]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.h
drm/i915: always disable irqs in intel_pipe_update_start
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include "i915_reg.h"
37 #include "intel_bios.h"
38 #include "intel_ringbuffer.h"
39 #include "intel_lrc.h"
40 #include "i915_gem_gtt.h"
41 #include "i915_gem_render_state.h"
42 #include <linux/io-mapping.h>
43 #include <linux/i2c.h>
44 #include <linux/i2c-algo-bit.h>
45 #include <drm/intel-gtt.h>
46 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
47 #include <drm/drm_gem.h>
48 #include <linux/backlight.h>
49 #include <linux/hashtable.h>
50 #include <linux/intel-iommu.h>
51 #include <linux/kref.h>
52 #include <linux/pm_qos.h>
53
54 /* General customization:
55 */
56
57 #define DRIVER_NAME "i915"
58 #define DRIVER_DESC "Intel Graphics"
59 #define DRIVER_DATE "20150703"
60
61 #undef WARN_ON
62 /* Many gcc seem to no see through this and fall over :( */
63 #if 0
64 #define WARN_ON(x) ({ \
65 bool __i915_warn_cond = (x); \
66 if (__builtin_constant_p(__i915_warn_cond)) \
67 BUILD_BUG_ON(__i915_warn_cond); \
68 WARN(__i915_warn_cond, "WARN_ON(" #x ")"); })
69 #else
70 #define WARN_ON(x) WARN((x), "WARN_ON(" #x ")")
71 #endif
72
73 #undef WARN_ON_ONCE
74 #define WARN_ON_ONCE(x) WARN_ONCE((x), "WARN_ON_ONCE(" #x ")")
75
76 #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \
77 (long) (x), __func__);
78
79 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
80 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
81 * which may not necessarily be a user visible problem. This will either
82 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
83 * enable distros and users to tailor their preferred amount of i915 abrt
84 * spam.
85 */
86 #define I915_STATE_WARN(condition, format...) ({ \
87 int __ret_warn_on = !!(condition); \
88 if (unlikely(__ret_warn_on)) { \
89 if (i915.verbose_state_checks) \
90 WARN(1, format); \
91 else \
92 DRM_ERROR(format); \
93 } \
94 unlikely(__ret_warn_on); \
95 })
96
97 #define I915_STATE_WARN_ON(condition) ({ \
98 int __ret_warn_on = !!(condition); \
99 if (unlikely(__ret_warn_on)) { \
100 if (i915.verbose_state_checks) \
101 WARN(1, "WARN_ON(" #condition ")\n"); \
102 else \
103 DRM_ERROR("WARN_ON(" #condition ")\n"); \
104 } \
105 unlikely(__ret_warn_on); \
106 })
107
108 enum pipe {
109 INVALID_PIPE = -1,
110 PIPE_A = 0,
111 PIPE_B,
112 PIPE_C,
113 _PIPE_EDP,
114 I915_MAX_PIPES = _PIPE_EDP
115 };
116 #define pipe_name(p) ((p) + 'A')
117
118 enum transcoder {
119 TRANSCODER_A = 0,
120 TRANSCODER_B,
121 TRANSCODER_C,
122 TRANSCODER_EDP,
123 I915_MAX_TRANSCODERS
124 };
125 #define transcoder_name(t) ((t) + 'A')
126
127 /*
128 * This is the maximum (across all platforms) number of planes (primary +
129 * sprites) that can be active at the same time on one pipe.
130 *
131 * This value doesn't count the cursor plane.
132 */
133 #define I915_MAX_PLANES 4
134
135 enum plane {
136 PLANE_A = 0,
137 PLANE_B,
138 PLANE_C,
139 };
140 #define plane_name(p) ((p) + 'A')
141
142 #define sprite_name(p, s) ((p) * INTEL_INFO(dev)->num_sprites[(p)] + (s) + 'A')
143
144 enum port {
145 PORT_A = 0,
146 PORT_B,
147 PORT_C,
148 PORT_D,
149 PORT_E,
150 I915_MAX_PORTS
151 };
152 #define port_name(p) ((p) + 'A')
153
154 #define I915_NUM_PHYS_VLV 2
155
156 enum dpio_channel {
157 DPIO_CH0,
158 DPIO_CH1
159 };
160
161 enum dpio_phy {
162 DPIO_PHY0,
163 DPIO_PHY1
164 };
165
166 enum intel_display_power_domain {
167 POWER_DOMAIN_PIPE_A,
168 POWER_DOMAIN_PIPE_B,
169 POWER_DOMAIN_PIPE_C,
170 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
171 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
172 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
173 POWER_DOMAIN_TRANSCODER_A,
174 POWER_DOMAIN_TRANSCODER_B,
175 POWER_DOMAIN_TRANSCODER_C,
176 POWER_DOMAIN_TRANSCODER_EDP,
177 POWER_DOMAIN_PORT_DDI_A_2_LANES,
178 POWER_DOMAIN_PORT_DDI_A_4_LANES,
179 POWER_DOMAIN_PORT_DDI_B_2_LANES,
180 POWER_DOMAIN_PORT_DDI_B_4_LANES,
181 POWER_DOMAIN_PORT_DDI_C_2_LANES,
182 POWER_DOMAIN_PORT_DDI_C_4_LANES,
183 POWER_DOMAIN_PORT_DDI_D_2_LANES,
184 POWER_DOMAIN_PORT_DDI_D_4_LANES,
185 POWER_DOMAIN_PORT_DSI,
186 POWER_DOMAIN_PORT_CRT,
187 POWER_DOMAIN_PORT_OTHER,
188 POWER_DOMAIN_VGA,
189 POWER_DOMAIN_AUDIO,
190 POWER_DOMAIN_PLLS,
191 POWER_DOMAIN_AUX_A,
192 POWER_DOMAIN_AUX_B,
193 POWER_DOMAIN_AUX_C,
194 POWER_DOMAIN_AUX_D,
195 POWER_DOMAIN_INIT,
196
197 POWER_DOMAIN_NUM,
198 };
199
200 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
201 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
202 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
203 #define POWER_DOMAIN_TRANSCODER(tran) \
204 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
205 (tran) + POWER_DOMAIN_TRANSCODER_A)
206
207 enum hpd_pin {
208 HPD_NONE = 0,
209 HPD_PORT_A = HPD_NONE, /* PORT_A is internal */
210 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
211 HPD_CRT,
212 HPD_SDVO_B,
213 HPD_SDVO_C,
214 HPD_PORT_B,
215 HPD_PORT_C,
216 HPD_PORT_D,
217 HPD_NUM_PINS
218 };
219
220 #define for_each_hpd_pin(__pin) \
221 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
222
223 struct i915_hotplug {
224 struct work_struct hotplug_work;
225
226 struct {
227 unsigned long last_jiffies;
228 int count;
229 enum {
230 HPD_ENABLED = 0,
231 HPD_DISABLED = 1,
232 HPD_MARK_DISABLED = 2
233 } state;
234 } stats[HPD_NUM_PINS];
235 u32 event_bits;
236 struct delayed_work reenable_work;
237
238 struct intel_digital_port *irq_port[I915_MAX_PORTS];
239 u32 long_port_mask;
240 u32 short_port_mask;
241 struct work_struct dig_port_work;
242
243 /*
244 * if we get a HPD irq from DP and a HPD irq from non-DP
245 * the non-DP HPD could block the workqueue on a mode config
246 * mutex getting, that userspace may have taken. However
247 * userspace is waiting on the DP workqueue to run which is
248 * blocked behind the non-DP one.
249 */
250 struct workqueue_struct *dp_wq;
251 };
252
253 #define I915_GEM_GPU_DOMAINS \
254 (I915_GEM_DOMAIN_RENDER | \
255 I915_GEM_DOMAIN_SAMPLER | \
256 I915_GEM_DOMAIN_COMMAND | \
257 I915_GEM_DOMAIN_INSTRUCTION | \
258 I915_GEM_DOMAIN_VERTEX)
259
260 #define for_each_pipe(__dev_priv, __p) \
261 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
262 #define for_each_plane(__dev_priv, __pipe, __p) \
263 for ((__p) = 0; \
264 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
265 (__p)++)
266 #define for_each_sprite(__dev_priv, __p, __s) \
267 for ((__s) = 0; \
268 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
269 (__s)++)
270
271 #define for_each_crtc(dev, crtc) \
272 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
273
274 #define for_each_intel_plane(dev, intel_plane) \
275 list_for_each_entry(intel_plane, \
276 &dev->mode_config.plane_list, \
277 base.head)
278
279 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
280 list_for_each_entry(intel_plane, \
281 &(dev)->mode_config.plane_list, \
282 base.head) \
283 if ((intel_plane)->pipe == (intel_crtc)->pipe)
284
285 #define for_each_intel_crtc(dev, intel_crtc) \
286 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head)
287
288 #define for_each_intel_encoder(dev, intel_encoder) \
289 list_for_each_entry(intel_encoder, \
290 &(dev)->mode_config.encoder_list, \
291 base.head)
292
293 #define for_each_intel_connector(dev, intel_connector) \
294 list_for_each_entry(intel_connector, \
295 &dev->mode_config.connector_list, \
296 base.head)
297
298 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
299 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
300 if ((intel_encoder)->base.crtc == (__crtc))
301
302 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
303 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
304 if ((intel_connector)->base.encoder == (__encoder))
305
306 #define for_each_power_domain(domain, mask) \
307 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
308 if ((1 << (domain)) & (mask))
309
310 struct drm_i915_private;
311 struct i915_mm_struct;
312 struct i915_mmu_object;
313
314 struct drm_i915_file_private {
315 struct drm_i915_private *dev_priv;
316 struct drm_file *file;
317
318 struct {
319 spinlock_t lock;
320 struct list_head request_list;
321 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
322 * chosen to prevent the CPU getting more than a frame ahead of the GPU
323 * (when using lax throttling for the frontbuffer). We also use it to
324 * offer free GPU waitboosts for severely congested workloads.
325 */
326 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
327 } mm;
328 struct idr context_idr;
329
330 struct intel_rps_client {
331 struct list_head link;
332 unsigned boosts;
333 } rps;
334
335 struct intel_engine_cs *bsd_ring;
336 };
337
338 enum intel_dpll_id {
339 DPLL_ID_PRIVATE = -1, /* non-shared dpll in use */
340 /* real shared dpll ids must be >= 0 */
341 DPLL_ID_PCH_PLL_A = 0,
342 DPLL_ID_PCH_PLL_B = 1,
343 /* hsw/bdw */
344 DPLL_ID_WRPLL1 = 0,
345 DPLL_ID_WRPLL2 = 1,
346 /* skl */
347 DPLL_ID_SKL_DPLL1 = 0,
348 DPLL_ID_SKL_DPLL2 = 1,
349 DPLL_ID_SKL_DPLL3 = 2,
350 };
351 #define I915_NUM_PLLS 3
352
353 struct intel_dpll_hw_state {
354 /* i9xx, pch plls */
355 uint32_t dpll;
356 uint32_t dpll_md;
357 uint32_t fp0;
358 uint32_t fp1;
359
360 /* hsw, bdw */
361 uint32_t wrpll;
362
363 /* skl */
364 /*
365 * DPLL_CTRL1 has 6 bits for each each this DPLL. We store those in
366 * lower part of ctrl1 and they get shifted into position when writing
367 * the register. This allows us to easily compare the state to share
368 * the DPLL.
369 */
370 uint32_t ctrl1;
371 /* HDMI only, 0 when used for DP */
372 uint32_t cfgcr1, cfgcr2;
373
374 /* bxt */
375 uint32_t ebb0, ebb4, pll0, pll1, pll2, pll3, pll6, pll8, pll9, pll10,
376 pcsdw12;
377 };
378
379 struct intel_shared_dpll_config {
380 unsigned crtc_mask; /* mask of CRTCs sharing this PLL */
381 struct intel_dpll_hw_state hw_state;
382 };
383
384 struct intel_shared_dpll {
385 struct intel_shared_dpll_config config;
386
387 int active; /* count of number of active CRTCs (i.e. DPMS on) */
388 bool on; /* is the PLL actually active? Disabled during modeset */
389 const char *name;
390 /* should match the index in the dev_priv->shared_dplls array */
391 enum intel_dpll_id id;
392 /* The mode_set hook is optional and should be used together with the
393 * intel_prepare_shared_dpll function. */
394 void (*mode_set)(struct drm_i915_private *dev_priv,
395 struct intel_shared_dpll *pll);
396 void (*enable)(struct drm_i915_private *dev_priv,
397 struct intel_shared_dpll *pll);
398 void (*disable)(struct drm_i915_private *dev_priv,
399 struct intel_shared_dpll *pll);
400 bool (*get_hw_state)(struct drm_i915_private *dev_priv,
401 struct intel_shared_dpll *pll,
402 struct intel_dpll_hw_state *hw_state);
403 };
404
405 #define SKL_DPLL0 0
406 #define SKL_DPLL1 1
407 #define SKL_DPLL2 2
408 #define SKL_DPLL3 3
409
410 /* Used by dp and fdi links */
411 struct intel_link_m_n {
412 uint32_t tu;
413 uint32_t gmch_m;
414 uint32_t gmch_n;
415 uint32_t link_m;
416 uint32_t link_n;
417 };
418
419 void intel_link_compute_m_n(int bpp, int nlanes,
420 int pixel_clock, int link_clock,
421 struct intel_link_m_n *m_n);
422
423 /* Interface history:
424 *
425 * 1.1: Original.
426 * 1.2: Add Power Management
427 * 1.3: Add vblank support
428 * 1.4: Fix cmdbuffer path, add heap destroy
429 * 1.5: Add vblank pipe configuration
430 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
431 * - Support vertical blank on secondary display pipe
432 */
433 #define DRIVER_MAJOR 1
434 #define DRIVER_MINOR 6
435 #define DRIVER_PATCHLEVEL 0
436
437 #define WATCH_LISTS 0
438
439 struct opregion_header;
440 struct opregion_acpi;
441 struct opregion_swsci;
442 struct opregion_asle;
443
444 struct intel_opregion {
445 struct opregion_header __iomem *header;
446 struct opregion_acpi __iomem *acpi;
447 struct opregion_swsci __iomem *swsci;
448 u32 swsci_gbda_sub_functions;
449 u32 swsci_sbcb_sub_functions;
450 struct opregion_asle __iomem *asle;
451 void __iomem *vbt;
452 u32 __iomem *lid_state;
453 struct work_struct asle_work;
454 };
455 #define OPREGION_SIZE (8*1024)
456
457 struct intel_overlay;
458 struct intel_overlay_error_state;
459
460 #define I915_FENCE_REG_NONE -1
461 #define I915_MAX_NUM_FENCES 32
462 /* 32 fences + sign bit for FENCE_REG_NONE */
463 #define I915_MAX_NUM_FENCE_BITS 6
464
465 struct drm_i915_fence_reg {
466 struct list_head lru_list;
467 struct drm_i915_gem_object *obj;
468 int pin_count;
469 };
470
471 struct sdvo_device_mapping {
472 u8 initialized;
473 u8 dvo_port;
474 u8 slave_addr;
475 u8 dvo_wiring;
476 u8 i2c_pin;
477 u8 ddc_pin;
478 };
479
480 struct intel_display_error_state;
481
482 struct drm_i915_error_state {
483 struct kref ref;
484 struct timeval time;
485
486 char error_msg[128];
487 u32 reset_count;
488 u32 suspend_count;
489
490 /* Generic register state */
491 u32 eir;
492 u32 pgtbl_er;
493 u32 ier;
494 u32 gtier[4];
495 u32 ccid;
496 u32 derrmr;
497 u32 forcewake;
498 u32 error; /* gen6+ */
499 u32 err_int; /* gen7 */
500 u32 fault_data0; /* gen8, gen9 */
501 u32 fault_data1; /* gen8, gen9 */
502 u32 done_reg;
503 u32 gac_eco;
504 u32 gam_ecochk;
505 u32 gab_ctl;
506 u32 gfx_mode;
507 u32 extra_instdone[I915_NUM_INSTDONE_REG];
508 u64 fence[I915_MAX_NUM_FENCES];
509 struct intel_overlay_error_state *overlay;
510 struct intel_display_error_state *display;
511 struct drm_i915_error_object *semaphore_obj;
512
513 struct drm_i915_error_ring {
514 bool valid;
515 /* Software tracked state */
516 bool waiting;
517 int hangcheck_score;
518 enum intel_ring_hangcheck_action hangcheck_action;
519 int num_requests;
520
521 /* our own tracking of ring head and tail */
522 u32 cpu_ring_head;
523 u32 cpu_ring_tail;
524
525 u32 semaphore_seqno[I915_NUM_RINGS - 1];
526
527 /* Register state */
528 u32 start;
529 u32 tail;
530 u32 head;
531 u32 ctl;
532 u32 hws;
533 u32 ipeir;
534 u32 ipehr;
535 u32 instdone;
536 u32 bbstate;
537 u32 instpm;
538 u32 instps;
539 u32 seqno;
540 u64 bbaddr;
541 u64 acthd;
542 u32 fault_reg;
543 u64 faddr;
544 u32 rc_psmi; /* sleep state */
545 u32 semaphore_mboxes[I915_NUM_RINGS - 1];
546
547 struct drm_i915_error_object {
548 int page_count;
549 u32 gtt_offset;
550 u32 *pages[0];
551 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
552
553 struct drm_i915_error_request {
554 long jiffies;
555 u32 seqno;
556 u32 tail;
557 } *requests;
558
559 struct {
560 u32 gfx_mode;
561 union {
562 u64 pdp[4];
563 u32 pp_dir_base;
564 };
565 } vm_info;
566
567 pid_t pid;
568 char comm[TASK_COMM_LEN];
569 } ring[I915_NUM_RINGS];
570
571 struct drm_i915_error_buffer {
572 u32 size;
573 u32 name;
574 u32 rseqno[I915_NUM_RINGS], wseqno;
575 u32 gtt_offset;
576 u32 read_domains;
577 u32 write_domain;
578 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
579 s32 pinned:2;
580 u32 tiling:2;
581 u32 dirty:1;
582 u32 purgeable:1;
583 u32 userptr:1;
584 s32 ring:4;
585 u32 cache_level:3;
586 } **active_bo, **pinned_bo;
587
588 u32 *active_bo_count, *pinned_bo_count;
589 u32 vm_count;
590 };
591
592 struct intel_connector;
593 struct intel_encoder;
594 struct intel_crtc_state;
595 struct intel_initial_plane_config;
596 struct intel_crtc;
597 struct intel_limit;
598 struct dpll;
599
600 struct drm_i915_display_funcs {
601 int (*get_display_clock_speed)(struct drm_device *dev);
602 int (*get_fifo_size)(struct drm_device *dev, int plane);
603 /**
604 * find_dpll() - Find the best values for the PLL
605 * @limit: limits for the PLL
606 * @crtc: current CRTC
607 * @target: target frequency in kHz
608 * @refclk: reference clock frequency in kHz
609 * @match_clock: if provided, @best_clock P divider must
610 * match the P divider from @match_clock
611 * used for LVDS downclocking
612 * @best_clock: best PLL values found
613 *
614 * Returns true on success, false on failure.
615 */
616 bool (*find_dpll)(const struct intel_limit *limit,
617 struct intel_crtc_state *crtc_state,
618 int target, int refclk,
619 struct dpll *match_clock,
620 struct dpll *best_clock);
621 void (*update_wm)(struct drm_crtc *crtc);
622 void (*update_sprite_wm)(struct drm_plane *plane,
623 struct drm_crtc *crtc,
624 uint32_t sprite_width, uint32_t sprite_height,
625 int pixel_size, bool enable, bool scaled);
626 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
627 void (*modeset_commit_cdclk)(struct drm_atomic_state *state);
628 /* Returns the active state of the crtc, and if the crtc is active,
629 * fills out the pipe-config with the hw state. */
630 bool (*get_pipe_config)(struct intel_crtc *,
631 struct intel_crtc_state *);
632 void (*get_initial_plane_config)(struct intel_crtc *,
633 struct intel_initial_plane_config *);
634 int (*crtc_compute_clock)(struct intel_crtc *crtc,
635 struct intel_crtc_state *crtc_state);
636 void (*crtc_enable)(struct drm_crtc *crtc);
637 void (*crtc_disable)(struct drm_crtc *crtc);
638 void (*audio_codec_enable)(struct drm_connector *connector,
639 struct intel_encoder *encoder,
640 struct drm_display_mode *mode);
641 void (*audio_codec_disable)(struct intel_encoder *encoder);
642 void (*fdi_link_train)(struct drm_crtc *crtc);
643 void (*init_clock_gating)(struct drm_device *dev);
644 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc,
645 struct drm_framebuffer *fb,
646 struct drm_i915_gem_object *obj,
647 struct drm_i915_gem_request *req,
648 uint32_t flags);
649 void (*update_primary_plane)(struct drm_crtc *crtc,
650 struct drm_framebuffer *fb,
651 int x, int y);
652 void (*hpd_irq_setup)(struct drm_device *dev);
653 /* clock updates for mode set */
654 /* cursor updates */
655 /* render clock increase/decrease */
656 /* display clock increase/decrease */
657 /* pll clock increase/decrease */
658
659 int (*setup_backlight)(struct intel_connector *connector, enum pipe pipe);
660 uint32_t (*get_backlight)(struct intel_connector *connector);
661 void (*set_backlight)(struct intel_connector *connector,
662 uint32_t level);
663 void (*disable_backlight)(struct intel_connector *connector);
664 void (*enable_backlight)(struct intel_connector *connector);
665 };
666
667 enum forcewake_domain_id {
668 FW_DOMAIN_ID_RENDER = 0,
669 FW_DOMAIN_ID_BLITTER,
670 FW_DOMAIN_ID_MEDIA,
671
672 FW_DOMAIN_ID_COUNT
673 };
674
675 enum forcewake_domains {
676 FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER),
677 FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER),
678 FORCEWAKE_MEDIA = (1 << FW_DOMAIN_ID_MEDIA),
679 FORCEWAKE_ALL = (FORCEWAKE_RENDER |
680 FORCEWAKE_BLITTER |
681 FORCEWAKE_MEDIA)
682 };
683
684 struct intel_uncore_funcs {
685 void (*force_wake_get)(struct drm_i915_private *dev_priv,
686 enum forcewake_domains domains);
687 void (*force_wake_put)(struct drm_i915_private *dev_priv,
688 enum forcewake_domains domains);
689
690 uint8_t (*mmio_readb)(struct drm_i915_private *dev_priv, off_t offset, bool trace);
691 uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, off_t offset, bool trace);
692 uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, off_t offset, bool trace);
693 uint64_t (*mmio_readq)(struct drm_i915_private *dev_priv, off_t offset, bool trace);
694
695 void (*mmio_writeb)(struct drm_i915_private *dev_priv, off_t offset,
696 uint8_t val, bool trace);
697 void (*mmio_writew)(struct drm_i915_private *dev_priv, off_t offset,
698 uint16_t val, bool trace);
699 void (*mmio_writel)(struct drm_i915_private *dev_priv, off_t offset,
700 uint32_t val, bool trace);
701 void (*mmio_writeq)(struct drm_i915_private *dev_priv, off_t offset,
702 uint64_t val, bool trace);
703 };
704
705 struct intel_uncore {
706 spinlock_t lock; /** lock is also taken in irq contexts. */
707
708 struct intel_uncore_funcs funcs;
709
710 unsigned fifo_count;
711 enum forcewake_domains fw_domains;
712
713 struct intel_uncore_forcewake_domain {
714 struct drm_i915_private *i915;
715 enum forcewake_domain_id id;
716 unsigned wake_count;
717 struct timer_list timer;
718 u32 reg_set;
719 u32 val_set;
720 u32 val_clear;
721 u32 reg_ack;
722 u32 reg_post;
723 u32 val_reset;
724 } fw_domain[FW_DOMAIN_ID_COUNT];
725 };
726
727 /* Iterate over initialised fw domains */
728 #define for_each_fw_domain_mask(domain__, mask__, dev_priv__, i__) \
729 for ((i__) = 0, (domain__) = &(dev_priv__)->uncore.fw_domain[0]; \
730 (i__) < FW_DOMAIN_ID_COUNT; \
731 (i__)++, (domain__) = &(dev_priv__)->uncore.fw_domain[i__]) \
732 if (((mask__) & (dev_priv__)->uncore.fw_domains) & (1 << (i__)))
733
734 #define for_each_fw_domain(domain__, dev_priv__, i__) \
735 for_each_fw_domain_mask(domain__, FORCEWAKE_ALL, dev_priv__, i__)
736
737 enum csr_state {
738 FW_UNINITIALIZED = 0,
739 FW_LOADED,
740 FW_FAILED
741 };
742
743 struct intel_csr {
744 const char *fw_path;
745 __be32 *dmc_payload;
746 uint32_t dmc_fw_size;
747 uint32_t mmio_count;
748 uint32_t mmioaddr[8];
749 uint32_t mmiodata[8];
750 enum csr_state state;
751 };
752
753 #define DEV_INFO_FOR_EACH_FLAG(func, sep) \
754 func(is_mobile) sep \
755 func(is_i85x) sep \
756 func(is_i915g) sep \
757 func(is_i945gm) sep \
758 func(is_g33) sep \
759 func(need_gfx_hws) sep \
760 func(is_g4x) sep \
761 func(is_pineview) sep \
762 func(is_broadwater) sep \
763 func(is_crestline) sep \
764 func(is_ivybridge) sep \
765 func(is_valleyview) sep \
766 func(is_haswell) sep \
767 func(is_skylake) sep \
768 func(is_preliminary) sep \
769 func(has_fbc) sep \
770 func(has_pipe_cxsr) sep \
771 func(has_hotplug) sep \
772 func(cursor_needs_physical) sep \
773 func(has_overlay) sep \
774 func(overlay_needs_physical) sep \
775 func(supports_tv) sep \
776 func(has_llc) sep \
777 func(has_ddi) sep \
778 func(has_fpga_dbg)
779
780 #define DEFINE_FLAG(name) u8 name:1
781 #define SEP_SEMICOLON ;
782
783 struct intel_device_info {
784 u32 display_mmio_offset;
785 u16 device_id;
786 u8 num_pipes:3;
787 u8 num_sprites[I915_MAX_PIPES];
788 u8 gen;
789 u8 ring_mask; /* Rings supported by the HW */
790 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG, SEP_SEMICOLON);
791 /* Register offsets for the various display pipes and transcoders */
792 int pipe_offsets[I915_MAX_TRANSCODERS];
793 int trans_offsets[I915_MAX_TRANSCODERS];
794 int palette_offsets[I915_MAX_PIPES];
795 int cursor_offsets[I915_MAX_PIPES];
796
797 /* Slice/subslice/EU info */
798 u8 slice_total;
799 u8 subslice_total;
800 u8 subslice_per_slice;
801 u8 eu_total;
802 u8 eu_per_subslice;
803 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
804 u8 subslice_7eu[3];
805 u8 has_slice_pg:1;
806 u8 has_subslice_pg:1;
807 u8 has_eu_pg:1;
808 };
809
810 #undef DEFINE_FLAG
811 #undef SEP_SEMICOLON
812
813 enum i915_cache_level {
814 I915_CACHE_NONE = 0,
815 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
816 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
817 caches, eg sampler/render caches, and the
818 large Last-Level-Cache. LLC is coherent with
819 the CPU, but L3 is only visible to the GPU. */
820 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
821 };
822
823 struct i915_ctx_hang_stats {
824 /* This context had batch pending when hang was declared */
825 unsigned batch_pending;
826
827 /* This context had batch active when hang was declared */
828 unsigned batch_active;
829
830 /* Time when this context was last blamed for a GPU reset */
831 unsigned long guilty_ts;
832
833 /* If the contexts causes a second GPU hang within this time,
834 * it is permanently banned from submitting any more work.
835 */
836 unsigned long ban_period_seconds;
837
838 /* This context is banned to submit more work */
839 bool banned;
840 };
841
842 /* This must match up with the value previously used for execbuf2.rsvd1. */
843 #define DEFAULT_CONTEXT_HANDLE 0
844
845 #define CONTEXT_NO_ZEROMAP (1<<0)
846 /**
847 * struct intel_context - as the name implies, represents a context.
848 * @ref: reference count.
849 * @user_handle: userspace tracking identity for this context.
850 * @remap_slice: l3 row remapping information.
851 * @flags: context specific flags:
852 * CONTEXT_NO_ZEROMAP: do not allow mapping things to page 0.
853 * @file_priv: filp associated with this context (NULL for global default
854 * context).
855 * @hang_stats: information about the role of this context in possible GPU
856 * hangs.
857 * @ppgtt: virtual memory space used by this context.
858 * @legacy_hw_ctx: render context backing object and whether it is correctly
859 * initialized (legacy ring submission mechanism only).
860 * @link: link in the global list of contexts.
861 *
862 * Contexts are memory images used by the hardware to store copies of their
863 * internal state.
864 */
865 struct intel_context {
866 struct kref ref;
867 int user_handle;
868 uint8_t remap_slice;
869 int flags;
870 struct drm_i915_file_private *file_priv;
871 struct i915_ctx_hang_stats hang_stats;
872 struct i915_hw_ppgtt *ppgtt;
873
874 /* Legacy ring buffer submission */
875 struct {
876 struct drm_i915_gem_object *rcs_state;
877 bool initialized;
878 } legacy_hw_ctx;
879
880 /* Execlists */
881 bool rcs_initialized;
882 struct {
883 struct drm_i915_gem_object *state;
884 struct intel_ringbuffer *ringbuf;
885 int pin_count;
886 } engine[I915_NUM_RINGS];
887
888 struct list_head link;
889 };
890
891 enum fb_op_origin {
892 ORIGIN_GTT,
893 ORIGIN_CPU,
894 ORIGIN_CS,
895 ORIGIN_FLIP,
896 };
897
898 struct i915_fbc {
899 /* This is always the inner lock when overlapping with struct_mutex and
900 * it's the outer lock when overlapping with stolen_lock. */
901 struct mutex lock;
902 unsigned long uncompressed_size;
903 unsigned threshold;
904 unsigned int fb_id;
905 unsigned int possible_framebuffer_bits;
906 unsigned int busy_bits;
907 struct intel_crtc *crtc;
908 int y;
909
910 struct drm_mm_node compressed_fb;
911 struct drm_mm_node *compressed_llb;
912
913 bool false_color;
914
915 /* Tracks whether the HW is actually enabled, not whether the feature is
916 * possible. */
917 bool enabled;
918
919 struct intel_fbc_work {
920 struct delayed_work work;
921 struct intel_crtc *crtc;
922 struct drm_framebuffer *fb;
923 } *fbc_work;
924
925 enum no_fbc_reason {
926 FBC_OK, /* FBC is enabled */
927 FBC_UNSUPPORTED, /* FBC is not supported by this chipset */
928 FBC_NO_OUTPUT, /* no outputs enabled to compress */
929 FBC_STOLEN_TOO_SMALL, /* not enough space for buffers */
930 FBC_UNSUPPORTED_MODE, /* interlace or doublescanned mode */
931 FBC_MODE_TOO_LARGE, /* mode too large for compression */
932 FBC_BAD_PLANE, /* fbc not supported on plane */
933 FBC_NOT_TILED, /* buffer not tiled */
934 FBC_MULTIPLE_PIPES, /* more than one pipe active */
935 FBC_MODULE_PARAM,
936 FBC_CHIP_DEFAULT, /* disabled by default on this chip */
937 FBC_ROTATION, /* rotation is not supported */
938 FBC_IN_DBG_MASTER, /* kernel debugger is active */
939 } no_fbc_reason;
940
941 bool (*fbc_enabled)(struct drm_i915_private *dev_priv);
942 void (*enable_fbc)(struct intel_crtc *crtc);
943 void (*disable_fbc)(struct drm_i915_private *dev_priv);
944 };
945
946 /**
947 * HIGH_RR is the highest eDP panel refresh rate read from EDID
948 * LOW_RR is the lowest eDP panel refresh rate found from EDID
949 * parsing for same resolution.
950 */
951 enum drrs_refresh_rate_type {
952 DRRS_HIGH_RR,
953 DRRS_LOW_RR,
954 DRRS_MAX_RR, /* RR count */
955 };
956
957 enum drrs_support_type {
958 DRRS_NOT_SUPPORTED = 0,
959 STATIC_DRRS_SUPPORT = 1,
960 SEAMLESS_DRRS_SUPPORT = 2
961 };
962
963 struct intel_dp;
964 struct i915_drrs {
965 struct mutex mutex;
966 struct delayed_work work;
967 struct intel_dp *dp;
968 unsigned busy_frontbuffer_bits;
969 enum drrs_refresh_rate_type refresh_rate_type;
970 enum drrs_support_type type;
971 };
972
973 struct i915_psr {
974 struct mutex lock;
975 bool sink_support;
976 bool source_ok;
977 struct intel_dp *enabled;
978 bool active;
979 struct delayed_work work;
980 unsigned busy_frontbuffer_bits;
981 bool psr2_support;
982 bool aux_frame_sync;
983 };
984
985 enum intel_pch {
986 PCH_NONE = 0, /* No PCH present */
987 PCH_IBX, /* Ibexpeak PCH */
988 PCH_CPT, /* Cougarpoint PCH */
989 PCH_LPT, /* Lynxpoint PCH */
990 PCH_SPT, /* Sunrisepoint PCH */
991 PCH_NOP,
992 };
993
994 enum intel_sbi_destination {
995 SBI_ICLK,
996 SBI_MPHY,
997 };
998
999 #define QUIRK_PIPEA_FORCE (1<<0)
1000 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1001 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1002 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1003 #define QUIRK_PIPEB_FORCE (1<<4)
1004 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1005
1006 struct intel_fbdev;
1007 struct intel_fbc_work;
1008
1009 struct intel_gmbus {
1010 struct i2c_adapter adapter;
1011 u32 force_bit;
1012 u32 reg0;
1013 u32 gpio_reg;
1014 struct i2c_algo_bit_data bit_algo;
1015 struct drm_i915_private *dev_priv;
1016 };
1017
1018 struct i915_suspend_saved_registers {
1019 u32 saveDSPARB;
1020 u32 saveLVDS;
1021 u32 savePP_ON_DELAYS;
1022 u32 savePP_OFF_DELAYS;
1023 u32 savePP_ON;
1024 u32 savePP_OFF;
1025 u32 savePP_CONTROL;
1026 u32 savePP_DIVISOR;
1027 u32 saveFBC_CONTROL;
1028 u32 saveCACHE_MODE_0;
1029 u32 saveMI_ARB_STATE;
1030 u32 saveSWF0[16];
1031 u32 saveSWF1[16];
1032 u32 saveSWF2[3];
1033 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1034 u32 savePCH_PORT_HOTPLUG;
1035 u16 saveGCDGMBUS;
1036 };
1037
1038 struct vlv_s0ix_state {
1039 /* GAM */
1040 u32 wr_watermark;
1041 u32 gfx_prio_ctrl;
1042 u32 arb_mode;
1043 u32 gfx_pend_tlb0;
1044 u32 gfx_pend_tlb1;
1045 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1046 u32 media_max_req_count;
1047 u32 gfx_max_req_count;
1048 u32 render_hwsp;
1049 u32 ecochk;
1050 u32 bsd_hwsp;
1051 u32 blt_hwsp;
1052 u32 tlb_rd_addr;
1053
1054 /* MBC */
1055 u32 g3dctl;
1056 u32 gsckgctl;
1057 u32 mbctl;
1058
1059 /* GCP */
1060 u32 ucgctl1;
1061 u32 ucgctl3;
1062 u32 rcgctl1;
1063 u32 rcgctl2;
1064 u32 rstctl;
1065 u32 misccpctl;
1066
1067 /* GPM */
1068 u32 gfxpause;
1069 u32 rpdeuhwtc;
1070 u32 rpdeuc;
1071 u32 ecobus;
1072 u32 pwrdwnupctl;
1073 u32 rp_down_timeout;
1074 u32 rp_deucsw;
1075 u32 rcubmabdtmr;
1076 u32 rcedata;
1077 u32 spare2gh;
1078
1079 /* Display 1 CZ domain */
1080 u32 gt_imr;
1081 u32 gt_ier;
1082 u32 pm_imr;
1083 u32 pm_ier;
1084 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1085
1086 /* GT SA CZ domain */
1087 u32 tilectl;
1088 u32 gt_fifoctl;
1089 u32 gtlc_wake_ctrl;
1090 u32 gtlc_survive;
1091 u32 pmwgicz;
1092
1093 /* Display 2 CZ domain */
1094 u32 gu_ctl0;
1095 u32 gu_ctl1;
1096 u32 pcbr;
1097 u32 clock_gate_dis2;
1098 };
1099
1100 struct intel_rps_ei {
1101 u32 cz_clock;
1102 u32 render_c0;
1103 u32 media_c0;
1104 };
1105
1106 struct intel_gen6_power_mgmt {
1107 /*
1108 * work, interrupts_enabled and pm_iir are protected by
1109 * dev_priv->irq_lock
1110 */
1111 struct work_struct work;
1112 bool interrupts_enabled;
1113 u32 pm_iir;
1114
1115 /* Frequencies are stored in potentially platform dependent multiples.
1116 * In other words, *_freq needs to be multiplied by X to be interesting.
1117 * Soft limits are those which are used for the dynamic reclocking done
1118 * by the driver (raise frequencies under heavy loads, and lower for
1119 * lighter loads). Hard limits are those imposed by the hardware.
1120 *
1121 * A distinction is made for overclocking, which is never enabled by
1122 * default, and is considered to be above the hard limit if it's
1123 * possible at all.
1124 */
1125 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1126 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1127 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1128 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1129 u8 min_freq; /* AKA RPn. Minimum frequency */
1130 u8 idle_freq; /* Frequency to request when we are idle */
1131 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1132 u8 rp1_freq; /* "less than" RP0 power/freqency */
1133 u8 rp0_freq; /* Non-overclocked max frequency. */
1134 u32 cz_freq;
1135
1136 u8 up_threshold; /* Current %busy required to uplock */
1137 u8 down_threshold; /* Current %busy required to downclock */
1138
1139 int last_adj;
1140 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1141
1142 spinlock_t client_lock;
1143 struct list_head clients;
1144 bool client_boost;
1145
1146 bool enabled;
1147 struct delayed_work delayed_resume_work;
1148 unsigned boosts;
1149
1150 struct intel_rps_client semaphores, mmioflips;
1151
1152 /* manual wa residency calculations */
1153 struct intel_rps_ei up_ei, down_ei;
1154
1155 /*
1156 * Protects RPS/RC6 register access and PCU communication.
1157 * Must be taken after struct_mutex if nested. Note that
1158 * this lock may be held for long periods of time when
1159 * talking to hw - so only take it when talking to hw!
1160 */
1161 struct mutex hw_lock;
1162 };
1163
1164 /* defined intel_pm.c */
1165 extern spinlock_t mchdev_lock;
1166
1167 struct intel_ilk_power_mgmt {
1168 u8 cur_delay;
1169 u8 min_delay;
1170 u8 max_delay;
1171 u8 fmax;
1172 u8 fstart;
1173
1174 u64 last_count1;
1175 unsigned long last_time1;
1176 unsigned long chipset_power;
1177 u64 last_count2;
1178 u64 last_time2;
1179 unsigned long gfx_power;
1180 u8 corr;
1181
1182 int c_m;
1183 int r_t;
1184 };
1185
1186 struct drm_i915_private;
1187 struct i915_power_well;
1188
1189 struct i915_power_well_ops {
1190 /*
1191 * Synchronize the well's hw state to match the current sw state, for
1192 * example enable/disable it based on the current refcount. Called
1193 * during driver init and resume time, possibly after first calling
1194 * the enable/disable handlers.
1195 */
1196 void (*sync_hw)(struct drm_i915_private *dev_priv,
1197 struct i915_power_well *power_well);
1198 /*
1199 * Enable the well and resources that depend on it (for example
1200 * interrupts located on the well). Called after the 0->1 refcount
1201 * transition.
1202 */
1203 void (*enable)(struct drm_i915_private *dev_priv,
1204 struct i915_power_well *power_well);
1205 /*
1206 * Disable the well and resources that depend on it. Called after
1207 * the 1->0 refcount transition.
1208 */
1209 void (*disable)(struct drm_i915_private *dev_priv,
1210 struct i915_power_well *power_well);
1211 /* Returns the hw enabled state. */
1212 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1213 struct i915_power_well *power_well);
1214 };
1215
1216 /* Power well structure for haswell */
1217 struct i915_power_well {
1218 const char *name;
1219 bool always_on;
1220 /* power well enable/disable usage count */
1221 int count;
1222 /* cached hw enabled state */
1223 bool hw_enabled;
1224 unsigned long domains;
1225 unsigned long data;
1226 const struct i915_power_well_ops *ops;
1227 };
1228
1229 struct i915_power_domains {
1230 /*
1231 * Power wells needed for initialization at driver init and suspend
1232 * time are on. They are kept on until after the first modeset.
1233 */
1234 bool init_power_on;
1235 bool initializing;
1236 int power_well_count;
1237
1238 struct mutex lock;
1239 int domain_use_count[POWER_DOMAIN_NUM];
1240 struct i915_power_well *power_wells;
1241 };
1242
1243 #define MAX_L3_SLICES 2
1244 struct intel_l3_parity {
1245 u32 *remap_info[MAX_L3_SLICES];
1246 struct work_struct error_work;
1247 int which_slice;
1248 };
1249
1250 struct i915_gem_mm {
1251 /** Memory allocator for GTT stolen memory */
1252 struct drm_mm stolen;
1253 /** Protects the usage of the GTT stolen memory allocator. This is
1254 * always the inner lock when overlapping with struct_mutex. */
1255 struct mutex stolen_lock;
1256
1257 /** List of all objects in gtt_space. Used to restore gtt
1258 * mappings on resume */
1259 struct list_head bound_list;
1260 /**
1261 * List of objects which are not bound to the GTT (thus
1262 * are idle and not used by the GPU) but still have
1263 * (presumably uncached) pages still attached.
1264 */
1265 struct list_head unbound_list;
1266
1267 /** Usable portion of the GTT for GEM */
1268 unsigned long stolen_base; /* limited to low memory (32-bit) */
1269
1270 /** PPGTT used for aliasing the PPGTT with the GTT */
1271 struct i915_hw_ppgtt *aliasing_ppgtt;
1272
1273 struct notifier_block oom_notifier;
1274 struct shrinker shrinker;
1275 bool shrinker_no_lock_stealing;
1276
1277 /** LRU list of objects with fence regs on them. */
1278 struct list_head fence_list;
1279
1280 /**
1281 * We leave the user IRQ off as much as possible,
1282 * but this means that requests will finish and never
1283 * be retired once the system goes idle. Set a timer to
1284 * fire periodically while the ring is running. When it
1285 * fires, go retire requests.
1286 */
1287 struct delayed_work retire_work;
1288
1289 /**
1290 * When we detect an idle GPU, we want to turn on
1291 * powersaving features. So once we see that there
1292 * are no more requests outstanding and no more
1293 * arrive within a small period of time, we fire
1294 * off the idle_work.
1295 */
1296 struct delayed_work idle_work;
1297
1298 /**
1299 * Are we in a non-interruptible section of code like
1300 * modesetting?
1301 */
1302 bool interruptible;
1303
1304 /**
1305 * Is the GPU currently considered idle, or busy executing userspace
1306 * requests? Whilst idle, we attempt to power down the hardware and
1307 * display clocks. In order to reduce the effect on performance, there
1308 * is a slight delay before we do so.
1309 */
1310 bool busy;
1311
1312 /* the indicator for dispatch video commands on two BSD rings */
1313 int bsd_ring_dispatch_index;
1314
1315 /** Bit 6 swizzling required for X tiling */
1316 uint32_t bit_6_swizzle_x;
1317 /** Bit 6 swizzling required for Y tiling */
1318 uint32_t bit_6_swizzle_y;
1319
1320 /* accounting, useful for userland debugging */
1321 spinlock_t object_stat_lock;
1322 size_t object_memory;
1323 u32 object_count;
1324 };
1325
1326 struct drm_i915_error_state_buf {
1327 struct drm_i915_private *i915;
1328 unsigned bytes;
1329 unsigned size;
1330 int err;
1331 u8 *buf;
1332 loff_t start;
1333 loff_t pos;
1334 };
1335
1336 struct i915_error_state_file_priv {
1337 struct drm_device *dev;
1338 struct drm_i915_error_state *error;
1339 };
1340
1341 struct i915_gpu_error {
1342 /* For hangcheck timer */
1343 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1344 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1345 /* Hang gpu twice in this window and your context gets banned */
1346 #define DRM_I915_CTX_BAN_PERIOD DIV_ROUND_UP(8*DRM_I915_HANGCHECK_PERIOD, 1000)
1347
1348 struct workqueue_struct *hangcheck_wq;
1349 struct delayed_work hangcheck_work;
1350
1351 /* For reset and error_state handling. */
1352 spinlock_t lock;
1353 /* Protected by the above dev->gpu_error.lock. */
1354 struct drm_i915_error_state *first_error;
1355
1356 unsigned long missed_irq_rings;
1357
1358 /**
1359 * State variable controlling the reset flow and count
1360 *
1361 * This is a counter which gets incremented when reset is triggered,
1362 * and again when reset has been handled. So odd values (lowest bit set)
1363 * means that reset is in progress and even values that
1364 * (reset_counter >> 1):th reset was successfully completed.
1365 *
1366 * If reset is not completed succesfully, the I915_WEDGE bit is
1367 * set meaning that hardware is terminally sour and there is no
1368 * recovery. All waiters on the reset_queue will be woken when
1369 * that happens.
1370 *
1371 * This counter is used by the wait_seqno code to notice that reset
1372 * event happened and it needs to restart the entire ioctl (since most
1373 * likely the seqno it waited for won't ever signal anytime soon).
1374 *
1375 * This is important for lock-free wait paths, where no contended lock
1376 * naturally enforces the correct ordering between the bail-out of the
1377 * waiter and the gpu reset work code.
1378 */
1379 atomic_t reset_counter;
1380
1381 #define I915_RESET_IN_PROGRESS_FLAG 1
1382 #define I915_WEDGED (1 << 31)
1383
1384 /**
1385 * Waitqueue to signal when the reset has completed. Used by clients
1386 * that wait for dev_priv->mm.wedged to settle.
1387 */
1388 wait_queue_head_t reset_queue;
1389
1390 /* Userspace knobs for gpu hang simulation;
1391 * combines both a ring mask, and extra flags
1392 */
1393 u32 stop_rings;
1394 #define I915_STOP_RING_ALLOW_BAN (1 << 31)
1395 #define I915_STOP_RING_ALLOW_WARN (1 << 30)
1396
1397 /* For missed irq/seqno simulation. */
1398 unsigned int test_irq_rings;
1399
1400 /* Used to prevent gem_check_wedged returning -EAGAIN during gpu reset */
1401 bool reload_in_reset;
1402 };
1403
1404 enum modeset_restore {
1405 MODESET_ON_LID_OPEN,
1406 MODESET_DONE,
1407 MODESET_SUSPENDED,
1408 };
1409
1410 struct ddi_vbt_port_info {
1411 /*
1412 * This is an index in the HDMI/DVI DDI buffer translation table.
1413 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1414 * populate this field.
1415 */
1416 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1417 uint8_t hdmi_level_shift;
1418
1419 uint8_t supports_dvi:1;
1420 uint8_t supports_hdmi:1;
1421 uint8_t supports_dp:1;
1422 };
1423
1424 enum psr_lines_to_wait {
1425 PSR_0_LINES_TO_WAIT = 0,
1426 PSR_1_LINE_TO_WAIT,
1427 PSR_4_LINES_TO_WAIT,
1428 PSR_8_LINES_TO_WAIT
1429 };
1430
1431 struct intel_vbt_data {
1432 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1433 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1434
1435 /* Feature bits */
1436 unsigned int int_tv_support:1;
1437 unsigned int lvds_dither:1;
1438 unsigned int lvds_vbt:1;
1439 unsigned int int_crt_support:1;
1440 unsigned int lvds_use_ssc:1;
1441 unsigned int display_clock_mode:1;
1442 unsigned int fdi_rx_polarity_inverted:1;
1443 unsigned int has_mipi:1;
1444 int lvds_ssc_freq;
1445 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1446
1447 enum drrs_support_type drrs_type;
1448
1449 /* eDP */
1450 int edp_rate;
1451 int edp_lanes;
1452 int edp_preemphasis;
1453 int edp_vswing;
1454 bool edp_initialized;
1455 bool edp_support;
1456 int edp_bpp;
1457 struct edp_power_seq edp_pps;
1458
1459 struct {
1460 bool full_link;
1461 bool require_aux_wakeup;
1462 int idle_frames;
1463 enum psr_lines_to_wait lines_to_wait;
1464 int tp1_wakeup_time;
1465 int tp2_tp3_wakeup_time;
1466 } psr;
1467
1468 struct {
1469 u16 pwm_freq_hz;
1470 bool present;
1471 bool active_low_pwm;
1472 u8 min_brightness; /* min_brightness/255 of max */
1473 } backlight;
1474
1475 /* MIPI DSI */
1476 struct {
1477 u16 port;
1478 u16 panel_id;
1479 struct mipi_config *config;
1480 struct mipi_pps_data *pps;
1481 u8 seq_version;
1482 u32 size;
1483 u8 *data;
1484 u8 *sequence[MIPI_SEQ_MAX];
1485 } dsi;
1486
1487 int crt_ddc_pin;
1488
1489 int child_dev_num;
1490 union child_device_config *child_dev;
1491
1492 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1493 };
1494
1495 enum intel_ddb_partitioning {
1496 INTEL_DDB_PART_1_2,
1497 INTEL_DDB_PART_5_6, /* IVB+ */
1498 };
1499
1500 struct intel_wm_level {
1501 bool enable;
1502 uint32_t pri_val;
1503 uint32_t spr_val;
1504 uint32_t cur_val;
1505 uint32_t fbc_val;
1506 };
1507
1508 struct ilk_wm_values {
1509 uint32_t wm_pipe[3];
1510 uint32_t wm_lp[3];
1511 uint32_t wm_lp_spr[3];
1512 uint32_t wm_linetime[3];
1513 bool enable_fbc_wm;
1514 enum intel_ddb_partitioning partitioning;
1515 };
1516
1517 struct vlv_pipe_wm {
1518 uint16_t primary;
1519 uint16_t sprite[2];
1520 uint8_t cursor;
1521 };
1522
1523 struct vlv_sr_wm {
1524 uint16_t plane;
1525 uint8_t cursor;
1526 };
1527
1528 struct vlv_wm_values {
1529 struct vlv_pipe_wm pipe[3];
1530 struct vlv_sr_wm sr;
1531 struct {
1532 uint8_t cursor;
1533 uint8_t sprite[2];
1534 uint8_t primary;
1535 } ddl[3];
1536 uint8_t level;
1537 bool cxsr;
1538 };
1539
1540 struct skl_ddb_entry {
1541 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1542 };
1543
1544 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1545 {
1546 return entry->end - entry->start;
1547 }
1548
1549 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1550 const struct skl_ddb_entry *e2)
1551 {
1552 if (e1->start == e2->start && e1->end == e2->end)
1553 return true;
1554
1555 return false;
1556 }
1557
1558 struct skl_ddb_allocation {
1559 struct skl_ddb_entry pipe[I915_MAX_PIPES];
1560 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1561 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* y-plane */
1562 struct skl_ddb_entry cursor[I915_MAX_PIPES];
1563 };
1564
1565 struct skl_wm_values {
1566 bool dirty[I915_MAX_PIPES];
1567 struct skl_ddb_allocation ddb;
1568 uint32_t wm_linetime[I915_MAX_PIPES];
1569 uint32_t plane[I915_MAX_PIPES][I915_MAX_PLANES][8];
1570 uint32_t cursor[I915_MAX_PIPES][8];
1571 uint32_t plane_trans[I915_MAX_PIPES][I915_MAX_PLANES];
1572 uint32_t cursor_trans[I915_MAX_PIPES];
1573 };
1574
1575 struct skl_wm_level {
1576 bool plane_en[I915_MAX_PLANES];
1577 bool cursor_en;
1578 uint16_t plane_res_b[I915_MAX_PLANES];
1579 uint8_t plane_res_l[I915_MAX_PLANES];
1580 uint16_t cursor_res_b;
1581 uint8_t cursor_res_l;
1582 };
1583
1584 /*
1585 * This struct helps tracking the state needed for runtime PM, which puts the
1586 * device in PCI D3 state. Notice that when this happens, nothing on the
1587 * graphics device works, even register access, so we don't get interrupts nor
1588 * anything else.
1589 *
1590 * Every piece of our code that needs to actually touch the hardware needs to
1591 * either call intel_runtime_pm_get or call intel_display_power_get with the
1592 * appropriate power domain.
1593 *
1594 * Our driver uses the autosuspend delay feature, which means we'll only really
1595 * suspend if we stay with zero refcount for a certain amount of time. The
1596 * default value is currently very conservative (see intel_runtime_pm_enable), but
1597 * it can be changed with the standard runtime PM files from sysfs.
1598 *
1599 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1600 * goes back to false exactly before we reenable the IRQs. We use this variable
1601 * to check if someone is trying to enable/disable IRQs while they're supposed
1602 * to be disabled. This shouldn't happen and we'll print some error messages in
1603 * case it happens.
1604 *
1605 * For more, read the Documentation/power/runtime_pm.txt.
1606 */
1607 struct i915_runtime_pm {
1608 bool suspended;
1609 bool irqs_enabled;
1610 };
1611
1612 enum intel_pipe_crc_source {
1613 INTEL_PIPE_CRC_SOURCE_NONE,
1614 INTEL_PIPE_CRC_SOURCE_PLANE1,
1615 INTEL_PIPE_CRC_SOURCE_PLANE2,
1616 INTEL_PIPE_CRC_SOURCE_PF,
1617 INTEL_PIPE_CRC_SOURCE_PIPE,
1618 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1619 INTEL_PIPE_CRC_SOURCE_TV,
1620 INTEL_PIPE_CRC_SOURCE_DP_B,
1621 INTEL_PIPE_CRC_SOURCE_DP_C,
1622 INTEL_PIPE_CRC_SOURCE_DP_D,
1623 INTEL_PIPE_CRC_SOURCE_AUTO,
1624 INTEL_PIPE_CRC_SOURCE_MAX,
1625 };
1626
1627 struct intel_pipe_crc_entry {
1628 uint32_t frame;
1629 uint32_t crc[5];
1630 };
1631
1632 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1633 struct intel_pipe_crc {
1634 spinlock_t lock;
1635 bool opened; /* exclusive access to the result file */
1636 struct intel_pipe_crc_entry *entries;
1637 enum intel_pipe_crc_source source;
1638 int head, tail;
1639 wait_queue_head_t wq;
1640 };
1641
1642 struct i915_frontbuffer_tracking {
1643 struct mutex lock;
1644
1645 /*
1646 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1647 * scheduled flips.
1648 */
1649 unsigned busy_bits;
1650 unsigned flip_bits;
1651 };
1652
1653 struct i915_wa_reg {
1654 u32 addr;
1655 u32 value;
1656 /* bitmask representing WA bits */
1657 u32 mask;
1658 };
1659
1660 #define I915_MAX_WA_REGS 16
1661
1662 struct i915_workarounds {
1663 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1664 u32 count;
1665 };
1666
1667 struct i915_virtual_gpu {
1668 bool active;
1669 };
1670
1671 struct i915_execbuffer_params {
1672 struct drm_device *dev;
1673 struct drm_file *file;
1674 uint32_t dispatch_flags;
1675 uint32_t args_batch_start_offset;
1676 uint32_t batch_obj_vm_offset;
1677 struct intel_engine_cs *ring;
1678 struct drm_i915_gem_object *batch_obj;
1679 struct intel_context *ctx;
1680 struct drm_i915_gem_request *request;
1681 };
1682
1683 struct drm_i915_private {
1684 struct drm_device *dev;
1685 struct kmem_cache *objects;
1686 struct kmem_cache *vmas;
1687 struct kmem_cache *requests;
1688
1689 const struct intel_device_info info;
1690
1691 int relative_constants_mode;
1692
1693 void __iomem *regs;
1694
1695 struct intel_uncore uncore;
1696
1697 struct i915_virtual_gpu vgpu;
1698
1699 struct intel_csr csr;
1700
1701 /* Display CSR-related protection */
1702 struct mutex csr_lock;
1703
1704 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1705
1706 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
1707 * controller on different i2c buses. */
1708 struct mutex gmbus_mutex;
1709
1710 /**
1711 * Base address of the gmbus and gpio block.
1712 */
1713 uint32_t gpio_mmio_base;
1714
1715 /* MMIO base address for MIPI regs */
1716 uint32_t mipi_mmio_base;
1717
1718 wait_queue_head_t gmbus_wait_queue;
1719
1720 struct pci_dev *bridge_dev;
1721 struct intel_engine_cs ring[I915_NUM_RINGS];
1722 struct drm_i915_gem_object *semaphore_obj;
1723 uint32_t last_seqno, next_seqno;
1724
1725 struct drm_dma_handle *status_page_dmah;
1726 struct resource mch_res;
1727
1728 /* protects the irq masks */
1729 spinlock_t irq_lock;
1730
1731 /* protects the mmio flip data */
1732 spinlock_t mmio_flip_lock;
1733
1734 bool display_irqs_enabled;
1735
1736 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1737 struct pm_qos_request pm_qos;
1738
1739 /* Sideband mailbox protection */
1740 struct mutex sb_lock;
1741
1742 /** Cached value of IMR to avoid reads in updating the bitfield */
1743 union {
1744 u32 irq_mask;
1745 u32 de_irq_mask[I915_MAX_PIPES];
1746 };
1747 u32 gt_irq_mask;
1748 u32 pm_irq_mask;
1749 u32 pm_rps_events;
1750 u32 pipestat_irq_mask[I915_MAX_PIPES];
1751
1752 struct i915_hotplug hotplug;
1753 struct i915_fbc fbc;
1754 struct i915_drrs drrs;
1755 struct intel_opregion opregion;
1756 struct intel_vbt_data vbt;
1757
1758 bool preserve_bios_swizzle;
1759
1760 /* overlay */
1761 struct intel_overlay *overlay;
1762
1763 /* backlight registers and fields in struct intel_panel */
1764 struct mutex backlight_lock;
1765
1766 /* LVDS info */
1767 bool no_aux_handshake;
1768
1769 /* protects panel power sequencer state */
1770 struct mutex pps_mutex;
1771
1772 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1773 int fence_reg_start; /* 4 if userland hasn't ioctl'd us yet */
1774 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1775
1776 unsigned int fsb_freq, mem_freq, is_ddr3;
1777 unsigned int skl_boot_cdclk;
1778 unsigned int cdclk_freq, max_cdclk_freq;
1779 unsigned int hpll_freq;
1780
1781 /**
1782 * wq - Driver workqueue for GEM.
1783 *
1784 * NOTE: Work items scheduled here are not allowed to grab any modeset
1785 * locks, for otherwise the flushing done in the pageflip code will
1786 * result in deadlocks.
1787 */
1788 struct workqueue_struct *wq;
1789
1790 /* Display functions */
1791 struct drm_i915_display_funcs display;
1792
1793 /* PCH chipset type */
1794 enum intel_pch pch_type;
1795 unsigned short pch_id;
1796
1797 unsigned long quirks;
1798
1799 enum modeset_restore modeset_restore;
1800 struct mutex modeset_restore_lock;
1801
1802 struct list_head vm_list; /* Global list of all address spaces */
1803 struct i915_gtt gtt; /* VM representing the global address space */
1804
1805 struct i915_gem_mm mm;
1806 DECLARE_HASHTABLE(mm_structs, 7);
1807 struct mutex mm_lock;
1808
1809 /* Kernel Modesetting */
1810
1811 struct sdvo_device_mapping sdvo_mappings[2];
1812
1813 struct drm_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1814 struct drm_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1815 wait_queue_head_t pending_flip_queue;
1816
1817 #ifdef CONFIG_DEBUG_FS
1818 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1819 #endif
1820
1821 int num_shared_dpll;
1822 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1823 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1824
1825 struct i915_workarounds workarounds;
1826
1827 /* Reclocking support */
1828 bool render_reclock_avail;
1829
1830 struct i915_frontbuffer_tracking fb_tracking;
1831
1832 u16 orig_clock;
1833
1834 bool mchbar_need_disable;
1835
1836 struct intel_l3_parity l3_parity;
1837
1838 /* Cannot be determined by PCIID. You must always read a register. */
1839 size_t ellc_size;
1840
1841 /* gen6+ rps state */
1842 struct intel_gen6_power_mgmt rps;
1843
1844 /* ilk-only ips/rps state. Everything in here is protected by the global
1845 * mchdev_lock in intel_pm.c */
1846 struct intel_ilk_power_mgmt ips;
1847
1848 struct i915_power_domains power_domains;
1849
1850 struct i915_psr psr;
1851
1852 struct i915_gpu_error gpu_error;
1853
1854 struct drm_i915_gem_object *vlv_pctx;
1855
1856 #ifdef CONFIG_DRM_I915_FBDEV
1857 /* list of fbdev register on this device */
1858 struct intel_fbdev *fbdev;
1859 struct work_struct fbdev_suspend_work;
1860 #endif
1861
1862 struct drm_property *broadcast_rgb_property;
1863 struct drm_property *force_audio_property;
1864
1865 /* hda/i915 audio component */
1866 bool audio_component_registered;
1867
1868 uint32_t hw_context_size;
1869 struct list_head context_list;
1870
1871 u32 fdi_rx_config;
1872
1873 u32 chv_phy_control;
1874
1875 u32 suspend_count;
1876 struct i915_suspend_saved_registers regfile;
1877 struct vlv_s0ix_state vlv_s0ix_state;
1878
1879 struct {
1880 /*
1881 * Raw watermark latency values:
1882 * in 0.1us units for WM0,
1883 * in 0.5us units for WM1+.
1884 */
1885 /* primary */
1886 uint16_t pri_latency[5];
1887 /* sprite */
1888 uint16_t spr_latency[5];
1889 /* cursor */
1890 uint16_t cur_latency[5];
1891 /*
1892 * Raw watermark memory latency values
1893 * for SKL for all 8 levels
1894 * in 1us units.
1895 */
1896 uint16_t skl_latency[8];
1897
1898 /*
1899 * The skl_wm_values structure is a bit too big for stack
1900 * allocation, so we keep the staging struct where we store
1901 * intermediate results here instead.
1902 */
1903 struct skl_wm_values skl_results;
1904
1905 /* current hardware state */
1906 union {
1907 struct ilk_wm_values hw;
1908 struct skl_wm_values skl_hw;
1909 struct vlv_wm_values vlv;
1910 };
1911 } wm;
1912
1913 struct i915_runtime_pm pm;
1914
1915 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
1916 struct {
1917 int (*execbuf_submit)(struct i915_execbuffer_params *params,
1918 struct drm_i915_gem_execbuffer2 *args,
1919 struct list_head *vmas);
1920 int (*init_rings)(struct drm_device *dev);
1921 void (*cleanup_ring)(struct intel_engine_cs *ring);
1922 void (*stop_ring)(struct intel_engine_cs *ring);
1923 } gt;
1924
1925 bool edp_low_vswing;
1926
1927 /*
1928 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
1929 * will be rejected. Instead look for a better place.
1930 */
1931 };
1932
1933 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
1934 {
1935 return dev->dev_private;
1936 }
1937
1938 static inline struct drm_i915_private *dev_to_i915(struct device *dev)
1939 {
1940 return to_i915(dev_get_drvdata(dev));
1941 }
1942
1943 /* Iterate over initialised rings */
1944 #define for_each_ring(ring__, dev_priv__, i__) \
1945 for ((i__) = 0; (i__) < I915_NUM_RINGS; (i__)++) \
1946 if (((ring__) = &(dev_priv__)->ring[(i__)]), intel_ring_initialized((ring__)))
1947
1948 enum hdmi_force_audio {
1949 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
1950 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
1951 HDMI_AUDIO_AUTO, /* trust EDID */
1952 HDMI_AUDIO_ON, /* force turn on HDMI audio */
1953 };
1954
1955 #define I915_GTT_OFFSET_NONE ((u32)-1)
1956
1957 struct drm_i915_gem_object_ops {
1958 /* Interface between the GEM object and its backing storage.
1959 * get_pages() is called once prior to the use of the associated set
1960 * of pages before to binding them into the GTT, and put_pages() is
1961 * called after we no longer need them. As we expect there to be
1962 * associated cost with migrating pages between the backing storage
1963 * and making them available for the GPU (e.g. clflush), we may hold
1964 * onto the pages after they are no longer referenced by the GPU
1965 * in case they may be used again shortly (for example migrating the
1966 * pages to a different memory domain within the GTT). put_pages()
1967 * will therefore most likely be called when the object itself is
1968 * being released or under memory pressure (where we attempt to
1969 * reap pages for the shrinker).
1970 */
1971 int (*get_pages)(struct drm_i915_gem_object *);
1972 void (*put_pages)(struct drm_i915_gem_object *);
1973 int (*dmabuf_export)(struct drm_i915_gem_object *);
1974 void (*release)(struct drm_i915_gem_object *);
1975 };
1976
1977 /*
1978 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
1979 * considered to be the frontbuffer for the given plane interface-vise. This
1980 * doesn't mean that the hw necessarily already scans it out, but that any
1981 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
1982 *
1983 * We have one bit per pipe and per scanout plane type.
1984 */
1985 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 4
1986 #define INTEL_FRONTBUFFER_BITS \
1987 (INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES)
1988 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
1989 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
1990 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
1991 (1 << (1 +(INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
1992 #define INTEL_FRONTBUFFER_SPRITE(pipe) \
1993 (1 << (2 +(INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
1994 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
1995 (1 << (3 +(INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
1996 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
1997 (0xf << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
1998
1999 struct drm_i915_gem_object {
2000 struct drm_gem_object base;
2001
2002 const struct drm_i915_gem_object_ops *ops;
2003
2004 /** List of VMAs backed by this object */
2005 struct list_head vma_list;
2006
2007 /** Stolen memory for this object, instead of being backed by shmem. */
2008 struct drm_mm_node *stolen;
2009 struct list_head global_list;
2010
2011 struct list_head ring_list[I915_NUM_RINGS];
2012 /** Used in execbuf to temporarily hold a ref */
2013 struct list_head obj_exec_link;
2014
2015 struct list_head batch_pool_link;
2016
2017 /**
2018 * This is set if the object is on the active lists (has pending
2019 * rendering and so a non-zero seqno), and is not set if it i s on
2020 * inactive (ready to be unbound) list.
2021 */
2022 unsigned int active:I915_NUM_RINGS;
2023
2024 /**
2025 * This is set if the object has been written to since last bound
2026 * to the GTT
2027 */
2028 unsigned int dirty:1;
2029
2030 /**
2031 * Fence register bits (if any) for this object. Will be set
2032 * as needed when mapped into the GTT.
2033 * Protected by dev->struct_mutex.
2034 */
2035 signed int fence_reg:I915_MAX_NUM_FENCE_BITS;
2036
2037 /**
2038 * Advice: are the backing pages purgeable?
2039 */
2040 unsigned int madv:2;
2041
2042 /**
2043 * Current tiling mode for the object.
2044 */
2045 unsigned int tiling_mode:2;
2046 /**
2047 * Whether the tiling parameters for the currently associated fence
2048 * register have changed. Note that for the purposes of tracking
2049 * tiling changes we also treat the unfenced register, the register
2050 * slot that the object occupies whilst it executes a fenced
2051 * command (such as BLT on gen2/3), as a "fence".
2052 */
2053 unsigned int fence_dirty:1;
2054
2055 /**
2056 * Is the object at the current location in the gtt mappable and
2057 * fenceable? Used to avoid costly recalculations.
2058 */
2059 unsigned int map_and_fenceable:1;
2060
2061 /**
2062 * Whether the current gtt mapping needs to be mappable (and isn't just
2063 * mappable by accident). Track pin and fault separate for a more
2064 * accurate mappable working set.
2065 */
2066 unsigned int fault_mappable:1;
2067
2068 /*
2069 * Is the object to be mapped as read-only to the GPU
2070 * Only honoured if hardware has relevant pte bit
2071 */
2072 unsigned long gt_ro:1;
2073 unsigned int cache_level:3;
2074 unsigned int cache_dirty:1;
2075
2076 unsigned int has_dma_mapping:1;
2077
2078 unsigned int frontbuffer_bits:INTEL_FRONTBUFFER_BITS;
2079
2080 unsigned int pin_display;
2081
2082 struct sg_table *pages;
2083 int pages_pin_count;
2084 struct get_page {
2085 struct scatterlist *sg;
2086 int last;
2087 } get_page;
2088
2089 /* prime dma-buf support */
2090 void *dma_buf_vmapping;
2091 int vmapping_count;
2092
2093 /** Breadcrumb of last rendering to the buffer.
2094 * There can only be one writer, but we allow for multiple readers.
2095 * If there is a writer that necessarily implies that all other
2096 * read requests are complete - but we may only be lazily clearing
2097 * the read requests. A read request is naturally the most recent
2098 * request on a ring, so we may have two different write and read
2099 * requests on one ring where the write request is older than the
2100 * read request. This allows for the CPU to read from an active
2101 * buffer by only waiting for the write to complete.
2102 * */
2103 struct drm_i915_gem_request *last_read_req[I915_NUM_RINGS];
2104 struct drm_i915_gem_request *last_write_req;
2105 /** Breadcrumb of last fenced GPU access to the buffer. */
2106 struct drm_i915_gem_request *last_fenced_req;
2107
2108 /** Current tiling stride for the object, if it's tiled. */
2109 uint32_t stride;
2110
2111 /** References from framebuffers, locks out tiling changes. */
2112 unsigned long framebuffer_references;
2113
2114 /** Record of address bit 17 of each page at last unbind. */
2115 unsigned long *bit_17;
2116
2117 union {
2118 /** for phy allocated objects */
2119 struct drm_dma_handle *phys_handle;
2120
2121 struct i915_gem_userptr {
2122 uintptr_t ptr;
2123 unsigned read_only :1;
2124 unsigned workers :4;
2125 #define I915_GEM_USERPTR_MAX_WORKERS 15
2126
2127 struct i915_mm_struct *mm;
2128 struct i915_mmu_object *mmu_object;
2129 struct work_struct *work;
2130 } userptr;
2131 };
2132 };
2133 #define to_intel_bo(x) container_of(x, struct drm_i915_gem_object, base)
2134
2135 void i915_gem_track_fb(struct drm_i915_gem_object *old,
2136 struct drm_i915_gem_object *new,
2137 unsigned frontbuffer_bits);
2138
2139 /**
2140 * Request queue structure.
2141 *
2142 * The request queue allows us to note sequence numbers that have been emitted
2143 * and may be associated with active buffers to be retired.
2144 *
2145 * By keeping this list, we can avoid having to do questionable sequence
2146 * number comparisons on buffer last_read|write_seqno. It also allows an
2147 * emission time to be associated with the request for tracking how far ahead
2148 * of the GPU the submission is.
2149 *
2150 * The requests are reference counted, so upon creation they should have an
2151 * initial reference taken using kref_init
2152 */
2153 struct drm_i915_gem_request {
2154 struct kref ref;
2155
2156 /** On Which ring this request was generated */
2157 struct drm_i915_private *i915;
2158 struct intel_engine_cs *ring;
2159
2160 /** GEM sequence number associated with this request. */
2161 uint32_t seqno;
2162
2163 /** Position in the ringbuffer of the start of the request */
2164 u32 head;
2165
2166 /**
2167 * Position in the ringbuffer of the start of the postfix.
2168 * This is required to calculate the maximum available ringbuffer
2169 * space without overwriting the postfix.
2170 */
2171 u32 postfix;
2172
2173 /** Position in the ringbuffer of the end of the whole request */
2174 u32 tail;
2175
2176 /**
2177 * Context and ring buffer related to this request
2178 * Contexts are refcounted, so when this request is associated with a
2179 * context, we must increment the context's refcount, to guarantee that
2180 * it persists while any request is linked to it. Requests themselves
2181 * are also refcounted, so the request will only be freed when the last
2182 * reference to it is dismissed, and the code in
2183 * i915_gem_request_free() will then decrement the refcount on the
2184 * context.
2185 */
2186 struct intel_context *ctx;
2187 struct intel_ringbuffer *ringbuf;
2188
2189 /** Batch buffer related to this request if any (used for
2190 error state dump only) */
2191 struct drm_i915_gem_object *batch_obj;
2192
2193 /** Time at which this request was emitted, in jiffies. */
2194 unsigned long emitted_jiffies;
2195
2196 /** global list entry for this request */
2197 struct list_head list;
2198
2199 struct drm_i915_file_private *file_priv;
2200 /** file_priv list entry for this request */
2201 struct list_head client_list;
2202
2203 /** process identifier submitting this request */
2204 struct pid *pid;
2205
2206 /**
2207 * The ELSP only accepts two elements at a time, so we queue
2208 * context/tail pairs on a given queue (ring->execlist_queue) until the
2209 * hardware is available. The queue serves a double purpose: we also use
2210 * it to keep track of the up to 2 contexts currently in the hardware
2211 * (usually one in execution and the other queued up by the GPU): We
2212 * only remove elements from the head of the queue when the hardware
2213 * informs us that an element has been completed.
2214 *
2215 * All accesses to the queue are mediated by a spinlock
2216 * (ring->execlist_lock).
2217 */
2218
2219 /** Execlist link in the submission queue.*/
2220 struct list_head execlist_link;
2221
2222 /** Execlists no. of times this request has been sent to the ELSP */
2223 int elsp_submitted;
2224
2225 };
2226
2227 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2228 struct intel_context *ctx,
2229 struct drm_i915_gem_request **req_out);
2230 void i915_gem_request_cancel(struct drm_i915_gem_request *req);
2231 void i915_gem_request_free(struct kref *req_ref);
2232 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
2233 struct drm_file *file);
2234
2235 static inline uint32_t
2236 i915_gem_request_get_seqno(struct drm_i915_gem_request *req)
2237 {
2238 return req ? req->seqno : 0;
2239 }
2240
2241 static inline struct intel_engine_cs *
2242 i915_gem_request_get_ring(struct drm_i915_gem_request *req)
2243 {
2244 return req ? req->ring : NULL;
2245 }
2246
2247 static inline struct drm_i915_gem_request *
2248 i915_gem_request_reference(struct drm_i915_gem_request *req)
2249 {
2250 if (req)
2251 kref_get(&req->ref);
2252 return req;
2253 }
2254
2255 static inline void
2256 i915_gem_request_unreference(struct drm_i915_gem_request *req)
2257 {
2258 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
2259 kref_put(&req->ref, i915_gem_request_free);
2260 }
2261
2262 static inline void
2263 i915_gem_request_unreference__unlocked(struct drm_i915_gem_request *req)
2264 {
2265 struct drm_device *dev;
2266
2267 if (!req)
2268 return;
2269
2270 dev = req->ring->dev;
2271 if (kref_put_mutex(&req->ref, i915_gem_request_free, &dev->struct_mutex))
2272 mutex_unlock(&dev->struct_mutex);
2273 }
2274
2275 static inline void i915_gem_request_assign(struct drm_i915_gem_request **pdst,
2276 struct drm_i915_gem_request *src)
2277 {
2278 if (src)
2279 i915_gem_request_reference(src);
2280
2281 if (*pdst)
2282 i915_gem_request_unreference(*pdst);
2283
2284 *pdst = src;
2285 }
2286
2287 /*
2288 * XXX: i915_gem_request_completed should be here but currently needs the
2289 * definition of i915_seqno_passed() which is below. It will be moved in
2290 * a later patch when the call to i915_seqno_passed() is obsoleted...
2291 */
2292
2293 /*
2294 * A command that requires special handling by the command parser.
2295 */
2296 struct drm_i915_cmd_descriptor {
2297 /*
2298 * Flags describing how the command parser processes the command.
2299 *
2300 * CMD_DESC_FIXED: The command has a fixed length if this is set,
2301 * a length mask if not set
2302 * CMD_DESC_SKIP: The command is allowed but does not follow the
2303 * standard length encoding for the opcode range in
2304 * which it falls
2305 * CMD_DESC_REJECT: The command is never allowed
2306 * CMD_DESC_REGISTER: The command should be checked against the
2307 * register whitelist for the appropriate ring
2308 * CMD_DESC_MASTER: The command is allowed if the submitting process
2309 * is the DRM master
2310 */
2311 u32 flags;
2312 #define CMD_DESC_FIXED (1<<0)
2313 #define CMD_DESC_SKIP (1<<1)
2314 #define CMD_DESC_REJECT (1<<2)
2315 #define CMD_DESC_REGISTER (1<<3)
2316 #define CMD_DESC_BITMASK (1<<4)
2317 #define CMD_DESC_MASTER (1<<5)
2318
2319 /*
2320 * The command's unique identification bits and the bitmask to get them.
2321 * This isn't strictly the opcode field as defined in the spec and may
2322 * also include type, subtype, and/or subop fields.
2323 */
2324 struct {
2325 u32 value;
2326 u32 mask;
2327 } cmd;
2328
2329 /*
2330 * The command's length. The command is either fixed length (i.e. does
2331 * not include a length field) or has a length field mask. The flag
2332 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
2333 * a length mask. All command entries in a command table must include
2334 * length information.
2335 */
2336 union {
2337 u32 fixed;
2338 u32 mask;
2339 } length;
2340
2341 /*
2342 * Describes where to find a register address in the command to check
2343 * against the ring's register whitelist. Only valid if flags has the
2344 * CMD_DESC_REGISTER bit set.
2345 *
2346 * A non-zero step value implies that the command may access multiple
2347 * registers in sequence (e.g. LRI), in that case step gives the
2348 * distance in dwords between individual offset fields.
2349 */
2350 struct {
2351 u32 offset;
2352 u32 mask;
2353 u32 step;
2354 } reg;
2355
2356 #define MAX_CMD_DESC_BITMASKS 3
2357 /*
2358 * Describes command checks where a particular dword is masked and
2359 * compared against an expected value. If the command does not match
2360 * the expected value, the parser rejects it. Only valid if flags has
2361 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
2362 * are valid.
2363 *
2364 * If the check specifies a non-zero condition_mask then the parser
2365 * only performs the check when the bits specified by condition_mask
2366 * are non-zero.
2367 */
2368 struct {
2369 u32 offset;
2370 u32 mask;
2371 u32 expected;
2372 u32 condition_offset;
2373 u32 condition_mask;
2374 } bits[MAX_CMD_DESC_BITMASKS];
2375 };
2376
2377 /*
2378 * A table of commands requiring special handling by the command parser.
2379 *
2380 * Each ring has an array of tables. Each table consists of an array of command
2381 * descriptors, which must be sorted with command opcodes in ascending order.
2382 */
2383 struct drm_i915_cmd_table {
2384 const struct drm_i915_cmd_descriptor *table;
2385 int count;
2386 };
2387
2388 /* Note that the (struct drm_i915_private *) cast is just to shut up gcc. */
2389 #define __I915__(p) ({ \
2390 struct drm_i915_private *__p; \
2391 if (__builtin_types_compatible_p(typeof(*p), struct drm_i915_private)) \
2392 __p = (struct drm_i915_private *)p; \
2393 else if (__builtin_types_compatible_p(typeof(*p), struct drm_device)) \
2394 __p = to_i915((struct drm_device *)p); \
2395 else \
2396 BUILD_BUG(); \
2397 __p; \
2398 })
2399 #define INTEL_INFO(p) (&__I915__(p)->info)
2400 #define INTEL_DEVID(p) (INTEL_INFO(p)->device_id)
2401 #define INTEL_REVID(p) (__I915__(p)->dev->pdev->revision)
2402
2403 #define IS_I830(dev) (INTEL_DEVID(dev) == 0x3577)
2404 #define IS_845G(dev) (INTEL_DEVID(dev) == 0x2562)
2405 #define IS_I85X(dev) (INTEL_INFO(dev)->is_i85x)
2406 #define IS_I865G(dev) (INTEL_DEVID(dev) == 0x2572)
2407 #define IS_I915G(dev) (INTEL_INFO(dev)->is_i915g)
2408 #define IS_I915GM(dev) (INTEL_DEVID(dev) == 0x2592)
2409 #define IS_I945G(dev) (INTEL_DEVID(dev) == 0x2772)
2410 #define IS_I945GM(dev) (INTEL_INFO(dev)->is_i945gm)
2411 #define IS_BROADWATER(dev) (INTEL_INFO(dev)->is_broadwater)
2412 #define IS_CRESTLINE(dev) (INTEL_INFO(dev)->is_crestline)
2413 #define IS_GM45(dev) (INTEL_DEVID(dev) == 0x2A42)
2414 #define IS_G4X(dev) (INTEL_INFO(dev)->is_g4x)
2415 #define IS_PINEVIEW_G(dev) (INTEL_DEVID(dev) == 0xa001)
2416 #define IS_PINEVIEW_M(dev) (INTEL_DEVID(dev) == 0xa011)
2417 #define IS_PINEVIEW(dev) (INTEL_INFO(dev)->is_pineview)
2418 #define IS_G33(dev) (INTEL_INFO(dev)->is_g33)
2419 #define IS_IRONLAKE_M(dev) (INTEL_DEVID(dev) == 0x0046)
2420 #define IS_IVYBRIDGE(dev) (INTEL_INFO(dev)->is_ivybridge)
2421 #define IS_IVB_GT1(dev) (INTEL_DEVID(dev) == 0x0156 || \
2422 INTEL_DEVID(dev) == 0x0152 || \
2423 INTEL_DEVID(dev) == 0x015a)
2424 #define IS_VALLEYVIEW(dev) (INTEL_INFO(dev)->is_valleyview)
2425 #define IS_CHERRYVIEW(dev) (INTEL_INFO(dev)->is_valleyview && IS_GEN8(dev))
2426 #define IS_HASWELL(dev) (INTEL_INFO(dev)->is_haswell)
2427 #define IS_BROADWELL(dev) (!INTEL_INFO(dev)->is_valleyview && IS_GEN8(dev))
2428 #define IS_SKYLAKE(dev) (INTEL_INFO(dev)->is_skylake)
2429 #define IS_BROXTON(dev) (!INTEL_INFO(dev)->is_skylake && IS_GEN9(dev))
2430 #define IS_MOBILE(dev) (INTEL_INFO(dev)->is_mobile)
2431 #define IS_HSW_EARLY_SDV(dev) (IS_HASWELL(dev) && \
2432 (INTEL_DEVID(dev) & 0xFF00) == 0x0C00)
2433 #define IS_BDW_ULT(dev) (IS_BROADWELL(dev) && \
2434 ((INTEL_DEVID(dev) & 0xf) == 0x6 || \
2435 (INTEL_DEVID(dev) & 0xf) == 0xb || \
2436 (INTEL_DEVID(dev) & 0xf) == 0xe))
2437 /* ULX machines are also considered ULT. */
2438 #define IS_BDW_ULX(dev) (IS_BROADWELL(dev) && \
2439 (INTEL_DEVID(dev) & 0xf) == 0xe)
2440 #define IS_BDW_GT3(dev) (IS_BROADWELL(dev) && \
2441 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2442 #define IS_HSW_ULT(dev) (IS_HASWELL(dev) && \
2443 (INTEL_DEVID(dev) & 0xFF00) == 0x0A00)
2444 #define IS_HSW_GT3(dev) (IS_HASWELL(dev) && \
2445 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2446 /* ULX machines are also considered ULT. */
2447 #define IS_HSW_ULX(dev) (INTEL_DEVID(dev) == 0x0A0E || \
2448 INTEL_DEVID(dev) == 0x0A1E)
2449 #define IS_SKL_ULT(dev) (INTEL_DEVID(dev) == 0x1906 || \
2450 INTEL_DEVID(dev) == 0x1913 || \
2451 INTEL_DEVID(dev) == 0x1916 || \
2452 INTEL_DEVID(dev) == 0x1921 || \
2453 INTEL_DEVID(dev) == 0x1926)
2454 #define IS_SKL_ULX(dev) (INTEL_DEVID(dev) == 0x190E || \
2455 INTEL_DEVID(dev) == 0x1915 || \
2456 INTEL_DEVID(dev) == 0x191E)
2457 #define IS_PRELIMINARY_HW(intel_info) ((intel_info)->is_preliminary)
2458
2459 #define SKL_REVID_A0 (0x0)
2460 #define SKL_REVID_B0 (0x1)
2461 #define SKL_REVID_C0 (0x2)
2462 #define SKL_REVID_D0 (0x3)
2463 #define SKL_REVID_E0 (0x4)
2464 #define SKL_REVID_F0 (0x5)
2465
2466 #define BXT_REVID_A0 (0x0)
2467 #define BXT_REVID_B0 (0x3)
2468 #define BXT_REVID_C0 (0x6)
2469
2470 /*
2471 * The genX designation typically refers to the render engine, so render
2472 * capability related checks should use IS_GEN, while display and other checks
2473 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2474 * chips, etc.).
2475 */
2476 #define IS_GEN2(dev) (INTEL_INFO(dev)->gen == 2)
2477 #define IS_GEN3(dev) (INTEL_INFO(dev)->gen == 3)
2478 #define IS_GEN4(dev) (INTEL_INFO(dev)->gen == 4)
2479 #define IS_GEN5(dev) (INTEL_INFO(dev)->gen == 5)
2480 #define IS_GEN6(dev) (INTEL_INFO(dev)->gen == 6)
2481 #define IS_GEN7(dev) (INTEL_INFO(dev)->gen == 7)
2482 #define IS_GEN8(dev) (INTEL_INFO(dev)->gen == 8)
2483 #define IS_GEN9(dev) (INTEL_INFO(dev)->gen == 9)
2484
2485 #define RENDER_RING (1<<RCS)
2486 #define BSD_RING (1<<VCS)
2487 #define BLT_RING (1<<BCS)
2488 #define VEBOX_RING (1<<VECS)
2489 #define BSD2_RING (1<<VCS2)
2490 #define HAS_BSD(dev) (INTEL_INFO(dev)->ring_mask & BSD_RING)
2491 #define HAS_BSD2(dev) (INTEL_INFO(dev)->ring_mask & BSD2_RING)
2492 #define HAS_BLT(dev) (INTEL_INFO(dev)->ring_mask & BLT_RING)
2493 #define HAS_VEBOX(dev) (INTEL_INFO(dev)->ring_mask & VEBOX_RING)
2494 #define HAS_LLC(dev) (INTEL_INFO(dev)->has_llc)
2495 #define HAS_WT(dev) ((IS_HASWELL(dev) || IS_BROADWELL(dev)) && \
2496 __I915__(dev)->ellc_size)
2497 #define I915_NEED_GFX_HWS(dev) (INTEL_INFO(dev)->need_gfx_hws)
2498
2499 #define HAS_HW_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 6)
2500 #define HAS_LOGICAL_RING_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 8)
2501 #define USES_PPGTT(dev) (i915.enable_ppgtt)
2502 #define USES_FULL_PPGTT(dev) (i915.enable_ppgtt == 2)
2503
2504 #define HAS_OVERLAY(dev) (INTEL_INFO(dev)->has_overlay)
2505 #define OVERLAY_NEEDS_PHYSICAL(dev) (INTEL_INFO(dev)->overlay_needs_physical)
2506
2507 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2508 #define HAS_BROKEN_CS_TLB(dev) (IS_I830(dev) || IS_845G(dev))
2509 /*
2510 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2511 * even when in MSI mode. This results in spurious interrupt warnings if the
2512 * legacy irq no. is shared with another device. The kernel then disables that
2513 * interrupt source and so prevents the other device from working properly.
2514 */
2515 #define HAS_AUX_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2516 #define HAS_GMBUS_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2517
2518 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2519 * rows, which changed the alignment requirements and fence programming.
2520 */
2521 #define HAS_128_BYTE_Y_TILING(dev) (!IS_GEN2(dev) && !(IS_I915G(dev) || \
2522 IS_I915GM(dev)))
2523 #define SUPPORTS_TV(dev) (INTEL_INFO(dev)->supports_tv)
2524 #define I915_HAS_HOTPLUG(dev) (INTEL_INFO(dev)->has_hotplug)
2525
2526 #define HAS_FW_BLC(dev) (INTEL_INFO(dev)->gen > 2)
2527 #define HAS_PIPE_CXSR(dev) (INTEL_INFO(dev)->has_pipe_cxsr)
2528 #define HAS_FBC(dev) (INTEL_INFO(dev)->has_fbc)
2529
2530 #define HAS_IPS(dev) (IS_HSW_ULT(dev) || IS_BROADWELL(dev))
2531
2532 #define HAS_DP_MST(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2533 INTEL_INFO(dev)->gen >= 9)
2534
2535 #define HAS_DDI(dev) (INTEL_INFO(dev)->has_ddi)
2536 #define HAS_FPGA_DBG_UNCLAIMED(dev) (INTEL_INFO(dev)->has_fpga_dbg)
2537 #define HAS_PSR(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2538 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || \
2539 IS_SKYLAKE(dev))
2540 #define HAS_RUNTIME_PM(dev) (IS_GEN6(dev) || IS_HASWELL(dev) || \
2541 IS_BROADWELL(dev) || IS_VALLEYVIEW(dev) || \
2542 IS_SKYLAKE(dev))
2543 #define HAS_RC6(dev) (INTEL_INFO(dev)->gen >= 6)
2544 #define HAS_RC6p(dev) (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
2545
2546 #define HAS_CSR(dev) (IS_SKYLAKE(dev))
2547
2548 #define HAS_RESOURCE_STREAMER(dev) (IS_HASWELL(dev) || \
2549 INTEL_INFO(dev)->gen >= 8)
2550
2551 #define HAS_CORE_RING_FREQ(dev) (INTEL_INFO(dev)->gen >= 6 && \
2552 !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
2553
2554 #define INTEL_PCH_DEVICE_ID_MASK 0xff00
2555 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
2556 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
2557 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
2558 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
2559 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
2560 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
2561 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
2562
2563 #define INTEL_PCH_TYPE(dev) (__I915__(dev)->pch_type)
2564 #define HAS_PCH_SPT(dev) (INTEL_PCH_TYPE(dev) == PCH_SPT)
2565 #define HAS_PCH_LPT(dev) (INTEL_PCH_TYPE(dev) == PCH_LPT)
2566 #define HAS_PCH_CPT(dev) (INTEL_PCH_TYPE(dev) == PCH_CPT)
2567 #define HAS_PCH_IBX(dev) (INTEL_PCH_TYPE(dev) == PCH_IBX)
2568 #define HAS_PCH_NOP(dev) (INTEL_PCH_TYPE(dev) == PCH_NOP)
2569 #define HAS_PCH_SPLIT(dev) (INTEL_PCH_TYPE(dev) != PCH_NONE)
2570
2571 #define HAS_GMCH_DISPLAY(dev) (INTEL_INFO(dev)->gen < 5 || IS_VALLEYVIEW(dev))
2572
2573 /* DPF == dynamic parity feature */
2574 #define HAS_L3_DPF(dev) (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
2575 #define NUM_L3_SLICES(dev) (IS_HSW_GT3(dev) ? 2 : HAS_L3_DPF(dev))
2576
2577 #define GT_FREQUENCY_MULTIPLIER 50
2578 #define GEN9_FREQ_SCALER 3
2579
2580 #include "i915_trace.h"
2581
2582 extern const struct drm_ioctl_desc i915_ioctls[];
2583 extern int i915_max_ioctl;
2584
2585 extern int i915_suspend_legacy(struct drm_device *dev, pm_message_t state);
2586 extern int i915_resume_legacy(struct drm_device *dev);
2587
2588 /* i915_params.c */
2589 struct i915_params {
2590 int modeset;
2591 int panel_ignore_lid;
2592 int semaphores;
2593 int lvds_channel_mode;
2594 int panel_use_ssc;
2595 int vbt_sdvo_panel_type;
2596 int enable_rc6;
2597 int enable_fbc;
2598 int enable_ppgtt;
2599 int enable_execlists;
2600 int enable_psr;
2601 unsigned int preliminary_hw_support;
2602 int disable_power_well;
2603 int enable_ips;
2604 int invert_brightness;
2605 int enable_cmd_parser;
2606 /* leave bools at the end to not create holes */
2607 bool enable_hangcheck;
2608 bool fastboot;
2609 bool prefault_disable;
2610 bool load_detect_test;
2611 bool reset;
2612 bool disable_display;
2613 bool disable_vtd_wa;
2614 int use_mmio_flip;
2615 int mmio_debug;
2616 bool verbose_state_checks;
2617 int edp_vswing;
2618 };
2619 extern struct i915_params i915 __read_mostly;
2620
2621 /* i915_dma.c */
2622 extern int i915_driver_load(struct drm_device *, unsigned long flags);
2623 extern int i915_driver_unload(struct drm_device *);
2624 extern int i915_driver_open(struct drm_device *dev, struct drm_file *file);
2625 extern void i915_driver_lastclose(struct drm_device * dev);
2626 extern void i915_driver_preclose(struct drm_device *dev,
2627 struct drm_file *file);
2628 extern void i915_driver_postclose(struct drm_device *dev,
2629 struct drm_file *file);
2630 extern int i915_driver_device_is_agp(struct drm_device * dev);
2631 #ifdef CONFIG_COMPAT
2632 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2633 unsigned long arg);
2634 #endif
2635 extern int intel_gpu_reset(struct drm_device *dev);
2636 extern bool intel_has_gpu_reset(struct drm_device *dev);
2637 extern int i915_reset(struct drm_device *dev);
2638 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2639 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2640 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2641 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2642 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2643 void i915_firmware_load_error_print(const char *fw_path, int err);
2644
2645 /* intel_hotplug.c */
2646 void intel_hpd_irq_handler(struct drm_device *dev, u32 pin_mask, u32 long_mask);
2647 void intel_hpd_init(struct drm_i915_private *dev_priv);
2648 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2649 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2650 enum port intel_hpd_pin_to_port(enum hpd_pin pin);
2651
2652 /* i915_irq.c */
2653 void i915_queue_hangcheck(struct drm_device *dev);
2654 __printf(3, 4)
2655 void i915_handle_error(struct drm_device *dev, bool wedged,
2656 const char *fmt, ...);
2657
2658 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2659 int intel_irq_install(struct drm_i915_private *dev_priv);
2660 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2661
2662 extern void intel_uncore_sanitize(struct drm_device *dev);
2663 extern void intel_uncore_early_sanitize(struct drm_device *dev,
2664 bool restore_forcewake);
2665 extern void intel_uncore_init(struct drm_device *dev);
2666 extern void intel_uncore_check_errors(struct drm_device *dev);
2667 extern void intel_uncore_fini(struct drm_device *dev);
2668 extern void intel_uncore_forcewake_reset(struct drm_device *dev, bool restore);
2669 const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id);
2670 void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv,
2671 enum forcewake_domains domains);
2672 void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv,
2673 enum forcewake_domains domains);
2674 /* Like above but the caller must manage the uncore.lock itself.
2675 * Must be used with I915_READ_FW and friends.
2676 */
2677 void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv,
2678 enum forcewake_domains domains);
2679 void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv,
2680 enum forcewake_domains domains);
2681 void assert_forcewakes_inactive(struct drm_i915_private *dev_priv);
2682 static inline bool intel_vgpu_active(struct drm_device *dev)
2683 {
2684 return to_i915(dev)->vgpu.active;
2685 }
2686
2687 void
2688 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2689 u32 status_mask);
2690
2691 void
2692 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2693 u32 status_mask);
2694
2695 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
2696 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
2697 void
2698 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask);
2699 void
2700 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask);
2701 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
2702 uint32_t interrupt_mask,
2703 uint32_t enabled_irq_mask);
2704 #define ibx_enable_display_interrupt(dev_priv, bits) \
2705 ibx_display_interrupt_update((dev_priv), (bits), (bits))
2706 #define ibx_disable_display_interrupt(dev_priv, bits) \
2707 ibx_display_interrupt_update((dev_priv), (bits), 0)
2708
2709 /* i915_gem.c */
2710 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
2711 struct drm_file *file_priv);
2712 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
2713 struct drm_file *file_priv);
2714 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
2715 struct drm_file *file_priv);
2716 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
2717 struct drm_file *file_priv);
2718 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2719 struct drm_file *file_priv);
2720 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
2721 struct drm_file *file_priv);
2722 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
2723 struct drm_file *file_priv);
2724 void i915_gem_execbuffer_move_to_active(struct list_head *vmas,
2725 struct drm_i915_gem_request *req);
2726 void i915_gem_execbuffer_retire_commands(struct i915_execbuffer_params *params);
2727 int i915_gem_ringbuffer_submission(struct i915_execbuffer_params *params,
2728 struct drm_i915_gem_execbuffer2 *args,
2729 struct list_head *vmas);
2730 int i915_gem_execbuffer(struct drm_device *dev, void *data,
2731 struct drm_file *file_priv);
2732 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
2733 struct drm_file *file_priv);
2734 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2735 struct drm_file *file_priv);
2736 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
2737 struct drm_file *file);
2738 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
2739 struct drm_file *file);
2740 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2741 struct drm_file *file_priv);
2742 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
2743 struct drm_file *file_priv);
2744 int i915_gem_set_tiling(struct drm_device *dev, void *data,
2745 struct drm_file *file_priv);
2746 int i915_gem_get_tiling(struct drm_device *dev, void *data,
2747 struct drm_file *file_priv);
2748 int i915_gem_init_userptr(struct drm_device *dev);
2749 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
2750 struct drm_file *file);
2751 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
2752 struct drm_file *file_priv);
2753 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
2754 struct drm_file *file_priv);
2755 void i915_gem_load(struct drm_device *dev);
2756 void *i915_gem_object_alloc(struct drm_device *dev);
2757 void i915_gem_object_free(struct drm_i915_gem_object *obj);
2758 void i915_gem_object_init(struct drm_i915_gem_object *obj,
2759 const struct drm_i915_gem_object_ops *ops);
2760 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
2761 size_t size);
2762 void i915_init_vm(struct drm_i915_private *dev_priv,
2763 struct i915_address_space *vm);
2764 void i915_gem_free_object(struct drm_gem_object *obj);
2765 void i915_gem_vma_destroy(struct i915_vma *vma);
2766
2767 /* Flags used by pin/bind&friends. */
2768 #define PIN_MAPPABLE (1<<0)
2769 #define PIN_NONBLOCK (1<<1)
2770 #define PIN_GLOBAL (1<<2)
2771 #define PIN_OFFSET_BIAS (1<<3)
2772 #define PIN_USER (1<<4)
2773 #define PIN_UPDATE (1<<5)
2774 #define PIN_OFFSET_MASK (~4095)
2775 int __must_check
2776 i915_gem_object_pin(struct drm_i915_gem_object *obj,
2777 struct i915_address_space *vm,
2778 uint32_t alignment,
2779 uint64_t flags);
2780 int __must_check
2781 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
2782 const struct i915_ggtt_view *view,
2783 uint32_t alignment,
2784 uint64_t flags);
2785
2786 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
2787 u32 flags);
2788 int __must_check i915_vma_unbind(struct i915_vma *vma);
2789 int i915_gem_object_put_pages(struct drm_i915_gem_object *obj);
2790 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv);
2791 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
2792
2793 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
2794 int *needs_clflush);
2795
2796 int __must_check i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
2797
2798 static inline int __sg_page_count(struct scatterlist *sg)
2799 {
2800 return sg->length >> PAGE_SHIFT;
2801 }
2802
2803 static inline struct page *
2804 i915_gem_object_get_page(struct drm_i915_gem_object *obj, int n)
2805 {
2806 if (WARN_ON(n >= obj->base.size >> PAGE_SHIFT))
2807 return NULL;
2808
2809 if (n < obj->get_page.last) {
2810 obj->get_page.sg = obj->pages->sgl;
2811 obj->get_page.last = 0;
2812 }
2813
2814 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
2815 obj->get_page.last += __sg_page_count(obj->get_page.sg++);
2816 if (unlikely(sg_is_chain(obj->get_page.sg)))
2817 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
2818 }
2819
2820 return nth_page(sg_page(obj->get_page.sg), n - obj->get_page.last);
2821 }
2822
2823 static inline void i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
2824 {
2825 BUG_ON(obj->pages == NULL);
2826 obj->pages_pin_count++;
2827 }
2828 static inline void i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
2829 {
2830 BUG_ON(obj->pages_pin_count == 0);
2831 obj->pages_pin_count--;
2832 }
2833
2834 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
2835 int i915_gem_object_sync(struct drm_i915_gem_object *obj,
2836 struct intel_engine_cs *to,
2837 struct drm_i915_gem_request **to_req);
2838 void i915_vma_move_to_active(struct i915_vma *vma,
2839 struct drm_i915_gem_request *req);
2840 int i915_gem_dumb_create(struct drm_file *file_priv,
2841 struct drm_device *dev,
2842 struct drm_mode_create_dumb *args);
2843 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
2844 uint32_t handle, uint64_t *offset);
2845 /**
2846 * Returns true if seq1 is later than seq2.
2847 */
2848 static inline bool
2849 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
2850 {
2851 return (int32_t)(seq1 - seq2) >= 0;
2852 }
2853
2854 static inline bool i915_gem_request_completed(struct drm_i915_gem_request *req,
2855 bool lazy_coherency)
2856 {
2857 u32 seqno;
2858
2859 BUG_ON(req == NULL);
2860
2861 seqno = req->ring->get_seqno(req->ring, lazy_coherency);
2862
2863 return i915_seqno_passed(seqno, req->seqno);
2864 }
2865
2866 int __must_check i915_gem_get_seqno(struct drm_device *dev, u32 *seqno);
2867 int __must_check i915_gem_set_seqno(struct drm_device *dev, u32 seqno);
2868 int __must_check i915_gem_object_get_fence(struct drm_i915_gem_object *obj);
2869 int __must_check i915_gem_object_put_fence(struct drm_i915_gem_object *obj);
2870
2871 bool i915_gem_object_pin_fence(struct drm_i915_gem_object *obj);
2872 void i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj);
2873
2874 struct drm_i915_gem_request *
2875 i915_gem_find_active_request(struct intel_engine_cs *ring);
2876
2877 bool i915_gem_retire_requests(struct drm_device *dev);
2878 void i915_gem_retire_requests_ring(struct intel_engine_cs *ring);
2879 int __must_check i915_gem_check_wedge(struct i915_gpu_error *error,
2880 bool interruptible);
2881
2882 static inline bool i915_reset_in_progress(struct i915_gpu_error *error)
2883 {
2884 return unlikely(atomic_read(&error->reset_counter)
2885 & (I915_RESET_IN_PROGRESS_FLAG | I915_WEDGED));
2886 }
2887
2888 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
2889 {
2890 return atomic_read(&error->reset_counter) & I915_WEDGED;
2891 }
2892
2893 static inline u32 i915_reset_count(struct i915_gpu_error *error)
2894 {
2895 return ((atomic_read(&error->reset_counter) & ~I915_WEDGED) + 1) / 2;
2896 }
2897
2898 static inline bool i915_stop_ring_allow_ban(struct drm_i915_private *dev_priv)
2899 {
2900 return dev_priv->gpu_error.stop_rings == 0 ||
2901 dev_priv->gpu_error.stop_rings & I915_STOP_RING_ALLOW_BAN;
2902 }
2903
2904 static inline bool i915_stop_ring_allow_warn(struct drm_i915_private *dev_priv)
2905 {
2906 return dev_priv->gpu_error.stop_rings == 0 ||
2907 dev_priv->gpu_error.stop_rings & I915_STOP_RING_ALLOW_WARN;
2908 }
2909
2910 void i915_gem_reset(struct drm_device *dev);
2911 bool i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force);
2912 int __must_check i915_gem_init(struct drm_device *dev);
2913 int i915_gem_init_rings(struct drm_device *dev);
2914 int __must_check i915_gem_init_hw(struct drm_device *dev);
2915 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice);
2916 void i915_gem_init_swizzling(struct drm_device *dev);
2917 void i915_gem_cleanup_ringbuffer(struct drm_device *dev);
2918 int __must_check i915_gpu_idle(struct drm_device *dev);
2919 int __must_check i915_gem_suspend(struct drm_device *dev);
2920 void __i915_add_request(struct drm_i915_gem_request *req,
2921 struct drm_i915_gem_object *batch_obj,
2922 bool flush_caches);
2923 #define i915_add_request(req) \
2924 __i915_add_request(req, NULL, true)
2925 #define i915_add_request_no_flush(req) \
2926 __i915_add_request(req, NULL, false)
2927 int __i915_wait_request(struct drm_i915_gem_request *req,
2928 unsigned reset_counter,
2929 bool interruptible,
2930 s64 *timeout,
2931 struct intel_rps_client *rps);
2932 int __must_check i915_wait_request(struct drm_i915_gem_request *req);
2933 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf);
2934 int __must_check
2935 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
2936 bool readonly);
2937 int __must_check
2938 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj,
2939 bool write);
2940 int __must_check
2941 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
2942 int __must_check
2943 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
2944 u32 alignment,
2945 struct intel_engine_cs *pipelined,
2946 struct drm_i915_gem_request **pipelined_request,
2947 const struct i915_ggtt_view *view);
2948 void i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
2949 const struct i915_ggtt_view *view);
2950 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
2951 int align);
2952 int i915_gem_open(struct drm_device *dev, struct drm_file *file);
2953 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
2954
2955 uint32_t
2956 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode);
2957 uint32_t
2958 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2959 int tiling_mode, bool fenced);
2960
2961 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2962 enum i915_cache_level cache_level);
2963
2964 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
2965 struct dma_buf *dma_buf);
2966
2967 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
2968 struct drm_gem_object *gem_obj, int flags);
2969
2970 void i915_gem_restore_fences(struct drm_device *dev);
2971
2972 unsigned long
2973 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
2974 const struct i915_ggtt_view *view);
2975 unsigned long
2976 i915_gem_obj_offset(struct drm_i915_gem_object *o,
2977 struct i915_address_space *vm);
2978 static inline unsigned long
2979 i915_gem_obj_ggtt_offset(struct drm_i915_gem_object *o)
2980 {
2981 return i915_gem_obj_ggtt_offset_view(o, &i915_ggtt_view_normal);
2982 }
2983
2984 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o);
2985 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
2986 const struct i915_ggtt_view *view);
2987 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
2988 struct i915_address_space *vm);
2989
2990 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
2991 struct i915_address_space *vm);
2992 struct i915_vma *
2993 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
2994 struct i915_address_space *vm);
2995 struct i915_vma *
2996 i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
2997 const struct i915_ggtt_view *view);
2998
2999 struct i915_vma *
3000 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3001 struct i915_address_space *vm);
3002 struct i915_vma *
3003 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3004 const struct i915_ggtt_view *view);
3005
3006 static inline struct i915_vma *
3007 i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
3008 {
3009 return i915_gem_obj_to_ggtt_view(obj, &i915_ggtt_view_normal);
3010 }
3011 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj);
3012
3013 /* Some GGTT VM helpers */
3014 #define i915_obj_to_ggtt(obj) \
3015 (&((struct drm_i915_private *)(obj)->base.dev->dev_private)->gtt.base)
3016 static inline bool i915_is_ggtt(struct i915_address_space *vm)
3017 {
3018 struct i915_address_space *ggtt =
3019 &((struct drm_i915_private *)(vm)->dev->dev_private)->gtt.base;
3020 return vm == ggtt;
3021 }
3022
3023 static inline struct i915_hw_ppgtt *
3024 i915_vm_to_ppgtt(struct i915_address_space *vm)
3025 {
3026 WARN_ON(i915_is_ggtt(vm));
3027
3028 return container_of(vm, struct i915_hw_ppgtt, base);
3029 }
3030
3031
3032 static inline bool i915_gem_obj_ggtt_bound(struct drm_i915_gem_object *obj)
3033 {
3034 return i915_gem_obj_ggtt_bound_view(obj, &i915_ggtt_view_normal);
3035 }
3036
3037 static inline unsigned long
3038 i915_gem_obj_ggtt_size(struct drm_i915_gem_object *obj)
3039 {
3040 return i915_gem_obj_size(obj, i915_obj_to_ggtt(obj));
3041 }
3042
3043 static inline int __must_check
3044 i915_gem_obj_ggtt_pin(struct drm_i915_gem_object *obj,
3045 uint32_t alignment,
3046 unsigned flags)
3047 {
3048 return i915_gem_object_pin(obj, i915_obj_to_ggtt(obj),
3049 alignment, flags | PIN_GLOBAL);
3050 }
3051
3052 static inline int
3053 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
3054 {
3055 return i915_vma_unbind(i915_gem_obj_to_ggtt(obj));
3056 }
3057
3058 void i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
3059 const struct i915_ggtt_view *view);
3060 static inline void
3061 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
3062 {
3063 i915_gem_object_ggtt_unpin_view(obj, &i915_ggtt_view_normal);
3064 }
3065
3066 /* i915_gem_context.c */
3067 int __must_check i915_gem_context_init(struct drm_device *dev);
3068 void i915_gem_context_fini(struct drm_device *dev);
3069 void i915_gem_context_reset(struct drm_device *dev);
3070 int i915_gem_context_open(struct drm_device *dev, struct drm_file *file);
3071 int i915_gem_context_enable(struct drm_i915_gem_request *req);
3072 void i915_gem_context_close(struct drm_device *dev, struct drm_file *file);
3073 int i915_switch_context(struct drm_i915_gem_request *req);
3074 struct intel_context *
3075 i915_gem_context_get(struct drm_i915_file_private *file_priv, u32 id);
3076 void i915_gem_context_free(struct kref *ctx_ref);
3077 struct drm_i915_gem_object *
3078 i915_gem_alloc_context_obj(struct drm_device *dev, size_t size);
3079 static inline void i915_gem_context_reference(struct intel_context *ctx)
3080 {
3081 kref_get(&ctx->ref);
3082 }
3083
3084 static inline void i915_gem_context_unreference(struct intel_context *ctx)
3085 {
3086 kref_put(&ctx->ref, i915_gem_context_free);
3087 }
3088
3089 static inline bool i915_gem_context_is_default(const struct intel_context *c)
3090 {
3091 return c->user_handle == DEFAULT_CONTEXT_HANDLE;
3092 }
3093
3094 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
3095 struct drm_file *file);
3096 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
3097 struct drm_file *file);
3098 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
3099 struct drm_file *file_priv);
3100 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
3101 struct drm_file *file_priv);
3102
3103 /* i915_gem_evict.c */
3104 int __must_check i915_gem_evict_something(struct drm_device *dev,
3105 struct i915_address_space *vm,
3106 int min_size,
3107 unsigned alignment,
3108 unsigned cache_level,
3109 unsigned long start,
3110 unsigned long end,
3111 unsigned flags);
3112 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle);
3113 int i915_gem_evict_everything(struct drm_device *dev);
3114
3115 /* belongs in i915_gem_gtt.h */
3116 static inline void i915_gem_chipset_flush(struct drm_device *dev)
3117 {
3118 if (INTEL_INFO(dev)->gen < 6)
3119 intel_gtt_chipset_flush();
3120 }
3121
3122 /* i915_gem_stolen.c */
3123 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3124 struct drm_mm_node *node, u64 size,
3125 unsigned alignment);
3126 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3127 struct drm_mm_node *node);
3128 int i915_gem_init_stolen(struct drm_device *dev);
3129 void i915_gem_cleanup_stolen(struct drm_device *dev);
3130 struct drm_i915_gem_object *
3131 i915_gem_object_create_stolen(struct drm_device *dev, u32 size);
3132 struct drm_i915_gem_object *
3133 i915_gem_object_create_stolen_for_preallocated(struct drm_device *dev,
3134 u32 stolen_offset,
3135 u32 gtt_offset,
3136 u32 size);
3137
3138 /* i915_gem_shrinker.c */
3139 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3140 long target,
3141 unsigned flags);
3142 #define I915_SHRINK_PURGEABLE 0x1
3143 #define I915_SHRINK_UNBOUND 0x2
3144 #define I915_SHRINK_BOUND 0x4
3145 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3146 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3147
3148
3149 /* i915_gem_tiling.c */
3150 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3151 {
3152 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3153
3154 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3155 obj->tiling_mode != I915_TILING_NONE;
3156 }
3157
3158 void i915_gem_detect_bit_6_swizzle(struct drm_device *dev);
3159 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj);
3160 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj);
3161
3162 /* i915_gem_debug.c */
3163 #if WATCH_LISTS
3164 int i915_verify_lists(struct drm_device *dev);
3165 #else
3166 #define i915_verify_lists(dev) 0
3167 #endif
3168
3169 /* i915_debugfs.c */
3170 int i915_debugfs_init(struct drm_minor *minor);
3171 void i915_debugfs_cleanup(struct drm_minor *minor);
3172 #ifdef CONFIG_DEBUG_FS
3173 int i915_debugfs_connector_add(struct drm_connector *connector);
3174 void intel_display_crc_init(struct drm_device *dev);
3175 #else
3176 static inline int i915_debugfs_connector_add(struct drm_connector *connector) {}
3177 static inline void intel_display_crc_init(struct drm_device *dev) {}
3178 #endif
3179
3180 /* i915_gpu_error.c */
3181 __printf(2, 3)
3182 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3183 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3184 const struct i915_error_state_file_priv *error);
3185 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3186 struct drm_i915_private *i915,
3187 size_t count, loff_t pos);
3188 static inline void i915_error_state_buf_release(
3189 struct drm_i915_error_state_buf *eb)
3190 {
3191 kfree(eb->buf);
3192 }
3193 void i915_capture_error_state(struct drm_device *dev, bool wedge,
3194 const char *error_msg);
3195 void i915_error_state_get(struct drm_device *dev,
3196 struct i915_error_state_file_priv *error_priv);
3197 void i915_error_state_put(struct i915_error_state_file_priv *error_priv);
3198 void i915_destroy_error_state(struct drm_device *dev);
3199
3200 void i915_get_extra_instdone(struct drm_device *dev, uint32_t *instdone);
3201 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3202
3203 /* i915_cmd_parser.c */
3204 int i915_cmd_parser_get_version(void);
3205 int i915_cmd_parser_init_ring(struct intel_engine_cs *ring);
3206 void i915_cmd_parser_fini_ring(struct intel_engine_cs *ring);
3207 bool i915_needs_cmd_parser(struct intel_engine_cs *ring);
3208 int i915_parse_cmds(struct intel_engine_cs *ring,
3209 struct drm_i915_gem_object *batch_obj,
3210 struct drm_i915_gem_object *shadow_batch_obj,
3211 u32 batch_start_offset,
3212 u32 batch_len,
3213 bool is_master);
3214
3215 /* i915_suspend.c */
3216 extern int i915_save_state(struct drm_device *dev);
3217 extern int i915_restore_state(struct drm_device *dev);
3218
3219 /* i915_sysfs.c */
3220 void i915_setup_sysfs(struct drm_device *dev_priv);
3221 void i915_teardown_sysfs(struct drm_device *dev_priv);
3222
3223 /* intel_i2c.c */
3224 extern int intel_setup_gmbus(struct drm_device *dev);
3225 extern void intel_teardown_gmbus(struct drm_device *dev);
3226 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3227 unsigned int pin);
3228
3229 extern struct i2c_adapter *
3230 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3231 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3232 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3233 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3234 {
3235 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3236 }
3237 extern void intel_i2c_reset(struct drm_device *dev);
3238
3239 /* intel_opregion.c */
3240 #ifdef CONFIG_ACPI
3241 extern int intel_opregion_setup(struct drm_device *dev);
3242 extern void intel_opregion_init(struct drm_device *dev);
3243 extern void intel_opregion_fini(struct drm_device *dev);
3244 extern void intel_opregion_asle_intr(struct drm_device *dev);
3245 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3246 bool enable);
3247 extern int intel_opregion_notify_adapter(struct drm_device *dev,
3248 pci_power_t state);
3249 #else
3250 static inline int intel_opregion_setup(struct drm_device *dev) { return 0; }
3251 static inline void intel_opregion_init(struct drm_device *dev) { return; }
3252 static inline void intel_opregion_fini(struct drm_device *dev) { return; }
3253 static inline void intel_opregion_asle_intr(struct drm_device *dev) { return; }
3254 static inline int
3255 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3256 {
3257 return 0;
3258 }
3259 static inline int
3260 intel_opregion_notify_adapter(struct drm_device *dev, pci_power_t state)
3261 {
3262 return 0;
3263 }
3264 #endif
3265
3266 /* intel_acpi.c */
3267 #ifdef CONFIG_ACPI
3268 extern void intel_register_dsm_handler(void);
3269 extern void intel_unregister_dsm_handler(void);
3270 #else
3271 static inline void intel_register_dsm_handler(void) { return; }
3272 static inline void intel_unregister_dsm_handler(void) { return; }
3273 #endif /* CONFIG_ACPI */
3274
3275 /* modesetting */
3276 extern void intel_modeset_init_hw(struct drm_device *dev);
3277 extern void intel_modeset_init(struct drm_device *dev);
3278 extern void intel_modeset_gem_init(struct drm_device *dev);
3279 extern void intel_modeset_cleanup(struct drm_device *dev);
3280 extern void intel_connector_unregister(struct intel_connector *);
3281 extern int intel_modeset_vga_set_state(struct drm_device *dev, bool state);
3282 extern void intel_display_resume(struct drm_device *dev);
3283 extern void i915_redisable_vga(struct drm_device *dev);
3284 extern void i915_redisable_vga_power_on(struct drm_device *dev);
3285 extern bool ironlake_set_drps(struct drm_device *dev, u8 val);
3286 extern void intel_init_pch_refclk(struct drm_device *dev);
3287 extern void intel_set_rps(struct drm_device *dev, u8 val);
3288 extern void intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3289 bool enable);
3290 extern void intel_detect_pch(struct drm_device *dev);
3291 extern int intel_trans_dp_port_sel(struct drm_crtc *crtc);
3292 extern int intel_enable_rc6(const struct drm_device *dev);
3293
3294 extern bool i915_semaphore_is_enabled(struct drm_device *dev);
3295 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3296 struct drm_file *file);
3297 int i915_get_reset_stats_ioctl(struct drm_device *dev, void *data,
3298 struct drm_file *file);
3299
3300 /* overlay */
3301 extern struct intel_overlay_error_state *intel_overlay_capture_error_state(struct drm_device *dev);
3302 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3303 struct intel_overlay_error_state *error);
3304
3305 extern struct intel_display_error_state *intel_display_capture_error_state(struct drm_device *dev);
3306 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3307 struct drm_device *dev,
3308 struct intel_display_error_state *error);
3309
3310 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3311 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3312
3313 /* intel_sideband.c */
3314 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3315 void vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3316 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3317 u32 vlv_gpio_nc_read(struct drm_i915_private *dev_priv, u32 reg);
3318 void vlv_gpio_nc_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3319 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3320 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3321 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3322 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3323 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3324 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3325 u32 vlv_gps_core_read(struct drm_i915_private *dev_priv, u32 reg);
3326 void vlv_gps_core_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3327 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3328 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3329 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3330 enum intel_sbi_destination destination);
3331 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3332 enum intel_sbi_destination destination);
3333 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3334 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3335
3336 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3337 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3338
3339 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3340 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3341
3342 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3343 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3344 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3345 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3346
3347 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3348 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3349 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3350 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3351
3352 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3353 * will be implemented using 2 32-bit writes in an arbitrary order with
3354 * an arbitrary delay between them. This can cause the hardware to
3355 * act upon the intermediate value, possibly leading to corruption and
3356 * machine death. You have been warned.
3357 */
3358 #define I915_WRITE64(reg, val) dev_priv->uncore.funcs.mmio_writeq(dev_priv, (reg), (val), true)
3359 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3360
3361 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
3362 u32 upper = I915_READ(upper_reg); \
3363 u32 lower = I915_READ(lower_reg); \
3364 u32 tmp = I915_READ(upper_reg); \
3365 if (upper != tmp) { \
3366 upper = tmp; \
3367 lower = I915_READ(lower_reg); \
3368 WARN_ON(I915_READ(upper_reg) != upper); \
3369 } \
3370 (u64)upper << 32 | lower; })
3371
3372 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
3373 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
3374
3375 /* These are untraced mmio-accessors that are only valid to be used inside
3376 * criticial sections inside IRQ handlers where forcewake is explicitly
3377 * controlled.
3378 * Think twice, and think again, before using these.
3379 * Note: Should only be used between intel_uncore_forcewake_irqlock() and
3380 * intel_uncore_forcewake_irqunlock().
3381 */
3382 #define I915_READ_FW(reg__) readl(dev_priv->regs + (reg__))
3383 #define I915_WRITE_FW(reg__, val__) writel(val__, dev_priv->regs + (reg__))
3384 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3385
3386 /* "Broadcast RGB" property */
3387 #define INTEL_BROADCAST_RGB_AUTO 0
3388 #define INTEL_BROADCAST_RGB_FULL 1
3389 #define INTEL_BROADCAST_RGB_LIMITED 2
3390
3391 static inline uint32_t i915_vgacntrl_reg(struct drm_device *dev)
3392 {
3393 if (IS_VALLEYVIEW(dev))
3394 return VLV_VGACNTRL;
3395 else if (INTEL_INFO(dev)->gen >= 5)
3396 return CPU_VGACNTRL;
3397 else
3398 return VGACNTRL;
3399 }
3400
3401 static inline void __user *to_user_ptr(u64 address)
3402 {
3403 return (void __user *)(uintptr_t)address;
3404 }
3405
3406 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3407 {
3408 unsigned long j = msecs_to_jiffies(m);
3409
3410 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3411 }
3412
3413 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3414 {
3415 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3416 }
3417
3418 static inline unsigned long
3419 timespec_to_jiffies_timeout(const struct timespec *value)
3420 {
3421 unsigned long j = timespec_to_jiffies(value);
3422
3423 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3424 }
3425
3426 /*
3427 * If you need to wait X milliseconds between events A and B, but event B
3428 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3429 * when event A happened, then just before event B you call this function and
3430 * pass the timestamp as the first argument, and X as the second argument.
3431 */
3432 static inline void
3433 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3434 {
3435 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3436
3437 /*
3438 * Don't re-read the value of "jiffies" every time since it may change
3439 * behind our back and break the math.
3440 */
3441 tmp_jiffies = jiffies;
3442 target_jiffies = timestamp_jiffies +
3443 msecs_to_jiffies_timeout(to_wait_ms);
3444
3445 if (time_after(target_jiffies, tmp_jiffies)) {
3446 remaining_jiffies = target_jiffies - tmp_jiffies;
3447 while (remaining_jiffies)
3448 remaining_jiffies =
3449 schedule_timeout_uninterruptible(remaining_jiffies);
3450 }
3451 }
3452
3453 static inline void i915_trace_irq_get(struct intel_engine_cs *ring,
3454 struct drm_i915_gem_request *req)
3455 {
3456 if (ring->trace_irq_req == NULL && ring->irq_get(ring))
3457 i915_gem_request_assign(&ring->trace_irq_req, req);
3458 }
3459
3460 #endif