]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.h
ASoC: wm_adsp: add support for DSP region lock
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hashtable.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/reservation.h>
45 #include <linux/shmem_fs.h>
46
47 #include <drm/drmP.h>
48 #include <drm/intel-gtt.h>
49 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
50 #include <drm/drm_gem.h>
51 #include <drm/drm_auth.h>
52 #include <drm/drm_cache.h>
53
54 #include "i915_params.h"
55 #include "i915_reg.h"
56 #include "i915_utils.h"
57
58 #include "intel_bios.h"
59 #include "intel_dpll_mgr.h"
60 #include "intel_uc.h"
61 #include "intel_lrc.h"
62 #include "intel_ringbuffer.h"
63
64 #include "i915_gem.h"
65 #include "i915_gem_context.h"
66 #include "i915_gem_fence_reg.h"
67 #include "i915_gem_object.h"
68 #include "i915_gem_gtt.h"
69 #include "i915_gem_render_state.h"
70 #include "i915_gem_request.h"
71 #include "i915_gem_timeline.h"
72
73 #include "i915_vma.h"
74
75 #include "intel_gvt.h"
76
77 /* General customization:
78 */
79
80 #define DRIVER_NAME "i915"
81 #define DRIVER_DESC "Intel Graphics"
82 #define DRIVER_DATE "20170123"
83 #define DRIVER_TIMESTAMP 1485156432
84
85 #undef WARN_ON
86 /* Many gcc seem to no see through this and fall over :( */
87 #if 0
88 #define WARN_ON(x) ({ \
89 bool __i915_warn_cond = (x); \
90 if (__builtin_constant_p(__i915_warn_cond)) \
91 BUILD_BUG_ON(__i915_warn_cond); \
92 WARN(__i915_warn_cond, "WARN_ON(" #x ")"); })
93 #else
94 #define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
95 #endif
96
97 #undef WARN_ON_ONCE
98 #define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")")
99
100 #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \
101 (long) (x), __func__);
102
103 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
104 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
105 * which may not necessarily be a user visible problem. This will either
106 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
107 * enable distros and users to tailor their preferred amount of i915 abrt
108 * spam.
109 */
110 #define I915_STATE_WARN(condition, format...) ({ \
111 int __ret_warn_on = !!(condition); \
112 if (unlikely(__ret_warn_on)) \
113 if (!WARN(i915.verbose_state_checks, format)) \
114 DRM_ERROR(format); \
115 unlikely(__ret_warn_on); \
116 })
117
118 #define I915_STATE_WARN_ON(x) \
119 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
120
121 bool __i915_inject_load_failure(const char *func, int line);
122 #define i915_inject_load_failure() \
123 __i915_inject_load_failure(__func__, __LINE__)
124
125 typedef struct {
126 uint32_t val;
127 } uint_fixed_16_16_t;
128
129 #define FP_16_16_MAX ({ \
130 uint_fixed_16_16_t fp; \
131 fp.val = UINT_MAX; \
132 fp; \
133 })
134
135 static inline uint_fixed_16_16_t u32_to_fixed_16_16(uint32_t val)
136 {
137 uint_fixed_16_16_t fp;
138
139 WARN_ON(val >> 16);
140
141 fp.val = val << 16;
142 return fp;
143 }
144
145 static inline uint32_t fixed_16_16_to_u32_round_up(uint_fixed_16_16_t fp)
146 {
147 return DIV_ROUND_UP(fp.val, 1 << 16);
148 }
149
150 static inline uint32_t fixed_16_16_to_u32(uint_fixed_16_16_t fp)
151 {
152 return fp.val >> 16;
153 }
154
155 static inline uint_fixed_16_16_t min_fixed_16_16(uint_fixed_16_16_t min1,
156 uint_fixed_16_16_t min2)
157 {
158 uint_fixed_16_16_t min;
159
160 min.val = min(min1.val, min2.val);
161 return min;
162 }
163
164 static inline uint_fixed_16_16_t max_fixed_16_16(uint_fixed_16_16_t max1,
165 uint_fixed_16_16_t max2)
166 {
167 uint_fixed_16_16_t max;
168
169 max.val = max(max1.val, max2.val);
170 return max;
171 }
172
173 static inline uint_fixed_16_16_t fixed_16_16_div_round_up(uint32_t val,
174 uint32_t d)
175 {
176 uint_fixed_16_16_t fp, res;
177
178 fp = u32_to_fixed_16_16(val);
179 res.val = DIV_ROUND_UP(fp.val, d);
180 return res;
181 }
182
183 static inline uint_fixed_16_16_t fixed_16_16_div_round_up_u64(uint32_t val,
184 uint32_t d)
185 {
186 uint_fixed_16_16_t res;
187 uint64_t interm_val;
188
189 interm_val = (uint64_t)val << 16;
190 interm_val = DIV_ROUND_UP_ULL(interm_val, d);
191 WARN_ON(interm_val >> 32);
192 res.val = (uint32_t) interm_val;
193
194 return res;
195 }
196
197 static inline uint_fixed_16_16_t mul_u32_fixed_16_16(uint32_t val,
198 uint_fixed_16_16_t mul)
199 {
200 uint64_t intermediate_val;
201 uint_fixed_16_16_t fp;
202
203 intermediate_val = (uint64_t) val * mul.val;
204 WARN_ON(intermediate_val >> 32);
205 fp.val = (uint32_t) intermediate_val;
206 return fp;
207 }
208
209 static inline const char *yesno(bool v)
210 {
211 return v ? "yes" : "no";
212 }
213
214 static inline const char *onoff(bool v)
215 {
216 return v ? "on" : "off";
217 }
218
219 static inline const char *enableddisabled(bool v)
220 {
221 return v ? "enabled" : "disabled";
222 }
223
224 enum pipe {
225 INVALID_PIPE = -1,
226 PIPE_A = 0,
227 PIPE_B,
228 PIPE_C,
229 _PIPE_EDP,
230 I915_MAX_PIPES = _PIPE_EDP
231 };
232 #define pipe_name(p) ((p) + 'A')
233
234 enum transcoder {
235 TRANSCODER_A = 0,
236 TRANSCODER_B,
237 TRANSCODER_C,
238 TRANSCODER_EDP,
239 TRANSCODER_DSI_A,
240 TRANSCODER_DSI_C,
241 I915_MAX_TRANSCODERS
242 };
243
244 static inline const char *transcoder_name(enum transcoder transcoder)
245 {
246 switch (transcoder) {
247 case TRANSCODER_A:
248 return "A";
249 case TRANSCODER_B:
250 return "B";
251 case TRANSCODER_C:
252 return "C";
253 case TRANSCODER_EDP:
254 return "EDP";
255 case TRANSCODER_DSI_A:
256 return "DSI A";
257 case TRANSCODER_DSI_C:
258 return "DSI C";
259 default:
260 return "<invalid>";
261 }
262 }
263
264 static inline bool transcoder_is_dsi(enum transcoder transcoder)
265 {
266 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
267 }
268
269 /*
270 * Global legacy plane identifier. Valid only for primary/sprite
271 * planes on pre-g4x, and only for primary planes on g4x+.
272 */
273 enum plane {
274 PLANE_A,
275 PLANE_B,
276 PLANE_C,
277 };
278 #define plane_name(p) ((p) + 'A')
279
280 #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A')
281
282 /*
283 * Per-pipe plane identifier.
284 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
285 * number of planes per CRTC. Not all platforms really have this many planes,
286 * which means some arrays of size I915_MAX_PLANES may have unused entries
287 * between the topmost sprite plane and the cursor plane.
288 *
289 * This is expected to be passed to various register macros
290 * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care.
291 */
292 enum plane_id {
293 PLANE_PRIMARY,
294 PLANE_SPRITE0,
295 PLANE_SPRITE1,
296 PLANE_CURSOR,
297 I915_MAX_PLANES,
298 };
299
300 #define for_each_plane_id_on_crtc(__crtc, __p) \
301 for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \
302 for_each_if ((__crtc)->plane_ids_mask & BIT(__p))
303
304 enum port {
305 PORT_NONE = -1,
306 PORT_A = 0,
307 PORT_B,
308 PORT_C,
309 PORT_D,
310 PORT_E,
311 I915_MAX_PORTS
312 };
313 #define port_name(p) ((p) + 'A')
314
315 #define I915_NUM_PHYS_VLV 2
316
317 enum dpio_channel {
318 DPIO_CH0,
319 DPIO_CH1
320 };
321
322 enum dpio_phy {
323 DPIO_PHY0,
324 DPIO_PHY1,
325 DPIO_PHY2,
326 };
327
328 enum intel_display_power_domain {
329 POWER_DOMAIN_PIPE_A,
330 POWER_DOMAIN_PIPE_B,
331 POWER_DOMAIN_PIPE_C,
332 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
333 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
334 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
335 POWER_DOMAIN_TRANSCODER_A,
336 POWER_DOMAIN_TRANSCODER_B,
337 POWER_DOMAIN_TRANSCODER_C,
338 POWER_DOMAIN_TRANSCODER_EDP,
339 POWER_DOMAIN_TRANSCODER_DSI_A,
340 POWER_DOMAIN_TRANSCODER_DSI_C,
341 POWER_DOMAIN_PORT_DDI_A_LANES,
342 POWER_DOMAIN_PORT_DDI_B_LANES,
343 POWER_DOMAIN_PORT_DDI_C_LANES,
344 POWER_DOMAIN_PORT_DDI_D_LANES,
345 POWER_DOMAIN_PORT_DDI_E_LANES,
346 POWER_DOMAIN_PORT_DSI,
347 POWER_DOMAIN_PORT_CRT,
348 POWER_DOMAIN_PORT_OTHER,
349 POWER_DOMAIN_VGA,
350 POWER_DOMAIN_AUDIO,
351 POWER_DOMAIN_PLLS,
352 POWER_DOMAIN_AUX_A,
353 POWER_DOMAIN_AUX_B,
354 POWER_DOMAIN_AUX_C,
355 POWER_DOMAIN_AUX_D,
356 POWER_DOMAIN_GMBUS,
357 POWER_DOMAIN_MODESET,
358 POWER_DOMAIN_INIT,
359
360 POWER_DOMAIN_NUM,
361 };
362
363 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
364 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
365 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
366 #define POWER_DOMAIN_TRANSCODER(tran) \
367 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
368 (tran) + POWER_DOMAIN_TRANSCODER_A)
369
370 enum hpd_pin {
371 HPD_NONE = 0,
372 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
373 HPD_CRT,
374 HPD_SDVO_B,
375 HPD_SDVO_C,
376 HPD_PORT_A,
377 HPD_PORT_B,
378 HPD_PORT_C,
379 HPD_PORT_D,
380 HPD_PORT_E,
381 HPD_NUM_PINS
382 };
383
384 #define for_each_hpd_pin(__pin) \
385 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
386
387 struct i915_hotplug {
388 struct work_struct hotplug_work;
389
390 struct {
391 unsigned long last_jiffies;
392 int count;
393 enum {
394 HPD_ENABLED = 0,
395 HPD_DISABLED = 1,
396 HPD_MARK_DISABLED = 2
397 } state;
398 } stats[HPD_NUM_PINS];
399 u32 event_bits;
400 struct delayed_work reenable_work;
401
402 struct intel_digital_port *irq_port[I915_MAX_PORTS];
403 u32 long_port_mask;
404 u32 short_port_mask;
405 struct work_struct dig_port_work;
406
407 struct work_struct poll_init_work;
408 bool poll_enabled;
409
410 /*
411 * if we get a HPD irq from DP and a HPD irq from non-DP
412 * the non-DP HPD could block the workqueue on a mode config
413 * mutex getting, that userspace may have taken. However
414 * userspace is waiting on the DP workqueue to run which is
415 * blocked behind the non-DP one.
416 */
417 struct workqueue_struct *dp_wq;
418 };
419
420 #define I915_GEM_GPU_DOMAINS \
421 (I915_GEM_DOMAIN_RENDER | \
422 I915_GEM_DOMAIN_SAMPLER | \
423 I915_GEM_DOMAIN_COMMAND | \
424 I915_GEM_DOMAIN_INSTRUCTION | \
425 I915_GEM_DOMAIN_VERTEX)
426
427 #define for_each_pipe(__dev_priv, __p) \
428 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
429 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
430 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
431 for_each_if ((__mask) & (1 << (__p)))
432 #define for_each_universal_plane(__dev_priv, __pipe, __p) \
433 for ((__p) = 0; \
434 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
435 (__p)++)
436 #define for_each_sprite(__dev_priv, __p, __s) \
437 for ((__s) = 0; \
438 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
439 (__s)++)
440
441 #define for_each_port_masked(__port, __ports_mask) \
442 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
443 for_each_if ((__ports_mask) & (1 << (__port)))
444
445 #define for_each_crtc(dev, crtc) \
446 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
447
448 #define for_each_intel_plane(dev, intel_plane) \
449 list_for_each_entry(intel_plane, \
450 &(dev)->mode_config.plane_list, \
451 base.head)
452
453 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \
454 list_for_each_entry(intel_plane, \
455 &(dev)->mode_config.plane_list, \
456 base.head) \
457 for_each_if ((plane_mask) & \
458 (1 << drm_plane_index(&intel_plane->base)))
459
460 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
461 list_for_each_entry(intel_plane, \
462 &(dev)->mode_config.plane_list, \
463 base.head) \
464 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
465
466 #define for_each_intel_crtc(dev, intel_crtc) \
467 list_for_each_entry(intel_crtc, \
468 &(dev)->mode_config.crtc_list, \
469 base.head)
470
471 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \
472 list_for_each_entry(intel_crtc, \
473 &(dev)->mode_config.crtc_list, \
474 base.head) \
475 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
476
477 #define for_each_intel_encoder(dev, intel_encoder) \
478 list_for_each_entry(intel_encoder, \
479 &(dev)->mode_config.encoder_list, \
480 base.head)
481
482 #define for_each_intel_connector(dev, intel_connector) \
483 list_for_each_entry(intel_connector, \
484 &(dev)->mode_config.connector_list, \
485 base.head)
486
487 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
488 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
489 for_each_if ((intel_encoder)->base.crtc == (__crtc))
490
491 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
492 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
493 for_each_if ((intel_connector)->base.encoder == (__encoder))
494
495 #define for_each_power_domain(domain, mask) \
496 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
497 for_each_if ((1 << (domain)) & (mask))
498
499 struct drm_i915_private;
500 struct i915_mm_struct;
501 struct i915_mmu_object;
502
503 struct drm_i915_file_private {
504 struct drm_i915_private *dev_priv;
505 struct drm_file *file;
506
507 struct {
508 spinlock_t lock;
509 struct list_head request_list;
510 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
511 * chosen to prevent the CPU getting more than a frame ahead of the GPU
512 * (when using lax throttling for the frontbuffer). We also use it to
513 * offer free GPU waitboosts for severely congested workloads.
514 */
515 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
516 } mm;
517 struct idr context_idr;
518
519 struct intel_rps_client {
520 struct list_head link;
521 unsigned boosts;
522 } rps;
523
524 unsigned int bsd_engine;
525
526 /* Client can have a maximum of 3 contexts banned before
527 * it is denied of creating new contexts. As one context
528 * ban needs 4 consecutive hangs, and more if there is
529 * progress in between, this is a last resort stop gap measure
530 * to limit the badly behaving clients access to gpu.
531 */
532 #define I915_MAX_CLIENT_CONTEXT_BANS 3
533 int context_bans;
534 };
535
536 /* Used by dp and fdi links */
537 struct intel_link_m_n {
538 uint32_t tu;
539 uint32_t gmch_m;
540 uint32_t gmch_n;
541 uint32_t link_m;
542 uint32_t link_n;
543 };
544
545 void intel_link_compute_m_n(int bpp, int nlanes,
546 int pixel_clock, int link_clock,
547 struct intel_link_m_n *m_n);
548
549 /* Interface history:
550 *
551 * 1.1: Original.
552 * 1.2: Add Power Management
553 * 1.3: Add vblank support
554 * 1.4: Fix cmdbuffer path, add heap destroy
555 * 1.5: Add vblank pipe configuration
556 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
557 * - Support vertical blank on secondary display pipe
558 */
559 #define DRIVER_MAJOR 1
560 #define DRIVER_MINOR 6
561 #define DRIVER_PATCHLEVEL 0
562
563 struct opregion_header;
564 struct opregion_acpi;
565 struct opregion_swsci;
566 struct opregion_asle;
567
568 struct intel_opregion {
569 struct opregion_header *header;
570 struct opregion_acpi *acpi;
571 struct opregion_swsci *swsci;
572 u32 swsci_gbda_sub_functions;
573 u32 swsci_sbcb_sub_functions;
574 struct opregion_asle *asle;
575 void *rvda;
576 const void *vbt;
577 u32 vbt_size;
578 u32 *lid_state;
579 struct work_struct asle_work;
580 };
581 #define OPREGION_SIZE (8*1024)
582
583 struct intel_overlay;
584 struct intel_overlay_error_state;
585
586 struct sdvo_device_mapping {
587 u8 initialized;
588 u8 dvo_port;
589 u8 slave_addr;
590 u8 dvo_wiring;
591 u8 i2c_pin;
592 u8 ddc_pin;
593 };
594
595 struct intel_connector;
596 struct intel_encoder;
597 struct intel_atomic_state;
598 struct intel_crtc_state;
599 struct intel_initial_plane_config;
600 struct intel_crtc;
601 struct intel_limit;
602 struct dpll;
603
604 struct drm_i915_display_funcs {
605 int (*get_display_clock_speed)(struct drm_i915_private *dev_priv);
606 int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane);
607 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
608 int (*compute_intermediate_wm)(struct drm_device *dev,
609 struct intel_crtc *intel_crtc,
610 struct intel_crtc_state *newstate);
611 void (*initial_watermarks)(struct intel_atomic_state *state,
612 struct intel_crtc_state *cstate);
613 void (*atomic_update_watermarks)(struct intel_atomic_state *state,
614 struct intel_crtc_state *cstate);
615 void (*optimize_watermarks)(struct intel_atomic_state *state,
616 struct intel_crtc_state *cstate);
617 int (*compute_global_watermarks)(struct drm_atomic_state *state);
618 void (*update_wm)(struct intel_crtc *crtc);
619 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
620 void (*modeset_commit_cdclk)(struct drm_atomic_state *state);
621 /* Returns the active state of the crtc, and if the crtc is active,
622 * fills out the pipe-config with the hw state. */
623 bool (*get_pipe_config)(struct intel_crtc *,
624 struct intel_crtc_state *);
625 void (*get_initial_plane_config)(struct intel_crtc *,
626 struct intel_initial_plane_config *);
627 int (*crtc_compute_clock)(struct intel_crtc *crtc,
628 struct intel_crtc_state *crtc_state);
629 void (*crtc_enable)(struct intel_crtc_state *pipe_config,
630 struct drm_atomic_state *old_state);
631 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
632 struct drm_atomic_state *old_state);
633 void (*update_crtcs)(struct drm_atomic_state *state,
634 unsigned int *crtc_vblank_mask);
635 void (*audio_codec_enable)(struct drm_connector *connector,
636 struct intel_encoder *encoder,
637 const struct drm_display_mode *adjusted_mode);
638 void (*audio_codec_disable)(struct intel_encoder *encoder);
639 void (*fdi_link_train)(struct drm_crtc *crtc);
640 void (*init_clock_gating)(struct drm_i915_private *dev_priv);
641 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc,
642 struct drm_framebuffer *fb,
643 struct drm_i915_gem_object *obj,
644 struct drm_i915_gem_request *req,
645 uint32_t flags);
646 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
647 /* clock updates for mode set */
648 /* cursor updates */
649 /* render clock increase/decrease */
650 /* display clock increase/decrease */
651 /* pll clock increase/decrease */
652
653 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
654 void (*load_luts)(struct drm_crtc_state *crtc_state);
655 };
656
657 enum forcewake_domain_id {
658 FW_DOMAIN_ID_RENDER = 0,
659 FW_DOMAIN_ID_BLITTER,
660 FW_DOMAIN_ID_MEDIA,
661
662 FW_DOMAIN_ID_COUNT
663 };
664
665 enum forcewake_domains {
666 FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER),
667 FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER),
668 FORCEWAKE_MEDIA = (1 << FW_DOMAIN_ID_MEDIA),
669 FORCEWAKE_ALL = (FORCEWAKE_RENDER |
670 FORCEWAKE_BLITTER |
671 FORCEWAKE_MEDIA)
672 };
673
674 #define FW_REG_READ (1)
675 #define FW_REG_WRITE (2)
676
677 enum decoupled_power_domain {
678 GEN9_DECOUPLED_PD_BLITTER = 0,
679 GEN9_DECOUPLED_PD_RENDER,
680 GEN9_DECOUPLED_PD_MEDIA,
681 GEN9_DECOUPLED_PD_ALL
682 };
683
684 enum decoupled_ops {
685 GEN9_DECOUPLED_OP_WRITE = 0,
686 GEN9_DECOUPLED_OP_READ
687 };
688
689 enum forcewake_domains
690 intel_uncore_forcewake_for_reg(struct drm_i915_private *dev_priv,
691 i915_reg_t reg, unsigned int op);
692
693 struct intel_uncore_funcs {
694 void (*force_wake_get)(struct drm_i915_private *dev_priv,
695 enum forcewake_domains domains);
696 void (*force_wake_put)(struct drm_i915_private *dev_priv,
697 enum forcewake_domains domains);
698
699 uint8_t (*mmio_readb)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
700 uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
701 uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
702 uint64_t (*mmio_readq)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
703
704 void (*mmio_writeb)(struct drm_i915_private *dev_priv, i915_reg_t r,
705 uint8_t val, bool trace);
706 void (*mmio_writew)(struct drm_i915_private *dev_priv, i915_reg_t r,
707 uint16_t val, bool trace);
708 void (*mmio_writel)(struct drm_i915_private *dev_priv, i915_reg_t r,
709 uint32_t val, bool trace);
710 };
711
712 struct intel_forcewake_range {
713 u32 start;
714 u32 end;
715
716 enum forcewake_domains domains;
717 };
718
719 struct intel_uncore {
720 spinlock_t lock; /** lock is also taken in irq contexts. */
721
722 const struct intel_forcewake_range *fw_domains_table;
723 unsigned int fw_domains_table_entries;
724
725 struct intel_uncore_funcs funcs;
726
727 unsigned fifo_count;
728
729 enum forcewake_domains fw_domains;
730 enum forcewake_domains fw_domains_active;
731
732 struct intel_uncore_forcewake_domain {
733 struct drm_i915_private *i915;
734 enum forcewake_domain_id id;
735 enum forcewake_domains mask;
736 unsigned wake_count;
737 struct hrtimer timer;
738 i915_reg_t reg_set;
739 u32 val_set;
740 u32 val_clear;
741 i915_reg_t reg_ack;
742 i915_reg_t reg_post;
743 u32 val_reset;
744 } fw_domain[FW_DOMAIN_ID_COUNT];
745
746 int unclaimed_mmio_check;
747 };
748
749 /* Iterate over initialised fw domains */
750 #define for_each_fw_domain_masked(domain__, mask__, dev_priv__) \
751 for ((domain__) = &(dev_priv__)->uncore.fw_domain[0]; \
752 (domain__) < &(dev_priv__)->uncore.fw_domain[FW_DOMAIN_ID_COUNT]; \
753 (domain__)++) \
754 for_each_if ((mask__) & (domain__)->mask)
755
756 #define for_each_fw_domain(domain__, dev_priv__) \
757 for_each_fw_domain_masked(domain__, FORCEWAKE_ALL, dev_priv__)
758
759 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
760 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
761 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
762
763 struct intel_csr {
764 struct work_struct work;
765 const char *fw_path;
766 uint32_t *dmc_payload;
767 uint32_t dmc_fw_size;
768 uint32_t version;
769 uint32_t mmio_count;
770 i915_reg_t mmioaddr[8];
771 uint32_t mmiodata[8];
772 uint32_t dc_state;
773 uint32_t allowed_dc_mask;
774 };
775
776 #define DEV_INFO_FOR_EACH_FLAG(func) \
777 func(is_mobile); \
778 func(is_lp); \
779 func(is_alpha_support); \
780 /* Keep has_* in alphabetical order */ \
781 func(has_64bit_reloc); \
782 func(has_aliasing_ppgtt); \
783 func(has_csr); \
784 func(has_ddi); \
785 func(has_decoupled_mmio); \
786 func(has_dp_mst); \
787 func(has_fbc); \
788 func(has_fpga_dbg); \
789 func(has_full_ppgtt); \
790 func(has_full_48bit_ppgtt); \
791 func(has_gmbus_irq); \
792 func(has_gmch_display); \
793 func(has_guc); \
794 func(has_hotplug); \
795 func(has_hw_contexts); \
796 func(has_l3_dpf); \
797 func(has_llc); \
798 func(has_logical_ring_contexts); \
799 func(has_overlay); \
800 func(has_pipe_cxsr); \
801 func(has_pooled_eu); \
802 func(has_psr); \
803 func(has_rc6); \
804 func(has_rc6p); \
805 func(has_resource_streamer); \
806 func(has_runtime_pm); \
807 func(has_snoop); \
808 func(cursor_needs_physical); \
809 func(hws_needs_physical); \
810 func(overlay_needs_physical); \
811 func(supports_tv);
812
813 struct sseu_dev_info {
814 u8 slice_mask;
815 u8 subslice_mask;
816 u8 eu_total;
817 u8 eu_per_subslice;
818 u8 min_eu_in_pool;
819 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
820 u8 subslice_7eu[3];
821 u8 has_slice_pg:1;
822 u8 has_subslice_pg:1;
823 u8 has_eu_pg:1;
824 };
825
826 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu)
827 {
828 return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask);
829 }
830
831 /* Keep in gen based order, and chronological order within a gen */
832 enum intel_platform {
833 INTEL_PLATFORM_UNINITIALIZED = 0,
834 INTEL_I830,
835 INTEL_I845G,
836 INTEL_I85X,
837 INTEL_I865G,
838 INTEL_I915G,
839 INTEL_I915GM,
840 INTEL_I945G,
841 INTEL_I945GM,
842 INTEL_G33,
843 INTEL_PINEVIEW,
844 INTEL_I965G,
845 INTEL_I965GM,
846 INTEL_G45,
847 INTEL_GM45,
848 INTEL_IRONLAKE,
849 INTEL_SANDYBRIDGE,
850 INTEL_IVYBRIDGE,
851 INTEL_VALLEYVIEW,
852 INTEL_HASWELL,
853 INTEL_BROADWELL,
854 INTEL_CHERRYVIEW,
855 INTEL_SKYLAKE,
856 INTEL_BROXTON,
857 INTEL_KABYLAKE,
858 INTEL_GEMINILAKE,
859 };
860
861 struct intel_device_info {
862 u32 display_mmio_offset;
863 u16 device_id;
864 u8 num_pipes;
865 u8 num_sprites[I915_MAX_PIPES];
866 u8 num_scalers[I915_MAX_PIPES];
867 u8 gen;
868 u16 gen_mask;
869 enum intel_platform platform;
870 u8 ring_mask; /* Rings supported by the HW */
871 u8 num_rings;
872 #define DEFINE_FLAG(name) u8 name:1
873 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG);
874 #undef DEFINE_FLAG
875 u16 ddb_size; /* in blocks */
876 /* Register offsets for the various display pipes and transcoders */
877 int pipe_offsets[I915_MAX_TRANSCODERS];
878 int trans_offsets[I915_MAX_TRANSCODERS];
879 int palette_offsets[I915_MAX_PIPES];
880 int cursor_offsets[I915_MAX_PIPES];
881
882 /* Slice/subslice/EU info */
883 struct sseu_dev_info sseu;
884
885 struct color_luts {
886 u16 degamma_lut_size;
887 u16 gamma_lut_size;
888 } color;
889 };
890
891 struct intel_display_error_state;
892
893 struct drm_i915_error_state {
894 struct kref ref;
895 struct timeval time;
896 struct timeval boottime;
897 struct timeval uptime;
898
899 struct drm_i915_private *i915;
900
901 char error_msg[128];
902 bool simulated;
903 int iommu;
904 u32 reset_count;
905 u32 suspend_count;
906 struct intel_device_info device_info;
907
908 /* Generic register state */
909 u32 eir;
910 u32 pgtbl_er;
911 u32 ier;
912 u32 gtier[4];
913 u32 ccid;
914 u32 derrmr;
915 u32 forcewake;
916 u32 error; /* gen6+ */
917 u32 err_int; /* gen7 */
918 u32 fault_data0; /* gen8, gen9 */
919 u32 fault_data1; /* gen8, gen9 */
920 u32 done_reg;
921 u32 gac_eco;
922 u32 gam_ecochk;
923 u32 gab_ctl;
924 u32 gfx_mode;
925
926 u64 fence[I915_MAX_NUM_FENCES];
927 struct intel_overlay_error_state *overlay;
928 struct intel_display_error_state *display;
929 struct drm_i915_error_object *semaphore;
930 struct drm_i915_error_object *guc_log;
931
932 struct drm_i915_error_engine {
933 int engine_id;
934 /* Software tracked state */
935 bool waiting;
936 int num_waiters;
937 unsigned long hangcheck_timestamp;
938 bool hangcheck_stalled;
939 enum intel_engine_hangcheck_action hangcheck_action;
940 struct i915_address_space *vm;
941 int num_requests;
942
943 /* position of active request inside the ring */
944 u32 rq_head, rq_post, rq_tail;
945
946 /* our own tracking of ring head and tail */
947 u32 cpu_ring_head;
948 u32 cpu_ring_tail;
949
950 u32 last_seqno;
951
952 /* Register state */
953 u32 start;
954 u32 tail;
955 u32 head;
956 u32 ctl;
957 u32 mode;
958 u32 hws;
959 u32 ipeir;
960 u32 ipehr;
961 u32 bbstate;
962 u32 instpm;
963 u32 instps;
964 u32 seqno;
965 u64 bbaddr;
966 u64 acthd;
967 u32 fault_reg;
968 u64 faddr;
969 u32 rc_psmi; /* sleep state */
970 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
971 struct intel_instdone instdone;
972
973 struct drm_i915_error_object {
974 u64 gtt_offset;
975 u64 gtt_size;
976 int page_count;
977 int unused;
978 u32 *pages[0];
979 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
980
981 struct drm_i915_error_object *wa_ctx;
982
983 struct drm_i915_error_request {
984 long jiffies;
985 pid_t pid;
986 u32 context;
987 int ban_score;
988 u32 seqno;
989 u32 head;
990 u32 tail;
991 } *requests, execlist[2];
992
993 struct drm_i915_error_waiter {
994 char comm[TASK_COMM_LEN];
995 pid_t pid;
996 u32 seqno;
997 } *waiters;
998
999 struct {
1000 u32 gfx_mode;
1001 union {
1002 u64 pdp[4];
1003 u32 pp_dir_base;
1004 };
1005 } vm_info;
1006
1007 pid_t pid;
1008 char comm[TASK_COMM_LEN];
1009 int context_bans;
1010 } engine[I915_NUM_ENGINES];
1011
1012 struct drm_i915_error_buffer {
1013 u32 size;
1014 u32 name;
1015 u32 rseqno[I915_NUM_ENGINES], wseqno;
1016 u64 gtt_offset;
1017 u32 read_domains;
1018 u32 write_domain;
1019 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
1020 u32 tiling:2;
1021 u32 dirty:1;
1022 u32 purgeable:1;
1023 u32 userptr:1;
1024 s32 engine:4;
1025 u32 cache_level:3;
1026 } *active_bo[I915_NUM_ENGINES], *pinned_bo;
1027 u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
1028 struct i915_address_space *active_vm[I915_NUM_ENGINES];
1029 };
1030
1031 enum i915_cache_level {
1032 I915_CACHE_NONE = 0,
1033 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
1034 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
1035 caches, eg sampler/render caches, and the
1036 large Last-Level-Cache. LLC is coherent with
1037 the CPU, but L3 is only visible to the GPU. */
1038 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
1039 };
1040
1041 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
1042
1043 enum fb_op_origin {
1044 ORIGIN_GTT,
1045 ORIGIN_CPU,
1046 ORIGIN_CS,
1047 ORIGIN_FLIP,
1048 ORIGIN_DIRTYFB,
1049 };
1050
1051 struct intel_fbc {
1052 /* This is always the inner lock when overlapping with struct_mutex and
1053 * it's the outer lock when overlapping with stolen_lock. */
1054 struct mutex lock;
1055 unsigned threshold;
1056 unsigned int possible_framebuffer_bits;
1057 unsigned int busy_bits;
1058 unsigned int visible_pipes_mask;
1059 struct intel_crtc *crtc;
1060
1061 struct drm_mm_node compressed_fb;
1062 struct drm_mm_node *compressed_llb;
1063
1064 bool false_color;
1065
1066 bool enabled;
1067 bool active;
1068
1069 bool underrun_detected;
1070 struct work_struct underrun_work;
1071
1072 struct intel_fbc_state_cache {
1073 struct i915_vma *vma;
1074
1075 struct {
1076 unsigned int mode_flags;
1077 uint32_t hsw_bdw_pixel_rate;
1078 } crtc;
1079
1080 struct {
1081 unsigned int rotation;
1082 int src_w;
1083 int src_h;
1084 bool visible;
1085 } plane;
1086
1087 struct {
1088 const struct drm_format_info *format;
1089 unsigned int stride;
1090 } fb;
1091 } state_cache;
1092
1093 struct intel_fbc_reg_params {
1094 struct i915_vma *vma;
1095
1096 struct {
1097 enum pipe pipe;
1098 enum plane plane;
1099 unsigned int fence_y_offset;
1100 } crtc;
1101
1102 struct {
1103 const struct drm_format_info *format;
1104 unsigned int stride;
1105 } fb;
1106
1107 int cfb_size;
1108 } params;
1109
1110 struct intel_fbc_work {
1111 bool scheduled;
1112 u32 scheduled_vblank;
1113 struct work_struct work;
1114 } work;
1115
1116 const char *no_fbc_reason;
1117 };
1118
1119 /*
1120 * HIGH_RR is the highest eDP panel refresh rate read from EDID
1121 * LOW_RR is the lowest eDP panel refresh rate found from EDID
1122 * parsing for same resolution.
1123 */
1124 enum drrs_refresh_rate_type {
1125 DRRS_HIGH_RR,
1126 DRRS_LOW_RR,
1127 DRRS_MAX_RR, /* RR count */
1128 };
1129
1130 enum drrs_support_type {
1131 DRRS_NOT_SUPPORTED = 0,
1132 STATIC_DRRS_SUPPORT = 1,
1133 SEAMLESS_DRRS_SUPPORT = 2
1134 };
1135
1136 struct intel_dp;
1137 struct i915_drrs {
1138 struct mutex mutex;
1139 struct delayed_work work;
1140 struct intel_dp *dp;
1141 unsigned busy_frontbuffer_bits;
1142 enum drrs_refresh_rate_type refresh_rate_type;
1143 enum drrs_support_type type;
1144 };
1145
1146 struct i915_psr {
1147 struct mutex lock;
1148 bool sink_support;
1149 bool source_ok;
1150 struct intel_dp *enabled;
1151 bool active;
1152 struct delayed_work work;
1153 unsigned busy_frontbuffer_bits;
1154 bool psr2_support;
1155 bool aux_frame_sync;
1156 bool link_standby;
1157 bool y_cord_support;
1158 bool colorimetry_support;
1159 bool alpm;
1160 };
1161
1162 enum intel_pch {
1163 PCH_NONE = 0, /* No PCH present */
1164 PCH_IBX, /* Ibexpeak PCH */
1165 PCH_CPT, /* Cougarpoint PCH */
1166 PCH_LPT, /* Lynxpoint PCH */
1167 PCH_SPT, /* Sunrisepoint PCH */
1168 PCH_KBP, /* Kabypoint PCH */
1169 PCH_NOP,
1170 };
1171
1172 enum intel_sbi_destination {
1173 SBI_ICLK,
1174 SBI_MPHY,
1175 };
1176
1177 #define QUIRK_PIPEA_FORCE (1<<0)
1178 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1179 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1180 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1181 #define QUIRK_PIPEB_FORCE (1<<4)
1182 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1183
1184 struct intel_fbdev;
1185 struct intel_fbc_work;
1186
1187 struct intel_gmbus {
1188 struct i2c_adapter adapter;
1189 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1190 u32 force_bit;
1191 u32 reg0;
1192 i915_reg_t gpio_reg;
1193 struct i2c_algo_bit_data bit_algo;
1194 struct drm_i915_private *dev_priv;
1195 };
1196
1197 struct i915_suspend_saved_registers {
1198 u32 saveDSPARB;
1199 u32 saveFBC_CONTROL;
1200 u32 saveCACHE_MODE_0;
1201 u32 saveMI_ARB_STATE;
1202 u32 saveSWF0[16];
1203 u32 saveSWF1[16];
1204 u32 saveSWF3[3];
1205 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1206 u32 savePCH_PORT_HOTPLUG;
1207 u16 saveGCDGMBUS;
1208 };
1209
1210 struct vlv_s0ix_state {
1211 /* GAM */
1212 u32 wr_watermark;
1213 u32 gfx_prio_ctrl;
1214 u32 arb_mode;
1215 u32 gfx_pend_tlb0;
1216 u32 gfx_pend_tlb1;
1217 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1218 u32 media_max_req_count;
1219 u32 gfx_max_req_count;
1220 u32 render_hwsp;
1221 u32 ecochk;
1222 u32 bsd_hwsp;
1223 u32 blt_hwsp;
1224 u32 tlb_rd_addr;
1225
1226 /* MBC */
1227 u32 g3dctl;
1228 u32 gsckgctl;
1229 u32 mbctl;
1230
1231 /* GCP */
1232 u32 ucgctl1;
1233 u32 ucgctl3;
1234 u32 rcgctl1;
1235 u32 rcgctl2;
1236 u32 rstctl;
1237 u32 misccpctl;
1238
1239 /* GPM */
1240 u32 gfxpause;
1241 u32 rpdeuhwtc;
1242 u32 rpdeuc;
1243 u32 ecobus;
1244 u32 pwrdwnupctl;
1245 u32 rp_down_timeout;
1246 u32 rp_deucsw;
1247 u32 rcubmabdtmr;
1248 u32 rcedata;
1249 u32 spare2gh;
1250
1251 /* Display 1 CZ domain */
1252 u32 gt_imr;
1253 u32 gt_ier;
1254 u32 pm_imr;
1255 u32 pm_ier;
1256 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1257
1258 /* GT SA CZ domain */
1259 u32 tilectl;
1260 u32 gt_fifoctl;
1261 u32 gtlc_wake_ctrl;
1262 u32 gtlc_survive;
1263 u32 pmwgicz;
1264
1265 /* Display 2 CZ domain */
1266 u32 gu_ctl0;
1267 u32 gu_ctl1;
1268 u32 pcbr;
1269 u32 clock_gate_dis2;
1270 };
1271
1272 struct intel_rps_ei {
1273 u32 cz_clock;
1274 u32 render_c0;
1275 u32 media_c0;
1276 };
1277
1278 struct intel_gen6_power_mgmt {
1279 /*
1280 * work, interrupts_enabled and pm_iir are protected by
1281 * dev_priv->irq_lock
1282 */
1283 struct work_struct work;
1284 bool interrupts_enabled;
1285 u32 pm_iir;
1286
1287 /* PM interrupt bits that should never be masked */
1288 u32 pm_intr_keep;
1289
1290 /* Frequencies are stored in potentially platform dependent multiples.
1291 * In other words, *_freq needs to be multiplied by X to be interesting.
1292 * Soft limits are those which are used for the dynamic reclocking done
1293 * by the driver (raise frequencies under heavy loads, and lower for
1294 * lighter loads). Hard limits are those imposed by the hardware.
1295 *
1296 * A distinction is made for overclocking, which is never enabled by
1297 * default, and is considered to be above the hard limit if it's
1298 * possible at all.
1299 */
1300 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1301 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1302 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1303 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1304 u8 min_freq; /* AKA RPn. Minimum frequency */
1305 u8 boost_freq; /* Frequency to request when wait boosting */
1306 u8 idle_freq; /* Frequency to request when we are idle */
1307 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1308 u8 rp1_freq; /* "less than" RP0 power/freqency */
1309 u8 rp0_freq; /* Non-overclocked max frequency. */
1310 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
1311
1312 u8 up_threshold; /* Current %busy required to uplock */
1313 u8 down_threshold; /* Current %busy required to downclock */
1314
1315 int last_adj;
1316 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1317
1318 spinlock_t client_lock;
1319 struct list_head clients;
1320 bool client_boost;
1321
1322 bool enabled;
1323 struct delayed_work autoenable_work;
1324 unsigned boosts;
1325
1326 /* manual wa residency calculations */
1327 struct intel_rps_ei up_ei, down_ei;
1328
1329 /*
1330 * Protects RPS/RC6 register access and PCU communication.
1331 * Must be taken after struct_mutex if nested. Note that
1332 * this lock may be held for long periods of time when
1333 * talking to hw - so only take it when talking to hw!
1334 */
1335 struct mutex hw_lock;
1336 };
1337
1338 /* defined intel_pm.c */
1339 extern spinlock_t mchdev_lock;
1340
1341 struct intel_ilk_power_mgmt {
1342 u8 cur_delay;
1343 u8 min_delay;
1344 u8 max_delay;
1345 u8 fmax;
1346 u8 fstart;
1347
1348 u64 last_count1;
1349 unsigned long last_time1;
1350 unsigned long chipset_power;
1351 u64 last_count2;
1352 u64 last_time2;
1353 unsigned long gfx_power;
1354 u8 corr;
1355
1356 int c_m;
1357 int r_t;
1358 };
1359
1360 struct drm_i915_private;
1361 struct i915_power_well;
1362
1363 struct i915_power_well_ops {
1364 /*
1365 * Synchronize the well's hw state to match the current sw state, for
1366 * example enable/disable it based on the current refcount. Called
1367 * during driver init and resume time, possibly after first calling
1368 * the enable/disable handlers.
1369 */
1370 void (*sync_hw)(struct drm_i915_private *dev_priv,
1371 struct i915_power_well *power_well);
1372 /*
1373 * Enable the well and resources that depend on it (for example
1374 * interrupts located on the well). Called after the 0->1 refcount
1375 * transition.
1376 */
1377 void (*enable)(struct drm_i915_private *dev_priv,
1378 struct i915_power_well *power_well);
1379 /*
1380 * Disable the well and resources that depend on it. Called after
1381 * the 1->0 refcount transition.
1382 */
1383 void (*disable)(struct drm_i915_private *dev_priv,
1384 struct i915_power_well *power_well);
1385 /* Returns the hw enabled state. */
1386 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1387 struct i915_power_well *power_well);
1388 };
1389
1390 /* Power well structure for haswell */
1391 struct i915_power_well {
1392 const char *name;
1393 bool always_on;
1394 /* power well enable/disable usage count */
1395 int count;
1396 /* cached hw enabled state */
1397 bool hw_enabled;
1398 unsigned long domains;
1399 /* unique identifier for this power well */
1400 unsigned long id;
1401 /*
1402 * Arbitraty data associated with this power well. Platform and power
1403 * well specific.
1404 */
1405 unsigned long data;
1406 const struct i915_power_well_ops *ops;
1407 };
1408
1409 struct i915_power_domains {
1410 /*
1411 * Power wells needed for initialization at driver init and suspend
1412 * time are on. They are kept on until after the first modeset.
1413 */
1414 bool init_power_on;
1415 bool initializing;
1416 int power_well_count;
1417
1418 struct mutex lock;
1419 int domain_use_count[POWER_DOMAIN_NUM];
1420 struct i915_power_well *power_wells;
1421 };
1422
1423 #define MAX_L3_SLICES 2
1424 struct intel_l3_parity {
1425 u32 *remap_info[MAX_L3_SLICES];
1426 struct work_struct error_work;
1427 int which_slice;
1428 };
1429
1430 struct i915_gem_mm {
1431 /** Memory allocator for GTT stolen memory */
1432 struct drm_mm stolen;
1433 /** Protects the usage of the GTT stolen memory allocator. This is
1434 * always the inner lock when overlapping with struct_mutex. */
1435 struct mutex stolen_lock;
1436
1437 /** List of all objects in gtt_space. Used to restore gtt
1438 * mappings on resume */
1439 struct list_head bound_list;
1440 /**
1441 * List of objects which are not bound to the GTT (thus
1442 * are idle and not used by the GPU). These objects may or may
1443 * not actually have any pages attached.
1444 */
1445 struct list_head unbound_list;
1446
1447 /** List of all objects in gtt_space, currently mmaped by userspace.
1448 * All objects within this list must also be on bound_list.
1449 */
1450 struct list_head userfault_list;
1451
1452 /**
1453 * List of objects which are pending destruction.
1454 */
1455 struct llist_head free_list;
1456 struct work_struct free_work;
1457
1458 /** Usable portion of the GTT for GEM */
1459 phys_addr_t stolen_base; /* limited to low memory (32-bit) */
1460
1461 /** PPGTT used for aliasing the PPGTT with the GTT */
1462 struct i915_hw_ppgtt *aliasing_ppgtt;
1463
1464 struct notifier_block oom_notifier;
1465 struct notifier_block vmap_notifier;
1466 struct shrinker shrinker;
1467
1468 /** LRU list of objects with fence regs on them. */
1469 struct list_head fence_list;
1470
1471 /**
1472 * Are we in a non-interruptible section of code like
1473 * modesetting?
1474 */
1475 bool interruptible;
1476
1477 /* the indicator for dispatch video commands on two BSD rings */
1478 atomic_t bsd_engine_dispatch_index;
1479
1480 /** Bit 6 swizzling required for X tiling */
1481 uint32_t bit_6_swizzle_x;
1482 /** Bit 6 swizzling required for Y tiling */
1483 uint32_t bit_6_swizzle_y;
1484
1485 /* accounting, useful for userland debugging */
1486 spinlock_t object_stat_lock;
1487 u64 object_memory;
1488 u32 object_count;
1489 };
1490
1491 struct drm_i915_error_state_buf {
1492 struct drm_i915_private *i915;
1493 unsigned bytes;
1494 unsigned size;
1495 int err;
1496 u8 *buf;
1497 loff_t start;
1498 loff_t pos;
1499 };
1500
1501 struct i915_error_state_file_priv {
1502 struct drm_i915_private *i915;
1503 struct drm_i915_error_state *error;
1504 };
1505
1506 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1507 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1508
1509 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */
1510 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */
1511
1512 struct i915_gpu_error {
1513 /* For hangcheck timer */
1514 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1515 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1516
1517 struct delayed_work hangcheck_work;
1518
1519 /* For reset and error_state handling. */
1520 spinlock_t lock;
1521 /* Protected by the above dev->gpu_error.lock. */
1522 struct drm_i915_error_state *first_error;
1523
1524 unsigned long missed_irq_rings;
1525
1526 /**
1527 * State variable controlling the reset flow and count
1528 *
1529 * This is a counter which gets incremented when reset is triggered,
1530 *
1531 * Before the reset commences, the I915_RESET_IN_PROGRESS bit is set
1532 * meaning that any waiters holding onto the struct_mutex should
1533 * relinquish the lock immediately in order for the reset to start.
1534 *
1535 * If reset is not completed succesfully, the I915_WEDGE bit is
1536 * set meaning that hardware is terminally sour and there is no
1537 * recovery. All waiters on the reset_queue will be woken when
1538 * that happens.
1539 *
1540 * This counter is used by the wait_seqno code to notice that reset
1541 * event happened and it needs to restart the entire ioctl (since most
1542 * likely the seqno it waited for won't ever signal anytime soon).
1543 *
1544 * This is important for lock-free wait paths, where no contended lock
1545 * naturally enforces the correct ordering between the bail-out of the
1546 * waiter and the gpu reset work code.
1547 */
1548 unsigned long reset_count;
1549
1550 unsigned long flags;
1551 #define I915_RESET_IN_PROGRESS 0
1552 #define I915_WEDGED (BITS_PER_LONG - 1)
1553
1554 /**
1555 * Waitqueue to signal when a hang is detected. Used to for waiters
1556 * to release the struct_mutex for the reset to procede.
1557 */
1558 wait_queue_head_t wait_queue;
1559
1560 /**
1561 * Waitqueue to signal when the reset has completed. Used by clients
1562 * that wait for dev_priv->mm.wedged to settle.
1563 */
1564 wait_queue_head_t reset_queue;
1565
1566 /* For missed irq/seqno simulation. */
1567 unsigned long test_irq_rings;
1568 };
1569
1570 enum modeset_restore {
1571 MODESET_ON_LID_OPEN,
1572 MODESET_DONE,
1573 MODESET_SUSPENDED,
1574 };
1575
1576 #define DP_AUX_A 0x40
1577 #define DP_AUX_B 0x10
1578 #define DP_AUX_C 0x20
1579 #define DP_AUX_D 0x30
1580
1581 #define DDC_PIN_B 0x05
1582 #define DDC_PIN_C 0x04
1583 #define DDC_PIN_D 0x06
1584
1585 struct ddi_vbt_port_info {
1586 /*
1587 * This is an index in the HDMI/DVI DDI buffer translation table.
1588 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1589 * populate this field.
1590 */
1591 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1592 uint8_t hdmi_level_shift;
1593
1594 uint8_t supports_dvi:1;
1595 uint8_t supports_hdmi:1;
1596 uint8_t supports_dp:1;
1597 uint8_t supports_edp:1;
1598
1599 uint8_t alternate_aux_channel;
1600 uint8_t alternate_ddc_pin;
1601
1602 uint8_t dp_boost_level;
1603 uint8_t hdmi_boost_level;
1604 };
1605
1606 enum psr_lines_to_wait {
1607 PSR_0_LINES_TO_WAIT = 0,
1608 PSR_1_LINE_TO_WAIT,
1609 PSR_4_LINES_TO_WAIT,
1610 PSR_8_LINES_TO_WAIT
1611 };
1612
1613 struct intel_vbt_data {
1614 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1615 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1616
1617 /* Feature bits */
1618 unsigned int int_tv_support:1;
1619 unsigned int lvds_dither:1;
1620 unsigned int lvds_vbt:1;
1621 unsigned int int_crt_support:1;
1622 unsigned int lvds_use_ssc:1;
1623 unsigned int display_clock_mode:1;
1624 unsigned int fdi_rx_polarity_inverted:1;
1625 unsigned int panel_type:4;
1626 int lvds_ssc_freq;
1627 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1628
1629 enum drrs_support_type drrs_type;
1630
1631 struct {
1632 int rate;
1633 int lanes;
1634 int preemphasis;
1635 int vswing;
1636 bool low_vswing;
1637 bool initialized;
1638 bool support;
1639 int bpp;
1640 struct edp_power_seq pps;
1641 } edp;
1642
1643 struct {
1644 bool full_link;
1645 bool require_aux_wakeup;
1646 int idle_frames;
1647 enum psr_lines_to_wait lines_to_wait;
1648 int tp1_wakeup_time;
1649 int tp2_tp3_wakeup_time;
1650 } psr;
1651
1652 struct {
1653 u16 pwm_freq_hz;
1654 bool present;
1655 bool active_low_pwm;
1656 u8 min_brightness; /* min_brightness/255 of max */
1657 u8 controller; /* brightness controller number */
1658 enum intel_backlight_type type;
1659 } backlight;
1660
1661 /* MIPI DSI */
1662 struct {
1663 u16 panel_id;
1664 struct mipi_config *config;
1665 struct mipi_pps_data *pps;
1666 u8 seq_version;
1667 u32 size;
1668 u8 *data;
1669 const u8 *sequence[MIPI_SEQ_MAX];
1670 } dsi;
1671
1672 int crt_ddc_pin;
1673
1674 int child_dev_num;
1675 union child_device_config *child_dev;
1676
1677 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1678 struct sdvo_device_mapping sdvo_mappings[2];
1679 };
1680
1681 enum intel_ddb_partitioning {
1682 INTEL_DDB_PART_1_2,
1683 INTEL_DDB_PART_5_6, /* IVB+ */
1684 };
1685
1686 struct intel_wm_level {
1687 bool enable;
1688 uint32_t pri_val;
1689 uint32_t spr_val;
1690 uint32_t cur_val;
1691 uint32_t fbc_val;
1692 };
1693
1694 struct ilk_wm_values {
1695 uint32_t wm_pipe[3];
1696 uint32_t wm_lp[3];
1697 uint32_t wm_lp_spr[3];
1698 uint32_t wm_linetime[3];
1699 bool enable_fbc_wm;
1700 enum intel_ddb_partitioning partitioning;
1701 };
1702
1703 struct vlv_pipe_wm {
1704 uint16_t plane[I915_MAX_PLANES];
1705 };
1706
1707 struct vlv_sr_wm {
1708 uint16_t plane;
1709 uint16_t cursor;
1710 };
1711
1712 struct vlv_wm_ddl_values {
1713 uint8_t plane[I915_MAX_PLANES];
1714 };
1715
1716 struct vlv_wm_values {
1717 struct vlv_pipe_wm pipe[3];
1718 struct vlv_sr_wm sr;
1719 struct vlv_wm_ddl_values ddl[3];
1720 uint8_t level;
1721 bool cxsr;
1722 };
1723
1724 struct skl_ddb_entry {
1725 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1726 };
1727
1728 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1729 {
1730 return entry->end - entry->start;
1731 }
1732
1733 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1734 const struct skl_ddb_entry *e2)
1735 {
1736 if (e1->start == e2->start && e1->end == e2->end)
1737 return true;
1738
1739 return false;
1740 }
1741
1742 struct skl_ddb_allocation {
1743 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1744 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1745 };
1746
1747 struct skl_wm_values {
1748 unsigned dirty_pipes;
1749 struct skl_ddb_allocation ddb;
1750 };
1751
1752 struct skl_wm_level {
1753 bool plane_en;
1754 uint16_t plane_res_b;
1755 uint8_t plane_res_l;
1756 };
1757
1758 /*
1759 * This struct helps tracking the state needed for runtime PM, which puts the
1760 * device in PCI D3 state. Notice that when this happens, nothing on the
1761 * graphics device works, even register access, so we don't get interrupts nor
1762 * anything else.
1763 *
1764 * Every piece of our code that needs to actually touch the hardware needs to
1765 * either call intel_runtime_pm_get or call intel_display_power_get with the
1766 * appropriate power domain.
1767 *
1768 * Our driver uses the autosuspend delay feature, which means we'll only really
1769 * suspend if we stay with zero refcount for a certain amount of time. The
1770 * default value is currently very conservative (see intel_runtime_pm_enable), but
1771 * it can be changed with the standard runtime PM files from sysfs.
1772 *
1773 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1774 * goes back to false exactly before we reenable the IRQs. We use this variable
1775 * to check if someone is trying to enable/disable IRQs while they're supposed
1776 * to be disabled. This shouldn't happen and we'll print some error messages in
1777 * case it happens.
1778 *
1779 * For more, read the Documentation/power/runtime_pm.txt.
1780 */
1781 struct i915_runtime_pm {
1782 atomic_t wakeref_count;
1783 bool suspended;
1784 bool irqs_enabled;
1785 };
1786
1787 enum intel_pipe_crc_source {
1788 INTEL_PIPE_CRC_SOURCE_NONE,
1789 INTEL_PIPE_CRC_SOURCE_PLANE1,
1790 INTEL_PIPE_CRC_SOURCE_PLANE2,
1791 INTEL_PIPE_CRC_SOURCE_PF,
1792 INTEL_PIPE_CRC_SOURCE_PIPE,
1793 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1794 INTEL_PIPE_CRC_SOURCE_TV,
1795 INTEL_PIPE_CRC_SOURCE_DP_B,
1796 INTEL_PIPE_CRC_SOURCE_DP_C,
1797 INTEL_PIPE_CRC_SOURCE_DP_D,
1798 INTEL_PIPE_CRC_SOURCE_AUTO,
1799 INTEL_PIPE_CRC_SOURCE_MAX,
1800 };
1801
1802 struct intel_pipe_crc_entry {
1803 uint32_t frame;
1804 uint32_t crc[5];
1805 };
1806
1807 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1808 struct intel_pipe_crc {
1809 spinlock_t lock;
1810 bool opened; /* exclusive access to the result file */
1811 struct intel_pipe_crc_entry *entries;
1812 enum intel_pipe_crc_source source;
1813 int head, tail;
1814 wait_queue_head_t wq;
1815 int skipped;
1816 };
1817
1818 struct i915_frontbuffer_tracking {
1819 spinlock_t lock;
1820
1821 /*
1822 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1823 * scheduled flips.
1824 */
1825 unsigned busy_bits;
1826 unsigned flip_bits;
1827 };
1828
1829 struct i915_wa_reg {
1830 i915_reg_t addr;
1831 u32 value;
1832 /* bitmask representing WA bits */
1833 u32 mask;
1834 };
1835
1836 /*
1837 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1838 * allowing it for RCS as we don't foresee any requirement of having
1839 * a whitelist for other engines. When it is really required for
1840 * other engines then the limit need to be increased.
1841 */
1842 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1843
1844 struct i915_workarounds {
1845 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1846 u32 count;
1847 u32 hw_whitelist_count[I915_NUM_ENGINES];
1848 };
1849
1850 struct i915_virtual_gpu {
1851 bool active;
1852 };
1853
1854 /* used in computing the new watermarks state */
1855 struct intel_wm_config {
1856 unsigned int num_pipes_active;
1857 bool sprites_enabled;
1858 bool sprites_scaled;
1859 };
1860
1861 struct i915_oa_format {
1862 u32 format;
1863 int size;
1864 };
1865
1866 struct i915_oa_reg {
1867 i915_reg_t addr;
1868 u32 value;
1869 };
1870
1871 struct i915_perf_stream;
1872
1873 /**
1874 * struct i915_perf_stream_ops - the OPs to support a specific stream type
1875 */
1876 struct i915_perf_stream_ops {
1877 /**
1878 * @enable: Enables the collection of HW samples, either in response to
1879 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1880 * without `I915_PERF_FLAG_DISABLED`.
1881 */
1882 void (*enable)(struct i915_perf_stream *stream);
1883
1884 /**
1885 * @disable: Disables the collection of HW samples, either in response
1886 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1887 * the stream.
1888 */
1889 void (*disable)(struct i915_perf_stream *stream);
1890
1891 /**
1892 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1893 * once there is something ready to read() for the stream
1894 */
1895 void (*poll_wait)(struct i915_perf_stream *stream,
1896 struct file *file,
1897 poll_table *wait);
1898
1899 /**
1900 * @wait_unlocked: For handling a blocking read, wait until there is
1901 * something to ready to read() for the stream. E.g. wait on the same
1902 * wait queue that would be passed to poll_wait().
1903 */
1904 int (*wait_unlocked)(struct i915_perf_stream *stream);
1905
1906 /**
1907 * @read: Copy buffered metrics as records to userspace
1908 * **buf**: the userspace, destination buffer
1909 * **count**: the number of bytes to copy, requested by userspace
1910 * **offset**: zero at the start of the read, updated as the read
1911 * proceeds, it represents how many bytes have been copied so far and
1912 * the buffer offset for copying the next record.
1913 *
1914 * Copy as many buffered i915 perf samples and records for this stream
1915 * to userspace as will fit in the given buffer.
1916 *
1917 * Only write complete records; returning -%ENOSPC if there isn't room
1918 * for a complete record.
1919 *
1920 * Return any error condition that results in a short read such as
1921 * -%ENOSPC or -%EFAULT, even though these may be squashed before
1922 * returning to userspace.
1923 */
1924 int (*read)(struct i915_perf_stream *stream,
1925 char __user *buf,
1926 size_t count,
1927 size_t *offset);
1928
1929 /**
1930 * @destroy: Cleanup any stream specific resources.
1931 *
1932 * The stream will always be disabled before this is called.
1933 */
1934 void (*destroy)(struct i915_perf_stream *stream);
1935 };
1936
1937 /**
1938 * struct i915_perf_stream - state for a single open stream FD
1939 */
1940 struct i915_perf_stream {
1941 /**
1942 * @dev_priv: i915 drm device
1943 */
1944 struct drm_i915_private *dev_priv;
1945
1946 /**
1947 * @link: Links the stream into ``&drm_i915_private->streams``
1948 */
1949 struct list_head link;
1950
1951 /**
1952 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
1953 * properties given when opening a stream, representing the contents
1954 * of a single sample as read() by userspace.
1955 */
1956 u32 sample_flags;
1957
1958 /**
1959 * @sample_size: Considering the configured contents of a sample
1960 * combined with the required header size, this is the total size
1961 * of a single sample record.
1962 */
1963 int sample_size;
1964
1965 /**
1966 * @ctx: %NULL if measuring system-wide across all contexts or a
1967 * specific context that is being monitored.
1968 */
1969 struct i915_gem_context *ctx;
1970
1971 /**
1972 * @enabled: Whether the stream is currently enabled, considering
1973 * whether the stream was opened in a disabled state and based
1974 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
1975 */
1976 bool enabled;
1977
1978 /**
1979 * @ops: The callbacks providing the implementation of this specific
1980 * type of configured stream.
1981 */
1982 const struct i915_perf_stream_ops *ops;
1983 };
1984
1985 /**
1986 * struct i915_oa_ops - Gen specific implementation of an OA unit stream
1987 */
1988 struct i915_oa_ops {
1989 /**
1990 * @init_oa_buffer: Resets the head and tail pointers of the
1991 * circular buffer for periodic OA reports.
1992 *
1993 * Called when first opening a stream for OA metrics, but also may be
1994 * called in response to an OA buffer overflow or other error
1995 * condition.
1996 *
1997 * Note it may be necessary to clear the full OA buffer here as part of
1998 * maintaining the invariable that new reports must be written to
1999 * zeroed memory for us to be able to reliable detect if an expected
2000 * report has not yet landed in memory. (At least on Haswell the OA
2001 * buffer tail pointer is not synchronized with reports being visible
2002 * to the CPU)
2003 */
2004 void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
2005
2006 /**
2007 * @enable_metric_set: Applies any MUX configuration to set up the
2008 * Boolean and Custom (B/C) counters that are part of the counter
2009 * reports being sampled. May apply system constraints such as
2010 * disabling EU clock gating as required.
2011 */
2012 int (*enable_metric_set)(struct drm_i915_private *dev_priv);
2013
2014 /**
2015 * @disable_metric_set: Remove system constraints associated with using
2016 * the OA unit.
2017 */
2018 void (*disable_metric_set)(struct drm_i915_private *dev_priv);
2019
2020 /**
2021 * @oa_enable: Enable periodic sampling
2022 */
2023 void (*oa_enable)(struct drm_i915_private *dev_priv);
2024
2025 /**
2026 * @oa_disable: Disable periodic sampling
2027 */
2028 void (*oa_disable)(struct drm_i915_private *dev_priv);
2029
2030 /**
2031 * @read: Copy data from the circular OA buffer into a given userspace
2032 * buffer.
2033 */
2034 int (*read)(struct i915_perf_stream *stream,
2035 char __user *buf,
2036 size_t count,
2037 size_t *offset);
2038
2039 /**
2040 * @oa_buffer_is_empty: Check if OA buffer empty (false positives OK)
2041 *
2042 * This is either called via fops or the poll check hrtimer (atomic
2043 * ctx) without any locks taken.
2044 *
2045 * It's safe to read OA config state here unlocked, assuming that this
2046 * is only called while the stream is enabled, while the global OA
2047 * configuration can't be modified.
2048 *
2049 * Efficiency is more important than avoiding some false positives
2050 * here, which will be handled gracefully - likely resulting in an
2051 * %EAGAIN error for userspace.
2052 */
2053 bool (*oa_buffer_is_empty)(struct drm_i915_private *dev_priv);
2054 };
2055
2056 struct drm_i915_private {
2057 struct drm_device drm;
2058
2059 struct kmem_cache *objects;
2060 struct kmem_cache *vmas;
2061 struct kmem_cache *requests;
2062 struct kmem_cache *dependencies;
2063
2064 const struct intel_device_info info;
2065
2066 int relative_constants_mode;
2067
2068 void __iomem *regs;
2069
2070 struct intel_uncore uncore;
2071
2072 struct i915_virtual_gpu vgpu;
2073
2074 struct intel_gvt *gvt;
2075
2076 struct intel_huc huc;
2077 struct intel_guc guc;
2078
2079 struct intel_csr csr;
2080
2081 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
2082
2083 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
2084 * controller on different i2c buses. */
2085 struct mutex gmbus_mutex;
2086
2087 /**
2088 * Base address of the gmbus and gpio block.
2089 */
2090 uint32_t gpio_mmio_base;
2091
2092 /* MMIO base address for MIPI regs */
2093 uint32_t mipi_mmio_base;
2094
2095 uint32_t psr_mmio_base;
2096
2097 uint32_t pps_mmio_base;
2098
2099 wait_queue_head_t gmbus_wait_queue;
2100
2101 struct pci_dev *bridge_dev;
2102 struct i915_gem_context *kernel_context;
2103 struct intel_engine_cs *engine[I915_NUM_ENGINES];
2104 struct i915_vma *semaphore;
2105
2106 struct drm_dma_handle *status_page_dmah;
2107 struct resource mch_res;
2108
2109 /* protects the irq masks */
2110 spinlock_t irq_lock;
2111
2112 /* protects the mmio flip data */
2113 spinlock_t mmio_flip_lock;
2114
2115 bool display_irqs_enabled;
2116
2117 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
2118 struct pm_qos_request pm_qos;
2119
2120 /* Sideband mailbox protection */
2121 struct mutex sb_lock;
2122
2123 /** Cached value of IMR to avoid reads in updating the bitfield */
2124 union {
2125 u32 irq_mask;
2126 u32 de_irq_mask[I915_MAX_PIPES];
2127 };
2128 u32 gt_irq_mask;
2129 u32 pm_imr;
2130 u32 pm_ier;
2131 u32 pm_rps_events;
2132 u32 pm_guc_events;
2133 u32 pipestat_irq_mask[I915_MAX_PIPES];
2134
2135 struct i915_hotplug hotplug;
2136 struct intel_fbc fbc;
2137 struct i915_drrs drrs;
2138 struct intel_opregion opregion;
2139 struct intel_vbt_data vbt;
2140
2141 bool preserve_bios_swizzle;
2142
2143 /* overlay */
2144 struct intel_overlay *overlay;
2145
2146 /* backlight registers and fields in struct intel_panel */
2147 struct mutex backlight_lock;
2148
2149 /* LVDS info */
2150 bool no_aux_handshake;
2151
2152 /* protects panel power sequencer state */
2153 struct mutex pps_mutex;
2154
2155 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
2156 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
2157
2158 unsigned int fsb_freq, mem_freq, is_ddr3;
2159 unsigned int skl_preferred_vco_freq;
2160 unsigned int cdclk_freq, max_cdclk_freq;
2161
2162 /*
2163 * For reading holding any crtc lock is sufficient,
2164 * for writing must hold all of them.
2165 */
2166 unsigned int atomic_cdclk_freq;
2167
2168 unsigned int max_dotclk_freq;
2169 unsigned int rawclk_freq;
2170 unsigned int hpll_freq;
2171 unsigned int czclk_freq;
2172
2173 struct {
2174 unsigned int vco, ref;
2175 } cdclk_pll;
2176
2177 /**
2178 * wq - Driver workqueue for GEM.
2179 *
2180 * NOTE: Work items scheduled here are not allowed to grab any modeset
2181 * locks, for otherwise the flushing done in the pageflip code will
2182 * result in deadlocks.
2183 */
2184 struct workqueue_struct *wq;
2185
2186 /* Display functions */
2187 struct drm_i915_display_funcs display;
2188
2189 /* PCH chipset type */
2190 enum intel_pch pch_type;
2191 unsigned short pch_id;
2192
2193 unsigned long quirks;
2194
2195 enum modeset_restore modeset_restore;
2196 struct mutex modeset_restore_lock;
2197 struct drm_atomic_state *modeset_restore_state;
2198 struct drm_modeset_acquire_ctx reset_ctx;
2199
2200 struct list_head vm_list; /* Global list of all address spaces */
2201 struct i915_ggtt ggtt; /* VM representing the global address space */
2202
2203 struct i915_gem_mm mm;
2204 DECLARE_HASHTABLE(mm_structs, 7);
2205 struct mutex mm_lock;
2206
2207 /* The hw wants to have a stable context identifier for the lifetime
2208 * of the context (for OA, PASID, faults, etc). This is limited
2209 * in execlists to 21 bits.
2210 */
2211 struct ida context_hw_ida;
2212 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
2213
2214 /* Kernel Modesetting */
2215
2216 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
2217 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
2218 wait_queue_head_t pending_flip_queue;
2219
2220 #ifdef CONFIG_DEBUG_FS
2221 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
2222 #endif
2223
2224 /* dpll and cdclk state is protected by connection_mutex */
2225 int num_shared_dpll;
2226 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
2227 const struct intel_dpll_mgr *dpll_mgr;
2228
2229 /*
2230 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
2231 * Must be global rather than per dpll, because on some platforms
2232 * plls share registers.
2233 */
2234 struct mutex dpll_lock;
2235
2236 unsigned int active_crtcs;
2237 unsigned int min_pixclk[I915_MAX_PIPES];
2238
2239 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
2240
2241 struct i915_workarounds workarounds;
2242
2243 struct i915_frontbuffer_tracking fb_tracking;
2244
2245 struct intel_atomic_helper {
2246 struct llist_head free_list;
2247 struct work_struct free_work;
2248 } atomic_helper;
2249
2250 u16 orig_clock;
2251
2252 bool mchbar_need_disable;
2253
2254 struct intel_l3_parity l3_parity;
2255
2256 /* Cannot be determined by PCIID. You must always read a register. */
2257 u32 edram_cap;
2258
2259 /* gen6+ rps state */
2260 struct intel_gen6_power_mgmt rps;
2261
2262 /* ilk-only ips/rps state. Everything in here is protected by the global
2263 * mchdev_lock in intel_pm.c */
2264 struct intel_ilk_power_mgmt ips;
2265
2266 struct i915_power_domains power_domains;
2267
2268 struct i915_psr psr;
2269
2270 struct i915_gpu_error gpu_error;
2271
2272 struct drm_i915_gem_object *vlv_pctx;
2273
2274 #ifdef CONFIG_DRM_FBDEV_EMULATION
2275 /* list of fbdev register on this device */
2276 struct intel_fbdev *fbdev;
2277 struct work_struct fbdev_suspend_work;
2278 #endif
2279
2280 struct drm_property *broadcast_rgb_property;
2281 struct drm_property *force_audio_property;
2282
2283 /* hda/i915 audio component */
2284 struct i915_audio_component *audio_component;
2285 bool audio_component_registered;
2286 /**
2287 * av_mutex - mutex for audio/video sync
2288 *
2289 */
2290 struct mutex av_mutex;
2291
2292 uint32_t hw_context_size;
2293 struct list_head context_list;
2294
2295 u32 fdi_rx_config;
2296
2297 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
2298 u32 chv_phy_control;
2299 /*
2300 * Shadows for CHV DPLL_MD regs to keep the state
2301 * checker somewhat working in the presence hardware
2302 * crappiness (can't read out DPLL_MD for pipes B & C).
2303 */
2304 u32 chv_dpll_md[I915_MAX_PIPES];
2305 u32 bxt_phy_grc;
2306
2307 u32 suspend_count;
2308 bool suspended_to_idle;
2309 struct i915_suspend_saved_registers regfile;
2310 struct vlv_s0ix_state vlv_s0ix_state;
2311
2312 enum {
2313 I915_SAGV_UNKNOWN = 0,
2314 I915_SAGV_DISABLED,
2315 I915_SAGV_ENABLED,
2316 I915_SAGV_NOT_CONTROLLED
2317 } sagv_status;
2318
2319 struct {
2320 /* protects DSPARB registers on pre-g4x/vlv/chv */
2321 spinlock_t dsparb_lock;
2322
2323 /*
2324 * Raw watermark latency values:
2325 * in 0.1us units for WM0,
2326 * in 0.5us units for WM1+.
2327 */
2328 /* primary */
2329 uint16_t pri_latency[5];
2330 /* sprite */
2331 uint16_t spr_latency[5];
2332 /* cursor */
2333 uint16_t cur_latency[5];
2334 /*
2335 * Raw watermark memory latency values
2336 * for SKL for all 8 levels
2337 * in 1us units.
2338 */
2339 uint16_t skl_latency[8];
2340
2341 /* current hardware state */
2342 union {
2343 struct ilk_wm_values hw;
2344 struct skl_wm_values skl_hw;
2345 struct vlv_wm_values vlv;
2346 };
2347
2348 uint8_t max_level;
2349
2350 /*
2351 * Should be held around atomic WM register writing; also
2352 * protects * intel_crtc->wm.active and
2353 * cstate->wm.need_postvbl_update.
2354 */
2355 struct mutex wm_mutex;
2356
2357 /*
2358 * Set during HW readout of watermarks/DDB. Some platforms
2359 * need to know when we're still using BIOS-provided values
2360 * (which we don't fully trust).
2361 */
2362 bool distrust_bios_wm;
2363 } wm;
2364
2365 struct i915_runtime_pm pm;
2366
2367 struct {
2368 bool initialized;
2369
2370 struct kobject *metrics_kobj;
2371 struct ctl_table_header *sysctl_header;
2372
2373 struct mutex lock;
2374 struct list_head streams;
2375
2376 spinlock_t hook_lock;
2377
2378 struct {
2379 struct i915_perf_stream *exclusive_stream;
2380
2381 u32 specific_ctx_id;
2382
2383 struct hrtimer poll_check_timer;
2384 wait_queue_head_t poll_wq;
2385 bool pollin;
2386
2387 bool periodic;
2388 int period_exponent;
2389 int timestamp_frequency;
2390
2391 int tail_margin;
2392
2393 int metrics_set;
2394
2395 const struct i915_oa_reg *mux_regs;
2396 int mux_regs_len;
2397 const struct i915_oa_reg *b_counter_regs;
2398 int b_counter_regs_len;
2399
2400 struct {
2401 struct i915_vma *vma;
2402 u8 *vaddr;
2403 int format;
2404 int format_size;
2405 } oa_buffer;
2406
2407 u32 gen7_latched_oastatus1;
2408
2409 struct i915_oa_ops ops;
2410 const struct i915_oa_format *oa_formats;
2411 int n_builtin_sets;
2412 } oa;
2413 } perf;
2414
2415 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2416 struct {
2417 void (*resume)(struct drm_i915_private *);
2418 void (*cleanup_engine)(struct intel_engine_cs *engine);
2419
2420 struct list_head timelines;
2421 struct i915_gem_timeline global_timeline;
2422 u32 active_requests;
2423
2424 /**
2425 * Is the GPU currently considered idle, or busy executing
2426 * userspace requests? Whilst idle, we allow runtime power
2427 * management to power down the hardware and display clocks.
2428 * In order to reduce the effect on performance, there
2429 * is a slight delay before we do so.
2430 */
2431 bool awake;
2432
2433 /**
2434 * We leave the user IRQ off as much as possible,
2435 * but this means that requests will finish and never
2436 * be retired once the system goes idle. Set a timer to
2437 * fire periodically while the ring is running. When it
2438 * fires, go retire requests.
2439 */
2440 struct delayed_work retire_work;
2441
2442 /**
2443 * When we detect an idle GPU, we want to turn on
2444 * powersaving features. So once we see that there
2445 * are no more requests outstanding and no more
2446 * arrive within a small period of time, we fire
2447 * off the idle_work.
2448 */
2449 struct delayed_work idle_work;
2450
2451 ktime_t last_init_time;
2452 } gt;
2453
2454 /* perform PHY state sanity checks? */
2455 bool chv_phy_assert[2];
2456
2457 bool ipc_enabled;
2458
2459 /* Used to save the pipe-to-encoder mapping for audio */
2460 struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2461
2462 /* necessary resource sharing with HDMI LPE audio driver. */
2463 struct {
2464 struct platform_device *platdev;
2465 int irq;
2466 } lpe_audio;
2467
2468 /*
2469 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2470 * will be rejected. Instead look for a better place.
2471 */
2472 };
2473
2474 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2475 {
2476 return container_of(dev, struct drm_i915_private, drm);
2477 }
2478
2479 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2480 {
2481 return to_i915(dev_get_drvdata(kdev));
2482 }
2483
2484 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2485 {
2486 return container_of(guc, struct drm_i915_private, guc);
2487 }
2488
2489 /* Simple iterator over all initialised engines */
2490 #define for_each_engine(engine__, dev_priv__, id__) \
2491 for ((id__) = 0; \
2492 (id__) < I915_NUM_ENGINES; \
2493 (id__)++) \
2494 for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2495
2496 #define __mask_next_bit(mask) ({ \
2497 int __idx = ffs(mask) - 1; \
2498 mask &= ~BIT(__idx); \
2499 __idx; \
2500 })
2501
2502 /* Iterator over subset of engines selected by mask */
2503 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2504 for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask; \
2505 tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2506
2507 enum hdmi_force_audio {
2508 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2509 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2510 HDMI_AUDIO_AUTO, /* trust EDID */
2511 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2512 };
2513
2514 #define I915_GTT_OFFSET_NONE ((u32)-1)
2515
2516 /*
2517 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2518 * considered to be the frontbuffer for the given plane interface-wise. This
2519 * doesn't mean that the hw necessarily already scans it out, but that any
2520 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2521 *
2522 * We have one bit per pipe and per scanout plane type.
2523 */
2524 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2525 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2526 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2527 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2528 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2529 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2530 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2531 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2532 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2533 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2534 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2535 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2536
2537 /*
2538 * Optimised SGL iterator for GEM objects
2539 */
2540 static __always_inline struct sgt_iter {
2541 struct scatterlist *sgp;
2542 union {
2543 unsigned long pfn;
2544 dma_addr_t dma;
2545 };
2546 unsigned int curr;
2547 unsigned int max;
2548 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2549 struct sgt_iter s = { .sgp = sgl };
2550
2551 if (s.sgp) {
2552 s.max = s.curr = s.sgp->offset;
2553 s.max += s.sgp->length;
2554 if (dma)
2555 s.dma = sg_dma_address(s.sgp);
2556 else
2557 s.pfn = page_to_pfn(sg_page(s.sgp));
2558 }
2559
2560 return s;
2561 }
2562
2563 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2564 {
2565 ++sg;
2566 if (unlikely(sg_is_chain(sg)))
2567 sg = sg_chain_ptr(sg);
2568 return sg;
2569 }
2570
2571 /**
2572 * __sg_next - return the next scatterlist entry in a list
2573 * @sg: The current sg entry
2574 *
2575 * Description:
2576 * If the entry is the last, return NULL; otherwise, step to the next
2577 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2578 * otherwise just return the pointer to the current element.
2579 **/
2580 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2581 {
2582 #ifdef CONFIG_DEBUG_SG
2583 BUG_ON(sg->sg_magic != SG_MAGIC);
2584 #endif
2585 return sg_is_last(sg) ? NULL : ____sg_next(sg);
2586 }
2587
2588 /**
2589 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2590 * @__dmap: DMA address (output)
2591 * @__iter: 'struct sgt_iter' (iterator state, internal)
2592 * @__sgt: sg_table to iterate over (input)
2593 */
2594 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2595 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2596 ((__dmap) = (__iter).dma + (__iter).curr); \
2597 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2598 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2599
2600 /**
2601 * for_each_sgt_page - iterate over the pages of the given sg_table
2602 * @__pp: page pointer (output)
2603 * @__iter: 'struct sgt_iter' (iterator state, internal)
2604 * @__sgt: sg_table to iterate over (input)
2605 */
2606 #define for_each_sgt_page(__pp, __iter, __sgt) \
2607 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2608 ((__pp) = (__iter).pfn == 0 ? NULL : \
2609 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2610 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2611 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2612
2613 static inline const struct intel_device_info *
2614 intel_info(const struct drm_i915_private *dev_priv)
2615 {
2616 return &dev_priv->info;
2617 }
2618
2619 #define INTEL_INFO(dev_priv) intel_info((dev_priv))
2620
2621 #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen)
2622 #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id)
2623
2624 #define REVID_FOREVER 0xff
2625 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision)
2626
2627 #define GEN_FOREVER (0)
2628 /*
2629 * Returns true if Gen is in inclusive range [Start, End].
2630 *
2631 * Use GEN_FOREVER for unbound start and or end.
2632 */
2633 #define IS_GEN(dev_priv, s, e) ({ \
2634 unsigned int __s = (s), __e = (e); \
2635 BUILD_BUG_ON(!__builtin_constant_p(s)); \
2636 BUILD_BUG_ON(!__builtin_constant_p(e)); \
2637 if ((__s) != GEN_FOREVER) \
2638 __s = (s) - 1; \
2639 if ((__e) == GEN_FOREVER) \
2640 __e = BITS_PER_LONG - 1; \
2641 else \
2642 __e = (e) - 1; \
2643 !!((dev_priv)->info.gen_mask & GENMASK((__e), (__s))); \
2644 })
2645
2646 /*
2647 * Return true if revision is in range [since,until] inclusive.
2648 *
2649 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2650 */
2651 #define IS_REVID(p, since, until) \
2652 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2653
2654 #define IS_I830(dev_priv) ((dev_priv)->info.platform == INTEL_I830)
2655 #define IS_I845G(dev_priv) ((dev_priv)->info.platform == INTEL_I845G)
2656 #define IS_I85X(dev_priv) ((dev_priv)->info.platform == INTEL_I85X)
2657 #define IS_I865G(dev_priv) ((dev_priv)->info.platform == INTEL_I865G)
2658 #define IS_I915G(dev_priv) ((dev_priv)->info.platform == INTEL_I915G)
2659 #define IS_I915GM(dev_priv) ((dev_priv)->info.platform == INTEL_I915GM)
2660 #define IS_I945G(dev_priv) ((dev_priv)->info.platform == INTEL_I945G)
2661 #define IS_I945GM(dev_priv) ((dev_priv)->info.platform == INTEL_I945GM)
2662 #define IS_I965G(dev_priv) ((dev_priv)->info.platform == INTEL_I965G)
2663 #define IS_I965GM(dev_priv) ((dev_priv)->info.platform == INTEL_I965GM)
2664 #define IS_G45(dev_priv) ((dev_priv)->info.platform == INTEL_G45)
2665 #define IS_GM45(dev_priv) ((dev_priv)->info.platform == INTEL_GM45)
2666 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv))
2667 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001)
2668 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011)
2669 #define IS_PINEVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_PINEVIEW)
2670 #define IS_G33(dev_priv) ((dev_priv)->info.platform == INTEL_G33)
2671 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046)
2672 #define IS_IVYBRIDGE(dev_priv) ((dev_priv)->info.platform == INTEL_IVYBRIDGE)
2673 #define IS_IVB_GT1(dev_priv) (INTEL_DEVID(dev_priv) == 0x0156 || \
2674 INTEL_DEVID(dev_priv) == 0x0152 || \
2675 INTEL_DEVID(dev_priv) == 0x015a)
2676 #define IS_VALLEYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_VALLEYVIEW)
2677 #define IS_CHERRYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_CHERRYVIEW)
2678 #define IS_HASWELL(dev_priv) ((dev_priv)->info.platform == INTEL_HASWELL)
2679 #define IS_BROADWELL(dev_priv) ((dev_priv)->info.platform == INTEL_BROADWELL)
2680 #define IS_SKYLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_SKYLAKE)
2681 #define IS_BROXTON(dev_priv) ((dev_priv)->info.platform == INTEL_BROXTON)
2682 #define IS_KABYLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_KABYLAKE)
2683 #define IS_GEMINILAKE(dev_priv) ((dev_priv)->info.platform == INTEL_GEMINILAKE)
2684 #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile)
2685 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2686 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2687 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \
2688 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \
2689 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \
2690 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2691 /* ULX machines are also considered ULT. */
2692 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \
2693 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2694 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \
2695 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2696 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \
2697 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2698 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \
2699 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2700 /* ULX machines are also considered ULT. */
2701 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \
2702 INTEL_DEVID(dev_priv) == 0x0A1E)
2703 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \
2704 INTEL_DEVID(dev_priv) == 0x1913 || \
2705 INTEL_DEVID(dev_priv) == 0x1916 || \
2706 INTEL_DEVID(dev_priv) == 0x1921 || \
2707 INTEL_DEVID(dev_priv) == 0x1926)
2708 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \
2709 INTEL_DEVID(dev_priv) == 0x1915 || \
2710 INTEL_DEVID(dev_priv) == 0x191E)
2711 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \
2712 INTEL_DEVID(dev_priv) == 0x5913 || \
2713 INTEL_DEVID(dev_priv) == 0x5916 || \
2714 INTEL_DEVID(dev_priv) == 0x5921 || \
2715 INTEL_DEVID(dev_priv) == 0x5926)
2716 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \
2717 INTEL_DEVID(dev_priv) == 0x5915 || \
2718 INTEL_DEVID(dev_priv) == 0x591E)
2719 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \
2720 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2721 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \
2722 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0030)
2723
2724 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2725
2726 #define SKL_REVID_A0 0x0
2727 #define SKL_REVID_B0 0x1
2728 #define SKL_REVID_C0 0x2
2729 #define SKL_REVID_D0 0x3
2730 #define SKL_REVID_E0 0x4
2731 #define SKL_REVID_F0 0x5
2732 #define SKL_REVID_G0 0x6
2733 #define SKL_REVID_H0 0x7
2734
2735 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2736
2737 #define BXT_REVID_A0 0x0
2738 #define BXT_REVID_A1 0x1
2739 #define BXT_REVID_B0 0x3
2740 #define BXT_REVID_B_LAST 0x8
2741 #define BXT_REVID_C0 0x9
2742
2743 #define IS_BXT_REVID(dev_priv, since, until) \
2744 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2745
2746 #define KBL_REVID_A0 0x0
2747 #define KBL_REVID_B0 0x1
2748 #define KBL_REVID_C0 0x2
2749 #define KBL_REVID_D0 0x3
2750 #define KBL_REVID_E0 0x4
2751
2752 #define IS_KBL_REVID(dev_priv, since, until) \
2753 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2754
2755 /*
2756 * The genX designation typically refers to the render engine, so render
2757 * capability related checks should use IS_GEN, while display and other checks
2758 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2759 * chips, etc.).
2760 */
2761 #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1)))
2762 #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2)))
2763 #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3)))
2764 #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4)))
2765 #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5)))
2766 #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6)))
2767 #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7)))
2768 #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8)))
2769
2770 #define IS_GEN9_LP(dev_priv) (IS_GEN9(dev_priv) && INTEL_INFO(dev_priv)->is_lp)
2771 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp)
2772
2773 #define ENGINE_MASK(id) BIT(id)
2774 #define RENDER_RING ENGINE_MASK(RCS)
2775 #define BSD_RING ENGINE_MASK(VCS)
2776 #define BLT_RING ENGINE_MASK(BCS)
2777 #define VEBOX_RING ENGINE_MASK(VECS)
2778 #define BSD2_RING ENGINE_MASK(VCS2)
2779 #define ALL_ENGINES (~0)
2780
2781 #define HAS_ENGINE(dev_priv, id) \
2782 (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
2783
2784 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
2785 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
2786 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
2787 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
2788
2789 #define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc)
2790 #define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop)
2791 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED))
2792 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \
2793 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
2794
2795 #define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical)
2796
2797 #define HAS_HW_CONTEXTS(dev_priv) ((dev_priv)->info.has_hw_contexts)
2798 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
2799 ((dev_priv)->info.has_logical_ring_contexts)
2800 #define USES_PPGTT(dev_priv) (i915.enable_ppgtt)
2801 #define USES_FULL_PPGTT(dev_priv) (i915.enable_ppgtt >= 2)
2802 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915.enable_ppgtt == 3)
2803
2804 #define HAS_OVERLAY(dev_priv) ((dev_priv)->info.has_overlay)
2805 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
2806 ((dev_priv)->info.overlay_needs_physical)
2807
2808 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2809 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv))
2810
2811 /* WaRsDisableCoarsePowerGating:skl,bxt */
2812 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2813 (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) || \
2814 IS_SKL_GT3(dev_priv) || \
2815 IS_SKL_GT4(dev_priv))
2816
2817 /*
2818 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2819 * even when in MSI mode. This results in spurious interrupt warnings if the
2820 * legacy irq no. is shared with another device. The kernel then disables that
2821 * interrupt source and so prevents the other device from working properly.
2822 */
2823 #define HAS_AUX_IRQ(dev_priv) ((dev_priv)->info.gen >= 5)
2824 #define HAS_GMBUS_IRQ(dev_priv) ((dev_priv)->info.has_gmbus_irq)
2825
2826 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2827 * rows, which changed the alignment requirements and fence programming.
2828 */
2829 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
2830 !(IS_I915G(dev_priv) || \
2831 IS_I915GM(dev_priv)))
2832 #define SUPPORTS_TV(dev_priv) ((dev_priv)->info.supports_tv)
2833 #define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.has_hotplug)
2834
2835 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2)
2836 #define HAS_PIPE_CXSR(dev_priv) ((dev_priv)->info.has_pipe_cxsr)
2837 #define HAS_FBC(dev_priv) ((dev_priv)->info.has_fbc)
2838
2839 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
2840
2841 #define HAS_DP_MST(dev_priv) ((dev_priv)->info.has_dp_mst)
2842
2843 #define HAS_DDI(dev_priv) ((dev_priv)->info.has_ddi)
2844 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
2845 #define HAS_PSR(dev_priv) ((dev_priv)->info.has_psr)
2846 #define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6)
2847 #define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p)
2848
2849 #define HAS_CSR(dev_priv) ((dev_priv)->info.has_csr)
2850
2851 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
2852 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
2853
2854 /*
2855 * For now, anything with a GuC requires uCode loading, and then supports
2856 * command submission once loaded. But these are logically independent
2857 * properties, so we have separate macros to test them.
2858 */
2859 #define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc)
2860 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
2861 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv))
2862 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
2863
2864 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
2865
2866 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu)
2867
2868 #define INTEL_PCH_DEVICE_ID_MASK 0xff00
2869 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
2870 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
2871 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
2872 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
2873 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
2874 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
2875 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
2876 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA200
2877 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
2878 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
2879 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
2880
2881 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
2882 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
2883 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
2884 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
2885 #define HAS_PCH_LPT_LP(dev_priv) \
2886 ((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
2887 #define HAS_PCH_LPT_H(dev_priv) \
2888 ((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE)
2889 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
2890 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
2891 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
2892 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
2893
2894 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
2895
2896 #define HAS_LSPCON(dev_priv) (IS_GEN9(dev_priv))
2897
2898 /* DPF == dynamic parity feature */
2899 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
2900 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
2901 2 : HAS_L3_DPF(dev_priv))
2902
2903 #define GT_FREQUENCY_MULTIPLIER 50
2904 #define GEN9_FREQ_SCALER 3
2905
2906 #define HAS_DECOUPLED_MMIO(dev_priv) (INTEL_INFO(dev_priv)->has_decoupled_mmio)
2907
2908 #include "i915_trace.h"
2909
2910 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2911 {
2912 #ifdef CONFIG_INTEL_IOMMU
2913 if (INTEL_GEN(dev_priv) >= 6 && intel_iommu_gfx_mapped)
2914 return true;
2915 #endif
2916 return false;
2917 }
2918
2919 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
2920 int enable_ppgtt);
2921
2922 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
2923
2924 /* i915_drv.c */
2925 void __printf(3, 4)
2926 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2927 const char *fmt, ...);
2928
2929 #define i915_report_error(dev_priv, fmt, ...) \
2930 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2931
2932 #ifdef CONFIG_COMPAT
2933 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2934 unsigned long arg);
2935 #else
2936 #define i915_compat_ioctl NULL
2937 #endif
2938 extern const struct dev_pm_ops i915_pm_ops;
2939
2940 extern int i915_driver_load(struct pci_dev *pdev,
2941 const struct pci_device_id *ent);
2942 extern void i915_driver_unload(struct drm_device *dev);
2943 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
2944 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
2945 extern void i915_reset(struct drm_i915_private *dev_priv);
2946 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
2947 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2948 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
2949 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2950 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2951 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2952 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2953 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2954
2955 /* intel_hotplug.c */
2956 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2957 u32 pin_mask, u32 long_mask);
2958 void intel_hpd_init(struct drm_i915_private *dev_priv);
2959 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2960 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2961 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
2962 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2963 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2964
2965 /* i915_irq.c */
2966 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2967 {
2968 unsigned long delay;
2969
2970 if (unlikely(!i915.enable_hangcheck))
2971 return;
2972
2973 /* Don't continually defer the hangcheck so that it is always run at
2974 * least once after work has been scheduled on any ring. Otherwise,
2975 * we will ignore a hung ring if a second ring is kept busy.
2976 */
2977
2978 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2979 queue_delayed_work(system_long_wq,
2980 &dev_priv->gpu_error.hangcheck_work, delay);
2981 }
2982
2983 __printf(3, 4)
2984 void i915_handle_error(struct drm_i915_private *dev_priv,
2985 u32 engine_mask,
2986 const char *fmt, ...);
2987
2988 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2989 int intel_irq_install(struct drm_i915_private *dev_priv);
2990 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2991
2992 extern void intel_uncore_sanitize(struct drm_i915_private *dev_priv);
2993 extern void intel_uncore_early_sanitize(struct drm_i915_private *dev_priv,
2994 bool restore_forcewake);
2995 extern void intel_uncore_init(struct drm_i915_private *dev_priv);
2996 extern bool intel_uncore_unclaimed_mmio(struct drm_i915_private *dev_priv);
2997 extern bool intel_uncore_arm_unclaimed_mmio_detection(struct drm_i915_private *dev_priv);
2998 extern void intel_uncore_fini(struct drm_i915_private *dev_priv);
2999 extern void intel_uncore_forcewake_reset(struct drm_i915_private *dev_priv,
3000 bool restore);
3001 const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id);
3002 void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv,
3003 enum forcewake_domains domains);
3004 void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv,
3005 enum forcewake_domains domains);
3006 /* Like above but the caller must manage the uncore.lock itself.
3007 * Must be used with I915_READ_FW and friends.
3008 */
3009 void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv,
3010 enum forcewake_domains domains);
3011 void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv,
3012 enum forcewake_domains domains);
3013 u64 intel_uncore_edram_size(struct drm_i915_private *dev_priv);
3014
3015 void assert_forcewakes_inactive(struct drm_i915_private *dev_priv);
3016
3017 int intel_wait_for_register(struct drm_i915_private *dev_priv,
3018 i915_reg_t reg,
3019 const u32 mask,
3020 const u32 value,
3021 const unsigned long timeout_ms);
3022 int intel_wait_for_register_fw(struct drm_i915_private *dev_priv,
3023 i915_reg_t reg,
3024 const u32 mask,
3025 const u32 value,
3026 const unsigned long timeout_ms);
3027
3028 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3029 {
3030 return dev_priv->gvt;
3031 }
3032
3033 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3034 {
3035 return dev_priv->vgpu.active;
3036 }
3037
3038 void
3039 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3040 u32 status_mask);
3041
3042 void
3043 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3044 u32 status_mask);
3045
3046 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3047 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3048 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3049 uint32_t mask,
3050 uint32_t bits);
3051 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3052 uint32_t interrupt_mask,
3053 uint32_t enabled_irq_mask);
3054 static inline void
3055 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3056 {
3057 ilk_update_display_irq(dev_priv, bits, bits);
3058 }
3059 static inline void
3060 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3061 {
3062 ilk_update_display_irq(dev_priv, bits, 0);
3063 }
3064 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3065 enum pipe pipe,
3066 uint32_t interrupt_mask,
3067 uint32_t enabled_irq_mask);
3068 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3069 enum pipe pipe, uint32_t bits)
3070 {
3071 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3072 }
3073 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3074 enum pipe pipe, uint32_t bits)
3075 {
3076 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3077 }
3078 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3079 uint32_t interrupt_mask,
3080 uint32_t enabled_irq_mask);
3081 static inline void
3082 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3083 {
3084 ibx_display_interrupt_update(dev_priv, bits, bits);
3085 }
3086 static inline void
3087 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3088 {
3089 ibx_display_interrupt_update(dev_priv, bits, 0);
3090 }
3091
3092 /* i915_gem.c */
3093 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3094 struct drm_file *file_priv);
3095 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3096 struct drm_file *file_priv);
3097 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3098 struct drm_file *file_priv);
3099 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3100 struct drm_file *file_priv);
3101 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3102 struct drm_file *file_priv);
3103 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3104 struct drm_file *file_priv);
3105 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3106 struct drm_file *file_priv);
3107 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3108 struct drm_file *file_priv);
3109 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3110 struct drm_file *file_priv);
3111 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3112 struct drm_file *file_priv);
3113 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3114 struct drm_file *file);
3115 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3116 struct drm_file *file);
3117 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3118 struct drm_file *file_priv);
3119 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3120 struct drm_file *file_priv);
3121 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
3122 struct drm_file *file_priv);
3123 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
3124 struct drm_file *file_priv);
3125 void i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3126 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3127 struct drm_file *file);
3128 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3129 struct drm_file *file_priv);
3130 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3131 struct drm_file *file_priv);
3132 int i915_gem_load_init(struct drm_i915_private *dev_priv);
3133 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv);
3134 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3135 int i915_gem_freeze(struct drm_i915_private *dev_priv);
3136 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3137
3138 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
3139 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3140 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3141 const struct drm_i915_gem_object_ops *ops);
3142 struct drm_i915_gem_object *
3143 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
3144 struct drm_i915_gem_object *
3145 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
3146 const void *data, size_t size);
3147 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3148 void i915_gem_free_object(struct drm_gem_object *obj);
3149
3150 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
3151 {
3152 /* A single pass should suffice to release all the freed objects (along
3153 * most call paths) , but be a little more paranoid in that freeing
3154 * the objects does take a little amount of time, during which the rcu
3155 * callbacks could have added new objects into the freed list, and
3156 * armed the work again.
3157 */
3158 do {
3159 rcu_barrier();
3160 } while (flush_work(&i915->mm.free_work));
3161 }
3162
3163 struct i915_vma * __must_check
3164 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3165 const struct i915_ggtt_view *view,
3166 u64 size,
3167 u64 alignment,
3168 u64 flags);
3169
3170 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3171 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3172
3173 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3174
3175 static inline int __sg_page_count(const struct scatterlist *sg)
3176 {
3177 return sg->length >> PAGE_SHIFT;
3178 }
3179
3180 struct scatterlist *
3181 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3182 unsigned int n, unsigned int *offset);
3183
3184 struct page *
3185 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3186 unsigned int n);
3187
3188 struct page *
3189 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3190 unsigned int n);
3191
3192 dma_addr_t
3193 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3194 unsigned long n);
3195
3196 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3197 struct sg_table *pages);
3198 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3199
3200 static inline int __must_check
3201 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3202 {
3203 might_lock(&obj->mm.lock);
3204
3205 if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3206 return 0;
3207
3208 return __i915_gem_object_get_pages(obj);
3209 }
3210
3211 static inline void
3212 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3213 {
3214 GEM_BUG_ON(!obj->mm.pages);
3215
3216 atomic_inc(&obj->mm.pages_pin_count);
3217 }
3218
3219 static inline bool
3220 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3221 {
3222 return atomic_read(&obj->mm.pages_pin_count);
3223 }
3224
3225 static inline void
3226 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3227 {
3228 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3229 GEM_BUG_ON(!obj->mm.pages);
3230
3231 atomic_dec(&obj->mm.pages_pin_count);
3232 }
3233
3234 static inline void
3235 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3236 {
3237 __i915_gem_object_unpin_pages(obj);
3238 }
3239
3240 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3241 I915_MM_NORMAL = 0,
3242 I915_MM_SHRINKER
3243 };
3244
3245 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3246 enum i915_mm_subclass subclass);
3247 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3248
3249 enum i915_map_type {
3250 I915_MAP_WB = 0,
3251 I915_MAP_WC,
3252 };
3253
3254 /**
3255 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3256 * @obj: the object to map into kernel address space
3257 * @type: the type of mapping, used to select pgprot_t
3258 *
3259 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3260 * pages and then returns a contiguous mapping of the backing storage into
3261 * the kernel address space. Based on the @type of mapping, the PTE will be
3262 * set to either WriteBack or WriteCombine (via pgprot_t).
3263 *
3264 * The caller is responsible for calling i915_gem_object_unpin_map() when the
3265 * mapping is no longer required.
3266 *
3267 * Returns the pointer through which to access the mapped object, or an
3268 * ERR_PTR() on error.
3269 */
3270 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3271 enum i915_map_type type);
3272
3273 /**
3274 * i915_gem_object_unpin_map - releases an earlier mapping
3275 * @obj: the object to unmap
3276 *
3277 * After pinning the object and mapping its pages, once you are finished
3278 * with your access, call i915_gem_object_unpin_map() to release the pin
3279 * upon the mapping. Once the pin count reaches zero, that mapping may be
3280 * removed.
3281 */
3282 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3283 {
3284 i915_gem_object_unpin_pages(obj);
3285 }
3286
3287 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3288 unsigned int *needs_clflush);
3289 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3290 unsigned int *needs_clflush);
3291 #define CLFLUSH_BEFORE 0x1
3292 #define CLFLUSH_AFTER 0x2
3293 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER)
3294
3295 static inline void
3296 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3297 {
3298 i915_gem_object_unpin_pages(obj);
3299 }
3300
3301 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3302 void i915_vma_move_to_active(struct i915_vma *vma,
3303 struct drm_i915_gem_request *req,
3304 unsigned int flags);
3305 int i915_gem_dumb_create(struct drm_file *file_priv,
3306 struct drm_device *dev,
3307 struct drm_mode_create_dumb *args);
3308 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3309 uint32_t handle, uint64_t *offset);
3310 int i915_gem_mmap_gtt_version(void);
3311
3312 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3313 struct drm_i915_gem_object *new,
3314 unsigned frontbuffer_bits);
3315
3316 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3317
3318 struct drm_i915_gem_request *
3319 i915_gem_find_active_request(struct intel_engine_cs *engine);
3320
3321 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3322
3323 static inline bool i915_reset_in_progress(struct i915_gpu_error *error)
3324 {
3325 return unlikely(test_bit(I915_RESET_IN_PROGRESS, &error->flags));
3326 }
3327
3328 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3329 {
3330 return unlikely(test_bit(I915_WEDGED, &error->flags));
3331 }
3332
3333 static inline bool i915_reset_in_progress_or_wedged(struct i915_gpu_error *error)
3334 {
3335 return i915_reset_in_progress(error) | i915_terminally_wedged(error);
3336 }
3337
3338 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3339 {
3340 return READ_ONCE(error->reset_count);
3341 }
3342
3343 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3344 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3345 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3346 void i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force);
3347 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3348 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3349 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3350 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3351 int __must_check i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3352 unsigned int flags);
3353 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3354 void i915_gem_resume(struct drm_i915_private *dev_priv);
3355 int i915_gem_fault(struct vm_fault *vmf);
3356 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3357 unsigned int flags,
3358 long timeout,
3359 struct intel_rps_client *rps);
3360 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3361 unsigned int flags,
3362 int priority);
3363 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3364
3365 int __must_check
3366 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj,
3367 bool write);
3368 int __must_check
3369 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3370 struct i915_vma * __must_check
3371 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3372 u32 alignment,
3373 const struct i915_ggtt_view *view);
3374 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3375 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3376 int align);
3377 int i915_gem_open(struct drm_device *dev, struct drm_file *file);
3378 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3379
3380 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3381 enum i915_cache_level cache_level);
3382
3383 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3384 struct dma_buf *dma_buf);
3385
3386 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3387 struct drm_gem_object *gem_obj, int flags);
3388
3389 static inline struct i915_hw_ppgtt *
3390 i915_vm_to_ppgtt(struct i915_address_space *vm)
3391 {
3392 return container_of(vm, struct i915_hw_ppgtt, base);
3393 }
3394
3395 /* i915_gem_fence_reg.c */
3396 int __must_check i915_vma_get_fence(struct i915_vma *vma);
3397 int __must_check i915_vma_put_fence(struct i915_vma *vma);
3398
3399 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3400 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3401
3402 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3403 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3404 struct sg_table *pages);
3405 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3406 struct sg_table *pages);
3407
3408 static inline struct i915_gem_context *
3409 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3410 {
3411 struct i915_gem_context *ctx;
3412
3413 lockdep_assert_held(&file_priv->dev_priv->drm.struct_mutex);
3414
3415 ctx = idr_find(&file_priv->context_idr, id);
3416 if (!ctx)
3417 return ERR_PTR(-ENOENT);
3418
3419 return ctx;
3420 }
3421
3422 static inline struct i915_gem_context *
3423 i915_gem_context_get(struct i915_gem_context *ctx)
3424 {
3425 kref_get(&ctx->ref);
3426 return ctx;
3427 }
3428
3429 static inline void i915_gem_context_put(struct i915_gem_context *ctx)
3430 {
3431 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
3432 kref_put(&ctx->ref, i915_gem_context_free);
3433 }
3434
3435 static inline void i915_gem_context_put_unlocked(struct i915_gem_context *ctx)
3436 {
3437 struct mutex *lock = &ctx->i915->drm.struct_mutex;
3438
3439 if (kref_put_mutex(&ctx->ref, i915_gem_context_free, lock))
3440 mutex_unlock(lock);
3441 }
3442
3443 static inline struct intel_timeline *
3444 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx,
3445 struct intel_engine_cs *engine)
3446 {
3447 struct i915_address_space *vm;
3448
3449 vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base;
3450 return &vm->timeline.engine[engine->id];
3451 }
3452
3453 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3454 struct drm_file *file);
3455
3456 /* i915_gem_evict.c */
3457 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3458 u64 min_size, u64 alignment,
3459 unsigned cache_level,
3460 u64 start, u64 end,
3461 unsigned flags);
3462 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3463 struct drm_mm_node *node,
3464 unsigned int flags);
3465 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle);
3466
3467 /* belongs in i915_gem_gtt.h */
3468 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3469 {
3470 wmb();
3471 if (INTEL_GEN(dev_priv) < 6)
3472 intel_gtt_chipset_flush();
3473 }
3474
3475 /* i915_gem_stolen.c */
3476 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3477 struct drm_mm_node *node, u64 size,
3478 unsigned alignment);
3479 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3480 struct drm_mm_node *node, u64 size,
3481 unsigned alignment, u64 start,
3482 u64 end);
3483 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3484 struct drm_mm_node *node);
3485 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3486 void i915_gem_cleanup_stolen(struct drm_device *dev);
3487 struct drm_i915_gem_object *
3488 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size);
3489 struct drm_i915_gem_object *
3490 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3491 u32 stolen_offset,
3492 u32 gtt_offset,
3493 u32 size);
3494
3495 /* i915_gem_internal.c */
3496 struct drm_i915_gem_object *
3497 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3498 phys_addr_t size);
3499
3500 /* i915_gem_shrinker.c */
3501 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3502 unsigned long target,
3503 unsigned flags);
3504 #define I915_SHRINK_PURGEABLE 0x1
3505 #define I915_SHRINK_UNBOUND 0x2
3506 #define I915_SHRINK_BOUND 0x4
3507 #define I915_SHRINK_ACTIVE 0x8
3508 #define I915_SHRINK_VMAPS 0x10
3509 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3510 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3511 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3512
3513
3514 /* i915_gem_tiling.c */
3515 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3516 {
3517 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3518
3519 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3520 i915_gem_object_is_tiled(obj);
3521 }
3522
3523 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3524 unsigned int tiling, unsigned int stride);
3525 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3526 unsigned int tiling, unsigned int stride);
3527
3528 /* i915_debugfs.c */
3529 #ifdef CONFIG_DEBUG_FS
3530 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3531 void i915_debugfs_unregister(struct drm_i915_private *dev_priv);
3532 int i915_debugfs_connector_add(struct drm_connector *connector);
3533 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3534 #else
3535 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3536 static inline void i915_debugfs_unregister(struct drm_i915_private *dev_priv) {}
3537 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3538 { return 0; }
3539 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3540 #endif
3541
3542 /* i915_gpu_error.c */
3543 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3544
3545 __printf(2, 3)
3546 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3547 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3548 const struct i915_error_state_file_priv *error);
3549 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3550 struct drm_i915_private *i915,
3551 size_t count, loff_t pos);
3552 static inline void i915_error_state_buf_release(
3553 struct drm_i915_error_state_buf *eb)
3554 {
3555 kfree(eb->buf);
3556 }
3557 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3558 u32 engine_mask,
3559 const char *error_msg);
3560 void i915_error_state_get(struct drm_device *dev,
3561 struct i915_error_state_file_priv *error_priv);
3562 void i915_error_state_put(struct i915_error_state_file_priv *error_priv);
3563 void i915_destroy_error_state(struct drm_i915_private *dev_priv);
3564
3565 #else
3566
3567 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3568 u32 engine_mask,
3569 const char *error_msg)
3570 {
3571 }
3572
3573 static inline void i915_destroy_error_state(struct drm_i915_private *dev_priv)
3574 {
3575 }
3576
3577 #endif
3578
3579 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3580
3581 /* i915_cmd_parser.c */
3582 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3583 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3584 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3585 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3586 struct drm_i915_gem_object *batch_obj,
3587 struct drm_i915_gem_object *shadow_batch_obj,
3588 u32 batch_start_offset,
3589 u32 batch_len,
3590 bool is_master);
3591
3592 /* i915_perf.c */
3593 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3594 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3595 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3596 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3597
3598 /* i915_suspend.c */
3599 extern int i915_save_state(struct drm_i915_private *dev_priv);
3600 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3601
3602 /* i915_sysfs.c */
3603 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3604 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3605
3606 /* intel_lpe_audio.c */
3607 int intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3608 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3609 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3610 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3611 void *eld, int port, int pipe, int tmds_clk_speed,
3612 bool dp_output, int link_rate);
3613
3614 /* intel_i2c.c */
3615 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3616 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3617 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3618 unsigned int pin);
3619
3620 extern struct i2c_adapter *
3621 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3622 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3623 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3624 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3625 {
3626 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3627 }
3628 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3629
3630 /* intel_bios.c */
3631 int intel_bios_init(struct drm_i915_private *dev_priv);
3632 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3633 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3634 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3635 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3636 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3637 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3638 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3639 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3640 enum port port);
3641 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3642 enum port port);
3643
3644
3645 /* intel_opregion.c */
3646 #ifdef CONFIG_ACPI
3647 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3648 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3649 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3650 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3651 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3652 bool enable);
3653 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3654 pci_power_t state);
3655 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3656 #else
3657 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3658 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3659 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3660 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3661 {
3662 }
3663 static inline int
3664 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3665 {
3666 return 0;
3667 }
3668 static inline int
3669 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3670 {
3671 return 0;
3672 }
3673 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3674 {
3675 return -ENODEV;
3676 }
3677 #endif
3678
3679 /* intel_acpi.c */
3680 #ifdef CONFIG_ACPI
3681 extern void intel_register_dsm_handler(void);
3682 extern void intel_unregister_dsm_handler(void);
3683 #else
3684 static inline void intel_register_dsm_handler(void) { return; }
3685 static inline void intel_unregister_dsm_handler(void) { return; }
3686 #endif /* CONFIG_ACPI */
3687
3688 /* intel_device_info.c */
3689 static inline struct intel_device_info *
3690 mkwrite_device_info(struct drm_i915_private *dev_priv)
3691 {
3692 return (struct intel_device_info *)&dev_priv->info;
3693 }
3694
3695 const char *intel_platform_name(enum intel_platform platform);
3696 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
3697 void intel_device_info_dump(struct drm_i915_private *dev_priv);
3698
3699 /* modesetting */
3700 extern void intel_modeset_init_hw(struct drm_device *dev);
3701 extern int intel_modeset_init(struct drm_device *dev);
3702 extern void intel_modeset_gem_init(struct drm_device *dev);
3703 extern void intel_modeset_cleanup(struct drm_device *dev);
3704 extern int intel_connector_register(struct drm_connector *);
3705 extern void intel_connector_unregister(struct drm_connector *);
3706 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3707 bool state);
3708 extern void intel_display_resume(struct drm_device *dev);
3709 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3710 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3711 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3712 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3713 extern void intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3714 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3715 bool enable);
3716
3717 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3718 struct drm_file *file);
3719
3720 /* overlay */
3721 extern struct intel_overlay_error_state *
3722 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3723 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3724 struct intel_overlay_error_state *error);
3725
3726 extern struct intel_display_error_state *
3727 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3728 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3729 struct drm_i915_private *dev_priv,
3730 struct intel_display_error_state *error);
3731
3732 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3733 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3734 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3735 u32 reply_mask, u32 reply, int timeout_base_ms);
3736
3737 /* intel_sideband.c */
3738 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3739 void vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3740 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3741 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3742 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3743 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3744 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3745 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3746 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3747 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3748 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3749 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3750 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3751 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3752 enum intel_sbi_destination destination);
3753 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3754 enum intel_sbi_destination destination);
3755 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3756 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3757
3758 /* intel_dpio_phy.c */
3759 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
3760 enum dpio_phy *phy, enum dpio_channel *ch);
3761 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
3762 enum port port, u32 margin, u32 scale,
3763 u32 enable, u32 deemphasis);
3764 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3765 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3766 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
3767 enum dpio_phy phy);
3768 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
3769 enum dpio_phy phy);
3770 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
3771 uint8_t lane_count);
3772 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
3773 uint8_t lane_lat_optim_mask);
3774 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
3775
3776 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3777 u32 deemph_reg_value, u32 margin_reg_value,
3778 bool uniq_trans_scale);
3779 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3780 bool reset);
3781 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
3782 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3783 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3784 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
3785
3786 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3787 u32 demph_reg_value, u32 preemph_reg_value,
3788 u32 uniqtranscale_reg_value, u32 tx3_demph);
3789 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
3790 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3791 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
3792
3793 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3794 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3795
3796 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3797 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3798
3799 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3800 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3801 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3802 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3803
3804 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3805 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3806 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3807 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3808
3809 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3810 * will be implemented using 2 32-bit writes in an arbitrary order with
3811 * an arbitrary delay between them. This can cause the hardware to
3812 * act upon the intermediate value, possibly leading to corruption and
3813 * machine death. For this reason we do not support I915_WRITE64, or
3814 * dev_priv->uncore.funcs.mmio_writeq.
3815 *
3816 * When reading a 64-bit value as two 32-bit values, the delay may cause
3817 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
3818 * occasionally a 64-bit register does not actualy support a full readq
3819 * and must be read using two 32-bit reads.
3820 *
3821 * You have been warned.
3822 */
3823 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3824
3825 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
3826 u32 upper, lower, old_upper, loop = 0; \
3827 upper = I915_READ(upper_reg); \
3828 do { \
3829 old_upper = upper; \
3830 lower = I915_READ(lower_reg); \
3831 upper = I915_READ(upper_reg); \
3832 } while (upper != old_upper && loop++ < 2); \
3833 (u64)upper << 32 | lower; })
3834
3835 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
3836 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
3837
3838 #define __raw_read(x, s) \
3839 static inline uint##x##_t __raw_i915_read##x(struct drm_i915_private *dev_priv, \
3840 i915_reg_t reg) \
3841 { \
3842 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3843 }
3844
3845 #define __raw_write(x, s) \
3846 static inline void __raw_i915_write##x(struct drm_i915_private *dev_priv, \
3847 i915_reg_t reg, uint##x##_t val) \
3848 { \
3849 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3850 }
3851 __raw_read(8, b)
3852 __raw_read(16, w)
3853 __raw_read(32, l)
3854 __raw_read(64, q)
3855
3856 __raw_write(8, b)
3857 __raw_write(16, w)
3858 __raw_write(32, l)
3859 __raw_write(64, q)
3860
3861 #undef __raw_read
3862 #undef __raw_write
3863
3864 /* These are untraced mmio-accessors that are only valid to be used inside
3865 * critical sections, such as inside IRQ handlers, where forcewake is explicitly
3866 * controlled.
3867 *
3868 * Think twice, and think again, before using these.
3869 *
3870 * As an example, these accessors can possibly be used between:
3871 *
3872 * spin_lock_irq(&dev_priv->uncore.lock);
3873 * intel_uncore_forcewake_get__locked();
3874 *
3875 * and
3876 *
3877 * intel_uncore_forcewake_put__locked();
3878 * spin_unlock_irq(&dev_priv->uncore.lock);
3879 *
3880 *
3881 * Note: some registers may not need forcewake held, so
3882 * intel_uncore_forcewake_{get,put} can be omitted, see
3883 * intel_uncore_forcewake_for_reg().
3884 *
3885 * Certain architectures will die if the same cacheline is concurrently accessed
3886 * by different clients (e.g. on Ivybridge). Access to registers should
3887 * therefore generally be serialised, by either the dev_priv->uncore.lock or
3888 * a more localised lock guarding all access to that bank of registers.
3889 */
3890 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3891 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3892 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3893 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3894
3895 /* "Broadcast RGB" property */
3896 #define INTEL_BROADCAST_RGB_AUTO 0
3897 #define INTEL_BROADCAST_RGB_FULL 1
3898 #define INTEL_BROADCAST_RGB_LIMITED 2
3899
3900 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
3901 {
3902 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3903 return VLV_VGACNTRL;
3904 else if (INTEL_GEN(dev_priv) >= 5)
3905 return CPU_VGACNTRL;
3906 else
3907 return VGACNTRL;
3908 }
3909
3910 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3911 {
3912 unsigned long j = msecs_to_jiffies(m);
3913
3914 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3915 }
3916
3917 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3918 {
3919 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3920 }
3921
3922 static inline unsigned long
3923 timespec_to_jiffies_timeout(const struct timespec *value)
3924 {
3925 unsigned long j = timespec_to_jiffies(value);
3926
3927 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3928 }
3929
3930 /*
3931 * If you need to wait X milliseconds between events A and B, but event B
3932 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3933 * when event A happened, then just before event B you call this function and
3934 * pass the timestamp as the first argument, and X as the second argument.
3935 */
3936 static inline void
3937 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3938 {
3939 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3940
3941 /*
3942 * Don't re-read the value of "jiffies" every time since it may change
3943 * behind our back and break the math.
3944 */
3945 tmp_jiffies = jiffies;
3946 target_jiffies = timestamp_jiffies +
3947 msecs_to_jiffies_timeout(to_wait_ms);
3948
3949 if (time_after(target_jiffies, tmp_jiffies)) {
3950 remaining_jiffies = target_jiffies - tmp_jiffies;
3951 while (remaining_jiffies)
3952 remaining_jiffies =
3953 schedule_timeout_uninterruptible(remaining_jiffies);
3954 }
3955 }
3956
3957 static inline bool
3958 __i915_request_irq_complete(struct drm_i915_gem_request *req)
3959 {
3960 struct intel_engine_cs *engine = req->engine;
3961
3962 /* Before we do the heavier coherent read of the seqno,
3963 * check the value (hopefully) in the CPU cacheline.
3964 */
3965 if (__i915_gem_request_completed(req))
3966 return true;
3967
3968 /* Ensure our read of the seqno is coherent so that we
3969 * do not "miss an interrupt" (i.e. if this is the last
3970 * request and the seqno write from the GPU is not visible
3971 * by the time the interrupt fires, we will see that the
3972 * request is incomplete and go back to sleep awaiting
3973 * another interrupt that will never come.)
3974 *
3975 * Strictly, we only need to do this once after an interrupt,
3976 * but it is easier and safer to do it every time the waiter
3977 * is woken.
3978 */
3979 if (engine->irq_seqno_barrier &&
3980 rcu_access_pointer(engine->breadcrumbs.irq_seqno_bh) == current &&
3981 cmpxchg_relaxed(&engine->breadcrumbs.irq_posted, 1, 0)) {
3982 struct task_struct *tsk;
3983
3984 /* The ordering of irq_posted versus applying the barrier
3985 * is crucial. The clearing of the current irq_posted must
3986 * be visible before we perform the barrier operation,
3987 * such that if a subsequent interrupt arrives, irq_posted
3988 * is reasserted and our task rewoken (which causes us to
3989 * do another __i915_request_irq_complete() immediately
3990 * and reapply the barrier). Conversely, if the clear
3991 * occurs after the barrier, then an interrupt that arrived
3992 * whilst we waited on the barrier would not trigger a
3993 * barrier on the next pass, and the read may not see the
3994 * seqno update.
3995 */
3996 engine->irq_seqno_barrier(engine);
3997
3998 /* If we consume the irq, but we are no longer the bottom-half,
3999 * the real bottom-half may not have serialised their own
4000 * seqno check with the irq-barrier (i.e. may have inspected
4001 * the seqno before we believe it coherent since they see
4002 * irq_posted == false but we are still running).
4003 */
4004 rcu_read_lock();
4005 tsk = rcu_dereference(engine->breadcrumbs.irq_seqno_bh);
4006 if (tsk && tsk != current)
4007 /* Note that if the bottom-half is changed as we
4008 * are sending the wake-up, the new bottom-half will
4009 * be woken by whomever made the change. We only have
4010 * to worry about when we steal the irq-posted for
4011 * ourself.
4012 */
4013 wake_up_process(tsk);
4014 rcu_read_unlock();
4015
4016 if (__i915_gem_request_completed(req))
4017 return true;
4018 }
4019
4020 return false;
4021 }
4022
4023 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
4024 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
4025
4026 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
4027 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
4028 * perform the operation. To check beforehand, pass in the parameters to
4029 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
4030 * you only need to pass in the minor offsets, page-aligned pointers are
4031 * always valid.
4032 *
4033 * For just checking for SSE4.1, in the foreknowledge that the future use
4034 * will be correctly aligned, just use i915_has_memcpy_from_wc().
4035 */
4036 #define i915_can_memcpy_from_wc(dst, src, len) \
4037 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
4038
4039 #define i915_has_memcpy_from_wc() \
4040 i915_memcpy_from_wc(NULL, NULL, 0)
4041
4042 /* i915_mm.c */
4043 int remap_io_mapping(struct vm_area_struct *vma,
4044 unsigned long addr, unsigned long pfn, unsigned long size,
4045 struct io_mapping *iomap);
4046
4047 #endif