]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.c
Merge tag 'pinctrl-v4.11-3' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_drv.c
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #include <linux/acpi.h>
31 #include <linux/device.h>
32 #include <linux/oom.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/pm.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/pnp.h>
38 #include <linux/slab.h>
39 #include <linux/vgaarb.h>
40 #include <linux/vga_switcheroo.h>
41 #include <linux/vt.h>
42 #include <acpi/video.h>
43
44 #include <drm/drmP.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/i915_drm.h>
47
48 #include "i915_drv.h"
49 #include "i915_trace.h"
50 #include "i915_vgpu.h"
51 #include "intel_drv.h"
52 #include "intel_uc.h"
53
54 static struct drm_driver driver;
55
56 static unsigned int i915_load_fail_count;
57
58 bool __i915_inject_load_failure(const char *func, int line)
59 {
60 if (i915_load_fail_count >= i915.inject_load_failure)
61 return false;
62
63 if (++i915_load_fail_count == i915.inject_load_failure) {
64 DRM_INFO("Injecting failure at checkpoint %u [%s:%d]\n",
65 i915.inject_load_failure, func, line);
66 return true;
67 }
68
69 return false;
70 }
71
72 #define FDO_BUG_URL "https://bugs.freedesktop.org/enter_bug.cgi?product=DRI"
73 #define FDO_BUG_MSG "Please file a bug at " FDO_BUG_URL " against DRM/Intel " \
74 "providing the dmesg log by booting with drm.debug=0xf"
75
76 void
77 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
78 const char *fmt, ...)
79 {
80 static bool shown_bug_once;
81 struct device *kdev = dev_priv->drm.dev;
82 bool is_error = level[1] <= KERN_ERR[1];
83 bool is_debug = level[1] == KERN_DEBUG[1];
84 struct va_format vaf;
85 va_list args;
86
87 if (is_debug && !(drm_debug & DRM_UT_DRIVER))
88 return;
89
90 va_start(args, fmt);
91
92 vaf.fmt = fmt;
93 vaf.va = &args;
94
95 dev_printk(level, kdev, "[" DRM_NAME ":%ps] %pV",
96 __builtin_return_address(0), &vaf);
97
98 if (is_error && !shown_bug_once) {
99 dev_notice(kdev, "%s", FDO_BUG_MSG);
100 shown_bug_once = true;
101 }
102
103 va_end(args);
104 }
105
106 static bool i915_error_injected(struct drm_i915_private *dev_priv)
107 {
108 return i915.inject_load_failure &&
109 i915_load_fail_count == i915.inject_load_failure;
110 }
111
112 #define i915_load_error(dev_priv, fmt, ...) \
113 __i915_printk(dev_priv, \
114 i915_error_injected(dev_priv) ? KERN_DEBUG : KERN_ERR, \
115 fmt, ##__VA_ARGS__)
116
117
118 static enum intel_pch intel_virt_detect_pch(struct drm_i915_private *dev_priv)
119 {
120 enum intel_pch ret = PCH_NOP;
121
122 /*
123 * In a virtualized passthrough environment we can be in a
124 * setup where the ISA bridge is not able to be passed through.
125 * In this case, a south bridge can be emulated and we have to
126 * make an educated guess as to which PCH is really there.
127 */
128
129 if (IS_GEN5(dev_priv)) {
130 ret = PCH_IBX;
131 DRM_DEBUG_KMS("Assuming Ibex Peak PCH\n");
132 } else if (IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv)) {
133 ret = PCH_CPT;
134 DRM_DEBUG_KMS("Assuming CouarPoint PCH\n");
135 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
136 ret = PCH_LPT;
137 DRM_DEBUG_KMS("Assuming LynxPoint PCH\n");
138 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
139 ret = PCH_SPT;
140 DRM_DEBUG_KMS("Assuming SunrisePoint PCH\n");
141 }
142
143 return ret;
144 }
145
146 static void intel_detect_pch(struct drm_i915_private *dev_priv)
147 {
148 struct pci_dev *pch = NULL;
149
150 /* In all current cases, num_pipes is equivalent to the PCH_NOP setting
151 * (which really amounts to a PCH but no South Display).
152 */
153 if (INTEL_INFO(dev_priv)->num_pipes == 0) {
154 dev_priv->pch_type = PCH_NOP;
155 return;
156 }
157
158 /*
159 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
160 * make graphics device passthrough work easy for VMM, that only
161 * need to expose ISA bridge to let driver know the real hardware
162 * underneath. This is a requirement from virtualization team.
163 *
164 * In some virtualized environments (e.g. XEN), there is irrelevant
165 * ISA bridge in the system. To work reliably, we should scan trhough
166 * all the ISA bridge devices and check for the first match, instead
167 * of only checking the first one.
168 */
169 while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
170 if (pch->vendor == PCI_VENDOR_ID_INTEL) {
171 unsigned short id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
172 dev_priv->pch_id = id;
173
174 if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
175 dev_priv->pch_type = PCH_IBX;
176 DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
177 WARN_ON(!IS_GEN5(dev_priv));
178 } else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
179 dev_priv->pch_type = PCH_CPT;
180 DRM_DEBUG_KMS("Found CougarPoint PCH\n");
181 WARN_ON(!(IS_GEN6(dev_priv) ||
182 IS_IVYBRIDGE(dev_priv)));
183 } else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
184 /* PantherPoint is CPT compatible */
185 dev_priv->pch_type = PCH_CPT;
186 DRM_DEBUG_KMS("Found PantherPoint PCH\n");
187 WARN_ON(!(IS_GEN6(dev_priv) ||
188 IS_IVYBRIDGE(dev_priv)));
189 } else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
190 dev_priv->pch_type = PCH_LPT;
191 DRM_DEBUG_KMS("Found LynxPoint PCH\n");
192 WARN_ON(!IS_HASWELL(dev_priv) &&
193 !IS_BROADWELL(dev_priv));
194 WARN_ON(IS_HSW_ULT(dev_priv) ||
195 IS_BDW_ULT(dev_priv));
196 } else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
197 dev_priv->pch_type = PCH_LPT;
198 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
199 WARN_ON(!IS_HASWELL(dev_priv) &&
200 !IS_BROADWELL(dev_priv));
201 WARN_ON(!IS_HSW_ULT(dev_priv) &&
202 !IS_BDW_ULT(dev_priv));
203 } else if (id == INTEL_PCH_SPT_DEVICE_ID_TYPE) {
204 dev_priv->pch_type = PCH_SPT;
205 DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
206 WARN_ON(!IS_SKYLAKE(dev_priv) &&
207 !IS_KABYLAKE(dev_priv));
208 } else if (id == INTEL_PCH_SPT_LP_DEVICE_ID_TYPE) {
209 dev_priv->pch_type = PCH_SPT;
210 DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
211 WARN_ON(!IS_SKYLAKE(dev_priv) &&
212 !IS_KABYLAKE(dev_priv));
213 } else if (id == INTEL_PCH_KBP_DEVICE_ID_TYPE) {
214 dev_priv->pch_type = PCH_KBP;
215 DRM_DEBUG_KMS("Found KabyPoint PCH\n");
216 WARN_ON(!IS_SKYLAKE(dev_priv) &&
217 !IS_KABYLAKE(dev_priv));
218 } else if ((id == INTEL_PCH_P2X_DEVICE_ID_TYPE) ||
219 (id == INTEL_PCH_P3X_DEVICE_ID_TYPE) ||
220 ((id == INTEL_PCH_QEMU_DEVICE_ID_TYPE) &&
221 pch->subsystem_vendor ==
222 PCI_SUBVENDOR_ID_REDHAT_QUMRANET &&
223 pch->subsystem_device ==
224 PCI_SUBDEVICE_ID_QEMU)) {
225 dev_priv->pch_type =
226 intel_virt_detect_pch(dev_priv);
227 } else
228 continue;
229
230 break;
231 }
232 }
233 if (!pch)
234 DRM_DEBUG_KMS("No PCH found.\n");
235
236 pci_dev_put(pch);
237 }
238
239 static int i915_getparam(struct drm_device *dev, void *data,
240 struct drm_file *file_priv)
241 {
242 struct drm_i915_private *dev_priv = to_i915(dev);
243 struct pci_dev *pdev = dev_priv->drm.pdev;
244 drm_i915_getparam_t *param = data;
245 int value;
246
247 switch (param->param) {
248 case I915_PARAM_IRQ_ACTIVE:
249 case I915_PARAM_ALLOW_BATCHBUFFER:
250 case I915_PARAM_LAST_DISPATCH:
251 case I915_PARAM_HAS_EXEC_CONSTANTS:
252 /* Reject all old ums/dri params. */
253 return -ENODEV;
254 case I915_PARAM_CHIPSET_ID:
255 value = pdev->device;
256 break;
257 case I915_PARAM_REVISION:
258 value = pdev->revision;
259 break;
260 case I915_PARAM_NUM_FENCES_AVAIL:
261 value = dev_priv->num_fence_regs;
262 break;
263 case I915_PARAM_HAS_OVERLAY:
264 value = dev_priv->overlay ? 1 : 0;
265 break;
266 case I915_PARAM_HAS_BSD:
267 value = !!dev_priv->engine[VCS];
268 break;
269 case I915_PARAM_HAS_BLT:
270 value = !!dev_priv->engine[BCS];
271 break;
272 case I915_PARAM_HAS_VEBOX:
273 value = !!dev_priv->engine[VECS];
274 break;
275 case I915_PARAM_HAS_BSD2:
276 value = !!dev_priv->engine[VCS2];
277 break;
278 case I915_PARAM_HAS_LLC:
279 value = HAS_LLC(dev_priv);
280 break;
281 case I915_PARAM_HAS_WT:
282 value = HAS_WT(dev_priv);
283 break;
284 case I915_PARAM_HAS_ALIASING_PPGTT:
285 value = USES_PPGTT(dev_priv);
286 break;
287 case I915_PARAM_HAS_SEMAPHORES:
288 value = i915.semaphores;
289 break;
290 case I915_PARAM_HAS_SECURE_BATCHES:
291 value = capable(CAP_SYS_ADMIN);
292 break;
293 case I915_PARAM_CMD_PARSER_VERSION:
294 value = i915_cmd_parser_get_version(dev_priv);
295 break;
296 case I915_PARAM_SUBSLICE_TOTAL:
297 value = sseu_subslice_total(&INTEL_INFO(dev_priv)->sseu);
298 if (!value)
299 return -ENODEV;
300 break;
301 case I915_PARAM_EU_TOTAL:
302 value = INTEL_INFO(dev_priv)->sseu.eu_total;
303 if (!value)
304 return -ENODEV;
305 break;
306 case I915_PARAM_HAS_GPU_RESET:
307 value = i915.enable_hangcheck && intel_has_gpu_reset(dev_priv);
308 break;
309 case I915_PARAM_HAS_RESOURCE_STREAMER:
310 value = HAS_RESOURCE_STREAMER(dev_priv);
311 break;
312 case I915_PARAM_HAS_POOLED_EU:
313 value = HAS_POOLED_EU(dev_priv);
314 break;
315 case I915_PARAM_MIN_EU_IN_POOL:
316 value = INTEL_INFO(dev_priv)->sseu.min_eu_in_pool;
317 break;
318 case I915_PARAM_HUC_STATUS:
319 /* The register is already force-woken. We dont need
320 * any rpm here
321 */
322 value = I915_READ(HUC_STATUS2) & HUC_FW_VERIFIED;
323 break;
324 case I915_PARAM_MMAP_GTT_VERSION:
325 /* Though we've started our numbering from 1, and so class all
326 * earlier versions as 0, in effect their value is undefined as
327 * the ioctl will report EINVAL for the unknown param!
328 */
329 value = i915_gem_mmap_gtt_version();
330 break;
331 case I915_PARAM_HAS_SCHEDULER:
332 value = dev_priv->engine[RCS] &&
333 dev_priv->engine[RCS]->schedule;
334 break;
335 case I915_PARAM_MMAP_VERSION:
336 /* Remember to bump this if the version changes! */
337 case I915_PARAM_HAS_GEM:
338 case I915_PARAM_HAS_PAGEFLIPPING:
339 case I915_PARAM_HAS_EXECBUF2: /* depends on GEM */
340 case I915_PARAM_HAS_RELAXED_FENCING:
341 case I915_PARAM_HAS_COHERENT_RINGS:
342 case I915_PARAM_HAS_RELAXED_DELTA:
343 case I915_PARAM_HAS_GEN7_SOL_RESET:
344 case I915_PARAM_HAS_WAIT_TIMEOUT:
345 case I915_PARAM_HAS_PRIME_VMAP_FLUSH:
346 case I915_PARAM_HAS_PINNED_BATCHES:
347 case I915_PARAM_HAS_EXEC_NO_RELOC:
348 case I915_PARAM_HAS_EXEC_HANDLE_LUT:
349 case I915_PARAM_HAS_COHERENT_PHYS_GTT:
350 case I915_PARAM_HAS_EXEC_SOFTPIN:
351 /* For the time being all of these are always true;
352 * if some supported hardware does not have one of these
353 * features this value needs to be provided from
354 * INTEL_INFO(), a feature macro, or similar.
355 */
356 value = 1;
357 break;
358 default:
359 DRM_DEBUG("Unknown parameter %d\n", param->param);
360 return -EINVAL;
361 }
362
363 if (put_user(value, param->value))
364 return -EFAULT;
365
366 return 0;
367 }
368
369 static int i915_get_bridge_dev(struct drm_i915_private *dev_priv)
370 {
371 dev_priv->bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0));
372 if (!dev_priv->bridge_dev) {
373 DRM_ERROR("bridge device not found\n");
374 return -1;
375 }
376 return 0;
377 }
378
379 /* Allocate space for the MCH regs if needed, return nonzero on error */
380 static int
381 intel_alloc_mchbar_resource(struct drm_i915_private *dev_priv)
382 {
383 int reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
384 u32 temp_lo, temp_hi = 0;
385 u64 mchbar_addr;
386 int ret;
387
388 if (INTEL_GEN(dev_priv) >= 4)
389 pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
390 pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
391 mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
392
393 /* If ACPI doesn't have it, assume we need to allocate it ourselves */
394 #ifdef CONFIG_PNP
395 if (mchbar_addr &&
396 pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
397 return 0;
398 #endif
399
400 /* Get some space for it */
401 dev_priv->mch_res.name = "i915 MCHBAR";
402 dev_priv->mch_res.flags = IORESOURCE_MEM;
403 ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
404 &dev_priv->mch_res,
405 MCHBAR_SIZE, MCHBAR_SIZE,
406 PCIBIOS_MIN_MEM,
407 0, pcibios_align_resource,
408 dev_priv->bridge_dev);
409 if (ret) {
410 DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
411 dev_priv->mch_res.start = 0;
412 return ret;
413 }
414
415 if (INTEL_GEN(dev_priv) >= 4)
416 pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
417 upper_32_bits(dev_priv->mch_res.start));
418
419 pci_write_config_dword(dev_priv->bridge_dev, reg,
420 lower_32_bits(dev_priv->mch_res.start));
421 return 0;
422 }
423
424 /* Setup MCHBAR if possible, return true if we should disable it again */
425 static void
426 intel_setup_mchbar(struct drm_i915_private *dev_priv)
427 {
428 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
429 u32 temp;
430 bool enabled;
431
432 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
433 return;
434
435 dev_priv->mchbar_need_disable = false;
436
437 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
438 pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
439 enabled = !!(temp & DEVEN_MCHBAR_EN);
440 } else {
441 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
442 enabled = temp & 1;
443 }
444
445 /* If it's already enabled, don't have to do anything */
446 if (enabled)
447 return;
448
449 if (intel_alloc_mchbar_resource(dev_priv))
450 return;
451
452 dev_priv->mchbar_need_disable = true;
453
454 /* Space is allocated or reserved, so enable it. */
455 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
456 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
457 temp | DEVEN_MCHBAR_EN);
458 } else {
459 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
460 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
461 }
462 }
463
464 static void
465 intel_teardown_mchbar(struct drm_i915_private *dev_priv)
466 {
467 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
468
469 if (dev_priv->mchbar_need_disable) {
470 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
471 u32 deven_val;
472
473 pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
474 &deven_val);
475 deven_val &= ~DEVEN_MCHBAR_EN;
476 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
477 deven_val);
478 } else {
479 u32 mchbar_val;
480
481 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
482 &mchbar_val);
483 mchbar_val &= ~1;
484 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
485 mchbar_val);
486 }
487 }
488
489 if (dev_priv->mch_res.start)
490 release_resource(&dev_priv->mch_res);
491 }
492
493 /* true = enable decode, false = disable decoder */
494 static unsigned int i915_vga_set_decode(void *cookie, bool state)
495 {
496 struct drm_i915_private *dev_priv = cookie;
497
498 intel_modeset_vga_set_state(dev_priv, state);
499 if (state)
500 return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
501 VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
502 else
503 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
504 }
505
506 static int i915_resume_switcheroo(struct drm_device *dev);
507 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
508
509 static void i915_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
510 {
511 struct drm_device *dev = pci_get_drvdata(pdev);
512 pm_message_t pmm = { .event = PM_EVENT_SUSPEND };
513
514 if (state == VGA_SWITCHEROO_ON) {
515 pr_info("switched on\n");
516 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
517 /* i915 resume handler doesn't set to D0 */
518 pci_set_power_state(pdev, PCI_D0);
519 i915_resume_switcheroo(dev);
520 dev->switch_power_state = DRM_SWITCH_POWER_ON;
521 } else {
522 pr_info("switched off\n");
523 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
524 i915_suspend_switcheroo(dev, pmm);
525 dev->switch_power_state = DRM_SWITCH_POWER_OFF;
526 }
527 }
528
529 static bool i915_switcheroo_can_switch(struct pci_dev *pdev)
530 {
531 struct drm_device *dev = pci_get_drvdata(pdev);
532
533 /*
534 * FIXME: open_count is protected by drm_global_mutex but that would lead to
535 * locking inversion with the driver load path. And the access here is
536 * completely racy anyway. So don't bother with locking for now.
537 */
538 return dev->open_count == 0;
539 }
540
541 static const struct vga_switcheroo_client_ops i915_switcheroo_ops = {
542 .set_gpu_state = i915_switcheroo_set_state,
543 .reprobe = NULL,
544 .can_switch = i915_switcheroo_can_switch,
545 };
546
547 static void i915_gem_fini(struct drm_i915_private *dev_priv)
548 {
549 mutex_lock(&dev_priv->drm.struct_mutex);
550 i915_gem_cleanup_engines(dev_priv);
551 i915_gem_context_fini(dev_priv);
552 mutex_unlock(&dev_priv->drm.struct_mutex);
553
554 i915_gem_drain_freed_objects(dev_priv);
555
556 WARN_ON(!list_empty(&dev_priv->context_list));
557 }
558
559 static int i915_load_modeset_init(struct drm_device *dev)
560 {
561 struct drm_i915_private *dev_priv = to_i915(dev);
562 struct pci_dev *pdev = dev_priv->drm.pdev;
563 int ret;
564
565 if (i915_inject_load_failure())
566 return -ENODEV;
567
568 ret = intel_bios_init(dev_priv);
569 if (ret)
570 DRM_INFO("failed to find VBIOS tables\n");
571
572 /* If we have > 1 VGA cards, then we need to arbitrate access
573 * to the common VGA resources.
574 *
575 * If we are a secondary display controller (!PCI_DISPLAY_CLASS_VGA),
576 * then we do not take part in VGA arbitration and the
577 * vga_client_register() fails with -ENODEV.
578 */
579 ret = vga_client_register(pdev, dev_priv, NULL, i915_vga_set_decode);
580 if (ret && ret != -ENODEV)
581 goto out;
582
583 intel_register_dsm_handler();
584
585 ret = vga_switcheroo_register_client(pdev, &i915_switcheroo_ops, false);
586 if (ret)
587 goto cleanup_vga_client;
588
589 /* must happen before intel_power_domains_init_hw() on VLV/CHV */
590 intel_update_rawclk(dev_priv);
591
592 intel_power_domains_init_hw(dev_priv, false);
593
594 intel_csr_ucode_init(dev_priv);
595
596 ret = intel_irq_install(dev_priv);
597 if (ret)
598 goto cleanup_csr;
599
600 intel_setup_gmbus(dev_priv);
601
602 /* Important: The output setup functions called by modeset_init need
603 * working irqs for e.g. gmbus and dp aux transfers. */
604 ret = intel_modeset_init(dev);
605 if (ret)
606 goto cleanup_irq;
607
608 intel_huc_init(dev_priv);
609 intel_guc_init(dev_priv);
610
611 ret = i915_gem_init(dev_priv);
612 if (ret)
613 goto cleanup_irq;
614
615 intel_modeset_gem_init(dev);
616
617 if (INTEL_INFO(dev_priv)->num_pipes == 0)
618 return 0;
619
620 ret = intel_fbdev_init(dev);
621 if (ret)
622 goto cleanup_gem;
623
624 /* Only enable hotplug handling once the fbdev is fully set up. */
625 intel_hpd_init(dev_priv);
626
627 drm_kms_helper_poll_init(dev);
628
629 return 0;
630
631 cleanup_gem:
632 if (i915_gem_suspend(dev_priv))
633 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
634 i915_gem_fini(dev_priv);
635 cleanup_irq:
636 intel_guc_fini(dev_priv);
637 intel_huc_fini(dev_priv);
638 drm_irq_uninstall(dev);
639 intel_teardown_gmbus(dev_priv);
640 cleanup_csr:
641 intel_csr_ucode_fini(dev_priv);
642 intel_power_domains_fini(dev_priv);
643 vga_switcheroo_unregister_client(pdev);
644 cleanup_vga_client:
645 vga_client_register(pdev, NULL, NULL, NULL);
646 out:
647 return ret;
648 }
649
650 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
651 {
652 struct apertures_struct *ap;
653 struct pci_dev *pdev = dev_priv->drm.pdev;
654 struct i915_ggtt *ggtt = &dev_priv->ggtt;
655 bool primary;
656 int ret;
657
658 ap = alloc_apertures(1);
659 if (!ap)
660 return -ENOMEM;
661
662 ap->ranges[0].base = ggtt->mappable_base;
663 ap->ranges[0].size = ggtt->mappable_end;
664
665 primary =
666 pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW;
667
668 ret = drm_fb_helper_remove_conflicting_framebuffers(ap, "inteldrmfb", primary);
669
670 kfree(ap);
671
672 return ret;
673 }
674
675 #if !defined(CONFIG_VGA_CONSOLE)
676 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
677 {
678 return 0;
679 }
680 #elif !defined(CONFIG_DUMMY_CONSOLE)
681 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
682 {
683 return -ENODEV;
684 }
685 #else
686 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
687 {
688 int ret = 0;
689
690 DRM_INFO("Replacing VGA console driver\n");
691
692 console_lock();
693 if (con_is_bound(&vga_con))
694 ret = do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES - 1, 1);
695 if (ret == 0) {
696 ret = do_unregister_con_driver(&vga_con);
697
698 /* Ignore "already unregistered". */
699 if (ret == -ENODEV)
700 ret = 0;
701 }
702 console_unlock();
703
704 return ret;
705 }
706 #endif
707
708 static void intel_init_dpio(struct drm_i915_private *dev_priv)
709 {
710 /*
711 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
712 * CHV x1 PHY (DP/HDMI D)
713 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
714 */
715 if (IS_CHERRYVIEW(dev_priv)) {
716 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
717 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
718 } else if (IS_VALLEYVIEW(dev_priv)) {
719 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
720 }
721 }
722
723 static int i915_workqueues_init(struct drm_i915_private *dev_priv)
724 {
725 /*
726 * The i915 workqueue is primarily used for batched retirement of
727 * requests (and thus managing bo) once the task has been completed
728 * by the GPU. i915_gem_retire_requests() is called directly when we
729 * need high-priority retirement, such as waiting for an explicit
730 * bo.
731 *
732 * It is also used for periodic low-priority events, such as
733 * idle-timers and recording error state.
734 *
735 * All tasks on the workqueue are expected to acquire the dev mutex
736 * so there is no point in running more than one instance of the
737 * workqueue at any time. Use an ordered one.
738 */
739 dev_priv->wq = alloc_ordered_workqueue("i915", 0);
740 if (dev_priv->wq == NULL)
741 goto out_err;
742
743 dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
744 if (dev_priv->hotplug.dp_wq == NULL)
745 goto out_free_wq;
746
747 return 0;
748
749 out_free_wq:
750 destroy_workqueue(dev_priv->wq);
751 out_err:
752 DRM_ERROR("Failed to allocate workqueues.\n");
753
754 return -ENOMEM;
755 }
756
757 static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
758 {
759 destroy_workqueue(dev_priv->hotplug.dp_wq);
760 destroy_workqueue(dev_priv->wq);
761 }
762
763 /*
764 * We don't keep the workarounds for pre-production hardware, so we expect our
765 * driver to fail on these machines in one way or another. A little warning on
766 * dmesg may help both the user and the bug triagers.
767 */
768 static void intel_detect_preproduction_hw(struct drm_i915_private *dev_priv)
769 {
770 if (IS_HSW_EARLY_SDV(dev_priv) ||
771 IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
772 DRM_ERROR("This is a pre-production stepping. "
773 "It may not be fully functional.\n");
774 }
775
776 /**
777 * i915_driver_init_early - setup state not requiring device access
778 * @dev_priv: device private
779 *
780 * Initialize everything that is a "SW-only" state, that is state not
781 * requiring accessing the device or exposing the driver via kernel internal
782 * or userspace interfaces. Example steps belonging here: lock initialization,
783 * system memory allocation, setting up device specific attributes and
784 * function hooks not requiring accessing the device.
785 */
786 static int i915_driver_init_early(struct drm_i915_private *dev_priv,
787 const struct pci_device_id *ent)
788 {
789 const struct intel_device_info *match_info =
790 (struct intel_device_info *)ent->driver_data;
791 struct intel_device_info *device_info;
792 int ret = 0;
793
794 if (i915_inject_load_failure())
795 return -ENODEV;
796
797 /* Setup the write-once "constant" device info */
798 device_info = mkwrite_device_info(dev_priv);
799 memcpy(device_info, match_info, sizeof(*device_info));
800 device_info->device_id = dev_priv->drm.pdev->device;
801
802 BUG_ON(device_info->gen > sizeof(device_info->gen_mask) * BITS_PER_BYTE);
803 device_info->gen_mask = BIT(device_info->gen - 1);
804
805 spin_lock_init(&dev_priv->irq_lock);
806 spin_lock_init(&dev_priv->gpu_error.lock);
807 mutex_init(&dev_priv->backlight_lock);
808 spin_lock_init(&dev_priv->uncore.lock);
809 spin_lock_init(&dev_priv->mm.object_stat_lock);
810 spin_lock_init(&dev_priv->mmio_flip_lock);
811 spin_lock_init(&dev_priv->wm.dsparb_lock);
812 mutex_init(&dev_priv->sb_lock);
813 mutex_init(&dev_priv->modeset_restore_lock);
814 mutex_init(&dev_priv->av_mutex);
815 mutex_init(&dev_priv->wm.wm_mutex);
816 mutex_init(&dev_priv->pps_mutex);
817
818 intel_uc_init_early(dev_priv);
819
820 i915_memcpy_init_early(dev_priv);
821
822 ret = i915_workqueues_init(dev_priv);
823 if (ret < 0)
824 return ret;
825
826 /* This must be called before any calls to HAS_PCH_* */
827 intel_detect_pch(dev_priv);
828
829 intel_pm_setup(dev_priv);
830 intel_init_dpio(dev_priv);
831 intel_power_domains_init(dev_priv);
832 intel_irq_init(dev_priv);
833 intel_hangcheck_init(dev_priv);
834 intel_init_display_hooks(dev_priv);
835 intel_init_clock_gating_hooks(dev_priv);
836 intel_init_audio_hooks(dev_priv);
837 ret = i915_gem_load_init(dev_priv);
838 if (ret < 0)
839 goto err_workqueues;
840
841 intel_display_crc_init(dev_priv);
842
843 intel_device_info_dump(dev_priv);
844
845 intel_detect_preproduction_hw(dev_priv);
846
847 i915_perf_init(dev_priv);
848
849 return 0;
850
851 err_workqueues:
852 i915_workqueues_cleanup(dev_priv);
853 return ret;
854 }
855
856 /**
857 * i915_driver_cleanup_early - cleanup the setup done in i915_driver_init_early()
858 * @dev_priv: device private
859 */
860 static void i915_driver_cleanup_early(struct drm_i915_private *dev_priv)
861 {
862 i915_perf_fini(dev_priv);
863 i915_gem_load_cleanup(dev_priv);
864 i915_workqueues_cleanup(dev_priv);
865 }
866
867 static int i915_mmio_setup(struct drm_i915_private *dev_priv)
868 {
869 struct pci_dev *pdev = dev_priv->drm.pdev;
870 int mmio_bar;
871 int mmio_size;
872
873 mmio_bar = IS_GEN2(dev_priv) ? 1 : 0;
874 /*
875 * Before gen4, the registers and the GTT are behind different BARs.
876 * However, from gen4 onwards, the registers and the GTT are shared
877 * in the same BAR, so we want to restrict this ioremap from
878 * clobbering the GTT which we want ioremap_wc instead. Fortunately,
879 * the register BAR remains the same size for all the earlier
880 * generations up to Ironlake.
881 */
882 if (INTEL_GEN(dev_priv) < 5)
883 mmio_size = 512 * 1024;
884 else
885 mmio_size = 2 * 1024 * 1024;
886 dev_priv->regs = pci_iomap(pdev, mmio_bar, mmio_size);
887 if (dev_priv->regs == NULL) {
888 DRM_ERROR("failed to map registers\n");
889
890 return -EIO;
891 }
892
893 /* Try to make sure MCHBAR is enabled before poking at it */
894 intel_setup_mchbar(dev_priv);
895
896 return 0;
897 }
898
899 static void i915_mmio_cleanup(struct drm_i915_private *dev_priv)
900 {
901 struct pci_dev *pdev = dev_priv->drm.pdev;
902
903 intel_teardown_mchbar(dev_priv);
904 pci_iounmap(pdev, dev_priv->regs);
905 }
906
907 /**
908 * i915_driver_init_mmio - setup device MMIO
909 * @dev_priv: device private
910 *
911 * Setup minimal device state necessary for MMIO accesses later in the
912 * initialization sequence. The setup here should avoid any other device-wide
913 * side effects or exposing the driver via kernel internal or user space
914 * interfaces.
915 */
916 static int i915_driver_init_mmio(struct drm_i915_private *dev_priv)
917 {
918 int ret;
919
920 if (i915_inject_load_failure())
921 return -ENODEV;
922
923 if (i915_get_bridge_dev(dev_priv))
924 return -EIO;
925
926 ret = i915_mmio_setup(dev_priv);
927 if (ret < 0)
928 goto put_bridge;
929
930 intel_uncore_init(dev_priv);
931
932 return 0;
933
934 put_bridge:
935 pci_dev_put(dev_priv->bridge_dev);
936
937 return ret;
938 }
939
940 /**
941 * i915_driver_cleanup_mmio - cleanup the setup done in i915_driver_init_mmio()
942 * @dev_priv: device private
943 */
944 static void i915_driver_cleanup_mmio(struct drm_i915_private *dev_priv)
945 {
946 intel_uncore_fini(dev_priv);
947 i915_mmio_cleanup(dev_priv);
948 pci_dev_put(dev_priv->bridge_dev);
949 }
950
951 static void intel_sanitize_options(struct drm_i915_private *dev_priv)
952 {
953 i915.enable_execlists =
954 intel_sanitize_enable_execlists(dev_priv,
955 i915.enable_execlists);
956
957 /*
958 * i915.enable_ppgtt is read-only, so do an early pass to validate the
959 * user's requested state against the hardware/driver capabilities. We
960 * do this now so that we can print out any log messages once rather
961 * than every time we check intel_enable_ppgtt().
962 */
963 i915.enable_ppgtt =
964 intel_sanitize_enable_ppgtt(dev_priv, i915.enable_ppgtt);
965 DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
966
967 i915.semaphores = intel_sanitize_semaphores(dev_priv, i915.semaphores);
968 DRM_DEBUG_DRIVER("use GPU sempahores? %s\n", yesno(i915.semaphores));
969 }
970
971 /**
972 * i915_driver_init_hw - setup state requiring device access
973 * @dev_priv: device private
974 *
975 * Setup state that requires accessing the device, but doesn't require
976 * exposing the driver via kernel internal or userspace interfaces.
977 */
978 static int i915_driver_init_hw(struct drm_i915_private *dev_priv)
979 {
980 struct pci_dev *pdev = dev_priv->drm.pdev;
981 int ret;
982
983 if (i915_inject_load_failure())
984 return -ENODEV;
985
986 intel_device_info_runtime_init(dev_priv);
987
988 intel_sanitize_options(dev_priv);
989
990 ret = i915_ggtt_probe_hw(dev_priv);
991 if (ret)
992 return ret;
993
994 /* WARNING: Apparently we must kick fbdev drivers before vgacon,
995 * otherwise the vga fbdev driver falls over. */
996 ret = i915_kick_out_firmware_fb(dev_priv);
997 if (ret) {
998 DRM_ERROR("failed to remove conflicting framebuffer drivers\n");
999 goto out_ggtt;
1000 }
1001
1002 ret = i915_kick_out_vgacon(dev_priv);
1003 if (ret) {
1004 DRM_ERROR("failed to remove conflicting VGA console\n");
1005 goto out_ggtt;
1006 }
1007
1008 ret = i915_ggtt_init_hw(dev_priv);
1009 if (ret)
1010 return ret;
1011
1012 ret = i915_ggtt_enable_hw(dev_priv);
1013 if (ret) {
1014 DRM_ERROR("failed to enable GGTT\n");
1015 goto out_ggtt;
1016 }
1017
1018 pci_set_master(pdev);
1019
1020 /* overlay on gen2 is broken and can't address above 1G */
1021 if (IS_GEN2(dev_priv)) {
1022 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
1023 if (ret) {
1024 DRM_ERROR("failed to set DMA mask\n");
1025
1026 goto out_ggtt;
1027 }
1028 }
1029
1030 /* 965GM sometimes incorrectly writes to hardware status page (HWS)
1031 * using 32bit addressing, overwriting memory if HWS is located
1032 * above 4GB.
1033 *
1034 * The documentation also mentions an issue with undefined
1035 * behaviour if any general state is accessed within a page above 4GB,
1036 * which also needs to be handled carefully.
1037 */
1038 if (IS_I965G(dev_priv) || IS_I965GM(dev_priv)) {
1039 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1040
1041 if (ret) {
1042 DRM_ERROR("failed to set DMA mask\n");
1043
1044 goto out_ggtt;
1045 }
1046 }
1047
1048 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1049 PM_QOS_DEFAULT_VALUE);
1050
1051 intel_uncore_sanitize(dev_priv);
1052
1053 intel_opregion_setup(dev_priv);
1054
1055 i915_gem_load_init_fences(dev_priv);
1056
1057 /* On the 945G/GM, the chipset reports the MSI capability on the
1058 * integrated graphics even though the support isn't actually there
1059 * according to the published specs. It doesn't appear to function
1060 * correctly in testing on 945G.
1061 * This may be a side effect of MSI having been made available for PEG
1062 * and the registers being closely associated.
1063 *
1064 * According to chipset errata, on the 965GM, MSI interrupts may
1065 * be lost or delayed, but we use them anyways to avoid
1066 * stuck interrupts on some machines.
1067 */
1068 if (!IS_I945G(dev_priv) && !IS_I945GM(dev_priv)) {
1069 if (pci_enable_msi(pdev) < 0)
1070 DRM_DEBUG_DRIVER("can't enable MSI");
1071 }
1072
1073 ret = intel_gvt_init(dev_priv);
1074 if (ret)
1075 goto out_ggtt;
1076
1077 return 0;
1078
1079 out_ggtt:
1080 i915_ggtt_cleanup_hw(dev_priv);
1081
1082 return ret;
1083 }
1084
1085 /**
1086 * i915_driver_cleanup_hw - cleanup the setup done in i915_driver_init_hw()
1087 * @dev_priv: device private
1088 */
1089 static void i915_driver_cleanup_hw(struct drm_i915_private *dev_priv)
1090 {
1091 struct pci_dev *pdev = dev_priv->drm.pdev;
1092
1093 if (pdev->msi_enabled)
1094 pci_disable_msi(pdev);
1095
1096 pm_qos_remove_request(&dev_priv->pm_qos);
1097 i915_ggtt_cleanup_hw(dev_priv);
1098 }
1099
1100 /**
1101 * i915_driver_register - register the driver with the rest of the system
1102 * @dev_priv: device private
1103 *
1104 * Perform any steps necessary to make the driver available via kernel
1105 * internal or userspace interfaces.
1106 */
1107 static void i915_driver_register(struct drm_i915_private *dev_priv)
1108 {
1109 struct drm_device *dev = &dev_priv->drm;
1110
1111 i915_gem_shrinker_init(dev_priv);
1112
1113 /*
1114 * Notify a valid surface after modesetting,
1115 * when running inside a VM.
1116 */
1117 if (intel_vgpu_active(dev_priv))
1118 I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1119
1120 /* Reveal our presence to userspace */
1121 if (drm_dev_register(dev, 0) == 0) {
1122 i915_debugfs_register(dev_priv);
1123 i915_guc_log_register(dev_priv);
1124 i915_setup_sysfs(dev_priv);
1125
1126 /* Depends on sysfs having been initialized */
1127 i915_perf_register(dev_priv);
1128 } else
1129 DRM_ERROR("Failed to register driver for userspace access!\n");
1130
1131 if (INTEL_INFO(dev_priv)->num_pipes) {
1132 /* Must be done after probing outputs */
1133 intel_opregion_register(dev_priv);
1134 acpi_video_register();
1135 }
1136
1137 if (IS_GEN5(dev_priv))
1138 intel_gpu_ips_init(dev_priv);
1139
1140 intel_audio_init(dev_priv);
1141
1142 /*
1143 * Some ports require correctly set-up hpd registers for detection to
1144 * work properly (leading to ghost connected connector status), e.g. VGA
1145 * on gm45. Hence we can only set up the initial fbdev config after hpd
1146 * irqs are fully enabled. We do it last so that the async config
1147 * cannot run before the connectors are registered.
1148 */
1149 intel_fbdev_initial_config_async(dev);
1150 }
1151
1152 /**
1153 * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1154 * @dev_priv: device private
1155 */
1156 static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1157 {
1158 intel_audio_deinit(dev_priv);
1159
1160 intel_gpu_ips_teardown();
1161 acpi_video_unregister();
1162 intel_opregion_unregister(dev_priv);
1163
1164 i915_perf_unregister(dev_priv);
1165
1166 i915_teardown_sysfs(dev_priv);
1167 i915_guc_log_unregister(dev_priv);
1168 i915_debugfs_unregister(dev_priv);
1169 drm_dev_unregister(&dev_priv->drm);
1170
1171 i915_gem_shrinker_cleanup(dev_priv);
1172 }
1173
1174 /**
1175 * i915_driver_load - setup chip and create an initial config
1176 * @pdev: PCI device
1177 * @ent: matching PCI ID entry
1178 *
1179 * The driver load routine has to do several things:
1180 * - drive output discovery via intel_modeset_init()
1181 * - initialize the memory manager
1182 * - allocate initial config memory
1183 * - setup the DRM framebuffer with the allocated memory
1184 */
1185 int i915_driver_load(struct pci_dev *pdev, const struct pci_device_id *ent)
1186 {
1187 struct drm_i915_private *dev_priv;
1188 int ret;
1189
1190 if (i915.nuclear_pageflip)
1191 driver.driver_features |= DRIVER_ATOMIC;
1192
1193 ret = -ENOMEM;
1194 dev_priv = kzalloc(sizeof(*dev_priv), GFP_KERNEL);
1195 if (dev_priv)
1196 ret = drm_dev_init(&dev_priv->drm, &driver, &pdev->dev);
1197 if (ret) {
1198 DRM_DEV_ERROR(&pdev->dev, "allocation failed\n");
1199 kfree(dev_priv);
1200 return ret;
1201 }
1202
1203 dev_priv->drm.pdev = pdev;
1204 dev_priv->drm.dev_private = dev_priv;
1205
1206 ret = pci_enable_device(pdev);
1207 if (ret)
1208 goto out_free_priv;
1209
1210 pci_set_drvdata(pdev, &dev_priv->drm);
1211
1212 ret = i915_driver_init_early(dev_priv, ent);
1213 if (ret < 0)
1214 goto out_pci_disable;
1215
1216 intel_runtime_pm_get(dev_priv);
1217
1218 ret = i915_driver_init_mmio(dev_priv);
1219 if (ret < 0)
1220 goto out_runtime_pm_put;
1221
1222 ret = i915_driver_init_hw(dev_priv);
1223 if (ret < 0)
1224 goto out_cleanup_mmio;
1225
1226 /*
1227 * TODO: move the vblank init and parts of modeset init steps into one
1228 * of the i915_driver_init_/i915_driver_register functions according
1229 * to the role/effect of the given init step.
1230 */
1231 if (INTEL_INFO(dev_priv)->num_pipes) {
1232 ret = drm_vblank_init(&dev_priv->drm,
1233 INTEL_INFO(dev_priv)->num_pipes);
1234 if (ret)
1235 goto out_cleanup_hw;
1236 }
1237
1238 ret = i915_load_modeset_init(&dev_priv->drm);
1239 if (ret < 0)
1240 goto out_cleanup_vblank;
1241
1242 i915_driver_register(dev_priv);
1243
1244 intel_runtime_pm_enable(dev_priv);
1245
1246 dev_priv->ipc_enabled = false;
1247
1248 /* Everything is in place, we can now relax! */
1249 DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n",
1250 driver.name, driver.major, driver.minor, driver.patchlevel,
1251 driver.date, pci_name(pdev), dev_priv->drm.primary->index);
1252 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG))
1253 DRM_INFO("DRM_I915_DEBUG enabled\n");
1254 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1255 DRM_INFO("DRM_I915_DEBUG_GEM enabled\n");
1256
1257 intel_runtime_pm_put(dev_priv);
1258
1259 return 0;
1260
1261 out_cleanup_vblank:
1262 drm_vblank_cleanup(&dev_priv->drm);
1263 out_cleanup_hw:
1264 i915_driver_cleanup_hw(dev_priv);
1265 out_cleanup_mmio:
1266 i915_driver_cleanup_mmio(dev_priv);
1267 out_runtime_pm_put:
1268 intel_runtime_pm_put(dev_priv);
1269 i915_driver_cleanup_early(dev_priv);
1270 out_pci_disable:
1271 pci_disable_device(pdev);
1272 out_free_priv:
1273 i915_load_error(dev_priv, "Device initialization failed (%d)\n", ret);
1274 drm_dev_unref(&dev_priv->drm);
1275 return ret;
1276 }
1277
1278 void i915_driver_unload(struct drm_device *dev)
1279 {
1280 struct drm_i915_private *dev_priv = to_i915(dev);
1281 struct pci_dev *pdev = dev_priv->drm.pdev;
1282
1283 intel_fbdev_fini(dev);
1284
1285 if (i915_gem_suspend(dev_priv))
1286 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
1287
1288 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1289
1290 intel_gvt_cleanup(dev_priv);
1291
1292 i915_driver_unregister(dev_priv);
1293
1294 drm_vblank_cleanup(dev);
1295
1296 intel_modeset_cleanup(dev);
1297
1298 /*
1299 * free the memory space allocated for the child device
1300 * config parsed from VBT
1301 */
1302 if (dev_priv->vbt.child_dev && dev_priv->vbt.child_dev_num) {
1303 kfree(dev_priv->vbt.child_dev);
1304 dev_priv->vbt.child_dev = NULL;
1305 dev_priv->vbt.child_dev_num = 0;
1306 }
1307 kfree(dev_priv->vbt.sdvo_lvds_vbt_mode);
1308 dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
1309 kfree(dev_priv->vbt.lfp_lvds_vbt_mode);
1310 dev_priv->vbt.lfp_lvds_vbt_mode = NULL;
1311
1312 vga_switcheroo_unregister_client(pdev);
1313 vga_client_register(pdev, NULL, NULL, NULL);
1314
1315 intel_csr_ucode_fini(dev_priv);
1316
1317 /* Free error state after interrupts are fully disabled. */
1318 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1319 i915_destroy_error_state(dev_priv);
1320
1321 /* Flush any outstanding unpin_work. */
1322 drain_workqueue(dev_priv->wq);
1323
1324 intel_guc_fini(dev_priv);
1325 intel_huc_fini(dev_priv);
1326 i915_gem_fini(dev_priv);
1327 intel_fbc_cleanup_cfb(dev_priv);
1328
1329 intel_power_domains_fini(dev_priv);
1330
1331 i915_driver_cleanup_hw(dev_priv);
1332 i915_driver_cleanup_mmio(dev_priv);
1333
1334 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1335
1336 i915_driver_cleanup_early(dev_priv);
1337 }
1338
1339 static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1340 {
1341 int ret;
1342
1343 ret = i915_gem_open(dev, file);
1344 if (ret)
1345 return ret;
1346
1347 return 0;
1348 }
1349
1350 /**
1351 * i915_driver_lastclose - clean up after all DRM clients have exited
1352 * @dev: DRM device
1353 *
1354 * Take care of cleaning up after all DRM clients have exited. In the
1355 * mode setting case, we want to restore the kernel's initial mode (just
1356 * in case the last client left us in a bad state).
1357 *
1358 * Additionally, in the non-mode setting case, we'll tear down the GTT
1359 * and DMA structures, since the kernel won't be using them, and clea
1360 * up any GEM state.
1361 */
1362 static void i915_driver_lastclose(struct drm_device *dev)
1363 {
1364 intel_fbdev_restore_mode(dev);
1365 vga_switcheroo_process_delayed_switch();
1366 }
1367
1368 static void i915_driver_preclose(struct drm_device *dev, struct drm_file *file)
1369 {
1370 mutex_lock(&dev->struct_mutex);
1371 i915_gem_context_close(dev, file);
1372 i915_gem_release(dev, file);
1373 mutex_unlock(&dev->struct_mutex);
1374 }
1375
1376 static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1377 {
1378 struct drm_i915_file_private *file_priv = file->driver_priv;
1379
1380 kfree(file_priv);
1381 }
1382
1383 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1384 {
1385 struct drm_device *dev = &dev_priv->drm;
1386 struct intel_encoder *encoder;
1387
1388 drm_modeset_lock_all(dev);
1389 for_each_intel_encoder(dev, encoder)
1390 if (encoder->suspend)
1391 encoder->suspend(encoder);
1392 drm_modeset_unlock_all(dev);
1393 }
1394
1395 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1396 bool rpm_resume);
1397 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1398
1399 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1400 {
1401 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
1402 if (acpi_target_system_state() < ACPI_STATE_S3)
1403 return true;
1404 #endif
1405 return false;
1406 }
1407
1408 static int i915_drm_suspend(struct drm_device *dev)
1409 {
1410 struct drm_i915_private *dev_priv = to_i915(dev);
1411 struct pci_dev *pdev = dev_priv->drm.pdev;
1412 pci_power_t opregion_target_state;
1413 int error;
1414
1415 /* ignore lid events during suspend */
1416 mutex_lock(&dev_priv->modeset_restore_lock);
1417 dev_priv->modeset_restore = MODESET_SUSPENDED;
1418 mutex_unlock(&dev_priv->modeset_restore_lock);
1419
1420 disable_rpm_wakeref_asserts(dev_priv);
1421
1422 /* We do a lot of poking in a lot of registers, make sure they work
1423 * properly. */
1424 intel_display_set_init_power(dev_priv, true);
1425
1426 drm_kms_helper_poll_disable(dev);
1427
1428 pci_save_state(pdev);
1429
1430 error = i915_gem_suspend(dev_priv);
1431 if (error) {
1432 dev_err(&pdev->dev,
1433 "GEM idle failed, resume might fail\n");
1434 goto out;
1435 }
1436
1437 intel_guc_suspend(dev_priv);
1438
1439 intel_display_suspend(dev);
1440
1441 intel_dp_mst_suspend(dev);
1442
1443 intel_runtime_pm_disable_interrupts(dev_priv);
1444 intel_hpd_cancel_work(dev_priv);
1445
1446 intel_suspend_encoders(dev_priv);
1447
1448 intel_suspend_hw(dev_priv);
1449
1450 i915_gem_suspend_gtt_mappings(dev_priv);
1451
1452 i915_save_state(dev_priv);
1453
1454 opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1455 intel_opregion_notify_adapter(dev_priv, opregion_target_state);
1456
1457 intel_uncore_forcewake_reset(dev_priv, false);
1458 intel_opregion_unregister(dev_priv);
1459
1460 intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1461
1462 dev_priv->suspend_count++;
1463
1464 intel_csr_ucode_suspend(dev_priv);
1465
1466 out:
1467 enable_rpm_wakeref_asserts(dev_priv);
1468
1469 return error;
1470 }
1471
1472 static int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
1473 {
1474 struct drm_i915_private *dev_priv = to_i915(dev);
1475 struct pci_dev *pdev = dev_priv->drm.pdev;
1476 bool fw_csr;
1477 int ret;
1478
1479 disable_rpm_wakeref_asserts(dev_priv);
1480
1481 intel_display_set_init_power(dev_priv, false);
1482
1483 fw_csr = !IS_GEN9_LP(dev_priv) &&
1484 suspend_to_idle(dev_priv) && dev_priv->csr.dmc_payload;
1485 /*
1486 * In case of firmware assisted context save/restore don't manually
1487 * deinit the power domains. This also means the CSR/DMC firmware will
1488 * stay active, it will power down any HW resources as required and
1489 * also enable deeper system power states that would be blocked if the
1490 * firmware was inactive.
1491 */
1492 if (!fw_csr)
1493 intel_power_domains_suspend(dev_priv);
1494
1495 ret = 0;
1496 if (IS_GEN9_LP(dev_priv))
1497 bxt_enable_dc9(dev_priv);
1498 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1499 hsw_enable_pc8(dev_priv);
1500 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1501 ret = vlv_suspend_complete(dev_priv);
1502
1503 if (ret) {
1504 DRM_ERROR("Suspend complete failed: %d\n", ret);
1505 if (!fw_csr)
1506 intel_power_domains_init_hw(dev_priv, true);
1507
1508 goto out;
1509 }
1510
1511 pci_disable_device(pdev);
1512 /*
1513 * During hibernation on some platforms the BIOS may try to access
1514 * the device even though it's already in D3 and hang the machine. So
1515 * leave the device in D0 on those platforms and hope the BIOS will
1516 * power down the device properly. The issue was seen on multiple old
1517 * GENs with different BIOS vendors, so having an explicit blacklist
1518 * is inpractical; apply the workaround on everything pre GEN6. The
1519 * platforms where the issue was seen:
1520 * Lenovo Thinkpad X301, X61s, X60, T60, X41
1521 * Fujitsu FSC S7110
1522 * Acer Aspire 1830T
1523 */
1524 if (!(hibernation && INTEL_GEN(dev_priv) < 6))
1525 pci_set_power_state(pdev, PCI_D3hot);
1526
1527 dev_priv->suspended_to_idle = suspend_to_idle(dev_priv);
1528
1529 out:
1530 enable_rpm_wakeref_asserts(dev_priv);
1531
1532 return ret;
1533 }
1534
1535 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
1536 {
1537 int error;
1538
1539 if (!dev) {
1540 DRM_ERROR("dev: %p\n", dev);
1541 DRM_ERROR("DRM not initialized, aborting suspend.\n");
1542 return -ENODEV;
1543 }
1544
1545 if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
1546 state.event != PM_EVENT_FREEZE))
1547 return -EINVAL;
1548
1549 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1550 return 0;
1551
1552 error = i915_drm_suspend(dev);
1553 if (error)
1554 return error;
1555
1556 return i915_drm_suspend_late(dev, false);
1557 }
1558
1559 static int i915_drm_resume(struct drm_device *dev)
1560 {
1561 struct drm_i915_private *dev_priv = to_i915(dev);
1562 int ret;
1563
1564 disable_rpm_wakeref_asserts(dev_priv);
1565 intel_sanitize_gt_powersave(dev_priv);
1566
1567 ret = i915_ggtt_enable_hw(dev_priv);
1568 if (ret)
1569 DRM_ERROR("failed to re-enable GGTT\n");
1570
1571 intel_csr_ucode_resume(dev_priv);
1572
1573 i915_gem_resume(dev_priv);
1574
1575 i915_restore_state(dev_priv);
1576 intel_pps_unlock_regs_wa(dev_priv);
1577 intel_opregion_setup(dev_priv);
1578
1579 intel_init_pch_refclk(dev_priv);
1580
1581 /*
1582 * Interrupts have to be enabled before any batches are run. If not the
1583 * GPU will hang. i915_gem_init_hw() will initiate batches to
1584 * update/restore the context.
1585 *
1586 * drm_mode_config_reset() needs AUX interrupts.
1587 *
1588 * Modeset enabling in intel_modeset_init_hw() also needs working
1589 * interrupts.
1590 */
1591 intel_runtime_pm_enable_interrupts(dev_priv);
1592
1593 drm_mode_config_reset(dev);
1594
1595 mutex_lock(&dev->struct_mutex);
1596 if (i915_gem_init_hw(dev_priv)) {
1597 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
1598 i915_gem_set_wedged(dev_priv);
1599 }
1600 mutex_unlock(&dev->struct_mutex);
1601
1602 intel_guc_resume(dev_priv);
1603
1604 intel_modeset_init_hw(dev);
1605
1606 spin_lock_irq(&dev_priv->irq_lock);
1607 if (dev_priv->display.hpd_irq_setup)
1608 dev_priv->display.hpd_irq_setup(dev_priv);
1609 spin_unlock_irq(&dev_priv->irq_lock);
1610
1611 intel_dp_mst_resume(dev);
1612
1613 intel_display_resume(dev);
1614
1615 drm_kms_helper_poll_enable(dev);
1616
1617 /*
1618 * ... but also need to make sure that hotplug processing
1619 * doesn't cause havoc. Like in the driver load code we don't
1620 * bother with the tiny race here where we might loose hotplug
1621 * notifications.
1622 * */
1623 intel_hpd_init(dev_priv);
1624
1625 intel_opregion_register(dev_priv);
1626
1627 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
1628
1629 mutex_lock(&dev_priv->modeset_restore_lock);
1630 dev_priv->modeset_restore = MODESET_DONE;
1631 mutex_unlock(&dev_priv->modeset_restore_lock);
1632
1633 intel_opregion_notify_adapter(dev_priv, PCI_D0);
1634
1635 intel_autoenable_gt_powersave(dev_priv);
1636
1637 enable_rpm_wakeref_asserts(dev_priv);
1638
1639 return 0;
1640 }
1641
1642 static int i915_drm_resume_early(struct drm_device *dev)
1643 {
1644 struct drm_i915_private *dev_priv = to_i915(dev);
1645 struct pci_dev *pdev = dev_priv->drm.pdev;
1646 int ret;
1647
1648 /*
1649 * We have a resume ordering issue with the snd-hda driver also
1650 * requiring our device to be power up. Due to the lack of a
1651 * parent/child relationship we currently solve this with an early
1652 * resume hook.
1653 *
1654 * FIXME: This should be solved with a special hdmi sink device or
1655 * similar so that power domains can be employed.
1656 */
1657
1658 /*
1659 * Note that we need to set the power state explicitly, since we
1660 * powered off the device during freeze and the PCI core won't power
1661 * it back up for us during thaw. Powering off the device during
1662 * freeze is not a hard requirement though, and during the
1663 * suspend/resume phases the PCI core makes sure we get here with the
1664 * device powered on. So in case we change our freeze logic and keep
1665 * the device powered we can also remove the following set power state
1666 * call.
1667 */
1668 ret = pci_set_power_state(pdev, PCI_D0);
1669 if (ret) {
1670 DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
1671 goto out;
1672 }
1673
1674 /*
1675 * Note that pci_enable_device() first enables any parent bridge
1676 * device and only then sets the power state for this device. The
1677 * bridge enabling is a nop though, since bridge devices are resumed
1678 * first. The order of enabling power and enabling the device is
1679 * imposed by the PCI core as described above, so here we preserve the
1680 * same order for the freeze/thaw phases.
1681 *
1682 * TODO: eventually we should remove pci_disable_device() /
1683 * pci_enable_enable_device() from suspend/resume. Due to how they
1684 * depend on the device enable refcount we can't anyway depend on them
1685 * disabling/enabling the device.
1686 */
1687 if (pci_enable_device(pdev)) {
1688 ret = -EIO;
1689 goto out;
1690 }
1691
1692 pci_set_master(pdev);
1693
1694 disable_rpm_wakeref_asserts(dev_priv);
1695
1696 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1697 ret = vlv_resume_prepare(dev_priv, false);
1698 if (ret)
1699 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
1700 ret);
1701
1702 intel_uncore_early_sanitize(dev_priv, true);
1703
1704 if (IS_GEN9_LP(dev_priv)) {
1705 if (!dev_priv->suspended_to_idle)
1706 gen9_sanitize_dc_state(dev_priv);
1707 bxt_disable_dc9(dev_priv);
1708 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1709 hsw_disable_pc8(dev_priv);
1710 }
1711
1712 intel_uncore_sanitize(dev_priv);
1713
1714 if (IS_GEN9_LP(dev_priv) ||
1715 !(dev_priv->suspended_to_idle && dev_priv->csr.dmc_payload))
1716 intel_power_domains_init_hw(dev_priv, true);
1717
1718 enable_rpm_wakeref_asserts(dev_priv);
1719
1720 out:
1721 dev_priv->suspended_to_idle = false;
1722
1723 return ret;
1724 }
1725
1726 static int i915_resume_switcheroo(struct drm_device *dev)
1727 {
1728 int ret;
1729
1730 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1731 return 0;
1732
1733 ret = i915_drm_resume_early(dev);
1734 if (ret)
1735 return ret;
1736
1737 return i915_drm_resume(dev);
1738 }
1739
1740 /**
1741 * i915_reset - reset chip after a hang
1742 * @dev_priv: device private to reset
1743 *
1744 * Reset the chip. Useful if a hang is detected. Marks the device as wedged
1745 * on failure.
1746 *
1747 * Caller must hold the struct_mutex.
1748 *
1749 * Procedure is fairly simple:
1750 * - reset the chip using the reset reg
1751 * - re-init context state
1752 * - re-init hardware status page
1753 * - re-init ring buffer
1754 * - re-init interrupt state
1755 * - re-init display
1756 */
1757 void i915_reset(struct drm_i915_private *dev_priv)
1758 {
1759 struct i915_gpu_error *error = &dev_priv->gpu_error;
1760 int ret;
1761
1762 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1763
1764 if (!test_and_clear_bit(I915_RESET_IN_PROGRESS, &error->flags))
1765 return;
1766
1767 /* Clear any previous failed attempts at recovery. Time to try again. */
1768 __clear_bit(I915_WEDGED, &error->flags);
1769 error->reset_count++;
1770
1771 pr_notice("drm/i915: Resetting chip after gpu hang\n");
1772 disable_irq(dev_priv->drm.irq);
1773 ret = i915_gem_reset_prepare(dev_priv);
1774 if (ret) {
1775 DRM_ERROR("GPU recovery failed\n");
1776 intel_gpu_reset(dev_priv, ALL_ENGINES);
1777 goto error;
1778 }
1779
1780 ret = intel_gpu_reset(dev_priv, ALL_ENGINES);
1781 if (ret) {
1782 if (ret != -ENODEV)
1783 DRM_ERROR("Failed to reset chip: %i\n", ret);
1784 else
1785 DRM_DEBUG_DRIVER("GPU reset disabled\n");
1786 goto error;
1787 }
1788
1789 i915_gem_reset(dev_priv);
1790 intel_overlay_reset(dev_priv);
1791
1792 /* Ok, now get things going again... */
1793
1794 /*
1795 * Everything depends on having the GTT running, so we need to start
1796 * there. Fortunately we don't need to do this unless we reset the
1797 * chip at a PCI level.
1798 *
1799 * Next we need to restore the context, but we don't use those
1800 * yet either...
1801 *
1802 * Ring buffer needs to be re-initialized in the KMS case, or if X
1803 * was running at the time of the reset (i.e. we weren't VT
1804 * switched away).
1805 */
1806 ret = i915_gem_init_hw(dev_priv);
1807 if (ret) {
1808 DRM_ERROR("Failed hw init on reset %d\n", ret);
1809 goto error;
1810 }
1811
1812 i915_queue_hangcheck(dev_priv);
1813
1814 wakeup:
1815 i915_gem_reset_finish(dev_priv);
1816 enable_irq(dev_priv->drm.irq);
1817 wake_up_bit(&error->flags, I915_RESET_IN_PROGRESS);
1818 return;
1819
1820 error:
1821 i915_gem_set_wedged(dev_priv);
1822 goto wakeup;
1823 }
1824
1825 static int i915_pm_suspend(struct device *kdev)
1826 {
1827 struct pci_dev *pdev = to_pci_dev(kdev);
1828 struct drm_device *dev = pci_get_drvdata(pdev);
1829
1830 if (!dev) {
1831 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
1832 return -ENODEV;
1833 }
1834
1835 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1836 return 0;
1837
1838 return i915_drm_suspend(dev);
1839 }
1840
1841 static int i915_pm_suspend_late(struct device *kdev)
1842 {
1843 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1844
1845 /*
1846 * We have a suspend ordering issue with the snd-hda driver also
1847 * requiring our device to be power up. Due to the lack of a
1848 * parent/child relationship we currently solve this with an late
1849 * suspend hook.
1850 *
1851 * FIXME: This should be solved with a special hdmi sink device or
1852 * similar so that power domains can be employed.
1853 */
1854 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1855 return 0;
1856
1857 return i915_drm_suspend_late(dev, false);
1858 }
1859
1860 static int i915_pm_poweroff_late(struct device *kdev)
1861 {
1862 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1863
1864 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1865 return 0;
1866
1867 return i915_drm_suspend_late(dev, true);
1868 }
1869
1870 static int i915_pm_resume_early(struct device *kdev)
1871 {
1872 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1873
1874 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1875 return 0;
1876
1877 return i915_drm_resume_early(dev);
1878 }
1879
1880 static int i915_pm_resume(struct device *kdev)
1881 {
1882 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1883
1884 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1885 return 0;
1886
1887 return i915_drm_resume(dev);
1888 }
1889
1890 /* freeze: before creating the hibernation_image */
1891 static int i915_pm_freeze(struct device *kdev)
1892 {
1893 int ret;
1894
1895 ret = i915_pm_suspend(kdev);
1896 if (ret)
1897 return ret;
1898
1899 ret = i915_gem_freeze(kdev_to_i915(kdev));
1900 if (ret)
1901 return ret;
1902
1903 return 0;
1904 }
1905
1906 static int i915_pm_freeze_late(struct device *kdev)
1907 {
1908 int ret;
1909
1910 ret = i915_pm_suspend_late(kdev);
1911 if (ret)
1912 return ret;
1913
1914 ret = i915_gem_freeze_late(kdev_to_i915(kdev));
1915 if (ret)
1916 return ret;
1917
1918 return 0;
1919 }
1920
1921 /* thaw: called after creating the hibernation image, but before turning off. */
1922 static int i915_pm_thaw_early(struct device *kdev)
1923 {
1924 return i915_pm_resume_early(kdev);
1925 }
1926
1927 static int i915_pm_thaw(struct device *kdev)
1928 {
1929 return i915_pm_resume(kdev);
1930 }
1931
1932 /* restore: called after loading the hibernation image. */
1933 static int i915_pm_restore_early(struct device *kdev)
1934 {
1935 return i915_pm_resume_early(kdev);
1936 }
1937
1938 static int i915_pm_restore(struct device *kdev)
1939 {
1940 return i915_pm_resume(kdev);
1941 }
1942
1943 /*
1944 * Save all Gunit registers that may be lost after a D3 and a subsequent
1945 * S0i[R123] transition. The list of registers needing a save/restore is
1946 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
1947 * registers in the following way:
1948 * - Driver: saved/restored by the driver
1949 * - Punit : saved/restored by the Punit firmware
1950 * - No, w/o marking: no need to save/restore, since the register is R/O or
1951 * used internally by the HW in a way that doesn't depend
1952 * keeping the content across a suspend/resume.
1953 * - Debug : used for debugging
1954 *
1955 * We save/restore all registers marked with 'Driver', with the following
1956 * exceptions:
1957 * - Registers out of use, including also registers marked with 'Debug'.
1958 * These have no effect on the driver's operation, so we don't save/restore
1959 * them to reduce the overhead.
1960 * - Registers that are fully setup by an initialization function called from
1961 * the resume path. For example many clock gating and RPS/RC6 registers.
1962 * - Registers that provide the right functionality with their reset defaults.
1963 *
1964 * TODO: Except for registers that based on the above 3 criteria can be safely
1965 * ignored, we save/restore all others, practically treating the HW context as
1966 * a black-box for the driver. Further investigation is needed to reduce the
1967 * saved/restored registers even further, by following the same 3 criteria.
1968 */
1969 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1970 {
1971 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1972 int i;
1973
1974 /* GAM 0x4000-0x4770 */
1975 s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
1976 s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
1977 s->arb_mode = I915_READ(ARB_MODE);
1978 s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
1979 s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
1980
1981 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
1982 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
1983
1984 s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
1985 s->gfx_max_req_count = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
1986
1987 s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
1988 s->ecochk = I915_READ(GAM_ECOCHK);
1989 s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
1990 s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
1991
1992 s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
1993
1994 /* MBC 0x9024-0x91D0, 0x8500 */
1995 s->g3dctl = I915_READ(VLV_G3DCTL);
1996 s->gsckgctl = I915_READ(VLV_GSCKGCTL);
1997 s->mbctl = I915_READ(GEN6_MBCTL);
1998
1999 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2000 s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
2001 s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
2002 s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
2003 s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
2004 s->rstctl = I915_READ(GEN6_RSTCTL);
2005 s->misccpctl = I915_READ(GEN7_MISCCPCTL);
2006
2007 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2008 s->gfxpause = I915_READ(GEN6_GFXPAUSE);
2009 s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
2010 s->rpdeuc = I915_READ(GEN6_RPDEUC);
2011 s->ecobus = I915_READ(ECOBUS);
2012 s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
2013 s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
2014 s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
2015 s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
2016 s->rcedata = I915_READ(VLV_RCEDATA);
2017 s->spare2gh = I915_READ(VLV_SPAREG2H);
2018
2019 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2020 s->gt_imr = I915_READ(GTIMR);
2021 s->gt_ier = I915_READ(GTIER);
2022 s->pm_imr = I915_READ(GEN6_PMIMR);
2023 s->pm_ier = I915_READ(GEN6_PMIER);
2024
2025 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2026 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
2027
2028 /* GT SA CZ domain, 0x100000-0x138124 */
2029 s->tilectl = I915_READ(TILECTL);
2030 s->gt_fifoctl = I915_READ(GTFIFOCTL);
2031 s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
2032 s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2033 s->pmwgicz = I915_READ(VLV_PMWGICZ);
2034
2035 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2036 s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
2037 s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
2038 s->pcbr = I915_READ(VLV_PCBR);
2039 s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
2040
2041 /*
2042 * Not saving any of:
2043 * DFT, 0x9800-0x9EC0
2044 * SARB, 0xB000-0xB1FC
2045 * GAC, 0x5208-0x524C, 0x14000-0x14C000
2046 * PCI CFG
2047 */
2048 }
2049
2050 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2051 {
2052 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2053 u32 val;
2054 int i;
2055
2056 /* GAM 0x4000-0x4770 */
2057 I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
2058 I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
2059 I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
2060 I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
2061 I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
2062
2063 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2064 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2065
2066 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2067 I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2068
2069 I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
2070 I915_WRITE(GAM_ECOCHK, s->ecochk);
2071 I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
2072 I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
2073
2074 I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
2075
2076 /* MBC 0x9024-0x91D0, 0x8500 */
2077 I915_WRITE(VLV_G3DCTL, s->g3dctl);
2078 I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
2079 I915_WRITE(GEN6_MBCTL, s->mbctl);
2080
2081 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2082 I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
2083 I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
2084 I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
2085 I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
2086 I915_WRITE(GEN6_RSTCTL, s->rstctl);
2087 I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
2088
2089 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2090 I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
2091 I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
2092 I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
2093 I915_WRITE(ECOBUS, s->ecobus);
2094 I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
2095 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2096 I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
2097 I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
2098 I915_WRITE(VLV_RCEDATA, s->rcedata);
2099 I915_WRITE(VLV_SPAREG2H, s->spare2gh);
2100
2101 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2102 I915_WRITE(GTIMR, s->gt_imr);
2103 I915_WRITE(GTIER, s->gt_ier);
2104 I915_WRITE(GEN6_PMIMR, s->pm_imr);
2105 I915_WRITE(GEN6_PMIER, s->pm_ier);
2106
2107 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2108 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2109
2110 /* GT SA CZ domain, 0x100000-0x138124 */
2111 I915_WRITE(TILECTL, s->tilectl);
2112 I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
2113 /*
2114 * Preserve the GT allow wake and GFX force clock bit, they are not
2115 * be restored, as they are used to control the s0ix suspend/resume
2116 * sequence by the caller.
2117 */
2118 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2119 val &= VLV_GTLC_ALLOWWAKEREQ;
2120 val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2121 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2122
2123 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2124 val &= VLV_GFX_CLK_FORCE_ON_BIT;
2125 val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2126 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2127
2128 I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
2129
2130 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2131 I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
2132 I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
2133 I915_WRITE(VLV_PCBR, s->pcbr);
2134 I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
2135 }
2136
2137 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2138 {
2139 u32 val;
2140 int err;
2141
2142 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2143 val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2144 if (force_on)
2145 val |= VLV_GFX_CLK_FORCE_ON_BIT;
2146 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2147
2148 if (!force_on)
2149 return 0;
2150
2151 err = intel_wait_for_register(dev_priv,
2152 VLV_GTLC_SURVIVABILITY_REG,
2153 VLV_GFX_CLK_STATUS_BIT,
2154 VLV_GFX_CLK_STATUS_BIT,
2155 20);
2156 if (err)
2157 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2158 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2159
2160 return err;
2161 }
2162
2163 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2164 {
2165 u32 val;
2166 int err = 0;
2167
2168 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2169 val &= ~VLV_GTLC_ALLOWWAKEREQ;
2170 if (allow)
2171 val |= VLV_GTLC_ALLOWWAKEREQ;
2172 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2173 POSTING_READ(VLV_GTLC_WAKE_CTRL);
2174
2175 err = intel_wait_for_register(dev_priv,
2176 VLV_GTLC_PW_STATUS,
2177 VLV_GTLC_ALLOWWAKEACK,
2178 allow,
2179 1);
2180 if (err)
2181 DRM_ERROR("timeout disabling GT waking\n");
2182
2183 return err;
2184 }
2185
2186 static int vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2187 bool wait_for_on)
2188 {
2189 u32 mask;
2190 u32 val;
2191 int err;
2192
2193 mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2194 val = wait_for_on ? mask : 0;
2195 if ((I915_READ(VLV_GTLC_PW_STATUS) & mask) == val)
2196 return 0;
2197
2198 DRM_DEBUG_KMS("waiting for GT wells to go %s (%08x)\n",
2199 onoff(wait_for_on),
2200 I915_READ(VLV_GTLC_PW_STATUS));
2201
2202 /*
2203 * RC6 transitioning can be delayed up to 2 msec (see
2204 * valleyview_enable_rps), use 3 msec for safety.
2205 */
2206 err = intel_wait_for_register(dev_priv,
2207 VLV_GTLC_PW_STATUS, mask, val,
2208 3);
2209 if (err)
2210 DRM_ERROR("timeout waiting for GT wells to go %s\n",
2211 onoff(wait_for_on));
2212
2213 return err;
2214 }
2215
2216 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2217 {
2218 if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2219 return;
2220
2221 DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2222 I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2223 }
2224
2225 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2226 {
2227 u32 mask;
2228 int err;
2229
2230 /*
2231 * Bspec defines the following GT well on flags as debug only, so
2232 * don't treat them as hard failures.
2233 */
2234 (void)vlv_wait_for_gt_wells(dev_priv, false);
2235
2236 mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2237 WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2238
2239 vlv_check_no_gt_access(dev_priv);
2240
2241 err = vlv_force_gfx_clock(dev_priv, true);
2242 if (err)
2243 goto err1;
2244
2245 err = vlv_allow_gt_wake(dev_priv, false);
2246 if (err)
2247 goto err2;
2248
2249 if (!IS_CHERRYVIEW(dev_priv))
2250 vlv_save_gunit_s0ix_state(dev_priv);
2251
2252 err = vlv_force_gfx_clock(dev_priv, false);
2253 if (err)
2254 goto err2;
2255
2256 return 0;
2257
2258 err2:
2259 /* For safety always re-enable waking and disable gfx clock forcing */
2260 vlv_allow_gt_wake(dev_priv, true);
2261 err1:
2262 vlv_force_gfx_clock(dev_priv, false);
2263
2264 return err;
2265 }
2266
2267 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2268 bool rpm_resume)
2269 {
2270 int err;
2271 int ret;
2272
2273 /*
2274 * If any of the steps fail just try to continue, that's the best we
2275 * can do at this point. Return the first error code (which will also
2276 * leave RPM permanently disabled).
2277 */
2278 ret = vlv_force_gfx_clock(dev_priv, true);
2279
2280 if (!IS_CHERRYVIEW(dev_priv))
2281 vlv_restore_gunit_s0ix_state(dev_priv);
2282
2283 err = vlv_allow_gt_wake(dev_priv, true);
2284 if (!ret)
2285 ret = err;
2286
2287 err = vlv_force_gfx_clock(dev_priv, false);
2288 if (!ret)
2289 ret = err;
2290
2291 vlv_check_no_gt_access(dev_priv);
2292
2293 if (rpm_resume)
2294 intel_init_clock_gating(dev_priv);
2295
2296 return ret;
2297 }
2298
2299 static int intel_runtime_suspend(struct device *kdev)
2300 {
2301 struct pci_dev *pdev = to_pci_dev(kdev);
2302 struct drm_device *dev = pci_get_drvdata(pdev);
2303 struct drm_i915_private *dev_priv = to_i915(dev);
2304 int ret;
2305
2306 if (WARN_ON_ONCE(!(dev_priv->rps.enabled && intel_enable_rc6())))
2307 return -ENODEV;
2308
2309 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2310 return -ENODEV;
2311
2312 DRM_DEBUG_KMS("Suspending device\n");
2313
2314 disable_rpm_wakeref_asserts(dev_priv);
2315
2316 /*
2317 * We are safe here against re-faults, since the fault handler takes
2318 * an RPM reference.
2319 */
2320 i915_gem_runtime_suspend(dev_priv);
2321
2322 intel_guc_suspend(dev_priv);
2323
2324 intel_runtime_pm_disable_interrupts(dev_priv);
2325
2326 ret = 0;
2327 if (IS_GEN9_LP(dev_priv)) {
2328 bxt_display_core_uninit(dev_priv);
2329 bxt_enable_dc9(dev_priv);
2330 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2331 hsw_enable_pc8(dev_priv);
2332 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2333 ret = vlv_suspend_complete(dev_priv);
2334 }
2335
2336 if (ret) {
2337 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2338 intel_runtime_pm_enable_interrupts(dev_priv);
2339
2340 enable_rpm_wakeref_asserts(dev_priv);
2341
2342 return ret;
2343 }
2344
2345 intel_uncore_forcewake_reset(dev_priv, false);
2346
2347 enable_rpm_wakeref_asserts(dev_priv);
2348 WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
2349
2350 if (intel_uncore_arm_unclaimed_mmio_detection(dev_priv))
2351 DRM_ERROR("Unclaimed access detected prior to suspending\n");
2352
2353 dev_priv->pm.suspended = true;
2354
2355 /*
2356 * FIXME: We really should find a document that references the arguments
2357 * used below!
2358 */
2359 if (IS_BROADWELL(dev_priv)) {
2360 /*
2361 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2362 * being detected, and the call we do at intel_runtime_resume()
2363 * won't be able to restore them. Since PCI_D3hot matches the
2364 * actual specification and appears to be working, use it.
2365 */
2366 intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2367 } else {
2368 /*
2369 * current versions of firmware which depend on this opregion
2370 * notification have repurposed the D1 definition to mean
2371 * "runtime suspended" vs. what you would normally expect (D3)
2372 * to distinguish it from notifications that might be sent via
2373 * the suspend path.
2374 */
2375 intel_opregion_notify_adapter(dev_priv, PCI_D1);
2376 }
2377
2378 assert_forcewakes_inactive(dev_priv);
2379
2380 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2381 intel_hpd_poll_init(dev_priv);
2382
2383 DRM_DEBUG_KMS("Device suspended\n");
2384 return 0;
2385 }
2386
2387 static int intel_runtime_resume(struct device *kdev)
2388 {
2389 struct pci_dev *pdev = to_pci_dev(kdev);
2390 struct drm_device *dev = pci_get_drvdata(pdev);
2391 struct drm_i915_private *dev_priv = to_i915(dev);
2392 int ret = 0;
2393
2394 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2395 return -ENODEV;
2396
2397 DRM_DEBUG_KMS("Resuming device\n");
2398
2399 WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
2400 disable_rpm_wakeref_asserts(dev_priv);
2401
2402 intel_opregion_notify_adapter(dev_priv, PCI_D0);
2403 dev_priv->pm.suspended = false;
2404 if (intel_uncore_unclaimed_mmio(dev_priv))
2405 DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
2406
2407 intel_guc_resume(dev_priv);
2408
2409 if (IS_GEN6(dev_priv))
2410 intel_init_pch_refclk(dev_priv);
2411
2412 if (IS_GEN9_LP(dev_priv)) {
2413 bxt_disable_dc9(dev_priv);
2414 bxt_display_core_init(dev_priv, true);
2415 if (dev_priv->csr.dmc_payload &&
2416 (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2417 gen9_enable_dc5(dev_priv);
2418 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2419 hsw_disable_pc8(dev_priv);
2420 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2421 ret = vlv_resume_prepare(dev_priv, true);
2422 }
2423
2424 /*
2425 * No point of rolling back things in case of an error, as the best
2426 * we can do is to hope that things will still work (and disable RPM).
2427 */
2428 i915_gem_init_swizzling(dev_priv);
2429 i915_gem_restore_fences(dev_priv);
2430
2431 intel_runtime_pm_enable_interrupts(dev_priv);
2432
2433 /*
2434 * On VLV/CHV display interrupts are part of the display
2435 * power well, so hpd is reinitialized from there. For
2436 * everyone else do it here.
2437 */
2438 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2439 intel_hpd_init(dev_priv);
2440
2441 enable_rpm_wakeref_asserts(dev_priv);
2442
2443 if (ret)
2444 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
2445 else
2446 DRM_DEBUG_KMS("Device resumed\n");
2447
2448 return ret;
2449 }
2450
2451 const struct dev_pm_ops i915_pm_ops = {
2452 /*
2453 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
2454 * PMSG_RESUME]
2455 */
2456 .suspend = i915_pm_suspend,
2457 .suspend_late = i915_pm_suspend_late,
2458 .resume_early = i915_pm_resume_early,
2459 .resume = i915_pm_resume,
2460
2461 /*
2462 * S4 event handlers
2463 * @freeze, @freeze_late : called (1) before creating the
2464 * hibernation image [PMSG_FREEZE] and
2465 * (2) after rebooting, before restoring
2466 * the image [PMSG_QUIESCE]
2467 * @thaw, @thaw_early : called (1) after creating the hibernation
2468 * image, before writing it [PMSG_THAW]
2469 * and (2) after failing to create or
2470 * restore the image [PMSG_RECOVER]
2471 * @poweroff, @poweroff_late: called after writing the hibernation
2472 * image, before rebooting [PMSG_HIBERNATE]
2473 * @restore, @restore_early : called after rebooting and restoring the
2474 * hibernation image [PMSG_RESTORE]
2475 */
2476 .freeze = i915_pm_freeze,
2477 .freeze_late = i915_pm_freeze_late,
2478 .thaw_early = i915_pm_thaw_early,
2479 .thaw = i915_pm_thaw,
2480 .poweroff = i915_pm_suspend,
2481 .poweroff_late = i915_pm_poweroff_late,
2482 .restore_early = i915_pm_restore_early,
2483 .restore = i915_pm_restore,
2484
2485 /* S0ix (via runtime suspend) event handlers */
2486 .runtime_suspend = intel_runtime_suspend,
2487 .runtime_resume = intel_runtime_resume,
2488 };
2489
2490 static const struct vm_operations_struct i915_gem_vm_ops = {
2491 .fault = i915_gem_fault,
2492 .open = drm_gem_vm_open,
2493 .close = drm_gem_vm_close,
2494 };
2495
2496 static const struct file_operations i915_driver_fops = {
2497 .owner = THIS_MODULE,
2498 .open = drm_open,
2499 .release = drm_release,
2500 .unlocked_ioctl = drm_ioctl,
2501 .mmap = drm_gem_mmap,
2502 .poll = drm_poll,
2503 .read = drm_read,
2504 .compat_ioctl = i915_compat_ioctl,
2505 .llseek = noop_llseek,
2506 };
2507
2508 static int
2509 i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
2510 struct drm_file *file)
2511 {
2512 return -ENODEV;
2513 }
2514
2515 static const struct drm_ioctl_desc i915_ioctls[] = {
2516 DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2517 DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
2518 DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
2519 DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
2520 DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
2521 DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
2522 DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam, DRM_AUTH|DRM_RENDER_ALLOW),
2523 DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2524 DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
2525 DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
2526 DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2527 DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
2528 DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2529 DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2530 DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE, drm_noop, DRM_AUTH),
2531 DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
2532 DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2533 DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2534 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer, DRM_AUTH),
2535 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2, i915_gem_execbuffer2, DRM_AUTH|DRM_RENDER_ALLOW),
2536 DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2537 DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2538 DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2539 DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
2540 DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
2541 DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2542 DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2543 DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2544 DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
2545 DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
2546 DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
2547 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
2548 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_GTT, i915_gem_mmap_gtt_ioctl, DRM_RENDER_ALLOW),
2549 DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
2550 DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
2551 DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling_ioctl, DRM_RENDER_ALLOW),
2552 DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling_ioctl, DRM_RENDER_ALLOW),
2553 DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
2554 DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id, 0),
2555 DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
2556 DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2557 DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2558 DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey, DRM_MASTER|DRM_CONTROL_ALLOW),
2559 DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER|DRM_CONTROL_ALLOW),
2560 DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2561 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
2562 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
2563 DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
2564 DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
2565 DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
2566 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
2567 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
2568 DRM_IOCTL_DEF_DRV(I915_PERF_OPEN, i915_perf_open_ioctl, DRM_RENDER_ALLOW),
2569 };
2570
2571 static struct drm_driver driver = {
2572 /* Don't use MTRRs here; the Xserver or userspace app should
2573 * deal with them for Intel hardware.
2574 */
2575 .driver_features =
2576 DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
2577 DRIVER_RENDER | DRIVER_MODESET,
2578 .open = i915_driver_open,
2579 .lastclose = i915_driver_lastclose,
2580 .preclose = i915_driver_preclose,
2581 .postclose = i915_driver_postclose,
2582 .set_busid = drm_pci_set_busid,
2583
2584 .gem_close_object = i915_gem_close_object,
2585 .gem_free_object_unlocked = i915_gem_free_object,
2586 .gem_vm_ops = &i915_gem_vm_ops,
2587
2588 .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
2589 .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
2590 .gem_prime_export = i915_gem_prime_export,
2591 .gem_prime_import = i915_gem_prime_import,
2592
2593 .dumb_create = i915_gem_dumb_create,
2594 .dumb_map_offset = i915_gem_mmap_gtt,
2595 .dumb_destroy = drm_gem_dumb_destroy,
2596 .ioctls = i915_ioctls,
2597 .num_ioctls = ARRAY_SIZE(i915_ioctls),
2598 .fops = &i915_driver_fops,
2599 .name = DRIVER_NAME,
2600 .desc = DRIVER_DESC,
2601 .date = DRIVER_DATE,
2602 .major = DRIVER_MAJOR,
2603 .minor = DRIVER_MINOR,
2604 .patchlevel = DRIVER_PATCHLEVEL,
2605 };