]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.h
559fdc7bb39334321f5e430ca19ccd688d6734be
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/reservation.h>
45 #include <linux/shmem_fs.h>
46
47 #include <drm/drmP.h>
48 #include <drm/intel-gtt.h>
49 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
50 #include <drm/drm_gem.h>
51 #include <drm/drm_auth.h>
52 #include <drm/drm_cache.h>
53
54 #include "i915_params.h"
55 #include "i915_reg.h"
56 #include "i915_utils.h"
57
58 #include "intel_uncore.h"
59 #include "intel_bios.h"
60 #include "intel_dpll_mgr.h"
61 #include "intel_uc.h"
62 #include "intel_lrc.h"
63 #include "intel_ringbuffer.h"
64
65 #include "i915_gem.h"
66 #include "i915_gem_context.h"
67 #include "i915_gem_fence_reg.h"
68 #include "i915_gem_object.h"
69 #include "i915_gem_gtt.h"
70 #include "i915_gem_render_state.h"
71 #include "i915_gem_request.h"
72 #include "i915_gem_timeline.h"
73
74 #include "i915_vma.h"
75
76 #include "intel_gvt.h"
77
78 /* General customization:
79 */
80
81 #define DRIVER_NAME "i915"
82 #define DRIVER_DESC "Intel Graphics"
83 #define DRIVER_DATE "20170717"
84 #define DRIVER_TIMESTAMP 1500275179
85
86 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
87 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
88 * which may not necessarily be a user visible problem. This will either
89 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
90 * enable distros and users to tailor their preferred amount of i915 abrt
91 * spam.
92 */
93 #define I915_STATE_WARN(condition, format...) ({ \
94 int __ret_warn_on = !!(condition); \
95 if (unlikely(__ret_warn_on)) \
96 if (!WARN(i915.verbose_state_checks, format)) \
97 DRM_ERROR(format); \
98 unlikely(__ret_warn_on); \
99 })
100
101 #define I915_STATE_WARN_ON(x) \
102 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
103
104 bool __i915_inject_load_failure(const char *func, int line);
105 #define i915_inject_load_failure() \
106 __i915_inject_load_failure(__func__, __LINE__)
107
108 typedef struct {
109 uint32_t val;
110 } uint_fixed_16_16_t;
111
112 #define FP_16_16_MAX ({ \
113 uint_fixed_16_16_t fp; \
114 fp.val = UINT_MAX; \
115 fp; \
116 })
117
118 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
119 {
120 if (val.val == 0)
121 return true;
122 return false;
123 }
124
125 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val)
126 {
127 uint_fixed_16_16_t fp;
128
129 WARN_ON(val >> 16);
130
131 fp.val = val << 16;
132 return fp;
133 }
134
135 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp)
136 {
137 return DIV_ROUND_UP(fp.val, 1 << 16);
138 }
139
140 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp)
141 {
142 return fp.val >> 16;
143 }
144
145 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1,
146 uint_fixed_16_16_t min2)
147 {
148 uint_fixed_16_16_t min;
149
150 min.val = min(min1.val, min2.val);
151 return min;
152 }
153
154 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1,
155 uint_fixed_16_16_t max2)
156 {
157 uint_fixed_16_16_t max;
158
159 max.val = max(max1.val, max2.val);
160 return max;
161 }
162
163 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val)
164 {
165 uint_fixed_16_16_t fp;
166 WARN_ON(val >> 32);
167 fp.val = clamp_t(uint32_t, val, 0, ~0);
168 return fp;
169 }
170
171 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
172 uint_fixed_16_16_t d)
173 {
174 return DIV_ROUND_UP(val.val, d.val);
175 }
176
177 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
178 uint_fixed_16_16_t mul)
179 {
180 uint64_t intermediate_val;
181
182 intermediate_val = (uint64_t) val * mul.val;
183 intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
184 WARN_ON(intermediate_val >> 32);
185 return clamp_t(uint32_t, intermediate_val, 0, ~0);
186 }
187
188 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
189 uint_fixed_16_16_t mul)
190 {
191 uint64_t intermediate_val;
192
193 intermediate_val = (uint64_t) val.val * mul.val;
194 intermediate_val = intermediate_val >> 16;
195 return clamp_u64_to_fixed16(intermediate_val);
196 }
197
198 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d)
199 {
200 uint64_t interm_val;
201
202 interm_val = (uint64_t)val << 16;
203 interm_val = DIV_ROUND_UP_ULL(interm_val, d);
204 return clamp_u64_to_fixed16(interm_val);
205 }
206
207 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
208 uint_fixed_16_16_t d)
209 {
210 uint64_t interm_val;
211
212 interm_val = (uint64_t)val << 16;
213 interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
214 WARN_ON(interm_val >> 32);
215 return clamp_t(uint32_t, interm_val, 0, ~0);
216 }
217
218 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val,
219 uint_fixed_16_16_t mul)
220 {
221 uint64_t intermediate_val;
222
223 intermediate_val = (uint64_t) val * mul.val;
224 return clamp_u64_to_fixed16(intermediate_val);
225 }
226
227 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1,
228 uint_fixed_16_16_t add2)
229 {
230 uint64_t interm_sum;
231
232 interm_sum = (uint64_t) add1.val + add2.val;
233 return clamp_u64_to_fixed16(interm_sum);
234 }
235
236 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1,
237 uint32_t add2)
238 {
239 uint64_t interm_sum;
240 uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2);
241
242 interm_sum = (uint64_t) add1.val + interm_add2.val;
243 return clamp_u64_to_fixed16(interm_sum);
244 }
245
246 static inline const char *yesno(bool v)
247 {
248 return v ? "yes" : "no";
249 }
250
251 static inline const char *onoff(bool v)
252 {
253 return v ? "on" : "off";
254 }
255
256 static inline const char *enableddisabled(bool v)
257 {
258 return v ? "enabled" : "disabled";
259 }
260
261 enum pipe {
262 INVALID_PIPE = -1,
263 PIPE_A = 0,
264 PIPE_B,
265 PIPE_C,
266 _PIPE_EDP,
267 I915_MAX_PIPES = _PIPE_EDP
268 };
269 #define pipe_name(p) ((p) + 'A')
270
271 enum transcoder {
272 TRANSCODER_A = 0,
273 TRANSCODER_B,
274 TRANSCODER_C,
275 TRANSCODER_EDP,
276 TRANSCODER_DSI_A,
277 TRANSCODER_DSI_C,
278 I915_MAX_TRANSCODERS
279 };
280
281 static inline const char *transcoder_name(enum transcoder transcoder)
282 {
283 switch (transcoder) {
284 case TRANSCODER_A:
285 return "A";
286 case TRANSCODER_B:
287 return "B";
288 case TRANSCODER_C:
289 return "C";
290 case TRANSCODER_EDP:
291 return "EDP";
292 case TRANSCODER_DSI_A:
293 return "DSI A";
294 case TRANSCODER_DSI_C:
295 return "DSI C";
296 default:
297 return "<invalid>";
298 }
299 }
300
301 static inline bool transcoder_is_dsi(enum transcoder transcoder)
302 {
303 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
304 }
305
306 /*
307 * Global legacy plane identifier. Valid only for primary/sprite
308 * planes on pre-g4x, and only for primary planes on g4x+.
309 */
310 enum plane {
311 PLANE_A,
312 PLANE_B,
313 PLANE_C,
314 };
315 #define plane_name(p) ((p) + 'A')
316
317 #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A')
318
319 /*
320 * Per-pipe plane identifier.
321 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
322 * number of planes per CRTC. Not all platforms really have this many planes,
323 * which means some arrays of size I915_MAX_PLANES may have unused entries
324 * between the topmost sprite plane and the cursor plane.
325 *
326 * This is expected to be passed to various register macros
327 * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care.
328 */
329 enum plane_id {
330 PLANE_PRIMARY,
331 PLANE_SPRITE0,
332 PLANE_SPRITE1,
333 PLANE_SPRITE2,
334 PLANE_CURSOR,
335 I915_MAX_PLANES,
336 };
337
338 #define for_each_plane_id_on_crtc(__crtc, __p) \
339 for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \
340 for_each_if ((__crtc)->plane_ids_mask & BIT(__p))
341
342 enum port {
343 PORT_NONE = -1,
344 PORT_A = 0,
345 PORT_B,
346 PORT_C,
347 PORT_D,
348 PORT_E,
349 I915_MAX_PORTS
350 };
351 #define port_name(p) ((p) + 'A')
352
353 #define I915_NUM_PHYS_VLV 2
354
355 enum dpio_channel {
356 DPIO_CH0,
357 DPIO_CH1
358 };
359
360 enum dpio_phy {
361 DPIO_PHY0,
362 DPIO_PHY1,
363 DPIO_PHY2,
364 };
365
366 enum intel_display_power_domain {
367 POWER_DOMAIN_PIPE_A,
368 POWER_DOMAIN_PIPE_B,
369 POWER_DOMAIN_PIPE_C,
370 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
371 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
372 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
373 POWER_DOMAIN_TRANSCODER_A,
374 POWER_DOMAIN_TRANSCODER_B,
375 POWER_DOMAIN_TRANSCODER_C,
376 POWER_DOMAIN_TRANSCODER_EDP,
377 POWER_DOMAIN_TRANSCODER_DSI_A,
378 POWER_DOMAIN_TRANSCODER_DSI_C,
379 POWER_DOMAIN_PORT_DDI_A_LANES,
380 POWER_DOMAIN_PORT_DDI_B_LANES,
381 POWER_DOMAIN_PORT_DDI_C_LANES,
382 POWER_DOMAIN_PORT_DDI_D_LANES,
383 POWER_DOMAIN_PORT_DDI_E_LANES,
384 POWER_DOMAIN_PORT_DDI_A_IO,
385 POWER_DOMAIN_PORT_DDI_B_IO,
386 POWER_DOMAIN_PORT_DDI_C_IO,
387 POWER_DOMAIN_PORT_DDI_D_IO,
388 POWER_DOMAIN_PORT_DDI_E_IO,
389 POWER_DOMAIN_PORT_DSI,
390 POWER_DOMAIN_PORT_CRT,
391 POWER_DOMAIN_PORT_OTHER,
392 POWER_DOMAIN_VGA,
393 POWER_DOMAIN_AUDIO,
394 POWER_DOMAIN_PLLS,
395 POWER_DOMAIN_AUX_A,
396 POWER_DOMAIN_AUX_B,
397 POWER_DOMAIN_AUX_C,
398 POWER_DOMAIN_AUX_D,
399 POWER_DOMAIN_GMBUS,
400 POWER_DOMAIN_MODESET,
401 POWER_DOMAIN_INIT,
402
403 POWER_DOMAIN_NUM,
404 };
405
406 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
407 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
408 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
409 #define POWER_DOMAIN_TRANSCODER(tran) \
410 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
411 (tran) + POWER_DOMAIN_TRANSCODER_A)
412
413 enum hpd_pin {
414 HPD_NONE = 0,
415 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
416 HPD_CRT,
417 HPD_SDVO_B,
418 HPD_SDVO_C,
419 HPD_PORT_A,
420 HPD_PORT_B,
421 HPD_PORT_C,
422 HPD_PORT_D,
423 HPD_PORT_E,
424 HPD_NUM_PINS
425 };
426
427 #define for_each_hpd_pin(__pin) \
428 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
429
430 #define HPD_STORM_DEFAULT_THRESHOLD 5
431
432 struct i915_hotplug {
433 struct work_struct hotplug_work;
434
435 struct {
436 unsigned long last_jiffies;
437 int count;
438 enum {
439 HPD_ENABLED = 0,
440 HPD_DISABLED = 1,
441 HPD_MARK_DISABLED = 2
442 } state;
443 } stats[HPD_NUM_PINS];
444 u32 event_bits;
445 struct delayed_work reenable_work;
446
447 struct intel_digital_port *irq_port[I915_MAX_PORTS];
448 u32 long_port_mask;
449 u32 short_port_mask;
450 struct work_struct dig_port_work;
451
452 struct work_struct poll_init_work;
453 bool poll_enabled;
454
455 unsigned int hpd_storm_threshold;
456
457 /*
458 * if we get a HPD irq from DP and a HPD irq from non-DP
459 * the non-DP HPD could block the workqueue on a mode config
460 * mutex getting, that userspace may have taken. However
461 * userspace is waiting on the DP workqueue to run which is
462 * blocked behind the non-DP one.
463 */
464 struct workqueue_struct *dp_wq;
465 };
466
467 #define I915_GEM_GPU_DOMAINS \
468 (I915_GEM_DOMAIN_RENDER | \
469 I915_GEM_DOMAIN_SAMPLER | \
470 I915_GEM_DOMAIN_COMMAND | \
471 I915_GEM_DOMAIN_INSTRUCTION | \
472 I915_GEM_DOMAIN_VERTEX)
473
474 #define for_each_pipe(__dev_priv, __p) \
475 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
476 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
477 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
478 for_each_if ((__mask) & (1 << (__p)))
479 #define for_each_universal_plane(__dev_priv, __pipe, __p) \
480 for ((__p) = 0; \
481 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
482 (__p)++)
483 #define for_each_sprite(__dev_priv, __p, __s) \
484 for ((__s) = 0; \
485 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
486 (__s)++)
487
488 #define for_each_port_masked(__port, __ports_mask) \
489 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
490 for_each_if ((__ports_mask) & (1 << (__port)))
491
492 #define for_each_crtc(dev, crtc) \
493 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
494
495 #define for_each_intel_plane(dev, intel_plane) \
496 list_for_each_entry(intel_plane, \
497 &(dev)->mode_config.plane_list, \
498 base.head)
499
500 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \
501 list_for_each_entry(intel_plane, \
502 &(dev)->mode_config.plane_list, \
503 base.head) \
504 for_each_if ((plane_mask) & \
505 (1 << drm_plane_index(&intel_plane->base)))
506
507 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
508 list_for_each_entry(intel_plane, \
509 &(dev)->mode_config.plane_list, \
510 base.head) \
511 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
512
513 #define for_each_intel_crtc(dev, intel_crtc) \
514 list_for_each_entry(intel_crtc, \
515 &(dev)->mode_config.crtc_list, \
516 base.head)
517
518 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \
519 list_for_each_entry(intel_crtc, \
520 &(dev)->mode_config.crtc_list, \
521 base.head) \
522 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
523
524 #define for_each_intel_encoder(dev, intel_encoder) \
525 list_for_each_entry(intel_encoder, \
526 &(dev)->mode_config.encoder_list, \
527 base.head)
528
529 #define for_each_intel_connector_iter(intel_connector, iter) \
530 while ((intel_connector = to_intel_connector(drm_connector_list_iter_next(iter))))
531
532 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
533 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
534 for_each_if ((intel_encoder)->base.crtc == (__crtc))
535
536 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
537 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
538 for_each_if ((intel_connector)->base.encoder == (__encoder))
539
540 #define for_each_power_domain(domain, mask) \
541 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
542 for_each_if (BIT_ULL(domain) & (mask))
543
544 #define for_each_power_well(__dev_priv, __power_well) \
545 for ((__power_well) = (__dev_priv)->power_domains.power_wells; \
546 (__power_well) - (__dev_priv)->power_domains.power_wells < \
547 (__dev_priv)->power_domains.power_well_count; \
548 (__power_well)++)
549
550 #define for_each_power_well_rev(__dev_priv, __power_well) \
551 for ((__power_well) = (__dev_priv)->power_domains.power_wells + \
552 (__dev_priv)->power_domains.power_well_count - 1; \
553 (__power_well) - (__dev_priv)->power_domains.power_wells >= 0; \
554 (__power_well)--)
555
556 #define for_each_power_domain_well(__dev_priv, __power_well, __domain_mask) \
557 for_each_power_well(__dev_priv, __power_well) \
558 for_each_if ((__power_well)->domains & (__domain_mask))
559
560 #define for_each_power_domain_well_rev(__dev_priv, __power_well, __domain_mask) \
561 for_each_power_well_rev(__dev_priv, __power_well) \
562 for_each_if ((__power_well)->domains & (__domain_mask))
563
564 #define for_each_intel_plane_in_state(__state, plane, plane_state, __i) \
565 for ((__i) = 0; \
566 (__i) < (__state)->base.dev->mode_config.num_total_plane && \
567 ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
568 (plane_state) = to_intel_plane_state((__state)->base.planes[__i].state), 1); \
569 (__i)++) \
570 for_each_if (plane_state)
571
572 struct drm_i915_private;
573 struct i915_mm_struct;
574 struct i915_mmu_object;
575
576 struct drm_i915_file_private {
577 struct drm_i915_private *dev_priv;
578 struct drm_file *file;
579
580 struct {
581 spinlock_t lock;
582 struct list_head request_list;
583 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
584 * chosen to prevent the CPU getting more than a frame ahead of the GPU
585 * (when using lax throttling for the frontbuffer). We also use it to
586 * offer free GPU waitboosts for severely congested workloads.
587 */
588 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
589 } mm;
590 struct idr context_idr;
591
592 struct intel_rps_client {
593 atomic_t boosts;
594 } rps;
595
596 unsigned int bsd_engine;
597
598 /* Client can have a maximum of 3 contexts banned before
599 * it is denied of creating new contexts. As one context
600 * ban needs 4 consecutive hangs, and more if there is
601 * progress in between, this is a last resort stop gap measure
602 * to limit the badly behaving clients access to gpu.
603 */
604 #define I915_MAX_CLIENT_CONTEXT_BANS 3
605 int context_bans;
606 };
607
608 /* Used by dp and fdi links */
609 struct intel_link_m_n {
610 uint32_t tu;
611 uint32_t gmch_m;
612 uint32_t gmch_n;
613 uint32_t link_m;
614 uint32_t link_n;
615 };
616
617 void intel_link_compute_m_n(int bpp, int nlanes,
618 int pixel_clock, int link_clock,
619 struct intel_link_m_n *m_n,
620 bool reduce_m_n);
621
622 /* Interface history:
623 *
624 * 1.1: Original.
625 * 1.2: Add Power Management
626 * 1.3: Add vblank support
627 * 1.4: Fix cmdbuffer path, add heap destroy
628 * 1.5: Add vblank pipe configuration
629 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
630 * - Support vertical blank on secondary display pipe
631 */
632 #define DRIVER_MAJOR 1
633 #define DRIVER_MINOR 6
634 #define DRIVER_PATCHLEVEL 0
635
636 struct opregion_header;
637 struct opregion_acpi;
638 struct opregion_swsci;
639 struct opregion_asle;
640
641 struct intel_opregion {
642 struct opregion_header *header;
643 struct opregion_acpi *acpi;
644 struct opregion_swsci *swsci;
645 u32 swsci_gbda_sub_functions;
646 u32 swsci_sbcb_sub_functions;
647 struct opregion_asle *asle;
648 void *rvda;
649 const void *vbt;
650 u32 vbt_size;
651 u32 *lid_state;
652 struct work_struct asle_work;
653 };
654 #define OPREGION_SIZE (8*1024)
655
656 struct intel_overlay;
657 struct intel_overlay_error_state;
658
659 struct sdvo_device_mapping {
660 u8 initialized;
661 u8 dvo_port;
662 u8 slave_addr;
663 u8 dvo_wiring;
664 u8 i2c_pin;
665 u8 ddc_pin;
666 };
667
668 struct intel_connector;
669 struct intel_encoder;
670 struct intel_atomic_state;
671 struct intel_crtc_state;
672 struct intel_initial_plane_config;
673 struct intel_crtc;
674 struct intel_limit;
675 struct dpll;
676 struct intel_cdclk_state;
677
678 struct drm_i915_display_funcs {
679 void (*get_cdclk)(struct drm_i915_private *dev_priv,
680 struct intel_cdclk_state *cdclk_state);
681 void (*set_cdclk)(struct drm_i915_private *dev_priv,
682 const struct intel_cdclk_state *cdclk_state);
683 int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane);
684 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
685 int (*compute_intermediate_wm)(struct drm_device *dev,
686 struct intel_crtc *intel_crtc,
687 struct intel_crtc_state *newstate);
688 void (*initial_watermarks)(struct intel_atomic_state *state,
689 struct intel_crtc_state *cstate);
690 void (*atomic_update_watermarks)(struct intel_atomic_state *state,
691 struct intel_crtc_state *cstate);
692 void (*optimize_watermarks)(struct intel_atomic_state *state,
693 struct intel_crtc_state *cstate);
694 int (*compute_global_watermarks)(struct drm_atomic_state *state);
695 void (*update_wm)(struct intel_crtc *crtc);
696 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
697 /* Returns the active state of the crtc, and if the crtc is active,
698 * fills out the pipe-config with the hw state. */
699 bool (*get_pipe_config)(struct intel_crtc *,
700 struct intel_crtc_state *);
701 void (*get_initial_plane_config)(struct intel_crtc *,
702 struct intel_initial_plane_config *);
703 int (*crtc_compute_clock)(struct intel_crtc *crtc,
704 struct intel_crtc_state *crtc_state);
705 void (*crtc_enable)(struct intel_crtc_state *pipe_config,
706 struct drm_atomic_state *old_state);
707 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
708 struct drm_atomic_state *old_state);
709 void (*update_crtcs)(struct drm_atomic_state *state,
710 unsigned int *crtc_vblank_mask);
711 void (*audio_codec_enable)(struct drm_connector *connector,
712 struct intel_encoder *encoder,
713 const struct drm_display_mode *adjusted_mode);
714 void (*audio_codec_disable)(struct intel_encoder *encoder);
715 void (*fdi_link_train)(struct intel_crtc *crtc,
716 const struct intel_crtc_state *crtc_state);
717 void (*init_clock_gating)(struct drm_i915_private *dev_priv);
718 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc,
719 struct drm_framebuffer *fb,
720 struct drm_i915_gem_object *obj,
721 struct drm_i915_gem_request *req,
722 uint32_t flags);
723 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
724 /* clock updates for mode set */
725 /* cursor updates */
726 /* render clock increase/decrease */
727 /* display clock increase/decrease */
728 /* pll clock increase/decrease */
729
730 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
731 void (*load_luts)(struct drm_crtc_state *crtc_state);
732 };
733
734 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
735 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
736 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
737
738 struct intel_csr {
739 struct work_struct work;
740 const char *fw_path;
741 uint32_t *dmc_payload;
742 uint32_t dmc_fw_size;
743 uint32_t version;
744 uint32_t mmio_count;
745 i915_reg_t mmioaddr[8];
746 uint32_t mmiodata[8];
747 uint32_t dc_state;
748 uint32_t allowed_dc_mask;
749 };
750
751 #define DEV_INFO_FOR_EACH_FLAG(func) \
752 func(is_mobile); \
753 func(is_lp); \
754 func(is_alpha_support); \
755 /* Keep has_* in alphabetical order */ \
756 func(has_64bit_reloc); \
757 func(has_aliasing_ppgtt); \
758 func(has_csr); \
759 func(has_ddi); \
760 func(has_dp_mst); \
761 func(has_reset_engine); \
762 func(has_fbc); \
763 func(has_fpga_dbg); \
764 func(has_full_ppgtt); \
765 func(has_full_48bit_ppgtt); \
766 func(has_gmbus_irq); \
767 func(has_gmch_display); \
768 func(has_guc); \
769 func(has_guc_ct); \
770 func(has_hotplug); \
771 func(has_l3_dpf); \
772 func(has_llc); \
773 func(has_logical_ring_contexts); \
774 func(has_overlay); \
775 func(has_pipe_cxsr); \
776 func(has_pooled_eu); \
777 func(has_psr); \
778 func(has_rc6); \
779 func(has_rc6p); \
780 func(has_resource_streamer); \
781 func(has_runtime_pm); \
782 func(has_snoop); \
783 func(unfenced_needs_alignment); \
784 func(cursor_needs_physical); \
785 func(hws_needs_physical); \
786 func(overlay_needs_physical); \
787 func(supports_tv);
788
789 struct sseu_dev_info {
790 u8 slice_mask;
791 u8 subslice_mask;
792 u8 eu_total;
793 u8 eu_per_subslice;
794 u8 min_eu_in_pool;
795 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
796 u8 subslice_7eu[3];
797 u8 has_slice_pg:1;
798 u8 has_subslice_pg:1;
799 u8 has_eu_pg:1;
800 };
801
802 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu)
803 {
804 return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask);
805 }
806
807 /* Keep in gen based order, and chronological order within a gen */
808 enum intel_platform {
809 INTEL_PLATFORM_UNINITIALIZED = 0,
810 INTEL_I830,
811 INTEL_I845G,
812 INTEL_I85X,
813 INTEL_I865G,
814 INTEL_I915G,
815 INTEL_I915GM,
816 INTEL_I945G,
817 INTEL_I945GM,
818 INTEL_G33,
819 INTEL_PINEVIEW,
820 INTEL_I965G,
821 INTEL_I965GM,
822 INTEL_G45,
823 INTEL_GM45,
824 INTEL_IRONLAKE,
825 INTEL_SANDYBRIDGE,
826 INTEL_IVYBRIDGE,
827 INTEL_VALLEYVIEW,
828 INTEL_HASWELL,
829 INTEL_BROADWELL,
830 INTEL_CHERRYVIEW,
831 INTEL_SKYLAKE,
832 INTEL_BROXTON,
833 INTEL_KABYLAKE,
834 INTEL_GEMINILAKE,
835 INTEL_COFFEELAKE,
836 INTEL_CANNONLAKE,
837 INTEL_MAX_PLATFORMS
838 };
839
840 struct intel_device_info {
841 u32 display_mmio_offset;
842 u16 device_id;
843 u8 num_pipes;
844 u8 num_sprites[I915_MAX_PIPES];
845 u8 num_scalers[I915_MAX_PIPES];
846 u8 gen;
847 u16 gen_mask;
848 enum intel_platform platform;
849 u8 ring_mask; /* Rings supported by the HW */
850 u8 num_rings;
851 #define DEFINE_FLAG(name) u8 name:1
852 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG);
853 #undef DEFINE_FLAG
854 u16 ddb_size; /* in blocks */
855 /* Register offsets for the various display pipes and transcoders */
856 int pipe_offsets[I915_MAX_TRANSCODERS];
857 int trans_offsets[I915_MAX_TRANSCODERS];
858 int palette_offsets[I915_MAX_PIPES];
859 int cursor_offsets[I915_MAX_PIPES];
860
861 /* Slice/subslice/EU info */
862 struct sseu_dev_info sseu;
863
864 struct color_luts {
865 u16 degamma_lut_size;
866 u16 gamma_lut_size;
867 } color;
868 };
869
870 struct intel_display_error_state;
871
872 struct i915_gpu_state {
873 struct kref ref;
874 struct timeval time;
875 struct timeval boottime;
876 struct timeval uptime;
877
878 struct drm_i915_private *i915;
879
880 char error_msg[128];
881 bool simulated;
882 bool awake;
883 bool wakelock;
884 bool suspended;
885 int iommu;
886 u32 reset_count;
887 u32 suspend_count;
888 struct intel_device_info device_info;
889 struct i915_params params;
890
891 /* Generic register state */
892 u32 eir;
893 u32 pgtbl_er;
894 u32 ier;
895 u32 gtier[4], ngtier;
896 u32 ccid;
897 u32 derrmr;
898 u32 forcewake;
899 u32 error; /* gen6+ */
900 u32 err_int; /* gen7 */
901 u32 fault_data0; /* gen8, gen9 */
902 u32 fault_data1; /* gen8, gen9 */
903 u32 done_reg;
904 u32 gac_eco;
905 u32 gam_ecochk;
906 u32 gab_ctl;
907 u32 gfx_mode;
908
909 u32 nfence;
910 u64 fence[I915_MAX_NUM_FENCES];
911 struct intel_overlay_error_state *overlay;
912 struct intel_display_error_state *display;
913 struct drm_i915_error_object *semaphore;
914 struct drm_i915_error_object *guc_log;
915
916 struct drm_i915_error_engine {
917 int engine_id;
918 /* Software tracked state */
919 bool waiting;
920 int num_waiters;
921 unsigned long hangcheck_timestamp;
922 bool hangcheck_stalled;
923 enum intel_engine_hangcheck_action hangcheck_action;
924 struct i915_address_space *vm;
925 int num_requests;
926 u32 reset_count;
927
928 /* position of active request inside the ring */
929 u32 rq_head, rq_post, rq_tail;
930
931 /* our own tracking of ring head and tail */
932 u32 cpu_ring_head;
933 u32 cpu_ring_tail;
934
935 u32 last_seqno;
936
937 /* Register state */
938 u32 start;
939 u32 tail;
940 u32 head;
941 u32 ctl;
942 u32 mode;
943 u32 hws;
944 u32 ipeir;
945 u32 ipehr;
946 u32 bbstate;
947 u32 instpm;
948 u32 instps;
949 u32 seqno;
950 u64 bbaddr;
951 u64 acthd;
952 u32 fault_reg;
953 u64 faddr;
954 u32 rc_psmi; /* sleep state */
955 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
956 struct intel_instdone instdone;
957
958 struct drm_i915_error_context {
959 char comm[TASK_COMM_LEN];
960 pid_t pid;
961 u32 handle;
962 u32 hw_id;
963 int ban_score;
964 int active;
965 int guilty;
966 } context;
967
968 struct drm_i915_error_object {
969 u64 gtt_offset;
970 u64 gtt_size;
971 int page_count;
972 int unused;
973 u32 *pages[0];
974 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
975
976 struct drm_i915_error_object **user_bo;
977 long user_bo_count;
978
979 struct drm_i915_error_object *wa_ctx;
980
981 struct drm_i915_error_request {
982 long jiffies;
983 pid_t pid;
984 u32 context;
985 int ban_score;
986 u32 seqno;
987 u32 head;
988 u32 tail;
989 } *requests, execlist[2];
990
991 struct drm_i915_error_waiter {
992 char comm[TASK_COMM_LEN];
993 pid_t pid;
994 u32 seqno;
995 } *waiters;
996
997 struct {
998 u32 gfx_mode;
999 union {
1000 u64 pdp[4];
1001 u32 pp_dir_base;
1002 };
1003 } vm_info;
1004 } engine[I915_NUM_ENGINES];
1005
1006 struct drm_i915_error_buffer {
1007 u32 size;
1008 u32 name;
1009 u32 rseqno[I915_NUM_ENGINES], wseqno;
1010 u64 gtt_offset;
1011 u32 read_domains;
1012 u32 write_domain;
1013 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
1014 u32 tiling:2;
1015 u32 dirty:1;
1016 u32 purgeable:1;
1017 u32 userptr:1;
1018 s32 engine:4;
1019 u32 cache_level:3;
1020 } *active_bo[I915_NUM_ENGINES], *pinned_bo;
1021 u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
1022 struct i915_address_space *active_vm[I915_NUM_ENGINES];
1023 };
1024
1025 enum i915_cache_level {
1026 I915_CACHE_NONE = 0,
1027 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
1028 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
1029 caches, eg sampler/render caches, and the
1030 large Last-Level-Cache. LLC is coherent with
1031 the CPU, but L3 is only visible to the GPU. */
1032 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
1033 };
1034
1035 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
1036
1037 enum fb_op_origin {
1038 ORIGIN_GTT,
1039 ORIGIN_CPU,
1040 ORIGIN_CS,
1041 ORIGIN_FLIP,
1042 ORIGIN_DIRTYFB,
1043 };
1044
1045 struct intel_fbc {
1046 /* This is always the inner lock when overlapping with struct_mutex and
1047 * it's the outer lock when overlapping with stolen_lock. */
1048 struct mutex lock;
1049 unsigned threshold;
1050 unsigned int possible_framebuffer_bits;
1051 unsigned int busy_bits;
1052 unsigned int visible_pipes_mask;
1053 struct intel_crtc *crtc;
1054
1055 struct drm_mm_node compressed_fb;
1056 struct drm_mm_node *compressed_llb;
1057
1058 bool false_color;
1059
1060 bool enabled;
1061 bool active;
1062
1063 bool underrun_detected;
1064 struct work_struct underrun_work;
1065
1066 struct intel_fbc_state_cache {
1067 struct i915_vma *vma;
1068
1069 struct {
1070 unsigned int mode_flags;
1071 uint32_t hsw_bdw_pixel_rate;
1072 } crtc;
1073
1074 struct {
1075 unsigned int rotation;
1076 int src_w;
1077 int src_h;
1078 bool visible;
1079 } plane;
1080
1081 struct {
1082 const struct drm_format_info *format;
1083 unsigned int stride;
1084 } fb;
1085 } state_cache;
1086
1087 struct intel_fbc_reg_params {
1088 struct i915_vma *vma;
1089
1090 struct {
1091 enum pipe pipe;
1092 enum plane plane;
1093 unsigned int fence_y_offset;
1094 } crtc;
1095
1096 struct {
1097 const struct drm_format_info *format;
1098 unsigned int stride;
1099 } fb;
1100
1101 int cfb_size;
1102 } params;
1103
1104 struct intel_fbc_work {
1105 bool scheduled;
1106 u32 scheduled_vblank;
1107 struct work_struct work;
1108 } work;
1109
1110 const char *no_fbc_reason;
1111 };
1112
1113 /*
1114 * HIGH_RR is the highest eDP panel refresh rate read from EDID
1115 * LOW_RR is the lowest eDP panel refresh rate found from EDID
1116 * parsing for same resolution.
1117 */
1118 enum drrs_refresh_rate_type {
1119 DRRS_HIGH_RR,
1120 DRRS_LOW_RR,
1121 DRRS_MAX_RR, /* RR count */
1122 };
1123
1124 enum drrs_support_type {
1125 DRRS_NOT_SUPPORTED = 0,
1126 STATIC_DRRS_SUPPORT = 1,
1127 SEAMLESS_DRRS_SUPPORT = 2
1128 };
1129
1130 struct intel_dp;
1131 struct i915_drrs {
1132 struct mutex mutex;
1133 struct delayed_work work;
1134 struct intel_dp *dp;
1135 unsigned busy_frontbuffer_bits;
1136 enum drrs_refresh_rate_type refresh_rate_type;
1137 enum drrs_support_type type;
1138 };
1139
1140 struct i915_psr {
1141 struct mutex lock;
1142 bool sink_support;
1143 bool source_ok;
1144 struct intel_dp *enabled;
1145 bool active;
1146 struct delayed_work work;
1147 unsigned busy_frontbuffer_bits;
1148 bool psr2_support;
1149 bool aux_frame_sync;
1150 bool link_standby;
1151 bool y_cord_support;
1152 bool colorimetry_support;
1153 bool alpm;
1154 };
1155
1156 enum intel_pch {
1157 PCH_NONE = 0, /* No PCH present */
1158 PCH_IBX, /* Ibexpeak PCH */
1159 PCH_CPT, /* Cougarpoint/Pantherpoint PCH */
1160 PCH_LPT, /* Lynxpoint/Wildcatpoint PCH */
1161 PCH_SPT, /* Sunrisepoint PCH */
1162 PCH_KBP, /* Kabypoint PCH */
1163 PCH_CNP, /* Cannonpoint PCH */
1164 PCH_NOP,
1165 };
1166
1167 enum intel_sbi_destination {
1168 SBI_ICLK,
1169 SBI_MPHY,
1170 };
1171
1172 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1173 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1174 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1175 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1176 #define QUIRK_INCREASE_T12_DELAY (1<<6)
1177
1178 struct intel_fbdev;
1179 struct intel_fbc_work;
1180
1181 struct intel_gmbus {
1182 struct i2c_adapter adapter;
1183 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1184 u32 force_bit;
1185 u32 reg0;
1186 i915_reg_t gpio_reg;
1187 struct i2c_algo_bit_data bit_algo;
1188 struct drm_i915_private *dev_priv;
1189 };
1190
1191 struct i915_suspend_saved_registers {
1192 u32 saveDSPARB;
1193 u32 saveFBC_CONTROL;
1194 u32 saveCACHE_MODE_0;
1195 u32 saveMI_ARB_STATE;
1196 u32 saveSWF0[16];
1197 u32 saveSWF1[16];
1198 u32 saveSWF3[3];
1199 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1200 u32 savePCH_PORT_HOTPLUG;
1201 u16 saveGCDGMBUS;
1202 };
1203
1204 struct vlv_s0ix_state {
1205 /* GAM */
1206 u32 wr_watermark;
1207 u32 gfx_prio_ctrl;
1208 u32 arb_mode;
1209 u32 gfx_pend_tlb0;
1210 u32 gfx_pend_tlb1;
1211 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1212 u32 media_max_req_count;
1213 u32 gfx_max_req_count;
1214 u32 render_hwsp;
1215 u32 ecochk;
1216 u32 bsd_hwsp;
1217 u32 blt_hwsp;
1218 u32 tlb_rd_addr;
1219
1220 /* MBC */
1221 u32 g3dctl;
1222 u32 gsckgctl;
1223 u32 mbctl;
1224
1225 /* GCP */
1226 u32 ucgctl1;
1227 u32 ucgctl3;
1228 u32 rcgctl1;
1229 u32 rcgctl2;
1230 u32 rstctl;
1231 u32 misccpctl;
1232
1233 /* GPM */
1234 u32 gfxpause;
1235 u32 rpdeuhwtc;
1236 u32 rpdeuc;
1237 u32 ecobus;
1238 u32 pwrdwnupctl;
1239 u32 rp_down_timeout;
1240 u32 rp_deucsw;
1241 u32 rcubmabdtmr;
1242 u32 rcedata;
1243 u32 spare2gh;
1244
1245 /* Display 1 CZ domain */
1246 u32 gt_imr;
1247 u32 gt_ier;
1248 u32 pm_imr;
1249 u32 pm_ier;
1250 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1251
1252 /* GT SA CZ domain */
1253 u32 tilectl;
1254 u32 gt_fifoctl;
1255 u32 gtlc_wake_ctrl;
1256 u32 gtlc_survive;
1257 u32 pmwgicz;
1258
1259 /* Display 2 CZ domain */
1260 u32 gu_ctl0;
1261 u32 gu_ctl1;
1262 u32 pcbr;
1263 u32 clock_gate_dis2;
1264 };
1265
1266 struct intel_rps_ei {
1267 ktime_t ktime;
1268 u32 render_c0;
1269 u32 media_c0;
1270 };
1271
1272 struct intel_gen6_power_mgmt {
1273 /*
1274 * work, interrupts_enabled and pm_iir are protected by
1275 * dev_priv->irq_lock
1276 */
1277 struct work_struct work;
1278 bool interrupts_enabled;
1279 u32 pm_iir;
1280
1281 /* PM interrupt bits that should never be masked */
1282 u32 pm_intrmsk_mbz;
1283
1284 /* Frequencies are stored in potentially platform dependent multiples.
1285 * In other words, *_freq needs to be multiplied by X to be interesting.
1286 * Soft limits are those which are used for the dynamic reclocking done
1287 * by the driver (raise frequencies under heavy loads, and lower for
1288 * lighter loads). Hard limits are those imposed by the hardware.
1289 *
1290 * A distinction is made for overclocking, which is never enabled by
1291 * default, and is considered to be above the hard limit if it's
1292 * possible at all.
1293 */
1294 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1295 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1296 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1297 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1298 u8 min_freq; /* AKA RPn. Minimum frequency */
1299 u8 boost_freq; /* Frequency to request when wait boosting */
1300 u8 idle_freq; /* Frequency to request when we are idle */
1301 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1302 u8 rp1_freq; /* "less than" RP0 power/freqency */
1303 u8 rp0_freq; /* Non-overclocked max frequency. */
1304 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
1305
1306 u8 up_threshold; /* Current %busy required to uplock */
1307 u8 down_threshold; /* Current %busy required to downclock */
1308
1309 int last_adj;
1310 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1311
1312 bool enabled;
1313 struct delayed_work autoenable_work;
1314 atomic_t num_waiters;
1315 atomic_t boosts;
1316
1317 /* manual wa residency calculations */
1318 struct intel_rps_ei ei;
1319
1320 /*
1321 * Protects RPS/RC6 register access and PCU communication.
1322 * Must be taken after struct_mutex if nested. Note that
1323 * this lock may be held for long periods of time when
1324 * talking to hw - so only take it when talking to hw!
1325 */
1326 struct mutex hw_lock;
1327 };
1328
1329 /* defined intel_pm.c */
1330 extern spinlock_t mchdev_lock;
1331
1332 struct intel_ilk_power_mgmt {
1333 u8 cur_delay;
1334 u8 min_delay;
1335 u8 max_delay;
1336 u8 fmax;
1337 u8 fstart;
1338
1339 u64 last_count1;
1340 unsigned long last_time1;
1341 unsigned long chipset_power;
1342 u64 last_count2;
1343 u64 last_time2;
1344 unsigned long gfx_power;
1345 u8 corr;
1346
1347 int c_m;
1348 int r_t;
1349 };
1350
1351 struct drm_i915_private;
1352 struct i915_power_well;
1353
1354 struct i915_power_well_ops {
1355 /*
1356 * Synchronize the well's hw state to match the current sw state, for
1357 * example enable/disable it based on the current refcount. Called
1358 * during driver init and resume time, possibly after first calling
1359 * the enable/disable handlers.
1360 */
1361 void (*sync_hw)(struct drm_i915_private *dev_priv,
1362 struct i915_power_well *power_well);
1363 /*
1364 * Enable the well and resources that depend on it (for example
1365 * interrupts located on the well). Called after the 0->1 refcount
1366 * transition.
1367 */
1368 void (*enable)(struct drm_i915_private *dev_priv,
1369 struct i915_power_well *power_well);
1370 /*
1371 * Disable the well and resources that depend on it. Called after
1372 * the 1->0 refcount transition.
1373 */
1374 void (*disable)(struct drm_i915_private *dev_priv,
1375 struct i915_power_well *power_well);
1376 /* Returns the hw enabled state. */
1377 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1378 struct i915_power_well *power_well);
1379 };
1380
1381 /* Power well structure for haswell */
1382 struct i915_power_well {
1383 const char *name;
1384 bool always_on;
1385 /* power well enable/disable usage count */
1386 int count;
1387 /* cached hw enabled state */
1388 bool hw_enabled;
1389 u64 domains;
1390 /* unique identifier for this power well */
1391 unsigned long id;
1392 /*
1393 * Arbitraty data associated with this power well. Platform and power
1394 * well specific.
1395 */
1396 unsigned long data;
1397 const struct i915_power_well_ops *ops;
1398 };
1399
1400 struct i915_power_domains {
1401 /*
1402 * Power wells needed for initialization at driver init and suspend
1403 * time are on. They are kept on until after the first modeset.
1404 */
1405 bool init_power_on;
1406 bool initializing;
1407 int power_well_count;
1408
1409 struct mutex lock;
1410 int domain_use_count[POWER_DOMAIN_NUM];
1411 struct i915_power_well *power_wells;
1412 };
1413
1414 #define MAX_L3_SLICES 2
1415 struct intel_l3_parity {
1416 u32 *remap_info[MAX_L3_SLICES];
1417 struct work_struct error_work;
1418 int which_slice;
1419 };
1420
1421 struct i915_gem_mm {
1422 /** Memory allocator for GTT stolen memory */
1423 struct drm_mm stolen;
1424 /** Protects the usage of the GTT stolen memory allocator. This is
1425 * always the inner lock when overlapping with struct_mutex. */
1426 struct mutex stolen_lock;
1427
1428 /** List of all objects in gtt_space. Used to restore gtt
1429 * mappings on resume */
1430 struct list_head bound_list;
1431 /**
1432 * List of objects which are not bound to the GTT (thus
1433 * are idle and not used by the GPU). These objects may or may
1434 * not actually have any pages attached.
1435 */
1436 struct list_head unbound_list;
1437
1438 /** List of all objects in gtt_space, currently mmaped by userspace.
1439 * All objects within this list must also be on bound_list.
1440 */
1441 struct list_head userfault_list;
1442
1443 /**
1444 * List of objects which are pending destruction.
1445 */
1446 struct llist_head free_list;
1447 struct work_struct free_work;
1448
1449 /** Usable portion of the GTT for GEM */
1450 dma_addr_t stolen_base; /* limited to low memory (32-bit) */
1451
1452 /** PPGTT used for aliasing the PPGTT with the GTT */
1453 struct i915_hw_ppgtt *aliasing_ppgtt;
1454
1455 struct notifier_block oom_notifier;
1456 struct notifier_block vmap_notifier;
1457 struct shrinker shrinker;
1458
1459 /** LRU list of objects with fence regs on them. */
1460 struct list_head fence_list;
1461
1462 /**
1463 * Workqueue to fault in userptr pages, flushed by the execbuf
1464 * when required but otherwise left to userspace to try again
1465 * on EAGAIN.
1466 */
1467 struct workqueue_struct *userptr_wq;
1468
1469 u64 unordered_timeline;
1470
1471 /* the indicator for dispatch video commands on two BSD rings */
1472 atomic_t bsd_engine_dispatch_index;
1473
1474 /** Bit 6 swizzling required for X tiling */
1475 uint32_t bit_6_swizzle_x;
1476 /** Bit 6 swizzling required for Y tiling */
1477 uint32_t bit_6_swizzle_y;
1478
1479 /* accounting, useful for userland debugging */
1480 spinlock_t object_stat_lock;
1481 u64 object_memory;
1482 u32 object_count;
1483 };
1484
1485 struct drm_i915_error_state_buf {
1486 struct drm_i915_private *i915;
1487 unsigned bytes;
1488 unsigned size;
1489 int err;
1490 u8 *buf;
1491 loff_t start;
1492 loff_t pos;
1493 };
1494
1495 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1496 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1497
1498 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */
1499 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */
1500
1501 struct i915_gpu_error {
1502 /* For hangcheck timer */
1503 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1504 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1505
1506 struct delayed_work hangcheck_work;
1507
1508 /* For reset and error_state handling. */
1509 spinlock_t lock;
1510 /* Protected by the above dev->gpu_error.lock. */
1511 struct i915_gpu_state *first_error;
1512
1513 unsigned long missed_irq_rings;
1514
1515 /**
1516 * State variable controlling the reset flow and count
1517 *
1518 * This is a counter which gets incremented when reset is triggered,
1519 *
1520 * Before the reset commences, the I915_RESET_BACKOFF bit is set
1521 * meaning that any waiters holding onto the struct_mutex should
1522 * relinquish the lock immediately in order for the reset to start.
1523 *
1524 * If reset is not completed succesfully, the I915_WEDGE bit is
1525 * set meaning that hardware is terminally sour and there is no
1526 * recovery. All waiters on the reset_queue will be woken when
1527 * that happens.
1528 *
1529 * This counter is used by the wait_seqno code to notice that reset
1530 * event happened and it needs to restart the entire ioctl (since most
1531 * likely the seqno it waited for won't ever signal anytime soon).
1532 *
1533 * This is important for lock-free wait paths, where no contended lock
1534 * naturally enforces the correct ordering between the bail-out of the
1535 * waiter and the gpu reset work code.
1536 */
1537 unsigned long reset_count;
1538
1539 /**
1540 * flags: Control various stages of the GPU reset
1541 *
1542 * #I915_RESET_BACKOFF - When we start a reset, we want to stop any
1543 * other users acquiring the struct_mutex. To do this we set the
1544 * #I915_RESET_BACKOFF bit in the error flags when we detect a reset
1545 * and then check for that bit before acquiring the struct_mutex (in
1546 * i915_mutex_lock_interruptible()?). I915_RESET_BACKOFF serves a
1547 * secondary role in preventing two concurrent global reset attempts.
1548 *
1549 * #I915_RESET_HANDOFF - To perform the actual GPU reset, we need the
1550 * struct_mutex. We try to acquire the struct_mutex in the reset worker,
1551 * but it may be held by some long running waiter (that we cannot
1552 * interrupt without causing trouble). Once we are ready to do the GPU
1553 * reset, we set the I915_RESET_HANDOFF bit and wakeup any waiters. If
1554 * they already hold the struct_mutex and want to participate they can
1555 * inspect the bit and do the reset directly, otherwise the worker
1556 * waits for the struct_mutex.
1557 *
1558 * #I915_RESET_ENGINE[num_engines] - Since the driver doesn't need to
1559 * acquire the struct_mutex to reset an engine, we need an explicit
1560 * flag to prevent two concurrent reset attempts in the same engine.
1561 * As the number of engines continues to grow, allocate the flags from
1562 * the most significant bits.
1563 *
1564 * #I915_WEDGED - If reset fails and we can no longer use the GPU,
1565 * we set the #I915_WEDGED bit. Prior to command submission, e.g.
1566 * i915_gem_request_alloc(), this bit is checked and the sequence
1567 * aborted (with -EIO reported to userspace) if set.
1568 */
1569 unsigned long flags;
1570 #define I915_RESET_BACKOFF 0
1571 #define I915_RESET_HANDOFF 1
1572 #define I915_WEDGED (BITS_PER_LONG - 1)
1573 #define I915_RESET_ENGINE (I915_WEDGED - I915_NUM_ENGINES)
1574
1575 /** Number of times an engine has been reset */
1576 u32 reset_engine_count[I915_NUM_ENGINES];
1577
1578 /**
1579 * Waitqueue to signal when a hang is detected. Used to for waiters
1580 * to release the struct_mutex for the reset to procede.
1581 */
1582 wait_queue_head_t wait_queue;
1583
1584 /**
1585 * Waitqueue to signal when the reset has completed. Used by clients
1586 * that wait for dev_priv->mm.wedged to settle.
1587 */
1588 wait_queue_head_t reset_queue;
1589
1590 /* For missed irq/seqno simulation. */
1591 unsigned long test_irq_rings;
1592 };
1593
1594 enum modeset_restore {
1595 MODESET_ON_LID_OPEN,
1596 MODESET_DONE,
1597 MODESET_SUSPENDED,
1598 };
1599
1600 #define DP_AUX_A 0x40
1601 #define DP_AUX_B 0x10
1602 #define DP_AUX_C 0x20
1603 #define DP_AUX_D 0x30
1604
1605 #define DDC_PIN_B 0x05
1606 #define DDC_PIN_C 0x04
1607 #define DDC_PIN_D 0x06
1608
1609 struct ddi_vbt_port_info {
1610 /*
1611 * This is an index in the HDMI/DVI DDI buffer translation table.
1612 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1613 * populate this field.
1614 */
1615 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1616 uint8_t hdmi_level_shift;
1617
1618 uint8_t supports_dvi:1;
1619 uint8_t supports_hdmi:1;
1620 uint8_t supports_dp:1;
1621 uint8_t supports_edp:1;
1622
1623 uint8_t alternate_aux_channel;
1624 uint8_t alternate_ddc_pin;
1625
1626 uint8_t dp_boost_level;
1627 uint8_t hdmi_boost_level;
1628 };
1629
1630 enum psr_lines_to_wait {
1631 PSR_0_LINES_TO_WAIT = 0,
1632 PSR_1_LINE_TO_WAIT,
1633 PSR_4_LINES_TO_WAIT,
1634 PSR_8_LINES_TO_WAIT
1635 };
1636
1637 struct intel_vbt_data {
1638 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1639 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1640
1641 /* Feature bits */
1642 unsigned int int_tv_support:1;
1643 unsigned int lvds_dither:1;
1644 unsigned int lvds_vbt:1;
1645 unsigned int int_crt_support:1;
1646 unsigned int lvds_use_ssc:1;
1647 unsigned int display_clock_mode:1;
1648 unsigned int fdi_rx_polarity_inverted:1;
1649 unsigned int panel_type:4;
1650 int lvds_ssc_freq;
1651 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1652
1653 enum drrs_support_type drrs_type;
1654
1655 struct {
1656 int rate;
1657 int lanes;
1658 int preemphasis;
1659 int vswing;
1660 bool low_vswing;
1661 bool initialized;
1662 bool support;
1663 int bpp;
1664 struct edp_power_seq pps;
1665 } edp;
1666
1667 struct {
1668 bool full_link;
1669 bool require_aux_wakeup;
1670 int idle_frames;
1671 enum psr_lines_to_wait lines_to_wait;
1672 int tp1_wakeup_time;
1673 int tp2_tp3_wakeup_time;
1674 } psr;
1675
1676 struct {
1677 u16 pwm_freq_hz;
1678 bool present;
1679 bool active_low_pwm;
1680 u8 min_brightness; /* min_brightness/255 of max */
1681 u8 controller; /* brightness controller number */
1682 enum intel_backlight_type type;
1683 } backlight;
1684
1685 /* MIPI DSI */
1686 struct {
1687 u16 panel_id;
1688 struct mipi_config *config;
1689 struct mipi_pps_data *pps;
1690 u8 seq_version;
1691 u32 size;
1692 u8 *data;
1693 const u8 *sequence[MIPI_SEQ_MAX];
1694 } dsi;
1695
1696 int crt_ddc_pin;
1697
1698 int child_dev_num;
1699 union child_device_config *child_dev;
1700
1701 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1702 struct sdvo_device_mapping sdvo_mappings[2];
1703 };
1704
1705 enum intel_ddb_partitioning {
1706 INTEL_DDB_PART_1_2,
1707 INTEL_DDB_PART_5_6, /* IVB+ */
1708 };
1709
1710 struct intel_wm_level {
1711 bool enable;
1712 uint32_t pri_val;
1713 uint32_t spr_val;
1714 uint32_t cur_val;
1715 uint32_t fbc_val;
1716 };
1717
1718 struct ilk_wm_values {
1719 uint32_t wm_pipe[3];
1720 uint32_t wm_lp[3];
1721 uint32_t wm_lp_spr[3];
1722 uint32_t wm_linetime[3];
1723 bool enable_fbc_wm;
1724 enum intel_ddb_partitioning partitioning;
1725 };
1726
1727 struct g4x_pipe_wm {
1728 uint16_t plane[I915_MAX_PLANES];
1729 uint16_t fbc;
1730 };
1731
1732 struct g4x_sr_wm {
1733 uint16_t plane;
1734 uint16_t cursor;
1735 uint16_t fbc;
1736 };
1737
1738 struct vlv_wm_ddl_values {
1739 uint8_t plane[I915_MAX_PLANES];
1740 };
1741
1742 struct vlv_wm_values {
1743 struct g4x_pipe_wm pipe[3];
1744 struct g4x_sr_wm sr;
1745 struct vlv_wm_ddl_values ddl[3];
1746 uint8_t level;
1747 bool cxsr;
1748 };
1749
1750 struct g4x_wm_values {
1751 struct g4x_pipe_wm pipe[2];
1752 struct g4x_sr_wm sr;
1753 struct g4x_sr_wm hpll;
1754 bool cxsr;
1755 bool hpll_en;
1756 bool fbc_en;
1757 };
1758
1759 struct skl_ddb_entry {
1760 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1761 };
1762
1763 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1764 {
1765 return entry->end - entry->start;
1766 }
1767
1768 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1769 const struct skl_ddb_entry *e2)
1770 {
1771 if (e1->start == e2->start && e1->end == e2->end)
1772 return true;
1773
1774 return false;
1775 }
1776
1777 struct skl_ddb_allocation {
1778 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1779 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1780 };
1781
1782 struct skl_wm_values {
1783 unsigned dirty_pipes;
1784 struct skl_ddb_allocation ddb;
1785 };
1786
1787 struct skl_wm_level {
1788 bool plane_en;
1789 uint16_t plane_res_b;
1790 uint8_t plane_res_l;
1791 };
1792
1793 /*
1794 * This struct helps tracking the state needed for runtime PM, which puts the
1795 * device in PCI D3 state. Notice that when this happens, nothing on the
1796 * graphics device works, even register access, so we don't get interrupts nor
1797 * anything else.
1798 *
1799 * Every piece of our code that needs to actually touch the hardware needs to
1800 * either call intel_runtime_pm_get or call intel_display_power_get with the
1801 * appropriate power domain.
1802 *
1803 * Our driver uses the autosuspend delay feature, which means we'll only really
1804 * suspend if we stay with zero refcount for a certain amount of time. The
1805 * default value is currently very conservative (see intel_runtime_pm_enable), but
1806 * it can be changed with the standard runtime PM files from sysfs.
1807 *
1808 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1809 * goes back to false exactly before we reenable the IRQs. We use this variable
1810 * to check if someone is trying to enable/disable IRQs while they're supposed
1811 * to be disabled. This shouldn't happen and we'll print some error messages in
1812 * case it happens.
1813 *
1814 * For more, read the Documentation/power/runtime_pm.txt.
1815 */
1816 struct i915_runtime_pm {
1817 atomic_t wakeref_count;
1818 bool suspended;
1819 bool irqs_enabled;
1820 };
1821
1822 enum intel_pipe_crc_source {
1823 INTEL_PIPE_CRC_SOURCE_NONE,
1824 INTEL_PIPE_CRC_SOURCE_PLANE1,
1825 INTEL_PIPE_CRC_SOURCE_PLANE2,
1826 INTEL_PIPE_CRC_SOURCE_PF,
1827 INTEL_PIPE_CRC_SOURCE_PIPE,
1828 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1829 INTEL_PIPE_CRC_SOURCE_TV,
1830 INTEL_PIPE_CRC_SOURCE_DP_B,
1831 INTEL_PIPE_CRC_SOURCE_DP_C,
1832 INTEL_PIPE_CRC_SOURCE_DP_D,
1833 INTEL_PIPE_CRC_SOURCE_AUTO,
1834 INTEL_PIPE_CRC_SOURCE_MAX,
1835 };
1836
1837 struct intel_pipe_crc_entry {
1838 uint32_t frame;
1839 uint32_t crc[5];
1840 };
1841
1842 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1843 struct intel_pipe_crc {
1844 spinlock_t lock;
1845 bool opened; /* exclusive access to the result file */
1846 struct intel_pipe_crc_entry *entries;
1847 enum intel_pipe_crc_source source;
1848 int head, tail;
1849 wait_queue_head_t wq;
1850 int skipped;
1851 };
1852
1853 struct i915_frontbuffer_tracking {
1854 spinlock_t lock;
1855
1856 /*
1857 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1858 * scheduled flips.
1859 */
1860 unsigned busy_bits;
1861 unsigned flip_bits;
1862 };
1863
1864 struct i915_wa_reg {
1865 i915_reg_t addr;
1866 u32 value;
1867 /* bitmask representing WA bits */
1868 u32 mask;
1869 };
1870
1871 /*
1872 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1873 * allowing it for RCS as we don't foresee any requirement of having
1874 * a whitelist for other engines. When it is really required for
1875 * other engines then the limit need to be increased.
1876 */
1877 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1878
1879 struct i915_workarounds {
1880 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1881 u32 count;
1882 u32 hw_whitelist_count[I915_NUM_ENGINES];
1883 };
1884
1885 struct i915_virtual_gpu {
1886 bool active;
1887 };
1888
1889 /* used in computing the new watermarks state */
1890 struct intel_wm_config {
1891 unsigned int num_pipes_active;
1892 bool sprites_enabled;
1893 bool sprites_scaled;
1894 };
1895
1896 struct i915_oa_format {
1897 u32 format;
1898 int size;
1899 };
1900
1901 struct i915_oa_reg {
1902 i915_reg_t addr;
1903 u32 value;
1904 };
1905
1906 struct i915_perf_stream;
1907
1908 /**
1909 * struct i915_perf_stream_ops - the OPs to support a specific stream type
1910 */
1911 struct i915_perf_stream_ops {
1912 /**
1913 * @enable: Enables the collection of HW samples, either in response to
1914 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1915 * without `I915_PERF_FLAG_DISABLED`.
1916 */
1917 void (*enable)(struct i915_perf_stream *stream);
1918
1919 /**
1920 * @disable: Disables the collection of HW samples, either in response
1921 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1922 * the stream.
1923 */
1924 void (*disable)(struct i915_perf_stream *stream);
1925
1926 /**
1927 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1928 * once there is something ready to read() for the stream
1929 */
1930 void (*poll_wait)(struct i915_perf_stream *stream,
1931 struct file *file,
1932 poll_table *wait);
1933
1934 /**
1935 * @wait_unlocked: For handling a blocking read, wait until there is
1936 * something to ready to read() for the stream. E.g. wait on the same
1937 * wait queue that would be passed to poll_wait().
1938 */
1939 int (*wait_unlocked)(struct i915_perf_stream *stream);
1940
1941 /**
1942 * @read: Copy buffered metrics as records to userspace
1943 * **buf**: the userspace, destination buffer
1944 * **count**: the number of bytes to copy, requested by userspace
1945 * **offset**: zero at the start of the read, updated as the read
1946 * proceeds, it represents how many bytes have been copied so far and
1947 * the buffer offset for copying the next record.
1948 *
1949 * Copy as many buffered i915 perf samples and records for this stream
1950 * to userspace as will fit in the given buffer.
1951 *
1952 * Only write complete records; returning -%ENOSPC if there isn't room
1953 * for a complete record.
1954 *
1955 * Return any error condition that results in a short read such as
1956 * -%ENOSPC or -%EFAULT, even though these may be squashed before
1957 * returning to userspace.
1958 */
1959 int (*read)(struct i915_perf_stream *stream,
1960 char __user *buf,
1961 size_t count,
1962 size_t *offset);
1963
1964 /**
1965 * @destroy: Cleanup any stream specific resources.
1966 *
1967 * The stream will always be disabled before this is called.
1968 */
1969 void (*destroy)(struct i915_perf_stream *stream);
1970 };
1971
1972 /**
1973 * struct i915_perf_stream - state for a single open stream FD
1974 */
1975 struct i915_perf_stream {
1976 /**
1977 * @dev_priv: i915 drm device
1978 */
1979 struct drm_i915_private *dev_priv;
1980
1981 /**
1982 * @link: Links the stream into ``&drm_i915_private->streams``
1983 */
1984 struct list_head link;
1985
1986 /**
1987 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
1988 * properties given when opening a stream, representing the contents
1989 * of a single sample as read() by userspace.
1990 */
1991 u32 sample_flags;
1992
1993 /**
1994 * @sample_size: Considering the configured contents of a sample
1995 * combined with the required header size, this is the total size
1996 * of a single sample record.
1997 */
1998 int sample_size;
1999
2000 /**
2001 * @ctx: %NULL if measuring system-wide across all contexts or a
2002 * specific context that is being monitored.
2003 */
2004 struct i915_gem_context *ctx;
2005
2006 /**
2007 * @enabled: Whether the stream is currently enabled, considering
2008 * whether the stream was opened in a disabled state and based
2009 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
2010 */
2011 bool enabled;
2012
2013 /**
2014 * @ops: The callbacks providing the implementation of this specific
2015 * type of configured stream.
2016 */
2017 const struct i915_perf_stream_ops *ops;
2018 };
2019
2020 /**
2021 * struct i915_oa_ops - Gen specific implementation of an OA unit stream
2022 */
2023 struct i915_oa_ops {
2024 /**
2025 * @init_oa_buffer: Resets the head and tail pointers of the
2026 * circular buffer for periodic OA reports.
2027 *
2028 * Called when first opening a stream for OA metrics, but also may be
2029 * called in response to an OA buffer overflow or other error
2030 * condition.
2031 *
2032 * Note it may be necessary to clear the full OA buffer here as part of
2033 * maintaining the invariable that new reports must be written to
2034 * zeroed memory for us to be able to reliable detect if an expected
2035 * report has not yet landed in memory. (At least on Haswell the OA
2036 * buffer tail pointer is not synchronized with reports being visible
2037 * to the CPU)
2038 */
2039 void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
2040
2041 /**
2042 * @select_metric_set: The auto generated code that checks whether a
2043 * requested OA config is applicable to the system and if so sets up
2044 * the mux, oa and flex eu register config pointers according to the
2045 * current dev_priv->perf.oa.metrics_set.
2046 */
2047 int (*select_metric_set)(struct drm_i915_private *dev_priv);
2048
2049 /**
2050 * @enable_metric_set: Selects and applies any MUX configuration to set
2051 * up the Boolean and Custom (B/C) counters that are part of the
2052 * counter reports being sampled. May apply system constraints such as
2053 * disabling EU clock gating as required.
2054 */
2055 int (*enable_metric_set)(struct drm_i915_private *dev_priv);
2056
2057 /**
2058 * @disable_metric_set: Remove system constraints associated with using
2059 * the OA unit.
2060 */
2061 void (*disable_metric_set)(struct drm_i915_private *dev_priv);
2062
2063 /**
2064 * @oa_enable: Enable periodic sampling
2065 */
2066 void (*oa_enable)(struct drm_i915_private *dev_priv);
2067
2068 /**
2069 * @oa_disable: Disable periodic sampling
2070 */
2071 void (*oa_disable)(struct drm_i915_private *dev_priv);
2072
2073 /**
2074 * @read: Copy data from the circular OA buffer into a given userspace
2075 * buffer.
2076 */
2077 int (*read)(struct i915_perf_stream *stream,
2078 char __user *buf,
2079 size_t count,
2080 size_t *offset);
2081
2082 /**
2083 * @oa_hw_tail_read: read the OA tail pointer register
2084 *
2085 * In particular this enables us to share all the fiddly code for
2086 * handling the OA unit tail pointer race that affects multiple
2087 * generations.
2088 */
2089 u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
2090 };
2091
2092 struct intel_cdclk_state {
2093 unsigned int cdclk, vco, ref;
2094 };
2095
2096 struct drm_i915_private {
2097 struct drm_device drm;
2098
2099 struct kmem_cache *objects;
2100 struct kmem_cache *vmas;
2101 struct kmem_cache *requests;
2102 struct kmem_cache *dependencies;
2103 struct kmem_cache *priorities;
2104
2105 const struct intel_device_info info;
2106
2107 void __iomem *regs;
2108
2109 struct intel_uncore uncore;
2110
2111 struct i915_virtual_gpu vgpu;
2112
2113 struct intel_gvt *gvt;
2114
2115 struct intel_huc huc;
2116 struct intel_guc guc;
2117
2118 struct intel_csr csr;
2119
2120 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
2121
2122 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
2123 * controller on different i2c buses. */
2124 struct mutex gmbus_mutex;
2125
2126 /**
2127 * Base address of the gmbus and gpio block.
2128 */
2129 uint32_t gpio_mmio_base;
2130
2131 /* MMIO base address for MIPI regs */
2132 uint32_t mipi_mmio_base;
2133
2134 uint32_t psr_mmio_base;
2135
2136 uint32_t pps_mmio_base;
2137
2138 wait_queue_head_t gmbus_wait_queue;
2139
2140 struct pci_dev *bridge_dev;
2141 struct i915_gem_context *kernel_context;
2142 struct intel_engine_cs *engine[I915_NUM_ENGINES];
2143 struct i915_vma *semaphore;
2144
2145 struct drm_dma_handle *status_page_dmah;
2146 struct resource mch_res;
2147
2148 /* protects the irq masks */
2149 spinlock_t irq_lock;
2150
2151 /* protects the mmio flip data */
2152 spinlock_t mmio_flip_lock;
2153
2154 bool display_irqs_enabled;
2155
2156 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
2157 struct pm_qos_request pm_qos;
2158
2159 /* Sideband mailbox protection */
2160 struct mutex sb_lock;
2161
2162 /** Cached value of IMR to avoid reads in updating the bitfield */
2163 union {
2164 u32 irq_mask;
2165 u32 de_irq_mask[I915_MAX_PIPES];
2166 };
2167 u32 gt_irq_mask;
2168 u32 pm_imr;
2169 u32 pm_ier;
2170 u32 pm_rps_events;
2171 u32 pm_guc_events;
2172 u32 pipestat_irq_mask[I915_MAX_PIPES];
2173
2174 struct i915_hotplug hotplug;
2175 struct intel_fbc fbc;
2176 struct i915_drrs drrs;
2177 struct intel_opregion opregion;
2178 struct intel_vbt_data vbt;
2179
2180 bool preserve_bios_swizzle;
2181
2182 /* overlay */
2183 struct intel_overlay *overlay;
2184
2185 /* backlight registers and fields in struct intel_panel */
2186 struct mutex backlight_lock;
2187
2188 /* LVDS info */
2189 bool no_aux_handshake;
2190
2191 /* protects panel power sequencer state */
2192 struct mutex pps_mutex;
2193
2194 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
2195 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
2196
2197 unsigned int fsb_freq, mem_freq, is_ddr3;
2198 unsigned int skl_preferred_vco_freq;
2199 unsigned int max_cdclk_freq;
2200
2201 unsigned int max_dotclk_freq;
2202 unsigned int rawclk_freq;
2203 unsigned int hpll_freq;
2204 unsigned int czclk_freq;
2205
2206 struct {
2207 /*
2208 * The current logical cdclk state.
2209 * See intel_atomic_state.cdclk.logical
2210 *
2211 * For reading holding any crtc lock is sufficient,
2212 * for writing must hold all of them.
2213 */
2214 struct intel_cdclk_state logical;
2215 /*
2216 * The current actual cdclk state.
2217 * See intel_atomic_state.cdclk.actual
2218 */
2219 struct intel_cdclk_state actual;
2220 /* The current hardware cdclk state */
2221 struct intel_cdclk_state hw;
2222 } cdclk;
2223
2224 /**
2225 * wq - Driver workqueue for GEM.
2226 *
2227 * NOTE: Work items scheduled here are not allowed to grab any modeset
2228 * locks, for otherwise the flushing done in the pageflip code will
2229 * result in deadlocks.
2230 */
2231 struct workqueue_struct *wq;
2232
2233 /* Display functions */
2234 struct drm_i915_display_funcs display;
2235
2236 /* PCH chipset type */
2237 enum intel_pch pch_type;
2238 unsigned short pch_id;
2239
2240 unsigned long quirks;
2241
2242 enum modeset_restore modeset_restore;
2243 struct mutex modeset_restore_lock;
2244 struct drm_atomic_state *modeset_restore_state;
2245 struct drm_modeset_acquire_ctx reset_ctx;
2246
2247 struct list_head vm_list; /* Global list of all address spaces */
2248 struct i915_ggtt ggtt; /* VM representing the global address space */
2249
2250 struct i915_gem_mm mm;
2251 DECLARE_HASHTABLE(mm_structs, 7);
2252 struct mutex mm_lock;
2253
2254 /* Kernel Modesetting */
2255
2256 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
2257 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
2258 wait_queue_head_t pending_flip_queue;
2259
2260 #ifdef CONFIG_DEBUG_FS
2261 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
2262 #endif
2263
2264 /* dpll and cdclk state is protected by connection_mutex */
2265 int num_shared_dpll;
2266 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
2267 const struct intel_dpll_mgr *dpll_mgr;
2268
2269 /*
2270 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
2271 * Must be global rather than per dpll, because on some platforms
2272 * plls share registers.
2273 */
2274 struct mutex dpll_lock;
2275
2276 unsigned int active_crtcs;
2277 unsigned int min_pixclk[I915_MAX_PIPES];
2278
2279 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
2280
2281 struct i915_workarounds workarounds;
2282
2283 struct i915_frontbuffer_tracking fb_tracking;
2284
2285 struct intel_atomic_helper {
2286 struct llist_head free_list;
2287 struct work_struct free_work;
2288 } atomic_helper;
2289
2290 u16 orig_clock;
2291
2292 bool mchbar_need_disable;
2293
2294 struct intel_l3_parity l3_parity;
2295
2296 /* Cannot be determined by PCIID. You must always read a register. */
2297 u32 edram_cap;
2298
2299 /* gen6+ rps state */
2300 struct intel_gen6_power_mgmt rps;
2301
2302 /* ilk-only ips/rps state. Everything in here is protected by the global
2303 * mchdev_lock in intel_pm.c */
2304 struct intel_ilk_power_mgmt ips;
2305
2306 struct i915_power_domains power_domains;
2307
2308 struct i915_psr psr;
2309
2310 struct i915_gpu_error gpu_error;
2311
2312 struct drm_i915_gem_object *vlv_pctx;
2313
2314 #ifdef CONFIG_DRM_FBDEV_EMULATION
2315 /* list of fbdev register on this device */
2316 struct intel_fbdev *fbdev;
2317 struct work_struct fbdev_suspend_work;
2318 #endif
2319
2320 struct drm_property *broadcast_rgb_property;
2321 struct drm_property *force_audio_property;
2322
2323 /* hda/i915 audio component */
2324 struct i915_audio_component *audio_component;
2325 bool audio_component_registered;
2326 /**
2327 * av_mutex - mutex for audio/video sync
2328 *
2329 */
2330 struct mutex av_mutex;
2331
2332 struct {
2333 struct list_head list;
2334 struct llist_head free_list;
2335 struct work_struct free_work;
2336
2337 /* The hw wants to have a stable context identifier for the
2338 * lifetime of the context (for OA, PASID, faults, etc).
2339 * This is limited in execlists to 21 bits.
2340 */
2341 struct ida hw_ida;
2342 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
2343 } contexts;
2344
2345 u32 fdi_rx_config;
2346
2347 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
2348 u32 chv_phy_control;
2349 /*
2350 * Shadows for CHV DPLL_MD regs to keep the state
2351 * checker somewhat working in the presence hardware
2352 * crappiness (can't read out DPLL_MD for pipes B & C).
2353 */
2354 u32 chv_dpll_md[I915_MAX_PIPES];
2355 u32 bxt_phy_grc;
2356
2357 u32 suspend_count;
2358 bool suspended_to_idle;
2359 struct i915_suspend_saved_registers regfile;
2360 struct vlv_s0ix_state vlv_s0ix_state;
2361
2362 enum {
2363 I915_SAGV_UNKNOWN = 0,
2364 I915_SAGV_DISABLED,
2365 I915_SAGV_ENABLED,
2366 I915_SAGV_NOT_CONTROLLED
2367 } sagv_status;
2368
2369 struct {
2370 /*
2371 * Raw watermark latency values:
2372 * in 0.1us units for WM0,
2373 * in 0.5us units for WM1+.
2374 */
2375 /* primary */
2376 uint16_t pri_latency[5];
2377 /* sprite */
2378 uint16_t spr_latency[5];
2379 /* cursor */
2380 uint16_t cur_latency[5];
2381 /*
2382 * Raw watermark memory latency values
2383 * for SKL for all 8 levels
2384 * in 1us units.
2385 */
2386 uint16_t skl_latency[8];
2387
2388 /* current hardware state */
2389 union {
2390 struct ilk_wm_values hw;
2391 struct skl_wm_values skl_hw;
2392 struct vlv_wm_values vlv;
2393 struct g4x_wm_values g4x;
2394 };
2395
2396 uint8_t max_level;
2397
2398 /*
2399 * Should be held around atomic WM register writing; also
2400 * protects * intel_crtc->wm.active and
2401 * cstate->wm.need_postvbl_update.
2402 */
2403 struct mutex wm_mutex;
2404
2405 /*
2406 * Set during HW readout of watermarks/DDB. Some platforms
2407 * need to know when we're still using BIOS-provided values
2408 * (which we don't fully trust).
2409 */
2410 bool distrust_bios_wm;
2411 } wm;
2412
2413 struct i915_runtime_pm pm;
2414
2415 struct {
2416 bool initialized;
2417
2418 struct kobject *metrics_kobj;
2419 struct ctl_table_header *sysctl_header;
2420
2421 struct mutex lock;
2422 struct list_head streams;
2423
2424 struct {
2425 struct i915_perf_stream *exclusive_stream;
2426
2427 u32 specific_ctx_id;
2428
2429 struct hrtimer poll_check_timer;
2430 wait_queue_head_t poll_wq;
2431 bool pollin;
2432
2433 /**
2434 * For rate limiting any notifications of spurious
2435 * invalid OA reports
2436 */
2437 struct ratelimit_state spurious_report_rs;
2438
2439 bool periodic;
2440 int period_exponent;
2441 int timestamp_frequency;
2442
2443 int metrics_set;
2444
2445 const struct i915_oa_reg *mux_regs[6];
2446 int mux_regs_lens[6];
2447 int n_mux_configs;
2448
2449 const struct i915_oa_reg *b_counter_regs;
2450 int b_counter_regs_len;
2451 const struct i915_oa_reg *flex_regs;
2452 int flex_regs_len;
2453
2454 struct {
2455 struct i915_vma *vma;
2456 u8 *vaddr;
2457 u32 last_ctx_id;
2458 int format;
2459 int format_size;
2460
2461 /**
2462 * Locks reads and writes to all head/tail state
2463 *
2464 * Consider: the head and tail pointer state
2465 * needs to be read consistently from a hrtimer
2466 * callback (atomic context) and read() fop
2467 * (user context) with tail pointer updates
2468 * happening in atomic context and head updates
2469 * in user context and the (unlikely)
2470 * possibility of read() errors needing to
2471 * reset all head/tail state.
2472 *
2473 * Note: Contention or performance aren't
2474 * currently a significant concern here
2475 * considering the relatively low frequency of
2476 * hrtimer callbacks (5ms period) and that
2477 * reads typically only happen in response to a
2478 * hrtimer event and likely complete before the
2479 * next callback.
2480 *
2481 * Note: This lock is not held *while* reading
2482 * and copying data to userspace so the value
2483 * of head observed in htrimer callbacks won't
2484 * represent any partial consumption of data.
2485 */
2486 spinlock_t ptr_lock;
2487
2488 /**
2489 * One 'aging' tail pointer and one 'aged'
2490 * tail pointer ready to used for reading.
2491 *
2492 * Initial values of 0xffffffff are invalid
2493 * and imply that an update is required
2494 * (and should be ignored by an attempted
2495 * read)
2496 */
2497 struct {
2498 u32 offset;
2499 } tails[2];
2500
2501 /**
2502 * Index for the aged tail ready to read()
2503 * data up to.
2504 */
2505 unsigned int aged_tail_idx;
2506
2507 /**
2508 * A monotonic timestamp for when the current
2509 * aging tail pointer was read; used to
2510 * determine when it is old enough to trust.
2511 */
2512 u64 aging_timestamp;
2513
2514 /**
2515 * Although we can always read back the head
2516 * pointer register, we prefer to avoid
2517 * trusting the HW state, just to avoid any
2518 * risk that some hardware condition could
2519 * somehow bump the head pointer unpredictably
2520 * and cause us to forward the wrong OA buffer
2521 * data to userspace.
2522 */
2523 u32 head;
2524 } oa_buffer;
2525
2526 u32 gen7_latched_oastatus1;
2527 u32 ctx_oactxctrl_offset;
2528 u32 ctx_flexeu0_offset;
2529
2530 /**
2531 * The RPT_ID/reason field for Gen8+ includes a bit
2532 * to determine if the CTX ID in the report is valid
2533 * but the specific bit differs between Gen 8 and 9
2534 */
2535 u32 gen8_valid_ctx_bit;
2536
2537 struct i915_oa_ops ops;
2538 const struct i915_oa_format *oa_formats;
2539 int n_builtin_sets;
2540 } oa;
2541 } perf;
2542
2543 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2544 struct {
2545 void (*resume)(struct drm_i915_private *);
2546 void (*cleanup_engine)(struct intel_engine_cs *engine);
2547
2548 struct list_head timelines;
2549 struct i915_gem_timeline global_timeline;
2550 u32 active_requests;
2551
2552 /**
2553 * Is the GPU currently considered idle, or busy executing
2554 * userspace requests? Whilst idle, we allow runtime power
2555 * management to power down the hardware and display clocks.
2556 * In order to reduce the effect on performance, there
2557 * is a slight delay before we do so.
2558 */
2559 bool awake;
2560
2561 /**
2562 * We leave the user IRQ off as much as possible,
2563 * but this means that requests will finish and never
2564 * be retired once the system goes idle. Set a timer to
2565 * fire periodically while the ring is running. When it
2566 * fires, go retire requests.
2567 */
2568 struct delayed_work retire_work;
2569
2570 /**
2571 * When we detect an idle GPU, we want to turn on
2572 * powersaving features. So once we see that there
2573 * are no more requests outstanding and no more
2574 * arrive within a small period of time, we fire
2575 * off the idle_work.
2576 */
2577 struct delayed_work idle_work;
2578
2579 ktime_t last_init_time;
2580 } gt;
2581
2582 /* perform PHY state sanity checks? */
2583 bool chv_phy_assert[2];
2584
2585 bool ipc_enabled;
2586
2587 /* Used to save the pipe-to-encoder mapping for audio */
2588 struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2589
2590 /* necessary resource sharing with HDMI LPE audio driver. */
2591 struct {
2592 struct platform_device *platdev;
2593 int irq;
2594 } lpe_audio;
2595
2596 /*
2597 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2598 * will be rejected. Instead look for a better place.
2599 */
2600 };
2601
2602 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2603 {
2604 return container_of(dev, struct drm_i915_private, drm);
2605 }
2606
2607 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2608 {
2609 return to_i915(dev_get_drvdata(kdev));
2610 }
2611
2612 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2613 {
2614 return container_of(guc, struct drm_i915_private, guc);
2615 }
2616
2617 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2618 {
2619 return container_of(huc, struct drm_i915_private, huc);
2620 }
2621
2622 /* Simple iterator over all initialised engines */
2623 #define for_each_engine(engine__, dev_priv__, id__) \
2624 for ((id__) = 0; \
2625 (id__) < I915_NUM_ENGINES; \
2626 (id__)++) \
2627 for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2628
2629 /* Iterator over subset of engines selected by mask */
2630 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2631 for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask; \
2632 tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2633
2634 enum hdmi_force_audio {
2635 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2636 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2637 HDMI_AUDIO_AUTO, /* trust EDID */
2638 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2639 };
2640
2641 #define I915_GTT_OFFSET_NONE ((u32)-1)
2642
2643 /*
2644 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2645 * considered to be the frontbuffer for the given plane interface-wise. This
2646 * doesn't mean that the hw necessarily already scans it out, but that any
2647 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2648 *
2649 * We have one bit per pipe and per scanout plane type.
2650 */
2651 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2652 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2653 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2654 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2655 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2656 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2657 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2658 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2659 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2660 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2661 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2662 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2663
2664 /*
2665 * Optimised SGL iterator for GEM objects
2666 */
2667 static __always_inline struct sgt_iter {
2668 struct scatterlist *sgp;
2669 union {
2670 unsigned long pfn;
2671 dma_addr_t dma;
2672 };
2673 unsigned int curr;
2674 unsigned int max;
2675 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2676 struct sgt_iter s = { .sgp = sgl };
2677
2678 if (s.sgp) {
2679 s.max = s.curr = s.sgp->offset;
2680 s.max += s.sgp->length;
2681 if (dma)
2682 s.dma = sg_dma_address(s.sgp);
2683 else
2684 s.pfn = page_to_pfn(sg_page(s.sgp));
2685 }
2686
2687 return s;
2688 }
2689
2690 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2691 {
2692 ++sg;
2693 if (unlikely(sg_is_chain(sg)))
2694 sg = sg_chain_ptr(sg);
2695 return sg;
2696 }
2697
2698 /**
2699 * __sg_next - return the next scatterlist entry in a list
2700 * @sg: The current sg entry
2701 *
2702 * Description:
2703 * If the entry is the last, return NULL; otherwise, step to the next
2704 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2705 * otherwise just return the pointer to the current element.
2706 **/
2707 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2708 {
2709 #ifdef CONFIG_DEBUG_SG
2710 BUG_ON(sg->sg_magic != SG_MAGIC);
2711 #endif
2712 return sg_is_last(sg) ? NULL : ____sg_next(sg);
2713 }
2714
2715 /**
2716 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2717 * @__dmap: DMA address (output)
2718 * @__iter: 'struct sgt_iter' (iterator state, internal)
2719 * @__sgt: sg_table to iterate over (input)
2720 */
2721 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2722 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2723 ((__dmap) = (__iter).dma + (__iter).curr); \
2724 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2725 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2726
2727 /**
2728 * for_each_sgt_page - iterate over the pages of the given sg_table
2729 * @__pp: page pointer (output)
2730 * @__iter: 'struct sgt_iter' (iterator state, internal)
2731 * @__sgt: sg_table to iterate over (input)
2732 */
2733 #define for_each_sgt_page(__pp, __iter, __sgt) \
2734 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2735 ((__pp) = (__iter).pfn == 0 ? NULL : \
2736 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2737 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2738 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2739
2740 static inline const struct intel_device_info *
2741 intel_info(const struct drm_i915_private *dev_priv)
2742 {
2743 return &dev_priv->info;
2744 }
2745
2746 #define INTEL_INFO(dev_priv) intel_info((dev_priv))
2747
2748 #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen)
2749 #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id)
2750
2751 #define REVID_FOREVER 0xff
2752 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision)
2753
2754 #define GEN_FOREVER (0)
2755 /*
2756 * Returns true if Gen is in inclusive range [Start, End].
2757 *
2758 * Use GEN_FOREVER for unbound start and or end.
2759 */
2760 #define IS_GEN(dev_priv, s, e) ({ \
2761 unsigned int __s = (s), __e = (e); \
2762 BUILD_BUG_ON(!__builtin_constant_p(s)); \
2763 BUILD_BUG_ON(!__builtin_constant_p(e)); \
2764 if ((__s) != GEN_FOREVER) \
2765 __s = (s) - 1; \
2766 if ((__e) == GEN_FOREVER) \
2767 __e = BITS_PER_LONG - 1; \
2768 else \
2769 __e = (e) - 1; \
2770 !!((dev_priv)->info.gen_mask & GENMASK((__e), (__s))); \
2771 })
2772
2773 /*
2774 * Return true if revision is in range [since,until] inclusive.
2775 *
2776 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2777 */
2778 #define IS_REVID(p, since, until) \
2779 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2780
2781 #define IS_I830(dev_priv) ((dev_priv)->info.platform == INTEL_I830)
2782 #define IS_I845G(dev_priv) ((dev_priv)->info.platform == INTEL_I845G)
2783 #define IS_I85X(dev_priv) ((dev_priv)->info.platform == INTEL_I85X)
2784 #define IS_I865G(dev_priv) ((dev_priv)->info.platform == INTEL_I865G)
2785 #define IS_I915G(dev_priv) ((dev_priv)->info.platform == INTEL_I915G)
2786 #define IS_I915GM(dev_priv) ((dev_priv)->info.platform == INTEL_I915GM)
2787 #define IS_I945G(dev_priv) ((dev_priv)->info.platform == INTEL_I945G)
2788 #define IS_I945GM(dev_priv) ((dev_priv)->info.platform == INTEL_I945GM)
2789 #define IS_I965G(dev_priv) ((dev_priv)->info.platform == INTEL_I965G)
2790 #define IS_I965GM(dev_priv) ((dev_priv)->info.platform == INTEL_I965GM)
2791 #define IS_G45(dev_priv) ((dev_priv)->info.platform == INTEL_G45)
2792 #define IS_GM45(dev_priv) ((dev_priv)->info.platform == INTEL_GM45)
2793 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv))
2794 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001)
2795 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011)
2796 #define IS_PINEVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_PINEVIEW)
2797 #define IS_G33(dev_priv) ((dev_priv)->info.platform == INTEL_G33)
2798 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046)
2799 #define IS_IVYBRIDGE(dev_priv) ((dev_priv)->info.platform == INTEL_IVYBRIDGE)
2800 #define IS_IVB_GT1(dev_priv) (INTEL_DEVID(dev_priv) == 0x0156 || \
2801 INTEL_DEVID(dev_priv) == 0x0152 || \
2802 INTEL_DEVID(dev_priv) == 0x015a)
2803 #define IS_VALLEYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_VALLEYVIEW)
2804 #define IS_CHERRYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_CHERRYVIEW)
2805 #define IS_HASWELL(dev_priv) ((dev_priv)->info.platform == INTEL_HASWELL)
2806 #define IS_BROADWELL(dev_priv) ((dev_priv)->info.platform == INTEL_BROADWELL)
2807 #define IS_SKYLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_SKYLAKE)
2808 #define IS_BROXTON(dev_priv) ((dev_priv)->info.platform == INTEL_BROXTON)
2809 #define IS_KABYLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_KABYLAKE)
2810 #define IS_GEMINILAKE(dev_priv) ((dev_priv)->info.platform == INTEL_GEMINILAKE)
2811 #define IS_COFFEELAKE(dev_priv) ((dev_priv)->info.platform == INTEL_COFFEELAKE)
2812 #define IS_CANNONLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_CANNONLAKE)
2813 #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile)
2814 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2815 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2816 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \
2817 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \
2818 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \
2819 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2820 /* ULX machines are also considered ULT. */
2821 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \
2822 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2823 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \
2824 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2825 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \
2826 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2827 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \
2828 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2829 /* ULX machines are also considered ULT. */
2830 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \
2831 INTEL_DEVID(dev_priv) == 0x0A1E)
2832 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \
2833 INTEL_DEVID(dev_priv) == 0x1913 || \
2834 INTEL_DEVID(dev_priv) == 0x1916 || \
2835 INTEL_DEVID(dev_priv) == 0x1921 || \
2836 INTEL_DEVID(dev_priv) == 0x1926)
2837 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \
2838 INTEL_DEVID(dev_priv) == 0x1915 || \
2839 INTEL_DEVID(dev_priv) == 0x191E)
2840 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \
2841 INTEL_DEVID(dev_priv) == 0x5913 || \
2842 INTEL_DEVID(dev_priv) == 0x5916 || \
2843 INTEL_DEVID(dev_priv) == 0x5921 || \
2844 INTEL_DEVID(dev_priv) == 0x5926)
2845 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \
2846 INTEL_DEVID(dev_priv) == 0x5915 || \
2847 INTEL_DEVID(dev_priv) == 0x591E)
2848 #define IS_SKL_GT2(dev_priv) (IS_SKYLAKE(dev_priv) && \
2849 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0010)
2850 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \
2851 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2852 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \
2853 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0030)
2854 #define IS_KBL_GT2(dev_priv) (IS_KABYLAKE(dev_priv) && \
2855 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0010)
2856 #define IS_KBL_GT3(dev_priv) (IS_KABYLAKE(dev_priv) && \
2857 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2858 #define IS_CFL_ULT(dev_priv) (IS_COFFEELAKE(dev_priv) && \
2859 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2860
2861 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2862
2863 #define SKL_REVID_A0 0x0
2864 #define SKL_REVID_B0 0x1
2865 #define SKL_REVID_C0 0x2
2866 #define SKL_REVID_D0 0x3
2867 #define SKL_REVID_E0 0x4
2868 #define SKL_REVID_F0 0x5
2869 #define SKL_REVID_G0 0x6
2870 #define SKL_REVID_H0 0x7
2871
2872 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2873
2874 #define BXT_REVID_A0 0x0
2875 #define BXT_REVID_A1 0x1
2876 #define BXT_REVID_B0 0x3
2877 #define BXT_REVID_B_LAST 0x8
2878 #define BXT_REVID_C0 0x9
2879
2880 #define IS_BXT_REVID(dev_priv, since, until) \
2881 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2882
2883 #define KBL_REVID_A0 0x0
2884 #define KBL_REVID_B0 0x1
2885 #define KBL_REVID_C0 0x2
2886 #define KBL_REVID_D0 0x3
2887 #define KBL_REVID_E0 0x4
2888
2889 #define IS_KBL_REVID(dev_priv, since, until) \
2890 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2891
2892 #define GLK_REVID_A0 0x0
2893 #define GLK_REVID_A1 0x1
2894
2895 #define IS_GLK_REVID(dev_priv, since, until) \
2896 (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2897
2898 #define CNL_REVID_A0 0x0
2899 #define CNL_REVID_B0 0x1
2900
2901 #define IS_CNL_REVID(p, since, until) \
2902 (IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2903
2904 /*
2905 * The genX designation typically refers to the render engine, so render
2906 * capability related checks should use IS_GEN, while display and other checks
2907 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2908 * chips, etc.).
2909 */
2910 #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1)))
2911 #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2)))
2912 #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3)))
2913 #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4)))
2914 #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5)))
2915 #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6)))
2916 #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7)))
2917 #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8)))
2918 #define IS_GEN10(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(9)))
2919
2920 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp)
2921 #define IS_GEN9_LP(dev_priv) (IS_GEN9(dev_priv) && IS_LP(dev_priv))
2922 #define IS_GEN9_BC(dev_priv) (IS_GEN9(dev_priv) && !IS_LP(dev_priv))
2923
2924 #define ENGINE_MASK(id) BIT(id)
2925 #define RENDER_RING ENGINE_MASK(RCS)
2926 #define BSD_RING ENGINE_MASK(VCS)
2927 #define BLT_RING ENGINE_MASK(BCS)
2928 #define VEBOX_RING ENGINE_MASK(VECS)
2929 #define BSD2_RING ENGINE_MASK(VCS2)
2930 #define ALL_ENGINES (~0)
2931
2932 #define HAS_ENGINE(dev_priv, id) \
2933 (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
2934
2935 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
2936 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
2937 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
2938 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
2939
2940 #define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc)
2941 #define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop)
2942 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED))
2943 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \
2944 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
2945
2946 #define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical)
2947
2948 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
2949 ((dev_priv)->info.has_logical_ring_contexts)
2950 #define USES_PPGTT(dev_priv) (i915.enable_ppgtt)
2951 #define USES_FULL_PPGTT(dev_priv) (i915.enable_ppgtt >= 2)
2952 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915.enable_ppgtt == 3)
2953
2954 #define HAS_OVERLAY(dev_priv) ((dev_priv)->info.has_overlay)
2955 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
2956 ((dev_priv)->info.overlay_needs_physical)
2957
2958 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2959 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv))
2960
2961 /* WaRsDisableCoarsePowerGating:skl,bxt */
2962 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2963 (IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
2964
2965 /*
2966 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2967 * even when in MSI mode. This results in spurious interrupt warnings if the
2968 * legacy irq no. is shared with another device. The kernel then disables that
2969 * interrupt source and so prevents the other device from working properly.
2970 */
2971 #define HAS_AUX_IRQ(dev_priv) ((dev_priv)->info.gen >= 5)
2972 #define HAS_GMBUS_IRQ(dev_priv) ((dev_priv)->info.has_gmbus_irq)
2973
2974 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2975 * rows, which changed the alignment requirements and fence programming.
2976 */
2977 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
2978 !(IS_I915G(dev_priv) || \
2979 IS_I915GM(dev_priv)))
2980 #define SUPPORTS_TV(dev_priv) ((dev_priv)->info.supports_tv)
2981 #define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.has_hotplug)
2982
2983 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2)
2984 #define HAS_PIPE_CXSR(dev_priv) ((dev_priv)->info.has_pipe_cxsr)
2985 #define HAS_FBC(dev_priv) ((dev_priv)->info.has_fbc)
2986 #define HAS_CUR_FBC(dev_priv) (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_INFO(dev_priv)->gen >= 7)
2987
2988 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
2989
2990 #define HAS_DP_MST(dev_priv) ((dev_priv)->info.has_dp_mst)
2991
2992 #define HAS_DDI(dev_priv) ((dev_priv)->info.has_ddi)
2993 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
2994 #define HAS_PSR(dev_priv) ((dev_priv)->info.has_psr)
2995 #define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6)
2996 #define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p)
2997
2998 #define HAS_CSR(dev_priv) ((dev_priv)->info.has_csr)
2999
3000 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
3001 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
3002
3003 /*
3004 * For now, anything with a GuC requires uCode loading, and then supports
3005 * command submission once loaded. But these are logically independent
3006 * properties, so we have separate macros to test them.
3007 */
3008 #define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc)
3009 #define HAS_GUC_CT(dev_priv) ((dev_priv)->info.has_guc_ct)
3010 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3011 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv))
3012 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3013
3014 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
3015
3016 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu)
3017
3018 #define INTEL_PCH_DEVICE_ID_MASK 0xff80
3019 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
3020 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
3021 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
3022 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
3023 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
3024 #define INTEL_PCH_WPT_DEVICE_ID_TYPE 0x8c80
3025 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE 0x9c80
3026 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
3027 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
3028 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA280
3029 #define INTEL_PCH_CNP_DEVICE_ID_TYPE 0xA300
3030 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE 0x9D80
3031 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
3032 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
3033 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
3034
3035 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
3036 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
3037 #define HAS_PCH_CNP_LP(dev_priv) \
3038 ((dev_priv)->pch_id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
3039 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
3040 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
3041 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
3042 #define HAS_PCH_LPT_LP(dev_priv) \
3043 ((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
3044 (dev_priv)->pch_id == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
3045 #define HAS_PCH_LPT_H(dev_priv) \
3046 ((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
3047 (dev_priv)->pch_id == INTEL_PCH_WPT_DEVICE_ID_TYPE)
3048 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
3049 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
3050 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
3051 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
3052
3053 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
3054
3055 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
3056
3057 /* DPF == dynamic parity feature */
3058 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
3059 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
3060 2 : HAS_L3_DPF(dev_priv))
3061
3062 #define GT_FREQUENCY_MULTIPLIER 50
3063 #define GEN9_FREQ_SCALER 3
3064
3065 #include "i915_trace.h"
3066
3067 static inline bool intel_vtd_active(void)
3068 {
3069 #ifdef CONFIG_INTEL_IOMMU
3070 if (intel_iommu_gfx_mapped)
3071 return true;
3072 #endif
3073 return false;
3074 }
3075
3076 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
3077 {
3078 return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
3079 }
3080
3081 static inline bool
3082 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
3083 {
3084 return IS_BROXTON(dev_priv) && intel_vtd_active();
3085 }
3086
3087 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
3088 int enable_ppgtt);
3089
3090 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
3091
3092 /* i915_drv.c */
3093 void __printf(3, 4)
3094 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
3095 const char *fmt, ...);
3096
3097 #define i915_report_error(dev_priv, fmt, ...) \
3098 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
3099
3100 #ifdef CONFIG_COMPAT
3101 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
3102 unsigned long arg);
3103 #else
3104 #define i915_compat_ioctl NULL
3105 #endif
3106 extern const struct dev_pm_ops i915_pm_ops;
3107
3108 extern int i915_driver_load(struct pci_dev *pdev,
3109 const struct pci_device_id *ent);
3110 extern void i915_driver_unload(struct drm_device *dev);
3111 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
3112 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
3113 extern void i915_reset(struct drm_i915_private *dev_priv);
3114 extern int i915_reset_engine(struct intel_engine_cs *engine);
3115 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
3116 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
3117 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
3118 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
3119 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
3120 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
3121 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
3122 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
3123 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
3124
3125 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
3126 int intel_engines_init(struct drm_i915_private *dev_priv);
3127
3128 /* intel_hotplug.c */
3129 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
3130 u32 pin_mask, u32 long_mask);
3131 void intel_hpd_init(struct drm_i915_private *dev_priv);
3132 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
3133 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
3134 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
3135 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3136 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3137
3138 /* i915_irq.c */
3139 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
3140 {
3141 unsigned long delay;
3142
3143 if (unlikely(!i915.enable_hangcheck))
3144 return;
3145
3146 /* Don't continually defer the hangcheck so that it is always run at
3147 * least once after work has been scheduled on any ring. Otherwise,
3148 * we will ignore a hung ring if a second ring is kept busy.
3149 */
3150
3151 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
3152 queue_delayed_work(system_long_wq,
3153 &dev_priv->gpu_error.hangcheck_work, delay);
3154 }
3155
3156 __printf(3, 4)
3157 void i915_handle_error(struct drm_i915_private *dev_priv,
3158 u32 engine_mask,
3159 const char *fmt, ...);
3160
3161 extern void intel_irq_init(struct drm_i915_private *dev_priv);
3162 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
3163 int intel_irq_install(struct drm_i915_private *dev_priv);
3164 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
3165
3166 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3167 {
3168 return dev_priv->gvt;
3169 }
3170
3171 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3172 {
3173 return dev_priv->vgpu.active;
3174 }
3175
3176 void
3177 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3178 u32 status_mask);
3179
3180 void
3181 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3182 u32 status_mask);
3183
3184 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3185 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3186 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3187 uint32_t mask,
3188 uint32_t bits);
3189 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3190 uint32_t interrupt_mask,
3191 uint32_t enabled_irq_mask);
3192 static inline void
3193 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3194 {
3195 ilk_update_display_irq(dev_priv, bits, bits);
3196 }
3197 static inline void
3198 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3199 {
3200 ilk_update_display_irq(dev_priv, bits, 0);
3201 }
3202 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3203 enum pipe pipe,
3204 uint32_t interrupt_mask,
3205 uint32_t enabled_irq_mask);
3206 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3207 enum pipe pipe, uint32_t bits)
3208 {
3209 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3210 }
3211 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3212 enum pipe pipe, uint32_t bits)
3213 {
3214 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3215 }
3216 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3217 uint32_t interrupt_mask,
3218 uint32_t enabled_irq_mask);
3219 static inline void
3220 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3221 {
3222 ibx_display_interrupt_update(dev_priv, bits, bits);
3223 }
3224 static inline void
3225 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3226 {
3227 ibx_display_interrupt_update(dev_priv, bits, 0);
3228 }
3229
3230 /* i915_gem.c */
3231 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3232 struct drm_file *file_priv);
3233 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3234 struct drm_file *file_priv);
3235 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3236 struct drm_file *file_priv);
3237 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3238 struct drm_file *file_priv);
3239 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3240 struct drm_file *file_priv);
3241 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3242 struct drm_file *file_priv);
3243 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3244 struct drm_file *file_priv);
3245 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3246 struct drm_file *file_priv);
3247 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3248 struct drm_file *file_priv);
3249 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3250 struct drm_file *file_priv);
3251 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3252 struct drm_file *file);
3253 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3254 struct drm_file *file);
3255 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3256 struct drm_file *file_priv);
3257 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3258 struct drm_file *file_priv);
3259 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
3260 struct drm_file *file_priv);
3261 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
3262 struct drm_file *file_priv);
3263 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3264 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
3265 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3266 struct drm_file *file);
3267 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3268 struct drm_file *file_priv);
3269 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3270 struct drm_file *file_priv);
3271 void i915_gem_sanitize(struct drm_i915_private *i915);
3272 int i915_gem_load_init(struct drm_i915_private *dev_priv);
3273 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv);
3274 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3275 int i915_gem_freeze(struct drm_i915_private *dev_priv);
3276 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3277
3278 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
3279 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3280 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3281 const struct drm_i915_gem_object_ops *ops);
3282 struct drm_i915_gem_object *
3283 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
3284 struct drm_i915_gem_object *
3285 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
3286 const void *data, size_t size);
3287 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3288 void i915_gem_free_object(struct drm_gem_object *obj);
3289
3290 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
3291 {
3292 /* A single pass should suffice to release all the freed objects (along
3293 * most call paths) , but be a little more paranoid in that freeing
3294 * the objects does take a little amount of time, during which the rcu
3295 * callbacks could have added new objects into the freed list, and
3296 * armed the work again.
3297 */
3298 do {
3299 rcu_barrier();
3300 } while (flush_work(&i915->mm.free_work));
3301 }
3302
3303 struct i915_vma * __must_check
3304 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3305 const struct i915_ggtt_view *view,
3306 u64 size,
3307 u64 alignment,
3308 u64 flags);
3309
3310 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3311 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3312
3313 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3314
3315 static inline int __sg_page_count(const struct scatterlist *sg)
3316 {
3317 return sg->length >> PAGE_SHIFT;
3318 }
3319
3320 struct scatterlist *
3321 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3322 unsigned int n, unsigned int *offset);
3323
3324 struct page *
3325 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3326 unsigned int n);
3327
3328 struct page *
3329 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3330 unsigned int n);
3331
3332 dma_addr_t
3333 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3334 unsigned long n);
3335
3336 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3337 struct sg_table *pages);
3338 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3339
3340 static inline int __must_check
3341 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3342 {
3343 might_lock(&obj->mm.lock);
3344
3345 if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3346 return 0;
3347
3348 return __i915_gem_object_get_pages(obj);
3349 }
3350
3351 static inline void
3352 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3353 {
3354 GEM_BUG_ON(!obj->mm.pages);
3355
3356 atomic_inc(&obj->mm.pages_pin_count);
3357 }
3358
3359 static inline bool
3360 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3361 {
3362 return atomic_read(&obj->mm.pages_pin_count);
3363 }
3364
3365 static inline void
3366 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3367 {
3368 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3369 GEM_BUG_ON(!obj->mm.pages);
3370
3371 atomic_dec(&obj->mm.pages_pin_count);
3372 }
3373
3374 static inline void
3375 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3376 {
3377 __i915_gem_object_unpin_pages(obj);
3378 }
3379
3380 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3381 I915_MM_NORMAL = 0,
3382 I915_MM_SHRINKER
3383 };
3384
3385 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3386 enum i915_mm_subclass subclass);
3387 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3388
3389 enum i915_map_type {
3390 I915_MAP_WB = 0,
3391 I915_MAP_WC,
3392 };
3393
3394 /**
3395 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3396 * @obj: the object to map into kernel address space
3397 * @type: the type of mapping, used to select pgprot_t
3398 *
3399 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3400 * pages and then returns a contiguous mapping of the backing storage into
3401 * the kernel address space. Based on the @type of mapping, the PTE will be
3402 * set to either WriteBack or WriteCombine (via pgprot_t).
3403 *
3404 * The caller is responsible for calling i915_gem_object_unpin_map() when the
3405 * mapping is no longer required.
3406 *
3407 * Returns the pointer through which to access the mapped object, or an
3408 * ERR_PTR() on error.
3409 */
3410 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3411 enum i915_map_type type);
3412
3413 /**
3414 * i915_gem_object_unpin_map - releases an earlier mapping
3415 * @obj: the object to unmap
3416 *
3417 * After pinning the object and mapping its pages, once you are finished
3418 * with your access, call i915_gem_object_unpin_map() to release the pin
3419 * upon the mapping. Once the pin count reaches zero, that mapping may be
3420 * removed.
3421 */
3422 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3423 {
3424 i915_gem_object_unpin_pages(obj);
3425 }
3426
3427 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3428 unsigned int *needs_clflush);
3429 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3430 unsigned int *needs_clflush);
3431 #define CLFLUSH_BEFORE BIT(0)
3432 #define CLFLUSH_AFTER BIT(1)
3433 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER)
3434
3435 static inline void
3436 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3437 {
3438 i915_gem_object_unpin_pages(obj);
3439 }
3440
3441 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3442 void i915_vma_move_to_active(struct i915_vma *vma,
3443 struct drm_i915_gem_request *req,
3444 unsigned int flags);
3445 int i915_gem_dumb_create(struct drm_file *file_priv,
3446 struct drm_device *dev,
3447 struct drm_mode_create_dumb *args);
3448 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3449 uint32_t handle, uint64_t *offset);
3450 int i915_gem_mmap_gtt_version(void);
3451
3452 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3453 struct drm_i915_gem_object *new,
3454 unsigned frontbuffer_bits);
3455
3456 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3457
3458 struct drm_i915_gem_request *
3459 i915_gem_find_active_request(struct intel_engine_cs *engine);
3460
3461 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3462
3463 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3464 {
3465 return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3466 }
3467
3468 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3469 {
3470 return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3471 }
3472
3473 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3474 {
3475 return unlikely(test_bit(I915_WEDGED, &error->flags));
3476 }
3477
3478 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3479 {
3480 return i915_reset_backoff(error) | i915_terminally_wedged(error);
3481 }
3482
3483 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3484 {
3485 return READ_ONCE(error->reset_count);
3486 }
3487
3488 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3489 struct intel_engine_cs *engine)
3490 {
3491 return READ_ONCE(error->reset_engine_count[engine->id]);
3492 }
3493
3494 struct drm_i915_gem_request *
3495 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3496 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3497 void i915_gem_reset(struct drm_i915_private *dev_priv);
3498 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3499 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3500 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3501 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3502 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3503 struct drm_i915_gem_request *request);
3504
3505 void i915_gem_init_mmio(struct drm_i915_private *i915);
3506 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3507 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3508 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3509 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3510 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3511 unsigned int flags);
3512 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3513 void i915_gem_resume(struct drm_i915_private *dev_priv);
3514 int i915_gem_fault(struct vm_fault *vmf);
3515 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3516 unsigned int flags,
3517 long timeout,
3518 struct intel_rps_client *rps);
3519 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3520 unsigned int flags,
3521 int priority);
3522 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3523
3524 int __must_check
3525 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3526 int __must_check
3527 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3528 int __must_check
3529 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3530 struct i915_vma * __must_check
3531 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3532 u32 alignment,
3533 const struct i915_ggtt_view *view);
3534 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3535 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3536 int align);
3537 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3538 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3539
3540 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3541 enum i915_cache_level cache_level);
3542
3543 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3544 struct dma_buf *dma_buf);
3545
3546 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3547 struct drm_gem_object *gem_obj, int flags);
3548
3549 static inline struct i915_hw_ppgtt *
3550 i915_vm_to_ppgtt(struct i915_address_space *vm)
3551 {
3552 return container_of(vm, struct i915_hw_ppgtt, base);
3553 }
3554
3555 /* i915_gem_fence_reg.c */
3556 int __must_check i915_vma_get_fence(struct i915_vma *vma);
3557 int __must_check i915_vma_put_fence(struct i915_vma *vma);
3558
3559 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3560 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3561
3562 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3563 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3564 struct sg_table *pages);
3565 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3566 struct sg_table *pages);
3567
3568 static inline struct i915_gem_context *
3569 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3570 {
3571 return idr_find(&file_priv->context_idr, id);
3572 }
3573
3574 static inline struct i915_gem_context *
3575 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3576 {
3577 struct i915_gem_context *ctx;
3578
3579 rcu_read_lock();
3580 ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3581 if (ctx && !kref_get_unless_zero(&ctx->ref))
3582 ctx = NULL;
3583 rcu_read_unlock();
3584
3585 return ctx;
3586 }
3587
3588 static inline struct intel_timeline *
3589 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx,
3590 struct intel_engine_cs *engine)
3591 {
3592 struct i915_address_space *vm;
3593
3594 vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base;
3595 return &vm->timeline.engine[engine->id];
3596 }
3597
3598 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3599 struct drm_file *file);
3600 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3601 struct i915_gem_context *ctx,
3602 uint32_t *reg_state);
3603
3604 /* i915_gem_evict.c */
3605 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3606 u64 min_size, u64 alignment,
3607 unsigned cache_level,
3608 u64 start, u64 end,
3609 unsigned flags);
3610 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3611 struct drm_mm_node *node,
3612 unsigned int flags);
3613 int i915_gem_evict_vm(struct i915_address_space *vm);
3614
3615 /* belongs in i915_gem_gtt.h */
3616 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3617 {
3618 wmb();
3619 if (INTEL_GEN(dev_priv) < 6)
3620 intel_gtt_chipset_flush();
3621 }
3622
3623 /* i915_gem_stolen.c */
3624 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3625 struct drm_mm_node *node, u64 size,
3626 unsigned alignment);
3627 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3628 struct drm_mm_node *node, u64 size,
3629 unsigned alignment, u64 start,
3630 u64 end);
3631 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3632 struct drm_mm_node *node);
3633 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3634 void i915_gem_cleanup_stolen(struct drm_device *dev);
3635 struct drm_i915_gem_object *
3636 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size);
3637 struct drm_i915_gem_object *
3638 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3639 u32 stolen_offset,
3640 u32 gtt_offset,
3641 u32 size);
3642
3643 /* i915_gem_internal.c */
3644 struct drm_i915_gem_object *
3645 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3646 phys_addr_t size);
3647
3648 /* i915_gem_shrinker.c */
3649 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3650 unsigned long target,
3651 unsigned flags);
3652 #define I915_SHRINK_PURGEABLE 0x1
3653 #define I915_SHRINK_UNBOUND 0x2
3654 #define I915_SHRINK_BOUND 0x4
3655 #define I915_SHRINK_ACTIVE 0x8
3656 #define I915_SHRINK_VMAPS 0x10
3657 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3658 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3659 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3660
3661
3662 /* i915_gem_tiling.c */
3663 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3664 {
3665 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3666
3667 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3668 i915_gem_object_is_tiled(obj);
3669 }
3670
3671 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3672 unsigned int tiling, unsigned int stride);
3673 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3674 unsigned int tiling, unsigned int stride);
3675
3676 /* i915_debugfs.c */
3677 #ifdef CONFIG_DEBUG_FS
3678 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3679 int i915_debugfs_connector_add(struct drm_connector *connector);
3680 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3681 #else
3682 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3683 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3684 { return 0; }
3685 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3686 #endif
3687
3688 /* i915_gpu_error.c */
3689 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3690
3691 __printf(2, 3)
3692 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3693 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3694 const struct i915_gpu_state *gpu);
3695 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3696 struct drm_i915_private *i915,
3697 size_t count, loff_t pos);
3698 static inline void i915_error_state_buf_release(
3699 struct drm_i915_error_state_buf *eb)
3700 {
3701 kfree(eb->buf);
3702 }
3703
3704 struct i915_gpu_state *i915_capture_gpu_state(struct drm_i915_private *i915);
3705 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3706 u32 engine_mask,
3707 const char *error_msg);
3708
3709 static inline struct i915_gpu_state *
3710 i915_gpu_state_get(struct i915_gpu_state *gpu)
3711 {
3712 kref_get(&gpu->ref);
3713 return gpu;
3714 }
3715
3716 void __i915_gpu_state_free(struct kref *kref);
3717 static inline void i915_gpu_state_put(struct i915_gpu_state *gpu)
3718 {
3719 if (gpu)
3720 kref_put(&gpu->ref, __i915_gpu_state_free);
3721 }
3722
3723 struct i915_gpu_state *i915_first_error_state(struct drm_i915_private *i915);
3724 void i915_reset_error_state(struct drm_i915_private *i915);
3725
3726 #else
3727
3728 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3729 u32 engine_mask,
3730 const char *error_msg)
3731 {
3732 }
3733
3734 static inline struct i915_gpu_state *
3735 i915_first_error_state(struct drm_i915_private *i915)
3736 {
3737 return NULL;
3738 }
3739
3740 static inline void i915_reset_error_state(struct drm_i915_private *i915)
3741 {
3742 }
3743
3744 #endif
3745
3746 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3747
3748 /* i915_cmd_parser.c */
3749 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3750 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3751 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3752 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3753 struct drm_i915_gem_object *batch_obj,
3754 struct drm_i915_gem_object *shadow_batch_obj,
3755 u32 batch_start_offset,
3756 u32 batch_len,
3757 bool is_master);
3758
3759 /* i915_perf.c */
3760 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3761 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3762 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3763 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3764
3765 /* i915_suspend.c */
3766 extern int i915_save_state(struct drm_i915_private *dev_priv);
3767 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3768
3769 /* i915_sysfs.c */
3770 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3771 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3772
3773 /* intel_lpe_audio.c */
3774 int intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3775 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3776 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3777 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3778 enum pipe pipe, enum port port,
3779 const void *eld, int ls_clock, bool dp_output);
3780
3781 /* intel_i2c.c */
3782 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3783 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3784 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3785 unsigned int pin);
3786
3787 extern struct i2c_adapter *
3788 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3789 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3790 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3791 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3792 {
3793 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3794 }
3795 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3796
3797 /* intel_bios.c */
3798 void intel_bios_init(struct drm_i915_private *dev_priv);
3799 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3800 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3801 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3802 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3803 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3804 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3805 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3806 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3807 enum port port);
3808 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3809 enum port port);
3810
3811
3812 /* intel_opregion.c */
3813 #ifdef CONFIG_ACPI
3814 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3815 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3816 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3817 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3818 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3819 bool enable);
3820 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3821 pci_power_t state);
3822 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3823 #else
3824 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3825 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3826 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3827 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3828 {
3829 }
3830 static inline int
3831 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3832 {
3833 return 0;
3834 }
3835 static inline int
3836 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3837 {
3838 return 0;
3839 }
3840 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3841 {
3842 return -ENODEV;
3843 }
3844 #endif
3845
3846 /* intel_acpi.c */
3847 #ifdef CONFIG_ACPI
3848 extern void intel_register_dsm_handler(void);
3849 extern void intel_unregister_dsm_handler(void);
3850 #else
3851 static inline void intel_register_dsm_handler(void) { return; }
3852 static inline void intel_unregister_dsm_handler(void) { return; }
3853 #endif /* CONFIG_ACPI */
3854
3855 /* intel_device_info.c */
3856 static inline struct intel_device_info *
3857 mkwrite_device_info(struct drm_i915_private *dev_priv)
3858 {
3859 return (struct intel_device_info *)&dev_priv->info;
3860 }
3861
3862 const char *intel_platform_name(enum intel_platform platform);
3863 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
3864 void intel_device_info_dump(struct drm_i915_private *dev_priv);
3865
3866 /* modesetting */
3867 extern void intel_modeset_init_hw(struct drm_device *dev);
3868 extern int intel_modeset_init(struct drm_device *dev);
3869 extern void intel_modeset_gem_init(struct drm_device *dev);
3870 extern void intel_modeset_cleanup(struct drm_device *dev);
3871 extern int intel_connector_register(struct drm_connector *);
3872 extern void intel_connector_unregister(struct drm_connector *);
3873 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3874 bool state);
3875 extern void intel_display_resume(struct drm_device *dev);
3876 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3877 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3878 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3879 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3880 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3881 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3882 bool enable);
3883
3884 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3885 struct drm_file *file);
3886
3887 /* overlay */
3888 extern struct intel_overlay_error_state *
3889 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3890 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3891 struct intel_overlay_error_state *error);
3892
3893 extern struct intel_display_error_state *
3894 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3895 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3896 struct intel_display_error_state *error);
3897
3898 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3899 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3900 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3901 u32 reply_mask, u32 reply, int timeout_base_ms);
3902
3903 /* intel_sideband.c */
3904 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3905 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3906 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3907 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3908 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3909 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3910 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3911 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3912 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3913 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3914 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3915 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3916 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3917 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3918 enum intel_sbi_destination destination);
3919 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3920 enum intel_sbi_destination destination);
3921 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3922 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3923
3924 /* intel_dpio_phy.c */
3925 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
3926 enum dpio_phy *phy, enum dpio_channel *ch);
3927 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
3928 enum port port, u32 margin, u32 scale,
3929 u32 enable, u32 deemphasis);
3930 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3931 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3932 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
3933 enum dpio_phy phy);
3934 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
3935 enum dpio_phy phy);
3936 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
3937 uint8_t lane_count);
3938 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
3939 uint8_t lane_lat_optim_mask);
3940 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
3941
3942 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3943 u32 deemph_reg_value, u32 margin_reg_value,
3944 bool uniq_trans_scale);
3945 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3946 bool reset);
3947 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
3948 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3949 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3950 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
3951
3952 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3953 u32 demph_reg_value, u32 preemph_reg_value,
3954 u32 uniqtranscale_reg_value, u32 tx3_demph);
3955 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
3956 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3957 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
3958
3959 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3960 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3961 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
3962 const i915_reg_t reg);
3963
3964 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3965 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3966
3967 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3968 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3969 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3970 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3971
3972 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3973 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3974 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3975 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3976
3977 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3978 * will be implemented using 2 32-bit writes in an arbitrary order with
3979 * an arbitrary delay between them. This can cause the hardware to
3980 * act upon the intermediate value, possibly leading to corruption and
3981 * machine death. For this reason we do not support I915_WRITE64, or
3982 * dev_priv->uncore.funcs.mmio_writeq.
3983 *
3984 * When reading a 64-bit value as two 32-bit values, the delay may cause
3985 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
3986 * occasionally a 64-bit register does not actualy support a full readq
3987 * and must be read using two 32-bit reads.
3988 *
3989 * You have been warned.
3990 */
3991 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3992
3993 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
3994 u32 upper, lower, old_upper, loop = 0; \
3995 upper = I915_READ(upper_reg); \
3996 do { \
3997 old_upper = upper; \
3998 lower = I915_READ(lower_reg); \
3999 upper = I915_READ(upper_reg); \
4000 } while (upper != old_upper && loop++ < 2); \
4001 (u64)upper << 32 | lower; })
4002
4003 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
4004 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
4005
4006 #define __raw_read(x, s) \
4007 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
4008 i915_reg_t reg) \
4009 { \
4010 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
4011 }
4012
4013 #define __raw_write(x, s) \
4014 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
4015 i915_reg_t reg, uint##x##_t val) \
4016 { \
4017 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
4018 }
4019 __raw_read(8, b)
4020 __raw_read(16, w)
4021 __raw_read(32, l)
4022 __raw_read(64, q)
4023
4024 __raw_write(8, b)
4025 __raw_write(16, w)
4026 __raw_write(32, l)
4027 __raw_write(64, q)
4028
4029 #undef __raw_read
4030 #undef __raw_write
4031
4032 /* These are untraced mmio-accessors that are only valid to be used inside
4033 * critical sections, such as inside IRQ handlers, where forcewake is explicitly
4034 * controlled.
4035 *
4036 * Think twice, and think again, before using these.
4037 *
4038 * As an example, these accessors can possibly be used between:
4039 *
4040 * spin_lock_irq(&dev_priv->uncore.lock);
4041 * intel_uncore_forcewake_get__locked();
4042 *
4043 * and
4044 *
4045 * intel_uncore_forcewake_put__locked();
4046 * spin_unlock_irq(&dev_priv->uncore.lock);
4047 *
4048 *
4049 * Note: some registers may not need forcewake held, so
4050 * intel_uncore_forcewake_{get,put} can be omitted, see
4051 * intel_uncore_forcewake_for_reg().
4052 *
4053 * Certain architectures will die if the same cacheline is concurrently accessed
4054 * by different clients (e.g. on Ivybridge). Access to registers should
4055 * therefore generally be serialised, by either the dev_priv->uncore.lock or
4056 * a more localised lock guarding all access to that bank of registers.
4057 */
4058 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
4059 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
4060 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
4061 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
4062
4063 /* "Broadcast RGB" property */
4064 #define INTEL_BROADCAST_RGB_AUTO 0
4065 #define INTEL_BROADCAST_RGB_FULL 1
4066 #define INTEL_BROADCAST_RGB_LIMITED 2
4067
4068 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
4069 {
4070 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4071 return VLV_VGACNTRL;
4072 else if (INTEL_GEN(dev_priv) >= 5)
4073 return CPU_VGACNTRL;
4074 else
4075 return VGACNTRL;
4076 }
4077
4078 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
4079 {
4080 unsigned long j = msecs_to_jiffies(m);
4081
4082 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4083 }
4084
4085 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
4086 {
4087 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
4088 }
4089
4090 static inline unsigned long
4091 timespec_to_jiffies_timeout(const struct timespec *value)
4092 {
4093 unsigned long j = timespec_to_jiffies(value);
4094
4095 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4096 }
4097
4098 /*
4099 * If you need to wait X milliseconds between events A and B, but event B
4100 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
4101 * when event A happened, then just before event B you call this function and
4102 * pass the timestamp as the first argument, and X as the second argument.
4103 */
4104 static inline void
4105 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
4106 {
4107 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
4108
4109 /*
4110 * Don't re-read the value of "jiffies" every time since it may change
4111 * behind our back and break the math.
4112 */
4113 tmp_jiffies = jiffies;
4114 target_jiffies = timestamp_jiffies +
4115 msecs_to_jiffies_timeout(to_wait_ms);
4116
4117 if (time_after(target_jiffies, tmp_jiffies)) {
4118 remaining_jiffies = target_jiffies - tmp_jiffies;
4119 while (remaining_jiffies)
4120 remaining_jiffies =
4121 schedule_timeout_uninterruptible(remaining_jiffies);
4122 }
4123 }
4124
4125 static inline bool
4126 __i915_request_irq_complete(const struct drm_i915_gem_request *req)
4127 {
4128 struct intel_engine_cs *engine = req->engine;
4129 u32 seqno;
4130
4131 /* Note that the engine may have wrapped around the seqno, and
4132 * so our request->global_seqno will be ahead of the hardware,
4133 * even though it completed the request before wrapping. We catch
4134 * this by kicking all the waiters before resetting the seqno
4135 * in hardware, and also signal the fence.
4136 */
4137 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &req->fence.flags))
4138 return true;
4139
4140 /* The request was dequeued before we were awoken. We check after
4141 * inspecting the hw to confirm that this was the same request
4142 * that generated the HWS update. The memory barriers within
4143 * the request execution are sufficient to ensure that a check
4144 * after reading the value from hw matches this request.
4145 */
4146 seqno = i915_gem_request_global_seqno(req);
4147 if (!seqno)
4148 return false;
4149
4150 /* Before we do the heavier coherent read of the seqno,
4151 * check the value (hopefully) in the CPU cacheline.
4152 */
4153 if (__i915_gem_request_completed(req, seqno))
4154 return true;
4155
4156 /* Ensure our read of the seqno is coherent so that we
4157 * do not "miss an interrupt" (i.e. if this is the last
4158 * request and the seqno write from the GPU is not visible
4159 * by the time the interrupt fires, we will see that the
4160 * request is incomplete and go back to sleep awaiting
4161 * another interrupt that will never come.)
4162 *
4163 * Strictly, we only need to do this once after an interrupt,
4164 * but it is easier and safer to do it every time the waiter
4165 * is woken.
4166 */
4167 if (engine->irq_seqno_barrier &&
4168 test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
4169 struct intel_breadcrumbs *b = &engine->breadcrumbs;
4170
4171 /* The ordering of irq_posted versus applying the barrier
4172 * is crucial. The clearing of the current irq_posted must
4173 * be visible before we perform the barrier operation,
4174 * such that if a subsequent interrupt arrives, irq_posted
4175 * is reasserted and our task rewoken (which causes us to
4176 * do another __i915_request_irq_complete() immediately
4177 * and reapply the barrier). Conversely, if the clear
4178 * occurs after the barrier, then an interrupt that arrived
4179 * whilst we waited on the barrier would not trigger a
4180 * barrier on the next pass, and the read may not see the
4181 * seqno update.
4182 */
4183 engine->irq_seqno_barrier(engine);
4184
4185 /* If we consume the irq, but we are no longer the bottom-half,
4186 * the real bottom-half may not have serialised their own
4187 * seqno check with the irq-barrier (i.e. may have inspected
4188 * the seqno before we believe it coherent since they see
4189 * irq_posted == false but we are still running).
4190 */
4191 spin_lock_irq(&b->irq_lock);
4192 if (b->irq_wait && b->irq_wait->tsk != current)
4193 /* Note that if the bottom-half is changed as we
4194 * are sending the wake-up, the new bottom-half will
4195 * be woken by whomever made the change. We only have
4196 * to worry about when we steal the irq-posted for
4197 * ourself.
4198 */
4199 wake_up_process(b->irq_wait->tsk);
4200 spin_unlock_irq(&b->irq_lock);
4201
4202 if (__i915_gem_request_completed(req, seqno))
4203 return true;
4204 }
4205
4206 return false;
4207 }
4208
4209 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
4210 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
4211
4212 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
4213 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
4214 * perform the operation. To check beforehand, pass in the parameters to
4215 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
4216 * you only need to pass in the minor offsets, page-aligned pointers are
4217 * always valid.
4218 *
4219 * For just checking for SSE4.1, in the foreknowledge that the future use
4220 * will be correctly aligned, just use i915_has_memcpy_from_wc().
4221 */
4222 #define i915_can_memcpy_from_wc(dst, src, len) \
4223 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
4224
4225 #define i915_has_memcpy_from_wc() \
4226 i915_memcpy_from_wc(NULL, NULL, 0)
4227
4228 /* i915_mm.c */
4229 int remap_io_mapping(struct vm_area_struct *vma,
4230 unsigned long addr, unsigned long pfn, unsigned long size,
4231 struct io_mapping *iomap);
4232
4233 static inline bool i915_gem_object_is_coherent(struct drm_i915_gem_object *obj)
4234 {
4235 return (obj->cache_level != I915_CACHE_NONE ||
4236 HAS_LLC(to_i915(obj->base.dev)));
4237 }
4238
4239 #endif