]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.h
drm/i915: Store port enum in intel_encoder
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hashtable.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/shmem_fs.h>
45
46 #include <drm/drmP.h>
47 #include <drm/intel-gtt.h>
48 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
49 #include <drm/drm_gem.h>
50 #include <drm/drm_auth.h>
51
52 #include "i915_params.h"
53 #include "i915_reg.h"
54
55 #include "intel_bios.h"
56 #include "intel_dpll_mgr.h"
57 #include "intel_guc.h"
58 #include "intel_lrc.h"
59 #include "intel_ringbuffer.h"
60
61 #include "i915_gem.h"
62 #include "i915_gem_gtt.h"
63 #include "i915_gem_render_state.h"
64 #include "i915_gem_request.h"
65
66 #include "intel_gvt.h"
67
68 /* General customization:
69 */
70
71 #define DRIVER_NAME "i915"
72 #define DRIVER_DESC "Intel Graphics"
73 #define DRIVER_DATE "20160919"
74
75 #undef WARN_ON
76 /* Many gcc seem to no see through this and fall over :( */
77 #if 0
78 #define WARN_ON(x) ({ \
79 bool __i915_warn_cond = (x); \
80 if (__builtin_constant_p(__i915_warn_cond)) \
81 BUILD_BUG_ON(__i915_warn_cond); \
82 WARN(__i915_warn_cond, "WARN_ON(" #x ")"); })
83 #else
84 #define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
85 #endif
86
87 #undef WARN_ON_ONCE
88 #define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")")
89
90 #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \
91 (long) (x), __func__);
92
93 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
94 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
95 * which may not necessarily be a user visible problem. This will either
96 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
97 * enable distros and users to tailor their preferred amount of i915 abrt
98 * spam.
99 */
100 #define I915_STATE_WARN(condition, format...) ({ \
101 int __ret_warn_on = !!(condition); \
102 if (unlikely(__ret_warn_on)) \
103 if (!WARN(i915.verbose_state_checks, format)) \
104 DRM_ERROR(format); \
105 unlikely(__ret_warn_on); \
106 })
107
108 #define I915_STATE_WARN_ON(x) \
109 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
110
111 bool __i915_inject_load_failure(const char *func, int line);
112 #define i915_inject_load_failure() \
113 __i915_inject_load_failure(__func__, __LINE__)
114
115 static inline const char *yesno(bool v)
116 {
117 return v ? "yes" : "no";
118 }
119
120 static inline const char *onoff(bool v)
121 {
122 return v ? "on" : "off";
123 }
124
125 enum pipe {
126 INVALID_PIPE = -1,
127 PIPE_A = 0,
128 PIPE_B,
129 PIPE_C,
130 _PIPE_EDP,
131 I915_MAX_PIPES = _PIPE_EDP
132 };
133 #define pipe_name(p) ((p) + 'A')
134
135 enum transcoder {
136 TRANSCODER_A = 0,
137 TRANSCODER_B,
138 TRANSCODER_C,
139 TRANSCODER_EDP,
140 TRANSCODER_DSI_A,
141 TRANSCODER_DSI_C,
142 I915_MAX_TRANSCODERS
143 };
144
145 static inline const char *transcoder_name(enum transcoder transcoder)
146 {
147 switch (transcoder) {
148 case TRANSCODER_A:
149 return "A";
150 case TRANSCODER_B:
151 return "B";
152 case TRANSCODER_C:
153 return "C";
154 case TRANSCODER_EDP:
155 return "EDP";
156 case TRANSCODER_DSI_A:
157 return "DSI A";
158 case TRANSCODER_DSI_C:
159 return "DSI C";
160 default:
161 return "<invalid>";
162 }
163 }
164
165 static inline bool transcoder_is_dsi(enum transcoder transcoder)
166 {
167 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
168 }
169
170 /*
171 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
172 * number of planes per CRTC. Not all platforms really have this many planes,
173 * which means some arrays of size I915_MAX_PLANES may have unused entries
174 * between the topmost sprite plane and the cursor plane.
175 */
176 enum plane {
177 PLANE_A = 0,
178 PLANE_B,
179 PLANE_C,
180 PLANE_CURSOR,
181 I915_MAX_PLANES,
182 };
183 #define plane_name(p) ((p) + 'A')
184
185 #define sprite_name(p, s) ((p) * INTEL_INFO(dev)->num_sprites[(p)] + (s) + 'A')
186
187 enum port {
188 PORT_NONE = -1,
189 PORT_A = 0,
190 PORT_B,
191 PORT_C,
192 PORT_D,
193 PORT_E,
194 I915_MAX_PORTS
195 };
196 #define port_name(p) ((p) + 'A')
197
198 #define I915_NUM_PHYS_VLV 2
199
200 enum dpio_channel {
201 DPIO_CH0,
202 DPIO_CH1
203 };
204
205 enum dpio_phy {
206 DPIO_PHY0,
207 DPIO_PHY1
208 };
209
210 enum intel_display_power_domain {
211 POWER_DOMAIN_PIPE_A,
212 POWER_DOMAIN_PIPE_B,
213 POWER_DOMAIN_PIPE_C,
214 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
215 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
216 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
217 POWER_DOMAIN_TRANSCODER_A,
218 POWER_DOMAIN_TRANSCODER_B,
219 POWER_DOMAIN_TRANSCODER_C,
220 POWER_DOMAIN_TRANSCODER_EDP,
221 POWER_DOMAIN_TRANSCODER_DSI_A,
222 POWER_DOMAIN_TRANSCODER_DSI_C,
223 POWER_DOMAIN_PORT_DDI_A_LANES,
224 POWER_DOMAIN_PORT_DDI_B_LANES,
225 POWER_DOMAIN_PORT_DDI_C_LANES,
226 POWER_DOMAIN_PORT_DDI_D_LANES,
227 POWER_DOMAIN_PORT_DDI_E_LANES,
228 POWER_DOMAIN_PORT_DSI,
229 POWER_DOMAIN_PORT_CRT,
230 POWER_DOMAIN_PORT_OTHER,
231 POWER_DOMAIN_VGA,
232 POWER_DOMAIN_AUDIO,
233 POWER_DOMAIN_PLLS,
234 POWER_DOMAIN_AUX_A,
235 POWER_DOMAIN_AUX_B,
236 POWER_DOMAIN_AUX_C,
237 POWER_DOMAIN_AUX_D,
238 POWER_DOMAIN_GMBUS,
239 POWER_DOMAIN_MODESET,
240 POWER_DOMAIN_INIT,
241
242 POWER_DOMAIN_NUM,
243 };
244
245 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
246 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
247 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
248 #define POWER_DOMAIN_TRANSCODER(tran) \
249 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
250 (tran) + POWER_DOMAIN_TRANSCODER_A)
251
252 enum hpd_pin {
253 HPD_NONE = 0,
254 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
255 HPD_CRT,
256 HPD_SDVO_B,
257 HPD_SDVO_C,
258 HPD_PORT_A,
259 HPD_PORT_B,
260 HPD_PORT_C,
261 HPD_PORT_D,
262 HPD_PORT_E,
263 HPD_NUM_PINS
264 };
265
266 #define for_each_hpd_pin(__pin) \
267 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
268
269 struct i915_hotplug {
270 struct work_struct hotplug_work;
271
272 struct {
273 unsigned long last_jiffies;
274 int count;
275 enum {
276 HPD_ENABLED = 0,
277 HPD_DISABLED = 1,
278 HPD_MARK_DISABLED = 2
279 } state;
280 } stats[HPD_NUM_PINS];
281 u32 event_bits;
282 struct delayed_work reenable_work;
283
284 struct intel_digital_port *irq_port[I915_MAX_PORTS];
285 u32 long_port_mask;
286 u32 short_port_mask;
287 struct work_struct dig_port_work;
288
289 struct work_struct poll_init_work;
290 bool poll_enabled;
291
292 /*
293 * if we get a HPD irq from DP and a HPD irq from non-DP
294 * the non-DP HPD could block the workqueue on a mode config
295 * mutex getting, that userspace may have taken. However
296 * userspace is waiting on the DP workqueue to run which is
297 * blocked behind the non-DP one.
298 */
299 struct workqueue_struct *dp_wq;
300 };
301
302 #define I915_GEM_GPU_DOMAINS \
303 (I915_GEM_DOMAIN_RENDER | \
304 I915_GEM_DOMAIN_SAMPLER | \
305 I915_GEM_DOMAIN_COMMAND | \
306 I915_GEM_DOMAIN_INSTRUCTION | \
307 I915_GEM_DOMAIN_VERTEX)
308
309 #define for_each_pipe(__dev_priv, __p) \
310 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
311 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
312 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
313 for_each_if ((__mask) & (1 << (__p)))
314 #define for_each_plane(__dev_priv, __pipe, __p) \
315 for ((__p) = 0; \
316 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
317 (__p)++)
318 #define for_each_sprite(__dev_priv, __p, __s) \
319 for ((__s) = 0; \
320 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
321 (__s)++)
322
323 #define for_each_port_masked(__port, __ports_mask) \
324 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
325 for_each_if ((__ports_mask) & (1 << (__port)))
326
327 #define for_each_crtc(dev, crtc) \
328 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
329
330 #define for_each_intel_plane(dev, intel_plane) \
331 list_for_each_entry(intel_plane, \
332 &(dev)->mode_config.plane_list, \
333 base.head)
334
335 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \
336 list_for_each_entry(intel_plane, \
337 &(dev)->mode_config.plane_list, \
338 base.head) \
339 for_each_if ((plane_mask) & \
340 (1 << drm_plane_index(&intel_plane->base)))
341
342 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
343 list_for_each_entry(intel_plane, \
344 &(dev)->mode_config.plane_list, \
345 base.head) \
346 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
347
348 #define for_each_intel_crtc(dev, intel_crtc) \
349 list_for_each_entry(intel_crtc, \
350 &(dev)->mode_config.crtc_list, \
351 base.head)
352
353 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \
354 list_for_each_entry(intel_crtc, \
355 &(dev)->mode_config.crtc_list, \
356 base.head) \
357 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
358
359 #define for_each_intel_encoder(dev, intel_encoder) \
360 list_for_each_entry(intel_encoder, \
361 &(dev)->mode_config.encoder_list, \
362 base.head)
363
364 #define for_each_intel_connector(dev, intel_connector) \
365 list_for_each_entry(intel_connector, \
366 &(dev)->mode_config.connector_list, \
367 base.head)
368
369 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
370 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
371 for_each_if ((intel_encoder)->base.crtc == (__crtc))
372
373 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
374 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
375 for_each_if ((intel_connector)->base.encoder == (__encoder))
376
377 #define for_each_power_domain(domain, mask) \
378 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
379 for_each_if ((1 << (domain)) & (mask))
380
381 struct drm_i915_private;
382 struct i915_mm_struct;
383 struct i915_mmu_object;
384
385 struct drm_i915_file_private {
386 struct drm_i915_private *dev_priv;
387 struct drm_file *file;
388
389 struct {
390 spinlock_t lock;
391 struct list_head request_list;
392 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
393 * chosen to prevent the CPU getting more than a frame ahead of the GPU
394 * (when using lax throttling for the frontbuffer). We also use it to
395 * offer free GPU waitboosts for severely congested workloads.
396 */
397 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
398 } mm;
399 struct idr context_idr;
400
401 struct intel_rps_client {
402 struct list_head link;
403 unsigned boosts;
404 } rps;
405
406 unsigned int bsd_engine;
407 };
408
409 /* Used by dp and fdi links */
410 struct intel_link_m_n {
411 uint32_t tu;
412 uint32_t gmch_m;
413 uint32_t gmch_n;
414 uint32_t link_m;
415 uint32_t link_n;
416 };
417
418 void intel_link_compute_m_n(int bpp, int nlanes,
419 int pixel_clock, int link_clock,
420 struct intel_link_m_n *m_n);
421
422 /* Interface history:
423 *
424 * 1.1: Original.
425 * 1.2: Add Power Management
426 * 1.3: Add vblank support
427 * 1.4: Fix cmdbuffer path, add heap destroy
428 * 1.5: Add vblank pipe configuration
429 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
430 * - Support vertical blank on secondary display pipe
431 */
432 #define DRIVER_MAJOR 1
433 #define DRIVER_MINOR 6
434 #define DRIVER_PATCHLEVEL 0
435
436 struct opregion_header;
437 struct opregion_acpi;
438 struct opregion_swsci;
439 struct opregion_asle;
440
441 struct intel_opregion {
442 struct opregion_header *header;
443 struct opregion_acpi *acpi;
444 struct opregion_swsci *swsci;
445 u32 swsci_gbda_sub_functions;
446 u32 swsci_sbcb_sub_functions;
447 struct opregion_asle *asle;
448 void *rvda;
449 const void *vbt;
450 u32 vbt_size;
451 u32 *lid_state;
452 struct work_struct asle_work;
453 };
454 #define OPREGION_SIZE (8*1024)
455
456 struct intel_overlay;
457 struct intel_overlay_error_state;
458
459 struct drm_i915_fence_reg {
460 struct list_head link;
461 struct drm_i915_private *i915;
462 struct i915_vma *vma;
463 int pin_count;
464 int id;
465 /**
466 * Whether the tiling parameters for the currently
467 * associated fence register have changed. Note that
468 * for the purposes of tracking tiling changes we also
469 * treat the unfenced register, the register slot that
470 * the object occupies whilst it executes a fenced
471 * command (such as BLT on gen2/3), as a "fence".
472 */
473 bool dirty;
474 };
475
476 struct sdvo_device_mapping {
477 u8 initialized;
478 u8 dvo_port;
479 u8 slave_addr;
480 u8 dvo_wiring;
481 u8 i2c_pin;
482 u8 ddc_pin;
483 };
484
485 struct intel_connector;
486 struct intel_encoder;
487 struct intel_crtc_state;
488 struct intel_initial_plane_config;
489 struct intel_crtc;
490 struct intel_limit;
491 struct dpll;
492
493 struct drm_i915_display_funcs {
494 int (*get_display_clock_speed)(struct drm_device *dev);
495 int (*get_fifo_size)(struct drm_device *dev, int plane);
496 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
497 int (*compute_intermediate_wm)(struct drm_device *dev,
498 struct intel_crtc *intel_crtc,
499 struct intel_crtc_state *newstate);
500 void (*initial_watermarks)(struct intel_crtc_state *cstate);
501 void (*optimize_watermarks)(struct intel_crtc_state *cstate);
502 int (*compute_global_watermarks)(struct drm_atomic_state *state);
503 void (*update_wm)(struct drm_crtc *crtc);
504 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
505 void (*modeset_commit_cdclk)(struct drm_atomic_state *state);
506 /* Returns the active state of the crtc, and if the crtc is active,
507 * fills out the pipe-config with the hw state. */
508 bool (*get_pipe_config)(struct intel_crtc *,
509 struct intel_crtc_state *);
510 void (*get_initial_plane_config)(struct intel_crtc *,
511 struct intel_initial_plane_config *);
512 int (*crtc_compute_clock)(struct intel_crtc *crtc,
513 struct intel_crtc_state *crtc_state);
514 void (*crtc_enable)(struct intel_crtc_state *pipe_config,
515 struct drm_atomic_state *old_state);
516 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
517 struct drm_atomic_state *old_state);
518 void (*update_crtcs)(struct drm_atomic_state *state,
519 unsigned int *crtc_vblank_mask);
520 void (*audio_codec_enable)(struct drm_connector *connector,
521 struct intel_encoder *encoder,
522 const struct drm_display_mode *adjusted_mode);
523 void (*audio_codec_disable)(struct intel_encoder *encoder);
524 void (*fdi_link_train)(struct drm_crtc *crtc);
525 void (*init_clock_gating)(struct drm_device *dev);
526 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc,
527 struct drm_framebuffer *fb,
528 struct drm_i915_gem_object *obj,
529 struct drm_i915_gem_request *req,
530 uint32_t flags);
531 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
532 /* clock updates for mode set */
533 /* cursor updates */
534 /* render clock increase/decrease */
535 /* display clock increase/decrease */
536 /* pll clock increase/decrease */
537
538 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
539 void (*load_luts)(struct drm_crtc_state *crtc_state);
540 };
541
542 enum forcewake_domain_id {
543 FW_DOMAIN_ID_RENDER = 0,
544 FW_DOMAIN_ID_BLITTER,
545 FW_DOMAIN_ID_MEDIA,
546
547 FW_DOMAIN_ID_COUNT
548 };
549
550 enum forcewake_domains {
551 FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER),
552 FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER),
553 FORCEWAKE_MEDIA = (1 << FW_DOMAIN_ID_MEDIA),
554 FORCEWAKE_ALL = (FORCEWAKE_RENDER |
555 FORCEWAKE_BLITTER |
556 FORCEWAKE_MEDIA)
557 };
558
559 #define FW_REG_READ (1)
560 #define FW_REG_WRITE (2)
561
562 enum forcewake_domains
563 intel_uncore_forcewake_for_reg(struct drm_i915_private *dev_priv,
564 i915_reg_t reg, unsigned int op);
565
566 struct intel_uncore_funcs {
567 void (*force_wake_get)(struct drm_i915_private *dev_priv,
568 enum forcewake_domains domains);
569 void (*force_wake_put)(struct drm_i915_private *dev_priv,
570 enum forcewake_domains domains);
571
572 uint8_t (*mmio_readb)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
573 uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
574 uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
575 uint64_t (*mmio_readq)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
576
577 void (*mmio_writeb)(struct drm_i915_private *dev_priv, i915_reg_t r,
578 uint8_t val, bool trace);
579 void (*mmio_writew)(struct drm_i915_private *dev_priv, i915_reg_t r,
580 uint16_t val, bool trace);
581 void (*mmio_writel)(struct drm_i915_private *dev_priv, i915_reg_t r,
582 uint32_t val, bool trace);
583 };
584
585 struct intel_uncore {
586 spinlock_t lock; /** lock is also taken in irq contexts. */
587
588 struct intel_uncore_funcs funcs;
589
590 unsigned fifo_count;
591 enum forcewake_domains fw_domains;
592
593 struct intel_uncore_forcewake_domain {
594 struct drm_i915_private *i915;
595 enum forcewake_domain_id id;
596 enum forcewake_domains mask;
597 unsigned wake_count;
598 struct hrtimer timer;
599 i915_reg_t reg_set;
600 u32 val_set;
601 u32 val_clear;
602 i915_reg_t reg_ack;
603 i915_reg_t reg_post;
604 u32 val_reset;
605 } fw_domain[FW_DOMAIN_ID_COUNT];
606
607 int unclaimed_mmio_check;
608 };
609
610 /* Iterate over initialised fw domains */
611 #define for_each_fw_domain_masked(domain__, mask__, dev_priv__) \
612 for ((domain__) = &(dev_priv__)->uncore.fw_domain[0]; \
613 (domain__) < &(dev_priv__)->uncore.fw_domain[FW_DOMAIN_ID_COUNT]; \
614 (domain__)++) \
615 for_each_if ((mask__) & (domain__)->mask)
616
617 #define for_each_fw_domain(domain__, dev_priv__) \
618 for_each_fw_domain_masked(domain__, FORCEWAKE_ALL, dev_priv__)
619
620 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
621 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
622 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
623
624 struct intel_csr {
625 struct work_struct work;
626 const char *fw_path;
627 uint32_t *dmc_payload;
628 uint32_t dmc_fw_size;
629 uint32_t version;
630 uint32_t mmio_count;
631 i915_reg_t mmioaddr[8];
632 uint32_t mmiodata[8];
633 uint32_t dc_state;
634 uint32_t allowed_dc_mask;
635 };
636
637 #define DEV_INFO_FOR_EACH_FLAG(func, sep) \
638 func(is_mobile) sep \
639 func(is_i85x) sep \
640 func(is_i915g) sep \
641 func(is_i945gm) sep \
642 func(is_g33) sep \
643 func(hws_needs_physical) sep \
644 func(is_g4x) sep \
645 func(is_pineview) sep \
646 func(is_broadwater) sep \
647 func(is_crestline) sep \
648 func(is_ivybridge) sep \
649 func(is_valleyview) sep \
650 func(is_cherryview) sep \
651 func(is_haswell) sep \
652 func(is_broadwell) sep \
653 func(is_skylake) sep \
654 func(is_broxton) sep \
655 func(is_kabylake) sep \
656 func(is_preliminary) sep \
657 func(has_fbc) sep \
658 func(has_psr) sep \
659 func(has_runtime_pm) sep \
660 func(has_csr) sep \
661 func(has_resource_streamer) sep \
662 func(has_rc6) sep \
663 func(has_rc6p) sep \
664 func(has_dp_mst) sep \
665 func(has_gmbus_irq) sep \
666 func(has_hw_contexts) sep \
667 func(has_logical_ring_contexts) sep \
668 func(has_l3_dpf) sep \
669 func(has_gmch_display) sep \
670 func(has_guc) sep \
671 func(has_pipe_cxsr) sep \
672 func(has_hotplug) sep \
673 func(cursor_needs_physical) sep \
674 func(has_overlay) sep \
675 func(overlay_needs_physical) sep \
676 func(supports_tv) sep \
677 func(has_llc) sep \
678 func(has_snoop) sep \
679 func(has_ddi) sep \
680 func(has_fpga_dbg) sep \
681 func(has_pooled_eu)
682
683 #define DEFINE_FLAG(name) u8 name:1
684 #define SEP_SEMICOLON ;
685
686 struct sseu_dev_info {
687 u8 slice_mask;
688 u8 subslice_mask;
689 u8 eu_total;
690 u8 eu_per_subslice;
691 u8 min_eu_in_pool;
692 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
693 u8 subslice_7eu[3];
694 u8 has_slice_pg:1;
695 u8 has_subslice_pg:1;
696 u8 has_eu_pg:1;
697 };
698
699 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu)
700 {
701 return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask);
702 }
703
704 struct intel_device_info {
705 u32 display_mmio_offset;
706 u16 device_id;
707 u8 num_pipes;
708 u8 num_sprites[I915_MAX_PIPES];
709 u8 gen;
710 u16 gen_mask;
711 u8 ring_mask; /* Rings supported by the HW */
712 u8 num_rings;
713 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG, SEP_SEMICOLON);
714 u16 ddb_size; /* in blocks */
715 /* Register offsets for the various display pipes and transcoders */
716 int pipe_offsets[I915_MAX_TRANSCODERS];
717 int trans_offsets[I915_MAX_TRANSCODERS];
718 int palette_offsets[I915_MAX_PIPES];
719 int cursor_offsets[I915_MAX_PIPES];
720
721 /* Slice/subslice/EU info */
722 struct sseu_dev_info sseu;
723
724 struct color_luts {
725 u16 degamma_lut_size;
726 u16 gamma_lut_size;
727 } color;
728 };
729
730 #undef DEFINE_FLAG
731 #undef SEP_SEMICOLON
732
733 struct intel_display_error_state;
734
735 struct drm_i915_error_state {
736 struct kref ref;
737 struct timeval time;
738
739 char error_msg[128];
740 bool simulated;
741 int iommu;
742 u32 reset_count;
743 u32 suspend_count;
744 struct intel_device_info device_info;
745
746 /* Generic register state */
747 u32 eir;
748 u32 pgtbl_er;
749 u32 ier;
750 u32 gtier[4];
751 u32 ccid;
752 u32 derrmr;
753 u32 forcewake;
754 u32 error; /* gen6+ */
755 u32 err_int; /* gen7 */
756 u32 fault_data0; /* gen8, gen9 */
757 u32 fault_data1; /* gen8, gen9 */
758 u32 done_reg;
759 u32 gac_eco;
760 u32 gam_ecochk;
761 u32 gab_ctl;
762 u32 gfx_mode;
763
764 u64 fence[I915_MAX_NUM_FENCES];
765 struct intel_overlay_error_state *overlay;
766 struct intel_display_error_state *display;
767 struct drm_i915_error_object *semaphore;
768
769 struct drm_i915_error_engine {
770 int engine_id;
771 /* Software tracked state */
772 bool waiting;
773 int num_waiters;
774 int hangcheck_score;
775 enum intel_engine_hangcheck_action hangcheck_action;
776 struct i915_address_space *vm;
777 int num_requests;
778
779 /* our own tracking of ring head and tail */
780 u32 cpu_ring_head;
781 u32 cpu_ring_tail;
782
783 u32 last_seqno;
784 u32 semaphore_seqno[I915_NUM_ENGINES - 1];
785
786 /* Register state */
787 u32 start;
788 u32 tail;
789 u32 head;
790 u32 ctl;
791 u32 mode;
792 u32 hws;
793 u32 ipeir;
794 u32 ipehr;
795 u32 bbstate;
796 u32 instpm;
797 u32 instps;
798 u32 seqno;
799 u64 bbaddr;
800 u64 acthd;
801 u32 fault_reg;
802 u64 faddr;
803 u32 rc_psmi; /* sleep state */
804 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
805 struct intel_instdone instdone;
806
807 struct drm_i915_error_object {
808 int page_count;
809 u64 gtt_offset;
810 u64 gtt_size;
811 u32 *pages[0];
812 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
813
814 struct drm_i915_error_object *wa_ctx;
815
816 struct drm_i915_error_request {
817 long jiffies;
818 pid_t pid;
819 u32 seqno;
820 u32 head;
821 u32 tail;
822 } *requests;
823
824 struct drm_i915_error_waiter {
825 char comm[TASK_COMM_LEN];
826 pid_t pid;
827 u32 seqno;
828 } *waiters;
829
830 struct {
831 u32 gfx_mode;
832 union {
833 u64 pdp[4];
834 u32 pp_dir_base;
835 };
836 } vm_info;
837
838 pid_t pid;
839 char comm[TASK_COMM_LEN];
840 } engine[I915_NUM_ENGINES];
841
842 struct drm_i915_error_buffer {
843 u32 size;
844 u32 name;
845 u32 rseqno[I915_NUM_ENGINES], wseqno;
846 u64 gtt_offset;
847 u32 read_domains;
848 u32 write_domain;
849 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
850 u32 tiling:2;
851 u32 dirty:1;
852 u32 purgeable:1;
853 u32 userptr:1;
854 s32 engine:4;
855 u32 cache_level:3;
856 } *active_bo[I915_NUM_ENGINES], *pinned_bo;
857 u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
858 struct i915_address_space *active_vm[I915_NUM_ENGINES];
859 };
860
861 enum i915_cache_level {
862 I915_CACHE_NONE = 0,
863 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
864 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
865 caches, eg sampler/render caches, and the
866 large Last-Level-Cache. LLC is coherent with
867 the CPU, but L3 is only visible to the GPU. */
868 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
869 };
870
871 struct i915_ctx_hang_stats {
872 /* This context had batch pending when hang was declared */
873 unsigned batch_pending;
874
875 /* This context had batch active when hang was declared */
876 unsigned batch_active;
877
878 /* Time when this context was last blamed for a GPU reset */
879 unsigned long guilty_ts;
880
881 /* If the contexts causes a second GPU hang within this time,
882 * it is permanently banned from submitting any more work.
883 */
884 unsigned long ban_period_seconds;
885
886 /* This context is banned to submit more work */
887 bool banned;
888 };
889
890 /* This must match up with the value previously used for execbuf2.rsvd1. */
891 #define DEFAULT_CONTEXT_HANDLE 0
892
893 /**
894 * struct i915_gem_context - as the name implies, represents a context.
895 * @ref: reference count.
896 * @user_handle: userspace tracking identity for this context.
897 * @remap_slice: l3 row remapping information.
898 * @flags: context specific flags:
899 * CONTEXT_NO_ZEROMAP: do not allow mapping things to page 0.
900 * @file_priv: filp associated with this context (NULL for global default
901 * context).
902 * @hang_stats: information about the role of this context in possible GPU
903 * hangs.
904 * @ppgtt: virtual memory space used by this context.
905 * @legacy_hw_ctx: render context backing object and whether it is correctly
906 * initialized (legacy ring submission mechanism only).
907 * @link: link in the global list of contexts.
908 *
909 * Contexts are memory images used by the hardware to store copies of their
910 * internal state.
911 */
912 struct i915_gem_context {
913 struct kref ref;
914 struct drm_i915_private *i915;
915 struct drm_i915_file_private *file_priv;
916 struct i915_hw_ppgtt *ppgtt;
917 struct pid *pid;
918
919 struct i915_ctx_hang_stats hang_stats;
920
921 unsigned long flags;
922 #define CONTEXT_NO_ZEROMAP BIT(0)
923 #define CONTEXT_NO_ERROR_CAPTURE BIT(1)
924
925 /* Unique identifier for this context, used by the hw for tracking */
926 unsigned int hw_id;
927 u32 user_handle;
928
929 u32 ggtt_alignment;
930
931 struct intel_context {
932 struct i915_vma *state;
933 struct intel_ring *ring;
934 uint32_t *lrc_reg_state;
935 u64 lrc_desc;
936 int pin_count;
937 bool initialised;
938 } engine[I915_NUM_ENGINES];
939 u32 ring_size;
940 u32 desc_template;
941 struct atomic_notifier_head status_notifier;
942 bool execlists_force_single_submission;
943
944 struct list_head link;
945
946 u8 remap_slice;
947 bool closed:1;
948 };
949
950 enum fb_op_origin {
951 ORIGIN_GTT,
952 ORIGIN_CPU,
953 ORIGIN_CS,
954 ORIGIN_FLIP,
955 ORIGIN_DIRTYFB,
956 };
957
958 struct intel_fbc {
959 /* This is always the inner lock when overlapping with struct_mutex and
960 * it's the outer lock when overlapping with stolen_lock. */
961 struct mutex lock;
962 unsigned threshold;
963 unsigned int possible_framebuffer_bits;
964 unsigned int busy_bits;
965 unsigned int visible_pipes_mask;
966 struct intel_crtc *crtc;
967
968 struct drm_mm_node compressed_fb;
969 struct drm_mm_node *compressed_llb;
970
971 bool false_color;
972
973 bool enabled;
974 bool active;
975
976 struct intel_fbc_state_cache {
977 struct {
978 unsigned int mode_flags;
979 uint32_t hsw_bdw_pixel_rate;
980 } crtc;
981
982 struct {
983 unsigned int rotation;
984 int src_w;
985 int src_h;
986 bool visible;
987 } plane;
988
989 struct {
990 u64 ilk_ggtt_offset;
991 uint32_t pixel_format;
992 unsigned int stride;
993 int fence_reg;
994 unsigned int tiling_mode;
995 } fb;
996 } state_cache;
997
998 struct intel_fbc_reg_params {
999 struct {
1000 enum pipe pipe;
1001 enum plane plane;
1002 unsigned int fence_y_offset;
1003 } crtc;
1004
1005 struct {
1006 u64 ggtt_offset;
1007 uint32_t pixel_format;
1008 unsigned int stride;
1009 int fence_reg;
1010 } fb;
1011
1012 int cfb_size;
1013 } params;
1014
1015 struct intel_fbc_work {
1016 bool scheduled;
1017 u32 scheduled_vblank;
1018 struct work_struct work;
1019 } work;
1020
1021 const char *no_fbc_reason;
1022 };
1023
1024 /**
1025 * HIGH_RR is the highest eDP panel refresh rate read from EDID
1026 * LOW_RR is the lowest eDP panel refresh rate found from EDID
1027 * parsing for same resolution.
1028 */
1029 enum drrs_refresh_rate_type {
1030 DRRS_HIGH_RR,
1031 DRRS_LOW_RR,
1032 DRRS_MAX_RR, /* RR count */
1033 };
1034
1035 enum drrs_support_type {
1036 DRRS_NOT_SUPPORTED = 0,
1037 STATIC_DRRS_SUPPORT = 1,
1038 SEAMLESS_DRRS_SUPPORT = 2
1039 };
1040
1041 struct intel_dp;
1042 struct i915_drrs {
1043 struct mutex mutex;
1044 struct delayed_work work;
1045 struct intel_dp *dp;
1046 unsigned busy_frontbuffer_bits;
1047 enum drrs_refresh_rate_type refresh_rate_type;
1048 enum drrs_support_type type;
1049 };
1050
1051 struct i915_psr {
1052 struct mutex lock;
1053 bool sink_support;
1054 bool source_ok;
1055 struct intel_dp *enabled;
1056 bool active;
1057 struct delayed_work work;
1058 unsigned busy_frontbuffer_bits;
1059 bool psr2_support;
1060 bool aux_frame_sync;
1061 bool link_standby;
1062 };
1063
1064 enum intel_pch {
1065 PCH_NONE = 0, /* No PCH present */
1066 PCH_IBX, /* Ibexpeak PCH */
1067 PCH_CPT, /* Cougarpoint PCH */
1068 PCH_LPT, /* Lynxpoint PCH */
1069 PCH_SPT, /* Sunrisepoint PCH */
1070 PCH_KBP, /* Kabypoint PCH */
1071 PCH_NOP,
1072 };
1073
1074 enum intel_sbi_destination {
1075 SBI_ICLK,
1076 SBI_MPHY,
1077 };
1078
1079 #define QUIRK_PIPEA_FORCE (1<<0)
1080 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1081 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1082 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1083 #define QUIRK_PIPEB_FORCE (1<<4)
1084 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1085
1086 struct intel_fbdev;
1087 struct intel_fbc_work;
1088
1089 struct intel_gmbus {
1090 struct i2c_adapter adapter;
1091 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1092 u32 force_bit;
1093 u32 reg0;
1094 i915_reg_t gpio_reg;
1095 struct i2c_algo_bit_data bit_algo;
1096 struct drm_i915_private *dev_priv;
1097 };
1098
1099 struct i915_suspend_saved_registers {
1100 u32 saveDSPARB;
1101 u32 saveFBC_CONTROL;
1102 u32 saveCACHE_MODE_0;
1103 u32 saveMI_ARB_STATE;
1104 u32 saveSWF0[16];
1105 u32 saveSWF1[16];
1106 u32 saveSWF3[3];
1107 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1108 u32 savePCH_PORT_HOTPLUG;
1109 u16 saveGCDGMBUS;
1110 };
1111
1112 struct vlv_s0ix_state {
1113 /* GAM */
1114 u32 wr_watermark;
1115 u32 gfx_prio_ctrl;
1116 u32 arb_mode;
1117 u32 gfx_pend_tlb0;
1118 u32 gfx_pend_tlb1;
1119 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1120 u32 media_max_req_count;
1121 u32 gfx_max_req_count;
1122 u32 render_hwsp;
1123 u32 ecochk;
1124 u32 bsd_hwsp;
1125 u32 blt_hwsp;
1126 u32 tlb_rd_addr;
1127
1128 /* MBC */
1129 u32 g3dctl;
1130 u32 gsckgctl;
1131 u32 mbctl;
1132
1133 /* GCP */
1134 u32 ucgctl1;
1135 u32 ucgctl3;
1136 u32 rcgctl1;
1137 u32 rcgctl2;
1138 u32 rstctl;
1139 u32 misccpctl;
1140
1141 /* GPM */
1142 u32 gfxpause;
1143 u32 rpdeuhwtc;
1144 u32 rpdeuc;
1145 u32 ecobus;
1146 u32 pwrdwnupctl;
1147 u32 rp_down_timeout;
1148 u32 rp_deucsw;
1149 u32 rcubmabdtmr;
1150 u32 rcedata;
1151 u32 spare2gh;
1152
1153 /* Display 1 CZ domain */
1154 u32 gt_imr;
1155 u32 gt_ier;
1156 u32 pm_imr;
1157 u32 pm_ier;
1158 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1159
1160 /* GT SA CZ domain */
1161 u32 tilectl;
1162 u32 gt_fifoctl;
1163 u32 gtlc_wake_ctrl;
1164 u32 gtlc_survive;
1165 u32 pmwgicz;
1166
1167 /* Display 2 CZ domain */
1168 u32 gu_ctl0;
1169 u32 gu_ctl1;
1170 u32 pcbr;
1171 u32 clock_gate_dis2;
1172 };
1173
1174 struct intel_rps_ei {
1175 u32 cz_clock;
1176 u32 render_c0;
1177 u32 media_c0;
1178 };
1179
1180 struct intel_gen6_power_mgmt {
1181 /*
1182 * work, interrupts_enabled and pm_iir are protected by
1183 * dev_priv->irq_lock
1184 */
1185 struct work_struct work;
1186 bool interrupts_enabled;
1187 u32 pm_iir;
1188
1189 /* PM interrupt bits that should never be masked */
1190 u32 pm_intr_keep;
1191
1192 /* Frequencies are stored in potentially platform dependent multiples.
1193 * In other words, *_freq needs to be multiplied by X to be interesting.
1194 * Soft limits are those which are used for the dynamic reclocking done
1195 * by the driver (raise frequencies under heavy loads, and lower for
1196 * lighter loads). Hard limits are those imposed by the hardware.
1197 *
1198 * A distinction is made for overclocking, which is never enabled by
1199 * default, and is considered to be above the hard limit if it's
1200 * possible at all.
1201 */
1202 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1203 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1204 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1205 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1206 u8 min_freq; /* AKA RPn. Minimum frequency */
1207 u8 boost_freq; /* Frequency to request when wait boosting */
1208 u8 idle_freq; /* Frequency to request when we are idle */
1209 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1210 u8 rp1_freq; /* "less than" RP0 power/freqency */
1211 u8 rp0_freq; /* Non-overclocked max frequency. */
1212 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
1213
1214 u8 up_threshold; /* Current %busy required to uplock */
1215 u8 down_threshold; /* Current %busy required to downclock */
1216
1217 int last_adj;
1218 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1219
1220 spinlock_t client_lock;
1221 struct list_head clients;
1222 bool client_boost;
1223
1224 bool enabled;
1225 struct delayed_work autoenable_work;
1226 unsigned boosts;
1227
1228 /* manual wa residency calculations */
1229 struct intel_rps_ei up_ei, down_ei;
1230
1231 /*
1232 * Protects RPS/RC6 register access and PCU communication.
1233 * Must be taken after struct_mutex if nested. Note that
1234 * this lock may be held for long periods of time when
1235 * talking to hw - so only take it when talking to hw!
1236 */
1237 struct mutex hw_lock;
1238 };
1239
1240 /* defined intel_pm.c */
1241 extern spinlock_t mchdev_lock;
1242
1243 struct intel_ilk_power_mgmt {
1244 u8 cur_delay;
1245 u8 min_delay;
1246 u8 max_delay;
1247 u8 fmax;
1248 u8 fstart;
1249
1250 u64 last_count1;
1251 unsigned long last_time1;
1252 unsigned long chipset_power;
1253 u64 last_count2;
1254 u64 last_time2;
1255 unsigned long gfx_power;
1256 u8 corr;
1257
1258 int c_m;
1259 int r_t;
1260 };
1261
1262 struct drm_i915_private;
1263 struct i915_power_well;
1264
1265 struct i915_power_well_ops {
1266 /*
1267 * Synchronize the well's hw state to match the current sw state, for
1268 * example enable/disable it based on the current refcount. Called
1269 * during driver init and resume time, possibly after first calling
1270 * the enable/disable handlers.
1271 */
1272 void (*sync_hw)(struct drm_i915_private *dev_priv,
1273 struct i915_power_well *power_well);
1274 /*
1275 * Enable the well and resources that depend on it (for example
1276 * interrupts located on the well). Called after the 0->1 refcount
1277 * transition.
1278 */
1279 void (*enable)(struct drm_i915_private *dev_priv,
1280 struct i915_power_well *power_well);
1281 /*
1282 * Disable the well and resources that depend on it. Called after
1283 * the 1->0 refcount transition.
1284 */
1285 void (*disable)(struct drm_i915_private *dev_priv,
1286 struct i915_power_well *power_well);
1287 /* Returns the hw enabled state. */
1288 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1289 struct i915_power_well *power_well);
1290 };
1291
1292 /* Power well structure for haswell */
1293 struct i915_power_well {
1294 const char *name;
1295 bool always_on;
1296 /* power well enable/disable usage count */
1297 int count;
1298 /* cached hw enabled state */
1299 bool hw_enabled;
1300 unsigned long domains;
1301 unsigned long data;
1302 const struct i915_power_well_ops *ops;
1303 };
1304
1305 struct i915_power_domains {
1306 /*
1307 * Power wells needed for initialization at driver init and suspend
1308 * time are on. They are kept on until after the first modeset.
1309 */
1310 bool init_power_on;
1311 bool initializing;
1312 int power_well_count;
1313
1314 struct mutex lock;
1315 int domain_use_count[POWER_DOMAIN_NUM];
1316 struct i915_power_well *power_wells;
1317 };
1318
1319 #define MAX_L3_SLICES 2
1320 struct intel_l3_parity {
1321 u32 *remap_info[MAX_L3_SLICES];
1322 struct work_struct error_work;
1323 int which_slice;
1324 };
1325
1326 struct i915_gem_mm {
1327 /** Memory allocator for GTT stolen memory */
1328 struct drm_mm stolen;
1329 /** Protects the usage of the GTT stolen memory allocator. This is
1330 * always the inner lock when overlapping with struct_mutex. */
1331 struct mutex stolen_lock;
1332
1333 /** List of all objects in gtt_space. Used to restore gtt
1334 * mappings on resume */
1335 struct list_head bound_list;
1336 /**
1337 * List of objects which are not bound to the GTT (thus
1338 * are idle and not used by the GPU) but still have
1339 * (presumably uncached) pages still attached.
1340 */
1341 struct list_head unbound_list;
1342
1343 /** Usable portion of the GTT for GEM */
1344 unsigned long stolen_base; /* limited to low memory (32-bit) */
1345
1346 /** PPGTT used for aliasing the PPGTT with the GTT */
1347 struct i915_hw_ppgtt *aliasing_ppgtt;
1348
1349 struct notifier_block oom_notifier;
1350 struct notifier_block vmap_notifier;
1351 struct shrinker shrinker;
1352
1353 /** LRU list of objects with fence regs on them. */
1354 struct list_head fence_list;
1355
1356 /**
1357 * Are we in a non-interruptible section of code like
1358 * modesetting?
1359 */
1360 bool interruptible;
1361
1362 /* the indicator for dispatch video commands on two BSD rings */
1363 atomic_t bsd_engine_dispatch_index;
1364
1365 /** Bit 6 swizzling required for X tiling */
1366 uint32_t bit_6_swizzle_x;
1367 /** Bit 6 swizzling required for Y tiling */
1368 uint32_t bit_6_swizzle_y;
1369
1370 /* accounting, useful for userland debugging */
1371 spinlock_t object_stat_lock;
1372 size_t object_memory;
1373 u32 object_count;
1374 };
1375
1376 struct drm_i915_error_state_buf {
1377 struct drm_i915_private *i915;
1378 unsigned bytes;
1379 unsigned size;
1380 int err;
1381 u8 *buf;
1382 loff_t start;
1383 loff_t pos;
1384 };
1385
1386 struct i915_error_state_file_priv {
1387 struct drm_device *dev;
1388 struct drm_i915_error_state *error;
1389 };
1390
1391 struct i915_gpu_error {
1392 /* For hangcheck timer */
1393 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1394 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1395 /* Hang gpu twice in this window and your context gets banned */
1396 #define DRM_I915_CTX_BAN_PERIOD DIV_ROUND_UP(8*DRM_I915_HANGCHECK_PERIOD, 1000)
1397
1398 struct delayed_work hangcheck_work;
1399
1400 /* For reset and error_state handling. */
1401 spinlock_t lock;
1402 /* Protected by the above dev->gpu_error.lock. */
1403 struct drm_i915_error_state *first_error;
1404
1405 unsigned long missed_irq_rings;
1406
1407 /**
1408 * State variable controlling the reset flow and count
1409 *
1410 * This is a counter which gets incremented when reset is triggered,
1411 *
1412 * Before the reset commences, the I915_RESET_IN_PROGRESS bit is set
1413 * meaning that any waiters holding onto the struct_mutex should
1414 * relinquish the lock immediately in order for the reset to start.
1415 *
1416 * If reset is not completed succesfully, the I915_WEDGE bit is
1417 * set meaning that hardware is terminally sour and there is no
1418 * recovery. All waiters on the reset_queue will be woken when
1419 * that happens.
1420 *
1421 * This counter is used by the wait_seqno code to notice that reset
1422 * event happened and it needs to restart the entire ioctl (since most
1423 * likely the seqno it waited for won't ever signal anytime soon).
1424 *
1425 * This is important for lock-free wait paths, where no contended lock
1426 * naturally enforces the correct ordering between the bail-out of the
1427 * waiter and the gpu reset work code.
1428 */
1429 unsigned long reset_count;
1430
1431 unsigned long flags;
1432 #define I915_RESET_IN_PROGRESS 0
1433 #define I915_WEDGED (BITS_PER_LONG - 1)
1434
1435 /**
1436 * Waitqueue to signal when a hang is detected. Used to for waiters
1437 * to release the struct_mutex for the reset to procede.
1438 */
1439 wait_queue_head_t wait_queue;
1440
1441 /**
1442 * Waitqueue to signal when the reset has completed. Used by clients
1443 * that wait for dev_priv->mm.wedged to settle.
1444 */
1445 wait_queue_head_t reset_queue;
1446
1447 /* For missed irq/seqno simulation. */
1448 unsigned long test_irq_rings;
1449 };
1450
1451 enum modeset_restore {
1452 MODESET_ON_LID_OPEN,
1453 MODESET_DONE,
1454 MODESET_SUSPENDED,
1455 };
1456
1457 #define DP_AUX_A 0x40
1458 #define DP_AUX_B 0x10
1459 #define DP_AUX_C 0x20
1460 #define DP_AUX_D 0x30
1461
1462 #define DDC_PIN_B 0x05
1463 #define DDC_PIN_C 0x04
1464 #define DDC_PIN_D 0x06
1465
1466 struct ddi_vbt_port_info {
1467 /*
1468 * This is an index in the HDMI/DVI DDI buffer translation table.
1469 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1470 * populate this field.
1471 */
1472 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1473 uint8_t hdmi_level_shift;
1474
1475 uint8_t supports_dvi:1;
1476 uint8_t supports_hdmi:1;
1477 uint8_t supports_dp:1;
1478
1479 uint8_t alternate_aux_channel;
1480 uint8_t alternate_ddc_pin;
1481
1482 uint8_t dp_boost_level;
1483 uint8_t hdmi_boost_level;
1484 };
1485
1486 enum psr_lines_to_wait {
1487 PSR_0_LINES_TO_WAIT = 0,
1488 PSR_1_LINE_TO_WAIT,
1489 PSR_4_LINES_TO_WAIT,
1490 PSR_8_LINES_TO_WAIT
1491 };
1492
1493 struct intel_vbt_data {
1494 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1495 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1496
1497 /* Feature bits */
1498 unsigned int int_tv_support:1;
1499 unsigned int lvds_dither:1;
1500 unsigned int lvds_vbt:1;
1501 unsigned int int_crt_support:1;
1502 unsigned int lvds_use_ssc:1;
1503 unsigned int display_clock_mode:1;
1504 unsigned int fdi_rx_polarity_inverted:1;
1505 unsigned int panel_type:4;
1506 int lvds_ssc_freq;
1507 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1508
1509 enum drrs_support_type drrs_type;
1510
1511 struct {
1512 int rate;
1513 int lanes;
1514 int preemphasis;
1515 int vswing;
1516 bool low_vswing;
1517 bool initialized;
1518 bool support;
1519 int bpp;
1520 struct edp_power_seq pps;
1521 } edp;
1522
1523 struct {
1524 bool full_link;
1525 bool require_aux_wakeup;
1526 int idle_frames;
1527 enum psr_lines_to_wait lines_to_wait;
1528 int tp1_wakeup_time;
1529 int tp2_tp3_wakeup_time;
1530 } psr;
1531
1532 struct {
1533 u16 pwm_freq_hz;
1534 bool present;
1535 bool active_low_pwm;
1536 u8 min_brightness; /* min_brightness/255 of max */
1537 enum intel_backlight_type type;
1538 } backlight;
1539
1540 /* MIPI DSI */
1541 struct {
1542 u16 panel_id;
1543 struct mipi_config *config;
1544 struct mipi_pps_data *pps;
1545 u8 seq_version;
1546 u32 size;
1547 u8 *data;
1548 const u8 *sequence[MIPI_SEQ_MAX];
1549 } dsi;
1550
1551 int crt_ddc_pin;
1552
1553 int child_dev_num;
1554 union child_device_config *child_dev;
1555
1556 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1557 struct sdvo_device_mapping sdvo_mappings[2];
1558 };
1559
1560 enum intel_ddb_partitioning {
1561 INTEL_DDB_PART_1_2,
1562 INTEL_DDB_PART_5_6, /* IVB+ */
1563 };
1564
1565 struct intel_wm_level {
1566 bool enable;
1567 uint32_t pri_val;
1568 uint32_t spr_val;
1569 uint32_t cur_val;
1570 uint32_t fbc_val;
1571 };
1572
1573 struct ilk_wm_values {
1574 uint32_t wm_pipe[3];
1575 uint32_t wm_lp[3];
1576 uint32_t wm_lp_spr[3];
1577 uint32_t wm_linetime[3];
1578 bool enable_fbc_wm;
1579 enum intel_ddb_partitioning partitioning;
1580 };
1581
1582 struct vlv_pipe_wm {
1583 uint16_t primary;
1584 uint16_t sprite[2];
1585 uint8_t cursor;
1586 };
1587
1588 struct vlv_sr_wm {
1589 uint16_t plane;
1590 uint8_t cursor;
1591 };
1592
1593 struct vlv_wm_values {
1594 struct vlv_pipe_wm pipe[3];
1595 struct vlv_sr_wm sr;
1596 struct {
1597 uint8_t cursor;
1598 uint8_t sprite[2];
1599 uint8_t primary;
1600 } ddl[3];
1601 uint8_t level;
1602 bool cxsr;
1603 };
1604
1605 struct skl_ddb_entry {
1606 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1607 };
1608
1609 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1610 {
1611 return entry->end - entry->start;
1612 }
1613
1614 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1615 const struct skl_ddb_entry *e2)
1616 {
1617 if (e1->start == e2->start && e1->end == e2->end)
1618 return true;
1619
1620 return false;
1621 }
1622
1623 struct skl_ddb_allocation {
1624 struct skl_ddb_entry pipe[I915_MAX_PIPES];
1625 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1626 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1627 };
1628
1629 struct skl_wm_values {
1630 unsigned dirty_pipes;
1631 struct skl_ddb_allocation ddb;
1632 uint32_t wm_linetime[I915_MAX_PIPES];
1633 uint32_t plane[I915_MAX_PIPES][I915_MAX_PLANES][8];
1634 uint32_t plane_trans[I915_MAX_PIPES][I915_MAX_PLANES];
1635 };
1636
1637 struct skl_wm_level {
1638 bool plane_en[I915_MAX_PLANES];
1639 uint16_t plane_res_b[I915_MAX_PLANES];
1640 uint8_t plane_res_l[I915_MAX_PLANES];
1641 };
1642
1643 /*
1644 * This struct helps tracking the state needed for runtime PM, which puts the
1645 * device in PCI D3 state. Notice that when this happens, nothing on the
1646 * graphics device works, even register access, so we don't get interrupts nor
1647 * anything else.
1648 *
1649 * Every piece of our code that needs to actually touch the hardware needs to
1650 * either call intel_runtime_pm_get or call intel_display_power_get with the
1651 * appropriate power domain.
1652 *
1653 * Our driver uses the autosuspend delay feature, which means we'll only really
1654 * suspend if we stay with zero refcount for a certain amount of time. The
1655 * default value is currently very conservative (see intel_runtime_pm_enable), but
1656 * it can be changed with the standard runtime PM files from sysfs.
1657 *
1658 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1659 * goes back to false exactly before we reenable the IRQs. We use this variable
1660 * to check if someone is trying to enable/disable IRQs while they're supposed
1661 * to be disabled. This shouldn't happen and we'll print some error messages in
1662 * case it happens.
1663 *
1664 * For more, read the Documentation/power/runtime_pm.txt.
1665 */
1666 struct i915_runtime_pm {
1667 atomic_t wakeref_count;
1668 atomic_t atomic_seq;
1669 bool suspended;
1670 bool irqs_enabled;
1671 };
1672
1673 enum intel_pipe_crc_source {
1674 INTEL_PIPE_CRC_SOURCE_NONE,
1675 INTEL_PIPE_CRC_SOURCE_PLANE1,
1676 INTEL_PIPE_CRC_SOURCE_PLANE2,
1677 INTEL_PIPE_CRC_SOURCE_PF,
1678 INTEL_PIPE_CRC_SOURCE_PIPE,
1679 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1680 INTEL_PIPE_CRC_SOURCE_TV,
1681 INTEL_PIPE_CRC_SOURCE_DP_B,
1682 INTEL_PIPE_CRC_SOURCE_DP_C,
1683 INTEL_PIPE_CRC_SOURCE_DP_D,
1684 INTEL_PIPE_CRC_SOURCE_AUTO,
1685 INTEL_PIPE_CRC_SOURCE_MAX,
1686 };
1687
1688 struct intel_pipe_crc_entry {
1689 uint32_t frame;
1690 uint32_t crc[5];
1691 };
1692
1693 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1694 struct intel_pipe_crc {
1695 spinlock_t lock;
1696 bool opened; /* exclusive access to the result file */
1697 struct intel_pipe_crc_entry *entries;
1698 enum intel_pipe_crc_source source;
1699 int head, tail;
1700 wait_queue_head_t wq;
1701 };
1702
1703 struct i915_frontbuffer_tracking {
1704 spinlock_t lock;
1705
1706 /*
1707 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1708 * scheduled flips.
1709 */
1710 unsigned busy_bits;
1711 unsigned flip_bits;
1712 };
1713
1714 struct i915_wa_reg {
1715 i915_reg_t addr;
1716 u32 value;
1717 /* bitmask representing WA bits */
1718 u32 mask;
1719 };
1720
1721 /*
1722 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1723 * allowing it for RCS as we don't foresee any requirement of having
1724 * a whitelist for other engines. When it is really required for
1725 * other engines then the limit need to be increased.
1726 */
1727 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1728
1729 struct i915_workarounds {
1730 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1731 u32 count;
1732 u32 hw_whitelist_count[I915_NUM_ENGINES];
1733 };
1734
1735 struct i915_virtual_gpu {
1736 bool active;
1737 };
1738
1739 /* used in computing the new watermarks state */
1740 struct intel_wm_config {
1741 unsigned int num_pipes_active;
1742 bool sprites_enabled;
1743 bool sprites_scaled;
1744 };
1745
1746 struct drm_i915_private {
1747 struct drm_device drm;
1748
1749 struct kmem_cache *objects;
1750 struct kmem_cache *vmas;
1751 struct kmem_cache *requests;
1752
1753 const struct intel_device_info info;
1754
1755 int relative_constants_mode;
1756
1757 void __iomem *regs;
1758
1759 struct intel_uncore uncore;
1760
1761 struct i915_virtual_gpu vgpu;
1762
1763 struct intel_gvt gvt;
1764
1765 struct intel_guc guc;
1766
1767 struct intel_csr csr;
1768
1769 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1770
1771 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
1772 * controller on different i2c buses. */
1773 struct mutex gmbus_mutex;
1774
1775 /**
1776 * Base address of the gmbus and gpio block.
1777 */
1778 uint32_t gpio_mmio_base;
1779
1780 /* MMIO base address for MIPI regs */
1781 uint32_t mipi_mmio_base;
1782
1783 uint32_t psr_mmio_base;
1784
1785 uint32_t pps_mmio_base;
1786
1787 wait_queue_head_t gmbus_wait_queue;
1788
1789 struct pci_dev *bridge_dev;
1790 struct i915_gem_context *kernel_context;
1791 struct intel_engine_cs engine[I915_NUM_ENGINES];
1792 struct i915_vma *semaphore;
1793 u32 next_seqno;
1794
1795 struct drm_dma_handle *status_page_dmah;
1796 struct resource mch_res;
1797
1798 /* protects the irq masks */
1799 spinlock_t irq_lock;
1800
1801 /* protects the mmio flip data */
1802 spinlock_t mmio_flip_lock;
1803
1804 bool display_irqs_enabled;
1805
1806 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1807 struct pm_qos_request pm_qos;
1808
1809 /* Sideband mailbox protection */
1810 struct mutex sb_lock;
1811
1812 /** Cached value of IMR to avoid reads in updating the bitfield */
1813 union {
1814 u32 irq_mask;
1815 u32 de_irq_mask[I915_MAX_PIPES];
1816 };
1817 u32 gt_irq_mask;
1818 u32 pm_irq_mask;
1819 u32 pm_rps_events;
1820 u32 pipestat_irq_mask[I915_MAX_PIPES];
1821
1822 struct i915_hotplug hotplug;
1823 struct intel_fbc fbc;
1824 struct i915_drrs drrs;
1825 struct intel_opregion opregion;
1826 struct intel_vbt_data vbt;
1827
1828 bool preserve_bios_swizzle;
1829
1830 /* overlay */
1831 struct intel_overlay *overlay;
1832
1833 /* backlight registers and fields in struct intel_panel */
1834 struct mutex backlight_lock;
1835
1836 /* LVDS info */
1837 bool no_aux_handshake;
1838
1839 /* protects panel power sequencer state */
1840 struct mutex pps_mutex;
1841
1842 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1843 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1844
1845 unsigned int fsb_freq, mem_freq, is_ddr3;
1846 unsigned int skl_preferred_vco_freq;
1847 unsigned int cdclk_freq, max_cdclk_freq, atomic_cdclk_freq;
1848 unsigned int max_dotclk_freq;
1849 unsigned int rawclk_freq;
1850 unsigned int hpll_freq;
1851 unsigned int czclk_freq;
1852
1853 struct {
1854 unsigned int vco, ref;
1855 } cdclk_pll;
1856
1857 /**
1858 * wq - Driver workqueue for GEM.
1859 *
1860 * NOTE: Work items scheduled here are not allowed to grab any modeset
1861 * locks, for otherwise the flushing done in the pageflip code will
1862 * result in deadlocks.
1863 */
1864 struct workqueue_struct *wq;
1865
1866 /* Display functions */
1867 struct drm_i915_display_funcs display;
1868
1869 /* PCH chipset type */
1870 enum intel_pch pch_type;
1871 unsigned short pch_id;
1872
1873 unsigned long quirks;
1874
1875 enum modeset_restore modeset_restore;
1876 struct mutex modeset_restore_lock;
1877 struct drm_atomic_state *modeset_restore_state;
1878 struct drm_modeset_acquire_ctx reset_ctx;
1879
1880 struct list_head vm_list; /* Global list of all address spaces */
1881 struct i915_ggtt ggtt; /* VM representing the global address space */
1882
1883 struct i915_gem_mm mm;
1884 DECLARE_HASHTABLE(mm_structs, 7);
1885 struct mutex mm_lock;
1886
1887 /* The hw wants to have a stable context identifier for the lifetime
1888 * of the context (for OA, PASID, faults, etc). This is limited
1889 * in execlists to 21 bits.
1890 */
1891 struct ida context_hw_ida;
1892 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1893
1894 /* Kernel Modesetting */
1895
1896 struct drm_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1897 struct drm_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1898 wait_queue_head_t pending_flip_queue;
1899
1900 #ifdef CONFIG_DEBUG_FS
1901 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1902 #endif
1903
1904 /* dpll and cdclk state is protected by connection_mutex */
1905 int num_shared_dpll;
1906 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1907 const struct intel_dpll_mgr *dpll_mgr;
1908
1909 /*
1910 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1911 * Must be global rather than per dpll, because on some platforms
1912 * plls share registers.
1913 */
1914 struct mutex dpll_lock;
1915
1916 unsigned int active_crtcs;
1917 unsigned int min_pixclk[I915_MAX_PIPES];
1918
1919 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1920
1921 struct i915_workarounds workarounds;
1922
1923 struct i915_frontbuffer_tracking fb_tracking;
1924
1925 u16 orig_clock;
1926
1927 bool mchbar_need_disable;
1928
1929 struct intel_l3_parity l3_parity;
1930
1931 /* Cannot be determined by PCIID. You must always read a register. */
1932 u32 edram_cap;
1933
1934 /* gen6+ rps state */
1935 struct intel_gen6_power_mgmt rps;
1936
1937 /* ilk-only ips/rps state. Everything in here is protected by the global
1938 * mchdev_lock in intel_pm.c */
1939 struct intel_ilk_power_mgmt ips;
1940
1941 struct i915_power_domains power_domains;
1942
1943 struct i915_psr psr;
1944
1945 struct i915_gpu_error gpu_error;
1946
1947 struct drm_i915_gem_object *vlv_pctx;
1948
1949 #ifdef CONFIG_DRM_FBDEV_EMULATION
1950 /* list of fbdev register on this device */
1951 struct intel_fbdev *fbdev;
1952 struct work_struct fbdev_suspend_work;
1953 #endif
1954
1955 struct drm_property *broadcast_rgb_property;
1956 struct drm_property *force_audio_property;
1957
1958 /* hda/i915 audio component */
1959 struct i915_audio_component *audio_component;
1960 bool audio_component_registered;
1961 /**
1962 * av_mutex - mutex for audio/video sync
1963 *
1964 */
1965 struct mutex av_mutex;
1966
1967 uint32_t hw_context_size;
1968 struct list_head context_list;
1969
1970 u32 fdi_rx_config;
1971
1972 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
1973 u32 chv_phy_control;
1974 /*
1975 * Shadows for CHV DPLL_MD regs to keep the state
1976 * checker somewhat working in the presence hardware
1977 * crappiness (can't read out DPLL_MD for pipes B & C).
1978 */
1979 u32 chv_dpll_md[I915_MAX_PIPES];
1980 u32 bxt_phy_grc;
1981
1982 u32 suspend_count;
1983 bool suspended_to_idle;
1984 struct i915_suspend_saved_registers regfile;
1985 struct vlv_s0ix_state vlv_s0ix_state;
1986
1987 enum {
1988 I915_SKL_SAGV_UNKNOWN = 0,
1989 I915_SKL_SAGV_DISABLED,
1990 I915_SKL_SAGV_ENABLED,
1991 I915_SKL_SAGV_NOT_CONTROLLED
1992 } skl_sagv_status;
1993
1994 struct {
1995 /*
1996 * Raw watermark latency values:
1997 * in 0.1us units for WM0,
1998 * in 0.5us units for WM1+.
1999 */
2000 /* primary */
2001 uint16_t pri_latency[5];
2002 /* sprite */
2003 uint16_t spr_latency[5];
2004 /* cursor */
2005 uint16_t cur_latency[5];
2006 /*
2007 * Raw watermark memory latency values
2008 * for SKL for all 8 levels
2009 * in 1us units.
2010 */
2011 uint16_t skl_latency[8];
2012
2013 /*
2014 * The skl_wm_values structure is a bit too big for stack
2015 * allocation, so we keep the staging struct where we store
2016 * intermediate results here instead.
2017 */
2018 struct skl_wm_values skl_results;
2019
2020 /* current hardware state */
2021 union {
2022 struct ilk_wm_values hw;
2023 struct skl_wm_values skl_hw;
2024 struct vlv_wm_values vlv;
2025 };
2026
2027 uint8_t max_level;
2028
2029 /*
2030 * Should be held around atomic WM register writing; also
2031 * protects * intel_crtc->wm.active and
2032 * cstate->wm.need_postvbl_update.
2033 */
2034 struct mutex wm_mutex;
2035
2036 /*
2037 * Set during HW readout of watermarks/DDB. Some platforms
2038 * need to know when we're still using BIOS-provided values
2039 * (which we don't fully trust).
2040 */
2041 bool distrust_bios_wm;
2042 } wm;
2043
2044 struct i915_runtime_pm pm;
2045
2046 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2047 struct {
2048 void (*resume)(struct drm_i915_private *);
2049 void (*cleanup_engine)(struct intel_engine_cs *engine);
2050
2051 /**
2052 * Is the GPU currently considered idle, or busy executing
2053 * userspace requests? Whilst idle, we allow runtime power
2054 * management to power down the hardware and display clocks.
2055 * In order to reduce the effect on performance, there
2056 * is a slight delay before we do so.
2057 */
2058 unsigned int active_engines;
2059 bool awake;
2060
2061 /**
2062 * We leave the user IRQ off as much as possible,
2063 * but this means that requests will finish and never
2064 * be retired once the system goes idle. Set a timer to
2065 * fire periodically while the ring is running. When it
2066 * fires, go retire requests.
2067 */
2068 struct delayed_work retire_work;
2069
2070 /**
2071 * When we detect an idle GPU, we want to turn on
2072 * powersaving features. So once we see that there
2073 * are no more requests outstanding and no more
2074 * arrive within a small period of time, we fire
2075 * off the idle_work.
2076 */
2077 struct delayed_work idle_work;
2078 } gt;
2079
2080 /* perform PHY state sanity checks? */
2081 bool chv_phy_assert[2];
2082
2083 struct intel_encoder *dig_port_map[I915_MAX_PORTS];
2084
2085 /*
2086 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2087 * will be rejected. Instead look for a better place.
2088 */
2089 };
2090
2091 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2092 {
2093 return container_of(dev, struct drm_i915_private, drm);
2094 }
2095
2096 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2097 {
2098 return to_i915(dev_get_drvdata(kdev));
2099 }
2100
2101 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2102 {
2103 return container_of(guc, struct drm_i915_private, guc);
2104 }
2105
2106 /* Simple iterator over all initialised engines */
2107 #define for_each_engine(engine__, dev_priv__) \
2108 for ((engine__) = &(dev_priv__)->engine[0]; \
2109 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2110 (engine__)++) \
2111 for_each_if (intel_engine_initialized(engine__))
2112
2113 /* Iterator with engine_id */
2114 #define for_each_engine_id(engine__, dev_priv__, id__) \
2115 for ((engine__) = &(dev_priv__)->engine[0], (id__) = 0; \
2116 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2117 (engine__)++) \
2118 for_each_if (((id__) = (engine__)->id, \
2119 intel_engine_initialized(engine__)))
2120
2121 #define __mask_next_bit(mask) ({ \
2122 int __idx = ffs(mask) - 1; \
2123 mask &= ~BIT(__idx); \
2124 __idx; \
2125 })
2126
2127 /* Iterator over subset of engines selected by mask */
2128 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2129 for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask; \
2130 tmp__ ? (engine__ = &(dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2131
2132 enum hdmi_force_audio {
2133 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2134 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2135 HDMI_AUDIO_AUTO, /* trust EDID */
2136 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2137 };
2138
2139 #define I915_GTT_OFFSET_NONE ((u32)-1)
2140
2141 struct drm_i915_gem_object_ops {
2142 unsigned int flags;
2143 #define I915_GEM_OBJECT_HAS_STRUCT_PAGE 0x1
2144
2145 /* Interface between the GEM object and its backing storage.
2146 * get_pages() is called once prior to the use of the associated set
2147 * of pages before to binding them into the GTT, and put_pages() is
2148 * called after we no longer need them. As we expect there to be
2149 * associated cost with migrating pages between the backing storage
2150 * and making them available for the GPU (e.g. clflush), we may hold
2151 * onto the pages after they are no longer referenced by the GPU
2152 * in case they may be used again shortly (for example migrating the
2153 * pages to a different memory domain within the GTT). put_pages()
2154 * will therefore most likely be called when the object itself is
2155 * being released or under memory pressure (where we attempt to
2156 * reap pages for the shrinker).
2157 */
2158 int (*get_pages)(struct drm_i915_gem_object *);
2159 void (*put_pages)(struct drm_i915_gem_object *);
2160
2161 int (*dmabuf_export)(struct drm_i915_gem_object *);
2162 void (*release)(struct drm_i915_gem_object *);
2163 };
2164
2165 /*
2166 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2167 * considered to be the frontbuffer for the given plane interface-wise. This
2168 * doesn't mean that the hw necessarily already scans it out, but that any
2169 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2170 *
2171 * We have one bit per pipe and per scanout plane type.
2172 */
2173 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2174 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2175 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2176 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2177 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2178 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2179 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2180 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2181 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2182 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2183 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2184 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2185
2186 struct drm_i915_gem_object {
2187 struct drm_gem_object base;
2188
2189 const struct drm_i915_gem_object_ops *ops;
2190
2191 /** List of VMAs backed by this object */
2192 struct list_head vma_list;
2193
2194 /** Stolen memory for this object, instead of being backed by shmem. */
2195 struct drm_mm_node *stolen;
2196 struct list_head global_list;
2197
2198 /** Used in execbuf to temporarily hold a ref */
2199 struct list_head obj_exec_link;
2200
2201 struct list_head batch_pool_link;
2202
2203 unsigned long flags;
2204 /**
2205 * This is set if the object is on the active lists (has pending
2206 * rendering and so a non-zero seqno), and is not set if it i s on
2207 * inactive (ready to be unbound) list.
2208 */
2209 #define I915_BO_ACTIVE_SHIFT 0
2210 #define I915_BO_ACTIVE_MASK ((1 << I915_NUM_ENGINES) - 1)
2211 #define __I915_BO_ACTIVE(bo) \
2212 ((READ_ONCE((bo)->flags) >> I915_BO_ACTIVE_SHIFT) & I915_BO_ACTIVE_MASK)
2213
2214 /**
2215 * This is set if the object has been written to since last bound
2216 * to the GTT
2217 */
2218 unsigned int dirty:1;
2219
2220 /**
2221 * Advice: are the backing pages purgeable?
2222 */
2223 unsigned int madv:2;
2224
2225 /**
2226 * Whether the current gtt mapping needs to be mappable (and isn't just
2227 * mappable by accident). Track pin and fault separate for a more
2228 * accurate mappable working set.
2229 */
2230 unsigned int fault_mappable:1;
2231
2232 /*
2233 * Is the object to be mapped as read-only to the GPU
2234 * Only honoured if hardware has relevant pte bit
2235 */
2236 unsigned long gt_ro:1;
2237 unsigned int cache_level:3;
2238 unsigned int cache_dirty:1;
2239
2240 atomic_t frontbuffer_bits;
2241 unsigned int frontbuffer_ggtt_origin; /* write once */
2242
2243 /** Current tiling stride for the object, if it's tiled. */
2244 unsigned int tiling_and_stride;
2245 #define FENCE_MINIMUM_STRIDE 128 /* See i915_tiling_ok() */
2246 #define TILING_MASK (FENCE_MINIMUM_STRIDE-1)
2247 #define STRIDE_MASK (~TILING_MASK)
2248
2249 /** Count of VMA actually bound by this object */
2250 unsigned int bind_count;
2251 unsigned int pin_display;
2252
2253 struct sg_table *pages;
2254 int pages_pin_count;
2255 struct get_page {
2256 struct scatterlist *sg;
2257 int last;
2258 } get_page;
2259 void *mapping;
2260
2261 /** Breadcrumb of last rendering to the buffer.
2262 * There can only be one writer, but we allow for multiple readers.
2263 * If there is a writer that necessarily implies that all other
2264 * read requests are complete - but we may only be lazily clearing
2265 * the read requests. A read request is naturally the most recent
2266 * request on a ring, so we may have two different write and read
2267 * requests on one ring where the write request is older than the
2268 * read request. This allows for the CPU to read from an active
2269 * buffer by only waiting for the write to complete.
2270 */
2271 struct i915_gem_active last_read[I915_NUM_ENGINES];
2272 struct i915_gem_active last_write;
2273
2274 /** References from framebuffers, locks out tiling changes. */
2275 unsigned long framebuffer_references;
2276
2277 /** Record of address bit 17 of each page at last unbind. */
2278 unsigned long *bit_17;
2279
2280 union {
2281 /** for phy allocated objects */
2282 struct drm_dma_handle *phys_handle;
2283
2284 struct i915_gem_userptr {
2285 uintptr_t ptr;
2286 unsigned read_only :1;
2287 unsigned workers :4;
2288 #define I915_GEM_USERPTR_MAX_WORKERS 15
2289
2290 struct i915_mm_struct *mm;
2291 struct i915_mmu_object *mmu_object;
2292 struct work_struct *work;
2293 } userptr;
2294 };
2295 };
2296
2297 static inline struct drm_i915_gem_object *
2298 to_intel_bo(struct drm_gem_object *gem)
2299 {
2300 /* Assert that to_intel_bo(NULL) == NULL */
2301 BUILD_BUG_ON(offsetof(struct drm_i915_gem_object, base));
2302
2303 return container_of(gem, struct drm_i915_gem_object, base);
2304 }
2305
2306 static inline struct drm_i915_gem_object *
2307 i915_gem_object_lookup(struct drm_file *file, u32 handle)
2308 {
2309 return to_intel_bo(drm_gem_object_lookup(file, handle));
2310 }
2311
2312 __deprecated
2313 extern struct drm_gem_object *
2314 drm_gem_object_lookup(struct drm_file *file, u32 handle);
2315
2316 __attribute__((nonnull))
2317 static inline struct drm_i915_gem_object *
2318 i915_gem_object_get(struct drm_i915_gem_object *obj)
2319 {
2320 drm_gem_object_reference(&obj->base);
2321 return obj;
2322 }
2323
2324 __deprecated
2325 extern void drm_gem_object_reference(struct drm_gem_object *);
2326
2327 __attribute__((nonnull))
2328 static inline void
2329 i915_gem_object_put(struct drm_i915_gem_object *obj)
2330 {
2331 drm_gem_object_unreference(&obj->base);
2332 }
2333
2334 __deprecated
2335 extern void drm_gem_object_unreference(struct drm_gem_object *);
2336
2337 __attribute__((nonnull))
2338 static inline void
2339 i915_gem_object_put_unlocked(struct drm_i915_gem_object *obj)
2340 {
2341 drm_gem_object_unreference_unlocked(&obj->base);
2342 }
2343
2344 __deprecated
2345 extern void drm_gem_object_unreference_unlocked(struct drm_gem_object *);
2346
2347 static inline bool
2348 i915_gem_object_has_struct_page(const struct drm_i915_gem_object *obj)
2349 {
2350 return obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE;
2351 }
2352
2353 static inline unsigned long
2354 i915_gem_object_get_active(const struct drm_i915_gem_object *obj)
2355 {
2356 return (obj->flags >> I915_BO_ACTIVE_SHIFT) & I915_BO_ACTIVE_MASK;
2357 }
2358
2359 static inline bool
2360 i915_gem_object_is_active(const struct drm_i915_gem_object *obj)
2361 {
2362 return i915_gem_object_get_active(obj);
2363 }
2364
2365 static inline void
2366 i915_gem_object_set_active(struct drm_i915_gem_object *obj, int engine)
2367 {
2368 obj->flags |= BIT(engine + I915_BO_ACTIVE_SHIFT);
2369 }
2370
2371 static inline void
2372 i915_gem_object_clear_active(struct drm_i915_gem_object *obj, int engine)
2373 {
2374 obj->flags &= ~BIT(engine + I915_BO_ACTIVE_SHIFT);
2375 }
2376
2377 static inline bool
2378 i915_gem_object_has_active_engine(const struct drm_i915_gem_object *obj,
2379 int engine)
2380 {
2381 return obj->flags & BIT(engine + I915_BO_ACTIVE_SHIFT);
2382 }
2383
2384 static inline unsigned int
2385 i915_gem_object_get_tiling(struct drm_i915_gem_object *obj)
2386 {
2387 return obj->tiling_and_stride & TILING_MASK;
2388 }
2389
2390 static inline bool
2391 i915_gem_object_is_tiled(struct drm_i915_gem_object *obj)
2392 {
2393 return i915_gem_object_get_tiling(obj) != I915_TILING_NONE;
2394 }
2395
2396 static inline unsigned int
2397 i915_gem_object_get_stride(struct drm_i915_gem_object *obj)
2398 {
2399 return obj->tiling_and_stride & STRIDE_MASK;
2400 }
2401
2402 static inline struct i915_vma *i915_vma_get(struct i915_vma *vma)
2403 {
2404 i915_gem_object_get(vma->obj);
2405 return vma;
2406 }
2407
2408 static inline void i915_vma_put(struct i915_vma *vma)
2409 {
2410 lockdep_assert_held(&vma->vm->dev->struct_mutex);
2411 i915_gem_object_put(vma->obj);
2412 }
2413
2414 /*
2415 * Optimised SGL iterator for GEM objects
2416 */
2417 static __always_inline struct sgt_iter {
2418 struct scatterlist *sgp;
2419 union {
2420 unsigned long pfn;
2421 dma_addr_t dma;
2422 };
2423 unsigned int curr;
2424 unsigned int max;
2425 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2426 struct sgt_iter s = { .sgp = sgl };
2427
2428 if (s.sgp) {
2429 s.max = s.curr = s.sgp->offset;
2430 s.max += s.sgp->length;
2431 if (dma)
2432 s.dma = sg_dma_address(s.sgp);
2433 else
2434 s.pfn = page_to_pfn(sg_page(s.sgp));
2435 }
2436
2437 return s;
2438 }
2439
2440 /**
2441 * __sg_next - return the next scatterlist entry in a list
2442 * @sg: The current sg entry
2443 *
2444 * Description:
2445 * If the entry is the last, return NULL; otherwise, step to the next
2446 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2447 * otherwise just return the pointer to the current element.
2448 **/
2449 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2450 {
2451 #ifdef CONFIG_DEBUG_SG
2452 BUG_ON(sg->sg_magic != SG_MAGIC);
2453 #endif
2454 return sg_is_last(sg) ? NULL :
2455 likely(!sg_is_chain(++sg)) ? sg :
2456 sg_chain_ptr(sg);
2457 }
2458
2459 /**
2460 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2461 * @__dmap: DMA address (output)
2462 * @__iter: 'struct sgt_iter' (iterator state, internal)
2463 * @__sgt: sg_table to iterate over (input)
2464 */
2465 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2466 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2467 ((__dmap) = (__iter).dma + (__iter).curr); \
2468 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2469 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2470
2471 /**
2472 * for_each_sgt_page - iterate over the pages of the given sg_table
2473 * @__pp: page pointer (output)
2474 * @__iter: 'struct sgt_iter' (iterator state, internal)
2475 * @__sgt: sg_table to iterate over (input)
2476 */
2477 #define for_each_sgt_page(__pp, __iter, __sgt) \
2478 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2479 ((__pp) = (__iter).pfn == 0 ? NULL : \
2480 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2481 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2482 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2483
2484 /*
2485 * A command that requires special handling by the command parser.
2486 */
2487 struct drm_i915_cmd_descriptor {
2488 /*
2489 * Flags describing how the command parser processes the command.
2490 *
2491 * CMD_DESC_FIXED: The command has a fixed length if this is set,
2492 * a length mask if not set
2493 * CMD_DESC_SKIP: The command is allowed but does not follow the
2494 * standard length encoding for the opcode range in
2495 * which it falls
2496 * CMD_DESC_REJECT: The command is never allowed
2497 * CMD_DESC_REGISTER: The command should be checked against the
2498 * register whitelist for the appropriate ring
2499 * CMD_DESC_MASTER: The command is allowed if the submitting process
2500 * is the DRM master
2501 */
2502 u32 flags;
2503 #define CMD_DESC_FIXED (1<<0)
2504 #define CMD_DESC_SKIP (1<<1)
2505 #define CMD_DESC_REJECT (1<<2)
2506 #define CMD_DESC_REGISTER (1<<3)
2507 #define CMD_DESC_BITMASK (1<<4)
2508 #define CMD_DESC_MASTER (1<<5)
2509
2510 /*
2511 * The command's unique identification bits and the bitmask to get them.
2512 * This isn't strictly the opcode field as defined in the spec and may
2513 * also include type, subtype, and/or subop fields.
2514 */
2515 struct {
2516 u32 value;
2517 u32 mask;
2518 } cmd;
2519
2520 /*
2521 * The command's length. The command is either fixed length (i.e. does
2522 * not include a length field) or has a length field mask. The flag
2523 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
2524 * a length mask. All command entries in a command table must include
2525 * length information.
2526 */
2527 union {
2528 u32 fixed;
2529 u32 mask;
2530 } length;
2531
2532 /*
2533 * Describes where to find a register address in the command to check
2534 * against the ring's register whitelist. Only valid if flags has the
2535 * CMD_DESC_REGISTER bit set.
2536 *
2537 * A non-zero step value implies that the command may access multiple
2538 * registers in sequence (e.g. LRI), in that case step gives the
2539 * distance in dwords between individual offset fields.
2540 */
2541 struct {
2542 u32 offset;
2543 u32 mask;
2544 u32 step;
2545 } reg;
2546
2547 #define MAX_CMD_DESC_BITMASKS 3
2548 /*
2549 * Describes command checks where a particular dword is masked and
2550 * compared against an expected value. If the command does not match
2551 * the expected value, the parser rejects it. Only valid if flags has
2552 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
2553 * are valid.
2554 *
2555 * If the check specifies a non-zero condition_mask then the parser
2556 * only performs the check when the bits specified by condition_mask
2557 * are non-zero.
2558 */
2559 struct {
2560 u32 offset;
2561 u32 mask;
2562 u32 expected;
2563 u32 condition_offset;
2564 u32 condition_mask;
2565 } bits[MAX_CMD_DESC_BITMASKS];
2566 };
2567
2568 /*
2569 * A table of commands requiring special handling by the command parser.
2570 *
2571 * Each engine has an array of tables. Each table consists of an array of
2572 * command descriptors, which must be sorted with command opcodes in
2573 * ascending order.
2574 */
2575 struct drm_i915_cmd_table {
2576 const struct drm_i915_cmd_descriptor *table;
2577 int count;
2578 };
2579
2580 /* Note that the (struct drm_i915_private *) cast is just to shut up gcc. */
2581 #define __I915__(p) ({ \
2582 struct drm_i915_private *__p; \
2583 if (__builtin_types_compatible_p(typeof(*p), struct drm_i915_private)) \
2584 __p = (struct drm_i915_private *)p; \
2585 else if (__builtin_types_compatible_p(typeof(*p), struct drm_device)) \
2586 __p = to_i915((struct drm_device *)p); \
2587 else \
2588 BUILD_BUG(); \
2589 __p; \
2590 })
2591 #define INTEL_INFO(p) (&__I915__(p)->info)
2592 #define INTEL_GEN(p) (INTEL_INFO(p)->gen)
2593 #define INTEL_DEVID(p) (INTEL_INFO(p)->device_id)
2594
2595 #define REVID_FOREVER 0xff
2596 #define INTEL_REVID(p) (__I915__(p)->drm.pdev->revision)
2597
2598 #define GEN_FOREVER (0)
2599 /*
2600 * Returns true if Gen is in inclusive range [Start, End].
2601 *
2602 * Use GEN_FOREVER for unbound start and or end.
2603 */
2604 #define IS_GEN(p, s, e) ({ \
2605 unsigned int __s = (s), __e = (e); \
2606 BUILD_BUG_ON(!__builtin_constant_p(s)); \
2607 BUILD_BUG_ON(!__builtin_constant_p(e)); \
2608 if ((__s) != GEN_FOREVER) \
2609 __s = (s) - 1; \
2610 if ((__e) == GEN_FOREVER) \
2611 __e = BITS_PER_LONG - 1; \
2612 else \
2613 __e = (e) - 1; \
2614 !!(INTEL_INFO(p)->gen_mask & GENMASK((__e), (__s))); \
2615 })
2616
2617 /*
2618 * Return true if revision is in range [since,until] inclusive.
2619 *
2620 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2621 */
2622 #define IS_REVID(p, since, until) \
2623 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2624
2625 #define IS_I830(dev) (INTEL_DEVID(dev) == 0x3577)
2626 #define IS_845G(dev) (INTEL_DEVID(dev) == 0x2562)
2627 #define IS_I85X(dev) (INTEL_INFO(dev)->is_i85x)
2628 #define IS_I865G(dev) (INTEL_DEVID(dev) == 0x2572)
2629 #define IS_I915G(dev) (INTEL_INFO(dev)->is_i915g)
2630 #define IS_I915GM(dev) (INTEL_DEVID(dev) == 0x2592)
2631 #define IS_I945G(dev) (INTEL_DEVID(dev) == 0x2772)
2632 #define IS_I945GM(dev) (INTEL_INFO(dev)->is_i945gm)
2633 #define IS_BROADWATER(dev) (INTEL_INFO(dev)->is_broadwater)
2634 #define IS_CRESTLINE(dev) (INTEL_INFO(dev)->is_crestline)
2635 #define IS_GM45(dev) (INTEL_DEVID(dev) == 0x2A42)
2636 #define IS_G4X(dev) (INTEL_INFO(dev)->is_g4x)
2637 #define IS_PINEVIEW_G(dev) (INTEL_DEVID(dev) == 0xa001)
2638 #define IS_PINEVIEW_M(dev) (INTEL_DEVID(dev) == 0xa011)
2639 #define IS_PINEVIEW(dev) (INTEL_INFO(dev)->is_pineview)
2640 #define IS_G33(dev) (INTEL_INFO(dev)->is_g33)
2641 #define IS_IRONLAKE_M(dev) (INTEL_DEVID(dev) == 0x0046)
2642 #define IS_IVYBRIDGE(dev) (INTEL_INFO(dev)->is_ivybridge)
2643 #define IS_IVB_GT1(dev) (INTEL_DEVID(dev) == 0x0156 || \
2644 INTEL_DEVID(dev) == 0x0152 || \
2645 INTEL_DEVID(dev) == 0x015a)
2646 #define IS_VALLEYVIEW(dev) (INTEL_INFO(dev)->is_valleyview)
2647 #define IS_CHERRYVIEW(dev) (INTEL_INFO(dev)->is_cherryview)
2648 #define IS_HASWELL(dev) (INTEL_INFO(dev)->is_haswell)
2649 #define IS_BROADWELL(dev) (INTEL_INFO(dev)->is_broadwell)
2650 #define IS_SKYLAKE(dev) (INTEL_INFO(dev)->is_skylake)
2651 #define IS_BROXTON(dev) (INTEL_INFO(dev)->is_broxton)
2652 #define IS_KABYLAKE(dev) (INTEL_INFO(dev)->is_kabylake)
2653 #define IS_MOBILE(dev) (INTEL_INFO(dev)->is_mobile)
2654 #define IS_HSW_EARLY_SDV(dev) (IS_HASWELL(dev) && \
2655 (INTEL_DEVID(dev) & 0xFF00) == 0x0C00)
2656 #define IS_BDW_ULT(dev) (IS_BROADWELL(dev) && \
2657 ((INTEL_DEVID(dev) & 0xf) == 0x6 || \
2658 (INTEL_DEVID(dev) & 0xf) == 0xb || \
2659 (INTEL_DEVID(dev) & 0xf) == 0xe))
2660 /* ULX machines are also considered ULT. */
2661 #define IS_BDW_ULX(dev) (IS_BROADWELL(dev) && \
2662 (INTEL_DEVID(dev) & 0xf) == 0xe)
2663 #define IS_BDW_GT3(dev) (IS_BROADWELL(dev) && \
2664 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2665 #define IS_HSW_ULT(dev) (IS_HASWELL(dev) && \
2666 (INTEL_DEVID(dev) & 0xFF00) == 0x0A00)
2667 #define IS_HSW_GT3(dev) (IS_HASWELL(dev) && \
2668 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2669 /* ULX machines are also considered ULT. */
2670 #define IS_HSW_ULX(dev) (INTEL_DEVID(dev) == 0x0A0E || \
2671 INTEL_DEVID(dev) == 0x0A1E)
2672 #define IS_SKL_ULT(dev) (INTEL_DEVID(dev) == 0x1906 || \
2673 INTEL_DEVID(dev) == 0x1913 || \
2674 INTEL_DEVID(dev) == 0x1916 || \
2675 INTEL_DEVID(dev) == 0x1921 || \
2676 INTEL_DEVID(dev) == 0x1926)
2677 #define IS_SKL_ULX(dev) (INTEL_DEVID(dev) == 0x190E || \
2678 INTEL_DEVID(dev) == 0x1915 || \
2679 INTEL_DEVID(dev) == 0x191E)
2680 #define IS_KBL_ULT(dev) (INTEL_DEVID(dev) == 0x5906 || \
2681 INTEL_DEVID(dev) == 0x5913 || \
2682 INTEL_DEVID(dev) == 0x5916 || \
2683 INTEL_DEVID(dev) == 0x5921 || \
2684 INTEL_DEVID(dev) == 0x5926)
2685 #define IS_KBL_ULX(dev) (INTEL_DEVID(dev) == 0x590E || \
2686 INTEL_DEVID(dev) == 0x5915 || \
2687 INTEL_DEVID(dev) == 0x591E)
2688 #define IS_SKL_GT3(dev) (IS_SKYLAKE(dev) && \
2689 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2690 #define IS_SKL_GT4(dev) (IS_SKYLAKE(dev) && \
2691 (INTEL_DEVID(dev) & 0x00F0) == 0x0030)
2692
2693 #define IS_PRELIMINARY_HW(intel_info) ((intel_info)->is_preliminary)
2694
2695 #define SKL_REVID_A0 0x0
2696 #define SKL_REVID_B0 0x1
2697 #define SKL_REVID_C0 0x2
2698 #define SKL_REVID_D0 0x3
2699 #define SKL_REVID_E0 0x4
2700 #define SKL_REVID_F0 0x5
2701 #define SKL_REVID_G0 0x6
2702 #define SKL_REVID_H0 0x7
2703
2704 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2705
2706 #define BXT_REVID_A0 0x0
2707 #define BXT_REVID_A1 0x1
2708 #define BXT_REVID_B0 0x3
2709 #define BXT_REVID_C0 0x9
2710
2711 #define IS_BXT_REVID(p, since, until) (IS_BROXTON(p) && IS_REVID(p, since, until))
2712
2713 #define KBL_REVID_A0 0x0
2714 #define KBL_REVID_B0 0x1
2715 #define KBL_REVID_C0 0x2
2716 #define KBL_REVID_D0 0x3
2717 #define KBL_REVID_E0 0x4
2718
2719 #define IS_KBL_REVID(p, since, until) \
2720 (IS_KABYLAKE(p) && IS_REVID(p, since, until))
2721
2722 /*
2723 * The genX designation typically refers to the render engine, so render
2724 * capability related checks should use IS_GEN, while display and other checks
2725 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2726 * chips, etc.).
2727 */
2728 #define IS_GEN2(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(1)))
2729 #define IS_GEN3(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(2)))
2730 #define IS_GEN4(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(3)))
2731 #define IS_GEN5(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(4)))
2732 #define IS_GEN6(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(5)))
2733 #define IS_GEN7(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(6)))
2734 #define IS_GEN8(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(7)))
2735 #define IS_GEN9(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(8)))
2736
2737 #define ENGINE_MASK(id) BIT(id)
2738 #define RENDER_RING ENGINE_MASK(RCS)
2739 #define BSD_RING ENGINE_MASK(VCS)
2740 #define BLT_RING ENGINE_MASK(BCS)
2741 #define VEBOX_RING ENGINE_MASK(VECS)
2742 #define BSD2_RING ENGINE_MASK(VCS2)
2743 #define ALL_ENGINES (~0)
2744
2745 #define HAS_ENGINE(dev_priv, id) \
2746 (!!(INTEL_INFO(dev_priv)->ring_mask & ENGINE_MASK(id)))
2747
2748 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
2749 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
2750 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
2751 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
2752
2753 #define HAS_LLC(dev) (INTEL_INFO(dev)->has_llc)
2754 #define HAS_SNOOP(dev) (INTEL_INFO(dev)->has_snoop)
2755 #define HAS_EDRAM(dev) (!!(__I915__(dev)->edram_cap & EDRAM_ENABLED))
2756 #define HAS_WT(dev) ((IS_HASWELL(dev) || IS_BROADWELL(dev)) && \
2757 HAS_EDRAM(dev))
2758 #define HWS_NEEDS_PHYSICAL(dev) (INTEL_INFO(dev)->hws_needs_physical)
2759
2760 #define HAS_HW_CONTEXTS(dev) (INTEL_INFO(dev)->has_hw_contexts)
2761 #define HAS_LOGICAL_RING_CONTEXTS(dev) (INTEL_INFO(dev)->has_logical_ring_contexts)
2762 #define USES_PPGTT(dev) (i915.enable_ppgtt)
2763 #define USES_FULL_PPGTT(dev) (i915.enable_ppgtt >= 2)
2764 #define USES_FULL_48BIT_PPGTT(dev) (i915.enable_ppgtt == 3)
2765
2766 #define HAS_OVERLAY(dev) (INTEL_INFO(dev)->has_overlay)
2767 #define OVERLAY_NEEDS_PHYSICAL(dev) (INTEL_INFO(dev)->overlay_needs_physical)
2768
2769 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2770 #define HAS_BROKEN_CS_TLB(dev) (IS_I830(dev) || IS_845G(dev))
2771
2772 /* WaRsDisableCoarsePowerGating:skl,bxt */
2773 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2774 (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) || \
2775 IS_SKL_GT3(dev_priv) || \
2776 IS_SKL_GT4(dev_priv))
2777
2778 /*
2779 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2780 * even when in MSI mode. This results in spurious interrupt warnings if the
2781 * legacy irq no. is shared with another device. The kernel then disables that
2782 * interrupt source and so prevents the other device from working properly.
2783 */
2784 #define HAS_AUX_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2785 #define HAS_GMBUS_IRQ(dev) (INTEL_INFO(dev)->has_gmbus_irq)
2786
2787 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2788 * rows, which changed the alignment requirements and fence programming.
2789 */
2790 #define HAS_128_BYTE_Y_TILING(dev) (!IS_GEN2(dev) && !(IS_I915G(dev) || \
2791 IS_I915GM(dev)))
2792 #define SUPPORTS_TV(dev) (INTEL_INFO(dev)->supports_tv)
2793 #define I915_HAS_HOTPLUG(dev) (INTEL_INFO(dev)->has_hotplug)
2794
2795 #define HAS_FW_BLC(dev) (INTEL_INFO(dev)->gen > 2)
2796 #define HAS_PIPE_CXSR(dev) (INTEL_INFO(dev)->has_pipe_cxsr)
2797 #define HAS_FBC(dev) (INTEL_INFO(dev)->has_fbc)
2798
2799 #define HAS_IPS(dev) (IS_HSW_ULT(dev) || IS_BROADWELL(dev))
2800
2801 #define HAS_DP_MST(dev) (INTEL_INFO(dev)->has_dp_mst)
2802
2803 #define HAS_DDI(dev) (INTEL_INFO(dev)->has_ddi)
2804 #define HAS_FPGA_DBG_UNCLAIMED(dev) (INTEL_INFO(dev)->has_fpga_dbg)
2805 #define HAS_PSR(dev) (INTEL_INFO(dev)->has_psr)
2806 #define HAS_RUNTIME_PM(dev) (INTEL_INFO(dev)->has_runtime_pm)
2807 #define HAS_RC6(dev) (INTEL_INFO(dev)->has_rc6)
2808 #define HAS_RC6p(dev) (INTEL_INFO(dev)->has_rc6p)
2809
2810 #define HAS_CSR(dev) (INTEL_INFO(dev)->has_csr)
2811
2812 /*
2813 * For now, anything with a GuC requires uCode loading, and then supports
2814 * command submission once loaded. But these are logically independent
2815 * properties, so we have separate macros to test them.
2816 */
2817 #define HAS_GUC(dev) (INTEL_INFO(dev)->has_guc)
2818 #define HAS_GUC_UCODE(dev) (HAS_GUC(dev))
2819 #define HAS_GUC_SCHED(dev) (HAS_GUC(dev))
2820
2821 #define HAS_RESOURCE_STREAMER(dev) (INTEL_INFO(dev)->has_resource_streamer)
2822
2823 #define HAS_POOLED_EU(dev) (INTEL_INFO(dev)->has_pooled_eu)
2824
2825 #define INTEL_PCH_DEVICE_ID_MASK 0xff00
2826 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
2827 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
2828 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
2829 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
2830 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
2831 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
2832 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
2833 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA200
2834 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
2835 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
2836 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
2837
2838 #define INTEL_PCH_TYPE(dev) (__I915__(dev)->pch_type)
2839 #define HAS_PCH_KBP(dev) (INTEL_PCH_TYPE(dev) == PCH_KBP)
2840 #define HAS_PCH_SPT(dev) (INTEL_PCH_TYPE(dev) == PCH_SPT)
2841 #define HAS_PCH_LPT(dev) (INTEL_PCH_TYPE(dev) == PCH_LPT)
2842 #define HAS_PCH_LPT_LP(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
2843 #define HAS_PCH_LPT_H(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE)
2844 #define HAS_PCH_CPT(dev) (INTEL_PCH_TYPE(dev) == PCH_CPT)
2845 #define HAS_PCH_IBX(dev) (INTEL_PCH_TYPE(dev) == PCH_IBX)
2846 #define HAS_PCH_NOP(dev) (INTEL_PCH_TYPE(dev) == PCH_NOP)
2847 #define HAS_PCH_SPLIT(dev) (INTEL_PCH_TYPE(dev) != PCH_NONE)
2848
2849 #define HAS_GMCH_DISPLAY(dev) (INTEL_INFO(dev)->has_gmch_display)
2850
2851 /* DPF == dynamic parity feature */
2852 #define HAS_L3_DPF(dev) (INTEL_INFO(dev)->has_l3_dpf)
2853 #define NUM_L3_SLICES(dev) (IS_HSW_GT3(dev) ? 2 : HAS_L3_DPF(dev))
2854
2855 #define GT_FREQUENCY_MULTIPLIER 50
2856 #define GEN9_FREQ_SCALER 3
2857
2858 #include "i915_trace.h"
2859
2860 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2861 {
2862 #ifdef CONFIG_INTEL_IOMMU
2863 if (INTEL_GEN(dev_priv) >= 6 && intel_iommu_gfx_mapped)
2864 return true;
2865 #endif
2866 return false;
2867 }
2868
2869 extern int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
2870 extern int i915_resume_switcheroo(struct drm_device *dev);
2871
2872 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
2873 int enable_ppgtt);
2874
2875 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
2876
2877 /* i915_drv.c */
2878 void __printf(3, 4)
2879 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2880 const char *fmt, ...);
2881
2882 #define i915_report_error(dev_priv, fmt, ...) \
2883 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2884
2885 #ifdef CONFIG_COMPAT
2886 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2887 unsigned long arg);
2888 #endif
2889 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
2890 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
2891 extern void i915_reset(struct drm_i915_private *dev_priv);
2892 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
2893 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2894 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2895 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2896 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2897 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2898 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2899
2900 /* intel_hotplug.c */
2901 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2902 u32 pin_mask, u32 long_mask);
2903 void intel_hpd_init(struct drm_i915_private *dev_priv);
2904 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2905 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2906 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
2907 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2908 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2909
2910 /* i915_irq.c */
2911 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2912 {
2913 unsigned long delay;
2914
2915 if (unlikely(!i915.enable_hangcheck))
2916 return;
2917
2918 /* Don't continually defer the hangcheck so that it is always run at
2919 * least once after work has been scheduled on any ring. Otherwise,
2920 * we will ignore a hung ring if a second ring is kept busy.
2921 */
2922
2923 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2924 queue_delayed_work(system_long_wq,
2925 &dev_priv->gpu_error.hangcheck_work, delay);
2926 }
2927
2928 __printf(3, 4)
2929 void i915_handle_error(struct drm_i915_private *dev_priv,
2930 u32 engine_mask,
2931 const char *fmt, ...);
2932
2933 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2934 int intel_irq_install(struct drm_i915_private *dev_priv);
2935 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2936
2937 extern void intel_uncore_sanitize(struct drm_i915_private *dev_priv);
2938 extern void intel_uncore_early_sanitize(struct drm_i915_private *dev_priv,
2939 bool restore_forcewake);
2940 extern void intel_uncore_init(struct drm_i915_private *dev_priv);
2941 extern bool intel_uncore_unclaimed_mmio(struct drm_i915_private *dev_priv);
2942 extern bool intel_uncore_arm_unclaimed_mmio_detection(struct drm_i915_private *dev_priv);
2943 extern void intel_uncore_fini(struct drm_i915_private *dev_priv);
2944 extern void intel_uncore_forcewake_reset(struct drm_i915_private *dev_priv,
2945 bool restore);
2946 const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id);
2947 void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv,
2948 enum forcewake_domains domains);
2949 void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv,
2950 enum forcewake_domains domains);
2951 /* Like above but the caller must manage the uncore.lock itself.
2952 * Must be used with I915_READ_FW and friends.
2953 */
2954 void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv,
2955 enum forcewake_domains domains);
2956 void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv,
2957 enum forcewake_domains domains);
2958 u64 intel_uncore_edram_size(struct drm_i915_private *dev_priv);
2959
2960 void assert_forcewakes_inactive(struct drm_i915_private *dev_priv);
2961
2962 int intel_wait_for_register(struct drm_i915_private *dev_priv,
2963 i915_reg_t reg,
2964 const u32 mask,
2965 const u32 value,
2966 const unsigned long timeout_ms);
2967 int intel_wait_for_register_fw(struct drm_i915_private *dev_priv,
2968 i915_reg_t reg,
2969 const u32 mask,
2970 const u32 value,
2971 const unsigned long timeout_ms);
2972
2973 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
2974 {
2975 return dev_priv->gvt.initialized;
2976 }
2977
2978 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
2979 {
2980 return dev_priv->vgpu.active;
2981 }
2982
2983 void
2984 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2985 u32 status_mask);
2986
2987 void
2988 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2989 u32 status_mask);
2990
2991 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
2992 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
2993 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
2994 uint32_t mask,
2995 uint32_t bits);
2996 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
2997 uint32_t interrupt_mask,
2998 uint32_t enabled_irq_mask);
2999 static inline void
3000 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3001 {
3002 ilk_update_display_irq(dev_priv, bits, bits);
3003 }
3004 static inline void
3005 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3006 {
3007 ilk_update_display_irq(dev_priv, bits, 0);
3008 }
3009 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3010 enum pipe pipe,
3011 uint32_t interrupt_mask,
3012 uint32_t enabled_irq_mask);
3013 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3014 enum pipe pipe, uint32_t bits)
3015 {
3016 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3017 }
3018 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3019 enum pipe pipe, uint32_t bits)
3020 {
3021 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3022 }
3023 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3024 uint32_t interrupt_mask,
3025 uint32_t enabled_irq_mask);
3026 static inline void
3027 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3028 {
3029 ibx_display_interrupt_update(dev_priv, bits, bits);
3030 }
3031 static inline void
3032 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3033 {
3034 ibx_display_interrupt_update(dev_priv, bits, 0);
3035 }
3036
3037 /* i915_gem.c */
3038 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3039 struct drm_file *file_priv);
3040 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3041 struct drm_file *file_priv);
3042 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3043 struct drm_file *file_priv);
3044 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3045 struct drm_file *file_priv);
3046 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3047 struct drm_file *file_priv);
3048 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3049 struct drm_file *file_priv);
3050 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3051 struct drm_file *file_priv);
3052 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3053 struct drm_file *file_priv);
3054 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3055 struct drm_file *file_priv);
3056 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3057 struct drm_file *file_priv);
3058 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3059 struct drm_file *file);
3060 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3061 struct drm_file *file);
3062 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3063 struct drm_file *file_priv);
3064 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3065 struct drm_file *file_priv);
3066 int i915_gem_set_tiling(struct drm_device *dev, void *data,
3067 struct drm_file *file_priv);
3068 int i915_gem_get_tiling(struct drm_device *dev, void *data,
3069 struct drm_file *file_priv);
3070 void i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3071 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3072 struct drm_file *file);
3073 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3074 struct drm_file *file_priv);
3075 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3076 struct drm_file *file_priv);
3077 void i915_gem_load_init(struct drm_device *dev);
3078 void i915_gem_load_cleanup(struct drm_device *dev);
3079 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3080 int i915_gem_freeze(struct drm_i915_private *dev_priv);
3081 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3082
3083 void *i915_gem_object_alloc(struct drm_device *dev);
3084 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3085 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3086 const struct drm_i915_gem_object_ops *ops);
3087 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
3088 size_t size);
3089 struct drm_i915_gem_object *i915_gem_object_create_from_data(
3090 struct drm_device *dev, const void *data, size_t size);
3091 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3092 void i915_gem_free_object(struct drm_gem_object *obj);
3093
3094 struct i915_vma * __must_check
3095 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3096 const struct i915_ggtt_view *view,
3097 u64 size,
3098 u64 alignment,
3099 u64 flags);
3100
3101 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3102 u32 flags);
3103 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma);
3104 int __must_check i915_vma_unbind(struct i915_vma *vma);
3105 void i915_vma_close(struct i915_vma *vma);
3106 void i915_vma_destroy(struct i915_vma *vma);
3107
3108 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3109 int i915_gem_object_put_pages(struct drm_i915_gem_object *obj);
3110 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv);
3111 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3112
3113 int __must_check i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3114
3115 static inline int __sg_page_count(struct scatterlist *sg)
3116 {
3117 return sg->length >> PAGE_SHIFT;
3118 }
3119
3120 struct page *
3121 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n);
3122
3123 static inline dma_addr_t
3124 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, int n)
3125 {
3126 if (n < obj->get_page.last) {
3127 obj->get_page.sg = obj->pages->sgl;
3128 obj->get_page.last = 0;
3129 }
3130
3131 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
3132 obj->get_page.last += __sg_page_count(obj->get_page.sg++);
3133 if (unlikely(sg_is_chain(obj->get_page.sg)))
3134 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
3135 }
3136
3137 return sg_dma_address(obj->get_page.sg) + ((n - obj->get_page.last) << PAGE_SHIFT);
3138 }
3139
3140 static inline struct page *
3141 i915_gem_object_get_page(struct drm_i915_gem_object *obj, int n)
3142 {
3143 if (WARN_ON(n >= obj->base.size >> PAGE_SHIFT))
3144 return NULL;
3145
3146 if (n < obj->get_page.last) {
3147 obj->get_page.sg = obj->pages->sgl;
3148 obj->get_page.last = 0;
3149 }
3150
3151 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
3152 obj->get_page.last += __sg_page_count(obj->get_page.sg++);
3153 if (unlikely(sg_is_chain(obj->get_page.sg)))
3154 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
3155 }
3156
3157 return nth_page(sg_page(obj->get_page.sg), n - obj->get_page.last);
3158 }
3159
3160 static inline void i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3161 {
3162 BUG_ON(obj->pages == NULL);
3163 obj->pages_pin_count++;
3164 }
3165
3166 static inline void i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3167 {
3168 BUG_ON(obj->pages_pin_count == 0);
3169 obj->pages_pin_count--;
3170 }
3171
3172 enum i915_map_type {
3173 I915_MAP_WB = 0,
3174 I915_MAP_WC,
3175 };
3176
3177 /**
3178 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3179 * @obj - the object to map into kernel address space
3180 * @type - the type of mapping, used to select pgprot_t
3181 *
3182 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3183 * pages and then returns a contiguous mapping of the backing storage into
3184 * the kernel address space. Based on the @type of mapping, the PTE will be
3185 * set to either WriteBack or WriteCombine (via pgprot_t).
3186 *
3187 * The caller must hold the struct_mutex, and is responsible for calling
3188 * i915_gem_object_unpin_map() when the mapping is no longer required.
3189 *
3190 * Returns the pointer through which to access the mapped object, or an
3191 * ERR_PTR() on error.
3192 */
3193 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3194 enum i915_map_type type);
3195
3196 /**
3197 * i915_gem_object_unpin_map - releases an earlier mapping
3198 * @obj - the object to unmap
3199 *
3200 * After pinning the object and mapping its pages, once you are finished
3201 * with your access, call i915_gem_object_unpin_map() to release the pin
3202 * upon the mapping. Once the pin count reaches zero, that mapping may be
3203 * removed.
3204 *
3205 * The caller must hold the struct_mutex.
3206 */
3207 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3208 {
3209 lockdep_assert_held(&obj->base.dev->struct_mutex);
3210 i915_gem_object_unpin_pages(obj);
3211 }
3212
3213 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3214 unsigned int *needs_clflush);
3215 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3216 unsigned int *needs_clflush);
3217 #define CLFLUSH_BEFORE 0x1
3218 #define CLFLUSH_AFTER 0x2
3219 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER)
3220
3221 static inline void
3222 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3223 {
3224 i915_gem_object_unpin_pages(obj);
3225 }
3226
3227 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3228 void i915_vma_move_to_active(struct i915_vma *vma,
3229 struct drm_i915_gem_request *req,
3230 unsigned int flags);
3231 int i915_gem_dumb_create(struct drm_file *file_priv,
3232 struct drm_device *dev,
3233 struct drm_mode_create_dumb *args);
3234 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3235 uint32_t handle, uint64_t *offset);
3236 int i915_gem_mmap_gtt_version(void);
3237
3238 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3239 struct drm_i915_gem_object *new,
3240 unsigned frontbuffer_bits);
3241
3242 int __must_check i915_gem_set_seqno(struct drm_device *dev, u32 seqno);
3243
3244 struct drm_i915_gem_request *
3245 i915_gem_find_active_request(struct intel_engine_cs *engine);
3246
3247 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3248
3249 static inline bool i915_reset_in_progress(struct i915_gpu_error *error)
3250 {
3251 return unlikely(test_bit(I915_RESET_IN_PROGRESS, &error->flags));
3252 }
3253
3254 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3255 {
3256 return unlikely(test_bit(I915_WEDGED, &error->flags));
3257 }
3258
3259 static inline bool i915_reset_in_progress_or_wedged(struct i915_gpu_error *error)
3260 {
3261 return i915_reset_in_progress(error) | i915_terminally_wedged(error);
3262 }
3263
3264 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3265 {
3266 return READ_ONCE(error->reset_count);
3267 }
3268
3269 void i915_gem_reset(struct drm_i915_private *dev_priv);
3270 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3271 bool i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force);
3272 int __must_check i915_gem_init(struct drm_device *dev);
3273 int __must_check i915_gem_init_hw(struct drm_device *dev);
3274 void i915_gem_init_swizzling(struct drm_device *dev);
3275 void i915_gem_cleanup_engines(struct drm_device *dev);
3276 int __must_check i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3277 unsigned int flags);
3278 int __must_check i915_gem_suspend(struct drm_device *dev);
3279 void i915_gem_resume(struct drm_device *dev);
3280 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf);
3281 int __must_check
3282 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
3283 bool readonly);
3284 int __must_check
3285 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj,
3286 bool write);
3287 int __must_check
3288 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3289 struct i915_vma * __must_check
3290 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3291 u32 alignment,
3292 const struct i915_ggtt_view *view);
3293 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3294 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3295 int align);
3296 int i915_gem_open(struct drm_device *dev, struct drm_file *file);
3297 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3298
3299 u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv, u64 size,
3300 int tiling_mode);
3301 u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
3302 int tiling_mode, bool fenced);
3303
3304 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3305 enum i915_cache_level cache_level);
3306
3307 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3308 struct dma_buf *dma_buf);
3309
3310 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3311 struct drm_gem_object *gem_obj, int flags);
3312
3313 struct i915_vma *
3314 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
3315 struct i915_address_space *vm,
3316 const struct i915_ggtt_view *view);
3317
3318 struct i915_vma *
3319 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3320 struct i915_address_space *vm,
3321 const struct i915_ggtt_view *view);
3322
3323 static inline struct i915_hw_ppgtt *
3324 i915_vm_to_ppgtt(struct i915_address_space *vm)
3325 {
3326 return container_of(vm, struct i915_hw_ppgtt, base);
3327 }
3328
3329 static inline struct i915_vma *
3330 i915_gem_object_to_ggtt(struct drm_i915_gem_object *obj,
3331 const struct i915_ggtt_view *view)
3332 {
3333 return i915_gem_obj_to_vma(obj, &to_i915(obj->base.dev)->ggtt.base, view);
3334 }
3335
3336 static inline unsigned long
3337 i915_gem_object_ggtt_offset(struct drm_i915_gem_object *o,
3338 const struct i915_ggtt_view *view)
3339 {
3340 return i915_ggtt_offset(i915_gem_object_to_ggtt(o, view));
3341 }
3342
3343 /* i915_gem_fence.c */
3344 int __must_check i915_vma_get_fence(struct i915_vma *vma);
3345 int __must_check i915_vma_put_fence(struct i915_vma *vma);
3346
3347 /**
3348 * i915_vma_pin_fence - pin fencing state
3349 * @vma: vma to pin fencing for
3350 *
3351 * This pins the fencing state (whether tiled or untiled) to make sure the
3352 * vma (and its object) is ready to be used as a scanout target. Fencing
3353 * status must be synchronize first by calling i915_vma_get_fence():
3354 *
3355 * The resulting fence pin reference must be released again with
3356 * i915_vma_unpin_fence().
3357 *
3358 * Returns:
3359 *
3360 * True if the vma has a fence, false otherwise.
3361 */
3362 static inline bool
3363 i915_vma_pin_fence(struct i915_vma *vma)
3364 {
3365 if (vma->fence) {
3366 vma->fence->pin_count++;
3367 return true;
3368 } else
3369 return false;
3370 }
3371
3372 /**
3373 * i915_vma_unpin_fence - unpin fencing state
3374 * @vma: vma to unpin fencing for
3375 *
3376 * This releases the fence pin reference acquired through
3377 * i915_vma_pin_fence. It will handle both objects with and without an
3378 * attached fence correctly, callers do not need to distinguish this.
3379 */
3380 static inline void
3381 i915_vma_unpin_fence(struct i915_vma *vma)
3382 {
3383 if (vma->fence) {
3384 GEM_BUG_ON(vma->fence->pin_count <= 0);
3385 vma->fence->pin_count--;
3386 }
3387 }
3388
3389 void i915_gem_restore_fences(struct drm_device *dev);
3390
3391 void i915_gem_detect_bit_6_swizzle(struct drm_device *dev);
3392 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj);
3393 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj);
3394
3395 /* i915_gem_context.c */
3396 int __must_check i915_gem_context_init(struct drm_device *dev);
3397 void i915_gem_context_lost(struct drm_i915_private *dev_priv);
3398 void i915_gem_context_fini(struct drm_device *dev);
3399 int i915_gem_context_open(struct drm_device *dev, struct drm_file *file);
3400 void i915_gem_context_close(struct drm_device *dev, struct drm_file *file);
3401 int i915_switch_context(struct drm_i915_gem_request *req);
3402 int i915_gem_switch_to_kernel_context(struct drm_i915_private *dev_priv);
3403 void i915_gem_context_free(struct kref *ctx_ref);
3404 struct drm_i915_gem_object *
3405 i915_gem_alloc_context_obj(struct drm_device *dev, size_t size);
3406 struct i915_gem_context *
3407 i915_gem_context_create_gvt(struct drm_device *dev);
3408
3409 static inline struct i915_gem_context *
3410 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3411 {
3412 struct i915_gem_context *ctx;
3413
3414 lockdep_assert_held(&file_priv->dev_priv->drm.struct_mutex);
3415
3416 ctx = idr_find(&file_priv->context_idr, id);
3417 if (!ctx)
3418 return ERR_PTR(-ENOENT);
3419
3420 return ctx;
3421 }
3422
3423 static inline struct i915_gem_context *
3424 i915_gem_context_get(struct i915_gem_context *ctx)
3425 {
3426 kref_get(&ctx->ref);
3427 return ctx;
3428 }
3429
3430 static inline void i915_gem_context_put(struct i915_gem_context *ctx)
3431 {
3432 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
3433 kref_put(&ctx->ref, i915_gem_context_free);
3434 }
3435
3436 static inline bool i915_gem_context_is_default(const struct i915_gem_context *c)
3437 {
3438 return c->user_handle == DEFAULT_CONTEXT_HANDLE;
3439 }
3440
3441 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
3442 struct drm_file *file);
3443 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
3444 struct drm_file *file);
3445 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
3446 struct drm_file *file_priv);
3447 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
3448 struct drm_file *file_priv);
3449 int i915_gem_context_reset_stats_ioctl(struct drm_device *dev, void *data,
3450 struct drm_file *file);
3451
3452 /* i915_gem_evict.c */
3453 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3454 u64 min_size, u64 alignment,
3455 unsigned cache_level,
3456 u64 start, u64 end,
3457 unsigned flags);
3458 int __must_check i915_gem_evict_for_vma(struct i915_vma *target);
3459 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle);
3460
3461 /* belongs in i915_gem_gtt.h */
3462 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3463 {
3464 wmb();
3465 if (INTEL_GEN(dev_priv) < 6)
3466 intel_gtt_chipset_flush();
3467 }
3468
3469 /* i915_gem_stolen.c */
3470 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3471 struct drm_mm_node *node, u64 size,
3472 unsigned alignment);
3473 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3474 struct drm_mm_node *node, u64 size,
3475 unsigned alignment, u64 start,
3476 u64 end);
3477 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3478 struct drm_mm_node *node);
3479 int i915_gem_init_stolen(struct drm_device *dev);
3480 void i915_gem_cleanup_stolen(struct drm_device *dev);
3481 struct drm_i915_gem_object *
3482 i915_gem_object_create_stolen(struct drm_device *dev, u32 size);
3483 struct drm_i915_gem_object *
3484 i915_gem_object_create_stolen_for_preallocated(struct drm_device *dev,
3485 u32 stolen_offset,
3486 u32 gtt_offset,
3487 u32 size);
3488
3489 /* i915_gem_shrinker.c */
3490 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3491 unsigned long target,
3492 unsigned flags);
3493 #define I915_SHRINK_PURGEABLE 0x1
3494 #define I915_SHRINK_UNBOUND 0x2
3495 #define I915_SHRINK_BOUND 0x4
3496 #define I915_SHRINK_ACTIVE 0x8
3497 #define I915_SHRINK_VMAPS 0x10
3498 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3499 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3500 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3501
3502
3503 /* i915_gem_tiling.c */
3504 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3505 {
3506 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3507
3508 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3509 i915_gem_object_is_tiled(obj);
3510 }
3511
3512 /* i915_debugfs.c */
3513 #ifdef CONFIG_DEBUG_FS
3514 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3515 void i915_debugfs_unregister(struct drm_i915_private *dev_priv);
3516 int i915_debugfs_connector_add(struct drm_connector *connector);
3517 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3518 #else
3519 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3520 static inline void i915_debugfs_unregister(struct drm_i915_private *dev_priv) {}
3521 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3522 { return 0; }
3523 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3524 #endif
3525
3526 /* i915_gpu_error.c */
3527 __printf(2, 3)
3528 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3529 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3530 const struct i915_error_state_file_priv *error);
3531 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3532 struct drm_i915_private *i915,
3533 size_t count, loff_t pos);
3534 static inline void i915_error_state_buf_release(
3535 struct drm_i915_error_state_buf *eb)
3536 {
3537 kfree(eb->buf);
3538 }
3539 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3540 u32 engine_mask,
3541 const char *error_msg);
3542 void i915_error_state_get(struct drm_device *dev,
3543 struct i915_error_state_file_priv *error_priv);
3544 void i915_error_state_put(struct i915_error_state_file_priv *error_priv);
3545 void i915_destroy_error_state(struct drm_device *dev);
3546
3547 void i915_get_engine_instdone(struct drm_i915_private *dev_priv,
3548 enum intel_engine_id engine_id,
3549 struct intel_instdone *instdone);
3550 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3551
3552 /* i915_cmd_parser.c */
3553 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3554 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3555 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3556 bool intel_engine_needs_cmd_parser(struct intel_engine_cs *engine);
3557 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3558 struct drm_i915_gem_object *batch_obj,
3559 struct drm_i915_gem_object *shadow_batch_obj,
3560 u32 batch_start_offset,
3561 u32 batch_len,
3562 bool is_master);
3563
3564 /* i915_suspend.c */
3565 extern int i915_save_state(struct drm_device *dev);
3566 extern int i915_restore_state(struct drm_device *dev);
3567
3568 /* i915_sysfs.c */
3569 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3570 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3571
3572 /* intel_i2c.c */
3573 extern int intel_setup_gmbus(struct drm_device *dev);
3574 extern void intel_teardown_gmbus(struct drm_device *dev);
3575 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3576 unsigned int pin);
3577
3578 extern struct i2c_adapter *
3579 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3580 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3581 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3582 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3583 {
3584 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3585 }
3586 extern void intel_i2c_reset(struct drm_device *dev);
3587
3588 /* intel_bios.c */
3589 int intel_bios_init(struct drm_i915_private *dev_priv);
3590 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3591 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3592 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3593 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3594 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3595 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3596 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3597 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3598 enum port port);
3599
3600 /* intel_opregion.c */
3601 #ifdef CONFIG_ACPI
3602 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3603 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3604 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3605 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3606 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3607 bool enable);
3608 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3609 pci_power_t state);
3610 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3611 #else
3612 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3613 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3614 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3615 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3616 {
3617 }
3618 static inline int
3619 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3620 {
3621 return 0;
3622 }
3623 static inline int
3624 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3625 {
3626 return 0;
3627 }
3628 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3629 {
3630 return -ENODEV;
3631 }
3632 #endif
3633
3634 /* intel_acpi.c */
3635 #ifdef CONFIG_ACPI
3636 extern void intel_register_dsm_handler(void);
3637 extern void intel_unregister_dsm_handler(void);
3638 #else
3639 static inline void intel_register_dsm_handler(void) { return; }
3640 static inline void intel_unregister_dsm_handler(void) { return; }
3641 #endif /* CONFIG_ACPI */
3642
3643 /* intel_device_info.c */
3644 static inline struct intel_device_info *
3645 mkwrite_device_info(struct drm_i915_private *dev_priv)
3646 {
3647 return (struct intel_device_info *)&dev_priv->info;
3648 }
3649
3650 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
3651 void intel_device_info_dump(struct drm_i915_private *dev_priv);
3652
3653 /* modesetting */
3654 extern void intel_modeset_init_hw(struct drm_device *dev);
3655 extern void intel_modeset_init(struct drm_device *dev);
3656 extern void intel_modeset_gem_init(struct drm_device *dev);
3657 extern void intel_modeset_cleanup(struct drm_device *dev);
3658 extern int intel_connector_register(struct drm_connector *);
3659 extern void intel_connector_unregister(struct drm_connector *);
3660 extern int intel_modeset_vga_set_state(struct drm_device *dev, bool state);
3661 extern void intel_display_resume(struct drm_device *dev);
3662 extern void i915_redisable_vga(struct drm_device *dev);
3663 extern void i915_redisable_vga_power_on(struct drm_device *dev);
3664 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3665 extern void intel_init_pch_refclk(struct drm_device *dev);
3666 extern void intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3667 extern void intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3668 bool enable);
3669
3670 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3671 struct drm_file *file);
3672
3673 /* overlay */
3674 extern struct intel_overlay_error_state *
3675 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3676 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3677 struct intel_overlay_error_state *error);
3678
3679 extern struct intel_display_error_state *
3680 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3681 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3682 struct drm_device *dev,
3683 struct intel_display_error_state *error);
3684
3685 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3686 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3687
3688 /* intel_sideband.c */
3689 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3690 void vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3691 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3692 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3693 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3694 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3695 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3696 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3697 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3698 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3699 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3700 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3701 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3702 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3703 enum intel_sbi_destination destination);
3704 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3705 enum intel_sbi_destination destination);
3706 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3707 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3708
3709 /* intel_dpio_phy.c */
3710 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3711 u32 deemph_reg_value, u32 margin_reg_value,
3712 bool uniq_trans_scale);
3713 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3714 bool reset);
3715 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
3716 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3717 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3718 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
3719
3720 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3721 u32 demph_reg_value, u32 preemph_reg_value,
3722 u32 uniqtranscale_reg_value, u32 tx3_demph);
3723 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
3724 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3725 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
3726
3727 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3728 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3729
3730 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3731 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3732
3733 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3734 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3735 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3736 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3737
3738 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3739 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3740 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3741 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3742
3743 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3744 * will be implemented using 2 32-bit writes in an arbitrary order with
3745 * an arbitrary delay between them. This can cause the hardware to
3746 * act upon the intermediate value, possibly leading to corruption and
3747 * machine death. For this reason we do not support I915_WRITE64, or
3748 * dev_priv->uncore.funcs.mmio_writeq.
3749 *
3750 * When reading a 64-bit value as two 32-bit values, the delay may cause
3751 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
3752 * occasionally a 64-bit register does not actualy support a full readq
3753 * and must be read using two 32-bit reads.
3754 *
3755 * You have been warned.
3756 */
3757 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3758
3759 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
3760 u32 upper, lower, old_upper, loop = 0; \
3761 upper = I915_READ(upper_reg); \
3762 do { \
3763 old_upper = upper; \
3764 lower = I915_READ(lower_reg); \
3765 upper = I915_READ(upper_reg); \
3766 } while (upper != old_upper && loop++ < 2); \
3767 (u64)upper << 32 | lower; })
3768
3769 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
3770 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
3771
3772 #define __raw_read(x, s) \
3773 static inline uint##x##_t __raw_i915_read##x(struct drm_i915_private *dev_priv, \
3774 i915_reg_t reg) \
3775 { \
3776 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3777 }
3778
3779 #define __raw_write(x, s) \
3780 static inline void __raw_i915_write##x(struct drm_i915_private *dev_priv, \
3781 i915_reg_t reg, uint##x##_t val) \
3782 { \
3783 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3784 }
3785 __raw_read(8, b)
3786 __raw_read(16, w)
3787 __raw_read(32, l)
3788 __raw_read(64, q)
3789
3790 __raw_write(8, b)
3791 __raw_write(16, w)
3792 __raw_write(32, l)
3793 __raw_write(64, q)
3794
3795 #undef __raw_read
3796 #undef __raw_write
3797
3798 /* These are untraced mmio-accessors that are only valid to be used inside
3799 * critical sections inside IRQ handlers where forcewake is explicitly
3800 * controlled.
3801 * Think twice, and think again, before using these.
3802 * Note: Should only be used between intel_uncore_forcewake_irqlock() and
3803 * intel_uncore_forcewake_irqunlock().
3804 */
3805 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3806 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3807 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3808 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3809
3810 /* "Broadcast RGB" property */
3811 #define INTEL_BROADCAST_RGB_AUTO 0
3812 #define INTEL_BROADCAST_RGB_FULL 1
3813 #define INTEL_BROADCAST_RGB_LIMITED 2
3814
3815 static inline i915_reg_t i915_vgacntrl_reg(struct drm_device *dev)
3816 {
3817 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
3818 return VLV_VGACNTRL;
3819 else if (INTEL_INFO(dev)->gen >= 5)
3820 return CPU_VGACNTRL;
3821 else
3822 return VGACNTRL;
3823 }
3824
3825 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3826 {
3827 unsigned long j = msecs_to_jiffies(m);
3828
3829 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3830 }
3831
3832 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3833 {
3834 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3835 }
3836
3837 static inline unsigned long
3838 timespec_to_jiffies_timeout(const struct timespec *value)
3839 {
3840 unsigned long j = timespec_to_jiffies(value);
3841
3842 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3843 }
3844
3845 /*
3846 * If you need to wait X milliseconds between events A and B, but event B
3847 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3848 * when event A happened, then just before event B you call this function and
3849 * pass the timestamp as the first argument, and X as the second argument.
3850 */
3851 static inline void
3852 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3853 {
3854 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3855
3856 /*
3857 * Don't re-read the value of "jiffies" every time since it may change
3858 * behind our back and break the math.
3859 */
3860 tmp_jiffies = jiffies;
3861 target_jiffies = timestamp_jiffies +
3862 msecs_to_jiffies_timeout(to_wait_ms);
3863
3864 if (time_after(target_jiffies, tmp_jiffies)) {
3865 remaining_jiffies = target_jiffies - tmp_jiffies;
3866 while (remaining_jiffies)
3867 remaining_jiffies =
3868 schedule_timeout_uninterruptible(remaining_jiffies);
3869 }
3870 }
3871
3872 static inline bool
3873 __i915_request_irq_complete(struct drm_i915_gem_request *req)
3874 {
3875 struct intel_engine_cs *engine = req->engine;
3876
3877 /* Before we do the heavier coherent read of the seqno,
3878 * check the value (hopefully) in the CPU cacheline.
3879 */
3880 if (i915_gem_request_completed(req))
3881 return true;
3882
3883 /* Ensure our read of the seqno is coherent so that we
3884 * do not "miss an interrupt" (i.e. if this is the last
3885 * request and the seqno write from the GPU is not visible
3886 * by the time the interrupt fires, we will see that the
3887 * request is incomplete and go back to sleep awaiting
3888 * another interrupt that will never come.)
3889 *
3890 * Strictly, we only need to do this once after an interrupt,
3891 * but it is easier and safer to do it every time the waiter
3892 * is woken.
3893 */
3894 if (engine->irq_seqno_barrier &&
3895 rcu_access_pointer(engine->breadcrumbs.irq_seqno_bh) == current &&
3896 cmpxchg_relaxed(&engine->breadcrumbs.irq_posted, 1, 0)) {
3897 struct task_struct *tsk;
3898
3899 /* The ordering of irq_posted versus applying the barrier
3900 * is crucial. The clearing of the current irq_posted must
3901 * be visible before we perform the barrier operation,
3902 * such that if a subsequent interrupt arrives, irq_posted
3903 * is reasserted and our task rewoken (which causes us to
3904 * do another __i915_request_irq_complete() immediately
3905 * and reapply the barrier). Conversely, if the clear
3906 * occurs after the barrier, then an interrupt that arrived
3907 * whilst we waited on the barrier would not trigger a
3908 * barrier on the next pass, and the read may not see the
3909 * seqno update.
3910 */
3911 engine->irq_seqno_barrier(engine);
3912
3913 /* If we consume the irq, but we are no longer the bottom-half,
3914 * the real bottom-half may not have serialised their own
3915 * seqno check with the irq-barrier (i.e. may have inspected
3916 * the seqno before we believe it coherent since they see
3917 * irq_posted == false but we are still running).
3918 */
3919 rcu_read_lock();
3920 tsk = rcu_dereference(engine->breadcrumbs.irq_seqno_bh);
3921 if (tsk && tsk != current)
3922 /* Note that if the bottom-half is changed as we
3923 * are sending the wake-up, the new bottom-half will
3924 * be woken by whomever made the change. We only have
3925 * to worry about when we steal the irq-posted for
3926 * ourself.
3927 */
3928 wake_up_process(tsk);
3929 rcu_read_unlock();
3930
3931 if (i915_gem_request_completed(req))
3932 return true;
3933 }
3934
3935 return false;
3936 }
3937
3938 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
3939 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
3940
3941 /* i915_mm.c */
3942 int remap_io_mapping(struct vm_area_struct *vma,
3943 unsigned long addr, unsigned long pfn, unsigned long size,
3944 struct io_mapping *iomap);
3945
3946 #define ptr_mask_bits(ptr) ({ \
3947 unsigned long __v = (unsigned long)(ptr); \
3948 (typeof(ptr))(__v & PAGE_MASK); \
3949 })
3950
3951 #define ptr_unpack_bits(ptr, bits) ({ \
3952 unsigned long __v = (unsigned long)(ptr); \
3953 (bits) = __v & ~PAGE_MASK; \
3954 (typeof(ptr))(__v & PAGE_MASK); \
3955 })
3956
3957 #define ptr_pack_bits(ptr, bits) \
3958 ((typeof(ptr))((unsigned long)(ptr) | (bits)))
3959
3960 #define fetch_and_zero(ptr) ({ \
3961 typeof(*ptr) __T = *(ptr); \
3962 *(ptr) = (typeof(*ptr))0; \
3963 __T; \
3964 })
3965
3966 #endif