigation is needed to reduce the
1968 * saved/restored registers even further, by following the same 3 criteria.
1969 */
1970 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1971 {
1972 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1973 int i;
1974
1975 /* GAM 0x4000-0x4770 */
1976 s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
1977 s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
1978 s->arb_mode = I915_READ(ARB_MODE);
1979 s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
1980 s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
1981
1982 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
1983 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
1984
1985 s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
1986 s->gfx_max_req_count = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
1987
1988 s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
1989 s->ecochk = I915_READ(GAM_ECOCHK);
1990 s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
1991 s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
1992
1993 s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
1994
1995 /* MBC 0x9024-0x91D0, 0x8500 */
1996 s->g3dctl = I915_READ(VLV_G3DCTL);
1997 s->gsckgctl = I915_READ(VLV_GSCKGCTL);
1998 s->mbctl = I915_READ(GEN6_MBCTL);
1999
2000 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2001 s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
2002 s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
2003 s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
2004 s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
2005 s->rstctl = I915_READ(GEN6_RSTCTL);
2006 s->misccpctl = I915_READ(GEN7_MISCCPCTL);
2007
2008 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2009 s->gfxpause = I915_READ(GEN6_GFXPAUSE);
2010 s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
2011 s->rpdeuc = I915_READ(GEN6_RPDEUC);
2012 s->ecobus = I915_READ(ECOBUS);
2013 s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
2014 s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
2015 s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
2016 s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
2017 s->rcedata = I915_READ(VLV_RCEDATA);
2018 s->spare2gh = I915_READ(VLV_SPAREG2H);
2019
2020 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2021 s->gt_imr = I915_READ(GTIMR);
2022 s->gt_ier = I915_READ(GTIER);
2023 s->pm_imr = I915_READ(GEN6_PMIMR);
2024 s->pm_ier = I915_READ(GEN6_PMIER);
2025
2026 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2027 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
2028
2029 /* GT SA CZ domain, 0x100000-0x138124 */
2030 s->tilectl = I915_READ(TILECTL);
2031 s->gt_fifoctl = I915_READ(GTFIFOCTL);
2032 s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
2033 s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2034 s->pmwgicz = I915_READ(VLV_PMWGICZ);
2035
2036 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2037 s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
2038 s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
2039 s->pcbr = I915_READ(VLV_PCBR);
2040 s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
2041
2042 /*
2043 * Not saving any of:
2044 * DFT, 0x9800-0x9EC0
2045 * SARB, 0xB000-0xB1FC
2046 * GAC, 0x5208-0x524C, 0x14000-0x14C000
2047 * PCI CFG
2048 */
2049 }
2050
2051 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2052 {
2053 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2054 u32 val;
2055 int i;
2056
2057 /* GAM 0x4000-0x4770 */
2058 I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
2059 I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
2060 I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
2061 I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
2062 I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
2063
2064 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2065 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2066
2067 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2068 I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2069
2070 I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
2071 I915_WRITE(GAM_ECOCHK, s->ecochk);
2072 I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
2073 I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
2074
2075 I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
2076
2077 /* MBC 0x9024-0x91D0, 0x8500 */
2078 I915_WRITE(VLV_G3DCTL, s->g3dctl);
2079 I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
2080 I915_WRITE(GEN6_MBCTL, s->mbctl);
2081
2082 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2083 I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
2084 I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
2085 I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
2086 I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
2087 I915_WRITE(GEN6_RSTCTL, s->rstctl);
2088 I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
2089
2090 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2091 I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
2092 I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
2093 I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
2094 I915_WRITE(ECOBUS, s->ecobus);
2095 I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
2096 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2097 I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
2098 I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
2099 I915_WRITE(VLV_RCEDATA, s->rcedata);
2100 I915_WRITE(VLV_SPAREG2H, s->spare2gh);
2101
2102 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2103 I915_WRITE(GTIMR, s->gt_imr);
2104 I915_WRITE(GTIER, s->gt_ier);
2105 I915_WRITE(GEN6_PMIMR, s->pm_imr);
2106 I915_WRITE(GEN6_PMIER, s->pm_ier);
2107
2108 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2109 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2110
2111 /* GT SA CZ domain, 0x100000-0x138124 */
2112 I915_WRITE(TILECTL, s->tilectl);
2113 I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
2114 /*
2115 * Preserve the GT allow wake and GFX force clock bit, they are not
2116 * be restored, as they are used to control the s0ix suspend/resume
2117 * sequence by the caller.
2118 */
2119 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2120 val &= VLV_GTLC_ALLOWWAKEREQ;
2121 val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2122 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2123
2124 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2125 val &= VLV_GFX_CLK_FORCE_ON_BIT;
2126 val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2127 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2128
2129 I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
2130
2131 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2132 I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
2133 I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
2134 I915_WRITE(VLV_PCBR, s->pcbr);
2135 I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
2136 }
2137
2138 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2139 {
2140 u32 val;
2141 int err;
2142
2143 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2144 val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2145 if (force_on)
2146 val |= VLV_GFX_CLK_FORCE_ON_BIT;
2147 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2148
2149 if (!force_on)
2150 return 0;
2151
2152 err = intel_wait_for_register(dev_priv,
2153 VLV_GTLC_SURVIVABILITY_REG,
2154 VLV_GFX_CLK_STATUS_BIT,
2155 VLV_GFX_CLK_STATUS_BIT,
2156 20);
2157 if (err)
2158 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2159 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2160
2161 return err;
2162 }
2163
2164 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2165 {
2166 u32 val;
2167 int err = 0;
2168
2169 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2170 val &= ~VLV_GTLC_ALLOWWAKEREQ;
2171 if (allow)
2172 val |= VLV_GTLC_ALLOWWAKEREQ;
2173 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2174 POSTING_READ(VLV_GTLC_WAKE_CTRL);
2175
2176 err = intel_wait_for_register(dev_priv,
2177 VLV_GTLC_PW_STATUS,
2178 VLV_GTLC_ALLOWWAKEACK,
2179 allow,
2180 1);
2181 if (err)
2182 DRM_ERROR("timeout disabling GT waking\n");
2183
2184 return err;
2185 }
2186
2187 static int vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2188 bool wait_for_on)
2189 {
2190 u32 mask;
2191 u32 val;
2192 int err;
2193
2194 mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2195 val = wait_for_on ? mask : 0;
2196 if ((I915_READ(VLV_GTLC_PW_STATUS) & mask) == val)
2197 return 0;
2198
2199 DRM_DEBUG_KMS("waiting for GT wells to go %s (%08x)\n",
2200 onoff(wait_for_on),
2201 I915_READ(VLV_GTLC_PW_STATUS));
2202
2203 /*
2204 * RC6 transitioning can be delayed up to 2 msec (see
2205 * valleyview_enable_rps), use 3 msec for safety.
2206 */
2207 err = intel_wait_for_register(dev_priv,
2208 VLV_GTLC_PW_STATUS, mask, val,
2209 3);
2210 if (err)
2211 DRM_ERROR("timeout waiting for GT wells to go %s\n",
2212 onoff(wait_for_on));
2213
2214 return err;
2215 }
2216
2217 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2218 {
2219 if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2220 return;
2221
2222 DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2223 I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2224 }
2225
2226 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2227 {
2228 u32 mask;
2229 int err;
2230
2231 /*
2232 * Bspec defines the following GT well on flags as debug only, so
2233 * don't treat them as hard failures.
2234 */
2235 (void)vlv_wait_for_gt_wells(dev_priv, false);
2236
2237 mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2238 WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2239
2240 vlv_check_no_gt_access(dev_priv);
2241
2242 err = vlv_force_gfx_clock(dev_priv, true);
2243 if (err)
2244 goto err1;
2245
2246 err = vlv_allow_gt_wake(dev_priv, false);
2247 if (err)
2248 goto err2;
2249
2250 if (!IS_CHERRYVIEW(dev_priv))
2251 vlv_save_gunit_s0ix_state(dev_priv);
2252
2253 err = vlv_force_gfx_clock(dev_priv, false);
2254 if (err)
2255 goto err2;
2256
2257 return 0;
2258
2259 err2:
2260 /* For safety always re-enable waking and disable gfx clock forcing */
2261 vlv_allow_gt_wake(dev_priv, true);
2262 err1:
2263 vlv_force_gfx_clock(dev_priv, false);
2264
2265 return err;
2266 }
2267
2268 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2269 bool rpm_resume)
2270 {
2271 int err;
2272 int ret;
2273
2274 /*
2275 * If any of the steps fail just try to continue, that's the best we
2276 * can do at this point. Return the first error code (which will also
2277 * leave RPM permanently disabled).
2278 */
2279 ret = vlv_force_gfx_clock(dev_priv, true);
2280
2281 if (!IS_CHERRYVIEW(dev_priv))
2282 vlv_restore_gunit_s0ix_state(dev_priv);
2283
2284 err = vlv_allow_gt_wake(dev_priv, true);
2285 if (!ret)
2286 ret = err;
2287
2288 err = vlv_force_gfx_clock(dev_priv, false);
2289 if (!ret)
2290 ret = err;
2291
2292 vlv_check_no_gt_access(dev_priv);
2293
2294 if (rpm_resume)
2295 intel_init_clock_gating(dev_priv);
2296
2297 return ret;
2298 }
2299
2300 static int intel_runtime_suspend(struct device *kdev)
2301 {
2302 struct pci_dev *pdev = to_pci_dev(kdev);
2303 struct drm_device *dev = pci_get_drvdata(pdev);
2304 struct drm_i915_private *dev_priv = to_i915(dev);
2305 int ret;
2306
2307 if (WARN_ON_ONCE(!(dev_priv->rps.enabled && intel_enable_rc6())))
2308 return -ENODEV;
2309
2310 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2311 return -ENODEV;
2312
2313 DRM_DEBUG_KMS("Suspending device\n");
2314
2315 disable_rpm_wakeref_asserts(dev_priv);
2316
2317 /*
2318 * We are safe here against re-faults, since the fault handler takes
2319 * an RPM reference.
2320 */
2321 i915_gem_runtime_suspend(dev_priv);
2322
2323 intel_guc_suspend(dev_priv);
2324
2325 intel_runtime_pm_disable_interrupts(dev_priv);
2326
2327 ret = 0;
2328 if (IS_GEN9_LP(dev_priv)) {
2329 bxt_display_core_uninit(dev_priv);
2330 bxt_enable_dc9(dev_priv);
2331 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2332 hsw_enable_pc8(dev_priv);
2333 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2334 ret = vlv_suspend_complete(dev_priv);
2335 }
2336
2337 if (ret) {
2338 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2339 intel_runtime_pm_enable_interrupts(dev_priv);
2340
2341 enable_rpm_wakeref_asserts(dev_priv);
2342
2343 return ret;
2344 }
2345
2346 intel_uncore_forcewake_reset(dev_priv, false);
2347
2348 enable_rpm_wakeref_asserts(dev_priv);
2349 WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
2350
2351 if (intel_uncore_arm_unclaimed_mmio_detection(dev_priv))
2352 DRM_ERROR("Unclaimed access detected prior to suspending\n");
2353
2354 dev_priv->pm.suspended = true;
2355
2356 /*
2357 * FIXME: We really should find a document that references the arguments
2358 * used below!
2359 */
2360 if (IS_BROADWELL(dev_priv)) {
2361 /*
2362 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2363 * being detected, and the call we do at intel_runtime_resume()
2364 * won't be able to restore them. Since PCI_D3hot matches the
2365 * actual specification and appears to be working, use it.
2366 */
2367 intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2368 } else {
2369 /*
2370 * current versions of firmware which depend on this opregion
2371 * notification have repurposed the D1 definition to mean
2372 * "runtime suspended" vs. what you would normally expect (D3)
2373 * to distinguish it from notifications that might be sent via
2374 * the suspend path.
2375 */
2376 intel_opregion_notify_adapter(dev_priv, PCI_D1);
2377 }
2378
2379 assert_forcewakes_inactive(dev_priv);
2380
2381 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2382 intel_hpd_poll_init(dev_priv);
2383
2384 DRM_DEBUG_KMS("Device suspended\n");
2385 return 0;
2386 }
2387
2388 static int intel_runtime_resume(struct device *kdev)
2389 {
2390 struct pci_dev *pdev = to_pci_dev(kdev);
2391 struct drm_device *dev = pci_get_drvdata(pdev);
2392 struct drm_i915_private *dev_priv = to_i915(dev);
2393 int ret = 0;
2394
2395 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2396 return -ENODEV;
2397
2398 DRM_DEBUG_KMS("Resuming device\n");
2399
2400 WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
2401 disable_rpm_wakeref_asserts(dev_priv);
2402
2403 intel_opregion_notify_adapter(dev_priv, PCI_D0);
2404 dev_priv->pm.suspended = false;
2405 if (intel_uncore_unclaimed_mmio(dev_priv))
2406 DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
2407
2408 intel_guc_resume(dev_priv);
2409
2410 if (IS_GEN6(dev_priv))
2411 intel_init_pch_refclk(dev_priv);
2412
2413 if (IS_GEN9_LP(dev_priv)) {
2414 bxt_disable_dc9(dev_priv);
2415 bxt_display_core_init(dev_priv, true);
2416 if (dev_priv->csr.dmc_payload &&
2417 (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2418 gen9_enable_dc5(dev_priv);
2419 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2420 hsw_disable_pc8(dev_priv);
2421 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2422 ret = vlv_resume_prepare(dev_priv, true);
2423 }
2424
2425 /*
2426 * No point of rolling back things in case of an error, as the best
2427 * we can do is to hope that things will still work (and disable RPM).
2428 */
2429 i915_gem_init_swizzling(dev_priv);
2430 i915_gem_restore_fences(dev_priv);
2431
2432 intel_runtime_pm_enable_interrupts(dev_priv);
2433
2434 /*
2435 * On VLV/CHV display interrupts are part of the display
2436 * power well, so hpd is reinitialized from there. For
2437 * everyone else do it here.
2438 */
2439 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2440 intel_hpd_init(dev_priv);
2441
2442 enable_rpm_wakeref_asserts(dev_priv);
2443
2444 if (ret)
2445 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
2446 else
2447 DRM_DEBUG_KMS("Device resumed\n");
2448
2449 return ret;
2450 }
2451
2452 const struct dev_pm_ops i915_pm_ops = {
2453 /*
2454 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
2455 * PMSG_RESUME]
2456 */
2457 .suspend = i915_pm_suspend,
2458 .suspend_late = i915_pm_suspend_late,
2459 .resume_early = i915_pm_resume_early,
2460 .resume = i915_pm_resume,
2461
2462 /*
2463 * S4 event handlers
2464 * @freeze, @freeze_late : called (1) before creating the
2465 * hibernation image [PMSG_FREEZE] and
2466 * (2) after rebooting, before restoring
2467 * the image [PMSG_QUIESCE]
2468 * @thaw, @thaw_early : called (1) after creating the hibernation
2469 * image, before writing it [PMSG_THAW]
2470 * and (2) after failing to create or
2471 * restore the image [PMSG_RECOVER]
2472 * @poweroff, @poweroff_late: called after writing the hibernation
2473 * image, before rebooting [PMSG_HIBERNATE]
2474 * @restore, @restore_early : called after rebooting and restoring the
2475 * hibernation image [PMSG_RESTORE]
2476 */
2477 .freeze = i915_pm_freeze,
2478 .freeze_late = i915_pm_freeze_late,
2479 .thaw_early = i915_pm_thaw_early,
2480 .thaw = i915_pm_thaw,
2481 .poweroff = i915_pm_suspend,
2482 .poweroff_late = i915_pm_poweroff_late,
2483 .restore_early = i915_pm_restore_early,
2484 .restore = i915_pm_restore,
2485
2486 /* S0ix (via runtime suspend) event handlers */
2487 .runtime_suspend = intel_runtime_suspend,
2488 .runtime_resume = intel_runtime_resume,
2489 };
2490
2491 static const struct vm_operations_struct i915_gem_vm_ops = {
2492 .fault = i915_gem_fault,
2493 .open = drm_gem_vm_open,
2494 .close = drm_gem_vm_close,
2495 };
2496
2497 static const struct file_operations i915_driver_fops = {
2498 .owner = THIS_MODULE,
2499 .open = drm_open,
2500 .release = drm_release,
2501 .unlocked_ioctl = drm_ioctl,
2502 .mmap = drm_gem_mmap,
2503 .poll = drm_poll,
2504 .read = drm_read,
2505 .compat_ioctl = i915_compat_ioctl,
2506 .llseek = noop_llseek,
2507 };
2508
2509 static int
2510 i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
2511 struct drm_file *file)
2512 {
2513 return -ENODEV;
2514 }
2515
2516 static const struct drm_ioctl_desc i915_ioctls[] = {
2517 DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2518 DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
2519 DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
2520 DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
2521 DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
2522 DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
2523 DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam, DRM_AUTH|DRM_RENDER_ALLOW),
2524 DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2525 DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
2526 DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
2527 DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2528 DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
2529 DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2530 DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2531 DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE, drm_noop, DRM_AUTH),
2532 DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
2533 DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2534 DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2535 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer, DRM_AUTH),
2536 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2, i915_gem_execbuffer2, DRM_AUTH|DRM_RENDER_ALLOW),
2537 DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2538 DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2539 DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2540 DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
2541 DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
2542 DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2543 DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2544 DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2545 DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
2546 DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
2547 DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
2548 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
2549 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_GTT, i915_gem_mmap_gtt_ioctl, DRM_RENDER_ALLOW),
2550 DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
2551 DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
2552 DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling_ioctl, DRM_RENDER_ALLOW),
2553 DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling_ioctl, DRM_RENDER_ALLOW),
2554 DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
2555 DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id, 0),
2556 DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
2557 DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2558 DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2559 DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey, DRM_MASTER|DRM_CONTROL_ALLOW),
2560 DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER|DRM_CONTROL_ALLOW),
2561 DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2562 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
2563 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
2564 DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
2565 DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
2566 DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
2567 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
2568 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
2569 DRM_IOCTL_DEF_DRV(I915_PERF_OPEN, i915_perf_open_ioctl, DRM_RENDER_ALLOW),
2570 };
2571
2572 static struct drm_driver driver = {
2573 /* Don't use MTRRs here; the Xserver or userspace app should
2574 * deal with them for Intel hardware.
2575 */
2576 .driver_features =
2577 DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
2578 DRIVER_RENDER | DRIVER_MODESET,
2579 .open = i915_driver_open,
2580 .lastclose = i915_driver_lastclose,
2581 .preclose = i915_driver_preclose,
2582 .postclose = i915_driver_postclose,
2583 .set_busid = drm_pci_set_busid,
2584
2585 .gem_close_object = i915_gem_close_object,
2586 .gem_free_object_unlocked = i915_gem_free_object,
2587 .gem_vm_ops = &i915_gem_vm_ops,
2588
2589 .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
2590 .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
2591 .gem_prime_export = i915_gem_prime_export,
2592 .gem_prime_import = i915_gem_prime_import,
2593
2594 .dumb_create = i915_gem_dumb_create,
2595 .dumb_map_offset = i915_gem_mmap_gtt,
2596 .dumb_destroy = drm_gem_dumb_destroy,
2597 .ioctls = i915_ioctls,
2598 .num_ioctls = ARRAY_SIZE(i915_ioctls),
2599 .fops = &i915_driver_fops,
2600 .name = DRIVER_NAME,
2601 .desc = DRIVER_DESC,
2602 .date = DRIVER_DATE,
2603 .major = DRIVER_MAJOR,
2604 .minor = DRIVER_MINOR,
2605 .patchlevel = DRIVER_PATCHLEVEL,
2606 };