]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.h
457129b64d792860d0f789e68c0c7350e4c1b43d
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hashtable.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/reservation.h>
45 #include <linux/shmem_fs.h>
46
47 #include <drm/drmP.h>
48 #include <drm/intel-gtt.h>
49 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
50 #include <drm/drm_gem.h>
51 #include <drm/drm_auth.h>
52
53 #include "i915_params.h"
54 #include "i915_reg.h"
55 #include "i915_utils.h"
56
57 #include "intel_bios.h"
58 #include "intel_dpll_mgr.h"
59 #include "intel_uc.h"
60 #include "intel_lrc.h"
61 #include "intel_ringbuffer.h"
62
63 #include "i915_gem.h"
64 #include "i915_gem_context.h"
65 #include "i915_gem_fence_reg.h"
66 #include "i915_gem_object.h"
67 #include "i915_gem_gtt.h"
68 #include "i915_gem_render_state.h"
69 #include "i915_gem_request.h"
70 #include "i915_gem_timeline.h"
71
72 #include "i915_vma.h"
73
74 #include "intel_gvt.h"
75
76 /* General customization:
77 */
78
79 #define DRIVER_NAME "i915"
80 #define DRIVER_DESC "Intel Graphics"
81 #define DRIVER_DATE "20170123"
82 #define DRIVER_TIMESTAMP 1485156432
83
84 #undef WARN_ON
85 /* Many gcc seem to no see through this and fall over :( */
86 #if 0
87 #define WARN_ON(x) ({ \
88 bool __i915_warn_cond = (x); \
89 if (__builtin_constant_p(__i915_warn_cond)) \
90 BUILD_BUG_ON(__i915_warn_cond); \
91 WARN(__i915_warn_cond, "WARN_ON(" #x ")"); })
92 #else
93 #define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
94 #endif
95
96 #undef WARN_ON_ONCE
97 #define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")")
98
99 #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \
100 (long) (x), __func__);
101
102 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
103 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
104 * which may not necessarily be a user visible problem. This will either
105 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
106 * enable distros and users to tailor their preferred amount of i915 abrt
107 * spam.
108 */
109 #define I915_STATE_WARN(condition, format...) ({ \
110 int __ret_warn_on = !!(condition); \
111 if (unlikely(__ret_warn_on)) \
112 if (!WARN(i915.verbose_state_checks, format)) \
113 DRM_ERROR(format); \
114 unlikely(__ret_warn_on); \
115 })
116
117 #define I915_STATE_WARN_ON(x) \
118 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
119
120 bool __i915_inject_load_failure(const char *func, int line);
121 #define i915_inject_load_failure() \
122 __i915_inject_load_failure(__func__, __LINE__)
123
124 typedef struct {
125 uint32_t val;
126 } uint_fixed_16_16_t;
127
128 #define FP_16_16_MAX ({ \
129 uint_fixed_16_16_t fp; \
130 fp.val = UINT_MAX; \
131 fp; \
132 })
133
134 static inline uint_fixed_16_16_t u32_to_fixed_16_16(uint32_t val)
135 {
136 uint_fixed_16_16_t fp;
137
138 WARN_ON(val >> 16);
139
140 fp.val = val << 16;
141 return fp;
142 }
143
144 static inline uint32_t fixed_16_16_to_u32_round_up(uint_fixed_16_16_t fp)
145 {
146 return DIV_ROUND_UP(fp.val, 1 << 16);
147 }
148
149 static inline uint32_t fixed_16_16_to_u32(uint_fixed_16_16_t fp)
150 {
151 return fp.val >> 16;
152 }
153
154 static inline uint_fixed_16_16_t min_fixed_16_16(uint_fixed_16_16_t min1,
155 uint_fixed_16_16_t min2)
156 {
157 uint_fixed_16_16_t min;
158
159 min.val = min(min1.val, min2.val);
160 return min;
161 }
162
163 static inline uint_fixed_16_16_t max_fixed_16_16(uint_fixed_16_16_t max1,
164 uint_fixed_16_16_t max2)
165 {
166 uint_fixed_16_16_t max;
167
168 max.val = max(max1.val, max2.val);
169 return max;
170 }
171
172 static inline uint_fixed_16_16_t fixed_16_16_div_round_up(uint32_t val,
173 uint32_t d)
174 {
175 uint_fixed_16_16_t fp, res;
176
177 fp = u32_to_fixed_16_16(val);
178 res.val = DIV_ROUND_UP(fp.val, d);
179 return res;
180 }
181
182 static inline uint_fixed_16_16_t fixed_16_16_div_round_up_u64(uint32_t val,
183 uint32_t d)
184 {
185 uint_fixed_16_16_t res;
186 uint64_t interm_val;
187
188 interm_val = (uint64_t)val << 16;
189 interm_val = DIV_ROUND_UP_ULL(interm_val, d);
190 WARN_ON(interm_val >> 32);
191 res.val = (uint32_t) interm_val;
192
193 return res;
194 }
195
196 static inline uint_fixed_16_16_t mul_u32_fixed_16_16(uint32_t val,
197 uint_fixed_16_16_t mul)
198 {
199 uint64_t intermediate_val;
200 uint_fixed_16_16_t fp;
201
202 intermediate_val = (uint64_t) val * mul.val;
203 WARN_ON(intermediate_val >> 32);
204 fp.val = (uint32_t) intermediate_val;
205 return fp;
206 }
207
208 static inline const char *yesno(bool v)
209 {
210 return v ? "yes" : "no";
211 }
212
213 static inline const char *onoff(bool v)
214 {
215 return v ? "on" : "off";
216 }
217
218 static inline const char *enableddisabled(bool v)
219 {
220 return v ? "enabled" : "disabled";
221 }
222
223 enum pipe {
224 INVALID_PIPE = -1,
225 PIPE_A = 0,
226 PIPE_B,
227 PIPE_C,
228 _PIPE_EDP,
229 I915_MAX_PIPES = _PIPE_EDP
230 };
231 #define pipe_name(p) ((p) + 'A')
232
233 enum transcoder {
234 TRANSCODER_A = 0,
235 TRANSCODER_B,
236 TRANSCODER_C,
237 TRANSCODER_EDP,
238 TRANSCODER_DSI_A,
239 TRANSCODER_DSI_C,
240 I915_MAX_TRANSCODERS
241 };
242
243 static inline const char *transcoder_name(enum transcoder transcoder)
244 {
245 switch (transcoder) {
246 case TRANSCODER_A:
247 return "A";
248 case TRANSCODER_B:
249 return "B";
250 case TRANSCODER_C:
251 return "C";
252 case TRANSCODER_EDP:
253 return "EDP";
254 case TRANSCODER_DSI_A:
255 return "DSI A";
256 case TRANSCODER_DSI_C:
257 return "DSI C";
258 default:
259 return "<invalid>";
260 }
261 }
262
263 static inline bool transcoder_is_dsi(enum transcoder transcoder)
264 {
265 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
266 }
267
268 /*
269 * Global legacy plane identifier. Valid only for primary/sprite
270 * planes on pre-g4x, and only for primary planes on g4x+.
271 */
272 enum plane {
273 PLANE_A,
274 PLANE_B,
275 PLANE_C,
276 };
277 #define plane_name(p) ((p) + 'A')
278
279 #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A')
280
281 /*
282 * Per-pipe plane identifier.
283 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
284 * number of planes per CRTC. Not all platforms really have this many planes,
285 * which means some arrays of size I915_MAX_PLANES may have unused entries
286 * between the topmost sprite plane and the cursor plane.
287 *
288 * This is expected to be passed to various register macros
289 * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care.
290 */
291 enum plane_id {
292 PLANE_PRIMARY,
293 PLANE_SPRITE0,
294 PLANE_SPRITE1,
295 PLANE_CURSOR,
296 I915_MAX_PLANES,
297 };
298
299 #define for_each_plane_id_on_crtc(__crtc, __p) \
300 for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \
301 for_each_if ((__crtc)->plane_ids_mask & BIT(__p))
302
303 enum port {
304 PORT_NONE = -1,
305 PORT_A = 0,
306 PORT_B,
307 PORT_C,
308 PORT_D,
309 PORT_E,
310 I915_MAX_PORTS
311 };
312 #define port_name(p) ((p) + 'A')
313
314 #define I915_NUM_PHYS_VLV 2
315
316 enum dpio_channel {
317 DPIO_CH0,
318 DPIO_CH1
319 };
320
321 enum dpio_phy {
322 DPIO_PHY0,
323 DPIO_PHY1,
324 DPIO_PHY2,
325 };
326
327 enum intel_display_power_domain {
328 POWER_DOMAIN_PIPE_A,
329 POWER_DOMAIN_PIPE_B,
330 POWER_DOMAIN_PIPE_C,
331 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
332 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
333 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
334 POWER_DOMAIN_TRANSCODER_A,
335 POWER_DOMAIN_TRANSCODER_B,
336 POWER_DOMAIN_TRANSCODER_C,
337 POWER_DOMAIN_TRANSCODER_EDP,
338 POWER_DOMAIN_TRANSCODER_DSI_A,
339 POWER_DOMAIN_TRANSCODER_DSI_C,
340 POWER_DOMAIN_PORT_DDI_A_LANES,
341 POWER_DOMAIN_PORT_DDI_B_LANES,
342 POWER_DOMAIN_PORT_DDI_C_LANES,
343 POWER_DOMAIN_PORT_DDI_D_LANES,
344 POWER_DOMAIN_PORT_DDI_E_LANES,
345 POWER_DOMAIN_PORT_DSI,
346 POWER_DOMAIN_PORT_CRT,
347 POWER_DOMAIN_PORT_OTHER,
348 POWER_DOMAIN_VGA,
349 POWER_DOMAIN_AUDIO,
350 POWER_DOMAIN_PLLS,
351 POWER_DOMAIN_AUX_A,
352 POWER_DOMAIN_AUX_B,
353 POWER_DOMAIN_AUX_C,
354 POWER_DOMAIN_AUX_D,
355 POWER_DOMAIN_GMBUS,
356 POWER_DOMAIN_MODESET,
357 POWER_DOMAIN_INIT,
358
359 POWER_DOMAIN_NUM,
360 };
361
362 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
363 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
364 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
365 #define POWER_DOMAIN_TRANSCODER(tran) \
366 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
367 (tran) + POWER_DOMAIN_TRANSCODER_A)
368
369 enum hpd_pin {
370 HPD_NONE = 0,
371 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
372 HPD_CRT,
373 HPD_SDVO_B,
374 HPD_SDVO_C,
375 HPD_PORT_A,
376 HPD_PORT_B,
377 HPD_PORT_C,
378 HPD_PORT_D,
379 HPD_PORT_E,
380 HPD_NUM_PINS
381 };
382
383 #define for_each_hpd_pin(__pin) \
384 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
385
386 struct i915_hotplug {
387 struct work_struct hotplug_work;
388
389 struct {
390 unsigned long last_jiffies;
391 int count;
392 enum {
393 HPD_ENABLED = 0,
394 HPD_DISABLED = 1,
395 HPD_MARK_DISABLED = 2
396 } state;
397 } stats[HPD_NUM_PINS];
398 u32 event_bits;
399 struct delayed_work reenable_work;
400
401 struct intel_digital_port *irq_port[I915_MAX_PORTS];
402 u32 long_port_mask;
403 u32 short_port_mask;
404 struct work_struct dig_port_work;
405
406 struct work_struct poll_init_work;
407 bool poll_enabled;
408
409 /*
410 * if we get a HPD irq from DP and a HPD irq from non-DP
411 * the non-DP HPD could block the workqueue on a mode config
412 * mutex getting, that userspace may have taken. However
413 * userspace is waiting on the DP workqueue to run which is
414 * blocked behind the non-DP one.
415 */
416 struct workqueue_struct *dp_wq;
417 };
418
419 #define I915_GEM_GPU_DOMAINS \
420 (I915_GEM_DOMAIN_RENDER | \
421 I915_GEM_DOMAIN_SAMPLER | \
422 I915_GEM_DOMAIN_COMMAND | \
423 I915_GEM_DOMAIN_INSTRUCTION | \
424 I915_GEM_DOMAIN_VERTEX)
425
426 #define for_each_pipe(__dev_priv, __p) \
427 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
428 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
429 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
430 for_each_if ((__mask) & (1 << (__p)))
431 #define for_each_universal_plane(__dev_priv, __pipe, __p) \
432 for ((__p) = 0; \
433 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
434 (__p)++)
435 #define for_each_sprite(__dev_priv, __p, __s) \
436 for ((__s) = 0; \
437 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
438 (__s)++)
439
440 #define for_each_port_masked(__port, __ports_mask) \
441 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
442 for_each_if ((__ports_mask) & (1 << (__port)))
443
444 #define for_each_crtc(dev, crtc) \
445 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
446
447 #define for_each_intel_plane(dev, intel_plane) \
448 list_for_each_entry(intel_plane, \
449 &(dev)->mode_config.plane_list, \
450 base.head)
451
452 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \
453 list_for_each_entry(intel_plane, \
454 &(dev)->mode_config.plane_list, \
455 base.head) \
456 for_each_if ((plane_mask) & \
457 (1 << drm_plane_index(&intel_plane->base)))
458
459 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
460 list_for_each_entry(intel_plane, \
461 &(dev)->mode_config.plane_list, \
462 base.head) \
463 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
464
465 #define for_each_intel_crtc(dev, intel_crtc) \
466 list_for_each_entry(intel_crtc, \
467 &(dev)->mode_config.crtc_list, \
468 base.head)
469
470 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \
471 list_for_each_entry(intel_crtc, \
472 &(dev)->mode_config.crtc_list, \
473 base.head) \
474 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
475
476 #define for_each_intel_encoder(dev, intel_encoder) \
477 list_for_each_entry(intel_encoder, \
478 &(dev)->mode_config.encoder_list, \
479 base.head)
480
481 #define for_each_intel_connector(dev, intel_connector) \
482 list_for_each_entry(intel_connector, \
483 &(dev)->mode_config.connector_list, \
484 base.head)
485
486 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
487 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
488 for_each_if ((intel_encoder)->base.crtc == (__crtc))
489
490 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
491 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
492 for_each_if ((intel_connector)->base.encoder == (__encoder))
493
494 #define for_each_power_domain(domain, mask) \
495 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
496 for_each_if ((1 << (domain)) & (mask))
497
498 struct drm_i915_private;
499 struct i915_mm_struct;
500 struct i915_mmu_object;
501
502 struct drm_i915_file_private {
503 struct drm_i915_private *dev_priv;
504 struct drm_file *file;
505
506 struct {
507 spinlock_t lock;
508 struct list_head request_list;
509 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
510 * chosen to prevent the CPU getting more than a frame ahead of the GPU
511 * (when using lax throttling for the frontbuffer). We also use it to
512 * offer free GPU waitboosts for severely congested workloads.
513 */
514 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
515 } mm;
516 struct idr context_idr;
517
518 struct intel_rps_client {
519 struct list_head link;
520 unsigned boosts;
521 } rps;
522
523 unsigned int bsd_engine;
524
525 /* Client can have a maximum of 3 contexts banned before
526 * it is denied of creating new contexts. As one context
527 * ban needs 4 consecutive hangs, and more if there is
528 * progress in between, this is a last resort stop gap measure
529 * to limit the badly behaving clients access to gpu.
530 */
531 #define I915_MAX_CLIENT_CONTEXT_BANS 3
532 int context_bans;
533 };
534
535 /* Used by dp and fdi links */
536 struct intel_link_m_n {
537 uint32_t tu;
538 uint32_t gmch_m;
539 uint32_t gmch_n;
540 uint32_t link_m;
541 uint32_t link_n;
542 };
543
544 void intel_link_compute_m_n(int bpp, int nlanes,
545 int pixel_clock, int link_clock,
546 struct intel_link_m_n *m_n);
547
548 /* Interface history:
549 *
550 * 1.1: Original.
551 * 1.2: Add Power Management
552 * 1.3: Add vblank support
553 * 1.4: Fix cmdbuffer path, add heap destroy
554 * 1.5: Add vblank pipe configuration
555 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
556 * - Support vertical blank on secondary display pipe
557 */
558 #define DRIVER_MAJOR 1
559 #define DRIVER_MINOR 6
560 #define DRIVER_PATCHLEVEL 0
561
562 struct opregion_header;
563 struct opregion_acpi;
564 struct opregion_swsci;
565 struct opregion_asle;
566
567 struct intel_opregion {
568 struct opregion_header *header;
569 struct opregion_acpi *acpi;
570 struct opregion_swsci *swsci;
571 u32 swsci_gbda_sub_functions;
572 u32 swsci_sbcb_sub_functions;
573 struct opregion_asle *asle;
574 void *rvda;
575 const void *vbt;
576 u32 vbt_size;
577 u32 *lid_state;
578 struct work_struct asle_work;
579 };
580 #define OPREGION_SIZE (8*1024)
581
582 struct intel_overlay;
583 struct intel_overlay_error_state;
584
585 struct sdvo_device_mapping {
586 u8 initialized;
587 u8 dvo_port;
588 u8 slave_addr;
589 u8 dvo_wiring;
590 u8 i2c_pin;
591 u8 ddc_pin;
592 };
593
594 struct intel_connector;
595 struct intel_encoder;
596 struct intel_atomic_state;
597 struct intel_crtc_state;
598 struct intel_initial_plane_config;
599 struct intel_crtc;
600 struct intel_limit;
601 struct dpll;
602
603 struct drm_i915_display_funcs {
604 int (*get_display_clock_speed)(struct drm_i915_private *dev_priv);
605 int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane);
606 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
607 int (*compute_intermediate_wm)(struct drm_device *dev,
608 struct intel_crtc *intel_crtc,
609 struct intel_crtc_state *newstate);
610 void (*initial_watermarks)(struct intel_atomic_state *state,
611 struct intel_crtc_state *cstate);
612 void (*atomic_update_watermarks)(struct intel_atomic_state *state,
613 struct intel_crtc_state *cstate);
614 void (*optimize_watermarks)(struct intel_atomic_state *state,
615 struct intel_crtc_state *cstate);
616 int (*compute_global_watermarks)(struct drm_atomic_state *state);
617 void (*update_wm)(struct intel_crtc *crtc);
618 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
619 void (*modeset_commit_cdclk)(struct drm_atomic_state *state);
620 /* Returns the active state of the crtc, and if the crtc is active,
621 * fills out the pipe-config with the hw state. */
622 bool (*get_pipe_config)(struct intel_crtc *,
623 struct intel_crtc_state *);
624 void (*get_initial_plane_config)(struct intel_crtc *,
625 struct intel_initial_plane_config *);
626 int (*crtc_compute_clock)(struct intel_crtc *crtc,
627 struct intel_crtc_state *crtc_state);
628 void (*crtc_enable)(struct intel_crtc_state *pipe_config,
629 struct drm_atomic_state *old_state);
630 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
631 struct drm_atomic_state *old_state);
632 void (*update_crtcs)(struct drm_atomic_state *state,
633 unsigned int *crtc_vblank_mask);
634 void (*audio_codec_enable)(struct drm_connector *connector,
635 struct intel_encoder *encoder,
636 const struct drm_display_mode *adjusted_mode);
637 void (*audio_codec_disable)(struct intel_encoder *encoder);
638 void (*fdi_link_train)(struct drm_crtc *crtc);
639 void (*init_clock_gating)(struct drm_i915_private *dev_priv);
640 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc,
641 struct drm_framebuffer *fb,
642 struct drm_i915_gem_object *obj,
643 struct drm_i915_gem_request *req,
644 uint32_t flags);
645 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
646 /* clock updates for mode set */
647 /* cursor updates */
648 /* render clock increase/decrease */
649 /* display clock increase/decrease */
650 /* pll clock increase/decrease */
651
652 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
653 void (*load_luts)(struct drm_crtc_state *crtc_state);
654 };
655
656 enum forcewake_domain_id {
657 FW_DOMAIN_ID_RENDER = 0,
658 FW_DOMAIN_ID_BLITTER,
659 FW_DOMAIN_ID_MEDIA,
660
661 FW_DOMAIN_ID_COUNT
662 };
663
664 enum forcewake_domains {
665 FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER),
666 FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER),
667 FORCEWAKE_MEDIA = (1 << FW_DOMAIN_ID_MEDIA),
668 FORCEWAKE_ALL = (FORCEWAKE_RENDER |
669 FORCEWAKE_BLITTER |
670 FORCEWAKE_MEDIA)
671 };
672
673 #define FW_REG_READ (1)
674 #define FW_REG_WRITE (2)
675
676 enum decoupled_power_domain {
677 GEN9_DECOUPLED_PD_BLITTER = 0,
678 GEN9_DECOUPLED_PD_RENDER,
679 GEN9_DECOUPLED_PD_MEDIA,
680 GEN9_DECOUPLED_PD_ALL
681 };
682
683 enum decoupled_ops {
684 GEN9_DECOUPLED_OP_WRITE = 0,
685 GEN9_DECOUPLED_OP_READ
686 };
687
688 enum forcewake_domains
689 intel_uncore_forcewake_for_reg(struct drm_i915_private *dev_priv,
690 i915_reg_t reg, unsigned int op);
691
692 struct intel_uncore_funcs {
693 void (*force_wake_get)(struct drm_i915_private *dev_priv,
694 enum forcewake_domains domains);
695 void (*force_wake_put)(struct drm_i915_private *dev_priv,
696 enum forcewake_domains domains);
697
698 uint8_t (*mmio_readb)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
699 uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
700 uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
701 uint64_t (*mmio_readq)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
702
703 void (*mmio_writeb)(struct drm_i915_private *dev_priv, i915_reg_t r,
704 uint8_t val, bool trace);
705 void (*mmio_writew)(struct drm_i915_private *dev_priv, i915_reg_t r,
706 uint16_t val, bool trace);
707 void (*mmio_writel)(struct drm_i915_private *dev_priv, i915_reg_t r,
708 uint32_t val, bool trace);
709 };
710
711 struct intel_forcewake_range {
712 u32 start;
713 u32 end;
714
715 enum forcewake_domains domains;
716 };
717
718 struct intel_uncore {
719 spinlock_t lock; /** lock is also taken in irq contexts. */
720
721 const struct intel_forcewake_range *fw_domains_table;
722 unsigned int fw_domains_table_entries;
723
724 struct intel_uncore_funcs funcs;
725
726 unsigned fifo_count;
727
728 enum forcewake_domains fw_domains;
729 enum forcewake_domains fw_domains_active;
730
731 struct intel_uncore_forcewake_domain {
732 struct drm_i915_private *i915;
733 enum forcewake_domain_id id;
734 enum forcewake_domains mask;
735 unsigned wake_count;
736 struct hrtimer timer;
737 i915_reg_t reg_set;
738 u32 val_set;
739 u32 val_clear;
740 i915_reg_t reg_ack;
741 i915_reg_t reg_post;
742 u32 val_reset;
743 } fw_domain[FW_DOMAIN_ID_COUNT];
744
745 int unclaimed_mmio_check;
746 };
747
748 /* Iterate over initialised fw domains */
749 #define for_each_fw_domain_masked(domain__, mask__, dev_priv__) \
750 for ((domain__) = &(dev_priv__)->uncore.fw_domain[0]; \
751 (domain__) < &(dev_priv__)->uncore.fw_domain[FW_DOMAIN_ID_COUNT]; \
752 (domain__)++) \
753 for_each_if ((mask__) & (domain__)->mask)
754
755 #define for_each_fw_domain(domain__, dev_priv__) \
756 for_each_fw_domain_masked(domain__, FORCEWAKE_ALL, dev_priv__)
757
758 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
759 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
760 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
761
762 struct intel_csr {
763 struct work_struct work;
764 const char *fw_path;
765 uint32_t *dmc_payload;
766 uint32_t dmc_fw_size;
767 uint32_t version;
768 uint32_t mmio_count;
769 i915_reg_t mmioaddr[8];
770 uint32_t mmiodata[8];
771 uint32_t dc_state;
772 uint32_t allowed_dc_mask;
773 };
774
775 #define DEV_INFO_FOR_EACH_FLAG(func) \
776 func(is_mobile); \
777 func(is_lp); \
778 func(is_alpha_support); \
779 /* Keep has_* in alphabetical order */ \
780 func(has_64bit_reloc); \
781 func(has_aliasing_ppgtt); \
782 func(has_csr); \
783 func(has_ddi); \
784 func(has_decoupled_mmio); \
785 func(has_dp_mst); \
786 func(has_fbc); \
787 func(has_fpga_dbg); \
788 func(has_full_ppgtt); \
789 func(has_full_48bit_ppgtt); \
790 func(has_gmbus_irq); \
791 func(has_gmch_display); \
792 func(has_guc); \
793 func(has_hotplug); \
794 func(has_hw_contexts); \
795 func(has_l3_dpf); \
796 func(has_llc); \
797 func(has_logical_ring_contexts); \
798 func(has_overlay); \
799 func(has_pipe_cxsr); \
800 func(has_pooled_eu); \
801 func(has_psr); \
802 func(has_rc6); \
803 func(has_rc6p); \
804 func(has_resource_streamer); \
805 func(has_runtime_pm); \
806 func(has_snoop); \
807 func(cursor_needs_physical); \
808 func(hws_needs_physical); \
809 func(overlay_needs_physical); \
810 func(supports_tv);
811
812 struct sseu_dev_info {
813 u8 slice_mask;
814 u8 subslice_mask;
815 u8 eu_total;
816 u8 eu_per_subslice;
817 u8 min_eu_in_pool;
818 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
819 u8 subslice_7eu[3];
820 u8 has_slice_pg:1;
821 u8 has_subslice_pg:1;
822 u8 has_eu_pg:1;
823 };
824
825 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu)
826 {
827 return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask);
828 }
829
830 /* Keep in gen based order, and chronological order within a gen */
831 enum intel_platform {
832 INTEL_PLATFORM_UNINITIALIZED = 0,
833 INTEL_I830,
834 INTEL_I845G,
835 INTEL_I85X,
836 INTEL_I865G,
837 INTEL_I915G,
838 INTEL_I915GM,
839 INTEL_I945G,
840 INTEL_I945GM,
841 INTEL_G33,
842 INTEL_PINEVIEW,
843 INTEL_I965G,
844 INTEL_I965GM,
845 INTEL_G45,
846 INTEL_GM45,
847 INTEL_IRONLAKE,
848 INTEL_SANDYBRIDGE,
849 INTEL_IVYBRIDGE,
850 INTEL_VALLEYVIEW,
851 INTEL_HASWELL,
852 INTEL_BROADWELL,
853 INTEL_CHERRYVIEW,
854 INTEL_SKYLAKE,
855 INTEL_BROXTON,
856 INTEL_KABYLAKE,
857 INTEL_GEMINILAKE,
858 };
859
860 struct intel_device_info {
861 u32 display_mmio_offset;
862 u16 device_id;
863 u8 num_pipes;
864 u8 num_sprites[I915_MAX_PIPES];
865 u8 num_scalers[I915_MAX_PIPES];
866 u8 gen;
867 u16 gen_mask;
868 enum intel_platform platform;
869 u8 ring_mask; /* Rings supported by the HW */
870 u8 num_rings;
871 #define DEFINE_FLAG(name) u8 name:1
872 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG);
873 #undef DEFINE_FLAG
874 u16 ddb_size; /* in blocks */
875 /* Register offsets for the various display pipes and transcoders */
876 int pipe_offsets[I915_MAX_TRANSCODERS];
877 int trans_offsets[I915_MAX_TRANSCODERS];
878 int palette_offsets[I915_MAX_PIPES];
879 int cursor_offsets[I915_MAX_PIPES];
880
881 /* Slice/subslice/EU info */
882 struct sseu_dev_info sseu;
883
884 struct color_luts {
885 u16 degamma_lut_size;
886 u16 gamma_lut_size;
887 } color;
888 };
889
890 struct intel_display_error_state;
891
892 struct drm_i915_error_state {
893 struct kref ref;
894 struct timeval time;
895 struct timeval boottime;
896 struct timeval uptime;
897
898 struct drm_i915_private *i915;
899
900 char error_msg[128];
901 bool simulated;
902 int iommu;
903 u32 reset_count;
904 u32 suspend_count;
905 struct intel_device_info device_info;
906
907 /* Generic register state */
908 u32 eir;
909 u32 pgtbl_er;
910 u32 ier;
911 u32 gtier[4];
912 u32 ccid;
913 u32 derrmr;
914 u32 forcewake;
915 u32 error; /* gen6+ */
916 u32 err_int; /* gen7 */
917 u32 fault_data0; /* gen8, gen9 */
918 u32 fault_data1; /* gen8, gen9 */
919 u32 done_reg;
920 u32 gac_eco;
921 u32 gam_ecochk;
922 u32 gab_ctl;
923 u32 gfx_mode;
924
925 u64 fence[I915_MAX_NUM_FENCES];
926 struct intel_overlay_error_state *overlay;
927 struct intel_display_error_state *display;
928 struct drm_i915_error_object *semaphore;
929 struct drm_i915_error_object *guc_log;
930
931 struct drm_i915_error_engine {
932 int engine_id;
933 /* Software tracked state */
934 bool waiting;
935 int num_waiters;
936 unsigned long hangcheck_timestamp;
937 bool hangcheck_stalled;
938 enum intel_engine_hangcheck_action hangcheck_action;
939 struct i915_address_space *vm;
940 int num_requests;
941
942 /* position of active request inside the ring */
943 u32 rq_head, rq_post, rq_tail;
944
945 /* our own tracking of ring head and tail */
946 u32 cpu_ring_head;
947 u32 cpu_ring_tail;
948
949 u32 last_seqno;
950
951 /* Register state */
952 u32 start;
953 u32 tail;
954 u32 head;
955 u32 ctl;
956 u32 mode;
957 u32 hws;
958 u32 ipeir;
959 u32 ipehr;
960 u32 bbstate;
961 u32 instpm;
962 u32 instps;
963 u32 seqno;
964 u64 bbaddr;
965 u64 acthd;
966 u32 fault_reg;
967 u64 faddr;
968 u32 rc_psmi; /* sleep state */
969 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
970 struct intel_instdone instdone;
971
972 struct drm_i915_error_object {
973 u64 gtt_offset;
974 u64 gtt_size;
975 int page_count;
976 int unused;
977 u32 *pages[0];
978 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
979
980 struct drm_i915_error_object *wa_ctx;
981
982 struct drm_i915_error_request {
983 long jiffies;
984 pid_t pid;
985 u32 context;
986 int ban_score;
987 u32 seqno;
988 u32 head;
989 u32 tail;
990 } *requests, execlist[2];
991
992 struct drm_i915_error_waiter {
993 char comm[TASK_COMM_LEN];
994 pid_t pid;
995 u32 seqno;
996 } *waiters;
997
998 struct {
999 u32 gfx_mode;
1000 union {
1001 u64 pdp[4];
1002 u32 pp_dir_base;
1003 };
1004 } vm_info;
1005
1006 pid_t pid;
1007 char comm[TASK_COMM_LEN];
1008 int context_bans;
1009 } engine[I915_NUM_ENGINES];
1010
1011 struct drm_i915_error_buffer {
1012 u32 size;
1013 u32 name;
1014 u32 rseqno[I915_NUM_ENGINES], wseqno;
1015 u64 gtt_offset;
1016 u32 read_domains;
1017 u32 write_domain;
1018 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
1019 u32 tiling:2;
1020 u32 dirty:1;
1021 u32 purgeable:1;
1022 u32 userptr:1;
1023 s32 engine:4;
1024 u32 cache_level:3;
1025 } *active_bo[I915_NUM_ENGINES], *pinned_bo;
1026 u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
1027 struct i915_address_space *active_vm[I915_NUM_ENGINES];
1028 };
1029
1030 enum i915_cache_level {
1031 I915_CACHE_NONE = 0,
1032 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
1033 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
1034 caches, eg sampler/render caches, and the
1035 large Last-Level-Cache. LLC is coherent with
1036 the CPU, but L3 is only visible to the GPU. */
1037 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
1038 };
1039
1040 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
1041
1042 enum fb_op_origin {
1043 ORIGIN_GTT,
1044 ORIGIN_CPU,
1045 ORIGIN_CS,
1046 ORIGIN_FLIP,
1047 ORIGIN_DIRTYFB,
1048 };
1049
1050 struct intel_fbc {
1051 /* This is always the inner lock when overlapping with struct_mutex and
1052 * it's the outer lock when overlapping with stolen_lock. */
1053 struct mutex lock;
1054 unsigned threshold;
1055 unsigned int possible_framebuffer_bits;
1056 unsigned int busy_bits;
1057 unsigned int visible_pipes_mask;
1058 struct intel_crtc *crtc;
1059
1060 struct drm_mm_node compressed_fb;
1061 struct drm_mm_node *compressed_llb;
1062
1063 bool false_color;
1064
1065 bool enabled;
1066 bool active;
1067
1068 bool underrun_detected;
1069 struct work_struct underrun_work;
1070
1071 struct intel_fbc_state_cache {
1072 struct i915_vma *vma;
1073
1074 struct {
1075 unsigned int mode_flags;
1076 uint32_t hsw_bdw_pixel_rate;
1077 } crtc;
1078
1079 struct {
1080 unsigned int rotation;
1081 int src_w;
1082 int src_h;
1083 bool visible;
1084 } plane;
1085
1086 struct {
1087 const struct drm_format_info *format;
1088 unsigned int stride;
1089 } fb;
1090 } state_cache;
1091
1092 struct intel_fbc_reg_params {
1093 struct i915_vma *vma;
1094
1095 struct {
1096 enum pipe pipe;
1097 enum plane plane;
1098 unsigned int fence_y_offset;
1099 } crtc;
1100
1101 struct {
1102 const struct drm_format_info *format;
1103 unsigned int stride;
1104 } fb;
1105
1106 int cfb_size;
1107 } params;
1108
1109 struct intel_fbc_work {
1110 bool scheduled;
1111 u32 scheduled_vblank;
1112 struct work_struct work;
1113 } work;
1114
1115 const char *no_fbc_reason;
1116 };
1117
1118 /*
1119 * HIGH_RR is the highest eDP panel refresh rate read from EDID
1120 * LOW_RR is the lowest eDP panel refresh rate found from EDID
1121 * parsing for same resolution.
1122 */
1123 enum drrs_refresh_rate_type {
1124 DRRS_HIGH_RR,
1125 DRRS_LOW_RR,
1126 DRRS_MAX_RR, /* RR count */
1127 };
1128
1129 enum drrs_support_type {
1130 DRRS_NOT_SUPPORTED = 0,
1131 STATIC_DRRS_SUPPORT = 1,
1132 SEAMLESS_DRRS_SUPPORT = 2
1133 };
1134
1135 struct intel_dp;
1136 struct i915_drrs {
1137 struct mutex mutex;
1138 struct delayed_work work;
1139 struct intel_dp *dp;
1140 unsigned busy_frontbuffer_bits;
1141 enum drrs_refresh_rate_type refresh_rate_type;
1142 enum drrs_support_type type;
1143 };
1144
1145 struct i915_psr {
1146 struct mutex lock;
1147 bool sink_support;
1148 bool source_ok;
1149 struct intel_dp *enabled;
1150 bool active;
1151 struct delayed_work work;
1152 unsigned busy_frontbuffer_bits;
1153 bool psr2_support;
1154 bool aux_frame_sync;
1155 bool link_standby;
1156 bool y_cord_support;
1157 bool colorimetry_support;
1158 bool alpm;
1159 };
1160
1161 enum intel_pch {
1162 PCH_NONE = 0, /* No PCH present */
1163 PCH_IBX, /* Ibexpeak PCH */
1164 PCH_CPT, /* Cougarpoint PCH */
1165 PCH_LPT, /* Lynxpoint PCH */
1166 PCH_SPT, /* Sunrisepoint PCH */
1167 PCH_KBP, /* Kabypoint PCH */
1168 PCH_NOP,
1169 };
1170
1171 enum intel_sbi_destination {
1172 SBI_ICLK,
1173 SBI_MPHY,
1174 };
1175
1176 #define QUIRK_PIPEA_FORCE (1<<0)
1177 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1178 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1179 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1180 #define QUIRK_PIPEB_FORCE (1<<4)
1181 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1182
1183 struct intel_fbdev;
1184 struct intel_fbc_work;
1185
1186 struct intel_gmbus {
1187 struct i2c_adapter adapter;
1188 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1189 u32 force_bit;
1190 u32 reg0;
1191 i915_reg_t gpio_reg;
1192 struct i2c_algo_bit_data bit_algo;
1193 struct drm_i915_private *dev_priv;
1194 };
1195
1196 struct i915_suspend_saved_registers {
1197 u32 saveDSPARB;
1198 u32 saveFBC_CONTROL;
1199 u32 saveCACHE_MODE_0;
1200 u32 saveMI_ARB_STATE;
1201 u32 saveSWF0[16];
1202 u32 saveSWF1[16];
1203 u32 saveSWF3[3];
1204 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1205 u32 savePCH_PORT_HOTPLUG;
1206 u16 saveGCDGMBUS;
1207 };
1208
1209 struct vlv_s0ix_state {
1210 /* GAM */
1211 u32 wr_watermark;
1212 u32 gfx_prio_ctrl;
1213 u32 arb_mode;
1214 u32 gfx_pend_tlb0;
1215 u32 gfx_pend_tlb1;
1216 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1217 u32 media_max_req_count;
1218 u32 gfx_max_req_count;
1219 u32 render_hwsp;
1220 u32 ecochk;
1221 u32 bsd_hwsp;
1222 u32 blt_hwsp;
1223 u32 tlb_rd_addr;
1224
1225 /* MBC */
1226 u32 g3dctl;
1227 u32 gsckgctl;
1228 u32 mbctl;
1229
1230 /* GCP */
1231 u32 ucgctl1;
1232 u32 ucgctl3;
1233 u32 rcgctl1;
1234 u32 rcgctl2;
1235 u32 rstctl;
1236 u32 misccpctl;
1237
1238 /* GPM */
1239 u32 gfxpause;
1240 u32 rpdeuhwtc;
1241 u32 rpdeuc;
1242 u32 ecobus;
1243 u32 pwrdwnupctl;
1244 u32 rp_down_timeout;
1245 u32 rp_deucsw;
1246 u32 rcubmabdtmr;
1247 u32 rcedata;
1248 u32 spare2gh;
1249
1250 /* Display 1 CZ domain */
1251 u32 gt_imr;
1252 u32 gt_ier;
1253 u32 pm_imr;
1254 u32 pm_ier;
1255 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1256
1257 /* GT SA CZ domain */
1258 u32 tilectl;
1259 u32 gt_fifoctl;
1260 u32 gtlc_wake_ctrl;
1261 u32 gtlc_survive;
1262 u32 pmwgicz;
1263
1264 /* Display 2 CZ domain */
1265 u32 gu_ctl0;
1266 u32 gu_ctl1;
1267 u32 pcbr;
1268 u32 clock_gate_dis2;
1269 };
1270
1271 struct intel_rps_ei {
1272 u32 cz_clock;
1273 u32 render_c0;
1274 u32 media_c0;
1275 };
1276
1277 struct intel_gen6_power_mgmt {
1278 /*
1279 * work, interrupts_enabled and pm_iir are protected by
1280 * dev_priv->irq_lock
1281 */
1282 struct work_struct work;
1283 bool interrupts_enabled;
1284 u32 pm_iir;
1285
1286 /* PM interrupt bits that should never be masked */
1287 u32 pm_intr_keep;
1288
1289 /* Frequencies are stored in potentially platform dependent multiples.
1290 * In other words, *_freq needs to be multiplied by X to be interesting.
1291 * Soft limits are those which are used for the dynamic reclocking done
1292 * by the driver (raise frequencies under heavy loads, and lower for
1293 * lighter loads). Hard limits are those imposed by the hardware.
1294 *
1295 * A distinction is made for overclocking, which is never enabled by
1296 * default, and is considered to be above the hard limit if it's
1297 * possible at all.
1298 */
1299 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1300 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1301 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1302 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1303 u8 min_freq; /* AKA RPn. Minimum frequency */
1304 u8 boost_freq; /* Frequency to request when wait boosting */
1305 u8 idle_freq; /* Frequency to request when we are idle */
1306 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1307 u8 rp1_freq; /* "less than" RP0 power/freqency */
1308 u8 rp0_freq; /* Non-overclocked max frequency. */
1309 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
1310
1311 u8 up_threshold; /* Current %busy required to uplock */
1312 u8 down_threshold; /* Current %busy required to downclock */
1313
1314 int last_adj;
1315 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1316
1317 spinlock_t client_lock;
1318 struct list_head clients;
1319 bool client_boost;
1320
1321 bool enabled;
1322 struct delayed_work autoenable_work;
1323 unsigned boosts;
1324
1325 /* manual wa residency calculations */
1326 struct intel_rps_ei up_ei, down_ei;
1327
1328 /*
1329 * Protects RPS/RC6 register access and PCU communication.
1330 * Must be taken after struct_mutex if nested. Note that
1331 * this lock may be held for long periods of time when
1332 * talking to hw - so only take it when talking to hw!
1333 */
1334 struct mutex hw_lock;
1335 };
1336
1337 /* defined intel_pm.c */
1338 extern spinlock_t mchdev_lock;
1339
1340 struct intel_ilk_power_mgmt {
1341 u8 cur_delay;
1342 u8 min_delay;
1343 u8 max_delay;
1344 u8 fmax;
1345 u8 fstart;
1346
1347 u64 last_count1;
1348 unsigned long last_time1;
1349 unsigned long chipset_power;
1350 u64 last_count2;
1351 u64 last_time2;
1352 unsigned long gfx_power;
1353 u8 corr;
1354
1355 int c_m;
1356 int r_t;
1357 };
1358
1359 struct drm_i915_private;
1360 struct i915_power_well;
1361
1362 struct i915_power_well_ops {
1363 /*
1364 * Synchronize the well's hw state to match the current sw state, for
1365 * example enable/disable it based on the current refcount. Called
1366 * during driver init and resume time, possibly after first calling
1367 * the enable/disable handlers.
1368 */
1369 void (*sync_hw)(struct drm_i915_private *dev_priv,
1370 struct i915_power_well *power_well);
1371 /*
1372 * Enable the well and resources that depend on it (for example
1373 * interrupts located on the well). Called after the 0->1 refcount
1374 * transition.
1375 */
1376 void (*enable)(struct drm_i915_private *dev_priv,
1377 struct i915_power_well *power_well);
1378 /*
1379 * Disable the well and resources that depend on it. Called after
1380 * the 1->0 refcount transition.
1381 */
1382 void (*disable)(struct drm_i915_private *dev_priv,
1383 struct i915_power_well *power_well);
1384 /* Returns the hw enabled state. */
1385 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1386 struct i915_power_well *power_well);
1387 };
1388
1389 /* Power well structure for haswell */
1390 struct i915_power_well {
1391 const char *name;
1392 bool always_on;
1393 /* power well enable/disable usage count */
1394 int count;
1395 /* cached hw enabled state */
1396 bool hw_enabled;
1397 unsigned long domains;
1398 /* unique identifier for this power well */
1399 unsigned long id;
1400 /*
1401 * Arbitraty data associated with this power well. Platform and power
1402 * well specific.
1403 */
1404 unsigned long data;
1405 const struct i915_power_well_ops *ops;
1406 };
1407
1408 struct i915_power_domains {
1409 /*
1410 * Power wells needed for initialization at driver init and suspend
1411 * time are on. They are kept on until after the first modeset.
1412 */
1413 bool init_power_on;
1414 bool initializing;
1415 int power_well_count;
1416
1417 struct mutex lock;
1418 int domain_use_count[POWER_DOMAIN_NUM];
1419 struct i915_power_well *power_wells;
1420 };
1421
1422 #define MAX_L3_SLICES 2
1423 struct intel_l3_parity {
1424 u32 *remap_info[MAX_L3_SLICES];
1425 struct work_struct error_work;
1426 int which_slice;
1427 };
1428
1429 struct i915_gem_mm {
1430 /** Memory allocator for GTT stolen memory */
1431 struct drm_mm stolen;
1432 /** Protects the usage of the GTT stolen memory allocator. This is
1433 * always the inner lock when overlapping with struct_mutex. */
1434 struct mutex stolen_lock;
1435
1436 /** List of all objects in gtt_space. Used to restore gtt
1437 * mappings on resume */
1438 struct list_head bound_list;
1439 /**
1440 * List of objects which are not bound to the GTT (thus
1441 * are idle and not used by the GPU). These objects may or may
1442 * not actually have any pages attached.
1443 */
1444 struct list_head unbound_list;
1445
1446 /** List of all objects in gtt_space, currently mmaped by userspace.
1447 * All objects within this list must also be on bound_list.
1448 */
1449 struct list_head userfault_list;
1450
1451 /**
1452 * List of objects which are pending destruction.
1453 */
1454 struct llist_head free_list;
1455 struct work_struct free_work;
1456
1457 /** Usable portion of the GTT for GEM */
1458 phys_addr_t stolen_base; /* limited to low memory (32-bit) */
1459
1460 /** PPGTT used for aliasing the PPGTT with the GTT */
1461 struct i915_hw_ppgtt *aliasing_ppgtt;
1462
1463 struct notifier_block oom_notifier;
1464 struct notifier_block vmap_notifier;
1465 struct shrinker shrinker;
1466
1467 /** LRU list of objects with fence regs on them. */
1468 struct list_head fence_list;
1469
1470 /**
1471 * Are we in a non-interruptible section of code like
1472 * modesetting?
1473 */
1474 bool interruptible;
1475
1476 /* the indicator for dispatch video commands on two BSD rings */
1477 atomic_t bsd_engine_dispatch_index;
1478
1479 /** Bit 6 swizzling required for X tiling */
1480 uint32_t bit_6_swizzle_x;
1481 /** Bit 6 swizzling required for Y tiling */
1482 uint32_t bit_6_swizzle_y;
1483
1484 /* accounting, useful for userland debugging */
1485 spinlock_t object_stat_lock;
1486 u64 object_memory;
1487 u32 object_count;
1488 };
1489
1490 struct drm_i915_error_state_buf {
1491 struct drm_i915_private *i915;
1492 unsigned bytes;
1493 unsigned size;
1494 int err;
1495 u8 *buf;
1496 loff_t start;
1497 loff_t pos;
1498 };
1499
1500 struct i915_error_state_file_priv {
1501 struct drm_i915_private *i915;
1502 struct drm_i915_error_state *error;
1503 };
1504
1505 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1506 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1507
1508 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */
1509 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */
1510
1511 struct i915_gpu_error {
1512 /* For hangcheck timer */
1513 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1514 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1515
1516 struct delayed_work hangcheck_work;
1517
1518 /* For reset and error_state handling. */
1519 spinlock_t lock;
1520 /* Protected by the above dev->gpu_error.lock. */
1521 struct drm_i915_error_state *first_error;
1522
1523 unsigned long missed_irq_rings;
1524
1525 /**
1526 * State variable controlling the reset flow and count
1527 *
1528 * This is a counter which gets incremented when reset is triggered,
1529 *
1530 * Before the reset commences, the I915_RESET_IN_PROGRESS bit is set
1531 * meaning that any waiters holding onto the struct_mutex should
1532 * relinquish the lock immediately in order for the reset to start.
1533 *
1534 * If reset is not completed succesfully, the I915_WEDGE bit is
1535 * set meaning that hardware is terminally sour and there is no
1536 * recovery. All waiters on the reset_queue will be woken when
1537 * that happens.
1538 *
1539 * This counter is used by the wait_seqno code to notice that reset
1540 * event happened and it needs to restart the entire ioctl (since most
1541 * likely the seqno it waited for won't ever signal anytime soon).
1542 *
1543 * This is important for lock-free wait paths, where no contended lock
1544 * naturally enforces the correct ordering between the bail-out of the
1545 * waiter and the gpu reset work code.
1546 */
1547 unsigned long reset_count;
1548
1549 unsigned long flags;
1550 #define I915_RESET_IN_PROGRESS 0
1551 #define I915_WEDGED (BITS_PER_LONG - 1)
1552
1553 /**
1554 * Waitqueue to signal when a hang is detected. Used to for waiters
1555 * to release the struct_mutex for the reset to procede.
1556 */
1557 wait_queue_head_t wait_queue;
1558
1559 /**
1560 * Waitqueue to signal when the reset has completed. Used by clients
1561 * that wait for dev_priv->mm.wedged to settle.
1562 */
1563 wait_queue_head_t reset_queue;
1564
1565 /* For missed irq/seqno simulation. */
1566 unsigned long test_irq_rings;
1567 };
1568
1569 enum modeset_restore {
1570 MODESET_ON_LID_OPEN,
1571 MODESET_DONE,
1572 MODESET_SUSPENDED,
1573 };
1574
1575 #define DP_AUX_A 0x40
1576 #define DP_AUX_B 0x10
1577 #define DP_AUX_C 0x20
1578 #define DP_AUX_D 0x30
1579
1580 #define DDC_PIN_B 0x05
1581 #define DDC_PIN_C 0x04
1582 #define DDC_PIN_D 0x06
1583
1584 struct ddi_vbt_port_info {
1585 /*
1586 * This is an index in the HDMI/DVI DDI buffer translation table.
1587 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1588 * populate this field.
1589 */
1590 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1591 uint8_t hdmi_level_shift;
1592
1593 uint8_t supports_dvi:1;
1594 uint8_t supports_hdmi:1;
1595 uint8_t supports_dp:1;
1596 uint8_t supports_edp:1;
1597
1598 uint8_t alternate_aux_channel;
1599 uint8_t alternate_ddc_pin;
1600
1601 uint8_t dp_boost_level;
1602 uint8_t hdmi_boost_level;
1603 };
1604
1605 enum psr_lines_to_wait {
1606 PSR_0_LINES_TO_WAIT = 0,
1607 PSR_1_LINE_TO_WAIT,
1608 PSR_4_LINES_TO_WAIT,
1609 PSR_8_LINES_TO_WAIT
1610 };
1611
1612 struct intel_vbt_data {
1613 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1614 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1615
1616 /* Feature bits */
1617 unsigned int int_tv_support:1;
1618 unsigned int lvds_dither:1;
1619 unsigned int lvds_vbt:1;
1620 unsigned int int_crt_support:1;
1621 unsigned int lvds_use_ssc:1;
1622 unsigned int display_clock_mode:1;
1623 unsigned int fdi_rx_polarity_inverted:1;
1624 unsigned int panel_type:4;
1625 int lvds_ssc_freq;
1626 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1627
1628 enum drrs_support_type drrs_type;
1629
1630 struct {
1631 int rate;
1632 int lanes;
1633 int preemphasis;
1634 int vswing;
1635 bool low_vswing;
1636 bool initialized;
1637 bool support;
1638 int bpp;
1639 struct edp_power_seq pps;
1640 } edp;
1641
1642 struct {
1643 bool full_link;
1644 bool require_aux_wakeup;
1645 int idle_frames;
1646 enum psr_lines_to_wait lines_to_wait;
1647 int tp1_wakeup_time;
1648 int tp2_tp3_wakeup_time;
1649 } psr;
1650
1651 struct {
1652 u16 pwm_freq_hz;
1653 bool present;
1654 bool active_low_pwm;
1655 u8 min_brightness; /* min_brightness/255 of max */
1656 u8 controller; /* brightness controller number */
1657 enum intel_backlight_type type;
1658 } backlight;
1659
1660 /* MIPI DSI */
1661 struct {
1662 u16 panel_id;
1663 struct mipi_config *config;
1664 struct mipi_pps_data *pps;
1665 u8 seq_version;
1666 u32 size;
1667 u8 *data;
1668 const u8 *sequence[MIPI_SEQ_MAX];
1669 } dsi;
1670
1671 int crt_ddc_pin;
1672
1673 int child_dev_num;
1674 union child_device_config *child_dev;
1675
1676 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1677 struct sdvo_device_mapping sdvo_mappings[2];
1678 };
1679
1680 enum intel_ddb_partitioning {
1681 INTEL_DDB_PART_1_2,
1682 INTEL_DDB_PART_5_6, /* IVB+ */
1683 };
1684
1685 struct intel_wm_level {
1686 bool enable;
1687 uint32_t pri_val;
1688 uint32_t spr_val;
1689 uint32_t cur_val;
1690 uint32_t fbc_val;
1691 };
1692
1693 struct ilk_wm_values {
1694 uint32_t wm_pipe[3];
1695 uint32_t wm_lp[3];
1696 uint32_t wm_lp_spr[3];
1697 uint32_t wm_linetime[3];
1698 bool enable_fbc_wm;
1699 enum intel_ddb_partitioning partitioning;
1700 };
1701
1702 struct vlv_pipe_wm {
1703 uint16_t plane[I915_MAX_PLANES];
1704 };
1705
1706 struct vlv_sr_wm {
1707 uint16_t plane;
1708 uint16_t cursor;
1709 };
1710
1711 struct vlv_wm_ddl_values {
1712 uint8_t plane[I915_MAX_PLANES];
1713 };
1714
1715 struct vlv_wm_values {
1716 struct vlv_pipe_wm pipe[3];
1717 struct vlv_sr_wm sr;
1718 struct vlv_wm_ddl_values ddl[3];
1719 uint8_t level;
1720 bool cxsr;
1721 };
1722
1723 struct skl_ddb_entry {
1724 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1725 };
1726
1727 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1728 {
1729 return entry->end - entry->start;
1730 }
1731
1732 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1733 const struct skl_ddb_entry *e2)
1734 {
1735 if (e1->start == e2->start && e1->end == e2->end)
1736 return true;
1737
1738 return false;
1739 }
1740
1741 struct skl_ddb_allocation {
1742 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1743 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1744 };
1745
1746 struct skl_wm_values {
1747 unsigned dirty_pipes;
1748 struct skl_ddb_allocation ddb;
1749 };
1750
1751 struct skl_wm_level {
1752 bool plane_en;
1753 uint16_t plane_res_b;
1754 uint8_t plane_res_l;
1755 };
1756
1757 /*
1758 * This struct helps tracking the state needed for runtime PM, which puts the
1759 * device in PCI D3 state. Notice that when this happens, nothing on the
1760 * graphics device works, even register access, so we don't get interrupts nor
1761 * anything else.
1762 *
1763 * Every piece of our code that needs to actually touch the hardware needs to
1764 * either call intel_runtime_pm_get or call intel_display_power_get with the
1765 * appropriate power domain.
1766 *
1767 * Our driver uses the autosuspend delay feature, which means we'll only really
1768 * suspend if we stay with zero refcount for a certain amount of time. The
1769 * default value is currently very conservative (see intel_runtime_pm_enable), but
1770 * it can be changed with the standard runtime PM files from sysfs.
1771 *
1772 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1773 * goes back to false exactly before we reenable the IRQs. We use this variable
1774 * to check if someone is trying to enable/disable IRQs while they're supposed
1775 * to be disabled. This shouldn't happen and we'll print some error messages in
1776 * case it happens.
1777 *
1778 * For more, read the Documentation/power/runtime_pm.txt.
1779 */
1780 struct i915_runtime_pm {
1781 atomic_t wakeref_count;
1782 bool suspended;
1783 bool irqs_enabled;
1784 };
1785
1786 enum intel_pipe_crc_source {
1787 INTEL_PIPE_CRC_SOURCE_NONE,
1788 INTEL_PIPE_CRC_SOURCE_PLANE1,
1789 INTEL_PIPE_CRC_SOURCE_PLANE2,
1790 INTEL_PIPE_CRC_SOURCE_PF,
1791 INTEL_PIPE_CRC_SOURCE_PIPE,
1792 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1793 INTEL_PIPE_CRC_SOURCE_TV,
1794 INTEL_PIPE_CRC_SOURCE_DP_B,
1795 INTEL_PIPE_CRC_SOURCE_DP_C,
1796 INTEL_PIPE_CRC_SOURCE_DP_D,
1797 INTEL_PIPE_CRC_SOURCE_AUTO,
1798 INTEL_PIPE_CRC_SOURCE_MAX,
1799 };
1800
1801 struct intel_pipe_crc_entry {
1802 uint32_t frame;
1803 uint32_t crc[5];
1804 };
1805
1806 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1807 struct intel_pipe_crc {
1808 spinlock_t lock;
1809 bool opened; /* exclusive access to the result file */
1810 struct intel_pipe_crc_entry *entries;
1811 enum intel_pipe_crc_source source;
1812 int head, tail;
1813 wait_queue_head_t wq;
1814 int skipped;
1815 };
1816
1817 struct i915_frontbuffer_tracking {
1818 spinlock_t lock;
1819
1820 /*
1821 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1822 * scheduled flips.
1823 */
1824 unsigned busy_bits;
1825 unsigned flip_bits;
1826 };
1827
1828 struct i915_wa_reg {
1829 i915_reg_t addr;
1830 u32 value;
1831 /* bitmask representing WA bits */
1832 u32 mask;
1833 };
1834
1835 /*
1836 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1837 * allowing it for RCS as we don't foresee any requirement of having
1838 * a whitelist for other engines. When it is really required for
1839 * other engines then the limit need to be increased.
1840 */
1841 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1842
1843 struct i915_workarounds {
1844 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1845 u32 count;
1846 u32 hw_whitelist_count[I915_NUM_ENGINES];
1847 };
1848
1849 struct i915_virtual_gpu {
1850 bool active;
1851 };
1852
1853 /* used in computing the new watermarks state */
1854 struct intel_wm_config {
1855 unsigned int num_pipes_active;
1856 bool sprites_enabled;
1857 bool sprites_scaled;
1858 };
1859
1860 struct i915_oa_format {
1861 u32 format;
1862 int size;
1863 };
1864
1865 struct i915_oa_reg {
1866 i915_reg_t addr;
1867 u32 value;
1868 };
1869
1870 struct i915_perf_stream;
1871
1872 /**
1873 * struct i915_perf_stream_ops - the OPs to support a specific stream type
1874 */
1875 struct i915_perf_stream_ops {
1876 /**
1877 * @enable: Enables the collection of HW samples, either in response to
1878 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1879 * without `I915_PERF_FLAG_DISABLED`.
1880 */
1881 void (*enable)(struct i915_perf_stream *stream);
1882
1883 /**
1884 * @disable: Disables the collection of HW samples, either in response
1885 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1886 * the stream.
1887 */
1888 void (*disable)(struct i915_perf_stream *stream);
1889
1890 /**
1891 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1892 * once there is something ready to read() for the stream
1893 */
1894 void (*poll_wait)(struct i915_perf_stream *stream,
1895 struct file *file,
1896 poll_table *wait);
1897
1898 /**
1899 * @wait_unlocked: For handling a blocking read, wait until there is
1900 * something to ready to read() for the stream. E.g. wait on the same
1901 * wait queue that would be passed to poll_wait().
1902 */
1903 int (*wait_unlocked)(struct i915_perf_stream *stream);
1904
1905 /**
1906 * @read: Copy buffered metrics as records to userspace
1907 * **buf**: the userspace, destination buffer
1908 * **count**: the number of bytes to copy, requested by userspace
1909 * **offset**: zero at the start of the read, updated as the read
1910 * proceeds, it represents how many bytes have been copied so far and
1911 * the buffer offset for copying the next record.
1912 *
1913 * Copy as many buffered i915 perf samples and records for this stream
1914 * to userspace as will fit in the given buffer.
1915 *
1916 * Only write complete records; returning -%ENOSPC if there isn't room
1917 * for a complete record.
1918 *
1919 * Return any error condition that results in a short read such as
1920 * -%ENOSPC or -%EFAULT, even though these may be squashed before
1921 * returning to userspace.
1922 */
1923 int (*read)(struct i915_perf_stream *stream,
1924 char __user *buf,
1925 size_t count,
1926 size_t *offset);
1927
1928 /**
1929 * @destroy: Cleanup any stream specific resources.
1930 *
1931 * The stream will always be disabled before this is called.
1932 */
1933 void (*destroy)(struct i915_perf_stream *stream);
1934 };
1935
1936 /**
1937 * struct i915_perf_stream - state for a single open stream FD
1938 */
1939 struct i915_perf_stream {
1940 /**
1941 * @dev_priv: i915 drm device
1942 */
1943 struct drm_i915_private *dev_priv;
1944
1945 /**
1946 * @link: Links the stream into ``&drm_i915_private->streams``
1947 */
1948 struct list_head link;
1949
1950 /**
1951 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
1952 * properties given when opening a stream, representing the contents
1953 * of a single sample as read() by userspace.
1954 */
1955 u32 sample_flags;
1956
1957 /**
1958 * @sample_size: Considering the configured contents of a sample
1959 * combined with the required header size, this is the total size
1960 * of a single sample record.
1961 */
1962 int sample_size;
1963
1964 /**
1965 * @ctx: %NULL if measuring system-wide across all contexts or a
1966 * specific context that is being monitored.
1967 */
1968 struct i915_gem_context *ctx;
1969
1970 /**
1971 * @enabled: Whether the stream is currently enabled, considering
1972 * whether the stream was opened in a disabled state and based
1973 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
1974 */
1975 bool enabled;
1976
1977 /**
1978 * @ops: The callbacks providing the implementation of this specific
1979 * type of configured stream.
1980 */
1981 const struct i915_perf_stream_ops *ops;
1982 };
1983
1984 /**
1985 * struct i915_oa_ops - Gen specific implementation of an OA unit stream
1986 */
1987 struct i915_oa_ops {
1988 /**
1989 * @init_oa_buffer: Resets the head and tail pointers of the
1990 * circular buffer for periodic OA reports.
1991 *
1992 * Called when first opening a stream for OA metrics, but also may be
1993 * called in response to an OA buffer overflow or other error
1994 * condition.
1995 *
1996 * Note it may be necessary to clear the full OA buffer here as part of
1997 * maintaining the invariable that new reports must be written to
1998 * zeroed memory for us to be able to reliable detect if an expected
1999 * report has not yet landed in memory. (At least on Haswell the OA
2000 * buffer tail pointer is not synchronized with reports being visible
2001 * to the CPU)
2002 */
2003 void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
2004
2005 /**
2006 * @enable_metric_set: Applies any MUX configuration to set up the
2007 * Boolean and Custom (B/C) counters that are part of the counter
2008 * reports being sampled. May apply system constraints such as
2009 * disabling EU clock gating as required.
2010 */
2011 int (*enable_metric_set)(struct drm_i915_private *dev_priv);
2012
2013 /**
2014 * @disable_metric_set: Remove system constraints associated with using
2015 * the OA unit.
2016 */
2017 void (*disable_metric_set)(struct drm_i915_private *dev_priv);
2018
2019 /**
2020 * @oa_enable: Enable periodic sampling
2021 */
2022 void (*oa_enable)(struct drm_i915_private *dev_priv);
2023
2024 /**
2025 * @oa_disable: Disable periodic sampling
2026 */
2027 void (*oa_disable)(struct drm_i915_private *dev_priv);
2028
2029 /**
2030 * @read: Copy data from the circular OA buffer into a given userspace
2031 * buffer.
2032 */
2033 int (*read)(struct i915_perf_stream *stream,
2034 char __user *buf,
2035 size_t count,
2036 size_t *offset);
2037
2038 /**
2039 * @oa_buffer_is_empty: Check if OA buffer empty (false positives OK)
2040 *
2041 * This is either called via fops or the poll check hrtimer (atomic
2042 * ctx) without any locks taken.
2043 *
2044 * It's safe to read OA config state here unlocked, assuming that this
2045 * is only called while the stream is enabled, while the global OA
2046 * configuration can't be modified.
2047 *
2048 * Efficiency is more important than avoiding some false positives
2049 * here, which will be handled gracefully - likely resulting in an
2050 * %EAGAIN error for userspace.
2051 */
2052 bool (*oa_buffer_is_empty)(struct drm_i915_private *dev_priv);
2053 };
2054
2055 struct drm_i915_private {
2056 struct drm_device drm;
2057
2058 struct kmem_cache *objects;
2059 struct kmem_cache *vmas;
2060 struct kmem_cache *requests;
2061 struct kmem_cache *dependencies;
2062
2063 const struct intel_device_info info;
2064
2065 int relative_constants_mode;
2066
2067 void __iomem *regs;
2068
2069 struct intel_uncore uncore;
2070
2071 struct i915_virtual_gpu vgpu;
2072
2073 struct intel_gvt *gvt;
2074
2075 struct intel_huc huc;
2076 struct intel_guc guc;
2077
2078 struct intel_csr csr;
2079
2080 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
2081
2082 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
2083 * controller on different i2c buses. */
2084 struct mutex gmbus_mutex;
2085
2086 /**
2087 * Base address of the gmbus and gpio block.
2088 */
2089 uint32_t gpio_mmio_base;
2090
2091 /* MMIO base address for MIPI regs */
2092 uint32_t mipi_mmio_base;
2093
2094 uint32_t psr_mmio_base;
2095
2096 uint32_t pps_mmio_base;
2097
2098 wait_queue_head_t gmbus_wait_queue;
2099
2100 struct pci_dev *bridge_dev;
2101 struct i915_gem_context *kernel_context;
2102 struct intel_engine_cs *engine[I915_NUM_ENGINES];
2103 struct i915_vma *semaphore;
2104
2105 struct drm_dma_handle *status_page_dmah;
2106 struct resource mch_res;
2107
2108 /* protects the irq masks */
2109 spinlock_t irq_lock;
2110
2111 /* protects the mmio flip data */
2112 spinlock_t mmio_flip_lock;
2113
2114 bool display_irqs_enabled;
2115
2116 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
2117 struct pm_qos_request pm_qos;
2118
2119 /* Sideband mailbox protection */
2120 struct mutex sb_lock;
2121
2122 /** Cached value of IMR to avoid reads in updating the bitfield */
2123 union {
2124 u32 irq_mask;
2125 u32 de_irq_mask[I915_MAX_PIPES];
2126 };
2127 u32 gt_irq_mask;
2128 u32 pm_imr;
2129 u32 pm_ier;
2130 u32 pm_rps_events;
2131 u32 pm_guc_events;
2132 u32 pipestat_irq_mask[I915_MAX_PIPES];
2133
2134 struct i915_hotplug hotplug;
2135 struct intel_fbc fbc;
2136 struct i915_drrs drrs;
2137 struct intel_opregion opregion;
2138 struct intel_vbt_data vbt;
2139
2140 bool preserve_bios_swizzle;
2141
2142 /* overlay */
2143 struct intel_overlay *overlay;
2144
2145 /* backlight registers and fields in struct intel_panel */
2146 struct mutex backlight_lock;
2147
2148 /* LVDS info */
2149 bool no_aux_handshake;
2150
2151 /* protects panel power sequencer state */
2152 struct mutex pps_mutex;
2153
2154 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
2155 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
2156
2157 unsigned int fsb_freq, mem_freq, is_ddr3;
2158 unsigned int skl_preferred_vco_freq;
2159 unsigned int cdclk_freq, max_cdclk_freq;
2160
2161 /*
2162 * For reading holding any crtc lock is sufficient,
2163 * for writing must hold all of them.
2164 */
2165 unsigned int atomic_cdclk_freq;
2166
2167 unsigned int max_dotclk_freq;
2168 unsigned int rawclk_freq;
2169 unsigned int hpll_freq;
2170 unsigned int czclk_freq;
2171
2172 struct {
2173 unsigned int vco, ref;
2174 } cdclk_pll;
2175
2176 /**
2177 * wq - Driver workqueue for GEM.
2178 *
2179 * NOTE: Work items scheduled here are not allowed to grab any modeset
2180 * locks, for otherwise the flushing done in the pageflip code will
2181 * result in deadlocks.
2182 */
2183 struct workqueue_struct *wq;
2184
2185 /* Display functions */
2186 struct drm_i915_display_funcs display;
2187
2188 /* PCH chipset type */
2189 enum intel_pch pch_type;
2190 unsigned short pch_id;
2191
2192 unsigned long quirks;
2193
2194 enum modeset_restore modeset_restore;
2195 struct mutex modeset_restore_lock;
2196 struct drm_atomic_state *modeset_restore_state;
2197 struct drm_modeset_acquire_ctx reset_ctx;
2198
2199 struct list_head vm_list; /* Global list of all address spaces */
2200 struct i915_ggtt ggtt; /* VM representing the global address space */
2201
2202 struct i915_gem_mm mm;
2203 DECLARE_HASHTABLE(mm_structs, 7);
2204 struct mutex mm_lock;
2205
2206 /* The hw wants to have a stable context identifier for the lifetime
2207 * of the context (for OA, PASID, faults, etc). This is limited
2208 * in execlists to 21 bits.
2209 */
2210 struct ida context_hw_ida;
2211 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
2212
2213 /* Kernel Modesetting */
2214
2215 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
2216 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
2217 wait_queue_head_t pending_flip_queue;
2218
2219 #ifdef CONFIG_DEBUG_FS
2220 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
2221 #endif
2222
2223 /* dpll and cdclk state is protected by connection_mutex */
2224 int num_shared_dpll;
2225 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
2226 const struct intel_dpll_mgr *dpll_mgr;
2227
2228 /*
2229 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
2230 * Must be global rather than per dpll, because on some platforms
2231 * plls share registers.
2232 */
2233 struct mutex dpll_lock;
2234
2235 unsigned int active_crtcs;
2236 unsigned int min_pixclk[I915_MAX_PIPES];
2237
2238 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
2239
2240 struct i915_workarounds workarounds;
2241
2242 struct i915_frontbuffer_tracking fb_tracking;
2243
2244 struct intel_atomic_helper {
2245 struct llist_head free_list;
2246 struct work_struct free_work;
2247 } atomic_helper;
2248
2249 u16 orig_clock;
2250
2251 bool mchbar_need_disable;
2252
2253 struct intel_l3_parity l3_parity;
2254
2255 /* Cannot be determined by PCIID. You must always read a register. */
2256 u32 edram_cap;
2257
2258 /* gen6+ rps state */
2259 struct intel_gen6_power_mgmt rps;
2260
2261 /* ilk-only ips/rps state. Everything in here is protected by the global
2262 * mchdev_lock in intel_pm.c */
2263 struct intel_ilk_power_mgmt ips;
2264
2265 struct i915_power_domains power_domains;
2266
2267 struct i915_psr psr;
2268
2269 struct i915_gpu_error gpu_error;
2270
2271 struct drm_i915_gem_object *vlv_pctx;
2272
2273 #ifdef CONFIG_DRM_FBDEV_EMULATION
2274 /* list of fbdev register on this device */
2275 struct intel_fbdev *fbdev;
2276 struct work_struct fbdev_suspend_work;
2277 #endif
2278
2279 struct drm_property *broadcast_rgb_property;
2280 struct drm_property *force_audio_property;
2281
2282 /* hda/i915 audio component */
2283 struct i915_audio_component *audio_component;
2284 bool audio_component_registered;
2285 /**
2286 * av_mutex - mutex for audio/video sync
2287 *
2288 */
2289 struct mutex av_mutex;
2290
2291 uint32_t hw_context_size;
2292 struct list_head context_list;
2293
2294 u32 fdi_rx_config;
2295
2296 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
2297 u32 chv_phy_control;
2298 /*
2299 * Shadows for CHV DPLL_MD regs to keep the state
2300 * checker somewhat working in the presence hardware
2301 * crappiness (can't read out DPLL_MD for pipes B & C).
2302 */
2303 u32 chv_dpll_md[I915_MAX_PIPES];
2304 u32 bxt_phy_grc;
2305
2306 u32 suspend_count;
2307 bool suspended_to_idle;
2308 struct i915_suspend_saved_registers regfile;
2309 struct vlv_s0ix_state vlv_s0ix_state;
2310
2311 enum {
2312 I915_SAGV_UNKNOWN = 0,
2313 I915_SAGV_DISABLED,
2314 I915_SAGV_ENABLED,
2315 I915_SAGV_NOT_CONTROLLED
2316 } sagv_status;
2317
2318 struct {
2319 /* protects DSPARB registers on pre-g4x/vlv/chv */
2320 spinlock_t dsparb_lock;
2321
2322 /*
2323 * Raw watermark latency values:
2324 * in 0.1us units for WM0,
2325 * in 0.5us units for WM1+.
2326 */
2327 /* primary */
2328 uint16_t pri_latency[5];
2329 /* sprite */
2330 uint16_t spr_latency[5];
2331 /* cursor */
2332 uint16_t cur_latency[5];
2333 /*
2334 * Raw watermark memory latency values
2335 * for SKL for all 8 levels
2336 * in 1us units.
2337 */
2338 uint16_t skl_latency[8];
2339
2340 /* current hardware state */
2341 union {
2342 struct ilk_wm_values hw;
2343 struct skl_wm_values skl_hw;
2344 struct vlv_wm_values vlv;
2345 };
2346
2347 uint8_t max_level;
2348
2349 /*
2350 * Should be held around atomic WM register writing; also
2351 * protects * intel_crtc->wm.active and
2352 * cstate->wm.need_postvbl_update.
2353 */
2354 struct mutex wm_mutex;
2355
2356 /*
2357 * Set during HW readout of watermarks/DDB. Some platforms
2358 * need to know when we're still using BIOS-provided values
2359 * (which we don't fully trust).
2360 */
2361 bool distrust_bios_wm;
2362 } wm;
2363
2364 struct i915_runtime_pm pm;
2365
2366 struct {
2367 bool initialized;
2368
2369 struct kobject *metrics_kobj;
2370 struct ctl_table_header *sysctl_header;
2371
2372 struct mutex lock;
2373 struct list_head streams;
2374
2375 spinlock_t hook_lock;
2376
2377 struct {
2378 struct i915_perf_stream *exclusive_stream;
2379
2380 u32 specific_ctx_id;
2381
2382 struct hrtimer poll_check_timer;
2383 wait_queue_head_t poll_wq;
2384 bool pollin;
2385
2386 bool periodic;
2387 int period_exponent;
2388 int timestamp_frequency;
2389
2390 int tail_margin;
2391
2392 int metrics_set;
2393
2394 const struct i915_oa_reg *mux_regs;
2395 int mux_regs_len;
2396 const struct i915_oa_reg *b_counter_regs;
2397 int b_counter_regs_len;
2398
2399 struct {
2400 struct i915_vma *vma;
2401 u8 *vaddr;
2402 int format;
2403 int format_size;
2404 } oa_buffer;
2405
2406 u32 gen7_latched_oastatus1;
2407
2408 struct i915_oa_ops ops;
2409 const struct i915_oa_format *oa_formats;
2410 int n_builtin_sets;
2411 } oa;
2412 } perf;
2413
2414 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2415 struct {
2416 void (*resume)(struct drm_i915_private *);
2417 void (*cleanup_engine)(struct intel_engine_cs *engine);
2418
2419 struct list_head timelines;
2420 struct i915_gem_timeline global_timeline;
2421 u32 active_requests;
2422
2423 /**
2424 * Is the GPU currently considered idle, or busy executing
2425 * userspace requests? Whilst idle, we allow runtime power
2426 * management to power down the hardware and display clocks.
2427 * In order to reduce the effect on performance, there
2428 * is a slight delay before we do so.
2429 */
2430 bool awake;
2431
2432 /**
2433 * We leave the user IRQ off as much as possible,
2434 * but this means that requests will finish and never
2435 * be retired once the system goes idle. Set a timer to
2436 * fire periodically while the ring is running. When it
2437 * fires, go retire requests.
2438 */
2439 struct delayed_work retire_work;
2440
2441 /**
2442 * When we detect an idle GPU, we want to turn on
2443 * powersaving features. So once we see that there
2444 * are no more requests outstanding and no more
2445 * arrive within a small period of time, we fire
2446 * off the idle_work.
2447 */
2448 struct delayed_work idle_work;
2449
2450 ktime_t last_init_time;
2451 } gt;
2452
2453 /* perform PHY state sanity checks? */
2454 bool chv_phy_assert[2];
2455
2456 bool ipc_enabled;
2457
2458 /* Used to save the pipe-to-encoder mapping for audio */
2459 struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2460
2461 /*
2462 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2463 * will be rejected. Instead look for a better place.
2464 */
2465 };
2466
2467 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2468 {
2469 return container_of(dev, struct drm_i915_private, drm);
2470 }
2471
2472 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2473 {
2474 return to_i915(dev_get_drvdata(kdev));
2475 }
2476
2477 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2478 {
2479 return container_of(guc, struct drm_i915_private, guc);
2480 }
2481
2482 /* Simple iterator over all initialised engines */
2483 #define for_each_engine(engine__, dev_priv__, id__) \
2484 for ((id__) = 0; \
2485 (id__) < I915_NUM_ENGINES; \
2486 (id__)++) \
2487 for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2488
2489 #define __mask_next_bit(mask) ({ \
2490 int __idx = ffs(mask) - 1; \
2491 mask &= ~BIT(__idx); \
2492 __idx; \
2493 })
2494
2495 /* Iterator over subset of engines selected by mask */
2496 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2497 for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask; \
2498 tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2499
2500 enum hdmi_force_audio {
2501 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2502 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2503 HDMI_AUDIO_AUTO, /* trust EDID */
2504 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2505 };
2506
2507 #define I915_GTT_OFFSET_NONE ((u32)-1)
2508
2509 /*
2510 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2511 * considered to be the frontbuffer for the given plane interface-wise. This
2512 * doesn't mean that the hw necessarily already scans it out, but that any
2513 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2514 *
2515 * We have one bit per pipe and per scanout plane type.
2516 */
2517 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2518 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2519 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2520 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2521 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2522 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2523 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2524 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2525 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2526 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2527 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2528 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2529
2530 /*
2531 * Optimised SGL iterator for GEM objects
2532 */
2533 static __always_inline struct sgt_iter {
2534 struct scatterlist *sgp;
2535 union {
2536 unsigned long pfn;
2537 dma_addr_t dma;
2538 };
2539 unsigned int curr;
2540 unsigned int max;
2541 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2542 struct sgt_iter s = { .sgp = sgl };
2543
2544 if (s.sgp) {
2545 s.max = s.curr = s.sgp->offset;
2546 s.max += s.sgp->length;
2547 if (dma)
2548 s.dma = sg_dma_address(s.sgp);
2549 else
2550 s.pfn = page_to_pfn(sg_page(s.sgp));
2551 }
2552
2553 return s;
2554 }
2555
2556 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2557 {
2558 ++sg;
2559 if (unlikely(sg_is_chain(sg)))
2560 sg = sg_chain_ptr(sg);
2561 return sg;
2562 }
2563
2564 /**
2565 * __sg_next - return the next scatterlist entry in a list
2566 * @sg: The current sg entry
2567 *
2568 * Description:
2569 * If the entry is the last, return NULL; otherwise, step to the next
2570 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2571 * otherwise just return the pointer to the current element.
2572 **/
2573 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2574 {
2575 #ifdef CONFIG_DEBUG_SG
2576 BUG_ON(sg->sg_magic != SG_MAGIC);
2577 #endif
2578 return sg_is_last(sg) ? NULL : ____sg_next(sg);
2579 }
2580
2581 /**
2582 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2583 * @__dmap: DMA address (output)
2584 * @__iter: 'struct sgt_iter' (iterator state, internal)
2585 * @__sgt: sg_table to iterate over (input)
2586 */
2587 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2588 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2589 ((__dmap) = (__iter).dma + (__iter).curr); \
2590 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2591 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2592
2593 /**
2594 * for_each_sgt_page - iterate over the pages of the given sg_table
2595 * @__pp: page pointer (output)
2596 * @__iter: 'struct sgt_iter' (iterator state, internal)
2597 * @__sgt: sg_table to iterate over (input)
2598 */
2599 #define for_each_sgt_page(__pp, __iter, __sgt) \
2600 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2601 ((__pp) = (__iter).pfn == 0 ? NULL : \
2602 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2603 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2604 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2605
2606 static inline const struct intel_device_info *
2607 intel_info(const struct drm_i915_private *dev_priv)
2608 {
2609 return &dev_priv->info;
2610 }
2611
2612 #define INTEL_INFO(dev_priv) intel_info((dev_priv))
2613
2614 #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen)
2615 #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id)
2616
2617 #define REVID_FOREVER 0xff
2618 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision)
2619
2620 #define GEN_FOREVER (0)
2621 /*
2622 * Returns true if Gen is in inclusive range [Start, End].
2623 *
2624 * Use GEN_FOREVER for unbound start and or end.
2625 */
2626 #define IS_GEN(dev_priv, s, e) ({ \
2627 unsigned int __s = (s), __e = (e); \
2628 BUILD_BUG_ON(!__builtin_constant_p(s)); \
2629 BUILD_BUG_ON(!__builtin_constant_p(e)); \
2630 if ((__s) != GEN_FOREVER) \
2631 __s = (s) - 1; \
2632 if ((__e) == GEN_FOREVER) \
2633 __e = BITS_PER_LONG - 1; \
2634 else \
2635 __e = (e) - 1; \
2636 !!((dev_priv)->info.gen_mask & GENMASK((__e), (__s))); \
2637 })
2638
2639 /*
2640 * Return true if revision is in range [since,until] inclusive.
2641 *
2642 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2643 */
2644 #define IS_REVID(p, since, until) \
2645 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2646
2647 #define IS_I830(dev_priv) ((dev_priv)->info.platform == INTEL_I830)
2648 #define IS_I845G(dev_priv) ((dev_priv)->info.platform == INTEL_I845G)
2649 #define IS_I85X(dev_priv) ((dev_priv)->info.platform == INTEL_I85X)
2650 #define IS_I865G(dev_priv) ((dev_priv)->info.platform == INTEL_I865G)
2651 #define IS_I915G(dev_priv) ((dev_priv)->info.platform == INTEL_I915G)
2652 #define IS_I915GM(dev_priv) ((dev_priv)->info.platform == INTEL_I915GM)
2653 #define IS_I945G(dev_priv) ((dev_priv)->info.platform == INTEL_I945G)
2654 #define IS_I945GM(dev_priv) ((dev_priv)->info.platform == INTEL_I945GM)
2655 #define IS_I965G(dev_priv) ((dev_priv)->info.platform == INTEL_I965G)
2656 #define IS_I965GM(dev_priv) ((dev_priv)->info.platform == INTEL_I965GM)
2657 #define IS_G45(dev_priv) ((dev_priv)->info.platform == INTEL_G45)
2658 #define IS_GM45(dev_priv) ((dev_priv)->info.platform == INTEL_GM45)
2659 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv))
2660 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001)
2661 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011)
2662 #define IS_PINEVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_PINEVIEW)
2663 #define IS_G33(dev_priv) ((dev_priv)->info.platform == INTEL_G33)
2664 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046)
2665 #define IS_IVYBRIDGE(dev_priv) ((dev_priv)->info.platform == INTEL_IVYBRIDGE)
2666 #define IS_IVB_GT1(dev_priv) (INTEL_DEVID(dev_priv) == 0x0156 || \
2667 INTEL_DEVID(dev_priv) == 0x0152 || \
2668 INTEL_DEVID(dev_priv) == 0x015a)
2669 #define IS_VALLEYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_VALLEYVIEW)
2670 #define IS_CHERRYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_CHERRYVIEW)
2671 #define IS_HASWELL(dev_priv) ((dev_priv)->info.platform == INTEL_HASWELL)
2672 #define IS_BROADWELL(dev_priv) ((dev_priv)->info.platform == INTEL_BROADWELL)
2673 #define IS_SKYLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_SKYLAKE)
2674 #define IS_BROXTON(dev_priv) ((dev_priv)->info.platform == INTEL_BROXTON)
2675 #define IS_KABYLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_KABYLAKE)
2676 #define IS_GEMINILAKE(dev_priv) ((dev_priv)->info.platform == INTEL_GEMINILAKE)
2677 #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile)
2678 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2679 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2680 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \
2681 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \
2682 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \
2683 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2684 /* ULX machines are also considered ULT. */
2685 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \
2686 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2687 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \
2688 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2689 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \
2690 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2691 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \
2692 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2693 /* ULX machines are also considered ULT. */
2694 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \
2695 INTEL_DEVID(dev_priv) == 0x0A1E)
2696 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \
2697 INTEL_DEVID(dev_priv) == 0x1913 || \
2698 INTEL_DEVID(dev_priv) == 0x1916 || \
2699 INTEL_DEVID(dev_priv) == 0x1921 || \
2700 INTEL_DEVID(dev_priv) == 0x1926)
2701 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \
2702 INTEL_DEVID(dev_priv) == 0x1915 || \
2703 INTEL_DEVID(dev_priv) == 0x191E)
2704 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \
2705 INTEL_DEVID(dev_priv) == 0x5913 || \
2706 INTEL_DEVID(dev_priv) == 0x5916 || \
2707 INTEL_DEVID(dev_priv) == 0x5921 || \
2708 INTEL_DEVID(dev_priv) == 0x5926)
2709 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \
2710 INTEL_DEVID(dev_priv) == 0x5915 || \
2711 INTEL_DEVID(dev_priv) == 0x591E)
2712 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \
2713 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2714 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \
2715 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0030)
2716
2717 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2718
2719 #define SKL_REVID_A0 0x0
2720 #define SKL_REVID_B0 0x1
2721 #define SKL_REVID_C0 0x2
2722 #define SKL_REVID_D0 0x3
2723 #define SKL_REVID_E0 0x4
2724 #define SKL_REVID_F0 0x5
2725 #define SKL_REVID_G0 0x6
2726 #define SKL_REVID_H0 0x7
2727
2728 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2729
2730 #define BXT_REVID_A0 0x0
2731 #define BXT_REVID_A1 0x1
2732 #define BXT_REVID_B0 0x3
2733 #define BXT_REVID_B_LAST 0x8
2734 #define BXT_REVID_C0 0x9
2735
2736 #define IS_BXT_REVID(dev_priv, since, until) \
2737 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2738
2739 #define KBL_REVID_A0 0x0
2740 #define KBL_REVID_B0 0x1
2741 #define KBL_REVID_C0 0x2
2742 #define KBL_REVID_D0 0x3
2743 #define KBL_REVID_E0 0x4
2744
2745 #define IS_KBL_REVID(dev_priv, since, until) \
2746 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2747
2748 /*
2749 * The genX designation typically refers to the render engine, so render
2750 * capability related checks should use IS_GEN, while display and other checks
2751 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2752 * chips, etc.).
2753 */
2754 #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1)))
2755 #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2)))
2756 #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3)))
2757 #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4)))
2758 #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5)))
2759 #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6)))
2760 #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7)))
2761 #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8)))
2762
2763 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp)
2764 #define IS_GEN9_LP(dev_priv) (IS_GEN9(dev_priv) && IS_LP(dev_priv))
2765 #define IS_GEN9_BC(dev_priv) (IS_GEN9(dev_priv) && !IS_LP(dev_priv))
2766
2767 #define ENGINE_MASK(id) BIT(id)
2768 #define RENDER_RING ENGINE_MASK(RCS)
2769 #define BSD_RING ENGINE_MASK(VCS)
2770 #define BLT_RING ENGINE_MASK(BCS)
2771 #define VEBOX_RING ENGINE_MASK(VECS)
2772 #define BSD2_RING ENGINE_MASK(VCS2)
2773 #define ALL_ENGINES (~0)
2774
2775 #define HAS_ENGINE(dev_priv, id) \
2776 (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
2777
2778 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
2779 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
2780 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
2781 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
2782
2783 #define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc)
2784 #define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop)
2785 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED))
2786 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \
2787 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
2788
2789 #define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical)
2790
2791 #define HAS_HW_CONTEXTS(dev_priv) ((dev_priv)->info.has_hw_contexts)
2792 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
2793 ((dev_priv)->info.has_logical_ring_contexts)
2794 #define USES_PPGTT(dev_priv) (i915.enable_ppgtt)
2795 #define USES_FULL_PPGTT(dev_priv) (i915.enable_ppgtt >= 2)
2796 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915.enable_ppgtt == 3)
2797
2798 #define HAS_OVERLAY(dev_priv) ((dev_priv)->info.has_overlay)
2799 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
2800 ((dev_priv)->info.overlay_needs_physical)
2801
2802 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2803 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv))
2804
2805 /* WaRsDisableCoarsePowerGating:skl,bxt */
2806 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2807 (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) || \
2808 IS_SKL_GT3(dev_priv) || \
2809 IS_SKL_GT4(dev_priv))
2810
2811 /*
2812 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2813 * even when in MSI mode. This results in spurious interrupt warnings if the
2814 * legacy irq no. is shared with another device. The kernel then disables that
2815 * interrupt source and so prevents the other device from working properly.
2816 */
2817 #define HAS_AUX_IRQ(dev_priv) ((dev_priv)->info.gen >= 5)
2818 #define HAS_GMBUS_IRQ(dev_priv) ((dev_priv)->info.has_gmbus_irq)
2819
2820 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2821 * rows, which changed the alignment requirements and fence programming.
2822 */
2823 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
2824 !(IS_I915G(dev_priv) || \
2825 IS_I915GM(dev_priv)))
2826 #define SUPPORTS_TV(dev_priv) ((dev_priv)->info.supports_tv)
2827 #define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.has_hotplug)
2828
2829 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2)
2830 #define HAS_PIPE_CXSR(dev_priv) ((dev_priv)->info.has_pipe_cxsr)
2831 #define HAS_FBC(dev_priv) ((dev_priv)->info.has_fbc)
2832
2833 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
2834
2835 #define HAS_DP_MST(dev_priv) ((dev_priv)->info.has_dp_mst)
2836
2837 #define HAS_DDI(dev_priv) ((dev_priv)->info.has_ddi)
2838 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
2839 #define HAS_PSR(dev_priv) ((dev_priv)->info.has_psr)
2840 #define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6)
2841 #define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p)
2842
2843 #define HAS_CSR(dev_priv) ((dev_priv)->info.has_csr)
2844
2845 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
2846 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
2847
2848 /*
2849 * For now, anything with a GuC requires uCode loading, and then supports
2850 * command submission once loaded. But these are logically independent
2851 * properties, so we have separate macros to test them.
2852 */
2853 #define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc)
2854 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
2855 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv))
2856 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
2857
2858 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
2859
2860 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu)
2861
2862 #define INTEL_PCH_DEVICE_ID_MASK 0xff00
2863 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
2864 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
2865 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
2866 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
2867 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
2868 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
2869 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
2870 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA200
2871 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
2872 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
2873 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
2874
2875 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
2876 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
2877 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
2878 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
2879 #define HAS_PCH_LPT_LP(dev_priv) \
2880 ((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
2881 #define HAS_PCH_LPT_H(dev_priv) \
2882 ((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE)
2883 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
2884 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
2885 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
2886 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
2887
2888 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
2889
2890 #define HAS_LSPCON(dev_priv) (IS_GEN9(dev_priv))
2891
2892 /* DPF == dynamic parity feature */
2893 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
2894 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
2895 2 : HAS_L3_DPF(dev_priv))
2896
2897 #define GT_FREQUENCY_MULTIPLIER 50
2898 #define GEN9_FREQ_SCALER 3
2899
2900 #define HAS_DECOUPLED_MMIO(dev_priv) (INTEL_INFO(dev_priv)->has_decoupled_mmio)
2901
2902 #include "i915_trace.h"
2903
2904 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2905 {
2906 #ifdef CONFIG_INTEL_IOMMU
2907 if (INTEL_GEN(dev_priv) >= 6 && intel_iommu_gfx_mapped)
2908 return true;
2909 #endif
2910 return false;
2911 }
2912
2913 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
2914 int enable_ppgtt);
2915
2916 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
2917
2918 /* i915_drv.c */
2919 void __printf(3, 4)
2920 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2921 const char *fmt, ...);
2922
2923 #define i915_report_error(dev_priv, fmt, ...) \
2924 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2925
2926 #ifdef CONFIG_COMPAT
2927 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2928 unsigned long arg);
2929 #else
2930 #define i915_compat_ioctl NULL
2931 #endif
2932 extern const struct dev_pm_ops i915_pm_ops;
2933
2934 extern int i915_driver_load(struct pci_dev *pdev,
2935 const struct pci_device_id *ent);
2936 extern void i915_driver_unload(struct drm_device *dev);
2937 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
2938 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
2939 extern void i915_reset(struct drm_i915_private *dev_priv);
2940 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
2941 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2942 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
2943 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2944 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2945 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2946 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2947 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2948
2949 int intel_engines_init_early(struct drm_i915_private *dev_priv);
2950 int intel_engines_init(struct drm_i915_private *dev_priv);
2951
2952 /* intel_hotplug.c */
2953 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2954 u32 pin_mask, u32 long_mask);
2955 void intel_hpd_init(struct drm_i915_private *dev_priv);
2956 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2957 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2958 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
2959 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2960 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2961
2962 /* i915_irq.c */
2963 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2964 {
2965 unsigned long delay;
2966
2967 if (unlikely(!i915.enable_hangcheck))
2968 return;
2969
2970 /* Don't continually defer the hangcheck so that it is always run at
2971 * least once after work has been scheduled on any ring. Otherwise,
2972 * we will ignore a hung ring if a second ring is kept busy.
2973 */
2974
2975 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2976 queue_delayed_work(system_long_wq,
2977 &dev_priv->gpu_error.hangcheck_work, delay);
2978 }
2979
2980 __printf(3, 4)
2981 void i915_handle_error(struct drm_i915_private *dev_priv,
2982 u32 engine_mask,
2983 const char *fmt, ...);
2984
2985 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2986 int intel_irq_install(struct drm_i915_private *dev_priv);
2987 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2988
2989 extern void intel_uncore_sanitize(struct drm_i915_private *dev_priv);
2990 extern void intel_uncore_early_sanitize(struct drm_i915_private *dev_priv,
2991 bool restore_forcewake);
2992 extern void intel_uncore_init(struct drm_i915_private *dev_priv);
2993 extern bool intel_uncore_unclaimed_mmio(struct drm_i915_private *dev_priv);
2994 extern bool intel_uncore_arm_unclaimed_mmio_detection(struct drm_i915_private *dev_priv);
2995 extern void intel_uncore_fini(struct drm_i915_private *dev_priv);
2996 extern void intel_uncore_forcewake_reset(struct drm_i915_private *dev_priv,
2997 bool restore);
2998 const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id);
2999 void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv,
3000 enum forcewake_domains domains);
3001 void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv,
3002 enum forcewake_domains domains);
3003 /* Like above but the caller must manage the uncore.lock itself.
3004 * Must be used with I915_READ_FW and friends.
3005 */
3006 void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv,
3007 enum forcewake_domains domains);
3008 void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv,
3009 enum forcewake_domains domains);
3010 u64 intel_uncore_edram_size(struct drm_i915_private *dev_priv);
3011
3012 void assert_forcewakes_inactive(struct drm_i915_private *dev_priv);
3013
3014 int intel_wait_for_register(struct drm_i915_private *dev_priv,
3015 i915_reg_t reg,
3016 const u32 mask,
3017 const u32 value,
3018 const unsigned long timeout_ms);
3019 int intel_wait_for_register_fw(struct drm_i915_private *dev_priv,
3020 i915_reg_t reg,
3021 const u32 mask,
3022 const u32 value,
3023 const unsigned long timeout_ms);
3024
3025 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3026 {
3027 return dev_priv->gvt;
3028 }
3029
3030 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3031 {
3032 return dev_priv->vgpu.active;
3033 }
3034
3035 void
3036 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3037 u32 status_mask);
3038
3039 void
3040 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3041 u32 status_mask);
3042
3043 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3044 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3045 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3046 uint32_t mask,
3047 uint32_t bits);
3048 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3049 uint32_t interrupt_mask,
3050 uint32_t enabled_irq_mask);
3051 static inline void
3052 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3053 {
3054 ilk_update_display_irq(dev_priv, bits, bits);
3055 }
3056 static inline void
3057 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3058 {
3059 ilk_update_display_irq(dev_priv, bits, 0);
3060 }
3061 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3062 enum pipe pipe,
3063 uint32_t interrupt_mask,
3064 uint32_t enabled_irq_mask);
3065 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3066 enum pipe pipe, uint32_t bits)
3067 {
3068 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3069 }
3070 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3071 enum pipe pipe, uint32_t bits)
3072 {
3073 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3074 }
3075 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3076 uint32_t interrupt_mask,
3077 uint32_t enabled_irq_mask);
3078 static inline void
3079 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3080 {
3081 ibx_display_interrupt_update(dev_priv, bits, bits);
3082 }
3083 static inline void
3084 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3085 {
3086 ibx_display_interrupt_update(dev_priv, bits, 0);
3087 }
3088
3089 /* i915_gem.c */
3090 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3091 struct drm_file *file_priv);
3092 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3093 struct drm_file *file_priv);
3094 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3095 struct drm_file *file_priv);
3096 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3097 struct drm_file *file_priv);
3098 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3099 struct drm_file *file_priv);
3100 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3101 struct drm_file *file_priv);
3102 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3103 struct drm_file *file_priv);
3104 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3105 struct drm_file *file_priv);
3106 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3107 struct drm_file *file_priv);
3108 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3109 struct drm_file *file_priv);
3110 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3111 struct drm_file *file);
3112 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3113 struct drm_file *file);
3114 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3115 struct drm_file *file_priv);
3116 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3117 struct drm_file *file_priv);
3118 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
3119 struct drm_file *file_priv);
3120 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
3121 struct drm_file *file_priv);
3122 void i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3123 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3124 struct drm_file *file);
3125 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3126 struct drm_file *file_priv);
3127 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3128 struct drm_file *file_priv);
3129 void i915_gem_sanitize(struct drm_i915_private *i915);
3130 int i915_gem_load_init(struct drm_i915_private *dev_priv);
3131 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv);
3132 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3133 int i915_gem_freeze(struct drm_i915_private *dev_priv);
3134 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3135
3136 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
3137 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3138 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3139 const struct drm_i915_gem_object_ops *ops);
3140 struct drm_i915_gem_object *
3141 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
3142 struct drm_i915_gem_object *
3143 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
3144 const void *data, size_t size);
3145 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3146 void i915_gem_free_object(struct drm_gem_object *obj);
3147
3148 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
3149 {
3150 /* A single pass should suffice to release all the freed objects (along
3151 * most call paths) , but be a little more paranoid in that freeing
3152 * the objects does take a little amount of time, during which the rcu
3153 * callbacks could have added new objects into the freed list, and
3154 * armed the work again.
3155 */
3156 do {
3157 rcu_barrier();
3158 } while (flush_work(&i915->mm.free_work));
3159 }
3160
3161 struct i915_vma * __must_check
3162 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3163 const struct i915_ggtt_view *view,
3164 u64 size,
3165 u64 alignment,
3166 u64 flags);
3167
3168 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3169 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3170
3171 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3172
3173 static inline int __sg_page_count(const struct scatterlist *sg)
3174 {
3175 return sg->length >> PAGE_SHIFT;
3176 }
3177
3178 struct scatterlist *
3179 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3180 unsigned int n, unsigned int *offset);
3181
3182 struct page *
3183 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3184 unsigned int n);
3185
3186 struct page *
3187 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3188 unsigned int n);
3189
3190 dma_addr_t
3191 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3192 unsigned long n);
3193
3194 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3195 struct sg_table *pages);
3196 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3197
3198 static inline int __must_check
3199 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3200 {
3201 might_lock(&obj->mm.lock);
3202
3203 if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3204 return 0;
3205
3206 return __i915_gem_object_get_pages(obj);
3207 }
3208
3209 static inline void
3210 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3211 {
3212 GEM_BUG_ON(!obj->mm.pages);
3213
3214 atomic_inc(&obj->mm.pages_pin_count);
3215 }
3216
3217 static inline bool
3218 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3219 {
3220 return atomic_read(&obj->mm.pages_pin_count);
3221 }
3222
3223 static inline void
3224 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3225 {
3226 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3227 GEM_BUG_ON(!obj->mm.pages);
3228
3229 atomic_dec(&obj->mm.pages_pin_count);
3230 }
3231
3232 static inline void
3233 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3234 {
3235 __i915_gem_object_unpin_pages(obj);
3236 }
3237
3238 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3239 I915_MM_NORMAL = 0,
3240 I915_MM_SHRINKER
3241 };
3242
3243 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3244 enum i915_mm_subclass subclass);
3245 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3246
3247 enum i915_map_type {
3248 I915_MAP_WB = 0,
3249 I915_MAP_WC,
3250 };
3251
3252 /**
3253 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3254 * @obj: the object to map into kernel address space
3255 * @type: the type of mapping, used to select pgprot_t
3256 *
3257 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3258 * pages and then returns a contiguous mapping of the backing storage into
3259 * the kernel address space. Based on the @type of mapping, the PTE will be
3260 * set to either WriteBack or WriteCombine (via pgprot_t).
3261 *
3262 * The caller is responsible for calling i915_gem_object_unpin_map() when the
3263 * mapping is no longer required.
3264 *
3265 * Returns the pointer through which to access the mapped object, or an
3266 * ERR_PTR() on error.
3267 */
3268 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3269 enum i915_map_type type);
3270
3271 /**
3272 * i915_gem_object_unpin_map - releases an earlier mapping
3273 * @obj: the object to unmap
3274 *
3275 * After pinning the object and mapping its pages, once you are finished
3276 * with your access, call i915_gem_object_unpin_map() to release the pin
3277 * upon the mapping. Once the pin count reaches zero, that mapping may be
3278 * removed.
3279 */
3280 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3281 {
3282 i915_gem_object_unpin_pages(obj);
3283 }
3284
3285 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3286 unsigned int *needs_clflush);
3287 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3288 unsigned int *needs_clflush);
3289 #define CLFLUSH_BEFORE 0x1
3290 #define CLFLUSH_AFTER 0x2
3291 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER)
3292
3293 static inline void
3294 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3295 {
3296 i915_gem_object_unpin_pages(obj);
3297 }
3298
3299 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3300 void i915_vma_move_to_active(struct i915_vma *vma,
3301 struct drm_i915_gem_request *req,
3302 unsigned int flags);
3303 int i915_gem_dumb_create(struct drm_file *file_priv,
3304 struct drm_device *dev,
3305 struct drm_mode_create_dumb *args);
3306 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3307 uint32_t handle, uint64_t *offset);
3308 int i915_gem_mmap_gtt_version(void);
3309
3310 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3311 struct drm_i915_gem_object *new,
3312 unsigned frontbuffer_bits);
3313
3314 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3315
3316 struct drm_i915_gem_request *
3317 i915_gem_find_active_request(struct intel_engine_cs *engine);
3318
3319 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3320
3321 static inline bool i915_reset_in_progress(struct i915_gpu_error *error)
3322 {
3323 return unlikely(test_bit(I915_RESET_IN_PROGRESS, &error->flags));
3324 }
3325
3326 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3327 {
3328 return unlikely(test_bit(I915_WEDGED, &error->flags));
3329 }
3330
3331 static inline bool i915_reset_in_progress_or_wedged(struct i915_gpu_error *error)
3332 {
3333 return i915_reset_in_progress(error) | i915_terminally_wedged(error);
3334 }
3335
3336 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3337 {
3338 return READ_ONCE(error->reset_count);
3339 }
3340
3341 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3342 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3343 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3344 void i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force);
3345 void i915_gem_init_mmio(struct drm_i915_private *i915);
3346 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3347 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3348 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3349 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3350 int __must_check i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3351 unsigned int flags);
3352 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3353 void i915_gem_resume(struct drm_i915_private *dev_priv);
3354 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf);
3355 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3356 unsigned int flags,
3357 long timeout,
3358 struct intel_rps_client *rps);
3359 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3360 unsigned int flags,
3361 int priority);
3362 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3363
3364 int __must_check
3365 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj,
3366 bool write);
3367 int __must_check
3368 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3369 struct i915_vma * __must_check
3370 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3371 u32 alignment,
3372 const struct i915_ggtt_view *view);
3373 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3374 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3375 int align);
3376 int i915_gem_open(struct drm_device *dev, struct drm_file *file);
3377 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3378
3379 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3380 enum i915_cache_level cache_level);
3381
3382 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3383 struct dma_buf *dma_buf);
3384
3385 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3386 struct drm_gem_object *gem_obj, int flags);
3387
3388 static inline struct i915_hw_ppgtt *
3389 i915_vm_to_ppgtt(struct i915_address_space *vm)
3390 {
3391 return container_of(vm, struct i915_hw_ppgtt, base);
3392 }
3393
3394 /* i915_gem_fence_reg.c */
3395 int __must_check i915_vma_get_fence(struct i915_vma *vma);
3396 int __must_check i915_vma_put_fence(struct i915_vma *vma);
3397
3398 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3399 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3400
3401 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3402 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3403 struct sg_table *pages);
3404 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3405 struct sg_table *pages);
3406
3407 static inline struct i915_gem_context *
3408 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3409 {
3410 struct i915_gem_context *ctx;
3411
3412 lockdep_assert_held(&file_priv->dev_priv->drm.struct_mutex);
3413
3414 ctx = idr_find(&file_priv->context_idr, id);
3415 if (!ctx)
3416 return ERR_PTR(-ENOENT);
3417
3418 return ctx;
3419 }
3420
3421 static inline struct i915_gem_context *
3422 i915_gem_context_get(struct i915_gem_context *ctx)
3423 {
3424 kref_get(&ctx->ref);
3425 return ctx;
3426 }
3427
3428 static inline void i915_gem_context_put(struct i915_gem_context *ctx)
3429 {
3430 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
3431 kref_put(&ctx->ref, i915_gem_context_free);
3432 }
3433
3434 static inline void i915_gem_context_put_unlocked(struct i915_gem_context *ctx)
3435 {
3436 struct mutex *lock = &ctx->i915->drm.struct_mutex;
3437
3438 if (kref_put_mutex(&ctx->ref, i915_gem_context_free, lock))
3439 mutex_unlock(lock);
3440 }
3441
3442 static inline struct intel_timeline *
3443 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx,
3444 struct intel_engine_cs *engine)
3445 {
3446 struct i915_address_space *vm;
3447
3448 vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base;
3449 return &vm->timeline.engine[engine->id];
3450 }
3451
3452 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3453 struct drm_file *file);
3454
3455 /* i915_gem_evict.c */
3456 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3457 u64 min_size, u64 alignment,
3458 unsigned cache_level,
3459 u64 start, u64 end,
3460 unsigned flags);
3461 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3462 struct drm_mm_node *node,
3463 unsigned int flags);
3464 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle);
3465
3466 /* belongs in i915_gem_gtt.h */
3467 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3468 {
3469 wmb();
3470 if (INTEL_GEN(dev_priv) < 6)
3471 intel_gtt_chipset_flush();
3472 }
3473
3474 /* i915_gem_stolen.c */
3475 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3476 struct drm_mm_node *node, u64 size,
3477 unsigned alignment);
3478 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3479 struct drm_mm_node *node, u64 size,
3480 unsigned alignment, u64 start,
3481 u64 end);
3482 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3483 struct drm_mm_node *node);
3484 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3485 void i915_gem_cleanup_stolen(struct drm_device *dev);
3486 struct drm_i915_gem_object *
3487 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size);
3488 struct drm_i915_gem_object *
3489 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3490 u32 stolen_offset,
3491 u32 gtt_offset,
3492 u32 size);
3493
3494 /* i915_gem_internal.c */
3495 struct drm_i915_gem_object *
3496 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3497 phys_addr_t size);
3498
3499 /* i915_gem_shrinker.c */
3500 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3501 unsigned long target,
3502 unsigned flags);
3503 #define I915_SHRINK_PURGEABLE 0x1
3504 #define I915_SHRINK_UNBOUND 0x2
3505 #define I915_SHRINK_BOUND 0x4
3506 #define I915_SHRINK_ACTIVE 0x8
3507 #define I915_SHRINK_VMAPS 0x10
3508 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3509 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3510 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3511
3512
3513 /* i915_gem_tiling.c */
3514 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3515 {
3516 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3517
3518 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3519 i915_gem_object_is_tiled(obj);
3520 }
3521
3522 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3523 unsigned int tiling, unsigned int stride);
3524 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3525 unsigned int tiling, unsigned int stride);
3526
3527 /* i915_debugfs.c */
3528 #ifdef CONFIG_DEBUG_FS
3529 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3530 void i915_debugfs_unregister(struct drm_i915_private *dev_priv);
3531 int i915_debugfs_connector_add(struct drm_connector *connector);
3532 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3533 #else
3534 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3535 static inline void i915_debugfs_unregister(struct drm_i915_private *dev_priv) {}
3536 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3537 { return 0; }
3538 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3539 #endif
3540
3541 /* i915_gpu_error.c */
3542 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3543
3544 __printf(2, 3)
3545 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3546 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3547 const struct i915_error_state_file_priv *error);
3548 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3549 struct drm_i915_private *i915,
3550 size_t count, loff_t pos);
3551 static inline void i915_error_state_buf_release(
3552 struct drm_i915_error_state_buf *eb)
3553 {
3554 kfree(eb->buf);
3555 }
3556 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3557 u32 engine_mask,
3558 const char *error_msg);
3559 void i915_error_state_get(struct drm_device *dev,
3560 struct i915_error_state_file_priv *error_priv);
3561 void i915_error_state_put(struct i915_error_state_file_priv *error_priv);
3562 void i915_destroy_error_state(struct drm_i915_private *dev_priv);
3563
3564 #else
3565
3566 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3567 u32 engine_mask,
3568 const char *error_msg)
3569 {
3570 }
3571
3572 static inline void i915_destroy_error_state(struct drm_i915_private *dev_priv)
3573 {
3574 }
3575
3576 #endif
3577
3578 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3579
3580 /* i915_cmd_parser.c */
3581 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3582 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3583 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3584 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3585 struct drm_i915_gem_object *batch_obj,
3586 struct drm_i915_gem_object *shadow_batch_obj,
3587 u32 batch_start_offset,
3588 u32 batch_len,
3589 bool is_master);
3590
3591 /* i915_perf.c */
3592 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3593 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3594 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3595 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3596
3597 /* i915_suspend.c */
3598 extern int i915_save_state(struct drm_i915_private *dev_priv);
3599 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3600
3601 /* i915_sysfs.c */
3602 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3603 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3604
3605 /* intel_i2c.c */
3606 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3607 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3608 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3609 unsigned int pin);
3610
3611 extern struct i2c_adapter *
3612 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3613 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3614 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3615 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3616 {
3617 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3618 }
3619 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3620
3621 /* intel_bios.c */
3622 int intel_bios_init(struct drm_i915_private *dev_priv);
3623 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3624 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3625 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3626 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3627 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3628 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3629 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3630 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3631 enum port port);
3632 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3633 enum port port);
3634
3635
3636 /* intel_opregion.c */
3637 #ifdef CONFIG_ACPI
3638 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3639 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3640 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3641 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3642 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3643 bool enable);
3644 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3645 pci_power_t state);
3646 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3647 #else
3648 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3649 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3650 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3651 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3652 {
3653 }
3654 static inline int
3655 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3656 {
3657 return 0;
3658 }
3659 static inline int
3660 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3661 {
3662 return 0;
3663 }
3664 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3665 {
3666 return -ENODEV;
3667 }
3668 #endif
3669
3670 /* intel_acpi.c */
3671 #ifdef CONFIG_ACPI
3672 extern void intel_register_dsm_handler(void);
3673 extern void intel_unregister_dsm_handler(void);
3674 #else
3675 static inline void intel_register_dsm_handler(void) { return; }
3676 static inline void intel_unregister_dsm_handler(void) { return; }
3677 #endif /* CONFIG_ACPI */
3678
3679 /* intel_device_info.c */
3680 static inline struct intel_device_info *
3681 mkwrite_device_info(struct drm_i915_private *dev_priv)
3682 {
3683 return (struct intel_device_info *)&dev_priv->info;
3684 }
3685
3686 const char *intel_platform_name(enum intel_platform platform);
3687 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
3688 void intel_device_info_dump(struct drm_i915_private *dev_priv);
3689
3690 /* modesetting */
3691 extern void intel_modeset_init_hw(struct drm_device *dev);
3692 extern int intel_modeset_init(struct drm_device *dev);
3693 extern void intel_modeset_gem_init(struct drm_device *dev);
3694 extern void intel_modeset_cleanup(struct drm_device *dev);
3695 extern int intel_connector_register(struct drm_connector *);
3696 extern void intel_connector_unregister(struct drm_connector *);
3697 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3698 bool state);
3699 extern void intel_display_resume(struct drm_device *dev);
3700 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3701 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3702 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3703 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3704 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3705 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3706 bool enable);
3707
3708 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3709 struct drm_file *file);
3710
3711 /* overlay */
3712 extern struct intel_overlay_error_state *
3713 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3714 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3715 struct intel_overlay_error_state *error);
3716
3717 extern struct intel_display_error_state *
3718 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3719 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3720 struct drm_i915_private *dev_priv,
3721 struct intel_display_error_state *error);
3722
3723 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3724 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3725 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3726 u32 reply_mask, u32 reply, int timeout_base_ms);
3727
3728 /* intel_sideband.c */
3729 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3730 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3731 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3732 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3733 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3734 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3735 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3736 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3737 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3738 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3739 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3740 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3741 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3742 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3743 enum intel_sbi_destination destination);
3744 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3745 enum intel_sbi_destination destination);
3746 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3747 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3748
3749 /* intel_dpio_phy.c */
3750 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
3751 enum dpio_phy *phy, enum dpio_channel *ch);
3752 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
3753 enum port port, u32 margin, u32 scale,
3754 u32 enable, u32 deemphasis);
3755 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3756 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3757 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
3758 enum dpio_phy phy);
3759 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
3760 enum dpio_phy phy);
3761 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
3762 uint8_t lane_count);
3763 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
3764 uint8_t lane_lat_optim_mask);
3765 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
3766
3767 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3768 u32 deemph_reg_value, u32 margin_reg_value,
3769 bool uniq_trans_scale);
3770 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3771 bool reset);
3772 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
3773 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3774 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3775 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
3776
3777 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3778 u32 demph_reg_value, u32 preemph_reg_value,
3779 u32 uniqtranscale_reg_value, u32 tx3_demph);
3780 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
3781 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3782 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
3783
3784 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3785 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3786
3787 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3788 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3789
3790 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3791 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3792 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3793 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3794
3795 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3796 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3797 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3798 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3799
3800 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3801 * will be implemented using 2 32-bit writes in an arbitrary order with
3802 * an arbitrary delay between them. This can cause the hardware to
3803 * act upon the intermediate value, possibly leading to corruption and
3804 * machine death. For this reason we do not support I915_WRITE64, or
3805 * dev_priv->uncore.funcs.mmio_writeq.
3806 *
3807 * When reading a 64-bit value as two 32-bit values, the delay may cause
3808 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
3809 * occasionally a 64-bit register does not actualy support a full readq
3810 * and must be read using two 32-bit reads.
3811 *
3812 * You have been warned.
3813 */
3814 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3815
3816 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
3817 u32 upper, lower, old_upper, loop = 0; \
3818 upper = I915_READ(upper_reg); \
3819 do { \
3820 old_upper = upper; \
3821 lower = I915_READ(lower_reg); \
3822 upper = I915_READ(upper_reg); \
3823 } while (upper != old_upper && loop++ < 2); \
3824 (u64)upper << 32 | lower; })
3825
3826 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
3827 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
3828
3829 #define __raw_read(x, s) \
3830 static inline uint##x##_t __raw_i915_read##x(struct drm_i915_private *dev_priv, \
3831 i915_reg_t reg) \
3832 { \
3833 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3834 }
3835
3836 #define __raw_write(x, s) \
3837 static inline void __raw_i915_write##x(struct drm_i915_private *dev_priv, \
3838 i915_reg_t reg, uint##x##_t val) \
3839 { \
3840 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3841 }
3842 __raw_read(8, b)
3843 __raw_read(16, w)
3844 __raw_read(32, l)
3845 __raw_read(64, q)
3846
3847 __raw_write(8, b)
3848 __raw_write(16, w)
3849 __raw_write(32, l)
3850 __raw_write(64, q)
3851
3852 #undef __raw_read
3853 #undef __raw_write
3854
3855 /* These are untraced mmio-accessors that are only valid to be used inside
3856 * critical sections, such as inside IRQ handlers, where forcewake is explicitly
3857 * controlled.
3858 *
3859 * Think twice, and think again, before using these.
3860 *
3861 * As an example, these accessors can possibly be used between:
3862 *
3863 * spin_lock_irq(&dev_priv->uncore.lock);
3864 * intel_uncore_forcewake_get__locked();
3865 *
3866 * and
3867 *
3868 * intel_uncore_forcewake_put__locked();
3869 * spin_unlock_irq(&dev_priv->uncore.lock);
3870 *
3871 *
3872 * Note: some registers may not need forcewake held, so
3873 * intel_uncore_forcewake_{get,put} can be omitted, see
3874 * intel_uncore_forcewake_for_reg().
3875 *
3876 * Certain architectures will die if the same cacheline is concurrently accessed
3877 * by different clients (e.g. on Ivybridge). Access to registers should
3878 * therefore generally be serialised, by either the dev_priv->uncore.lock or
3879 * a more localised lock guarding all access to that bank of registers.
3880 */
3881 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3882 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3883 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3884 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3885
3886 /* "Broadcast RGB" property */
3887 #define INTEL_BROADCAST_RGB_AUTO 0
3888 #define INTEL_BROADCAST_RGB_FULL 1
3889 #define INTEL_BROADCAST_RGB_LIMITED 2
3890
3891 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
3892 {
3893 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3894 return VLV_VGACNTRL;
3895 else if (INTEL_GEN(dev_priv) >= 5)
3896 return CPU_VGACNTRL;
3897 else
3898 return VGACNTRL;
3899 }
3900
3901 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3902 {
3903 unsigned long j = msecs_to_jiffies(m);
3904
3905 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3906 }
3907
3908 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3909 {
3910 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3911 }
3912
3913 static inline unsigned long
3914 timespec_to_jiffies_timeout(const struct timespec *value)
3915 {
3916 unsigned long j = timespec_to_jiffies(value);
3917
3918 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3919 }
3920
3921 /*
3922 * If you need to wait X milliseconds between events A and B, but event B
3923 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3924 * when event A happened, then just before event B you call this function and
3925 * pass the timestamp as the first argument, and X as the second argument.
3926 */
3927 static inline void
3928 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3929 {
3930 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3931
3932 /*
3933 * Don't re-read the value of "jiffies" every time since it may change
3934 * behind our back and break the math.
3935 */
3936 tmp_jiffies = jiffies;
3937 target_jiffies = timestamp_jiffies +
3938 msecs_to_jiffies_timeout(to_wait_ms);
3939
3940 if (time_after(target_jiffies, tmp_jiffies)) {
3941 remaining_jiffies = target_jiffies - tmp_jiffies;
3942 while (remaining_jiffies)
3943 remaining_jiffies =
3944 schedule_timeout_uninterruptible(remaining_jiffies);
3945 }
3946 }
3947
3948 static inline bool
3949 __i915_request_irq_complete(struct drm_i915_gem_request *req)
3950 {
3951 struct intel_engine_cs *engine = req->engine;
3952
3953 /* Before we do the heavier coherent read of the seqno,
3954 * check the value (hopefully) in the CPU cacheline.
3955 */
3956 if (__i915_gem_request_completed(req))
3957 return true;
3958
3959 /* Ensure our read of the seqno is coherent so that we
3960 * do not "miss an interrupt" (i.e. if this is the last
3961 * request and the seqno write from the GPU is not visible
3962 * by the time the interrupt fires, we will see that the
3963 * request is incomplete and go back to sleep awaiting
3964 * another interrupt that will never come.)
3965 *
3966 * Strictly, we only need to do this once after an interrupt,
3967 * but it is easier and safer to do it every time the waiter
3968 * is woken.
3969 */
3970 if (engine->irq_seqno_barrier &&
3971 rcu_access_pointer(engine->breadcrumbs.irq_seqno_bh) == current &&
3972 test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
3973 struct task_struct *tsk;
3974
3975 /* The ordering of irq_posted versus applying the barrier
3976 * is crucial. The clearing of the current irq_posted must
3977 * be visible before we perform the barrier operation,
3978 * such that if a subsequent interrupt arrives, irq_posted
3979 * is reasserted and our task rewoken (which causes us to
3980 * do another __i915_request_irq_complete() immediately
3981 * and reapply the barrier). Conversely, if the clear
3982 * occurs after the barrier, then an interrupt that arrived
3983 * whilst we waited on the barrier would not trigger a
3984 * barrier on the next pass, and the read may not see the
3985 * seqno update.
3986 */
3987 engine->irq_seqno_barrier(engine);
3988
3989 /* If we consume the irq, but we are no longer the bottom-half,
3990 * the real bottom-half may not have serialised their own
3991 * seqno check with the irq-barrier (i.e. may have inspected
3992 * the seqno before we believe it coherent since they see
3993 * irq_posted == false but we are still running).
3994 */
3995 rcu_read_lock();
3996 tsk = rcu_dereference(engine->breadcrumbs.irq_seqno_bh);
3997 if (tsk && tsk != current)
3998 /* Note that if the bottom-half is changed as we
3999 * are sending the wake-up, the new bottom-half will
4000 * be woken by whomever made the change. We only have
4001 * to worry about when we steal the irq-posted for
4002 * ourself.
4003 */
4004 wake_up_process(tsk);
4005 rcu_read_unlock();
4006
4007 if (__i915_gem_request_completed(req))
4008 return true;
4009 }
4010
4011 return false;
4012 }
4013
4014 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
4015 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
4016
4017 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
4018 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
4019 * perform the operation. To check beforehand, pass in the parameters to
4020 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
4021 * you only need to pass in the minor offsets, page-aligned pointers are
4022 * always valid.
4023 *
4024 * For just checking for SSE4.1, in the foreknowledge that the future use
4025 * will be correctly aligned, just use i915_has_memcpy_from_wc().
4026 */
4027 #define i915_can_memcpy_from_wc(dst, src, len) \
4028 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
4029
4030 #define i915_has_memcpy_from_wc() \
4031 i915_memcpy_from_wc(NULL, NULL, 0)
4032
4033 /* i915_mm.c */
4034 int remap_io_mapping(struct vm_area_struct *vma,
4035 unsigned long addr, unsigned long pfn, unsigned long size,
4036 struct io_mapping *iomap);
4037
4038 #endif