]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.c
Merge tag 'mips_fixes_5.6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/mips...
[mirror_ubuntu-hirsute-kernel.git] / drivers / gpu / drm / i915 / i915_drv.c
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #include <linux/acpi.h>
31 #include <linux/device.h>
32 #include <linux/oom.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/pm.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/pnp.h>
38 #include <linux/slab.h>
39 #include <linux/vga_switcheroo.h>
40 #include <linux/vt.h>
41 #include <acpi/video.h>
42
43 #include <drm/drm_atomic_helper.h>
44 #include <drm/drm_ioctl.h>
45 #include <drm/drm_irq.h>
46 #include <drm/drm_probe_helper.h>
47 #include <drm/i915_drm.h>
48
49 #include "display/intel_acpi.h"
50 #include "display/intel_audio.h"
51 #include "display/intel_bw.h"
52 #include "display/intel_cdclk.h"
53 #include "display/intel_display_types.h"
54 #include "display/intel_dp.h"
55 #include "display/intel_fbdev.h"
56 #include "display/intel_hotplug.h"
57 #include "display/intel_overlay.h"
58 #include "display/intel_pipe_crc.h"
59 #include "display/intel_psr.h"
60 #include "display/intel_sprite.h"
61 #include "display/intel_vga.h"
62
63 #include "gem/i915_gem_context.h"
64 #include "gem/i915_gem_ioctls.h"
65 #include "gem/i915_gem_mman.h"
66 #include "gt/intel_gt.h"
67 #include "gt/intel_gt_pm.h"
68 #include "gt/intel_rc6.h"
69
70 #include "i915_debugfs.h"
71 #include "i915_drv.h"
72 #include "i915_irq.h"
73 #include "i915_memcpy.h"
74 #include "i915_perf.h"
75 #include "i915_query.h"
76 #include "i915_suspend.h"
77 #include "i915_switcheroo.h"
78 #include "i915_sysfs.h"
79 #include "i915_trace.h"
80 #include "i915_vgpu.h"
81 #include "intel_csr.h"
82 #include "intel_memory_region.h"
83 #include "intel_pm.h"
84
85 static struct drm_driver driver;
86
87 struct vlv_s0ix_state {
88 /* GAM */
89 u32 wr_watermark;
90 u32 gfx_prio_ctrl;
91 u32 arb_mode;
92 u32 gfx_pend_tlb0;
93 u32 gfx_pend_tlb1;
94 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
95 u32 media_max_req_count;
96 u32 gfx_max_req_count;
97 u32 render_hwsp;
98 u32 ecochk;
99 u32 bsd_hwsp;
100 u32 blt_hwsp;
101 u32 tlb_rd_addr;
102
103 /* MBC */
104 u32 g3dctl;
105 u32 gsckgctl;
106 u32 mbctl;
107
108 /* GCP */
109 u32 ucgctl1;
110 u32 ucgctl3;
111 u32 rcgctl1;
112 u32 rcgctl2;
113 u32 rstctl;
114 u32 misccpctl;
115
116 /* GPM */
117 u32 gfxpause;
118 u32 rpdeuhwtc;
119 u32 rpdeuc;
120 u32 ecobus;
121 u32 pwrdwnupctl;
122 u32 rp_down_timeout;
123 u32 rp_deucsw;
124 u32 rcubmabdtmr;
125 u32 rcedata;
126 u32 spare2gh;
127
128 /* Display 1 CZ domain */
129 u32 gt_imr;
130 u32 gt_ier;
131 u32 pm_imr;
132 u32 pm_ier;
133 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
134
135 /* GT SA CZ domain */
136 u32 tilectl;
137 u32 gt_fifoctl;
138 u32 gtlc_wake_ctrl;
139 u32 gtlc_survive;
140 u32 pmwgicz;
141
142 /* Display 2 CZ domain */
143 u32 gu_ctl0;
144 u32 gu_ctl1;
145 u32 pcbr;
146 u32 clock_gate_dis2;
147 };
148
149 static int i915_get_bridge_dev(struct drm_i915_private *dev_priv)
150 {
151 int domain = pci_domain_nr(dev_priv->drm.pdev->bus);
152
153 dev_priv->bridge_dev =
154 pci_get_domain_bus_and_slot(domain, 0, PCI_DEVFN(0, 0));
155 if (!dev_priv->bridge_dev) {
156 DRM_ERROR("bridge device not found\n");
157 return -1;
158 }
159 return 0;
160 }
161
162 /* Allocate space for the MCH regs if needed, return nonzero on error */
163 static int
164 intel_alloc_mchbar_resource(struct drm_i915_private *dev_priv)
165 {
166 int reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
167 u32 temp_lo, temp_hi = 0;
168 u64 mchbar_addr;
169 int ret;
170
171 if (INTEL_GEN(dev_priv) >= 4)
172 pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
173 pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
174 mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
175
176 /* If ACPI doesn't have it, assume we need to allocate it ourselves */
177 #ifdef CONFIG_PNP
178 if (mchbar_addr &&
179 pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
180 return 0;
181 #endif
182
183 /* Get some space for it */
184 dev_priv->mch_res.name = "i915 MCHBAR";
185 dev_priv->mch_res.flags = IORESOURCE_MEM;
186 ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
187 &dev_priv->mch_res,
188 MCHBAR_SIZE, MCHBAR_SIZE,
189 PCIBIOS_MIN_MEM,
190 0, pcibios_align_resource,
191 dev_priv->bridge_dev);
192 if (ret) {
193 DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
194 dev_priv->mch_res.start = 0;
195 return ret;
196 }
197
198 if (INTEL_GEN(dev_priv) >= 4)
199 pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
200 upper_32_bits(dev_priv->mch_res.start));
201
202 pci_write_config_dword(dev_priv->bridge_dev, reg,
203 lower_32_bits(dev_priv->mch_res.start));
204 return 0;
205 }
206
207 /* Setup MCHBAR if possible, return true if we should disable it again */
208 static void
209 intel_setup_mchbar(struct drm_i915_private *dev_priv)
210 {
211 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
212 u32 temp;
213 bool enabled;
214
215 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
216 return;
217
218 dev_priv->mchbar_need_disable = false;
219
220 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
221 pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
222 enabled = !!(temp & DEVEN_MCHBAR_EN);
223 } else {
224 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
225 enabled = temp & 1;
226 }
227
228 /* If it's already enabled, don't have to do anything */
229 if (enabled)
230 return;
231
232 if (intel_alloc_mchbar_resource(dev_priv))
233 return;
234
235 dev_priv->mchbar_need_disable = true;
236
237 /* Space is allocated or reserved, so enable it. */
238 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
239 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
240 temp | DEVEN_MCHBAR_EN);
241 } else {
242 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
243 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
244 }
245 }
246
247 static void
248 intel_teardown_mchbar(struct drm_i915_private *dev_priv)
249 {
250 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
251
252 if (dev_priv->mchbar_need_disable) {
253 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
254 u32 deven_val;
255
256 pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
257 &deven_val);
258 deven_val &= ~DEVEN_MCHBAR_EN;
259 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
260 deven_val);
261 } else {
262 u32 mchbar_val;
263
264 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
265 &mchbar_val);
266 mchbar_val &= ~1;
267 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
268 mchbar_val);
269 }
270 }
271
272 if (dev_priv->mch_res.start)
273 release_resource(&dev_priv->mch_res);
274 }
275
276 static int i915_driver_modeset_probe(struct drm_i915_private *i915)
277 {
278 int ret;
279
280 if (i915_inject_probe_failure(i915))
281 return -ENODEV;
282
283 if (HAS_DISPLAY(i915) && INTEL_DISPLAY_ENABLED(i915)) {
284 ret = drm_vblank_init(&i915->drm,
285 INTEL_NUM_PIPES(i915));
286 if (ret)
287 goto out;
288 }
289
290 intel_bios_init(i915);
291
292 ret = intel_vga_register(i915);
293 if (ret)
294 goto out;
295
296 intel_register_dsm_handler();
297
298 ret = i915_switcheroo_register(i915);
299 if (ret)
300 goto cleanup_vga_client;
301
302 intel_power_domains_init_hw(i915, false);
303
304 intel_csr_ucode_init(i915);
305
306 ret = intel_irq_install(i915);
307 if (ret)
308 goto cleanup_csr;
309
310 /* Important: The output setup functions called by modeset_init need
311 * working irqs for e.g. gmbus and dp aux transfers. */
312 ret = intel_modeset_init(i915);
313 if (ret)
314 goto cleanup_irq;
315
316 ret = i915_gem_init(i915);
317 if (ret)
318 goto cleanup_modeset;
319
320 intel_overlay_setup(i915);
321
322 if (!HAS_DISPLAY(i915) || !INTEL_DISPLAY_ENABLED(i915))
323 return 0;
324
325 ret = intel_fbdev_init(&i915->drm);
326 if (ret)
327 goto cleanup_gem;
328
329 /* Only enable hotplug handling once the fbdev is fully set up. */
330 intel_hpd_init(i915);
331
332 intel_init_ipc(i915);
333
334 intel_psr_set_force_mode_changed(i915->psr.dp);
335
336 return 0;
337
338 cleanup_gem:
339 i915_gem_suspend(i915);
340 i915_gem_driver_remove(i915);
341 i915_gem_driver_release(i915);
342 cleanup_modeset:
343 intel_modeset_driver_remove(i915);
344 cleanup_irq:
345 intel_irq_uninstall(i915);
346 cleanup_csr:
347 intel_csr_ucode_fini(i915);
348 intel_power_domains_driver_remove(i915);
349 i915_switcheroo_unregister(i915);
350 cleanup_vga_client:
351 intel_vga_unregister(i915);
352 out:
353 return ret;
354 }
355
356 static void i915_driver_modeset_remove(struct drm_i915_private *i915)
357 {
358 intel_modeset_driver_remove(i915);
359
360 intel_irq_uninstall(i915);
361
362 intel_bios_driver_remove(i915);
363
364 i915_switcheroo_unregister(i915);
365
366 intel_vga_unregister(i915);
367
368 intel_csr_ucode_fini(i915);
369 }
370
371 static void intel_init_dpio(struct drm_i915_private *dev_priv)
372 {
373 /*
374 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
375 * CHV x1 PHY (DP/HDMI D)
376 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
377 */
378 if (IS_CHERRYVIEW(dev_priv)) {
379 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
380 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
381 } else if (IS_VALLEYVIEW(dev_priv)) {
382 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
383 }
384 }
385
386 static int i915_workqueues_init(struct drm_i915_private *dev_priv)
387 {
388 /*
389 * The i915 workqueue is primarily used for batched retirement of
390 * requests (and thus managing bo) once the task has been completed
391 * by the GPU. i915_retire_requests() is called directly when we
392 * need high-priority retirement, such as waiting for an explicit
393 * bo.
394 *
395 * It is also used for periodic low-priority events, such as
396 * idle-timers and recording error state.
397 *
398 * All tasks on the workqueue are expected to acquire the dev mutex
399 * so there is no point in running more than one instance of the
400 * workqueue at any time. Use an ordered one.
401 */
402 dev_priv->wq = alloc_ordered_workqueue("i915", 0);
403 if (dev_priv->wq == NULL)
404 goto out_err;
405
406 dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
407 if (dev_priv->hotplug.dp_wq == NULL)
408 goto out_free_wq;
409
410 return 0;
411
412 out_free_wq:
413 destroy_workqueue(dev_priv->wq);
414 out_err:
415 DRM_ERROR("Failed to allocate workqueues.\n");
416
417 return -ENOMEM;
418 }
419
420 static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
421 {
422 destroy_workqueue(dev_priv->hotplug.dp_wq);
423 destroy_workqueue(dev_priv->wq);
424 }
425
426 /*
427 * We don't keep the workarounds for pre-production hardware, so we expect our
428 * driver to fail on these machines in one way or another. A little warning on
429 * dmesg may help both the user and the bug triagers.
430 *
431 * Our policy for removing pre-production workarounds is to keep the
432 * current gen workarounds as a guide to the bring-up of the next gen
433 * (workarounds have a habit of persisting!). Anything older than that
434 * should be removed along with the complications they introduce.
435 */
436 static void intel_detect_preproduction_hw(struct drm_i915_private *dev_priv)
437 {
438 bool pre = false;
439
440 pre |= IS_HSW_EARLY_SDV(dev_priv);
441 pre |= IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0);
442 pre |= IS_BXT_REVID(dev_priv, 0, BXT_REVID_B_LAST);
443 pre |= IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0);
444
445 if (pre) {
446 DRM_ERROR("This is a pre-production stepping. "
447 "It may not be fully functional.\n");
448 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK);
449 }
450 }
451
452 static int vlv_alloc_s0ix_state(struct drm_i915_private *i915)
453 {
454 if (!IS_VALLEYVIEW(i915))
455 return 0;
456
457 /* we write all the values in the struct, so no need to zero it out */
458 i915->vlv_s0ix_state = kmalloc(sizeof(*i915->vlv_s0ix_state),
459 GFP_KERNEL);
460 if (!i915->vlv_s0ix_state)
461 return -ENOMEM;
462
463 return 0;
464 }
465
466 static void vlv_free_s0ix_state(struct drm_i915_private *i915)
467 {
468 if (!i915->vlv_s0ix_state)
469 return;
470
471 kfree(i915->vlv_s0ix_state);
472 i915->vlv_s0ix_state = NULL;
473 }
474
475 static void sanitize_gpu(struct drm_i915_private *i915)
476 {
477 if (!INTEL_INFO(i915)->gpu_reset_clobbers_display)
478 __intel_gt_reset(&i915->gt, ALL_ENGINES);
479 }
480
481 /**
482 * i915_driver_early_probe - setup state not requiring device access
483 * @dev_priv: device private
484 *
485 * Initialize everything that is a "SW-only" state, that is state not
486 * requiring accessing the device or exposing the driver via kernel internal
487 * or userspace interfaces. Example steps belonging here: lock initialization,
488 * system memory allocation, setting up device specific attributes and
489 * function hooks not requiring accessing the device.
490 */
491 static int i915_driver_early_probe(struct drm_i915_private *dev_priv)
492 {
493 int ret = 0;
494
495 if (i915_inject_probe_failure(dev_priv))
496 return -ENODEV;
497
498 intel_device_info_subplatform_init(dev_priv);
499
500 intel_uncore_mmio_debug_init_early(&dev_priv->mmio_debug);
501 intel_uncore_init_early(&dev_priv->uncore, dev_priv);
502
503 spin_lock_init(&dev_priv->irq_lock);
504 spin_lock_init(&dev_priv->gpu_error.lock);
505 mutex_init(&dev_priv->backlight_lock);
506
507 mutex_init(&dev_priv->sb_lock);
508 pm_qos_add_request(&dev_priv->sb_qos,
509 PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
510
511 mutex_init(&dev_priv->av_mutex);
512 mutex_init(&dev_priv->wm.wm_mutex);
513 mutex_init(&dev_priv->pps_mutex);
514 mutex_init(&dev_priv->hdcp_comp_mutex);
515
516 i915_memcpy_init_early(dev_priv);
517 intel_runtime_pm_init_early(&dev_priv->runtime_pm);
518
519 ret = i915_workqueues_init(dev_priv);
520 if (ret < 0)
521 return ret;
522
523 ret = vlv_alloc_s0ix_state(dev_priv);
524 if (ret < 0)
525 goto err_workqueues;
526
527 intel_wopcm_init_early(&dev_priv->wopcm);
528
529 intel_gt_init_early(&dev_priv->gt, dev_priv);
530
531 i915_gem_init_early(dev_priv);
532
533 /* This must be called before any calls to HAS_PCH_* */
534 intel_detect_pch(dev_priv);
535
536 intel_pm_setup(dev_priv);
537 intel_init_dpio(dev_priv);
538 ret = intel_power_domains_init(dev_priv);
539 if (ret < 0)
540 goto err_gem;
541 intel_irq_init(dev_priv);
542 intel_init_display_hooks(dev_priv);
543 intel_init_clock_gating_hooks(dev_priv);
544 intel_init_audio_hooks(dev_priv);
545 intel_display_crc_init(dev_priv);
546
547 intel_detect_preproduction_hw(dev_priv);
548
549 return 0;
550
551 err_gem:
552 i915_gem_cleanup_early(dev_priv);
553 intel_gt_driver_late_release(&dev_priv->gt);
554 vlv_free_s0ix_state(dev_priv);
555 err_workqueues:
556 i915_workqueues_cleanup(dev_priv);
557 return ret;
558 }
559
560 /**
561 * i915_driver_late_release - cleanup the setup done in
562 * i915_driver_early_probe()
563 * @dev_priv: device private
564 */
565 static void i915_driver_late_release(struct drm_i915_private *dev_priv)
566 {
567 intel_irq_fini(dev_priv);
568 intel_power_domains_cleanup(dev_priv);
569 i915_gem_cleanup_early(dev_priv);
570 intel_gt_driver_late_release(&dev_priv->gt);
571 vlv_free_s0ix_state(dev_priv);
572 i915_workqueues_cleanup(dev_priv);
573
574 pm_qos_remove_request(&dev_priv->sb_qos);
575 mutex_destroy(&dev_priv->sb_lock);
576 }
577
578 /**
579 * i915_driver_mmio_probe - setup device MMIO
580 * @dev_priv: device private
581 *
582 * Setup minimal device state necessary for MMIO accesses later in the
583 * initialization sequence. The setup here should avoid any other device-wide
584 * side effects or exposing the driver via kernel internal or user space
585 * interfaces.
586 */
587 static int i915_driver_mmio_probe(struct drm_i915_private *dev_priv)
588 {
589 int ret;
590
591 if (i915_inject_probe_failure(dev_priv))
592 return -ENODEV;
593
594 if (i915_get_bridge_dev(dev_priv))
595 return -EIO;
596
597 ret = intel_uncore_init_mmio(&dev_priv->uncore);
598 if (ret < 0)
599 goto err_bridge;
600
601 /* Try to make sure MCHBAR is enabled before poking at it */
602 intel_setup_mchbar(dev_priv);
603
604 intel_device_info_init_mmio(dev_priv);
605
606 intel_uncore_prune_mmio_domains(&dev_priv->uncore);
607
608 intel_uc_init_mmio(&dev_priv->gt.uc);
609
610 ret = intel_engines_init_mmio(&dev_priv->gt);
611 if (ret)
612 goto err_uncore;
613
614 /* As early as possible, scrub existing GPU state before clobbering */
615 sanitize_gpu(dev_priv);
616
617 return 0;
618
619 err_uncore:
620 intel_teardown_mchbar(dev_priv);
621 intel_uncore_fini_mmio(&dev_priv->uncore);
622 err_bridge:
623 pci_dev_put(dev_priv->bridge_dev);
624
625 return ret;
626 }
627
628 /**
629 * i915_driver_mmio_release - cleanup the setup done in i915_driver_mmio_probe()
630 * @dev_priv: device private
631 */
632 static void i915_driver_mmio_release(struct drm_i915_private *dev_priv)
633 {
634 intel_teardown_mchbar(dev_priv);
635 intel_uncore_fini_mmio(&dev_priv->uncore);
636 pci_dev_put(dev_priv->bridge_dev);
637 }
638
639 static void intel_sanitize_options(struct drm_i915_private *dev_priv)
640 {
641 intel_gvt_sanitize_options(dev_priv);
642 }
643
644 #define DRAM_TYPE_STR(type) [INTEL_DRAM_ ## type] = #type
645
646 static const char *intel_dram_type_str(enum intel_dram_type type)
647 {
648 static const char * const str[] = {
649 DRAM_TYPE_STR(UNKNOWN),
650 DRAM_TYPE_STR(DDR3),
651 DRAM_TYPE_STR(DDR4),
652 DRAM_TYPE_STR(LPDDR3),
653 DRAM_TYPE_STR(LPDDR4),
654 };
655
656 if (type >= ARRAY_SIZE(str))
657 type = INTEL_DRAM_UNKNOWN;
658
659 return str[type];
660 }
661
662 #undef DRAM_TYPE_STR
663
664 static int intel_dimm_num_devices(const struct dram_dimm_info *dimm)
665 {
666 return dimm->ranks * 64 / (dimm->width ?: 1);
667 }
668
669 /* Returns total GB for the whole DIMM */
670 static int skl_get_dimm_size(u16 val)
671 {
672 return val & SKL_DRAM_SIZE_MASK;
673 }
674
675 static int skl_get_dimm_width(u16 val)
676 {
677 if (skl_get_dimm_size(val) == 0)
678 return 0;
679
680 switch (val & SKL_DRAM_WIDTH_MASK) {
681 case SKL_DRAM_WIDTH_X8:
682 case SKL_DRAM_WIDTH_X16:
683 case SKL_DRAM_WIDTH_X32:
684 val = (val & SKL_DRAM_WIDTH_MASK) >> SKL_DRAM_WIDTH_SHIFT;
685 return 8 << val;
686 default:
687 MISSING_CASE(val);
688 return 0;
689 }
690 }
691
692 static int skl_get_dimm_ranks(u16 val)
693 {
694 if (skl_get_dimm_size(val) == 0)
695 return 0;
696
697 val = (val & SKL_DRAM_RANK_MASK) >> SKL_DRAM_RANK_SHIFT;
698
699 return val + 1;
700 }
701
702 /* Returns total GB for the whole DIMM */
703 static int cnl_get_dimm_size(u16 val)
704 {
705 return (val & CNL_DRAM_SIZE_MASK) / 2;
706 }
707
708 static int cnl_get_dimm_width(u16 val)
709 {
710 if (cnl_get_dimm_size(val) == 0)
711 return 0;
712
713 switch (val & CNL_DRAM_WIDTH_MASK) {
714 case CNL_DRAM_WIDTH_X8:
715 case CNL_DRAM_WIDTH_X16:
716 case CNL_DRAM_WIDTH_X32:
717 val = (val & CNL_DRAM_WIDTH_MASK) >> CNL_DRAM_WIDTH_SHIFT;
718 return 8 << val;
719 default:
720 MISSING_CASE(val);
721 return 0;
722 }
723 }
724
725 static int cnl_get_dimm_ranks(u16 val)
726 {
727 if (cnl_get_dimm_size(val) == 0)
728 return 0;
729
730 val = (val & CNL_DRAM_RANK_MASK) >> CNL_DRAM_RANK_SHIFT;
731
732 return val + 1;
733 }
734
735 static bool
736 skl_is_16gb_dimm(const struct dram_dimm_info *dimm)
737 {
738 /* Convert total GB to Gb per DRAM device */
739 return 8 * dimm->size / (intel_dimm_num_devices(dimm) ?: 1) == 16;
740 }
741
742 static void
743 skl_dram_get_dimm_info(struct drm_i915_private *dev_priv,
744 struct dram_dimm_info *dimm,
745 int channel, char dimm_name, u16 val)
746 {
747 if (INTEL_GEN(dev_priv) >= 10) {
748 dimm->size = cnl_get_dimm_size(val);
749 dimm->width = cnl_get_dimm_width(val);
750 dimm->ranks = cnl_get_dimm_ranks(val);
751 } else {
752 dimm->size = skl_get_dimm_size(val);
753 dimm->width = skl_get_dimm_width(val);
754 dimm->ranks = skl_get_dimm_ranks(val);
755 }
756
757 DRM_DEBUG_KMS("CH%u DIMM %c size: %u GB, width: X%u, ranks: %u, 16Gb DIMMs: %s\n",
758 channel, dimm_name, dimm->size, dimm->width, dimm->ranks,
759 yesno(skl_is_16gb_dimm(dimm)));
760 }
761
762 static int
763 skl_dram_get_channel_info(struct drm_i915_private *dev_priv,
764 struct dram_channel_info *ch,
765 int channel, u32 val)
766 {
767 skl_dram_get_dimm_info(dev_priv, &ch->dimm_l,
768 channel, 'L', val & 0xffff);
769 skl_dram_get_dimm_info(dev_priv, &ch->dimm_s,
770 channel, 'S', val >> 16);
771
772 if (ch->dimm_l.size == 0 && ch->dimm_s.size == 0) {
773 DRM_DEBUG_KMS("CH%u not populated\n", channel);
774 return -EINVAL;
775 }
776
777 if (ch->dimm_l.ranks == 2 || ch->dimm_s.ranks == 2)
778 ch->ranks = 2;
779 else if (ch->dimm_l.ranks == 1 && ch->dimm_s.ranks == 1)
780 ch->ranks = 2;
781 else
782 ch->ranks = 1;
783
784 ch->is_16gb_dimm =
785 skl_is_16gb_dimm(&ch->dimm_l) ||
786 skl_is_16gb_dimm(&ch->dimm_s);
787
788 DRM_DEBUG_KMS("CH%u ranks: %u, 16Gb DIMMs: %s\n",
789 channel, ch->ranks, yesno(ch->is_16gb_dimm));
790
791 return 0;
792 }
793
794 static bool
795 intel_is_dram_symmetric(const struct dram_channel_info *ch0,
796 const struct dram_channel_info *ch1)
797 {
798 return !memcmp(ch0, ch1, sizeof(*ch0)) &&
799 (ch0->dimm_s.size == 0 ||
800 !memcmp(&ch0->dimm_l, &ch0->dimm_s, sizeof(ch0->dimm_l)));
801 }
802
803 static int
804 skl_dram_get_channels_info(struct drm_i915_private *dev_priv)
805 {
806 struct dram_info *dram_info = &dev_priv->dram_info;
807 struct dram_channel_info ch0 = {}, ch1 = {};
808 u32 val;
809 int ret;
810
811 val = I915_READ(SKL_MAD_DIMM_CH0_0_0_0_MCHBAR_MCMAIN);
812 ret = skl_dram_get_channel_info(dev_priv, &ch0, 0, val);
813 if (ret == 0)
814 dram_info->num_channels++;
815
816 val = I915_READ(SKL_MAD_DIMM_CH1_0_0_0_MCHBAR_MCMAIN);
817 ret = skl_dram_get_channel_info(dev_priv, &ch1, 1, val);
818 if (ret == 0)
819 dram_info->num_channels++;
820
821 if (dram_info->num_channels == 0) {
822 DRM_INFO("Number of memory channels is zero\n");
823 return -EINVAL;
824 }
825
826 /*
827 * If any of the channel is single rank channel, worst case output
828 * will be same as if single rank memory, so consider single rank
829 * memory.
830 */
831 if (ch0.ranks == 1 || ch1.ranks == 1)
832 dram_info->ranks = 1;
833 else
834 dram_info->ranks = max(ch0.ranks, ch1.ranks);
835
836 if (dram_info->ranks == 0) {
837 DRM_INFO("couldn't get memory rank information\n");
838 return -EINVAL;
839 }
840
841 dram_info->is_16gb_dimm = ch0.is_16gb_dimm || ch1.is_16gb_dimm;
842
843 dram_info->symmetric_memory = intel_is_dram_symmetric(&ch0, &ch1);
844
845 DRM_DEBUG_KMS("Memory configuration is symmetric? %s\n",
846 yesno(dram_info->symmetric_memory));
847 return 0;
848 }
849
850 static enum intel_dram_type
851 skl_get_dram_type(struct drm_i915_private *dev_priv)
852 {
853 u32 val;
854
855 val = I915_READ(SKL_MAD_INTER_CHANNEL_0_0_0_MCHBAR_MCMAIN);
856
857 switch (val & SKL_DRAM_DDR_TYPE_MASK) {
858 case SKL_DRAM_DDR_TYPE_DDR3:
859 return INTEL_DRAM_DDR3;
860 case SKL_DRAM_DDR_TYPE_DDR4:
861 return INTEL_DRAM_DDR4;
862 case SKL_DRAM_DDR_TYPE_LPDDR3:
863 return INTEL_DRAM_LPDDR3;
864 case SKL_DRAM_DDR_TYPE_LPDDR4:
865 return INTEL_DRAM_LPDDR4;
866 default:
867 MISSING_CASE(val);
868 return INTEL_DRAM_UNKNOWN;
869 }
870 }
871
872 static int
873 skl_get_dram_info(struct drm_i915_private *dev_priv)
874 {
875 struct dram_info *dram_info = &dev_priv->dram_info;
876 u32 mem_freq_khz, val;
877 int ret;
878
879 dram_info->type = skl_get_dram_type(dev_priv);
880 DRM_DEBUG_KMS("DRAM type: %s\n", intel_dram_type_str(dram_info->type));
881
882 ret = skl_dram_get_channels_info(dev_priv);
883 if (ret)
884 return ret;
885
886 val = I915_READ(SKL_MC_BIOS_DATA_0_0_0_MCHBAR_PCU);
887 mem_freq_khz = DIV_ROUND_UP((val & SKL_REQ_DATA_MASK) *
888 SKL_MEMORY_FREQ_MULTIPLIER_HZ, 1000);
889
890 dram_info->bandwidth_kbps = dram_info->num_channels *
891 mem_freq_khz * 8;
892
893 if (dram_info->bandwidth_kbps == 0) {
894 DRM_INFO("Couldn't get system memory bandwidth\n");
895 return -EINVAL;
896 }
897
898 dram_info->valid = true;
899 return 0;
900 }
901
902 /* Returns Gb per DRAM device */
903 static int bxt_get_dimm_size(u32 val)
904 {
905 switch (val & BXT_DRAM_SIZE_MASK) {
906 case BXT_DRAM_SIZE_4GBIT:
907 return 4;
908 case BXT_DRAM_SIZE_6GBIT:
909 return 6;
910 case BXT_DRAM_SIZE_8GBIT:
911 return 8;
912 case BXT_DRAM_SIZE_12GBIT:
913 return 12;
914 case BXT_DRAM_SIZE_16GBIT:
915 return 16;
916 default:
917 MISSING_CASE(val);
918 return 0;
919 }
920 }
921
922 static int bxt_get_dimm_width(u32 val)
923 {
924 if (!bxt_get_dimm_size(val))
925 return 0;
926
927 val = (val & BXT_DRAM_WIDTH_MASK) >> BXT_DRAM_WIDTH_SHIFT;
928
929 return 8 << val;
930 }
931
932 static int bxt_get_dimm_ranks(u32 val)
933 {
934 if (!bxt_get_dimm_size(val))
935 return 0;
936
937 switch (val & BXT_DRAM_RANK_MASK) {
938 case BXT_DRAM_RANK_SINGLE:
939 return 1;
940 case BXT_DRAM_RANK_DUAL:
941 return 2;
942 default:
943 MISSING_CASE(val);
944 return 0;
945 }
946 }
947
948 static enum intel_dram_type bxt_get_dimm_type(u32 val)
949 {
950 if (!bxt_get_dimm_size(val))
951 return INTEL_DRAM_UNKNOWN;
952
953 switch (val & BXT_DRAM_TYPE_MASK) {
954 case BXT_DRAM_TYPE_DDR3:
955 return INTEL_DRAM_DDR3;
956 case BXT_DRAM_TYPE_LPDDR3:
957 return INTEL_DRAM_LPDDR3;
958 case BXT_DRAM_TYPE_DDR4:
959 return INTEL_DRAM_DDR4;
960 case BXT_DRAM_TYPE_LPDDR4:
961 return INTEL_DRAM_LPDDR4;
962 default:
963 MISSING_CASE(val);
964 return INTEL_DRAM_UNKNOWN;
965 }
966 }
967
968 static void bxt_get_dimm_info(struct dram_dimm_info *dimm,
969 u32 val)
970 {
971 dimm->width = bxt_get_dimm_width(val);
972 dimm->ranks = bxt_get_dimm_ranks(val);
973
974 /*
975 * Size in register is Gb per DRAM device. Convert to total
976 * GB to match the way we report this for non-LP platforms.
977 */
978 dimm->size = bxt_get_dimm_size(val) * intel_dimm_num_devices(dimm) / 8;
979 }
980
981 static int
982 bxt_get_dram_info(struct drm_i915_private *dev_priv)
983 {
984 struct dram_info *dram_info = &dev_priv->dram_info;
985 u32 dram_channels;
986 u32 mem_freq_khz, val;
987 u8 num_active_channels;
988 int i;
989
990 val = I915_READ(BXT_P_CR_MC_BIOS_REQ_0_0_0);
991 mem_freq_khz = DIV_ROUND_UP((val & BXT_REQ_DATA_MASK) *
992 BXT_MEMORY_FREQ_MULTIPLIER_HZ, 1000);
993
994 dram_channels = val & BXT_DRAM_CHANNEL_ACTIVE_MASK;
995 num_active_channels = hweight32(dram_channels);
996
997 /* Each active bit represents 4-byte channel */
998 dram_info->bandwidth_kbps = (mem_freq_khz * num_active_channels * 4);
999
1000 if (dram_info->bandwidth_kbps == 0) {
1001 DRM_INFO("Couldn't get system memory bandwidth\n");
1002 return -EINVAL;
1003 }
1004
1005 /*
1006 * Now read each DUNIT8/9/10/11 to check the rank of each dimms.
1007 */
1008 for (i = BXT_D_CR_DRP0_DUNIT_START; i <= BXT_D_CR_DRP0_DUNIT_END; i++) {
1009 struct dram_dimm_info dimm;
1010 enum intel_dram_type type;
1011
1012 val = I915_READ(BXT_D_CR_DRP0_DUNIT(i));
1013 if (val == 0xFFFFFFFF)
1014 continue;
1015
1016 dram_info->num_channels++;
1017
1018 bxt_get_dimm_info(&dimm, val);
1019 type = bxt_get_dimm_type(val);
1020
1021 WARN_ON(type != INTEL_DRAM_UNKNOWN &&
1022 dram_info->type != INTEL_DRAM_UNKNOWN &&
1023 dram_info->type != type);
1024
1025 DRM_DEBUG_KMS("CH%u DIMM size: %u GB, width: X%u, ranks: %u, type: %s\n",
1026 i - BXT_D_CR_DRP0_DUNIT_START,
1027 dimm.size, dimm.width, dimm.ranks,
1028 intel_dram_type_str(type));
1029
1030 /*
1031 * If any of the channel is single rank channel,
1032 * worst case output will be same as if single rank
1033 * memory, so consider single rank memory.
1034 */
1035 if (dram_info->ranks == 0)
1036 dram_info->ranks = dimm.ranks;
1037 else if (dimm.ranks == 1)
1038 dram_info->ranks = 1;
1039
1040 if (type != INTEL_DRAM_UNKNOWN)
1041 dram_info->type = type;
1042 }
1043
1044 if (dram_info->type == INTEL_DRAM_UNKNOWN ||
1045 dram_info->ranks == 0) {
1046 DRM_INFO("couldn't get memory information\n");
1047 return -EINVAL;
1048 }
1049
1050 dram_info->valid = true;
1051 return 0;
1052 }
1053
1054 static void
1055 intel_get_dram_info(struct drm_i915_private *dev_priv)
1056 {
1057 struct dram_info *dram_info = &dev_priv->dram_info;
1058 int ret;
1059
1060 /*
1061 * Assume 16Gb DIMMs are present until proven otherwise.
1062 * This is only used for the level 0 watermark latency
1063 * w/a which does not apply to bxt/glk.
1064 */
1065 dram_info->is_16gb_dimm = !IS_GEN9_LP(dev_priv);
1066
1067 if (INTEL_GEN(dev_priv) < 9 || !HAS_DISPLAY(dev_priv))
1068 return;
1069
1070 if (IS_GEN9_LP(dev_priv))
1071 ret = bxt_get_dram_info(dev_priv);
1072 else
1073 ret = skl_get_dram_info(dev_priv);
1074 if (ret)
1075 return;
1076
1077 DRM_DEBUG_KMS("DRAM bandwidth: %u kBps, channels: %u\n",
1078 dram_info->bandwidth_kbps,
1079 dram_info->num_channels);
1080
1081 DRM_DEBUG_KMS("DRAM ranks: %u, 16Gb DIMMs: %s\n",
1082 dram_info->ranks, yesno(dram_info->is_16gb_dimm));
1083 }
1084
1085 static u32 gen9_edram_size_mb(struct drm_i915_private *dev_priv, u32 cap)
1086 {
1087 static const u8 ways[8] = { 4, 8, 12, 16, 16, 16, 16, 16 };
1088 static const u8 sets[4] = { 1, 1, 2, 2 };
1089
1090 return EDRAM_NUM_BANKS(cap) *
1091 ways[EDRAM_WAYS_IDX(cap)] *
1092 sets[EDRAM_SETS_IDX(cap)];
1093 }
1094
1095 static void edram_detect(struct drm_i915_private *dev_priv)
1096 {
1097 u32 edram_cap = 0;
1098
1099 if (!(IS_HASWELL(dev_priv) ||
1100 IS_BROADWELL(dev_priv) ||
1101 INTEL_GEN(dev_priv) >= 9))
1102 return;
1103
1104 edram_cap = __raw_uncore_read32(&dev_priv->uncore, HSW_EDRAM_CAP);
1105
1106 /* NB: We can't write IDICR yet because we don't have gt funcs set up */
1107
1108 if (!(edram_cap & EDRAM_ENABLED))
1109 return;
1110
1111 /*
1112 * The needed capability bits for size calculation are not there with
1113 * pre gen9 so return 128MB always.
1114 */
1115 if (INTEL_GEN(dev_priv) < 9)
1116 dev_priv->edram_size_mb = 128;
1117 else
1118 dev_priv->edram_size_mb =
1119 gen9_edram_size_mb(dev_priv, edram_cap);
1120
1121 dev_info(dev_priv->drm.dev,
1122 "Found %uMB of eDRAM\n", dev_priv->edram_size_mb);
1123 }
1124
1125 /**
1126 * i915_driver_hw_probe - setup state requiring device access
1127 * @dev_priv: device private
1128 *
1129 * Setup state that requires accessing the device, but doesn't require
1130 * exposing the driver via kernel internal or userspace interfaces.
1131 */
1132 static int i915_driver_hw_probe(struct drm_i915_private *dev_priv)
1133 {
1134 struct pci_dev *pdev = dev_priv->drm.pdev;
1135 int ret;
1136
1137 if (i915_inject_probe_failure(dev_priv))
1138 return -ENODEV;
1139
1140 intel_device_info_runtime_init(dev_priv);
1141
1142 if (HAS_PPGTT(dev_priv)) {
1143 if (intel_vgpu_active(dev_priv) &&
1144 !intel_vgpu_has_full_ppgtt(dev_priv)) {
1145 i915_report_error(dev_priv,
1146 "incompatible vGPU found, support for isolated ppGTT required\n");
1147 return -ENXIO;
1148 }
1149 }
1150
1151 if (HAS_EXECLISTS(dev_priv)) {
1152 /*
1153 * Older GVT emulation depends upon intercepting CSB mmio,
1154 * which we no longer use, preferring to use the HWSP cache
1155 * instead.
1156 */
1157 if (intel_vgpu_active(dev_priv) &&
1158 !intel_vgpu_has_hwsp_emulation(dev_priv)) {
1159 i915_report_error(dev_priv,
1160 "old vGPU host found, support for HWSP emulation required\n");
1161 return -ENXIO;
1162 }
1163 }
1164
1165 intel_sanitize_options(dev_priv);
1166
1167 /* needs to be done before ggtt probe */
1168 edram_detect(dev_priv);
1169
1170 i915_perf_init(dev_priv);
1171
1172 ret = i915_ggtt_probe_hw(dev_priv);
1173 if (ret)
1174 goto err_perf;
1175
1176 ret = drm_fb_helper_remove_conflicting_pci_framebuffers(pdev, "inteldrmfb");
1177 if (ret)
1178 goto err_ggtt;
1179
1180 ret = i915_ggtt_init_hw(dev_priv);
1181 if (ret)
1182 goto err_ggtt;
1183
1184 ret = intel_memory_regions_hw_probe(dev_priv);
1185 if (ret)
1186 goto err_ggtt;
1187
1188 intel_gt_init_hw_early(&dev_priv->gt, &dev_priv->ggtt);
1189
1190 ret = i915_ggtt_enable_hw(dev_priv);
1191 if (ret) {
1192 DRM_ERROR("failed to enable GGTT\n");
1193 goto err_mem_regions;
1194 }
1195
1196 pci_set_master(pdev);
1197
1198 /*
1199 * We don't have a max segment size, so set it to the max so sg's
1200 * debugging layer doesn't complain
1201 */
1202 dma_set_max_seg_size(&pdev->dev, UINT_MAX);
1203
1204 /* overlay on gen2 is broken and can't address above 1G */
1205 if (IS_GEN(dev_priv, 2)) {
1206 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
1207 if (ret) {
1208 DRM_ERROR("failed to set DMA mask\n");
1209
1210 goto err_mem_regions;
1211 }
1212 }
1213
1214 /* 965GM sometimes incorrectly writes to hardware status page (HWS)
1215 * using 32bit addressing, overwriting memory if HWS is located
1216 * above 4GB.
1217 *
1218 * The documentation also mentions an issue with undefined
1219 * behaviour if any general state is accessed within a page above 4GB,
1220 * which also needs to be handled carefully.
1221 */
1222 if (IS_I965G(dev_priv) || IS_I965GM(dev_priv)) {
1223 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1224
1225 if (ret) {
1226 DRM_ERROR("failed to set DMA mask\n");
1227
1228 goto err_mem_regions;
1229 }
1230 }
1231
1232 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1233 PM_QOS_DEFAULT_VALUE);
1234
1235 intel_gt_init_workarounds(dev_priv);
1236
1237 /* On the 945G/GM, the chipset reports the MSI capability on the
1238 * integrated graphics even though the support isn't actually there
1239 * according to the published specs. It doesn't appear to function
1240 * correctly in testing on 945G.
1241 * This may be a side effect of MSI having been made available for PEG
1242 * and the registers being closely associated.
1243 *
1244 * According to chipset errata, on the 965GM, MSI interrupts may
1245 * be lost or delayed, and was defeatured. MSI interrupts seem to
1246 * get lost on g4x as well, and interrupt delivery seems to stay
1247 * properly dead afterwards. So we'll just disable them for all
1248 * pre-gen5 chipsets.
1249 *
1250 * dp aux and gmbus irq on gen4 seems to be able to generate legacy
1251 * interrupts even when in MSI mode. This results in spurious
1252 * interrupt warnings if the legacy irq no. is shared with another
1253 * device. The kernel then disables that interrupt source and so
1254 * prevents the other device from working properly.
1255 */
1256 if (INTEL_GEN(dev_priv) >= 5) {
1257 if (pci_enable_msi(pdev) < 0)
1258 DRM_DEBUG_DRIVER("can't enable MSI");
1259 }
1260
1261 ret = intel_gvt_init(dev_priv);
1262 if (ret)
1263 goto err_msi;
1264
1265 intel_opregion_setup(dev_priv);
1266 /*
1267 * Fill the dram structure to get the system raw bandwidth and
1268 * dram info. This will be used for memory latency calculation.
1269 */
1270 intel_get_dram_info(dev_priv);
1271
1272 intel_bw_init_hw(dev_priv);
1273
1274 return 0;
1275
1276 err_msi:
1277 if (pdev->msi_enabled)
1278 pci_disable_msi(pdev);
1279 pm_qos_remove_request(&dev_priv->pm_qos);
1280 err_mem_regions:
1281 intel_memory_regions_driver_release(dev_priv);
1282 err_ggtt:
1283 i915_ggtt_driver_release(dev_priv);
1284 err_perf:
1285 i915_perf_fini(dev_priv);
1286 return ret;
1287 }
1288
1289 /**
1290 * i915_driver_hw_remove - cleanup the setup done in i915_driver_hw_probe()
1291 * @dev_priv: device private
1292 */
1293 static void i915_driver_hw_remove(struct drm_i915_private *dev_priv)
1294 {
1295 struct pci_dev *pdev = dev_priv->drm.pdev;
1296
1297 i915_perf_fini(dev_priv);
1298
1299 if (pdev->msi_enabled)
1300 pci_disable_msi(pdev);
1301
1302 pm_qos_remove_request(&dev_priv->pm_qos);
1303 }
1304
1305 /**
1306 * i915_driver_register - register the driver with the rest of the system
1307 * @dev_priv: device private
1308 *
1309 * Perform any steps necessary to make the driver available via kernel
1310 * internal or userspace interfaces.
1311 */
1312 static void i915_driver_register(struct drm_i915_private *dev_priv)
1313 {
1314 struct drm_device *dev = &dev_priv->drm;
1315
1316 i915_gem_driver_register(dev_priv);
1317 i915_pmu_register(dev_priv);
1318
1319 /*
1320 * Notify a valid surface after modesetting,
1321 * when running inside a VM.
1322 */
1323 if (intel_vgpu_active(dev_priv))
1324 I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1325
1326 /* Reveal our presence to userspace */
1327 if (drm_dev_register(dev, 0) == 0) {
1328 i915_debugfs_register(dev_priv);
1329 i915_setup_sysfs(dev_priv);
1330
1331 /* Depends on sysfs having been initialized */
1332 i915_perf_register(dev_priv);
1333 } else
1334 DRM_ERROR("Failed to register driver for userspace access!\n");
1335
1336 if (HAS_DISPLAY(dev_priv) && INTEL_DISPLAY_ENABLED(dev_priv)) {
1337 /* Must be done after probing outputs */
1338 intel_opregion_register(dev_priv);
1339 acpi_video_register();
1340 }
1341
1342 intel_gt_driver_register(&dev_priv->gt);
1343
1344 intel_audio_init(dev_priv);
1345
1346 /*
1347 * Some ports require correctly set-up hpd registers for detection to
1348 * work properly (leading to ghost connected connector status), e.g. VGA
1349 * on gm45. Hence we can only set up the initial fbdev config after hpd
1350 * irqs are fully enabled. We do it last so that the async config
1351 * cannot run before the connectors are registered.
1352 */
1353 intel_fbdev_initial_config_async(dev);
1354
1355 /*
1356 * We need to coordinate the hotplugs with the asynchronous fbdev
1357 * configuration, for which we use the fbdev->async_cookie.
1358 */
1359 if (HAS_DISPLAY(dev_priv) && INTEL_DISPLAY_ENABLED(dev_priv))
1360 drm_kms_helper_poll_init(dev);
1361
1362 intel_power_domains_enable(dev_priv);
1363 intel_runtime_pm_enable(&dev_priv->runtime_pm);
1364 }
1365
1366 /**
1367 * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1368 * @dev_priv: device private
1369 */
1370 static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1371 {
1372 intel_runtime_pm_disable(&dev_priv->runtime_pm);
1373 intel_power_domains_disable(dev_priv);
1374
1375 intel_fbdev_unregister(dev_priv);
1376 intel_audio_deinit(dev_priv);
1377
1378 /*
1379 * After flushing the fbdev (incl. a late async config which will
1380 * have delayed queuing of a hotplug event), then flush the hotplug
1381 * events.
1382 */
1383 drm_kms_helper_poll_fini(&dev_priv->drm);
1384
1385 intel_gt_driver_unregister(&dev_priv->gt);
1386 acpi_video_unregister();
1387 intel_opregion_unregister(dev_priv);
1388
1389 i915_perf_unregister(dev_priv);
1390 i915_pmu_unregister(dev_priv);
1391
1392 i915_teardown_sysfs(dev_priv);
1393 drm_dev_unplug(&dev_priv->drm);
1394
1395 i915_gem_driver_unregister(dev_priv);
1396 }
1397
1398 static void i915_welcome_messages(struct drm_i915_private *dev_priv)
1399 {
1400 if (drm_debug_enabled(DRM_UT_DRIVER)) {
1401 struct drm_printer p = drm_debug_printer("i915 device info:");
1402
1403 drm_printf(&p, "pciid=0x%04x rev=0x%02x platform=%s (subplatform=0x%x) gen=%i\n",
1404 INTEL_DEVID(dev_priv),
1405 INTEL_REVID(dev_priv),
1406 intel_platform_name(INTEL_INFO(dev_priv)->platform),
1407 intel_subplatform(RUNTIME_INFO(dev_priv),
1408 INTEL_INFO(dev_priv)->platform),
1409 INTEL_GEN(dev_priv));
1410
1411 intel_device_info_print_static(INTEL_INFO(dev_priv), &p);
1412 intel_device_info_print_runtime(RUNTIME_INFO(dev_priv), &p);
1413 }
1414
1415 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG))
1416 DRM_INFO("DRM_I915_DEBUG enabled\n");
1417 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1418 DRM_INFO("DRM_I915_DEBUG_GEM enabled\n");
1419 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM))
1420 DRM_INFO("DRM_I915_DEBUG_RUNTIME_PM enabled\n");
1421 }
1422
1423 static struct drm_i915_private *
1424 i915_driver_create(struct pci_dev *pdev, const struct pci_device_id *ent)
1425 {
1426 const struct intel_device_info *match_info =
1427 (struct intel_device_info *)ent->driver_data;
1428 struct intel_device_info *device_info;
1429 struct drm_i915_private *i915;
1430 int err;
1431
1432 i915 = kzalloc(sizeof(*i915), GFP_KERNEL);
1433 if (!i915)
1434 return ERR_PTR(-ENOMEM);
1435
1436 err = drm_dev_init(&i915->drm, &driver, &pdev->dev);
1437 if (err) {
1438 kfree(i915);
1439 return ERR_PTR(err);
1440 }
1441
1442 i915->drm.dev_private = i915;
1443
1444 i915->drm.pdev = pdev;
1445 pci_set_drvdata(pdev, i915);
1446
1447 /* Setup the write-once "constant" device info */
1448 device_info = mkwrite_device_info(i915);
1449 memcpy(device_info, match_info, sizeof(*device_info));
1450 RUNTIME_INFO(i915)->device_id = pdev->device;
1451
1452 BUG_ON(device_info->gen > BITS_PER_TYPE(device_info->gen_mask));
1453
1454 return i915;
1455 }
1456
1457 static void i915_driver_destroy(struct drm_i915_private *i915)
1458 {
1459 struct pci_dev *pdev = i915->drm.pdev;
1460
1461 drm_dev_fini(&i915->drm);
1462 kfree(i915);
1463
1464 /* And make sure we never chase our dangling pointer from pci_dev */
1465 pci_set_drvdata(pdev, NULL);
1466 }
1467
1468 /**
1469 * i915_driver_probe - setup chip and create an initial config
1470 * @pdev: PCI device
1471 * @ent: matching PCI ID entry
1472 *
1473 * The driver probe routine has to do several things:
1474 * - drive output discovery via intel_modeset_init()
1475 * - initialize the memory manager
1476 * - allocate initial config memory
1477 * - setup the DRM framebuffer with the allocated memory
1478 */
1479 int i915_driver_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1480 {
1481 const struct intel_device_info *match_info =
1482 (struct intel_device_info *)ent->driver_data;
1483 struct drm_i915_private *dev_priv;
1484 int ret;
1485
1486 dev_priv = i915_driver_create(pdev, ent);
1487 if (IS_ERR(dev_priv))
1488 return PTR_ERR(dev_priv);
1489
1490 /* Disable nuclear pageflip by default on pre-ILK */
1491 if (!i915_modparams.nuclear_pageflip && match_info->gen < 5)
1492 dev_priv->drm.driver_features &= ~DRIVER_ATOMIC;
1493
1494 /*
1495 * Check if we support fake LMEM -- for now we only unleash this for
1496 * the live selftests(test-and-exit).
1497 */
1498 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1499 if (IS_ENABLED(CONFIG_DRM_I915_UNSTABLE_FAKE_LMEM)) {
1500 if (INTEL_GEN(dev_priv) >= 9 && i915_selftest.live < 0 &&
1501 i915_modparams.fake_lmem_start) {
1502 mkwrite_device_info(dev_priv)->memory_regions =
1503 REGION_SMEM | REGION_LMEM | REGION_STOLEN;
1504 mkwrite_device_info(dev_priv)->is_dgfx = true;
1505 GEM_BUG_ON(!HAS_LMEM(dev_priv));
1506 GEM_BUG_ON(!IS_DGFX(dev_priv));
1507 }
1508 }
1509 #endif
1510
1511 ret = pci_enable_device(pdev);
1512 if (ret)
1513 goto out_fini;
1514
1515 ret = i915_driver_early_probe(dev_priv);
1516 if (ret < 0)
1517 goto out_pci_disable;
1518
1519 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1520
1521 i915_detect_vgpu(dev_priv);
1522
1523 ret = i915_driver_mmio_probe(dev_priv);
1524 if (ret < 0)
1525 goto out_runtime_pm_put;
1526
1527 ret = i915_driver_hw_probe(dev_priv);
1528 if (ret < 0)
1529 goto out_cleanup_mmio;
1530
1531 ret = i915_driver_modeset_probe(dev_priv);
1532 if (ret < 0)
1533 goto out_cleanup_hw;
1534
1535 i915_driver_register(dev_priv);
1536
1537 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1538
1539 i915_welcome_messages(dev_priv);
1540
1541 return 0;
1542
1543 out_cleanup_hw:
1544 i915_driver_hw_remove(dev_priv);
1545 intel_memory_regions_driver_release(dev_priv);
1546 i915_ggtt_driver_release(dev_priv);
1547 out_cleanup_mmio:
1548 i915_driver_mmio_release(dev_priv);
1549 out_runtime_pm_put:
1550 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1551 i915_driver_late_release(dev_priv);
1552 out_pci_disable:
1553 pci_disable_device(pdev);
1554 out_fini:
1555 i915_probe_error(dev_priv, "Device initialization failed (%d)\n", ret);
1556 i915_driver_destroy(dev_priv);
1557 return ret;
1558 }
1559
1560 void i915_driver_remove(struct drm_i915_private *i915)
1561 {
1562 disable_rpm_wakeref_asserts(&i915->runtime_pm);
1563
1564 i915_driver_unregister(i915);
1565
1566 /*
1567 * After unregistering the device to prevent any new users, cancel
1568 * all in-flight requests so that we can quickly unbind the active
1569 * resources.
1570 */
1571 intel_gt_set_wedged(&i915->gt);
1572
1573 /* Flush any external code that still may be under the RCU lock */
1574 synchronize_rcu();
1575
1576 i915_gem_suspend(i915);
1577
1578 drm_atomic_helper_shutdown(&i915->drm);
1579
1580 intel_gvt_driver_remove(i915);
1581
1582 i915_driver_modeset_remove(i915);
1583
1584 i915_reset_error_state(i915);
1585 i915_gem_driver_remove(i915);
1586
1587 intel_power_domains_driver_remove(i915);
1588
1589 i915_driver_hw_remove(i915);
1590
1591 enable_rpm_wakeref_asserts(&i915->runtime_pm);
1592 }
1593
1594 static void i915_driver_release(struct drm_device *dev)
1595 {
1596 struct drm_i915_private *dev_priv = to_i915(dev);
1597 struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
1598
1599 disable_rpm_wakeref_asserts(rpm);
1600
1601 i915_gem_driver_release(dev_priv);
1602
1603 intel_memory_regions_driver_release(dev_priv);
1604 i915_ggtt_driver_release(dev_priv);
1605
1606 i915_driver_mmio_release(dev_priv);
1607
1608 enable_rpm_wakeref_asserts(rpm);
1609 intel_runtime_pm_driver_release(rpm);
1610
1611 i915_driver_late_release(dev_priv);
1612 i915_driver_destroy(dev_priv);
1613 }
1614
1615 static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1616 {
1617 struct drm_i915_private *i915 = to_i915(dev);
1618 int ret;
1619
1620 ret = i915_gem_open(i915, file);
1621 if (ret)
1622 return ret;
1623
1624 return 0;
1625 }
1626
1627 /**
1628 * i915_driver_lastclose - clean up after all DRM clients have exited
1629 * @dev: DRM device
1630 *
1631 * Take care of cleaning up after all DRM clients have exited. In the
1632 * mode setting case, we want to restore the kernel's initial mode (just
1633 * in case the last client left us in a bad state).
1634 *
1635 * Additionally, in the non-mode setting case, we'll tear down the GTT
1636 * and DMA structures, since the kernel won't be using them, and clea
1637 * up any GEM state.
1638 */
1639 static void i915_driver_lastclose(struct drm_device *dev)
1640 {
1641 intel_fbdev_restore_mode(dev);
1642 vga_switcheroo_process_delayed_switch();
1643 }
1644
1645 static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1646 {
1647 struct drm_i915_file_private *file_priv = file->driver_priv;
1648
1649 i915_gem_context_close(file);
1650 i915_gem_release(dev, file);
1651
1652 kfree_rcu(file_priv, rcu);
1653
1654 /* Catch up with all the deferred frees from "this" client */
1655 i915_gem_flush_free_objects(to_i915(dev));
1656 }
1657
1658 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1659 {
1660 struct drm_device *dev = &dev_priv->drm;
1661 struct intel_encoder *encoder;
1662
1663 drm_modeset_lock_all(dev);
1664 for_each_intel_encoder(dev, encoder)
1665 if (encoder->suspend)
1666 encoder->suspend(encoder);
1667 drm_modeset_unlock_all(dev);
1668 }
1669
1670 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1671 bool rpm_resume);
1672 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1673
1674 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1675 {
1676 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
1677 if (acpi_target_system_state() < ACPI_STATE_S3)
1678 return true;
1679 #endif
1680 return false;
1681 }
1682
1683 static int i915_drm_prepare(struct drm_device *dev)
1684 {
1685 struct drm_i915_private *i915 = to_i915(dev);
1686
1687 /*
1688 * NB intel_display_suspend() may issue new requests after we've
1689 * ostensibly marked the GPU as ready-to-sleep here. We need to
1690 * split out that work and pull it forward so that after point,
1691 * the GPU is not woken again.
1692 */
1693 i915_gem_suspend(i915);
1694
1695 return 0;
1696 }
1697
1698 static int i915_drm_suspend(struct drm_device *dev)
1699 {
1700 struct drm_i915_private *dev_priv = to_i915(dev);
1701 struct pci_dev *pdev = dev_priv->drm.pdev;
1702 pci_power_t opregion_target_state;
1703
1704 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1705
1706 /* We do a lot of poking in a lot of registers, make sure they work
1707 * properly. */
1708 intel_power_domains_disable(dev_priv);
1709
1710 drm_kms_helper_poll_disable(dev);
1711
1712 pci_save_state(pdev);
1713
1714 intel_display_suspend(dev);
1715
1716 intel_dp_mst_suspend(dev_priv);
1717
1718 intel_runtime_pm_disable_interrupts(dev_priv);
1719 intel_hpd_cancel_work(dev_priv);
1720
1721 intel_suspend_encoders(dev_priv);
1722
1723 intel_suspend_hw(dev_priv);
1724
1725 i915_gem_suspend_gtt_mappings(dev_priv);
1726
1727 i915_save_state(dev_priv);
1728
1729 opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1730 intel_opregion_suspend(dev_priv, opregion_target_state);
1731
1732 intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1733
1734 dev_priv->suspend_count++;
1735
1736 intel_csr_ucode_suspend(dev_priv);
1737
1738 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1739
1740 return 0;
1741 }
1742
1743 static enum i915_drm_suspend_mode
1744 get_suspend_mode(struct drm_i915_private *dev_priv, bool hibernate)
1745 {
1746 if (hibernate)
1747 return I915_DRM_SUSPEND_HIBERNATE;
1748
1749 if (suspend_to_idle(dev_priv))
1750 return I915_DRM_SUSPEND_IDLE;
1751
1752 return I915_DRM_SUSPEND_MEM;
1753 }
1754
1755 static int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
1756 {
1757 struct drm_i915_private *dev_priv = to_i915(dev);
1758 struct pci_dev *pdev = dev_priv->drm.pdev;
1759 struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
1760 int ret = 0;
1761
1762 disable_rpm_wakeref_asserts(rpm);
1763
1764 i915_gem_suspend_late(dev_priv);
1765
1766 intel_uncore_suspend(&dev_priv->uncore);
1767
1768 intel_power_domains_suspend(dev_priv,
1769 get_suspend_mode(dev_priv, hibernation));
1770
1771 intel_display_power_suspend_late(dev_priv);
1772
1773 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1774 ret = vlv_suspend_complete(dev_priv);
1775
1776 if (ret) {
1777 DRM_ERROR("Suspend complete failed: %d\n", ret);
1778 intel_power_domains_resume(dev_priv);
1779
1780 goto out;
1781 }
1782
1783 pci_disable_device(pdev);
1784 /*
1785 * During hibernation on some platforms the BIOS may try to access
1786 * the device even though it's already in D3 and hang the machine. So
1787 * leave the device in D0 on those platforms and hope the BIOS will
1788 * power down the device properly. The issue was seen on multiple old
1789 * GENs with different BIOS vendors, so having an explicit blacklist
1790 * is inpractical; apply the workaround on everything pre GEN6. The
1791 * platforms where the issue was seen:
1792 * Lenovo Thinkpad X301, X61s, X60, T60, X41
1793 * Fujitsu FSC S7110
1794 * Acer Aspire 1830T
1795 */
1796 if (!(hibernation && INTEL_GEN(dev_priv) < 6))
1797 pci_set_power_state(pdev, PCI_D3hot);
1798
1799 out:
1800 enable_rpm_wakeref_asserts(rpm);
1801 if (!dev_priv->uncore.user_forcewake_count)
1802 intel_runtime_pm_driver_release(rpm);
1803
1804 return ret;
1805 }
1806
1807 int i915_suspend_switcheroo(struct drm_i915_private *i915, pm_message_t state)
1808 {
1809 int error;
1810
1811 if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
1812 state.event != PM_EVENT_FREEZE))
1813 return -EINVAL;
1814
1815 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
1816 return 0;
1817
1818 error = i915_drm_suspend(&i915->drm);
1819 if (error)
1820 return error;
1821
1822 return i915_drm_suspend_late(&i915->drm, false);
1823 }
1824
1825 static int i915_drm_resume(struct drm_device *dev)
1826 {
1827 struct drm_i915_private *dev_priv = to_i915(dev);
1828 int ret;
1829
1830 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1831
1832 sanitize_gpu(dev_priv);
1833
1834 ret = i915_ggtt_enable_hw(dev_priv);
1835 if (ret)
1836 DRM_ERROR("failed to re-enable GGTT\n");
1837
1838 i915_gem_restore_gtt_mappings(dev_priv);
1839 i915_gem_restore_fences(&dev_priv->ggtt);
1840
1841 intel_csr_ucode_resume(dev_priv);
1842
1843 i915_restore_state(dev_priv);
1844 intel_pps_unlock_regs_wa(dev_priv);
1845
1846 intel_init_pch_refclk(dev_priv);
1847
1848 /*
1849 * Interrupts have to be enabled before any batches are run. If not the
1850 * GPU will hang. i915_gem_init_hw() will initiate batches to
1851 * update/restore the context.
1852 *
1853 * drm_mode_config_reset() needs AUX interrupts.
1854 *
1855 * Modeset enabling in intel_modeset_init_hw() also needs working
1856 * interrupts.
1857 */
1858 intel_runtime_pm_enable_interrupts(dev_priv);
1859
1860 drm_mode_config_reset(dev);
1861
1862 i915_gem_resume(dev_priv);
1863
1864 intel_modeset_init_hw(dev_priv);
1865 intel_init_clock_gating(dev_priv);
1866
1867 spin_lock_irq(&dev_priv->irq_lock);
1868 if (dev_priv->display.hpd_irq_setup)
1869 dev_priv->display.hpd_irq_setup(dev_priv);
1870 spin_unlock_irq(&dev_priv->irq_lock);
1871
1872 intel_dp_mst_resume(dev_priv);
1873
1874 intel_display_resume(dev);
1875
1876 drm_kms_helper_poll_enable(dev);
1877
1878 /*
1879 * ... but also need to make sure that hotplug processing
1880 * doesn't cause havoc. Like in the driver load code we don't
1881 * bother with the tiny race here where we might lose hotplug
1882 * notifications.
1883 * */
1884 intel_hpd_init(dev_priv);
1885
1886 intel_opregion_resume(dev_priv);
1887
1888 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
1889
1890 intel_power_domains_enable(dev_priv);
1891
1892 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1893
1894 return 0;
1895 }
1896
1897 static int i915_drm_resume_early(struct drm_device *dev)
1898 {
1899 struct drm_i915_private *dev_priv = to_i915(dev);
1900 struct pci_dev *pdev = dev_priv->drm.pdev;
1901 int ret;
1902
1903 /*
1904 * We have a resume ordering issue with the snd-hda driver also
1905 * requiring our device to be power up. Due to the lack of a
1906 * parent/child relationship we currently solve this with an early
1907 * resume hook.
1908 *
1909 * FIXME: This should be solved with a special hdmi sink device or
1910 * similar so that power domains can be employed.
1911 */
1912
1913 /*
1914 * Note that we need to set the power state explicitly, since we
1915 * powered off the device during freeze and the PCI core won't power
1916 * it back up for us during thaw. Powering off the device during
1917 * freeze is not a hard requirement though, and during the
1918 * suspend/resume phases the PCI core makes sure we get here with the
1919 * device powered on. So in case we change our freeze logic and keep
1920 * the device powered we can also remove the following set power state
1921 * call.
1922 */
1923 ret = pci_set_power_state(pdev, PCI_D0);
1924 if (ret) {
1925 DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
1926 return ret;
1927 }
1928
1929 /*
1930 * Note that pci_enable_device() first enables any parent bridge
1931 * device and only then sets the power state for this device. The
1932 * bridge enabling is a nop though, since bridge devices are resumed
1933 * first. The order of enabling power and enabling the device is
1934 * imposed by the PCI core as described above, so here we preserve the
1935 * same order for the freeze/thaw phases.
1936 *
1937 * TODO: eventually we should remove pci_disable_device() /
1938 * pci_enable_enable_device() from suspend/resume. Due to how they
1939 * depend on the device enable refcount we can't anyway depend on them
1940 * disabling/enabling the device.
1941 */
1942 if (pci_enable_device(pdev))
1943 return -EIO;
1944
1945 pci_set_master(pdev);
1946
1947 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1948
1949 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1950 ret = vlv_resume_prepare(dev_priv, false);
1951 if (ret)
1952 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
1953 ret);
1954
1955 intel_uncore_resume_early(&dev_priv->uncore);
1956
1957 intel_gt_check_and_clear_faults(&dev_priv->gt);
1958
1959 intel_display_power_resume_early(dev_priv);
1960
1961 intel_power_domains_resume(dev_priv);
1962
1963 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1964
1965 return ret;
1966 }
1967
1968 int i915_resume_switcheroo(struct drm_i915_private *i915)
1969 {
1970 int ret;
1971
1972 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
1973 return 0;
1974
1975 ret = i915_drm_resume_early(&i915->drm);
1976 if (ret)
1977 return ret;
1978
1979 return i915_drm_resume(&i915->drm);
1980 }
1981
1982 static int i915_pm_prepare(struct device *kdev)
1983 {
1984 struct drm_i915_private *i915 = kdev_to_i915(kdev);
1985
1986 if (!i915) {
1987 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
1988 return -ENODEV;
1989 }
1990
1991 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
1992 return 0;
1993
1994 return i915_drm_prepare(&i915->drm);
1995 }
1996
1997 static int i915_pm_suspend(struct device *kdev)
1998 {
1999 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2000
2001 if (!i915) {
2002 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
2003 return -ENODEV;
2004 }
2005
2006 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2007 return 0;
2008
2009 return i915_drm_suspend(&i915->drm);
2010 }
2011
2012 static int i915_pm_suspend_late(struct device *kdev)
2013 {
2014 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2015
2016 /*
2017 * We have a suspend ordering issue with the snd-hda driver also
2018 * requiring our device to be power up. Due to the lack of a
2019 * parent/child relationship we currently solve this with an late
2020 * suspend hook.
2021 *
2022 * FIXME: This should be solved with a special hdmi sink device or
2023 * similar so that power domains can be employed.
2024 */
2025 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2026 return 0;
2027
2028 return i915_drm_suspend_late(&i915->drm, false);
2029 }
2030
2031 static int i915_pm_poweroff_late(struct device *kdev)
2032 {
2033 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2034
2035 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2036 return 0;
2037
2038 return i915_drm_suspend_late(&i915->drm, true);
2039 }
2040
2041 static int i915_pm_resume_early(struct device *kdev)
2042 {
2043 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2044
2045 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2046 return 0;
2047
2048 return i915_drm_resume_early(&i915->drm);
2049 }
2050
2051 static int i915_pm_resume(struct device *kdev)
2052 {
2053 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2054
2055 if (i915->drm.switch_power_state == DRM_SWITCH_POWER_OFF)
2056 return 0;
2057
2058 return i915_drm_resume(&i915->drm);
2059 }
2060
2061 /* freeze: before creating the hibernation_image */
2062 static int i915_pm_freeze(struct device *kdev)
2063 {
2064 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2065 int ret;
2066
2067 if (i915->drm.switch_power_state != DRM_SWITCH_POWER_OFF) {
2068 ret = i915_drm_suspend(&i915->drm);
2069 if (ret)
2070 return ret;
2071 }
2072
2073 ret = i915_gem_freeze(i915);
2074 if (ret)
2075 return ret;
2076
2077 return 0;
2078 }
2079
2080 static int i915_pm_freeze_late(struct device *kdev)
2081 {
2082 struct drm_i915_private *i915 = kdev_to_i915(kdev);
2083 int ret;
2084
2085 if (i915->drm.switch_power_state != DRM_SWITCH_POWER_OFF) {
2086 ret = i915_drm_suspend_late(&i915->drm, true);
2087 if (ret)
2088 return ret;
2089 }
2090
2091 ret = i915_gem_freeze_late(i915);
2092 if (ret)
2093 return ret;
2094
2095 return 0;
2096 }
2097
2098 /* thaw: called after creating the hibernation image, but before turning off. */
2099 static int i915_pm_thaw_early(struct device *kdev)
2100 {
2101 return i915_pm_resume_early(kdev);
2102 }
2103
2104 static int i915_pm_thaw(struct device *kdev)
2105 {
2106 return i915_pm_resume(kdev);
2107 }
2108
2109 /* restore: called after loading the hibernation image. */
2110 static int i915_pm_restore_early(struct device *kdev)
2111 {
2112 return i915_pm_resume_early(kdev);
2113 }
2114
2115 static int i915_pm_restore(struct device *kdev)
2116 {
2117 return i915_pm_resume(kdev);
2118 }
2119
2120 /*
2121 * Save all Gunit registers that may be lost after a D3 and a subsequent
2122 * S0i[R123] transition. The list of registers needing a save/restore is
2123 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
2124 * registers in the following way:
2125 * - Driver: saved/restored by the driver
2126 * - Punit : saved/restored by the Punit firmware
2127 * - No, w/o marking: no need to save/restore, since the register is R/O or
2128 * used internally by the HW in a way that doesn't depend
2129 * keeping the content across a suspend/resume.
2130 * - Debug : used for debugging
2131 *
2132 * We save/restore all registers marked with 'Driver', with the following
2133 * exceptions:
2134 * - Registers out of use, including also registers marked with 'Debug'.
2135 * These have no effect on the driver's operation, so we don't save/restore
2136 * them to reduce the overhead.
2137 * - Registers that are fully setup by an initialization function called from
2138 * the resume path. For example many clock gating and RPS/RC6 registers.
2139 * - Registers that provide the right functionality with their reset defaults.
2140 *
2141 * TODO: Except for registers that based on the above 3 criteria can be safely
2142 * ignored, we save/restore all others, practically treating the HW context as
2143 * a black-box for the driver. Further investigation is needed to reduce the
2144 * saved/restored registers even further, by following the same 3 criteria.
2145 */
2146 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2147 {
2148 struct vlv_s0ix_state *s = dev_priv->vlv_s0ix_state;
2149 int i;
2150
2151 if (!s)
2152 return;
2153
2154 /* GAM 0x4000-0x4770 */
2155 s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
2156 s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
2157 s->arb_mode = I915_READ(ARB_MODE);
2158 s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
2159 s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
2160
2161 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2162 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
2163
2164 s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
2165 s->gfx_max_req_count = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
2166
2167 s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
2168 s->ecochk = I915_READ(GAM_ECOCHK);
2169 s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
2170 s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
2171
2172 s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
2173
2174 /* MBC 0x9024-0x91D0, 0x8500 */
2175 s->g3dctl = I915_READ(VLV_G3DCTL);
2176 s->gsckgctl = I915_READ(VLV_GSCKGCTL);
2177 s->mbctl = I915_READ(GEN6_MBCTL);
2178
2179 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2180 s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
2181 s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
2182 s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
2183 s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
2184 s->rstctl = I915_READ(GEN6_RSTCTL);
2185 s->misccpctl = I915_READ(GEN7_MISCCPCTL);
2186
2187 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2188 s->gfxpause = I915_READ(GEN6_GFXPAUSE);
2189 s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
2190 s->rpdeuc = I915_READ(GEN6_RPDEUC);
2191 s->ecobus = I915_READ(ECOBUS);
2192 s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
2193 s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
2194 s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
2195 s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
2196 s->rcedata = I915_READ(VLV_RCEDATA);
2197 s->spare2gh = I915_READ(VLV_SPAREG2H);
2198
2199 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2200 s->gt_imr = I915_READ(GTIMR);
2201 s->gt_ier = I915_READ(GTIER);
2202 s->pm_imr = I915_READ(GEN6_PMIMR);
2203 s->pm_ier = I915_READ(GEN6_PMIER);
2204
2205 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2206 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
2207
2208 /* GT SA CZ domain, 0x100000-0x138124 */
2209 s->tilectl = I915_READ(TILECTL);
2210 s->gt_fifoctl = I915_READ(GTFIFOCTL);
2211 s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
2212 s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2213 s->pmwgicz = I915_READ(VLV_PMWGICZ);
2214
2215 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2216 s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
2217 s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
2218 s->pcbr = I915_READ(VLV_PCBR);
2219 s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
2220
2221 /*
2222 * Not saving any of:
2223 * DFT, 0x9800-0x9EC0
2224 * SARB, 0xB000-0xB1FC
2225 * GAC, 0x5208-0x524C, 0x14000-0x14C000
2226 * PCI CFG
2227 */
2228 }
2229
2230 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2231 {
2232 struct vlv_s0ix_state *s = dev_priv->vlv_s0ix_state;
2233 u32 val;
2234 int i;
2235
2236 if (!s)
2237 return;
2238
2239 /* GAM 0x4000-0x4770 */
2240 I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
2241 I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
2242 I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
2243 I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
2244 I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
2245
2246 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2247 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2248
2249 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2250 I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2251
2252 I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
2253 I915_WRITE(GAM_ECOCHK, s->ecochk);
2254 I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
2255 I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
2256
2257 I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
2258
2259 /* MBC 0x9024-0x91D0, 0x8500 */
2260 I915_WRITE(VLV_G3DCTL, s->g3dctl);
2261 I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
2262 I915_WRITE(GEN6_MBCTL, s->mbctl);
2263
2264 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2265 I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
2266 I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
2267 I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
2268 I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
2269 I915_WRITE(GEN6_RSTCTL, s->rstctl);
2270 I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
2271
2272 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2273 I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
2274 I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
2275 I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
2276 I915_WRITE(ECOBUS, s->ecobus);
2277 I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
2278 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2279 I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
2280 I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
2281 I915_WRITE(VLV_RCEDATA, s->rcedata);
2282 I915_WRITE(VLV_SPAREG2H, s->spare2gh);
2283
2284 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2285 I915_WRITE(GTIMR, s->gt_imr);
2286 I915_WRITE(GTIER, s->gt_ier);
2287 I915_WRITE(GEN6_PMIMR, s->pm_imr);
2288 I915_WRITE(GEN6_PMIER, s->pm_ier);
2289
2290 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2291 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2292
2293 /* GT SA CZ domain, 0x100000-0x138124 */
2294 I915_WRITE(TILECTL, s->tilectl);
2295 I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
2296 /*
2297 * Preserve the GT allow wake and GFX force clock bit, they are not
2298 * be restored, as they are used to control the s0ix suspend/resume
2299 * sequence by the caller.
2300 */
2301 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2302 val &= VLV_GTLC_ALLOWWAKEREQ;
2303 val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2304 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2305
2306 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2307 val &= VLV_GFX_CLK_FORCE_ON_BIT;
2308 val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2309 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2310
2311 I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
2312
2313 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2314 I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
2315 I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
2316 I915_WRITE(VLV_PCBR, s->pcbr);
2317 I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
2318 }
2319
2320 static int vlv_wait_for_pw_status(struct drm_i915_private *i915,
2321 u32 mask, u32 val)
2322 {
2323 i915_reg_t reg = VLV_GTLC_PW_STATUS;
2324 u32 reg_value;
2325 int ret;
2326
2327 /* The HW does not like us polling for PW_STATUS frequently, so
2328 * use the sleeping loop rather than risk the busy spin within
2329 * intel_wait_for_register().
2330 *
2331 * Transitioning between RC6 states should be at most 2ms (see
2332 * valleyview_enable_rps) so use a 3ms timeout.
2333 */
2334 ret = wait_for(((reg_value =
2335 intel_uncore_read_notrace(&i915->uncore, reg)) & mask)
2336 == val, 3);
2337
2338 /* just trace the final value */
2339 trace_i915_reg_rw(false, reg, reg_value, sizeof(reg_value), true);
2340
2341 return ret;
2342 }
2343
2344 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2345 {
2346 u32 val;
2347 int err;
2348
2349 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2350 val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2351 if (force_on)
2352 val |= VLV_GFX_CLK_FORCE_ON_BIT;
2353 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2354
2355 if (!force_on)
2356 return 0;
2357
2358 err = intel_wait_for_register(&dev_priv->uncore,
2359 VLV_GTLC_SURVIVABILITY_REG,
2360 VLV_GFX_CLK_STATUS_BIT,
2361 VLV_GFX_CLK_STATUS_BIT,
2362 20);
2363 if (err)
2364 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2365 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2366
2367 return err;
2368 }
2369
2370 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2371 {
2372 u32 mask;
2373 u32 val;
2374 int err;
2375
2376 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2377 val &= ~VLV_GTLC_ALLOWWAKEREQ;
2378 if (allow)
2379 val |= VLV_GTLC_ALLOWWAKEREQ;
2380 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2381 POSTING_READ(VLV_GTLC_WAKE_CTRL);
2382
2383 mask = VLV_GTLC_ALLOWWAKEACK;
2384 val = allow ? mask : 0;
2385
2386 err = vlv_wait_for_pw_status(dev_priv, mask, val);
2387 if (err)
2388 DRM_ERROR("timeout disabling GT waking\n");
2389
2390 return err;
2391 }
2392
2393 static void vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2394 bool wait_for_on)
2395 {
2396 u32 mask;
2397 u32 val;
2398
2399 mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2400 val = wait_for_on ? mask : 0;
2401
2402 /*
2403 * RC6 transitioning can be delayed up to 2 msec (see
2404 * valleyview_enable_rps), use 3 msec for safety.
2405 *
2406 * This can fail to turn off the rc6 if the GPU is stuck after a failed
2407 * reset and we are trying to force the machine to sleep.
2408 */
2409 if (vlv_wait_for_pw_status(dev_priv, mask, val))
2410 DRM_DEBUG_DRIVER("timeout waiting for GT wells to go %s\n",
2411 onoff(wait_for_on));
2412 }
2413
2414 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2415 {
2416 if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2417 return;
2418
2419 DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2420 I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2421 }
2422
2423 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2424 {
2425 u32 mask;
2426 int err;
2427
2428 /*
2429 * Bspec defines the following GT well on flags as debug only, so
2430 * don't treat them as hard failures.
2431 */
2432 vlv_wait_for_gt_wells(dev_priv, false);
2433
2434 mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2435 WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2436
2437 vlv_check_no_gt_access(dev_priv);
2438
2439 err = vlv_force_gfx_clock(dev_priv, true);
2440 if (err)
2441 goto err1;
2442
2443 err = vlv_allow_gt_wake(dev_priv, false);
2444 if (err)
2445 goto err2;
2446
2447 vlv_save_gunit_s0ix_state(dev_priv);
2448
2449 err = vlv_force_gfx_clock(dev_priv, false);
2450 if (err)
2451 goto err2;
2452
2453 return 0;
2454
2455 err2:
2456 /* For safety always re-enable waking and disable gfx clock forcing */
2457 vlv_allow_gt_wake(dev_priv, true);
2458 err1:
2459 vlv_force_gfx_clock(dev_priv, false);
2460
2461 return err;
2462 }
2463
2464 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2465 bool rpm_resume)
2466 {
2467 int err;
2468 int ret;
2469
2470 /*
2471 * If any of the steps fail just try to continue, that's the best we
2472 * can do at this point. Return the first error code (which will also
2473 * leave RPM permanently disabled).
2474 */
2475 ret = vlv_force_gfx_clock(dev_priv, true);
2476
2477 vlv_restore_gunit_s0ix_state(dev_priv);
2478
2479 err = vlv_allow_gt_wake(dev_priv, true);
2480 if (!ret)
2481 ret = err;
2482
2483 err = vlv_force_gfx_clock(dev_priv, false);
2484 if (!ret)
2485 ret = err;
2486
2487 vlv_check_no_gt_access(dev_priv);
2488
2489 if (rpm_resume)
2490 intel_init_clock_gating(dev_priv);
2491
2492 return ret;
2493 }
2494
2495 static int intel_runtime_suspend(struct device *kdev)
2496 {
2497 struct drm_i915_private *dev_priv = kdev_to_i915(kdev);
2498 struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
2499 int ret = 0;
2500
2501 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2502 return -ENODEV;
2503
2504 DRM_DEBUG_KMS("Suspending device\n");
2505
2506 disable_rpm_wakeref_asserts(rpm);
2507
2508 /*
2509 * We are safe here against re-faults, since the fault handler takes
2510 * an RPM reference.
2511 */
2512 i915_gem_runtime_suspend(dev_priv);
2513
2514 intel_gt_runtime_suspend(&dev_priv->gt);
2515
2516 intel_runtime_pm_disable_interrupts(dev_priv);
2517
2518 intel_uncore_suspend(&dev_priv->uncore);
2519
2520 intel_display_power_suspend(dev_priv);
2521
2522 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2523 ret = vlv_suspend_complete(dev_priv);
2524
2525 if (ret) {
2526 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2527 intel_uncore_runtime_resume(&dev_priv->uncore);
2528
2529 intel_runtime_pm_enable_interrupts(dev_priv);
2530
2531 intel_gt_runtime_resume(&dev_priv->gt);
2532
2533 i915_gem_restore_fences(&dev_priv->ggtt);
2534
2535 enable_rpm_wakeref_asserts(rpm);
2536
2537 return ret;
2538 }
2539
2540 enable_rpm_wakeref_asserts(rpm);
2541 intel_runtime_pm_driver_release(rpm);
2542
2543 if (intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore))
2544 DRM_ERROR("Unclaimed access detected prior to suspending\n");
2545
2546 rpm->suspended = true;
2547
2548 /*
2549 * FIXME: We really should find a document that references the arguments
2550 * used below!
2551 */
2552 if (IS_BROADWELL(dev_priv)) {
2553 /*
2554 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2555 * being detected, and the call we do at intel_runtime_resume()
2556 * won't be able to restore them. Since PCI_D3hot matches the
2557 * actual specification and appears to be working, use it.
2558 */
2559 intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2560 } else {
2561 /*
2562 * current versions of firmware which depend on this opregion
2563 * notification have repurposed the D1 definition to mean
2564 * "runtime suspended" vs. what you would normally expect (D3)
2565 * to distinguish it from notifications that might be sent via
2566 * the suspend path.
2567 */
2568 intel_opregion_notify_adapter(dev_priv, PCI_D1);
2569 }
2570
2571 assert_forcewakes_inactive(&dev_priv->uncore);
2572
2573 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2574 intel_hpd_poll_init(dev_priv);
2575
2576 DRM_DEBUG_KMS("Device suspended\n");
2577 return 0;
2578 }
2579
2580 static int intel_runtime_resume(struct device *kdev)
2581 {
2582 struct drm_i915_private *dev_priv = kdev_to_i915(kdev);
2583 struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
2584 int ret = 0;
2585
2586 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2587 return -ENODEV;
2588
2589 DRM_DEBUG_KMS("Resuming device\n");
2590
2591 WARN_ON_ONCE(atomic_read(&rpm->wakeref_count));
2592 disable_rpm_wakeref_asserts(rpm);
2593
2594 intel_opregion_notify_adapter(dev_priv, PCI_D0);
2595 rpm->suspended = false;
2596 if (intel_uncore_unclaimed_mmio(&dev_priv->uncore))
2597 DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
2598
2599 intel_display_power_resume(dev_priv);
2600
2601 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2602 ret = vlv_resume_prepare(dev_priv, true);
2603
2604 intel_uncore_runtime_resume(&dev_priv->uncore);
2605
2606 intel_runtime_pm_enable_interrupts(dev_priv);
2607
2608 /*
2609 * No point of rolling back things in case of an error, as the best
2610 * we can do is to hope that things will still work (and disable RPM).
2611 */
2612 intel_gt_runtime_resume(&dev_priv->gt);
2613 i915_gem_restore_fences(&dev_priv->ggtt);
2614
2615 /*
2616 * On VLV/CHV display interrupts are part of the display
2617 * power well, so hpd is reinitialized from there. For
2618 * everyone else do it here.
2619 */
2620 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2621 intel_hpd_init(dev_priv);
2622
2623 intel_enable_ipc(dev_priv);
2624
2625 enable_rpm_wakeref_asserts(rpm);
2626
2627 if (ret)
2628 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
2629 else
2630 DRM_DEBUG_KMS("Device resumed\n");
2631
2632 return ret;
2633 }
2634
2635 const struct dev_pm_ops i915_pm_ops = {
2636 /*
2637 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
2638 * PMSG_RESUME]
2639 */
2640 .prepare = i915_pm_prepare,
2641 .suspend = i915_pm_suspend,
2642 .suspend_late = i915_pm_suspend_late,
2643 .resume_early = i915_pm_resume_early,
2644 .resume = i915_pm_resume,
2645
2646 /*
2647 * S4 event handlers
2648 * @freeze, @freeze_late : called (1) before creating the
2649 * hibernation image [PMSG_FREEZE] and
2650 * (2) after rebooting, before restoring
2651 * the image [PMSG_QUIESCE]
2652 * @thaw, @thaw_early : called (1) after creating the hibernation
2653 * image, before writing it [PMSG_THAW]
2654 * and (2) after failing to create or
2655 * restore the image [PMSG_RECOVER]
2656 * @poweroff, @poweroff_late: called after writing the hibernation
2657 * image, before rebooting [PMSG_HIBERNATE]
2658 * @restore, @restore_early : called after rebooting and restoring the
2659 * hibernation image [PMSG_RESTORE]
2660 */
2661 .freeze = i915_pm_freeze,
2662 .freeze_late = i915_pm_freeze_late,
2663 .thaw_early = i915_pm_thaw_early,
2664 .thaw = i915_pm_thaw,
2665 .poweroff = i915_pm_suspend,
2666 .poweroff_late = i915_pm_poweroff_late,
2667 .restore_early = i915_pm_restore_early,
2668 .restore = i915_pm_restore,
2669
2670 /* S0ix (via runtime suspend) event handlers */
2671 .runtime_suspend = intel_runtime_suspend,
2672 .runtime_resume = intel_runtime_resume,
2673 };
2674
2675 static const struct file_operations i915_driver_fops = {
2676 .owner = THIS_MODULE,
2677 .open = drm_open,
2678 .release = drm_release,
2679 .unlocked_ioctl = drm_ioctl,
2680 .mmap = i915_gem_mmap,
2681 .poll = drm_poll,
2682 .read = drm_read,
2683 .compat_ioctl = i915_compat_ioctl,
2684 .llseek = noop_llseek,
2685 };
2686
2687 static int
2688 i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
2689 struct drm_file *file)
2690 {
2691 return -ENODEV;
2692 }
2693
2694 static const struct drm_ioctl_desc i915_ioctls[] = {
2695 DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2696 DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
2697 DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
2698 DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
2699 DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
2700 DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
2701 DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam_ioctl, DRM_RENDER_ALLOW),
2702 DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2703 DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
2704 DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
2705 DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2706 DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
2707 DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2708 DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2709 DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE, drm_noop, DRM_AUTH),
2710 DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
2711 DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2712 DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2713 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer_ioctl, DRM_AUTH),
2714 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2_WR, i915_gem_execbuffer2_ioctl, DRM_RENDER_ALLOW),
2715 DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2716 DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2717 DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_RENDER_ALLOW),
2718 DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
2719 DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
2720 DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_RENDER_ALLOW),
2721 DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2722 DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2723 DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
2724 DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
2725 DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
2726 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
2727 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_OFFSET, i915_gem_mmap_offset_ioctl, DRM_RENDER_ALLOW),
2728 DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
2729 DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
2730 DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling_ioctl, DRM_RENDER_ALLOW),
2731 DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling_ioctl, DRM_RENDER_ALLOW),
2732 DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
2733 DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id_ioctl, 0),
2734 DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
2735 DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER),
2736 DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER),
2737 DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey_ioctl, DRM_MASTER),
2738 DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER),
2739 DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_RENDER_ALLOW),
2740 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE_EXT, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
2741 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
2742 DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
2743 DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
2744 DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
2745 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
2746 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
2747 DRM_IOCTL_DEF_DRV(I915_PERF_OPEN, i915_perf_open_ioctl, DRM_RENDER_ALLOW),
2748 DRM_IOCTL_DEF_DRV(I915_PERF_ADD_CONFIG, i915_perf_add_config_ioctl, DRM_RENDER_ALLOW),
2749 DRM_IOCTL_DEF_DRV(I915_PERF_REMOVE_CONFIG, i915_perf_remove_config_ioctl, DRM_RENDER_ALLOW),
2750 DRM_IOCTL_DEF_DRV(I915_QUERY, i915_query_ioctl, DRM_RENDER_ALLOW),
2751 DRM_IOCTL_DEF_DRV(I915_GEM_VM_CREATE, i915_gem_vm_create_ioctl, DRM_RENDER_ALLOW),
2752 DRM_IOCTL_DEF_DRV(I915_GEM_VM_DESTROY, i915_gem_vm_destroy_ioctl, DRM_RENDER_ALLOW),
2753 };
2754
2755 static struct drm_driver driver = {
2756 /* Don't use MTRRs here; the Xserver or userspace app should
2757 * deal with them for Intel hardware.
2758 */
2759 .driver_features =
2760 DRIVER_GEM |
2761 DRIVER_RENDER | DRIVER_MODESET | DRIVER_ATOMIC | DRIVER_SYNCOBJ,
2762 .release = i915_driver_release,
2763 .open = i915_driver_open,
2764 .lastclose = i915_driver_lastclose,
2765 .postclose = i915_driver_postclose,
2766
2767 .gem_close_object = i915_gem_close_object,
2768 .gem_free_object_unlocked = i915_gem_free_object,
2769
2770 .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
2771 .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
2772 .gem_prime_export = i915_gem_prime_export,
2773 .gem_prime_import = i915_gem_prime_import,
2774
2775 .get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos,
2776 .get_scanout_position = i915_get_crtc_scanoutpos,
2777
2778 .dumb_create = i915_gem_dumb_create,
2779 .dumb_map_offset = i915_gem_dumb_mmap_offset,
2780
2781 .ioctls = i915_ioctls,
2782 .num_ioctls = ARRAY_SIZE(i915_ioctls),
2783 .fops = &i915_driver_fops,
2784 .name = DRIVER_NAME,
2785 .desc = DRIVER_DESC,
2786 .date = DRIVER_DATE,
2787 .major = DRIVER_MAJOR,
2788 .minor = DRIVER_MINOR,
2789 .patchlevel = DRIVER_PATCHLEVEL,
2790 };