]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.h
drm/i915/psr: Add setup VSC vfunc.
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/reservation.h>
45 #include <linux/shmem_fs.h>
46
47 #include <drm/drmP.h>
48 #include <drm/intel-gtt.h>
49 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
50 #include <drm/drm_gem.h>
51 #include <drm/drm_auth.h>
52 #include <drm/drm_cache.h>
53
54 #include "i915_params.h"
55 #include "i915_reg.h"
56 #include "i915_utils.h"
57
58 #include "intel_uncore.h"
59 #include "intel_bios.h"
60 #include "intel_dpll_mgr.h"
61 #include "intel_uc.h"
62 #include "intel_lrc.h"
63 #include "intel_ringbuffer.h"
64
65 #include "i915_gem.h"
66 #include "i915_gem_context.h"
67 #include "i915_gem_fence_reg.h"
68 #include "i915_gem_object.h"
69 #include "i915_gem_gtt.h"
70 #include "i915_gem_render_state.h"
71 #include "i915_gem_request.h"
72 #include "i915_gem_timeline.h"
73
74 #include "i915_vma.h"
75
76 #include "intel_gvt.h"
77
78 /* General customization:
79 */
80
81 #define DRIVER_NAME "i915"
82 #define DRIVER_DESC "Intel Graphics"
83 #define DRIVER_DATE "20170907"
84 #define DRIVER_TIMESTAMP 1504772900
85
86 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
87 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
88 * which may not necessarily be a user visible problem. This will either
89 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
90 * enable distros and users to tailor their preferred amount of i915 abrt
91 * spam.
92 */
93 #define I915_STATE_WARN(condition, format...) ({ \
94 int __ret_warn_on = !!(condition); \
95 if (unlikely(__ret_warn_on)) \
96 if (!WARN(i915.verbose_state_checks, format)) \
97 DRM_ERROR(format); \
98 unlikely(__ret_warn_on); \
99 })
100
101 #define I915_STATE_WARN_ON(x) \
102 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
103
104 bool __i915_inject_load_failure(const char *func, int line);
105 #define i915_inject_load_failure() \
106 __i915_inject_load_failure(__func__, __LINE__)
107
108 typedef struct {
109 uint32_t val;
110 } uint_fixed_16_16_t;
111
112 #define FP_16_16_MAX ({ \
113 uint_fixed_16_16_t fp; \
114 fp.val = UINT_MAX; \
115 fp; \
116 })
117
118 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
119 {
120 if (val.val == 0)
121 return true;
122 return false;
123 }
124
125 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val)
126 {
127 uint_fixed_16_16_t fp;
128
129 WARN_ON(val > U16_MAX);
130
131 fp.val = val << 16;
132 return fp;
133 }
134
135 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp)
136 {
137 return DIV_ROUND_UP(fp.val, 1 << 16);
138 }
139
140 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp)
141 {
142 return fp.val >> 16;
143 }
144
145 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1,
146 uint_fixed_16_16_t min2)
147 {
148 uint_fixed_16_16_t min;
149
150 min.val = min(min1.val, min2.val);
151 return min;
152 }
153
154 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1,
155 uint_fixed_16_16_t max2)
156 {
157 uint_fixed_16_16_t max;
158
159 max.val = max(max1.val, max2.val);
160 return max;
161 }
162
163 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val)
164 {
165 uint_fixed_16_16_t fp;
166 WARN_ON(val > U32_MAX);
167 fp.val = (uint32_t) val;
168 return fp;
169 }
170
171 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
172 uint_fixed_16_16_t d)
173 {
174 return DIV_ROUND_UP(val.val, d.val);
175 }
176
177 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
178 uint_fixed_16_16_t mul)
179 {
180 uint64_t intermediate_val;
181
182 intermediate_val = (uint64_t) val * mul.val;
183 intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
184 WARN_ON(intermediate_val > U32_MAX);
185 return (uint32_t) intermediate_val;
186 }
187
188 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
189 uint_fixed_16_16_t mul)
190 {
191 uint64_t intermediate_val;
192
193 intermediate_val = (uint64_t) val.val * mul.val;
194 intermediate_val = intermediate_val >> 16;
195 return clamp_u64_to_fixed16(intermediate_val);
196 }
197
198 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d)
199 {
200 uint64_t interm_val;
201
202 interm_val = (uint64_t)val << 16;
203 interm_val = DIV_ROUND_UP_ULL(interm_val, d);
204 return clamp_u64_to_fixed16(interm_val);
205 }
206
207 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
208 uint_fixed_16_16_t d)
209 {
210 uint64_t interm_val;
211
212 interm_val = (uint64_t)val << 16;
213 interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
214 WARN_ON(interm_val > U32_MAX);
215 return (uint32_t) interm_val;
216 }
217
218 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val,
219 uint_fixed_16_16_t mul)
220 {
221 uint64_t intermediate_val;
222
223 intermediate_val = (uint64_t) val * mul.val;
224 return clamp_u64_to_fixed16(intermediate_val);
225 }
226
227 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1,
228 uint_fixed_16_16_t add2)
229 {
230 uint64_t interm_sum;
231
232 interm_sum = (uint64_t) add1.val + add2.val;
233 return clamp_u64_to_fixed16(interm_sum);
234 }
235
236 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1,
237 uint32_t add2)
238 {
239 uint64_t interm_sum;
240 uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2);
241
242 interm_sum = (uint64_t) add1.val + interm_add2.val;
243 return clamp_u64_to_fixed16(interm_sum);
244 }
245
246 static inline const char *yesno(bool v)
247 {
248 return v ? "yes" : "no";
249 }
250
251 static inline const char *onoff(bool v)
252 {
253 return v ? "on" : "off";
254 }
255
256 static inline const char *enableddisabled(bool v)
257 {
258 return v ? "enabled" : "disabled";
259 }
260
261 enum pipe {
262 INVALID_PIPE = -1,
263 PIPE_A = 0,
264 PIPE_B,
265 PIPE_C,
266 _PIPE_EDP,
267 I915_MAX_PIPES = _PIPE_EDP
268 };
269 #define pipe_name(p) ((p) + 'A')
270
271 enum transcoder {
272 TRANSCODER_A = 0,
273 TRANSCODER_B,
274 TRANSCODER_C,
275 TRANSCODER_EDP,
276 TRANSCODER_DSI_A,
277 TRANSCODER_DSI_C,
278 I915_MAX_TRANSCODERS
279 };
280
281 static inline const char *transcoder_name(enum transcoder transcoder)
282 {
283 switch (transcoder) {
284 case TRANSCODER_A:
285 return "A";
286 case TRANSCODER_B:
287 return "B";
288 case TRANSCODER_C:
289 return "C";
290 case TRANSCODER_EDP:
291 return "EDP";
292 case TRANSCODER_DSI_A:
293 return "DSI A";
294 case TRANSCODER_DSI_C:
295 return "DSI C";
296 default:
297 return "<invalid>";
298 }
299 }
300
301 static inline bool transcoder_is_dsi(enum transcoder transcoder)
302 {
303 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
304 }
305
306 /*
307 * Global legacy plane identifier. Valid only for primary/sprite
308 * planes on pre-g4x, and only for primary planes on g4x+.
309 */
310 enum plane {
311 PLANE_A,
312 PLANE_B,
313 PLANE_C,
314 };
315 #define plane_name(p) ((p) + 'A')
316
317 #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A')
318
319 /*
320 * Per-pipe plane identifier.
321 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
322 * number of planes per CRTC. Not all platforms really have this many planes,
323 * which means some arrays of size I915_MAX_PLANES may have unused entries
324 * between the topmost sprite plane and the cursor plane.
325 *
326 * This is expected to be passed to various register macros
327 * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care.
328 */
329 enum plane_id {
330 PLANE_PRIMARY,
331 PLANE_SPRITE0,
332 PLANE_SPRITE1,
333 PLANE_SPRITE2,
334 PLANE_CURSOR,
335 I915_MAX_PLANES,
336 };
337
338 #define for_each_plane_id_on_crtc(__crtc, __p) \
339 for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \
340 for_each_if ((__crtc)->plane_ids_mask & BIT(__p))
341
342 enum port {
343 PORT_NONE = -1,
344 PORT_A = 0,
345 PORT_B,
346 PORT_C,
347 PORT_D,
348 PORT_E,
349 I915_MAX_PORTS
350 };
351 #define port_name(p) ((p) + 'A')
352
353 #define I915_NUM_PHYS_VLV 2
354
355 enum dpio_channel {
356 DPIO_CH0,
357 DPIO_CH1
358 };
359
360 enum dpio_phy {
361 DPIO_PHY0,
362 DPIO_PHY1,
363 DPIO_PHY2,
364 };
365
366 enum intel_display_power_domain {
367 POWER_DOMAIN_PIPE_A,
368 POWER_DOMAIN_PIPE_B,
369 POWER_DOMAIN_PIPE_C,
370 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
371 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
372 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
373 POWER_DOMAIN_TRANSCODER_A,
374 POWER_DOMAIN_TRANSCODER_B,
375 POWER_DOMAIN_TRANSCODER_C,
376 POWER_DOMAIN_TRANSCODER_EDP,
377 POWER_DOMAIN_TRANSCODER_DSI_A,
378 POWER_DOMAIN_TRANSCODER_DSI_C,
379 POWER_DOMAIN_PORT_DDI_A_LANES,
380 POWER_DOMAIN_PORT_DDI_B_LANES,
381 POWER_DOMAIN_PORT_DDI_C_LANES,
382 POWER_DOMAIN_PORT_DDI_D_LANES,
383 POWER_DOMAIN_PORT_DDI_E_LANES,
384 POWER_DOMAIN_PORT_DDI_A_IO,
385 POWER_DOMAIN_PORT_DDI_B_IO,
386 POWER_DOMAIN_PORT_DDI_C_IO,
387 POWER_DOMAIN_PORT_DDI_D_IO,
388 POWER_DOMAIN_PORT_DDI_E_IO,
389 POWER_DOMAIN_PORT_DSI,
390 POWER_DOMAIN_PORT_CRT,
391 POWER_DOMAIN_PORT_OTHER,
392 POWER_DOMAIN_VGA,
393 POWER_DOMAIN_AUDIO,
394 POWER_DOMAIN_PLLS,
395 POWER_DOMAIN_AUX_A,
396 POWER_DOMAIN_AUX_B,
397 POWER_DOMAIN_AUX_C,
398 POWER_DOMAIN_AUX_D,
399 POWER_DOMAIN_GMBUS,
400 POWER_DOMAIN_MODESET,
401 POWER_DOMAIN_INIT,
402
403 POWER_DOMAIN_NUM,
404 };
405
406 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
407 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
408 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
409 #define POWER_DOMAIN_TRANSCODER(tran) \
410 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
411 (tran) + POWER_DOMAIN_TRANSCODER_A)
412
413 enum hpd_pin {
414 HPD_NONE = 0,
415 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
416 HPD_CRT,
417 HPD_SDVO_B,
418 HPD_SDVO_C,
419 HPD_PORT_A,
420 HPD_PORT_B,
421 HPD_PORT_C,
422 HPD_PORT_D,
423 HPD_PORT_E,
424 HPD_NUM_PINS
425 };
426
427 #define for_each_hpd_pin(__pin) \
428 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
429
430 #define HPD_STORM_DEFAULT_THRESHOLD 5
431
432 struct i915_hotplug {
433 struct work_struct hotplug_work;
434
435 struct {
436 unsigned long last_jiffies;
437 int count;
438 enum {
439 HPD_ENABLED = 0,
440 HPD_DISABLED = 1,
441 HPD_MARK_DISABLED = 2
442 } state;
443 } stats[HPD_NUM_PINS];
444 u32 event_bits;
445 struct delayed_work reenable_work;
446
447 struct intel_digital_port *irq_port[I915_MAX_PORTS];
448 u32 long_port_mask;
449 u32 short_port_mask;
450 struct work_struct dig_port_work;
451
452 struct work_struct poll_init_work;
453 bool poll_enabled;
454
455 unsigned int hpd_storm_threshold;
456
457 /*
458 * if we get a HPD irq from DP and a HPD irq from non-DP
459 * the non-DP HPD could block the workqueue on a mode config
460 * mutex getting, that userspace may have taken. However
461 * userspace is waiting on the DP workqueue to run which is
462 * blocked behind the non-DP one.
463 */
464 struct workqueue_struct *dp_wq;
465 };
466
467 #define I915_GEM_GPU_DOMAINS \
468 (I915_GEM_DOMAIN_RENDER | \
469 I915_GEM_DOMAIN_SAMPLER | \
470 I915_GEM_DOMAIN_COMMAND | \
471 I915_GEM_DOMAIN_INSTRUCTION | \
472 I915_GEM_DOMAIN_VERTEX)
473
474 #define for_each_pipe(__dev_priv, __p) \
475 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
476 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
477 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
478 for_each_if ((__mask) & (1 << (__p)))
479 #define for_each_universal_plane(__dev_priv, __pipe, __p) \
480 for ((__p) = 0; \
481 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
482 (__p)++)
483 #define for_each_sprite(__dev_priv, __p, __s) \
484 for ((__s) = 0; \
485 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
486 (__s)++)
487
488 #define for_each_port_masked(__port, __ports_mask) \
489 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
490 for_each_if ((__ports_mask) & (1 << (__port)))
491
492 #define for_each_crtc(dev, crtc) \
493 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
494
495 #define for_each_intel_plane(dev, intel_plane) \
496 list_for_each_entry(intel_plane, \
497 &(dev)->mode_config.plane_list, \
498 base.head)
499
500 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \
501 list_for_each_entry(intel_plane, \
502 &(dev)->mode_config.plane_list, \
503 base.head) \
504 for_each_if ((plane_mask) & \
505 (1 << drm_plane_index(&intel_plane->base)))
506
507 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
508 list_for_each_entry(intel_plane, \
509 &(dev)->mode_config.plane_list, \
510 base.head) \
511 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
512
513 #define for_each_intel_crtc(dev, intel_crtc) \
514 list_for_each_entry(intel_crtc, \
515 &(dev)->mode_config.crtc_list, \
516 base.head)
517
518 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \
519 list_for_each_entry(intel_crtc, \
520 &(dev)->mode_config.crtc_list, \
521 base.head) \
522 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
523
524 #define for_each_intel_encoder(dev, intel_encoder) \
525 list_for_each_entry(intel_encoder, \
526 &(dev)->mode_config.encoder_list, \
527 base.head)
528
529 #define for_each_intel_connector_iter(intel_connector, iter) \
530 while ((intel_connector = to_intel_connector(drm_connector_list_iter_next(iter))))
531
532 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
533 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
534 for_each_if ((intel_encoder)->base.crtc == (__crtc))
535
536 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
537 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
538 for_each_if ((intel_connector)->base.encoder == (__encoder))
539
540 #define for_each_power_domain(domain, mask) \
541 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
542 for_each_if (BIT_ULL(domain) & (mask))
543
544 #define for_each_power_well(__dev_priv, __power_well) \
545 for ((__power_well) = (__dev_priv)->power_domains.power_wells; \
546 (__power_well) - (__dev_priv)->power_domains.power_wells < \
547 (__dev_priv)->power_domains.power_well_count; \
548 (__power_well)++)
549
550 #define for_each_power_well_rev(__dev_priv, __power_well) \
551 for ((__power_well) = (__dev_priv)->power_domains.power_wells + \
552 (__dev_priv)->power_domains.power_well_count - 1; \
553 (__power_well) - (__dev_priv)->power_domains.power_wells >= 0; \
554 (__power_well)--)
555
556 #define for_each_power_domain_well(__dev_priv, __power_well, __domain_mask) \
557 for_each_power_well(__dev_priv, __power_well) \
558 for_each_if ((__power_well)->domains & (__domain_mask))
559
560 #define for_each_power_domain_well_rev(__dev_priv, __power_well, __domain_mask) \
561 for_each_power_well_rev(__dev_priv, __power_well) \
562 for_each_if ((__power_well)->domains & (__domain_mask))
563
564 #define for_each_intel_plane_in_state(__state, plane, plane_state, __i) \
565 for ((__i) = 0; \
566 (__i) < (__state)->base.dev->mode_config.num_total_plane && \
567 ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
568 (plane_state) = to_intel_plane_state((__state)->base.planes[__i].state), 1); \
569 (__i)++) \
570 for_each_if (plane_state)
571
572 #define for_each_new_intel_crtc_in_state(__state, crtc, new_crtc_state, __i) \
573 for ((__i) = 0; \
574 (__i) < (__state)->base.dev->mode_config.num_crtc && \
575 ((crtc) = to_intel_crtc((__state)->base.crtcs[__i].ptr), \
576 (new_crtc_state) = to_intel_crtc_state((__state)->base.crtcs[__i].new_state), 1); \
577 (__i)++) \
578 for_each_if (crtc)
579
580
581 #define for_each_oldnew_intel_plane_in_state(__state, plane, old_plane_state, new_plane_state, __i) \
582 for ((__i) = 0; \
583 (__i) < (__state)->base.dev->mode_config.num_total_plane && \
584 ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
585 (old_plane_state) = to_intel_plane_state((__state)->base.planes[__i].old_state), \
586 (new_plane_state) = to_intel_plane_state((__state)->base.planes[__i].new_state), 1); \
587 (__i)++) \
588 for_each_if (plane)
589
590 struct drm_i915_private;
591 struct i915_mm_struct;
592 struct i915_mmu_object;
593
594 struct drm_i915_file_private {
595 struct drm_i915_private *dev_priv;
596 struct drm_file *file;
597
598 struct {
599 spinlock_t lock;
600 struct list_head request_list;
601 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
602 * chosen to prevent the CPU getting more than a frame ahead of the GPU
603 * (when using lax throttling for the frontbuffer). We also use it to
604 * offer free GPU waitboosts for severely congested workloads.
605 */
606 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
607 } mm;
608 struct idr context_idr;
609
610 struct intel_rps_client {
611 atomic_t boosts;
612 } rps;
613
614 unsigned int bsd_engine;
615
616 /* Client can have a maximum of 3 contexts banned before
617 * it is denied of creating new contexts. As one context
618 * ban needs 4 consecutive hangs, and more if there is
619 * progress in between, this is a last resort stop gap measure
620 * to limit the badly behaving clients access to gpu.
621 */
622 #define I915_MAX_CLIENT_CONTEXT_BANS 3
623 atomic_t context_bans;
624 };
625
626 /* Used by dp and fdi links */
627 struct intel_link_m_n {
628 uint32_t tu;
629 uint32_t gmch_m;
630 uint32_t gmch_n;
631 uint32_t link_m;
632 uint32_t link_n;
633 };
634
635 void intel_link_compute_m_n(int bpp, int nlanes,
636 int pixel_clock, int link_clock,
637 struct intel_link_m_n *m_n,
638 bool reduce_m_n);
639
640 /* Interface history:
641 *
642 * 1.1: Original.
643 * 1.2: Add Power Management
644 * 1.3: Add vblank support
645 * 1.4: Fix cmdbuffer path, add heap destroy
646 * 1.5: Add vblank pipe configuration
647 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
648 * - Support vertical blank on secondary display pipe
649 */
650 #define DRIVER_MAJOR 1
651 #define DRIVER_MINOR 6
652 #define DRIVER_PATCHLEVEL 0
653
654 struct opregion_header;
655 struct opregion_acpi;
656 struct opregion_swsci;
657 struct opregion_asle;
658
659 struct intel_opregion {
660 struct opregion_header *header;
661 struct opregion_acpi *acpi;
662 struct opregion_swsci *swsci;
663 u32 swsci_gbda_sub_functions;
664 u32 swsci_sbcb_sub_functions;
665 struct opregion_asle *asle;
666 void *rvda;
667 void *vbt_firmware;
668 const void *vbt;
669 u32 vbt_size;
670 u32 *lid_state;
671 struct work_struct asle_work;
672 };
673 #define OPREGION_SIZE (8*1024)
674
675 struct intel_overlay;
676 struct intel_overlay_error_state;
677
678 struct sdvo_device_mapping {
679 u8 initialized;
680 u8 dvo_port;
681 u8 slave_addr;
682 u8 dvo_wiring;
683 u8 i2c_pin;
684 u8 ddc_pin;
685 };
686
687 struct intel_connector;
688 struct intel_encoder;
689 struct intel_atomic_state;
690 struct intel_crtc_state;
691 struct intel_initial_plane_config;
692 struct intel_crtc;
693 struct intel_limit;
694 struct dpll;
695 struct intel_cdclk_state;
696
697 struct drm_i915_display_funcs {
698 void (*get_cdclk)(struct drm_i915_private *dev_priv,
699 struct intel_cdclk_state *cdclk_state);
700 void (*set_cdclk)(struct drm_i915_private *dev_priv,
701 const struct intel_cdclk_state *cdclk_state);
702 int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane);
703 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
704 int (*compute_intermediate_wm)(struct drm_device *dev,
705 struct intel_crtc *intel_crtc,
706 struct intel_crtc_state *newstate);
707 void (*initial_watermarks)(struct intel_atomic_state *state,
708 struct intel_crtc_state *cstate);
709 void (*atomic_update_watermarks)(struct intel_atomic_state *state,
710 struct intel_crtc_state *cstate);
711 void (*optimize_watermarks)(struct intel_atomic_state *state,
712 struct intel_crtc_state *cstate);
713 int (*compute_global_watermarks)(struct drm_atomic_state *state);
714 void (*update_wm)(struct intel_crtc *crtc);
715 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
716 /* Returns the active state of the crtc, and if the crtc is active,
717 * fills out the pipe-config with the hw state. */
718 bool (*get_pipe_config)(struct intel_crtc *,
719 struct intel_crtc_state *);
720 void (*get_initial_plane_config)(struct intel_crtc *,
721 struct intel_initial_plane_config *);
722 int (*crtc_compute_clock)(struct intel_crtc *crtc,
723 struct intel_crtc_state *crtc_state);
724 void (*crtc_enable)(struct intel_crtc_state *pipe_config,
725 struct drm_atomic_state *old_state);
726 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
727 struct drm_atomic_state *old_state);
728 void (*update_crtcs)(struct drm_atomic_state *state,
729 unsigned int *crtc_vblank_mask);
730 void (*audio_codec_enable)(struct drm_connector *connector,
731 struct intel_encoder *encoder,
732 const struct drm_display_mode *adjusted_mode);
733 void (*audio_codec_disable)(struct intel_encoder *encoder);
734 void (*fdi_link_train)(struct intel_crtc *crtc,
735 const struct intel_crtc_state *crtc_state);
736 void (*init_clock_gating)(struct drm_i915_private *dev_priv);
737 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
738 /* clock updates for mode set */
739 /* cursor updates */
740 /* render clock increase/decrease */
741 /* display clock increase/decrease */
742 /* pll clock increase/decrease */
743
744 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
745 void (*load_luts)(struct drm_crtc_state *crtc_state);
746 };
747
748 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
749 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
750 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
751
752 struct intel_csr {
753 struct work_struct work;
754 const char *fw_path;
755 uint32_t *dmc_payload;
756 uint32_t dmc_fw_size;
757 uint32_t version;
758 uint32_t mmio_count;
759 i915_reg_t mmioaddr[8];
760 uint32_t mmiodata[8];
761 uint32_t dc_state;
762 uint32_t allowed_dc_mask;
763 };
764
765 #define DEV_INFO_FOR_EACH_FLAG(func) \
766 func(is_mobile); \
767 func(is_lp); \
768 func(is_alpha_support); \
769 /* Keep has_* in alphabetical order */ \
770 func(has_64bit_reloc); \
771 func(has_aliasing_ppgtt); \
772 func(has_csr); \
773 func(has_ddi); \
774 func(has_dp_mst); \
775 func(has_reset_engine); \
776 func(has_fbc); \
777 func(has_fpga_dbg); \
778 func(has_full_ppgtt); \
779 func(has_full_48bit_ppgtt); \
780 func(has_gmbus_irq); \
781 func(has_gmch_display); \
782 func(has_guc); \
783 func(has_guc_ct); \
784 func(has_hotplug); \
785 func(has_l3_dpf); \
786 func(has_llc); \
787 func(has_logical_ring_contexts); \
788 func(has_overlay); \
789 func(has_pipe_cxsr); \
790 func(has_pooled_eu); \
791 func(has_psr); \
792 func(has_rc6); \
793 func(has_rc6p); \
794 func(has_resource_streamer); \
795 func(has_runtime_pm); \
796 func(has_snoop); \
797 func(unfenced_needs_alignment); \
798 func(cursor_needs_physical); \
799 func(hws_needs_physical); \
800 func(overlay_needs_physical); \
801 func(supports_tv); \
802 func(has_ipc);
803
804 struct sseu_dev_info {
805 u8 slice_mask;
806 u8 subslice_mask;
807 u8 eu_total;
808 u8 eu_per_subslice;
809 u8 min_eu_in_pool;
810 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
811 u8 subslice_7eu[3];
812 u8 has_slice_pg:1;
813 u8 has_subslice_pg:1;
814 u8 has_eu_pg:1;
815 };
816
817 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu)
818 {
819 return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask);
820 }
821
822 /* Keep in gen based order, and chronological order within a gen */
823 enum intel_platform {
824 INTEL_PLATFORM_UNINITIALIZED = 0,
825 INTEL_I830,
826 INTEL_I845G,
827 INTEL_I85X,
828 INTEL_I865G,
829 INTEL_I915G,
830 INTEL_I915GM,
831 INTEL_I945G,
832 INTEL_I945GM,
833 INTEL_G33,
834 INTEL_PINEVIEW,
835 INTEL_I965G,
836 INTEL_I965GM,
837 INTEL_G45,
838 INTEL_GM45,
839 INTEL_IRONLAKE,
840 INTEL_SANDYBRIDGE,
841 INTEL_IVYBRIDGE,
842 INTEL_VALLEYVIEW,
843 INTEL_HASWELL,
844 INTEL_BROADWELL,
845 INTEL_CHERRYVIEW,
846 INTEL_SKYLAKE,
847 INTEL_BROXTON,
848 INTEL_KABYLAKE,
849 INTEL_GEMINILAKE,
850 INTEL_COFFEELAKE,
851 INTEL_CANNONLAKE,
852 INTEL_MAX_PLATFORMS
853 };
854
855 struct intel_device_info {
856 u32 display_mmio_offset;
857 u16 device_id;
858 u8 num_pipes;
859 u8 num_sprites[I915_MAX_PIPES];
860 u8 num_scalers[I915_MAX_PIPES];
861 u8 gen;
862 u16 gen_mask;
863 enum intel_platform platform;
864 u8 gt; /* GT number, 0 if undefined */
865 u8 ring_mask; /* Rings supported by the HW */
866 u8 num_rings;
867 #define DEFINE_FLAG(name) u8 name:1
868 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG);
869 #undef DEFINE_FLAG
870 u16 ddb_size; /* in blocks */
871 /* Register offsets for the various display pipes and transcoders */
872 int pipe_offsets[I915_MAX_TRANSCODERS];
873 int trans_offsets[I915_MAX_TRANSCODERS];
874 int palette_offsets[I915_MAX_PIPES];
875 int cursor_offsets[I915_MAX_PIPES];
876
877 /* Slice/subslice/EU info */
878 struct sseu_dev_info sseu;
879
880 struct color_luts {
881 u16 degamma_lut_size;
882 u16 gamma_lut_size;
883 } color;
884 };
885
886 struct intel_display_error_state;
887
888 struct i915_gpu_state {
889 struct kref ref;
890 struct timeval time;
891 struct timeval boottime;
892 struct timeval uptime;
893
894 struct drm_i915_private *i915;
895
896 char error_msg[128];
897 bool simulated;
898 bool awake;
899 bool wakelock;
900 bool suspended;
901 int iommu;
902 u32 reset_count;
903 u32 suspend_count;
904 struct intel_device_info device_info;
905 struct i915_params params;
906
907 /* Generic register state */
908 u32 eir;
909 u32 pgtbl_er;
910 u32 ier;
911 u32 gtier[4], ngtier;
912 u32 ccid;
913 u32 derrmr;
914 u32 forcewake;
915 u32 error; /* gen6+ */
916 u32 err_int; /* gen7 */
917 u32 fault_data0; /* gen8, gen9 */
918 u32 fault_data1; /* gen8, gen9 */
919 u32 done_reg;
920 u32 gac_eco;
921 u32 gam_ecochk;
922 u32 gab_ctl;
923 u32 gfx_mode;
924
925 u32 nfence;
926 u64 fence[I915_MAX_NUM_FENCES];
927 struct intel_overlay_error_state *overlay;
928 struct intel_display_error_state *display;
929 struct drm_i915_error_object *semaphore;
930 struct drm_i915_error_object *guc_log;
931
932 struct drm_i915_error_engine {
933 int engine_id;
934 /* Software tracked state */
935 bool waiting;
936 int num_waiters;
937 unsigned long hangcheck_timestamp;
938 bool hangcheck_stalled;
939 enum intel_engine_hangcheck_action hangcheck_action;
940 struct i915_address_space *vm;
941 int num_requests;
942 u32 reset_count;
943
944 /* position of active request inside the ring */
945 u32 rq_head, rq_post, rq_tail;
946
947 /* our own tracking of ring head and tail */
948 u32 cpu_ring_head;
949 u32 cpu_ring_tail;
950
951 u32 last_seqno;
952
953 /* Register state */
954 u32 start;
955 u32 tail;
956 u32 head;
957 u32 ctl;
958 u32 mode;
959 u32 hws;
960 u32 ipeir;
961 u32 ipehr;
962 u32 bbstate;
963 u32 instpm;
964 u32 instps;
965 u32 seqno;
966 u64 bbaddr;
967 u64 acthd;
968 u32 fault_reg;
969 u64 faddr;
970 u32 rc_psmi; /* sleep state */
971 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
972 struct intel_instdone instdone;
973
974 struct drm_i915_error_context {
975 char comm[TASK_COMM_LEN];
976 pid_t pid;
977 u32 handle;
978 u32 hw_id;
979 int ban_score;
980 int active;
981 int guilty;
982 } context;
983
984 struct drm_i915_error_object {
985 u64 gtt_offset;
986 u64 gtt_size;
987 int page_count;
988 int unused;
989 u32 *pages[0];
990 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
991
992 struct drm_i915_error_object **user_bo;
993 long user_bo_count;
994
995 struct drm_i915_error_object *wa_ctx;
996
997 struct drm_i915_error_request {
998 long jiffies;
999 pid_t pid;
1000 u32 context;
1001 int ban_score;
1002 u32 seqno;
1003 u32 head;
1004 u32 tail;
1005 } *requests, execlist[2];
1006
1007 struct drm_i915_error_waiter {
1008 char comm[TASK_COMM_LEN];
1009 pid_t pid;
1010 u32 seqno;
1011 } *waiters;
1012
1013 struct {
1014 u32 gfx_mode;
1015 union {
1016 u64 pdp[4];
1017 u32 pp_dir_base;
1018 };
1019 } vm_info;
1020 } engine[I915_NUM_ENGINES];
1021
1022 struct drm_i915_error_buffer {
1023 u32 size;
1024 u32 name;
1025 u32 rseqno[I915_NUM_ENGINES], wseqno;
1026 u64 gtt_offset;
1027 u32 read_domains;
1028 u32 write_domain;
1029 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
1030 u32 tiling:2;
1031 u32 dirty:1;
1032 u32 purgeable:1;
1033 u32 userptr:1;
1034 s32 engine:4;
1035 u32 cache_level:3;
1036 } *active_bo[I915_NUM_ENGINES], *pinned_bo;
1037 u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
1038 struct i915_address_space *active_vm[I915_NUM_ENGINES];
1039 };
1040
1041 enum i915_cache_level {
1042 I915_CACHE_NONE = 0,
1043 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
1044 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
1045 caches, eg sampler/render caches, and the
1046 large Last-Level-Cache. LLC is coherent with
1047 the CPU, but L3 is only visible to the GPU. */
1048 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
1049 };
1050
1051 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
1052
1053 enum fb_op_origin {
1054 ORIGIN_GTT,
1055 ORIGIN_CPU,
1056 ORIGIN_CS,
1057 ORIGIN_FLIP,
1058 ORIGIN_DIRTYFB,
1059 };
1060
1061 struct intel_fbc {
1062 /* This is always the inner lock when overlapping with struct_mutex and
1063 * it's the outer lock when overlapping with stolen_lock. */
1064 struct mutex lock;
1065 unsigned threshold;
1066 unsigned int possible_framebuffer_bits;
1067 unsigned int busy_bits;
1068 unsigned int visible_pipes_mask;
1069 struct intel_crtc *crtc;
1070
1071 struct drm_mm_node compressed_fb;
1072 struct drm_mm_node *compressed_llb;
1073
1074 bool false_color;
1075
1076 bool enabled;
1077 bool active;
1078
1079 bool underrun_detected;
1080 struct work_struct underrun_work;
1081
1082 /*
1083 * Due to the atomic rules we can't access some structures without the
1084 * appropriate locking, so we cache information here in order to avoid
1085 * these problems.
1086 */
1087 struct intel_fbc_state_cache {
1088 struct i915_vma *vma;
1089
1090 struct {
1091 unsigned int mode_flags;
1092 uint32_t hsw_bdw_pixel_rate;
1093 } crtc;
1094
1095 struct {
1096 unsigned int rotation;
1097 int src_w;
1098 int src_h;
1099 bool visible;
1100 } plane;
1101
1102 struct {
1103 const struct drm_format_info *format;
1104 unsigned int stride;
1105 } fb;
1106 } state_cache;
1107
1108 /*
1109 * This structure contains everything that's relevant to program the
1110 * hardware registers. When we want to figure out if we need to disable
1111 * and re-enable FBC for a new configuration we just check if there's
1112 * something different in the struct. The genx_fbc_activate functions
1113 * are supposed to read from it in order to program the registers.
1114 */
1115 struct intel_fbc_reg_params {
1116 struct i915_vma *vma;
1117
1118 struct {
1119 enum pipe pipe;
1120 enum plane plane;
1121 unsigned int fence_y_offset;
1122 } crtc;
1123
1124 struct {
1125 const struct drm_format_info *format;
1126 unsigned int stride;
1127 } fb;
1128
1129 int cfb_size;
1130 unsigned int gen9_wa_cfb_stride;
1131 } params;
1132
1133 struct intel_fbc_work {
1134 bool scheduled;
1135 u32 scheduled_vblank;
1136 struct work_struct work;
1137 } work;
1138
1139 const char *no_fbc_reason;
1140 };
1141
1142 /*
1143 * HIGH_RR is the highest eDP panel refresh rate read from EDID
1144 * LOW_RR is the lowest eDP panel refresh rate found from EDID
1145 * parsing for same resolution.
1146 */
1147 enum drrs_refresh_rate_type {
1148 DRRS_HIGH_RR,
1149 DRRS_LOW_RR,
1150 DRRS_MAX_RR, /* RR count */
1151 };
1152
1153 enum drrs_support_type {
1154 DRRS_NOT_SUPPORTED = 0,
1155 STATIC_DRRS_SUPPORT = 1,
1156 SEAMLESS_DRRS_SUPPORT = 2
1157 };
1158
1159 struct intel_dp;
1160 struct i915_drrs {
1161 struct mutex mutex;
1162 struct delayed_work work;
1163 struct intel_dp *dp;
1164 unsigned busy_frontbuffer_bits;
1165 enum drrs_refresh_rate_type refresh_rate_type;
1166 enum drrs_support_type type;
1167 };
1168
1169 struct i915_psr {
1170 struct mutex lock;
1171 bool sink_support;
1172 bool source_ok;
1173 struct intel_dp *enabled;
1174 bool active;
1175 struct delayed_work work;
1176 unsigned busy_frontbuffer_bits;
1177 bool psr2_support;
1178 bool aux_frame_sync;
1179 bool link_standby;
1180 bool y_cord_support;
1181 bool colorimetry_support;
1182 bool alpm;
1183
1184 void (*disable_source)(struct intel_dp *,
1185 const struct intel_crtc_state *);
1186 void (*activate)(struct intel_dp *);
1187 void (*setup_vsc)(struct intel_dp *, const struct intel_crtc_state *);
1188 };
1189
1190 enum intel_pch {
1191 PCH_NONE = 0, /* No PCH present */
1192 PCH_IBX, /* Ibexpeak PCH */
1193 PCH_CPT, /* Cougarpoint/Pantherpoint PCH */
1194 PCH_LPT, /* Lynxpoint/Wildcatpoint PCH */
1195 PCH_SPT, /* Sunrisepoint PCH */
1196 PCH_KBP, /* Kaby Lake PCH */
1197 PCH_CNP, /* Cannon Lake PCH */
1198 PCH_NOP,
1199 };
1200
1201 enum intel_sbi_destination {
1202 SBI_ICLK,
1203 SBI_MPHY,
1204 };
1205
1206 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1207 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1208 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1209 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1210 #define QUIRK_INCREASE_T12_DELAY (1<<6)
1211
1212 struct intel_fbdev;
1213 struct intel_fbc_work;
1214
1215 struct intel_gmbus {
1216 struct i2c_adapter adapter;
1217 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1218 u32 force_bit;
1219 u32 reg0;
1220 i915_reg_t gpio_reg;
1221 struct i2c_algo_bit_data bit_algo;
1222 struct drm_i915_private *dev_priv;
1223 };
1224
1225 struct i915_suspend_saved_registers {
1226 u32 saveDSPARB;
1227 u32 saveFBC_CONTROL;
1228 u32 saveCACHE_MODE_0;
1229 u32 saveMI_ARB_STATE;
1230 u32 saveSWF0[16];
1231 u32 saveSWF1[16];
1232 u32 saveSWF3[3];
1233 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1234 u32 savePCH_PORT_HOTPLUG;
1235 u16 saveGCDGMBUS;
1236 };
1237
1238 struct vlv_s0ix_state {
1239 /* GAM */
1240 u32 wr_watermark;
1241 u32 gfx_prio_ctrl;
1242 u32 arb_mode;
1243 u32 gfx_pend_tlb0;
1244 u32 gfx_pend_tlb1;
1245 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1246 u32 media_max_req_count;
1247 u32 gfx_max_req_count;
1248 u32 render_hwsp;
1249 u32 ecochk;
1250 u32 bsd_hwsp;
1251 u32 blt_hwsp;
1252 u32 tlb_rd_addr;
1253
1254 /* MBC */
1255 u32 g3dctl;
1256 u32 gsckgctl;
1257 u32 mbctl;
1258
1259 /* GCP */
1260 u32 ucgctl1;
1261 u32 ucgctl3;
1262 u32 rcgctl1;
1263 u32 rcgctl2;
1264 u32 rstctl;
1265 u32 misccpctl;
1266
1267 /* GPM */
1268 u32 gfxpause;
1269 u32 rpdeuhwtc;
1270 u32 rpdeuc;
1271 u32 ecobus;
1272 u32 pwrdwnupctl;
1273 u32 rp_down_timeout;
1274 u32 rp_deucsw;
1275 u32 rcubmabdtmr;
1276 u32 rcedata;
1277 u32 spare2gh;
1278
1279 /* Display 1 CZ domain */
1280 u32 gt_imr;
1281 u32 gt_ier;
1282 u32 pm_imr;
1283 u32 pm_ier;
1284 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1285
1286 /* GT SA CZ domain */
1287 u32 tilectl;
1288 u32 gt_fifoctl;
1289 u32 gtlc_wake_ctrl;
1290 u32 gtlc_survive;
1291 u32 pmwgicz;
1292
1293 /* Display 2 CZ domain */
1294 u32 gu_ctl0;
1295 u32 gu_ctl1;
1296 u32 pcbr;
1297 u32 clock_gate_dis2;
1298 };
1299
1300 struct intel_rps_ei {
1301 ktime_t ktime;
1302 u32 render_c0;
1303 u32 media_c0;
1304 };
1305
1306 struct intel_gen6_power_mgmt {
1307 /*
1308 * work, interrupts_enabled and pm_iir are protected by
1309 * dev_priv->irq_lock
1310 */
1311 struct work_struct work;
1312 bool interrupts_enabled;
1313 u32 pm_iir;
1314
1315 /* PM interrupt bits that should never be masked */
1316 u32 pm_intrmsk_mbz;
1317
1318 /* Frequencies are stored in potentially platform dependent multiples.
1319 * In other words, *_freq needs to be multiplied by X to be interesting.
1320 * Soft limits are those which are used for the dynamic reclocking done
1321 * by the driver (raise frequencies under heavy loads, and lower for
1322 * lighter loads). Hard limits are those imposed by the hardware.
1323 *
1324 * A distinction is made for overclocking, which is never enabled by
1325 * default, and is considered to be above the hard limit if it's
1326 * possible at all.
1327 */
1328 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1329 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1330 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1331 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1332 u8 min_freq; /* AKA RPn. Minimum frequency */
1333 u8 boost_freq; /* Frequency to request when wait boosting */
1334 u8 idle_freq; /* Frequency to request when we are idle */
1335 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1336 u8 rp1_freq; /* "less than" RP0 power/freqency */
1337 u8 rp0_freq; /* Non-overclocked max frequency. */
1338 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
1339
1340 u8 up_threshold; /* Current %busy required to uplock */
1341 u8 down_threshold; /* Current %busy required to downclock */
1342
1343 int last_adj;
1344 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1345
1346 bool enabled;
1347 struct delayed_work autoenable_work;
1348 atomic_t num_waiters;
1349 atomic_t boosts;
1350
1351 /* manual wa residency calculations */
1352 struct intel_rps_ei ei;
1353
1354 /*
1355 * Protects RPS/RC6 register access and PCU communication.
1356 * Must be taken after struct_mutex if nested. Note that
1357 * this lock may be held for long periods of time when
1358 * talking to hw - so only take it when talking to hw!
1359 */
1360 struct mutex hw_lock;
1361 };
1362
1363 /* defined intel_pm.c */
1364 extern spinlock_t mchdev_lock;
1365
1366 struct intel_ilk_power_mgmt {
1367 u8 cur_delay;
1368 u8 min_delay;
1369 u8 max_delay;
1370 u8 fmax;
1371 u8 fstart;
1372
1373 u64 last_count1;
1374 unsigned long last_time1;
1375 unsigned long chipset_power;
1376 u64 last_count2;
1377 u64 last_time2;
1378 unsigned long gfx_power;
1379 u8 corr;
1380
1381 int c_m;
1382 int r_t;
1383 };
1384
1385 struct drm_i915_private;
1386 struct i915_power_well;
1387
1388 struct i915_power_well_ops {
1389 /*
1390 * Synchronize the well's hw state to match the current sw state, for
1391 * example enable/disable it based on the current refcount. Called
1392 * during driver init and resume time, possibly after first calling
1393 * the enable/disable handlers.
1394 */
1395 void (*sync_hw)(struct drm_i915_private *dev_priv,
1396 struct i915_power_well *power_well);
1397 /*
1398 * Enable the well and resources that depend on it (for example
1399 * interrupts located on the well). Called after the 0->1 refcount
1400 * transition.
1401 */
1402 void (*enable)(struct drm_i915_private *dev_priv,
1403 struct i915_power_well *power_well);
1404 /*
1405 * Disable the well and resources that depend on it. Called after
1406 * the 1->0 refcount transition.
1407 */
1408 void (*disable)(struct drm_i915_private *dev_priv,
1409 struct i915_power_well *power_well);
1410 /* Returns the hw enabled state. */
1411 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1412 struct i915_power_well *power_well);
1413 };
1414
1415 /* Power well structure for haswell */
1416 struct i915_power_well {
1417 const char *name;
1418 bool always_on;
1419 /* power well enable/disable usage count */
1420 int count;
1421 /* cached hw enabled state */
1422 bool hw_enabled;
1423 u64 domains;
1424 /* unique identifier for this power well */
1425 enum i915_power_well_id id;
1426 /*
1427 * Arbitraty data associated with this power well. Platform and power
1428 * well specific.
1429 */
1430 union {
1431 struct {
1432 enum dpio_phy phy;
1433 } bxt;
1434 struct {
1435 /* Mask of pipes whose IRQ logic is backed by the pw */
1436 u8 irq_pipe_mask;
1437 /* The pw is backing the VGA functionality */
1438 bool has_vga:1;
1439 bool has_fuses:1;
1440 } hsw;
1441 };
1442 const struct i915_power_well_ops *ops;
1443 };
1444
1445 struct i915_power_domains {
1446 /*
1447 * Power wells needed for initialization at driver init and suspend
1448 * time are on. They are kept on until after the first modeset.
1449 */
1450 bool init_power_on;
1451 bool initializing;
1452 int power_well_count;
1453
1454 struct mutex lock;
1455 int domain_use_count[POWER_DOMAIN_NUM];
1456 struct i915_power_well *power_wells;
1457 };
1458
1459 #define MAX_L3_SLICES 2
1460 struct intel_l3_parity {
1461 u32 *remap_info[MAX_L3_SLICES];
1462 struct work_struct error_work;
1463 int which_slice;
1464 };
1465
1466 struct i915_gem_mm {
1467 /** Memory allocator for GTT stolen memory */
1468 struct drm_mm stolen;
1469 /** Protects the usage of the GTT stolen memory allocator. This is
1470 * always the inner lock when overlapping with struct_mutex. */
1471 struct mutex stolen_lock;
1472
1473 /** List of all objects in gtt_space. Used to restore gtt
1474 * mappings on resume */
1475 struct list_head bound_list;
1476 /**
1477 * List of objects which are not bound to the GTT (thus
1478 * are idle and not used by the GPU). These objects may or may
1479 * not actually have any pages attached.
1480 */
1481 struct list_head unbound_list;
1482
1483 /** List of all objects in gtt_space, currently mmaped by userspace.
1484 * All objects within this list must also be on bound_list.
1485 */
1486 struct list_head userfault_list;
1487
1488 /**
1489 * List of objects which are pending destruction.
1490 */
1491 struct llist_head free_list;
1492 struct work_struct free_work;
1493
1494 /**
1495 * Small stash of WC pages
1496 */
1497 struct pagevec wc_stash;
1498
1499 /** Usable portion of the GTT for GEM */
1500 dma_addr_t stolen_base; /* limited to low memory (32-bit) */
1501
1502 /** PPGTT used for aliasing the PPGTT with the GTT */
1503 struct i915_hw_ppgtt *aliasing_ppgtt;
1504
1505 struct notifier_block oom_notifier;
1506 struct notifier_block vmap_notifier;
1507 struct shrinker shrinker;
1508
1509 /** LRU list of objects with fence regs on them. */
1510 struct list_head fence_list;
1511
1512 /**
1513 * Workqueue to fault in userptr pages, flushed by the execbuf
1514 * when required but otherwise left to userspace to try again
1515 * on EAGAIN.
1516 */
1517 struct workqueue_struct *userptr_wq;
1518
1519 u64 unordered_timeline;
1520
1521 /* the indicator for dispatch video commands on two BSD rings */
1522 atomic_t bsd_engine_dispatch_index;
1523
1524 /** Bit 6 swizzling required for X tiling */
1525 uint32_t bit_6_swizzle_x;
1526 /** Bit 6 swizzling required for Y tiling */
1527 uint32_t bit_6_swizzle_y;
1528
1529 /* accounting, useful for userland debugging */
1530 spinlock_t object_stat_lock;
1531 u64 object_memory;
1532 u32 object_count;
1533 };
1534
1535 struct drm_i915_error_state_buf {
1536 struct drm_i915_private *i915;
1537 unsigned bytes;
1538 unsigned size;
1539 int err;
1540 u8 *buf;
1541 loff_t start;
1542 loff_t pos;
1543 };
1544
1545 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1546 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1547
1548 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */
1549 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */
1550
1551 struct i915_gpu_error {
1552 /* For hangcheck timer */
1553 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1554 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1555
1556 struct delayed_work hangcheck_work;
1557
1558 /* For reset and error_state handling. */
1559 spinlock_t lock;
1560 /* Protected by the above dev->gpu_error.lock. */
1561 struct i915_gpu_state *first_error;
1562
1563 atomic_t pending_fb_pin;
1564
1565 unsigned long missed_irq_rings;
1566
1567 /**
1568 * State variable controlling the reset flow and count
1569 *
1570 * This is a counter which gets incremented when reset is triggered,
1571 *
1572 * Before the reset commences, the I915_RESET_BACKOFF bit is set
1573 * meaning that any waiters holding onto the struct_mutex should
1574 * relinquish the lock immediately in order for the reset to start.
1575 *
1576 * If reset is not completed succesfully, the I915_WEDGE bit is
1577 * set meaning that hardware is terminally sour and there is no
1578 * recovery. All waiters on the reset_queue will be woken when
1579 * that happens.
1580 *
1581 * This counter is used by the wait_seqno code to notice that reset
1582 * event happened and it needs to restart the entire ioctl (since most
1583 * likely the seqno it waited for won't ever signal anytime soon).
1584 *
1585 * This is important for lock-free wait paths, where no contended lock
1586 * naturally enforces the correct ordering between the bail-out of the
1587 * waiter and the gpu reset work code.
1588 */
1589 unsigned long reset_count;
1590
1591 /**
1592 * flags: Control various stages of the GPU reset
1593 *
1594 * #I915_RESET_BACKOFF - When we start a reset, we want to stop any
1595 * other users acquiring the struct_mutex. To do this we set the
1596 * #I915_RESET_BACKOFF bit in the error flags when we detect a reset
1597 * and then check for that bit before acquiring the struct_mutex (in
1598 * i915_mutex_lock_interruptible()?). I915_RESET_BACKOFF serves a
1599 * secondary role in preventing two concurrent global reset attempts.
1600 *
1601 * #I915_RESET_HANDOFF - To perform the actual GPU reset, we need the
1602 * struct_mutex. We try to acquire the struct_mutex in the reset worker,
1603 * but it may be held by some long running waiter (that we cannot
1604 * interrupt without causing trouble). Once we are ready to do the GPU
1605 * reset, we set the I915_RESET_HANDOFF bit and wakeup any waiters. If
1606 * they already hold the struct_mutex and want to participate they can
1607 * inspect the bit and do the reset directly, otherwise the worker
1608 * waits for the struct_mutex.
1609 *
1610 * #I915_RESET_ENGINE[num_engines] - Since the driver doesn't need to
1611 * acquire the struct_mutex to reset an engine, we need an explicit
1612 * flag to prevent two concurrent reset attempts in the same engine.
1613 * As the number of engines continues to grow, allocate the flags from
1614 * the most significant bits.
1615 *
1616 * #I915_WEDGED - If reset fails and we can no longer use the GPU,
1617 * we set the #I915_WEDGED bit. Prior to command submission, e.g.
1618 * i915_gem_request_alloc(), this bit is checked and the sequence
1619 * aborted (with -EIO reported to userspace) if set.
1620 */
1621 unsigned long flags;
1622 #define I915_RESET_BACKOFF 0
1623 #define I915_RESET_HANDOFF 1
1624 #define I915_RESET_MODESET 2
1625 #define I915_WEDGED (BITS_PER_LONG - 1)
1626 #define I915_RESET_ENGINE (I915_WEDGED - I915_NUM_ENGINES)
1627
1628 /** Number of times an engine has been reset */
1629 u32 reset_engine_count[I915_NUM_ENGINES];
1630
1631 /**
1632 * Waitqueue to signal when a hang is detected. Used to for waiters
1633 * to release the struct_mutex for the reset to procede.
1634 */
1635 wait_queue_head_t wait_queue;
1636
1637 /**
1638 * Waitqueue to signal when the reset has completed. Used by clients
1639 * that wait for dev_priv->mm.wedged to settle.
1640 */
1641 wait_queue_head_t reset_queue;
1642
1643 /* For missed irq/seqno simulation. */
1644 unsigned long test_irq_rings;
1645 };
1646
1647 enum modeset_restore {
1648 MODESET_ON_LID_OPEN,
1649 MODESET_DONE,
1650 MODESET_SUSPENDED,
1651 };
1652
1653 #define DP_AUX_A 0x40
1654 #define DP_AUX_B 0x10
1655 #define DP_AUX_C 0x20
1656 #define DP_AUX_D 0x30
1657
1658 #define DDC_PIN_B 0x05
1659 #define DDC_PIN_C 0x04
1660 #define DDC_PIN_D 0x06
1661
1662 struct ddi_vbt_port_info {
1663 /*
1664 * This is an index in the HDMI/DVI DDI buffer translation table.
1665 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1666 * populate this field.
1667 */
1668 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1669 uint8_t hdmi_level_shift;
1670
1671 uint8_t supports_dvi:1;
1672 uint8_t supports_hdmi:1;
1673 uint8_t supports_dp:1;
1674 uint8_t supports_edp:1;
1675
1676 uint8_t alternate_aux_channel;
1677 uint8_t alternate_ddc_pin;
1678
1679 uint8_t dp_boost_level;
1680 uint8_t hdmi_boost_level;
1681 };
1682
1683 enum psr_lines_to_wait {
1684 PSR_0_LINES_TO_WAIT = 0,
1685 PSR_1_LINE_TO_WAIT,
1686 PSR_4_LINES_TO_WAIT,
1687 PSR_8_LINES_TO_WAIT
1688 };
1689
1690 struct intel_vbt_data {
1691 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1692 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1693
1694 /* Feature bits */
1695 unsigned int int_tv_support:1;
1696 unsigned int lvds_dither:1;
1697 unsigned int lvds_vbt:1;
1698 unsigned int int_crt_support:1;
1699 unsigned int lvds_use_ssc:1;
1700 unsigned int display_clock_mode:1;
1701 unsigned int fdi_rx_polarity_inverted:1;
1702 unsigned int panel_type:4;
1703 int lvds_ssc_freq;
1704 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1705
1706 enum drrs_support_type drrs_type;
1707
1708 struct {
1709 int rate;
1710 int lanes;
1711 int preemphasis;
1712 int vswing;
1713 bool low_vswing;
1714 bool initialized;
1715 bool support;
1716 int bpp;
1717 struct edp_power_seq pps;
1718 } edp;
1719
1720 struct {
1721 bool full_link;
1722 bool require_aux_wakeup;
1723 int idle_frames;
1724 enum psr_lines_to_wait lines_to_wait;
1725 int tp1_wakeup_time;
1726 int tp2_tp3_wakeup_time;
1727 } psr;
1728
1729 struct {
1730 u16 pwm_freq_hz;
1731 bool present;
1732 bool active_low_pwm;
1733 u8 min_brightness; /* min_brightness/255 of max */
1734 u8 controller; /* brightness controller number */
1735 enum intel_backlight_type type;
1736 } backlight;
1737
1738 /* MIPI DSI */
1739 struct {
1740 u16 panel_id;
1741 struct mipi_config *config;
1742 struct mipi_pps_data *pps;
1743 u8 seq_version;
1744 u32 size;
1745 u8 *data;
1746 const u8 *sequence[MIPI_SEQ_MAX];
1747 } dsi;
1748
1749 int crt_ddc_pin;
1750
1751 int child_dev_num;
1752 struct child_device_config *child_dev;
1753
1754 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1755 struct sdvo_device_mapping sdvo_mappings[2];
1756 };
1757
1758 enum intel_ddb_partitioning {
1759 INTEL_DDB_PART_1_2,
1760 INTEL_DDB_PART_5_6, /* IVB+ */
1761 };
1762
1763 struct intel_wm_level {
1764 bool enable;
1765 uint32_t pri_val;
1766 uint32_t spr_val;
1767 uint32_t cur_val;
1768 uint32_t fbc_val;
1769 };
1770
1771 struct ilk_wm_values {
1772 uint32_t wm_pipe[3];
1773 uint32_t wm_lp[3];
1774 uint32_t wm_lp_spr[3];
1775 uint32_t wm_linetime[3];
1776 bool enable_fbc_wm;
1777 enum intel_ddb_partitioning partitioning;
1778 };
1779
1780 struct g4x_pipe_wm {
1781 uint16_t plane[I915_MAX_PLANES];
1782 uint16_t fbc;
1783 };
1784
1785 struct g4x_sr_wm {
1786 uint16_t plane;
1787 uint16_t cursor;
1788 uint16_t fbc;
1789 };
1790
1791 struct vlv_wm_ddl_values {
1792 uint8_t plane[I915_MAX_PLANES];
1793 };
1794
1795 struct vlv_wm_values {
1796 struct g4x_pipe_wm pipe[3];
1797 struct g4x_sr_wm sr;
1798 struct vlv_wm_ddl_values ddl[3];
1799 uint8_t level;
1800 bool cxsr;
1801 };
1802
1803 struct g4x_wm_values {
1804 struct g4x_pipe_wm pipe[2];
1805 struct g4x_sr_wm sr;
1806 struct g4x_sr_wm hpll;
1807 bool cxsr;
1808 bool hpll_en;
1809 bool fbc_en;
1810 };
1811
1812 struct skl_ddb_entry {
1813 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1814 };
1815
1816 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1817 {
1818 return entry->end - entry->start;
1819 }
1820
1821 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1822 const struct skl_ddb_entry *e2)
1823 {
1824 if (e1->start == e2->start && e1->end == e2->end)
1825 return true;
1826
1827 return false;
1828 }
1829
1830 struct skl_ddb_allocation {
1831 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1832 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1833 };
1834
1835 struct skl_wm_values {
1836 unsigned dirty_pipes;
1837 struct skl_ddb_allocation ddb;
1838 };
1839
1840 struct skl_wm_level {
1841 bool plane_en;
1842 uint16_t plane_res_b;
1843 uint8_t plane_res_l;
1844 };
1845
1846 /* Stores plane specific WM parameters */
1847 struct skl_wm_params {
1848 bool x_tiled, y_tiled;
1849 bool rc_surface;
1850 uint32_t width;
1851 uint8_t cpp;
1852 uint32_t plane_pixel_rate;
1853 uint32_t y_min_scanlines;
1854 uint32_t plane_bytes_per_line;
1855 uint_fixed_16_16_t plane_blocks_per_line;
1856 uint_fixed_16_16_t y_tile_minimum;
1857 uint32_t linetime_us;
1858 };
1859
1860 /*
1861 * This struct helps tracking the state needed for runtime PM, which puts the
1862 * device in PCI D3 state. Notice that when this happens, nothing on the
1863 * graphics device works, even register access, so we don't get interrupts nor
1864 * anything else.
1865 *
1866 * Every piece of our code that needs to actually touch the hardware needs to
1867 * either call intel_runtime_pm_get or call intel_display_power_get with the
1868 * appropriate power domain.
1869 *
1870 * Our driver uses the autosuspend delay feature, which means we'll only really
1871 * suspend if we stay with zero refcount for a certain amount of time. The
1872 * default value is currently very conservative (see intel_runtime_pm_enable), but
1873 * it can be changed with the standard runtime PM files from sysfs.
1874 *
1875 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1876 * goes back to false exactly before we reenable the IRQs. We use this variable
1877 * to check if someone is trying to enable/disable IRQs while they're supposed
1878 * to be disabled. This shouldn't happen and we'll print some error messages in
1879 * case it happens.
1880 *
1881 * For more, read the Documentation/power/runtime_pm.txt.
1882 */
1883 struct i915_runtime_pm {
1884 atomic_t wakeref_count;
1885 bool suspended;
1886 bool irqs_enabled;
1887 };
1888
1889 enum intel_pipe_crc_source {
1890 INTEL_PIPE_CRC_SOURCE_NONE,
1891 INTEL_PIPE_CRC_SOURCE_PLANE1,
1892 INTEL_PIPE_CRC_SOURCE_PLANE2,
1893 INTEL_PIPE_CRC_SOURCE_PF,
1894 INTEL_PIPE_CRC_SOURCE_PIPE,
1895 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1896 INTEL_PIPE_CRC_SOURCE_TV,
1897 INTEL_PIPE_CRC_SOURCE_DP_B,
1898 INTEL_PIPE_CRC_SOURCE_DP_C,
1899 INTEL_PIPE_CRC_SOURCE_DP_D,
1900 INTEL_PIPE_CRC_SOURCE_AUTO,
1901 INTEL_PIPE_CRC_SOURCE_MAX,
1902 };
1903
1904 struct intel_pipe_crc_entry {
1905 uint32_t frame;
1906 uint32_t crc[5];
1907 };
1908
1909 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1910 struct intel_pipe_crc {
1911 spinlock_t lock;
1912 bool opened; /* exclusive access to the result file */
1913 struct intel_pipe_crc_entry *entries;
1914 enum intel_pipe_crc_source source;
1915 int head, tail;
1916 wait_queue_head_t wq;
1917 int skipped;
1918 };
1919
1920 struct i915_frontbuffer_tracking {
1921 spinlock_t lock;
1922
1923 /*
1924 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1925 * scheduled flips.
1926 */
1927 unsigned busy_bits;
1928 unsigned flip_bits;
1929 };
1930
1931 struct i915_wa_reg {
1932 i915_reg_t addr;
1933 u32 value;
1934 /* bitmask representing WA bits */
1935 u32 mask;
1936 };
1937
1938 /*
1939 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1940 * allowing it for RCS as we don't foresee any requirement of having
1941 * a whitelist for other engines. When it is really required for
1942 * other engines then the limit need to be increased.
1943 */
1944 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1945
1946 struct i915_workarounds {
1947 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1948 u32 count;
1949 u32 hw_whitelist_count[I915_NUM_ENGINES];
1950 };
1951
1952 struct i915_virtual_gpu {
1953 bool active;
1954 u32 caps;
1955 };
1956
1957 /* used in computing the new watermarks state */
1958 struct intel_wm_config {
1959 unsigned int num_pipes_active;
1960 bool sprites_enabled;
1961 bool sprites_scaled;
1962 };
1963
1964 struct i915_oa_format {
1965 u32 format;
1966 int size;
1967 };
1968
1969 struct i915_oa_reg {
1970 i915_reg_t addr;
1971 u32 value;
1972 };
1973
1974 struct i915_oa_config {
1975 char uuid[UUID_STRING_LEN + 1];
1976 int id;
1977
1978 const struct i915_oa_reg *mux_regs;
1979 u32 mux_regs_len;
1980 const struct i915_oa_reg *b_counter_regs;
1981 u32 b_counter_regs_len;
1982 const struct i915_oa_reg *flex_regs;
1983 u32 flex_regs_len;
1984
1985 struct attribute_group sysfs_metric;
1986 struct attribute *attrs[2];
1987 struct device_attribute sysfs_metric_id;
1988
1989 atomic_t ref_count;
1990 };
1991
1992 struct i915_perf_stream;
1993
1994 /**
1995 * struct i915_perf_stream_ops - the OPs to support a specific stream type
1996 */
1997 struct i915_perf_stream_ops {
1998 /**
1999 * @enable: Enables the collection of HW samples, either in response to
2000 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
2001 * without `I915_PERF_FLAG_DISABLED`.
2002 */
2003 void (*enable)(struct i915_perf_stream *stream);
2004
2005 /**
2006 * @disable: Disables the collection of HW samples, either in response
2007 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
2008 * the stream.
2009 */
2010 void (*disable)(struct i915_perf_stream *stream);
2011
2012 /**
2013 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
2014 * once there is something ready to read() for the stream
2015 */
2016 void (*poll_wait)(struct i915_perf_stream *stream,
2017 struct file *file,
2018 poll_table *wait);
2019
2020 /**
2021 * @wait_unlocked: For handling a blocking read, wait until there is
2022 * something to ready to read() for the stream. E.g. wait on the same
2023 * wait queue that would be passed to poll_wait().
2024 */
2025 int (*wait_unlocked)(struct i915_perf_stream *stream);
2026
2027 /**
2028 * @read: Copy buffered metrics as records to userspace
2029 * **buf**: the userspace, destination buffer
2030 * **count**: the number of bytes to copy, requested by userspace
2031 * **offset**: zero at the start of the read, updated as the read
2032 * proceeds, it represents how many bytes have been copied so far and
2033 * the buffer offset for copying the next record.
2034 *
2035 * Copy as many buffered i915 perf samples and records for this stream
2036 * to userspace as will fit in the given buffer.
2037 *
2038 * Only write complete records; returning -%ENOSPC if there isn't room
2039 * for a complete record.
2040 *
2041 * Return any error condition that results in a short read such as
2042 * -%ENOSPC or -%EFAULT, even though these may be squashed before
2043 * returning to userspace.
2044 */
2045 int (*read)(struct i915_perf_stream *stream,
2046 char __user *buf,
2047 size_t count,
2048 size_t *offset);
2049
2050 /**
2051 * @destroy: Cleanup any stream specific resources.
2052 *
2053 * The stream will always be disabled before this is called.
2054 */
2055 void (*destroy)(struct i915_perf_stream *stream);
2056 };
2057
2058 /**
2059 * struct i915_perf_stream - state for a single open stream FD
2060 */
2061 struct i915_perf_stream {
2062 /**
2063 * @dev_priv: i915 drm device
2064 */
2065 struct drm_i915_private *dev_priv;
2066
2067 /**
2068 * @link: Links the stream into ``&drm_i915_private->streams``
2069 */
2070 struct list_head link;
2071
2072 /**
2073 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
2074 * properties given when opening a stream, representing the contents
2075 * of a single sample as read() by userspace.
2076 */
2077 u32 sample_flags;
2078
2079 /**
2080 * @sample_size: Considering the configured contents of a sample
2081 * combined with the required header size, this is the total size
2082 * of a single sample record.
2083 */
2084 int sample_size;
2085
2086 /**
2087 * @ctx: %NULL if measuring system-wide across all contexts or a
2088 * specific context that is being monitored.
2089 */
2090 struct i915_gem_context *ctx;
2091
2092 /**
2093 * @enabled: Whether the stream is currently enabled, considering
2094 * whether the stream was opened in a disabled state and based
2095 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
2096 */
2097 bool enabled;
2098
2099 /**
2100 * @ops: The callbacks providing the implementation of this specific
2101 * type of configured stream.
2102 */
2103 const struct i915_perf_stream_ops *ops;
2104
2105 /**
2106 * @oa_config: The OA configuration used by the stream.
2107 */
2108 struct i915_oa_config *oa_config;
2109 };
2110
2111 /**
2112 * struct i915_oa_ops - Gen specific implementation of an OA unit stream
2113 */
2114 struct i915_oa_ops {
2115 /**
2116 * @is_valid_b_counter_reg: Validates register's address for
2117 * programming boolean counters for a particular platform.
2118 */
2119 bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
2120 u32 addr);
2121
2122 /**
2123 * @is_valid_mux_reg: Validates register's address for programming mux
2124 * for a particular platform.
2125 */
2126 bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
2127
2128 /**
2129 * @is_valid_flex_reg: Validates register's address for programming
2130 * flex EU filtering for a particular platform.
2131 */
2132 bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
2133
2134 /**
2135 * @init_oa_buffer: Resets the head and tail pointers of the
2136 * circular buffer for periodic OA reports.
2137 *
2138 * Called when first opening a stream for OA metrics, but also may be
2139 * called in response to an OA buffer overflow or other error
2140 * condition.
2141 *
2142 * Note it may be necessary to clear the full OA buffer here as part of
2143 * maintaining the invariable that new reports must be written to
2144 * zeroed memory for us to be able to reliable detect if an expected
2145 * report has not yet landed in memory. (At least on Haswell the OA
2146 * buffer tail pointer is not synchronized with reports being visible
2147 * to the CPU)
2148 */
2149 void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
2150
2151 /**
2152 * @enable_metric_set: Selects and applies any MUX configuration to set
2153 * up the Boolean and Custom (B/C) counters that are part of the
2154 * counter reports being sampled. May apply system constraints such as
2155 * disabling EU clock gating as required.
2156 */
2157 int (*enable_metric_set)(struct drm_i915_private *dev_priv,
2158 const struct i915_oa_config *oa_config);
2159
2160 /**
2161 * @disable_metric_set: Remove system constraints associated with using
2162 * the OA unit.
2163 */
2164 void (*disable_metric_set)(struct drm_i915_private *dev_priv);
2165
2166 /**
2167 * @oa_enable: Enable periodic sampling
2168 */
2169 void (*oa_enable)(struct drm_i915_private *dev_priv);
2170
2171 /**
2172 * @oa_disable: Disable periodic sampling
2173 */
2174 void (*oa_disable)(struct drm_i915_private *dev_priv);
2175
2176 /**
2177 * @read: Copy data from the circular OA buffer into a given userspace
2178 * buffer.
2179 */
2180 int (*read)(struct i915_perf_stream *stream,
2181 char __user *buf,
2182 size_t count,
2183 size_t *offset);
2184
2185 /**
2186 * @oa_hw_tail_read: read the OA tail pointer register
2187 *
2188 * In particular this enables us to share all the fiddly code for
2189 * handling the OA unit tail pointer race that affects multiple
2190 * generations.
2191 */
2192 u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
2193 };
2194
2195 struct intel_cdclk_state {
2196 unsigned int cdclk, vco, ref;
2197 };
2198
2199 struct drm_i915_private {
2200 struct drm_device drm;
2201
2202 struct kmem_cache *objects;
2203 struct kmem_cache *vmas;
2204 struct kmem_cache *luts;
2205 struct kmem_cache *requests;
2206 struct kmem_cache *dependencies;
2207 struct kmem_cache *priorities;
2208
2209 const struct intel_device_info info;
2210
2211 void __iomem *regs;
2212
2213 struct intel_uncore uncore;
2214
2215 struct i915_virtual_gpu vgpu;
2216
2217 struct intel_gvt *gvt;
2218
2219 struct intel_huc huc;
2220 struct intel_guc guc;
2221
2222 struct intel_csr csr;
2223
2224 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
2225
2226 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
2227 * controller on different i2c buses. */
2228 struct mutex gmbus_mutex;
2229
2230 /**
2231 * Base address of the gmbus and gpio block.
2232 */
2233 uint32_t gpio_mmio_base;
2234
2235 /* MMIO base address for MIPI regs */
2236 uint32_t mipi_mmio_base;
2237
2238 uint32_t psr_mmio_base;
2239
2240 uint32_t pps_mmio_base;
2241
2242 wait_queue_head_t gmbus_wait_queue;
2243
2244 struct pci_dev *bridge_dev;
2245 struct i915_gem_context *kernel_context;
2246 struct intel_engine_cs *engine[I915_NUM_ENGINES];
2247 struct i915_vma *semaphore;
2248
2249 struct drm_dma_handle *status_page_dmah;
2250 struct resource mch_res;
2251
2252 /* protects the irq masks */
2253 spinlock_t irq_lock;
2254
2255 bool display_irqs_enabled;
2256
2257 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
2258 struct pm_qos_request pm_qos;
2259
2260 /* Sideband mailbox protection */
2261 struct mutex sb_lock;
2262
2263 /** Cached value of IMR to avoid reads in updating the bitfield */
2264 union {
2265 u32 irq_mask;
2266 u32 de_irq_mask[I915_MAX_PIPES];
2267 };
2268 u32 gt_irq_mask;
2269 u32 pm_imr;
2270 u32 pm_ier;
2271 u32 pm_rps_events;
2272 u32 pm_guc_events;
2273 u32 pipestat_irq_mask[I915_MAX_PIPES];
2274
2275 struct i915_hotplug hotplug;
2276 struct intel_fbc fbc;
2277 struct i915_drrs drrs;
2278 struct intel_opregion opregion;
2279 struct intel_vbt_data vbt;
2280
2281 bool preserve_bios_swizzle;
2282
2283 /* overlay */
2284 struct intel_overlay *overlay;
2285
2286 /* backlight registers and fields in struct intel_panel */
2287 struct mutex backlight_lock;
2288
2289 /* LVDS info */
2290 bool no_aux_handshake;
2291
2292 /* protects panel power sequencer state */
2293 struct mutex pps_mutex;
2294
2295 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
2296 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
2297
2298 unsigned int fsb_freq, mem_freq, is_ddr3;
2299 unsigned int skl_preferred_vco_freq;
2300 unsigned int max_cdclk_freq;
2301
2302 unsigned int max_dotclk_freq;
2303 unsigned int rawclk_freq;
2304 unsigned int hpll_freq;
2305 unsigned int czclk_freq;
2306
2307 struct {
2308 /*
2309 * The current logical cdclk state.
2310 * See intel_atomic_state.cdclk.logical
2311 *
2312 * For reading holding any crtc lock is sufficient,
2313 * for writing must hold all of them.
2314 */
2315 struct intel_cdclk_state logical;
2316 /*
2317 * The current actual cdclk state.
2318 * See intel_atomic_state.cdclk.actual
2319 */
2320 struct intel_cdclk_state actual;
2321 /* The current hardware cdclk state */
2322 struct intel_cdclk_state hw;
2323 } cdclk;
2324
2325 /**
2326 * wq - Driver workqueue for GEM.
2327 *
2328 * NOTE: Work items scheduled here are not allowed to grab any modeset
2329 * locks, for otherwise the flushing done in the pageflip code will
2330 * result in deadlocks.
2331 */
2332 struct workqueue_struct *wq;
2333
2334 /* Display functions */
2335 struct drm_i915_display_funcs display;
2336
2337 /* PCH chipset type */
2338 enum intel_pch pch_type;
2339 unsigned short pch_id;
2340
2341 unsigned long quirks;
2342
2343 enum modeset_restore modeset_restore;
2344 struct mutex modeset_restore_lock;
2345 struct drm_atomic_state *modeset_restore_state;
2346 struct drm_modeset_acquire_ctx reset_ctx;
2347
2348 struct list_head vm_list; /* Global list of all address spaces */
2349 struct i915_ggtt ggtt; /* VM representing the global address space */
2350
2351 struct i915_gem_mm mm;
2352 DECLARE_HASHTABLE(mm_structs, 7);
2353 struct mutex mm_lock;
2354
2355 /* Kernel Modesetting */
2356
2357 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
2358 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
2359
2360 #ifdef CONFIG_DEBUG_FS
2361 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
2362 #endif
2363
2364 /* dpll and cdclk state is protected by connection_mutex */
2365 int num_shared_dpll;
2366 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
2367 const struct intel_dpll_mgr *dpll_mgr;
2368
2369 /*
2370 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
2371 * Must be global rather than per dpll, because on some platforms
2372 * plls share registers.
2373 */
2374 struct mutex dpll_lock;
2375
2376 unsigned int active_crtcs;
2377 /* minimum acceptable cdclk for each pipe */
2378 int min_cdclk[I915_MAX_PIPES];
2379
2380 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
2381
2382 struct i915_workarounds workarounds;
2383
2384 struct i915_frontbuffer_tracking fb_tracking;
2385
2386 struct intel_atomic_helper {
2387 struct llist_head free_list;
2388 struct work_struct free_work;
2389 } atomic_helper;
2390
2391 u16 orig_clock;
2392
2393 bool mchbar_need_disable;
2394
2395 struct intel_l3_parity l3_parity;
2396
2397 /* Cannot be determined by PCIID. You must always read a register. */
2398 u32 edram_cap;
2399
2400 /* gen6+ rps state */
2401 struct intel_gen6_power_mgmt rps;
2402
2403 /* ilk-only ips/rps state. Everything in here is protected by the global
2404 * mchdev_lock in intel_pm.c */
2405 struct intel_ilk_power_mgmt ips;
2406
2407 struct i915_power_domains power_domains;
2408
2409 struct i915_psr psr;
2410
2411 struct i915_gpu_error gpu_error;
2412
2413 struct drm_i915_gem_object *vlv_pctx;
2414
2415 /* list of fbdev register on this device */
2416 struct intel_fbdev *fbdev;
2417 struct work_struct fbdev_suspend_work;
2418
2419 struct drm_property *broadcast_rgb_property;
2420 struct drm_property *force_audio_property;
2421
2422 /* hda/i915 audio component */
2423 struct i915_audio_component *audio_component;
2424 bool audio_component_registered;
2425 /**
2426 * av_mutex - mutex for audio/video sync
2427 *
2428 */
2429 struct mutex av_mutex;
2430
2431 struct {
2432 struct list_head list;
2433 struct llist_head free_list;
2434 struct work_struct free_work;
2435
2436 /* The hw wants to have a stable context identifier for the
2437 * lifetime of the context (for OA, PASID, faults, etc).
2438 * This is limited in execlists to 21 bits.
2439 */
2440 struct ida hw_ida;
2441 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
2442 } contexts;
2443
2444 u32 fdi_rx_config;
2445
2446 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
2447 u32 chv_phy_control;
2448 /*
2449 * Shadows for CHV DPLL_MD regs to keep the state
2450 * checker somewhat working in the presence hardware
2451 * crappiness (can't read out DPLL_MD for pipes B & C).
2452 */
2453 u32 chv_dpll_md[I915_MAX_PIPES];
2454 u32 bxt_phy_grc;
2455
2456 u32 suspend_count;
2457 bool suspended_to_idle;
2458 struct i915_suspend_saved_registers regfile;
2459 struct vlv_s0ix_state vlv_s0ix_state;
2460
2461 enum {
2462 I915_SAGV_UNKNOWN = 0,
2463 I915_SAGV_DISABLED,
2464 I915_SAGV_ENABLED,
2465 I915_SAGV_NOT_CONTROLLED
2466 } sagv_status;
2467
2468 struct {
2469 /*
2470 * Raw watermark latency values:
2471 * in 0.1us units for WM0,
2472 * in 0.5us units for WM1+.
2473 */
2474 /* primary */
2475 uint16_t pri_latency[5];
2476 /* sprite */
2477 uint16_t spr_latency[5];
2478 /* cursor */
2479 uint16_t cur_latency[5];
2480 /*
2481 * Raw watermark memory latency values
2482 * for SKL for all 8 levels
2483 * in 1us units.
2484 */
2485 uint16_t skl_latency[8];
2486
2487 /* current hardware state */
2488 union {
2489 struct ilk_wm_values hw;
2490 struct skl_wm_values skl_hw;
2491 struct vlv_wm_values vlv;
2492 struct g4x_wm_values g4x;
2493 };
2494
2495 uint8_t max_level;
2496
2497 /*
2498 * Should be held around atomic WM register writing; also
2499 * protects * intel_crtc->wm.active and
2500 * cstate->wm.need_postvbl_update.
2501 */
2502 struct mutex wm_mutex;
2503
2504 /*
2505 * Set during HW readout of watermarks/DDB. Some platforms
2506 * need to know when we're still using BIOS-provided values
2507 * (which we don't fully trust).
2508 */
2509 bool distrust_bios_wm;
2510 } wm;
2511
2512 struct i915_runtime_pm pm;
2513
2514 struct {
2515 bool initialized;
2516
2517 struct kobject *metrics_kobj;
2518 struct ctl_table_header *sysctl_header;
2519
2520 /*
2521 * Lock associated with adding/modifying/removing OA configs
2522 * in dev_priv->perf.metrics_idr.
2523 */
2524 struct mutex metrics_lock;
2525
2526 /*
2527 * List of dynamic configurations, you need to hold
2528 * dev_priv->perf.metrics_lock to access it.
2529 */
2530 struct idr metrics_idr;
2531
2532 /*
2533 * Lock associated with anything below within this structure
2534 * except exclusive_stream.
2535 */
2536 struct mutex lock;
2537 struct list_head streams;
2538
2539 struct {
2540 /*
2541 * The stream currently using the OA unit. If accessed
2542 * outside a syscall associated to its file
2543 * descriptor, you need to hold
2544 * dev_priv->drm.struct_mutex.
2545 */
2546 struct i915_perf_stream *exclusive_stream;
2547
2548 u32 specific_ctx_id;
2549
2550 struct hrtimer poll_check_timer;
2551 wait_queue_head_t poll_wq;
2552 bool pollin;
2553
2554 /**
2555 * For rate limiting any notifications of spurious
2556 * invalid OA reports
2557 */
2558 struct ratelimit_state spurious_report_rs;
2559
2560 bool periodic;
2561 int period_exponent;
2562 int timestamp_frequency;
2563
2564 struct i915_oa_config test_config;
2565
2566 struct {
2567 struct i915_vma *vma;
2568 u8 *vaddr;
2569 u32 last_ctx_id;
2570 int format;
2571 int format_size;
2572
2573 /**
2574 * Locks reads and writes to all head/tail state
2575 *
2576 * Consider: the head and tail pointer state
2577 * needs to be read consistently from a hrtimer
2578 * callback (atomic context) and read() fop
2579 * (user context) with tail pointer updates
2580 * happening in atomic context and head updates
2581 * in user context and the (unlikely)
2582 * possibility of read() errors needing to
2583 * reset all head/tail state.
2584 *
2585 * Note: Contention or performance aren't
2586 * currently a significant concern here
2587 * considering the relatively low frequency of
2588 * hrtimer callbacks (5ms period) and that
2589 * reads typically only happen in response to a
2590 * hrtimer event and likely complete before the
2591 * next callback.
2592 *
2593 * Note: This lock is not held *while* reading
2594 * and copying data to userspace so the value
2595 * of head observed in htrimer callbacks won't
2596 * represent any partial consumption of data.
2597 */
2598 spinlock_t ptr_lock;
2599
2600 /**
2601 * One 'aging' tail pointer and one 'aged'
2602 * tail pointer ready to used for reading.
2603 *
2604 * Initial values of 0xffffffff are invalid
2605 * and imply that an update is required
2606 * (and should be ignored by an attempted
2607 * read)
2608 */
2609 struct {
2610 u32 offset;
2611 } tails[2];
2612
2613 /**
2614 * Index for the aged tail ready to read()
2615 * data up to.
2616 */
2617 unsigned int aged_tail_idx;
2618
2619 /**
2620 * A monotonic timestamp for when the current
2621 * aging tail pointer was read; used to
2622 * determine when it is old enough to trust.
2623 */
2624 u64 aging_timestamp;
2625
2626 /**
2627 * Although we can always read back the head
2628 * pointer register, we prefer to avoid
2629 * trusting the HW state, just to avoid any
2630 * risk that some hardware condition could
2631 * somehow bump the head pointer unpredictably
2632 * and cause us to forward the wrong OA buffer
2633 * data to userspace.
2634 */
2635 u32 head;
2636 } oa_buffer;
2637
2638 u32 gen7_latched_oastatus1;
2639 u32 ctx_oactxctrl_offset;
2640 u32 ctx_flexeu0_offset;
2641
2642 /**
2643 * The RPT_ID/reason field for Gen8+ includes a bit
2644 * to determine if the CTX ID in the report is valid
2645 * but the specific bit differs between Gen 8 and 9
2646 */
2647 u32 gen8_valid_ctx_bit;
2648
2649 struct i915_oa_ops ops;
2650 const struct i915_oa_format *oa_formats;
2651 } oa;
2652 } perf;
2653
2654 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2655 struct {
2656 void (*resume)(struct drm_i915_private *);
2657 void (*cleanup_engine)(struct intel_engine_cs *engine);
2658
2659 struct list_head timelines;
2660 struct i915_gem_timeline global_timeline;
2661 u32 active_requests;
2662
2663 /**
2664 * Is the GPU currently considered idle, or busy executing
2665 * userspace requests? Whilst idle, we allow runtime power
2666 * management to power down the hardware and display clocks.
2667 * In order to reduce the effect on performance, there
2668 * is a slight delay before we do so.
2669 */
2670 bool awake;
2671
2672 /**
2673 * We leave the user IRQ off as much as possible,
2674 * but this means that requests will finish and never
2675 * be retired once the system goes idle. Set a timer to
2676 * fire periodically while the ring is running. When it
2677 * fires, go retire requests.
2678 */
2679 struct delayed_work retire_work;
2680
2681 /**
2682 * When we detect an idle GPU, we want to turn on
2683 * powersaving features. So once we see that there
2684 * are no more requests outstanding and no more
2685 * arrive within a small period of time, we fire
2686 * off the idle_work.
2687 */
2688 struct delayed_work idle_work;
2689
2690 ktime_t last_init_time;
2691 } gt;
2692
2693 /* perform PHY state sanity checks? */
2694 bool chv_phy_assert[2];
2695
2696 bool ipc_enabled;
2697
2698 /* Used to save the pipe-to-encoder mapping for audio */
2699 struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2700
2701 /* necessary resource sharing with HDMI LPE audio driver. */
2702 struct {
2703 struct platform_device *platdev;
2704 int irq;
2705 } lpe_audio;
2706
2707 /*
2708 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2709 * will be rejected. Instead look for a better place.
2710 */
2711 };
2712
2713 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2714 {
2715 return container_of(dev, struct drm_i915_private, drm);
2716 }
2717
2718 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2719 {
2720 return to_i915(dev_get_drvdata(kdev));
2721 }
2722
2723 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2724 {
2725 return container_of(guc, struct drm_i915_private, guc);
2726 }
2727
2728 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2729 {
2730 return container_of(huc, struct drm_i915_private, huc);
2731 }
2732
2733 /* Simple iterator over all initialised engines */
2734 #define for_each_engine(engine__, dev_priv__, id__) \
2735 for ((id__) = 0; \
2736 (id__) < I915_NUM_ENGINES; \
2737 (id__)++) \
2738 for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2739
2740 /* Iterator over subset of engines selected by mask */
2741 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2742 for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask; \
2743 tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2744
2745 enum hdmi_force_audio {
2746 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2747 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2748 HDMI_AUDIO_AUTO, /* trust EDID */
2749 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2750 };
2751
2752 #define I915_GTT_OFFSET_NONE ((u32)-1)
2753
2754 /*
2755 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2756 * considered to be the frontbuffer for the given plane interface-wise. This
2757 * doesn't mean that the hw necessarily already scans it out, but that any
2758 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2759 *
2760 * We have one bit per pipe and per scanout plane type.
2761 */
2762 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2763 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2764 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2765 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2766 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2767 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2768 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2769 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2770 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2771 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2772 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2773 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2774
2775 /*
2776 * Optimised SGL iterator for GEM objects
2777 */
2778 static __always_inline struct sgt_iter {
2779 struct scatterlist *sgp;
2780 union {
2781 unsigned long pfn;
2782 dma_addr_t dma;
2783 };
2784 unsigned int curr;
2785 unsigned int max;
2786 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2787 struct sgt_iter s = { .sgp = sgl };
2788
2789 if (s.sgp) {
2790 s.max = s.curr = s.sgp->offset;
2791 s.max += s.sgp->length;
2792 if (dma)
2793 s.dma = sg_dma_address(s.sgp);
2794 else
2795 s.pfn = page_to_pfn(sg_page(s.sgp));
2796 }
2797
2798 return s;
2799 }
2800
2801 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2802 {
2803 ++sg;
2804 if (unlikely(sg_is_chain(sg)))
2805 sg = sg_chain_ptr(sg);
2806 return sg;
2807 }
2808
2809 /**
2810 * __sg_next - return the next scatterlist entry in a list
2811 * @sg: The current sg entry
2812 *
2813 * Description:
2814 * If the entry is the last, return NULL; otherwise, step to the next
2815 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2816 * otherwise just return the pointer to the current element.
2817 **/
2818 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2819 {
2820 #ifdef CONFIG_DEBUG_SG
2821 BUG_ON(sg->sg_magic != SG_MAGIC);
2822 #endif
2823 return sg_is_last(sg) ? NULL : ____sg_next(sg);
2824 }
2825
2826 /**
2827 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2828 * @__dmap: DMA address (output)
2829 * @__iter: 'struct sgt_iter' (iterator state, internal)
2830 * @__sgt: sg_table to iterate over (input)
2831 */
2832 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2833 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2834 ((__dmap) = (__iter).dma + (__iter).curr); \
2835 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2836 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2837
2838 /**
2839 * for_each_sgt_page - iterate over the pages of the given sg_table
2840 * @__pp: page pointer (output)
2841 * @__iter: 'struct sgt_iter' (iterator state, internal)
2842 * @__sgt: sg_table to iterate over (input)
2843 */
2844 #define for_each_sgt_page(__pp, __iter, __sgt) \
2845 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2846 ((__pp) = (__iter).pfn == 0 ? NULL : \
2847 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2848 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2849 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2850
2851 static inline unsigned int i915_sg_segment_size(void)
2852 {
2853 unsigned int size = swiotlb_max_segment();
2854
2855 if (size == 0)
2856 return SCATTERLIST_MAX_SEGMENT;
2857
2858 size = rounddown(size, PAGE_SIZE);
2859 /* swiotlb_max_segment_size can return 1 byte when it means one page. */
2860 if (size < PAGE_SIZE)
2861 size = PAGE_SIZE;
2862
2863 return size;
2864 }
2865
2866 static inline const struct intel_device_info *
2867 intel_info(const struct drm_i915_private *dev_priv)
2868 {
2869 return &dev_priv->info;
2870 }
2871
2872 #define INTEL_INFO(dev_priv) intel_info((dev_priv))
2873
2874 #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen)
2875 #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id)
2876
2877 #define REVID_FOREVER 0xff
2878 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision)
2879
2880 #define GEN_FOREVER (0)
2881 /*
2882 * Returns true if Gen is in inclusive range [Start, End].
2883 *
2884 * Use GEN_FOREVER for unbound start and or end.
2885 */
2886 #define IS_GEN(dev_priv, s, e) ({ \
2887 unsigned int __s = (s), __e = (e); \
2888 BUILD_BUG_ON(!__builtin_constant_p(s)); \
2889 BUILD_BUG_ON(!__builtin_constant_p(e)); \
2890 if ((__s) != GEN_FOREVER) \
2891 __s = (s) - 1; \
2892 if ((__e) == GEN_FOREVER) \
2893 __e = BITS_PER_LONG - 1; \
2894 else \
2895 __e = (e) - 1; \
2896 !!((dev_priv)->info.gen_mask & GENMASK((__e), (__s))); \
2897 })
2898
2899 /*
2900 * Return true if revision is in range [since,until] inclusive.
2901 *
2902 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2903 */
2904 #define IS_REVID(p, since, until) \
2905 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2906
2907 #define IS_I830(dev_priv) ((dev_priv)->info.platform == INTEL_I830)
2908 #define IS_I845G(dev_priv) ((dev_priv)->info.platform == INTEL_I845G)
2909 #define IS_I85X(dev_priv) ((dev_priv)->info.platform == INTEL_I85X)
2910 #define IS_I865G(dev_priv) ((dev_priv)->info.platform == INTEL_I865G)
2911 #define IS_I915G(dev_priv) ((dev_priv)->info.platform == INTEL_I915G)
2912 #define IS_I915GM(dev_priv) ((dev_priv)->info.platform == INTEL_I915GM)
2913 #define IS_I945G(dev_priv) ((dev_priv)->info.platform == INTEL_I945G)
2914 #define IS_I945GM(dev_priv) ((dev_priv)->info.platform == INTEL_I945GM)
2915 #define IS_I965G(dev_priv) ((dev_priv)->info.platform == INTEL_I965G)
2916 #define IS_I965GM(dev_priv) ((dev_priv)->info.platform == INTEL_I965GM)
2917 #define IS_G45(dev_priv) ((dev_priv)->info.platform == INTEL_G45)
2918 #define IS_GM45(dev_priv) ((dev_priv)->info.platform == INTEL_GM45)
2919 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv))
2920 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001)
2921 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011)
2922 #define IS_PINEVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_PINEVIEW)
2923 #define IS_G33(dev_priv) ((dev_priv)->info.platform == INTEL_G33)
2924 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046)
2925 #define IS_IVYBRIDGE(dev_priv) ((dev_priv)->info.platform == INTEL_IVYBRIDGE)
2926 #define IS_IVB_GT1(dev_priv) (IS_IVYBRIDGE(dev_priv) && \
2927 (dev_priv)->info.gt == 1)
2928 #define IS_VALLEYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_VALLEYVIEW)
2929 #define IS_CHERRYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_CHERRYVIEW)
2930 #define IS_HASWELL(dev_priv) ((dev_priv)->info.platform == INTEL_HASWELL)
2931 #define IS_BROADWELL(dev_priv) ((dev_priv)->info.platform == INTEL_BROADWELL)
2932 #define IS_SKYLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_SKYLAKE)
2933 #define IS_BROXTON(dev_priv) ((dev_priv)->info.platform == INTEL_BROXTON)
2934 #define IS_KABYLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_KABYLAKE)
2935 #define IS_GEMINILAKE(dev_priv) ((dev_priv)->info.platform == INTEL_GEMINILAKE)
2936 #define IS_COFFEELAKE(dev_priv) ((dev_priv)->info.platform == INTEL_COFFEELAKE)
2937 #define IS_CANNONLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_CANNONLAKE)
2938 #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile)
2939 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2940 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2941 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \
2942 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \
2943 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \
2944 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2945 /* ULX machines are also considered ULT. */
2946 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \
2947 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2948 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \
2949 (dev_priv)->info.gt == 3)
2950 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \
2951 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2952 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \
2953 (dev_priv)->info.gt == 3)
2954 /* ULX machines are also considered ULT. */
2955 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \
2956 INTEL_DEVID(dev_priv) == 0x0A1E)
2957 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \
2958 INTEL_DEVID(dev_priv) == 0x1913 || \
2959 INTEL_DEVID(dev_priv) == 0x1916 || \
2960 INTEL_DEVID(dev_priv) == 0x1921 || \
2961 INTEL_DEVID(dev_priv) == 0x1926)
2962 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \
2963 INTEL_DEVID(dev_priv) == 0x1915 || \
2964 INTEL_DEVID(dev_priv) == 0x191E)
2965 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \
2966 INTEL_DEVID(dev_priv) == 0x5913 || \
2967 INTEL_DEVID(dev_priv) == 0x5916 || \
2968 INTEL_DEVID(dev_priv) == 0x5921 || \
2969 INTEL_DEVID(dev_priv) == 0x5926)
2970 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \
2971 INTEL_DEVID(dev_priv) == 0x5915 || \
2972 INTEL_DEVID(dev_priv) == 0x591E)
2973 #define IS_SKL_GT2(dev_priv) (IS_SKYLAKE(dev_priv) && \
2974 (dev_priv)->info.gt == 2)
2975 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \
2976 (dev_priv)->info.gt == 3)
2977 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \
2978 (dev_priv)->info.gt == 4)
2979 #define IS_KBL_GT2(dev_priv) (IS_KABYLAKE(dev_priv) && \
2980 (dev_priv)->info.gt == 2)
2981 #define IS_KBL_GT3(dev_priv) (IS_KABYLAKE(dev_priv) && \
2982 (dev_priv)->info.gt == 3)
2983 #define IS_CFL_ULT(dev_priv) (IS_COFFEELAKE(dev_priv) && \
2984 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2985
2986 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2987
2988 #define SKL_REVID_A0 0x0
2989 #define SKL_REVID_B0 0x1
2990 #define SKL_REVID_C0 0x2
2991 #define SKL_REVID_D0 0x3
2992 #define SKL_REVID_E0 0x4
2993 #define SKL_REVID_F0 0x5
2994 #define SKL_REVID_G0 0x6
2995 #define SKL_REVID_H0 0x7
2996
2997 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2998
2999 #define BXT_REVID_A0 0x0
3000 #define BXT_REVID_A1 0x1
3001 #define BXT_REVID_B0 0x3
3002 #define BXT_REVID_B_LAST 0x8
3003 #define BXT_REVID_C0 0x9
3004
3005 #define IS_BXT_REVID(dev_priv, since, until) \
3006 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
3007
3008 #define KBL_REVID_A0 0x0
3009 #define KBL_REVID_B0 0x1
3010 #define KBL_REVID_C0 0x2
3011 #define KBL_REVID_D0 0x3
3012 #define KBL_REVID_E0 0x4
3013
3014 #define IS_KBL_REVID(dev_priv, since, until) \
3015 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
3016
3017 #define GLK_REVID_A0 0x0
3018 #define GLK_REVID_A1 0x1
3019
3020 #define IS_GLK_REVID(dev_priv, since, until) \
3021 (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
3022
3023 #define CNL_REVID_A0 0x0
3024 #define CNL_REVID_B0 0x1
3025
3026 #define IS_CNL_REVID(p, since, until) \
3027 (IS_CANNONLAKE(p) && IS_REVID(p, since, until))
3028
3029 /*
3030 * The genX designation typically refers to the render engine, so render
3031 * capability related checks should use IS_GEN, while display and other checks
3032 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
3033 * chips, etc.).
3034 */
3035 #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1)))
3036 #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2)))
3037 #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3)))
3038 #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4)))
3039 #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5)))
3040 #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6)))
3041 #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7)))
3042 #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8)))
3043 #define IS_GEN10(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(9)))
3044
3045 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp)
3046 #define IS_GEN9_LP(dev_priv) (IS_GEN9(dev_priv) && IS_LP(dev_priv))
3047 #define IS_GEN9_BC(dev_priv) (IS_GEN9(dev_priv) && !IS_LP(dev_priv))
3048
3049 #define ENGINE_MASK(id) BIT(id)
3050 #define RENDER_RING ENGINE_MASK(RCS)
3051 #define BSD_RING ENGINE_MASK(VCS)
3052 #define BLT_RING ENGINE_MASK(BCS)
3053 #define VEBOX_RING ENGINE_MASK(VECS)
3054 #define BSD2_RING ENGINE_MASK(VCS2)
3055 #define ALL_ENGINES (~0)
3056
3057 #define HAS_ENGINE(dev_priv, id) \
3058 (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
3059
3060 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
3061 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
3062 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
3063 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
3064
3065 #define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc)
3066 #define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop)
3067 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED))
3068 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \
3069 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
3070
3071 #define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical)
3072
3073 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
3074 ((dev_priv)->info.has_logical_ring_contexts)
3075 #define USES_PPGTT(dev_priv) (i915.enable_ppgtt)
3076 #define USES_FULL_PPGTT(dev_priv) (i915.enable_ppgtt >= 2)
3077 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915.enable_ppgtt == 3)
3078
3079 #define HAS_OVERLAY(dev_priv) ((dev_priv)->info.has_overlay)
3080 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
3081 ((dev_priv)->info.overlay_needs_physical)
3082
3083 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
3084 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv))
3085
3086 /* WaRsDisableCoarsePowerGating:skl,bxt */
3087 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
3088 (IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
3089
3090 /*
3091 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
3092 * even when in MSI mode. This results in spurious interrupt warnings if the
3093 * legacy irq no. is shared with another device. The kernel then disables that
3094 * interrupt source and so prevents the other device from working properly.
3095 */
3096 #define HAS_AUX_IRQ(dev_priv) ((dev_priv)->info.gen >= 5)
3097 #define HAS_GMBUS_IRQ(dev_priv) ((dev_priv)->info.has_gmbus_irq)
3098
3099 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
3100 * rows, which changed the alignment requirements and fence programming.
3101 */
3102 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
3103 !(IS_I915G(dev_priv) || \
3104 IS_I915GM(dev_priv)))
3105 #define SUPPORTS_TV(dev_priv) ((dev_priv)->info.supports_tv)
3106 #define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.has_hotplug)
3107
3108 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2)
3109 #define HAS_PIPE_CXSR(dev_priv) ((dev_priv)->info.has_pipe_cxsr)
3110 #define HAS_FBC(dev_priv) ((dev_priv)->info.has_fbc)
3111 #define HAS_CUR_FBC(dev_priv) (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_INFO(dev_priv)->gen >= 7)
3112
3113 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
3114
3115 #define HAS_DP_MST(dev_priv) ((dev_priv)->info.has_dp_mst)
3116
3117 #define HAS_DDI(dev_priv) ((dev_priv)->info.has_ddi)
3118 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
3119 #define HAS_PSR(dev_priv) ((dev_priv)->info.has_psr)
3120 #define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6)
3121 #define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p)
3122
3123 #define HAS_CSR(dev_priv) ((dev_priv)->info.has_csr)
3124
3125 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
3126 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
3127
3128 #define HAS_IPC(dev_priv) ((dev_priv)->info.has_ipc)
3129
3130 /*
3131 * For now, anything with a GuC requires uCode loading, and then supports
3132 * command submission once loaded. But these are logically independent
3133 * properties, so we have separate macros to test them.
3134 */
3135 #define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc)
3136 #define HAS_GUC_CT(dev_priv) ((dev_priv)->info.has_guc_ct)
3137 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3138 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv))
3139 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3140
3141 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
3142
3143 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu)
3144
3145 #define INTEL_PCH_DEVICE_ID_MASK 0xff80
3146 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
3147 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
3148 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
3149 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
3150 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
3151 #define INTEL_PCH_WPT_DEVICE_ID_TYPE 0x8c80
3152 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE 0x9c80
3153 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
3154 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
3155 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA280
3156 #define INTEL_PCH_CNP_DEVICE_ID_TYPE 0xA300
3157 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE 0x9D80
3158 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
3159 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
3160 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
3161
3162 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
3163 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
3164 #define HAS_PCH_CNP_LP(dev_priv) \
3165 ((dev_priv)->pch_id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
3166 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
3167 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
3168 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
3169 #define HAS_PCH_LPT_LP(dev_priv) \
3170 ((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
3171 (dev_priv)->pch_id == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
3172 #define HAS_PCH_LPT_H(dev_priv) \
3173 ((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
3174 (dev_priv)->pch_id == INTEL_PCH_WPT_DEVICE_ID_TYPE)
3175 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
3176 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
3177 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
3178 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
3179
3180 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
3181
3182 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
3183
3184 /* DPF == dynamic parity feature */
3185 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
3186 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
3187 2 : HAS_L3_DPF(dev_priv))
3188
3189 #define GT_FREQUENCY_MULTIPLIER 50
3190 #define GEN9_FREQ_SCALER 3
3191
3192 #include "i915_trace.h"
3193
3194 static inline bool intel_vtd_active(void)
3195 {
3196 #ifdef CONFIG_INTEL_IOMMU
3197 if (intel_iommu_gfx_mapped)
3198 return true;
3199 #endif
3200 return false;
3201 }
3202
3203 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
3204 {
3205 return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
3206 }
3207
3208 static inline bool
3209 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
3210 {
3211 return IS_BROXTON(dev_priv) && intel_vtd_active();
3212 }
3213
3214 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
3215 int enable_ppgtt);
3216
3217 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
3218
3219 /* i915_drv.c */
3220 void __printf(3, 4)
3221 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
3222 const char *fmt, ...);
3223
3224 #define i915_report_error(dev_priv, fmt, ...) \
3225 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
3226
3227 #ifdef CONFIG_COMPAT
3228 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
3229 unsigned long arg);
3230 #else
3231 #define i915_compat_ioctl NULL
3232 #endif
3233 extern const struct dev_pm_ops i915_pm_ops;
3234
3235 extern int i915_driver_load(struct pci_dev *pdev,
3236 const struct pci_device_id *ent);
3237 extern void i915_driver_unload(struct drm_device *dev);
3238 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
3239 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
3240
3241 #define I915_RESET_QUIET BIT(0)
3242 extern void i915_reset(struct drm_i915_private *i915, unsigned int flags);
3243 extern int i915_reset_engine(struct intel_engine_cs *engine,
3244 unsigned int flags);
3245
3246 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
3247 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
3248 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
3249 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
3250 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
3251 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
3252 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
3253 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
3254 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
3255
3256 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
3257 int intel_engines_init(struct drm_i915_private *dev_priv);
3258
3259 /* intel_hotplug.c */
3260 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
3261 u32 pin_mask, u32 long_mask);
3262 void intel_hpd_init(struct drm_i915_private *dev_priv);
3263 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
3264 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
3265 enum port intel_hpd_pin_to_port(enum hpd_pin pin);
3266 enum hpd_pin intel_hpd_pin(enum port port);
3267 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3268 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3269
3270 /* i915_irq.c */
3271 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
3272 {
3273 unsigned long delay;
3274
3275 if (unlikely(!i915.enable_hangcheck))
3276 return;
3277
3278 /* Don't continually defer the hangcheck so that it is always run at
3279 * least once after work has been scheduled on any ring. Otherwise,
3280 * we will ignore a hung ring if a second ring is kept busy.
3281 */
3282
3283 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
3284 queue_delayed_work(system_long_wq,
3285 &dev_priv->gpu_error.hangcheck_work, delay);
3286 }
3287
3288 __printf(3, 4)
3289 void i915_handle_error(struct drm_i915_private *dev_priv,
3290 u32 engine_mask,
3291 const char *fmt, ...);
3292
3293 extern void intel_irq_init(struct drm_i915_private *dev_priv);
3294 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
3295 int intel_irq_install(struct drm_i915_private *dev_priv);
3296 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
3297
3298 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3299 {
3300 return dev_priv->gvt;
3301 }
3302
3303 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3304 {
3305 return dev_priv->vgpu.active;
3306 }
3307
3308 void
3309 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3310 u32 status_mask);
3311
3312 void
3313 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3314 u32 status_mask);
3315
3316 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3317 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3318 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3319 uint32_t mask,
3320 uint32_t bits);
3321 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3322 uint32_t interrupt_mask,
3323 uint32_t enabled_irq_mask);
3324 static inline void
3325 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3326 {
3327 ilk_update_display_irq(dev_priv, bits, bits);
3328 }
3329 static inline void
3330 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3331 {
3332 ilk_update_display_irq(dev_priv, bits, 0);
3333 }
3334 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3335 enum pipe pipe,
3336 uint32_t interrupt_mask,
3337 uint32_t enabled_irq_mask);
3338 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3339 enum pipe pipe, uint32_t bits)
3340 {
3341 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3342 }
3343 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3344 enum pipe pipe, uint32_t bits)
3345 {
3346 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3347 }
3348 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3349 uint32_t interrupt_mask,
3350 uint32_t enabled_irq_mask);
3351 static inline void
3352 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3353 {
3354 ibx_display_interrupt_update(dev_priv, bits, bits);
3355 }
3356 static inline void
3357 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3358 {
3359 ibx_display_interrupt_update(dev_priv, bits, 0);
3360 }
3361
3362 /* i915_gem.c */
3363 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3364 struct drm_file *file_priv);
3365 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3366 struct drm_file *file_priv);
3367 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3368 struct drm_file *file_priv);
3369 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3370 struct drm_file *file_priv);
3371 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3372 struct drm_file *file_priv);
3373 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3374 struct drm_file *file_priv);
3375 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3376 struct drm_file *file_priv);
3377 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3378 struct drm_file *file_priv);
3379 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3380 struct drm_file *file_priv);
3381 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3382 struct drm_file *file_priv);
3383 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3384 struct drm_file *file);
3385 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3386 struct drm_file *file);
3387 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3388 struct drm_file *file_priv);
3389 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3390 struct drm_file *file_priv);
3391 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
3392 struct drm_file *file_priv);
3393 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
3394 struct drm_file *file_priv);
3395 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3396 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
3397 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3398 struct drm_file *file);
3399 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3400 struct drm_file *file_priv);
3401 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3402 struct drm_file *file_priv);
3403 void i915_gem_sanitize(struct drm_i915_private *i915);
3404 int i915_gem_load_init(struct drm_i915_private *dev_priv);
3405 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv);
3406 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3407 int i915_gem_freeze(struct drm_i915_private *dev_priv);
3408 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3409
3410 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
3411 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3412 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3413 const struct drm_i915_gem_object_ops *ops);
3414 struct drm_i915_gem_object *
3415 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
3416 struct drm_i915_gem_object *
3417 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
3418 const void *data, size_t size);
3419 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3420 void i915_gem_free_object(struct drm_gem_object *obj);
3421
3422 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
3423 {
3424 /* A single pass should suffice to release all the freed objects (along
3425 * most call paths) , but be a little more paranoid in that freeing
3426 * the objects does take a little amount of time, during which the rcu
3427 * callbacks could have added new objects into the freed list, and
3428 * armed the work again.
3429 */
3430 do {
3431 rcu_barrier();
3432 } while (flush_work(&i915->mm.free_work));
3433 }
3434
3435 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
3436 {
3437 /*
3438 * Similar to objects above (see i915_gem_drain_freed-objects), in
3439 * general we have workers that are armed by RCU and then rearm
3440 * themselves in their callbacks. To be paranoid, we need to
3441 * drain the workqueue a second time after waiting for the RCU
3442 * grace period so that we catch work queued via RCU from the first
3443 * pass. As neither drain_workqueue() nor flush_workqueue() report
3444 * a result, we make an assumption that we only don't require more
3445 * than 2 passes to catch all recursive RCU delayed work.
3446 *
3447 */
3448 int pass = 2;
3449 do {
3450 rcu_barrier();
3451 drain_workqueue(i915->wq);
3452 } while (--pass);
3453 }
3454
3455 struct i915_vma * __must_check
3456 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3457 const struct i915_ggtt_view *view,
3458 u64 size,
3459 u64 alignment,
3460 u64 flags);
3461
3462 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3463 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3464
3465 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3466
3467 static inline int __sg_page_count(const struct scatterlist *sg)
3468 {
3469 return sg->length >> PAGE_SHIFT;
3470 }
3471
3472 struct scatterlist *
3473 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3474 unsigned int n, unsigned int *offset);
3475
3476 struct page *
3477 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3478 unsigned int n);
3479
3480 struct page *
3481 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3482 unsigned int n);
3483
3484 dma_addr_t
3485 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3486 unsigned long n);
3487
3488 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3489 struct sg_table *pages);
3490 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3491
3492 static inline int __must_check
3493 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3494 {
3495 might_lock(&obj->mm.lock);
3496
3497 if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3498 return 0;
3499
3500 return __i915_gem_object_get_pages(obj);
3501 }
3502
3503 static inline void
3504 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3505 {
3506 GEM_BUG_ON(!obj->mm.pages);
3507
3508 atomic_inc(&obj->mm.pages_pin_count);
3509 }
3510
3511 static inline bool
3512 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3513 {
3514 return atomic_read(&obj->mm.pages_pin_count);
3515 }
3516
3517 static inline void
3518 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3519 {
3520 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3521 GEM_BUG_ON(!obj->mm.pages);
3522
3523 atomic_dec(&obj->mm.pages_pin_count);
3524 }
3525
3526 static inline void
3527 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3528 {
3529 __i915_gem_object_unpin_pages(obj);
3530 }
3531
3532 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3533 I915_MM_NORMAL = 0,
3534 I915_MM_SHRINKER
3535 };
3536
3537 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3538 enum i915_mm_subclass subclass);
3539 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3540
3541 enum i915_map_type {
3542 I915_MAP_WB = 0,
3543 I915_MAP_WC,
3544 #define I915_MAP_OVERRIDE BIT(31)
3545 I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
3546 I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
3547 };
3548
3549 /**
3550 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3551 * @obj: the object to map into kernel address space
3552 * @type: the type of mapping, used to select pgprot_t
3553 *
3554 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3555 * pages and then returns a contiguous mapping of the backing storage into
3556 * the kernel address space. Based on the @type of mapping, the PTE will be
3557 * set to either WriteBack or WriteCombine (via pgprot_t).
3558 *
3559 * The caller is responsible for calling i915_gem_object_unpin_map() when the
3560 * mapping is no longer required.
3561 *
3562 * Returns the pointer through which to access the mapped object, or an
3563 * ERR_PTR() on error.
3564 */
3565 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3566 enum i915_map_type type);
3567
3568 /**
3569 * i915_gem_object_unpin_map - releases an earlier mapping
3570 * @obj: the object to unmap
3571 *
3572 * After pinning the object and mapping its pages, once you are finished
3573 * with your access, call i915_gem_object_unpin_map() to release the pin
3574 * upon the mapping. Once the pin count reaches zero, that mapping may be
3575 * removed.
3576 */
3577 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3578 {
3579 i915_gem_object_unpin_pages(obj);
3580 }
3581
3582 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3583 unsigned int *needs_clflush);
3584 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3585 unsigned int *needs_clflush);
3586 #define CLFLUSH_BEFORE BIT(0)
3587 #define CLFLUSH_AFTER BIT(1)
3588 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER)
3589
3590 static inline void
3591 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3592 {
3593 i915_gem_object_unpin_pages(obj);
3594 }
3595
3596 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3597 void i915_vma_move_to_active(struct i915_vma *vma,
3598 struct drm_i915_gem_request *req,
3599 unsigned int flags);
3600 int i915_gem_dumb_create(struct drm_file *file_priv,
3601 struct drm_device *dev,
3602 struct drm_mode_create_dumb *args);
3603 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3604 uint32_t handle, uint64_t *offset);
3605 int i915_gem_mmap_gtt_version(void);
3606
3607 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3608 struct drm_i915_gem_object *new,
3609 unsigned frontbuffer_bits);
3610
3611 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3612
3613 struct drm_i915_gem_request *
3614 i915_gem_find_active_request(struct intel_engine_cs *engine);
3615
3616 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3617
3618 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3619 {
3620 return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3621 }
3622
3623 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3624 {
3625 return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3626 }
3627
3628 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3629 {
3630 return unlikely(test_bit(I915_WEDGED, &error->flags));
3631 }
3632
3633 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3634 {
3635 return i915_reset_backoff(error) | i915_terminally_wedged(error);
3636 }
3637
3638 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3639 {
3640 return READ_ONCE(error->reset_count);
3641 }
3642
3643 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3644 struct intel_engine_cs *engine)
3645 {
3646 return READ_ONCE(error->reset_engine_count[engine->id]);
3647 }
3648
3649 struct drm_i915_gem_request *
3650 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3651 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3652 void i915_gem_reset(struct drm_i915_private *dev_priv);
3653 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3654 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3655 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3656 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3657 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3658 struct drm_i915_gem_request *request);
3659
3660 void i915_gem_init_mmio(struct drm_i915_private *i915);
3661 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3662 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3663 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3664 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3665 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3666 unsigned int flags);
3667 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3668 void i915_gem_resume(struct drm_i915_private *dev_priv);
3669 int i915_gem_fault(struct vm_fault *vmf);
3670 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3671 unsigned int flags,
3672 long timeout,
3673 struct intel_rps_client *rps);
3674 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3675 unsigned int flags,
3676 int priority);
3677 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3678
3679 int __must_check
3680 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3681 int __must_check
3682 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3683 int __must_check
3684 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3685 struct i915_vma * __must_check
3686 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3687 u32 alignment,
3688 const struct i915_ggtt_view *view);
3689 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3690 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3691 int align);
3692 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3693 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3694
3695 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3696 enum i915_cache_level cache_level);
3697
3698 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3699 struct dma_buf *dma_buf);
3700
3701 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3702 struct drm_gem_object *gem_obj, int flags);
3703
3704 static inline struct i915_hw_ppgtt *
3705 i915_vm_to_ppgtt(struct i915_address_space *vm)
3706 {
3707 return container_of(vm, struct i915_hw_ppgtt, base);
3708 }
3709
3710 /* i915_gem_fence_reg.c */
3711 int __must_check i915_vma_get_fence(struct i915_vma *vma);
3712 int __must_check i915_vma_put_fence(struct i915_vma *vma);
3713 struct drm_i915_fence_reg *
3714 i915_reserve_fence(struct drm_i915_private *dev_priv);
3715 void i915_unreserve_fence(struct drm_i915_fence_reg *fence);
3716
3717 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3718 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3719
3720 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3721 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3722 struct sg_table *pages);
3723 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3724 struct sg_table *pages);
3725
3726 static inline struct i915_gem_context *
3727 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3728 {
3729 return idr_find(&file_priv->context_idr, id);
3730 }
3731
3732 static inline struct i915_gem_context *
3733 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3734 {
3735 struct i915_gem_context *ctx;
3736
3737 rcu_read_lock();
3738 ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3739 if (ctx && !kref_get_unless_zero(&ctx->ref))
3740 ctx = NULL;
3741 rcu_read_unlock();
3742
3743 return ctx;
3744 }
3745
3746 static inline struct intel_timeline *
3747 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx,
3748 struct intel_engine_cs *engine)
3749 {
3750 struct i915_address_space *vm;
3751
3752 vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base;
3753 return &vm->timeline.engine[engine->id];
3754 }
3755
3756 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3757 struct drm_file *file);
3758 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3759 struct drm_file *file);
3760 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3761 struct drm_file *file);
3762 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3763 struct i915_gem_context *ctx,
3764 uint32_t *reg_state);
3765
3766 /* i915_gem_evict.c */
3767 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3768 u64 min_size, u64 alignment,
3769 unsigned cache_level,
3770 u64 start, u64 end,
3771 unsigned flags);
3772 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3773 struct drm_mm_node *node,
3774 unsigned int flags);
3775 int i915_gem_evict_vm(struct i915_address_space *vm);
3776
3777 /* belongs in i915_gem_gtt.h */
3778 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3779 {
3780 wmb();
3781 if (INTEL_GEN(dev_priv) < 6)
3782 intel_gtt_chipset_flush();
3783 }
3784
3785 /* i915_gem_stolen.c */
3786 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3787 struct drm_mm_node *node, u64 size,
3788 unsigned alignment);
3789 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3790 struct drm_mm_node *node, u64 size,
3791 unsigned alignment, u64 start,
3792 u64 end);
3793 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3794 struct drm_mm_node *node);
3795 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3796 void i915_gem_cleanup_stolen(struct drm_device *dev);
3797 struct drm_i915_gem_object *
3798 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size);
3799 struct drm_i915_gem_object *
3800 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3801 u32 stolen_offset,
3802 u32 gtt_offset,
3803 u32 size);
3804
3805 /* i915_gem_internal.c */
3806 struct drm_i915_gem_object *
3807 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3808 phys_addr_t size);
3809
3810 /* i915_gem_shrinker.c */
3811 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3812 unsigned long target,
3813 unsigned flags);
3814 #define I915_SHRINK_PURGEABLE 0x1
3815 #define I915_SHRINK_UNBOUND 0x2
3816 #define I915_SHRINK_BOUND 0x4
3817 #define I915_SHRINK_ACTIVE 0x8
3818 #define I915_SHRINK_VMAPS 0x10
3819 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3820 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3821 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3822
3823
3824 /* i915_gem_tiling.c */
3825 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3826 {
3827 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3828
3829 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3830 i915_gem_object_is_tiled(obj);
3831 }
3832
3833 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3834 unsigned int tiling, unsigned int stride);
3835 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3836 unsigned int tiling, unsigned int stride);
3837
3838 /* i915_debugfs.c */
3839 #ifdef CONFIG_DEBUG_FS
3840 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3841 int i915_debugfs_connector_add(struct drm_connector *connector);
3842 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3843 #else
3844 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3845 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3846 { return 0; }
3847 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3848 #endif
3849
3850 /* i915_gpu_error.c */
3851 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3852
3853 __printf(2, 3)
3854 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3855 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3856 const struct i915_gpu_state *gpu);
3857 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3858 struct drm_i915_private *i915,
3859 size_t count, loff_t pos);
3860 static inline void i915_error_state_buf_release(
3861 struct drm_i915_error_state_buf *eb)
3862 {
3863 kfree(eb->buf);
3864 }
3865
3866 struct i915_gpu_state *i915_capture_gpu_state(struct drm_i915_private *i915);
3867 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3868 u32 engine_mask,
3869 const char *error_msg);
3870
3871 static inline struct i915_gpu_state *
3872 i915_gpu_state_get(struct i915_gpu_state *gpu)
3873 {
3874 kref_get(&gpu->ref);
3875 return gpu;
3876 }
3877
3878 void __i915_gpu_state_free(struct kref *kref);
3879 static inline void i915_gpu_state_put(struct i915_gpu_state *gpu)
3880 {
3881 if (gpu)
3882 kref_put(&gpu->ref, __i915_gpu_state_free);
3883 }
3884
3885 struct i915_gpu_state *i915_first_error_state(struct drm_i915_private *i915);
3886 void i915_reset_error_state(struct drm_i915_private *i915);
3887
3888 #else
3889
3890 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3891 u32 engine_mask,
3892 const char *error_msg)
3893 {
3894 }
3895
3896 static inline struct i915_gpu_state *
3897 i915_first_error_state(struct drm_i915_private *i915)
3898 {
3899 return NULL;
3900 }
3901
3902 static inline void i915_reset_error_state(struct drm_i915_private *i915)
3903 {
3904 }
3905
3906 #endif
3907
3908 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3909
3910 /* i915_cmd_parser.c */
3911 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3912 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3913 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3914 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3915 struct drm_i915_gem_object *batch_obj,
3916 struct drm_i915_gem_object *shadow_batch_obj,
3917 u32 batch_start_offset,
3918 u32 batch_len,
3919 bool is_master);
3920
3921 /* i915_perf.c */
3922 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3923 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3924 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3925 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3926
3927 /* i915_suspend.c */
3928 extern int i915_save_state(struct drm_i915_private *dev_priv);
3929 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3930
3931 /* i915_sysfs.c */
3932 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3933 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3934
3935 /* intel_lpe_audio.c */
3936 int intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3937 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3938 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3939 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3940 enum pipe pipe, enum port port,
3941 const void *eld, int ls_clock, bool dp_output);
3942
3943 /* intel_i2c.c */
3944 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3945 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3946 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3947 unsigned int pin);
3948
3949 extern struct i2c_adapter *
3950 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3951 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3952 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3953 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3954 {
3955 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3956 }
3957 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3958
3959 /* intel_bios.c */
3960 void intel_bios_init(struct drm_i915_private *dev_priv);
3961 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3962 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3963 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3964 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3965 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3966 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3967 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3968 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3969 enum port port);
3970 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3971 enum port port);
3972
3973
3974 /* intel_opregion.c */
3975 #ifdef CONFIG_ACPI
3976 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3977 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3978 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3979 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3980 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3981 bool enable);
3982 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3983 pci_power_t state);
3984 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3985 #else
3986 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3987 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3988 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3989 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3990 {
3991 }
3992 static inline int
3993 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3994 {
3995 return 0;
3996 }
3997 static inline int
3998 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3999 {
4000 return 0;
4001 }
4002 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
4003 {
4004 return -ENODEV;
4005 }
4006 #endif
4007
4008 /* intel_acpi.c */
4009 #ifdef CONFIG_ACPI
4010 extern void intel_register_dsm_handler(void);
4011 extern void intel_unregister_dsm_handler(void);
4012 #else
4013 static inline void intel_register_dsm_handler(void) { return; }
4014 static inline void intel_unregister_dsm_handler(void) { return; }
4015 #endif /* CONFIG_ACPI */
4016
4017 /* intel_device_info.c */
4018 static inline struct intel_device_info *
4019 mkwrite_device_info(struct drm_i915_private *dev_priv)
4020 {
4021 return (struct intel_device_info *)&dev_priv->info;
4022 }
4023
4024 const char *intel_platform_name(enum intel_platform platform);
4025 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
4026 void intel_device_info_dump(struct drm_i915_private *dev_priv);
4027
4028 /* modesetting */
4029 extern void intel_modeset_init_hw(struct drm_device *dev);
4030 extern int intel_modeset_init(struct drm_device *dev);
4031 extern void intel_modeset_gem_init(struct drm_device *dev);
4032 extern void intel_modeset_cleanup(struct drm_device *dev);
4033 extern int intel_connector_register(struct drm_connector *);
4034 extern void intel_connector_unregister(struct drm_connector *);
4035 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
4036 bool state);
4037 extern void intel_display_resume(struct drm_device *dev);
4038 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
4039 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
4040 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
4041 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
4042 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
4043 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
4044 bool enable);
4045
4046 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
4047 struct drm_file *file);
4048
4049 /* overlay */
4050 extern struct intel_overlay_error_state *
4051 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
4052 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
4053 struct intel_overlay_error_state *error);
4054
4055 extern struct intel_display_error_state *
4056 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
4057 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
4058 struct intel_display_error_state *error);
4059
4060 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
4061 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
4062 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
4063 u32 reply_mask, u32 reply, int timeout_base_ms);
4064
4065 /* intel_sideband.c */
4066 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
4067 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
4068 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
4069 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
4070 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
4071 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
4072 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4073 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
4074 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4075 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
4076 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4077 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
4078 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
4079 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
4080 enum intel_sbi_destination destination);
4081 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
4082 enum intel_sbi_destination destination);
4083 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
4084 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4085
4086 /* intel_dpio_phy.c */
4087 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
4088 enum dpio_phy *phy, enum dpio_channel *ch);
4089 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
4090 enum port port, u32 margin, u32 scale,
4091 u32 enable, u32 deemphasis);
4092 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4093 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4094 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
4095 enum dpio_phy phy);
4096 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
4097 enum dpio_phy phy);
4098 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
4099 uint8_t lane_count);
4100 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
4101 uint8_t lane_lat_optim_mask);
4102 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
4103
4104 void chv_set_phy_signal_level(struct intel_encoder *encoder,
4105 u32 deemph_reg_value, u32 margin_reg_value,
4106 bool uniq_trans_scale);
4107 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
4108 bool reset);
4109 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
4110 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4111 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
4112 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
4113
4114 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
4115 u32 demph_reg_value, u32 preemph_reg_value,
4116 u32 uniqtranscale_reg_value, u32 tx3_demph);
4117 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
4118 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4119 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
4120
4121 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
4122 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
4123 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
4124 const i915_reg_t reg);
4125
4126 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
4127 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
4128
4129 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
4130 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
4131 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
4132 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
4133
4134 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
4135 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
4136 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
4137 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
4138
4139 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
4140 * will be implemented using 2 32-bit writes in an arbitrary order with
4141 * an arbitrary delay between them. This can cause the hardware to
4142 * act upon the intermediate value, possibly leading to corruption and
4143 * machine death. For this reason we do not support I915_WRITE64, or
4144 * dev_priv->uncore.funcs.mmio_writeq.
4145 *
4146 * When reading a 64-bit value as two 32-bit values, the delay may cause
4147 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
4148 * occasionally a 64-bit register does not actualy support a full readq
4149 * and must be read using two 32-bit reads.
4150 *
4151 * You have been warned.
4152 */
4153 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
4154
4155 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
4156 u32 upper, lower, old_upper, loop = 0; \
4157 upper = I915_READ(upper_reg); \
4158 do { \
4159 old_upper = upper; \
4160 lower = I915_READ(lower_reg); \
4161 upper = I915_READ(upper_reg); \
4162 } while (upper != old_upper && loop++ < 2); \
4163 (u64)upper << 32 | lower; })
4164
4165 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
4166 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
4167
4168 #define __raw_read(x, s) \
4169 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
4170 i915_reg_t reg) \
4171 { \
4172 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
4173 }
4174
4175 #define __raw_write(x, s) \
4176 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
4177 i915_reg_t reg, uint##x##_t val) \
4178 { \
4179 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
4180 }
4181 __raw_read(8, b)
4182 __raw_read(16, w)
4183 __raw_read(32, l)
4184 __raw_read(64, q)
4185
4186 __raw_write(8, b)
4187 __raw_write(16, w)
4188 __raw_write(32, l)
4189 __raw_write(64, q)
4190
4191 #undef __raw_read
4192 #undef __raw_write
4193
4194 /* These are untraced mmio-accessors that are only valid to be used inside
4195 * critical sections, such as inside IRQ handlers, where forcewake is explicitly
4196 * controlled.
4197 *
4198 * Think twice, and think again, before using these.
4199 *
4200 * As an example, these accessors can possibly be used between:
4201 *
4202 * spin_lock_irq(&dev_priv->uncore.lock);
4203 * intel_uncore_forcewake_get__locked();
4204 *
4205 * and
4206 *
4207 * intel_uncore_forcewake_put__locked();
4208 * spin_unlock_irq(&dev_priv->uncore.lock);
4209 *
4210 *
4211 * Note: some registers may not need forcewake held, so
4212 * intel_uncore_forcewake_{get,put} can be omitted, see
4213 * intel_uncore_forcewake_for_reg().
4214 *
4215 * Certain architectures will die if the same cacheline is concurrently accessed
4216 * by different clients (e.g. on Ivybridge). Access to registers should
4217 * therefore generally be serialised, by either the dev_priv->uncore.lock or
4218 * a more localised lock guarding all access to that bank of registers.
4219 */
4220 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
4221 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
4222 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
4223 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
4224
4225 /* "Broadcast RGB" property */
4226 #define INTEL_BROADCAST_RGB_AUTO 0
4227 #define INTEL_BROADCAST_RGB_FULL 1
4228 #define INTEL_BROADCAST_RGB_LIMITED 2
4229
4230 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
4231 {
4232 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4233 return VLV_VGACNTRL;
4234 else if (INTEL_GEN(dev_priv) >= 5)
4235 return CPU_VGACNTRL;
4236 else
4237 return VGACNTRL;
4238 }
4239
4240 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
4241 {
4242 unsigned long j = msecs_to_jiffies(m);
4243
4244 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4245 }
4246
4247 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
4248 {
4249 /* nsecs_to_jiffies64() does not guard against overflow */
4250 if (NSEC_PER_SEC % HZ &&
4251 div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
4252 return MAX_JIFFY_OFFSET;
4253
4254 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
4255 }
4256
4257 static inline unsigned long
4258 timespec_to_jiffies_timeout(const struct timespec *value)
4259 {
4260 unsigned long j = timespec_to_jiffies(value);
4261
4262 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4263 }
4264
4265 /*
4266 * If you need to wait X milliseconds between events A and B, but event B
4267 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
4268 * when event A happened, then just before event B you call this function and
4269 * pass the timestamp as the first argument, and X as the second argument.
4270 */
4271 static inline void
4272 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
4273 {
4274 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
4275
4276 /*
4277 * Don't re-read the value of "jiffies" every time since it may change
4278 * behind our back and break the math.
4279 */
4280 tmp_jiffies = jiffies;
4281 target_jiffies = timestamp_jiffies +
4282 msecs_to_jiffies_timeout(to_wait_ms);
4283
4284 if (time_after(target_jiffies, tmp_jiffies)) {
4285 remaining_jiffies = target_jiffies - tmp_jiffies;
4286 while (remaining_jiffies)
4287 remaining_jiffies =
4288 schedule_timeout_uninterruptible(remaining_jiffies);
4289 }
4290 }
4291
4292 static inline bool
4293 __i915_request_irq_complete(const struct drm_i915_gem_request *req)
4294 {
4295 struct intel_engine_cs *engine = req->engine;
4296 u32 seqno;
4297
4298 /* Note that the engine may have wrapped around the seqno, and
4299 * so our request->global_seqno will be ahead of the hardware,
4300 * even though it completed the request before wrapping. We catch
4301 * this by kicking all the waiters before resetting the seqno
4302 * in hardware, and also signal the fence.
4303 */
4304 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &req->fence.flags))
4305 return true;
4306
4307 /* The request was dequeued before we were awoken. We check after
4308 * inspecting the hw to confirm that this was the same request
4309 * that generated the HWS update. The memory barriers within
4310 * the request execution are sufficient to ensure that a check
4311 * after reading the value from hw matches this request.
4312 */
4313 seqno = i915_gem_request_global_seqno(req);
4314 if (!seqno)
4315 return false;
4316
4317 /* Before we do the heavier coherent read of the seqno,
4318 * check the value (hopefully) in the CPU cacheline.
4319 */
4320 if (__i915_gem_request_completed(req, seqno))
4321 return true;
4322
4323 /* Ensure our read of the seqno is coherent so that we
4324 * do not "miss an interrupt" (i.e. if this is the last
4325 * request and the seqno write from the GPU is not visible
4326 * by the time the interrupt fires, we will see that the
4327 * request is incomplete and go back to sleep awaiting
4328 * another interrupt that will never come.)
4329 *
4330 * Strictly, we only need to do this once after an interrupt,
4331 * but it is easier and safer to do it every time the waiter
4332 * is woken.
4333 */
4334 if (engine->irq_seqno_barrier &&
4335 test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
4336 struct intel_breadcrumbs *b = &engine->breadcrumbs;
4337
4338 /* The ordering of irq_posted versus applying the barrier
4339 * is crucial. The clearing of the current irq_posted must
4340 * be visible before we perform the barrier operation,
4341 * such that if a subsequent interrupt arrives, irq_posted
4342 * is reasserted and our task rewoken (which causes us to
4343 * do another __i915_request_irq_complete() immediately
4344 * and reapply the barrier). Conversely, if the clear
4345 * occurs after the barrier, then an interrupt that arrived
4346 * whilst we waited on the barrier would not trigger a
4347 * barrier on the next pass, and the read may not see the
4348 * seqno update.
4349 */
4350 engine->irq_seqno_barrier(engine);
4351
4352 /* If we consume the irq, but we are no longer the bottom-half,
4353 * the real bottom-half may not have serialised their own
4354 * seqno check with the irq-barrier (i.e. may have inspected
4355 * the seqno before we believe it coherent since they see
4356 * irq_posted == false but we are still running).
4357 */
4358 spin_lock_irq(&b->irq_lock);
4359 if (b->irq_wait && b->irq_wait->tsk != current)
4360 /* Note that if the bottom-half is changed as we
4361 * are sending the wake-up, the new bottom-half will
4362 * be woken by whomever made the change. We only have
4363 * to worry about when we steal the irq-posted for
4364 * ourself.
4365 */
4366 wake_up_process(b->irq_wait->tsk);
4367 spin_unlock_irq(&b->irq_lock);
4368
4369 if (__i915_gem_request_completed(req, seqno))
4370 return true;
4371 }
4372
4373 return false;
4374 }
4375
4376 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
4377 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
4378
4379 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
4380 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
4381 * perform the operation. To check beforehand, pass in the parameters to
4382 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
4383 * you only need to pass in the minor offsets, page-aligned pointers are
4384 * always valid.
4385 *
4386 * For just checking for SSE4.1, in the foreknowledge that the future use
4387 * will be correctly aligned, just use i915_has_memcpy_from_wc().
4388 */
4389 #define i915_can_memcpy_from_wc(dst, src, len) \
4390 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
4391
4392 #define i915_has_memcpy_from_wc() \
4393 i915_memcpy_from_wc(NULL, NULL, 0)
4394
4395 /* i915_mm.c */
4396 int remap_io_mapping(struct vm_area_struct *vma,
4397 unsigned long addr, unsigned long pfn, unsigned long size,
4398 struct io_mapping *iomap);
4399
4400 #endif