]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.h
drm/i915: Fix context ban and hang accounting for client
[mirror_ubuntu-jammy-kernel.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/perf_event.h>
44 #include <linux/pm_qos.h>
45 #include <linux/reservation.h>
46 #include <linux/shmem_fs.h>
47
48 #include <drm/drmP.h>
49 #include <drm/intel-gtt.h>
50 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
51 #include <drm/drm_gem.h>
52 #include <drm/drm_auth.h>
53 #include <drm/drm_cache.h>
54
55 #include "i915_params.h"
56 #include "i915_reg.h"
57 #include "i915_utils.h"
58
59 #include "intel_bios.h"
60 #include "intel_device_info.h"
61 #include "intel_display.h"
62 #include "intel_dpll_mgr.h"
63 #include "intel_lrc.h"
64 #include "intel_opregion.h"
65 #include "intel_ringbuffer.h"
66 #include "intel_uncore.h"
67 #include "intel_wopcm.h"
68 #include "intel_uc.h"
69
70 #include "i915_gem.h"
71 #include "i915_gem_context.h"
72 #include "i915_gem_fence_reg.h"
73 #include "i915_gem_object.h"
74 #include "i915_gem_gtt.h"
75 #include "i915_gpu_error.h"
76 #include "i915_request.h"
77 #include "i915_scheduler.h"
78 #include "i915_timeline.h"
79 #include "i915_vma.h"
80
81 #include "intel_gvt.h"
82
83 /* General customization:
84 */
85
86 #define DRIVER_NAME "i915"
87 #define DRIVER_DESC "Intel Graphics"
88 #define DRIVER_DATE "20180514"
89 #define DRIVER_TIMESTAMP 1526300884
90
91 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
92 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
93 * which may not necessarily be a user visible problem. This will either
94 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
95 * enable distros and users to tailor their preferred amount of i915 abrt
96 * spam.
97 */
98 #define I915_STATE_WARN(condition, format...) ({ \
99 int __ret_warn_on = !!(condition); \
100 if (unlikely(__ret_warn_on)) \
101 if (!WARN(i915_modparams.verbose_state_checks, format)) \
102 DRM_ERROR(format); \
103 unlikely(__ret_warn_on); \
104 })
105
106 #define I915_STATE_WARN_ON(x) \
107 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
108
109 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
110 bool __i915_inject_load_failure(const char *func, int line);
111 #define i915_inject_load_failure() \
112 __i915_inject_load_failure(__func__, __LINE__)
113 #else
114 #define i915_inject_load_failure() false
115 #endif
116
117 typedef struct {
118 uint32_t val;
119 } uint_fixed_16_16_t;
120
121 #define FP_16_16_MAX ({ \
122 uint_fixed_16_16_t fp; \
123 fp.val = UINT_MAX; \
124 fp; \
125 })
126
127 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
128 {
129 if (val.val == 0)
130 return true;
131 return false;
132 }
133
134 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val)
135 {
136 uint_fixed_16_16_t fp;
137
138 WARN_ON(val > U16_MAX);
139
140 fp.val = val << 16;
141 return fp;
142 }
143
144 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp)
145 {
146 return DIV_ROUND_UP(fp.val, 1 << 16);
147 }
148
149 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp)
150 {
151 return fp.val >> 16;
152 }
153
154 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1,
155 uint_fixed_16_16_t min2)
156 {
157 uint_fixed_16_16_t min;
158
159 min.val = min(min1.val, min2.val);
160 return min;
161 }
162
163 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1,
164 uint_fixed_16_16_t max2)
165 {
166 uint_fixed_16_16_t max;
167
168 max.val = max(max1.val, max2.val);
169 return max;
170 }
171
172 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val)
173 {
174 uint_fixed_16_16_t fp;
175 WARN_ON(val > U32_MAX);
176 fp.val = (uint32_t) val;
177 return fp;
178 }
179
180 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
181 uint_fixed_16_16_t d)
182 {
183 return DIV_ROUND_UP(val.val, d.val);
184 }
185
186 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
187 uint_fixed_16_16_t mul)
188 {
189 uint64_t intermediate_val;
190
191 intermediate_val = (uint64_t) val * mul.val;
192 intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
193 WARN_ON(intermediate_val > U32_MAX);
194 return (uint32_t) intermediate_val;
195 }
196
197 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
198 uint_fixed_16_16_t mul)
199 {
200 uint64_t intermediate_val;
201
202 intermediate_val = (uint64_t) val.val * mul.val;
203 intermediate_val = intermediate_val >> 16;
204 return clamp_u64_to_fixed16(intermediate_val);
205 }
206
207 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d)
208 {
209 uint64_t interm_val;
210
211 interm_val = (uint64_t)val << 16;
212 interm_val = DIV_ROUND_UP_ULL(interm_val, d);
213 return clamp_u64_to_fixed16(interm_val);
214 }
215
216 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
217 uint_fixed_16_16_t d)
218 {
219 uint64_t interm_val;
220
221 interm_val = (uint64_t)val << 16;
222 interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
223 WARN_ON(interm_val > U32_MAX);
224 return (uint32_t) interm_val;
225 }
226
227 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val,
228 uint_fixed_16_16_t mul)
229 {
230 uint64_t intermediate_val;
231
232 intermediate_val = (uint64_t) val * mul.val;
233 return clamp_u64_to_fixed16(intermediate_val);
234 }
235
236 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1,
237 uint_fixed_16_16_t add2)
238 {
239 uint64_t interm_sum;
240
241 interm_sum = (uint64_t) add1.val + add2.val;
242 return clamp_u64_to_fixed16(interm_sum);
243 }
244
245 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1,
246 uint32_t add2)
247 {
248 uint64_t interm_sum;
249 uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2);
250
251 interm_sum = (uint64_t) add1.val + interm_add2.val;
252 return clamp_u64_to_fixed16(interm_sum);
253 }
254
255 enum hpd_pin {
256 HPD_NONE = 0,
257 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
258 HPD_CRT,
259 HPD_SDVO_B,
260 HPD_SDVO_C,
261 HPD_PORT_A,
262 HPD_PORT_B,
263 HPD_PORT_C,
264 HPD_PORT_D,
265 HPD_PORT_E,
266 HPD_PORT_F,
267 HPD_NUM_PINS
268 };
269
270 #define for_each_hpd_pin(__pin) \
271 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
272
273 #define HPD_STORM_DEFAULT_THRESHOLD 5
274
275 struct i915_hotplug {
276 struct work_struct hotplug_work;
277
278 struct {
279 unsigned long last_jiffies;
280 int count;
281 enum {
282 HPD_ENABLED = 0,
283 HPD_DISABLED = 1,
284 HPD_MARK_DISABLED = 2
285 } state;
286 } stats[HPD_NUM_PINS];
287 u32 event_bits;
288 struct delayed_work reenable_work;
289
290 struct intel_digital_port *irq_port[I915_MAX_PORTS];
291 u32 long_port_mask;
292 u32 short_port_mask;
293 struct work_struct dig_port_work;
294
295 struct work_struct poll_init_work;
296 bool poll_enabled;
297
298 unsigned int hpd_storm_threshold;
299
300 /*
301 * if we get a HPD irq from DP and a HPD irq from non-DP
302 * the non-DP HPD could block the workqueue on a mode config
303 * mutex getting, that userspace may have taken. However
304 * userspace is waiting on the DP workqueue to run which is
305 * blocked behind the non-DP one.
306 */
307 struct workqueue_struct *dp_wq;
308 };
309
310 #define I915_GEM_GPU_DOMAINS \
311 (I915_GEM_DOMAIN_RENDER | \
312 I915_GEM_DOMAIN_SAMPLER | \
313 I915_GEM_DOMAIN_COMMAND | \
314 I915_GEM_DOMAIN_INSTRUCTION | \
315 I915_GEM_DOMAIN_VERTEX)
316
317 struct drm_i915_private;
318 struct i915_mm_struct;
319 struct i915_mmu_object;
320
321 struct drm_i915_file_private {
322 struct drm_i915_private *dev_priv;
323 struct drm_file *file;
324
325 struct {
326 spinlock_t lock;
327 struct list_head request_list;
328 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
329 * chosen to prevent the CPU getting more than a frame ahead of the GPU
330 * (when using lax throttling for the frontbuffer). We also use it to
331 * offer free GPU waitboosts for severely congested workloads.
332 */
333 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
334 } mm;
335 struct idr context_idr;
336
337 struct intel_rps_client {
338 atomic_t boosts;
339 } rps_client;
340
341 unsigned int bsd_engine;
342
343 /*
344 * Every context ban increments per client ban score. Also
345 * hangs in short succession increments ban score. If ban threshold
346 * is reached, client is considered banned and submitting more work
347 * will fail. This is a stop gap measure to limit the badly behaving
348 * clients access to gpu. Note that unbannable contexts never increment
349 * the client ban score.
350 */
351 #define I915_CLIENT_SCORE_HANG_FAST 1
352 #define I915_CLIENT_FAST_HANG_JIFFIES (60 * HZ)
353 #define I915_CLIENT_SCORE_CONTEXT_BAN 3
354 #define I915_CLIENT_SCORE_BANNED 9
355 /** ban_score: Accumulated score of all ctx bans and fast hangs. */
356 atomic_t ban_score;
357 unsigned long hang_timestamp;
358 };
359
360 /* Interface history:
361 *
362 * 1.1: Original.
363 * 1.2: Add Power Management
364 * 1.3: Add vblank support
365 * 1.4: Fix cmdbuffer path, add heap destroy
366 * 1.5: Add vblank pipe configuration
367 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
368 * - Support vertical blank on secondary display pipe
369 */
370 #define DRIVER_MAJOR 1
371 #define DRIVER_MINOR 6
372 #define DRIVER_PATCHLEVEL 0
373
374 struct intel_overlay;
375 struct intel_overlay_error_state;
376
377 struct sdvo_device_mapping {
378 u8 initialized;
379 u8 dvo_port;
380 u8 slave_addr;
381 u8 dvo_wiring;
382 u8 i2c_pin;
383 u8 ddc_pin;
384 };
385
386 struct intel_connector;
387 struct intel_encoder;
388 struct intel_atomic_state;
389 struct intel_crtc_state;
390 struct intel_initial_plane_config;
391 struct intel_crtc;
392 struct intel_limit;
393 struct dpll;
394 struct intel_cdclk_state;
395
396 struct drm_i915_display_funcs {
397 void (*get_cdclk)(struct drm_i915_private *dev_priv,
398 struct intel_cdclk_state *cdclk_state);
399 void (*set_cdclk)(struct drm_i915_private *dev_priv,
400 const struct intel_cdclk_state *cdclk_state);
401 int (*get_fifo_size)(struct drm_i915_private *dev_priv,
402 enum i9xx_plane_id i9xx_plane);
403 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
404 int (*compute_intermediate_wm)(struct drm_device *dev,
405 struct intel_crtc *intel_crtc,
406 struct intel_crtc_state *newstate);
407 void (*initial_watermarks)(struct intel_atomic_state *state,
408 struct intel_crtc_state *cstate);
409 void (*atomic_update_watermarks)(struct intel_atomic_state *state,
410 struct intel_crtc_state *cstate);
411 void (*optimize_watermarks)(struct intel_atomic_state *state,
412 struct intel_crtc_state *cstate);
413 int (*compute_global_watermarks)(struct drm_atomic_state *state);
414 void (*update_wm)(struct intel_crtc *crtc);
415 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
416 /* Returns the active state of the crtc, and if the crtc is active,
417 * fills out the pipe-config with the hw state. */
418 bool (*get_pipe_config)(struct intel_crtc *,
419 struct intel_crtc_state *);
420 void (*get_initial_plane_config)(struct intel_crtc *,
421 struct intel_initial_plane_config *);
422 int (*crtc_compute_clock)(struct intel_crtc *crtc,
423 struct intel_crtc_state *crtc_state);
424 void (*crtc_enable)(struct intel_crtc_state *pipe_config,
425 struct drm_atomic_state *old_state);
426 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
427 struct drm_atomic_state *old_state);
428 void (*update_crtcs)(struct drm_atomic_state *state);
429 void (*audio_codec_enable)(struct intel_encoder *encoder,
430 const struct intel_crtc_state *crtc_state,
431 const struct drm_connector_state *conn_state);
432 void (*audio_codec_disable)(struct intel_encoder *encoder,
433 const struct intel_crtc_state *old_crtc_state,
434 const struct drm_connector_state *old_conn_state);
435 void (*fdi_link_train)(struct intel_crtc *crtc,
436 const struct intel_crtc_state *crtc_state);
437 void (*init_clock_gating)(struct drm_i915_private *dev_priv);
438 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
439 /* clock updates for mode set */
440 /* cursor updates */
441 /* render clock increase/decrease */
442 /* display clock increase/decrease */
443 /* pll clock increase/decrease */
444
445 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
446 void (*load_luts)(struct drm_crtc_state *crtc_state);
447 };
448
449 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
450 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
451 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
452
453 struct intel_csr {
454 struct work_struct work;
455 const char *fw_path;
456 uint32_t *dmc_payload;
457 uint32_t dmc_fw_size;
458 uint32_t version;
459 uint32_t mmio_count;
460 i915_reg_t mmioaddr[8];
461 uint32_t mmiodata[8];
462 uint32_t dc_state;
463 uint32_t allowed_dc_mask;
464 };
465
466 enum i915_cache_level {
467 I915_CACHE_NONE = 0,
468 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
469 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
470 caches, eg sampler/render caches, and the
471 large Last-Level-Cache. LLC is coherent with
472 the CPU, but L3 is only visible to the GPU. */
473 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
474 };
475
476 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
477
478 enum fb_op_origin {
479 ORIGIN_GTT,
480 ORIGIN_CPU,
481 ORIGIN_CS,
482 ORIGIN_FLIP,
483 ORIGIN_DIRTYFB,
484 };
485
486 struct intel_fbc {
487 /* This is always the inner lock when overlapping with struct_mutex and
488 * it's the outer lock when overlapping with stolen_lock. */
489 struct mutex lock;
490 unsigned threshold;
491 unsigned int possible_framebuffer_bits;
492 unsigned int busy_bits;
493 unsigned int visible_pipes_mask;
494 struct intel_crtc *crtc;
495
496 struct drm_mm_node compressed_fb;
497 struct drm_mm_node *compressed_llb;
498
499 bool false_color;
500
501 bool enabled;
502 bool active;
503
504 bool underrun_detected;
505 struct work_struct underrun_work;
506
507 /*
508 * Due to the atomic rules we can't access some structures without the
509 * appropriate locking, so we cache information here in order to avoid
510 * these problems.
511 */
512 struct intel_fbc_state_cache {
513 struct i915_vma *vma;
514 unsigned long flags;
515
516 struct {
517 unsigned int mode_flags;
518 uint32_t hsw_bdw_pixel_rate;
519 } crtc;
520
521 struct {
522 unsigned int rotation;
523 int src_w;
524 int src_h;
525 bool visible;
526 /*
527 * Display surface base address adjustement for
528 * pageflips. Note that on gen4+ this only adjusts up
529 * to a tile, offsets within a tile are handled in
530 * the hw itself (with the TILEOFF register).
531 */
532 int adjusted_x;
533 int adjusted_y;
534
535 int y;
536 } plane;
537
538 struct {
539 const struct drm_format_info *format;
540 unsigned int stride;
541 } fb;
542 } state_cache;
543
544 /*
545 * This structure contains everything that's relevant to program the
546 * hardware registers. When we want to figure out if we need to disable
547 * and re-enable FBC for a new configuration we just check if there's
548 * something different in the struct. The genx_fbc_activate functions
549 * are supposed to read from it in order to program the registers.
550 */
551 struct intel_fbc_reg_params {
552 struct i915_vma *vma;
553 unsigned long flags;
554
555 struct {
556 enum pipe pipe;
557 enum i9xx_plane_id i9xx_plane;
558 unsigned int fence_y_offset;
559 } crtc;
560
561 struct {
562 const struct drm_format_info *format;
563 unsigned int stride;
564 } fb;
565
566 int cfb_size;
567 unsigned int gen9_wa_cfb_stride;
568 } params;
569
570 struct intel_fbc_work {
571 bool scheduled;
572 u64 scheduled_vblank;
573 struct work_struct work;
574 } work;
575
576 const char *no_fbc_reason;
577 };
578
579 /*
580 * HIGH_RR is the highest eDP panel refresh rate read from EDID
581 * LOW_RR is the lowest eDP panel refresh rate found from EDID
582 * parsing for same resolution.
583 */
584 enum drrs_refresh_rate_type {
585 DRRS_HIGH_RR,
586 DRRS_LOW_RR,
587 DRRS_MAX_RR, /* RR count */
588 };
589
590 enum drrs_support_type {
591 DRRS_NOT_SUPPORTED = 0,
592 STATIC_DRRS_SUPPORT = 1,
593 SEAMLESS_DRRS_SUPPORT = 2
594 };
595
596 struct intel_dp;
597 struct i915_drrs {
598 struct mutex mutex;
599 struct delayed_work work;
600 struct intel_dp *dp;
601 unsigned busy_frontbuffer_bits;
602 enum drrs_refresh_rate_type refresh_rate_type;
603 enum drrs_support_type type;
604 };
605
606 struct i915_psr {
607 struct mutex lock;
608 bool sink_support;
609 struct intel_dp *enabled;
610 bool active;
611 struct delayed_work work;
612 unsigned busy_frontbuffer_bits;
613 bool sink_psr2_support;
614 bool link_standby;
615 bool colorimetry_support;
616 bool alpm;
617 bool has_hw_tracking;
618 bool psr2_enabled;
619 u8 sink_sync_latency;
620 bool debug;
621 ktime_t last_entry_attempt;
622 ktime_t last_exit;
623
624 void (*enable_source)(struct intel_dp *,
625 const struct intel_crtc_state *);
626 void (*disable_source)(struct intel_dp *,
627 const struct intel_crtc_state *);
628 void (*enable_sink)(struct intel_dp *);
629 void (*activate)(struct intel_dp *);
630 void (*setup_vsc)(struct intel_dp *, const struct intel_crtc_state *);
631 };
632
633 enum intel_pch {
634 PCH_NONE = 0, /* No PCH present */
635 PCH_IBX, /* Ibexpeak PCH */
636 PCH_CPT, /* Cougarpoint/Pantherpoint PCH */
637 PCH_LPT, /* Lynxpoint/Wildcatpoint PCH */
638 PCH_SPT, /* Sunrisepoint PCH */
639 PCH_KBP, /* Kaby Lake PCH */
640 PCH_CNP, /* Cannon Lake PCH */
641 PCH_ICP, /* Ice Lake PCH */
642 PCH_NOP,
643 };
644
645 enum intel_sbi_destination {
646 SBI_ICLK,
647 SBI_MPHY,
648 };
649
650 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
651 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
652 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
653 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
654 #define QUIRK_INCREASE_T12_DELAY (1<<6)
655
656 struct intel_fbdev;
657 struct intel_fbc_work;
658
659 struct intel_gmbus {
660 struct i2c_adapter adapter;
661 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
662 u32 force_bit;
663 u32 reg0;
664 i915_reg_t gpio_reg;
665 struct i2c_algo_bit_data bit_algo;
666 struct drm_i915_private *dev_priv;
667 };
668
669 struct i915_suspend_saved_registers {
670 u32 saveDSPARB;
671 u32 saveFBC_CONTROL;
672 u32 saveCACHE_MODE_0;
673 u32 saveMI_ARB_STATE;
674 u32 saveSWF0[16];
675 u32 saveSWF1[16];
676 u32 saveSWF3[3];
677 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
678 u32 savePCH_PORT_HOTPLUG;
679 u16 saveGCDGMBUS;
680 };
681
682 struct vlv_s0ix_state {
683 /* GAM */
684 u32 wr_watermark;
685 u32 gfx_prio_ctrl;
686 u32 arb_mode;
687 u32 gfx_pend_tlb0;
688 u32 gfx_pend_tlb1;
689 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
690 u32 media_max_req_count;
691 u32 gfx_max_req_count;
692 u32 render_hwsp;
693 u32 ecochk;
694 u32 bsd_hwsp;
695 u32 blt_hwsp;
696 u32 tlb_rd_addr;
697
698 /* MBC */
699 u32 g3dctl;
700 u32 gsckgctl;
701 u32 mbctl;
702
703 /* GCP */
704 u32 ucgctl1;
705 u32 ucgctl3;
706 u32 rcgctl1;
707 u32 rcgctl2;
708 u32 rstctl;
709 u32 misccpctl;
710
711 /* GPM */
712 u32 gfxpause;
713 u32 rpdeuhwtc;
714 u32 rpdeuc;
715 u32 ecobus;
716 u32 pwrdwnupctl;
717 u32 rp_down_timeout;
718 u32 rp_deucsw;
719 u32 rcubmabdtmr;
720 u32 rcedata;
721 u32 spare2gh;
722
723 /* Display 1 CZ domain */
724 u32 gt_imr;
725 u32 gt_ier;
726 u32 pm_imr;
727 u32 pm_ier;
728 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
729
730 /* GT SA CZ domain */
731 u32 tilectl;
732 u32 gt_fifoctl;
733 u32 gtlc_wake_ctrl;
734 u32 gtlc_survive;
735 u32 pmwgicz;
736
737 /* Display 2 CZ domain */
738 u32 gu_ctl0;
739 u32 gu_ctl1;
740 u32 pcbr;
741 u32 clock_gate_dis2;
742 };
743
744 struct intel_rps_ei {
745 ktime_t ktime;
746 u32 render_c0;
747 u32 media_c0;
748 };
749
750 struct intel_rps {
751 /*
752 * work, interrupts_enabled and pm_iir are protected by
753 * dev_priv->irq_lock
754 */
755 struct work_struct work;
756 bool interrupts_enabled;
757 u32 pm_iir;
758
759 /* PM interrupt bits that should never be masked */
760 u32 pm_intrmsk_mbz;
761
762 /* Frequencies are stored in potentially platform dependent multiples.
763 * In other words, *_freq needs to be multiplied by X to be interesting.
764 * Soft limits are those which are used for the dynamic reclocking done
765 * by the driver (raise frequencies under heavy loads, and lower for
766 * lighter loads). Hard limits are those imposed by the hardware.
767 *
768 * A distinction is made for overclocking, which is never enabled by
769 * default, and is considered to be above the hard limit if it's
770 * possible at all.
771 */
772 u8 cur_freq; /* Current frequency (cached, may not == HW) */
773 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
774 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
775 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
776 u8 min_freq; /* AKA RPn. Minimum frequency */
777 u8 boost_freq; /* Frequency to request when wait boosting */
778 u8 idle_freq; /* Frequency to request when we are idle */
779 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
780 u8 rp1_freq; /* "less than" RP0 power/freqency */
781 u8 rp0_freq; /* Non-overclocked max frequency. */
782 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
783
784 u8 up_threshold; /* Current %busy required to uplock */
785 u8 down_threshold; /* Current %busy required to downclock */
786
787 int last_adj;
788 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
789
790 bool enabled;
791 atomic_t num_waiters;
792 atomic_t boosts;
793
794 /* manual wa residency calculations */
795 struct intel_rps_ei ei;
796 };
797
798 struct intel_rc6 {
799 bool enabled;
800 u64 prev_hw_residency[4];
801 u64 cur_residency[4];
802 };
803
804 struct intel_llc_pstate {
805 bool enabled;
806 };
807
808 struct intel_gen6_power_mgmt {
809 struct intel_rps rps;
810 struct intel_rc6 rc6;
811 struct intel_llc_pstate llc_pstate;
812 };
813
814 /* defined intel_pm.c */
815 extern spinlock_t mchdev_lock;
816
817 struct intel_ilk_power_mgmt {
818 u8 cur_delay;
819 u8 min_delay;
820 u8 max_delay;
821 u8 fmax;
822 u8 fstart;
823
824 u64 last_count1;
825 unsigned long last_time1;
826 unsigned long chipset_power;
827 u64 last_count2;
828 u64 last_time2;
829 unsigned long gfx_power;
830 u8 corr;
831
832 int c_m;
833 int r_t;
834 };
835
836 struct drm_i915_private;
837 struct i915_power_well;
838
839 struct i915_power_well_ops {
840 /*
841 * Synchronize the well's hw state to match the current sw state, for
842 * example enable/disable it based on the current refcount. Called
843 * during driver init and resume time, possibly after first calling
844 * the enable/disable handlers.
845 */
846 void (*sync_hw)(struct drm_i915_private *dev_priv,
847 struct i915_power_well *power_well);
848 /*
849 * Enable the well and resources that depend on it (for example
850 * interrupts located on the well). Called after the 0->1 refcount
851 * transition.
852 */
853 void (*enable)(struct drm_i915_private *dev_priv,
854 struct i915_power_well *power_well);
855 /*
856 * Disable the well and resources that depend on it. Called after
857 * the 1->0 refcount transition.
858 */
859 void (*disable)(struct drm_i915_private *dev_priv,
860 struct i915_power_well *power_well);
861 /* Returns the hw enabled state. */
862 bool (*is_enabled)(struct drm_i915_private *dev_priv,
863 struct i915_power_well *power_well);
864 };
865
866 /* Power well structure for haswell */
867 struct i915_power_well {
868 const char *name;
869 bool always_on;
870 /* power well enable/disable usage count */
871 int count;
872 /* cached hw enabled state */
873 bool hw_enabled;
874 u64 domains;
875 /* unique identifier for this power well */
876 enum i915_power_well_id id;
877 /*
878 * Arbitraty data associated with this power well. Platform and power
879 * well specific.
880 */
881 union {
882 struct {
883 enum dpio_phy phy;
884 } bxt;
885 struct {
886 /* Mask of pipes whose IRQ logic is backed by the pw */
887 u8 irq_pipe_mask;
888 /* The pw is backing the VGA functionality */
889 bool has_vga:1;
890 bool has_fuses:1;
891 } hsw;
892 };
893 const struct i915_power_well_ops *ops;
894 };
895
896 struct i915_power_domains {
897 /*
898 * Power wells needed for initialization at driver init and suspend
899 * time are on. They are kept on until after the first modeset.
900 */
901 bool init_power_on;
902 bool initializing;
903 int power_well_count;
904
905 struct mutex lock;
906 int domain_use_count[POWER_DOMAIN_NUM];
907 struct i915_power_well *power_wells;
908 };
909
910 #define MAX_L3_SLICES 2
911 struct intel_l3_parity {
912 u32 *remap_info[MAX_L3_SLICES];
913 struct work_struct error_work;
914 int which_slice;
915 };
916
917 struct i915_gem_mm {
918 /** Memory allocator for GTT stolen memory */
919 struct drm_mm stolen;
920 /** Protects the usage of the GTT stolen memory allocator. This is
921 * always the inner lock when overlapping with struct_mutex. */
922 struct mutex stolen_lock;
923
924 /* Protects bound_list/unbound_list and #drm_i915_gem_object.mm.link */
925 spinlock_t obj_lock;
926
927 /** List of all objects in gtt_space. Used to restore gtt
928 * mappings on resume */
929 struct list_head bound_list;
930 /**
931 * List of objects which are not bound to the GTT (thus
932 * are idle and not used by the GPU). These objects may or may
933 * not actually have any pages attached.
934 */
935 struct list_head unbound_list;
936
937 /** List of all objects in gtt_space, currently mmaped by userspace.
938 * All objects within this list must also be on bound_list.
939 */
940 struct list_head userfault_list;
941
942 /**
943 * List of objects which are pending destruction.
944 */
945 struct llist_head free_list;
946 struct work_struct free_work;
947 spinlock_t free_lock;
948 /**
949 * Count of objects pending destructions. Used to skip needlessly
950 * waiting on an RCU barrier if no objects are waiting to be freed.
951 */
952 atomic_t free_count;
953
954 /**
955 * Small stash of WC pages
956 */
957 struct pagevec wc_stash;
958
959 /**
960 * tmpfs instance used for shmem backed objects
961 */
962 struct vfsmount *gemfs;
963
964 /** PPGTT used for aliasing the PPGTT with the GTT */
965 struct i915_hw_ppgtt *aliasing_ppgtt;
966
967 struct notifier_block oom_notifier;
968 struct notifier_block vmap_notifier;
969 struct shrinker shrinker;
970
971 /** LRU list of objects with fence regs on them. */
972 struct list_head fence_list;
973
974 /**
975 * Workqueue to fault in userptr pages, flushed by the execbuf
976 * when required but otherwise left to userspace to try again
977 * on EAGAIN.
978 */
979 struct workqueue_struct *userptr_wq;
980
981 u64 unordered_timeline;
982
983 /* the indicator for dispatch video commands on two BSD rings */
984 atomic_t bsd_engine_dispatch_index;
985
986 /** Bit 6 swizzling required for X tiling */
987 uint32_t bit_6_swizzle_x;
988 /** Bit 6 swizzling required for Y tiling */
989 uint32_t bit_6_swizzle_y;
990
991 /* accounting, useful for userland debugging */
992 spinlock_t object_stat_lock;
993 u64 object_memory;
994 u32 object_count;
995 };
996
997 #define I915_IDLE_ENGINES_TIMEOUT (200) /* in ms */
998
999 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1000 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1001
1002 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */
1003 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */
1004
1005 enum modeset_restore {
1006 MODESET_ON_LID_OPEN,
1007 MODESET_DONE,
1008 MODESET_SUSPENDED,
1009 };
1010
1011 #define DP_AUX_A 0x40
1012 #define DP_AUX_B 0x10
1013 #define DP_AUX_C 0x20
1014 #define DP_AUX_D 0x30
1015 #define DP_AUX_F 0x60
1016
1017 #define DDC_PIN_B 0x05
1018 #define DDC_PIN_C 0x04
1019 #define DDC_PIN_D 0x06
1020
1021 struct ddi_vbt_port_info {
1022 int max_tmds_clock;
1023
1024 /*
1025 * This is an index in the HDMI/DVI DDI buffer translation table.
1026 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1027 * populate this field.
1028 */
1029 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1030 uint8_t hdmi_level_shift;
1031
1032 uint8_t supports_dvi:1;
1033 uint8_t supports_hdmi:1;
1034 uint8_t supports_dp:1;
1035 uint8_t supports_edp:1;
1036
1037 uint8_t alternate_aux_channel;
1038 uint8_t alternate_ddc_pin;
1039
1040 uint8_t dp_boost_level;
1041 uint8_t hdmi_boost_level;
1042 int dp_max_link_rate; /* 0 for not limited by VBT */
1043 };
1044
1045 enum psr_lines_to_wait {
1046 PSR_0_LINES_TO_WAIT = 0,
1047 PSR_1_LINE_TO_WAIT,
1048 PSR_4_LINES_TO_WAIT,
1049 PSR_8_LINES_TO_WAIT
1050 };
1051
1052 struct intel_vbt_data {
1053 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1054 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1055
1056 /* Feature bits */
1057 unsigned int int_tv_support:1;
1058 unsigned int lvds_dither:1;
1059 unsigned int lvds_vbt:1;
1060 unsigned int int_crt_support:1;
1061 unsigned int lvds_use_ssc:1;
1062 unsigned int display_clock_mode:1;
1063 unsigned int fdi_rx_polarity_inverted:1;
1064 unsigned int panel_type:4;
1065 int lvds_ssc_freq;
1066 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1067
1068 enum drrs_support_type drrs_type;
1069
1070 struct {
1071 int rate;
1072 int lanes;
1073 int preemphasis;
1074 int vswing;
1075 bool low_vswing;
1076 bool initialized;
1077 bool support;
1078 int bpp;
1079 struct edp_power_seq pps;
1080 } edp;
1081
1082 struct {
1083 bool enable;
1084 bool full_link;
1085 bool require_aux_wakeup;
1086 int idle_frames;
1087 enum psr_lines_to_wait lines_to_wait;
1088 int tp1_wakeup_time;
1089 int tp2_tp3_wakeup_time;
1090 } psr;
1091
1092 struct {
1093 u16 pwm_freq_hz;
1094 bool present;
1095 bool active_low_pwm;
1096 u8 min_brightness; /* min_brightness/255 of max */
1097 u8 controller; /* brightness controller number */
1098 enum intel_backlight_type type;
1099 } backlight;
1100
1101 /* MIPI DSI */
1102 struct {
1103 u16 panel_id;
1104 struct mipi_config *config;
1105 struct mipi_pps_data *pps;
1106 u16 bl_ports;
1107 u16 cabc_ports;
1108 u8 seq_version;
1109 u32 size;
1110 u8 *data;
1111 const u8 *sequence[MIPI_SEQ_MAX];
1112 u8 *deassert_seq; /* Used by fixup_mipi_sequences() */
1113 } dsi;
1114
1115 int crt_ddc_pin;
1116
1117 int child_dev_num;
1118 struct child_device_config *child_dev;
1119
1120 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1121 struct sdvo_device_mapping sdvo_mappings[2];
1122 };
1123
1124 enum intel_ddb_partitioning {
1125 INTEL_DDB_PART_1_2,
1126 INTEL_DDB_PART_5_6, /* IVB+ */
1127 };
1128
1129 struct intel_wm_level {
1130 bool enable;
1131 uint32_t pri_val;
1132 uint32_t spr_val;
1133 uint32_t cur_val;
1134 uint32_t fbc_val;
1135 };
1136
1137 struct ilk_wm_values {
1138 uint32_t wm_pipe[3];
1139 uint32_t wm_lp[3];
1140 uint32_t wm_lp_spr[3];
1141 uint32_t wm_linetime[3];
1142 bool enable_fbc_wm;
1143 enum intel_ddb_partitioning partitioning;
1144 };
1145
1146 struct g4x_pipe_wm {
1147 uint16_t plane[I915_MAX_PLANES];
1148 uint16_t fbc;
1149 };
1150
1151 struct g4x_sr_wm {
1152 uint16_t plane;
1153 uint16_t cursor;
1154 uint16_t fbc;
1155 };
1156
1157 struct vlv_wm_ddl_values {
1158 uint8_t plane[I915_MAX_PLANES];
1159 };
1160
1161 struct vlv_wm_values {
1162 struct g4x_pipe_wm pipe[3];
1163 struct g4x_sr_wm sr;
1164 struct vlv_wm_ddl_values ddl[3];
1165 uint8_t level;
1166 bool cxsr;
1167 };
1168
1169 struct g4x_wm_values {
1170 struct g4x_pipe_wm pipe[2];
1171 struct g4x_sr_wm sr;
1172 struct g4x_sr_wm hpll;
1173 bool cxsr;
1174 bool hpll_en;
1175 bool fbc_en;
1176 };
1177
1178 struct skl_ddb_entry {
1179 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1180 };
1181
1182 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1183 {
1184 return entry->end - entry->start;
1185 }
1186
1187 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1188 const struct skl_ddb_entry *e2)
1189 {
1190 if (e1->start == e2->start && e1->end == e2->end)
1191 return true;
1192
1193 return false;
1194 }
1195
1196 struct skl_ddb_allocation {
1197 /* packed/y */
1198 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES];
1199 struct skl_ddb_entry uv_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1200 u8 enabled_slices; /* GEN11 has configurable 2 slices */
1201 };
1202
1203 struct skl_ddb_values {
1204 unsigned dirty_pipes;
1205 struct skl_ddb_allocation ddb;
1206 };
1207
1208 struct skl_wm_level {
1209 bool plane_en;
1210 uint16_t plane_res_b;
1211 uint8_t plane_res_l;
1212 };
1213
1214 /* Stores plane specific WM parameters */
1215 struct skl_wm_params {
1216 bool x_tiled, y_tiled;
1217 bool rc_surface;
1218 bool is_planar;
1219 uint32_t width;
1220 uint8_t cpp;
1221 uint32_t plane_pixel_rate;
1222 uint32_t y_min_scanlines;
1223 uint32_t plane_bytes_per_line;
1224 uint_fixed_16_16_t plane_blocks_per_line;
1225 uint_fixed_16_16_t y_tile_minimum;
1226 uint32_t linetime_us;
1227 uint32_t dbuf_block_size;
1228 };
1229
1230 /*
1231 * This struct helps tracking the state needed for runtime PM, which puts the
1232 * device in PCI D3 state. Notice that when this happens, nothing on the
1233 * graphics device works, even register access, so we don't get interrupts nor
1234 * anything else.
1235 *
1236 * Every piece of our code that needs to actually touch the hardware needs to
1237 * either call intel_runtime_pm_get or call intel_display_power_get with the
1238 * appropriate power domain.
1239 *
1240 * Our driver uses the autosuspend delay feature, which means we'll only really
1241 * suspend if we stay with zero refcount for a certain amount of time. The
1242 * default value is currently very conservative (see intel_runtime_pm_enable), but
1243 * it can be changed with the standard runtime PM files from sysfs.
1244 *
1245 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1246 * goes back to false exactly before we reenable the IRQs. We use this variable
1247 * to check if someone is trying to enable/disable IRQs while they're supposed
1248 * to be disabled. This shouldn't happen and we'll print some error messages in
1249 * case it happens.
1250 *
1251 * For more, read the Documentation/power/runtime_pm.txt.
1252 */
1253 struct i915_runtime_pm {
1254 atomic_t wakeref_count;
1255 bool suspended;
1256 bool irqs_enabled;
1257 };
1258
1259 enum intel_pipe_crc_source {
1260 INTEL_PIPE_CRC_SOURCE_NONE,
1261 INTEL_PIPE_CRC_SOURCE_PLANE1,
1262 INTEL_PIPE_CRC_SOURCE_PLANE2,
1263 INTEL_PIPE_CRC_SOURCE_PF,
1264 INTEL_PIPE_CRC_SOURCE_PIPE,
1265 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1266 INTEL_PIPE_CRC_SOURCE_TV,
1267 INTEL_PIPE_CRC_SOURCE_DP_B,
1268 INTEL_PIPE_CRC_SOURCE_DP_C,
1269 INTEL_PIPE_CRC_SOURCE_DP_D,
1270 INTEL_PIPE_CRC_SOURCE_AUTO,
1271 INTEL_PIPE_CRC_SOURCE_MAX,
1272 };
1273
1274 struct intel_pipe_crc_entry {
1275 uint32_t frame;
1276 uint32_t crc[5];
1277 };
1278
1279 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1280 struct intel_pipe_crc {
1281 spinlock_t lock;
1282 bool opened; /* exclusive access to the result file */
1283 struct intel_pipe_crc_entry *entries;
1284 enum intel_pipe_crc_source source;
1285 int head, tail;
1286 wait_queue_head_t wq;
1287 int skipped;
1288 };
1289
1290 struct i915_frontbuffer_tracking {
1291 spinlock_t lock;
1292
1293 /*
1294 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1295 * scheduled flips.
1296 */
1297 unsigned busy_bits;
1298 unsigned flip_bits;
1299 };
1300
1301 struct i915_wa_reg {
1302 i915_reg_t addr;
1303 u32 value;
1304 /* bitmask representing WA bits */
1305 u32 mask;
1306 };
1307
1308 #define I915_MAX_WA_REGS 16
1309
1310 struct i915_workarounds {
1311 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1312 u32 count;
1313 };
1314
1315 struct i915_virtual_gpu {
1316 bool active;
1317 u32 caps;
1318 };
1319
1320 /* used in computing the new watermarks state */
1321 struct intel_wm_config {
1322 unsigned int num_pipes_active;
1323 bool sprites_enabled;
1324 bool sprites_scaled;
1325 };
1326
1327 struct i915_oa_format {
1328 u32 format;
1329 int size;
1330 };
1331
1332 struct i915_oa_reg {
1333 i915_reg_t addr;
1334 u32 value;
1335 };
1336
1337 struct i915_oa_config {
1338 char uuid[UUID_STRING_LEN + 1];
1339 int id;
1340
1341 const struct i915_oa_reg *mux_regs;
1342 u32 mux_regs_len;
1343 const struct i915_oa_reg *b_counter_regs;
1344 u32 b_counter_regs_len;
1345 const struct i915_oa_reg *flex_regs;
1346 u32 flex_regs_len;
1347
1348 struct attribute_group sysfs_metric;
1349 struct attribute *attrs[2];
1350 struct device_attribute sysfs_metric_id;
1351
1352 atomic_t ref_count;
1353 };
1354
1355 struct i915_perf_stream;
1356
1357 /**
1358 * struct i915_perf_stream_ops - the OPs to support a specific stream type
1359 */
1360 struct i915_perf_stream_ops {
1361 /**
1362 * @enable: Enables the collection of HW samples, either in response to
1363 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1364 * without `I915_PERF_FLAG_DISABLED`.
1365 */
1366 void (*enable)(struct i915_perf_stream *stream);
1367
1368 /**
1369 * @disable: Disables the collection of HW samples, either in response
1370 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1371 * the stream.
1372 */
1373 void (*disable)(struct i915_perf_stream *stream);
1374
1375 /**
1376 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1377 * once there is something ready to read() for the stream
1378 */
1379 void (*poll_wait)(struct i915_perf_stream *stream,
1380 struct file *file,
1381 poll_table *wait);
1382
1383 /**
1384 * @wait_unlocked: For handling a blocking read, wait until there is
1385 * something to ready to read() for the stream. E.g. wait on the same
1386 * wait queue that would be passed to poll_wait().
1387 */
1388 int (*wait_unlocked)(struct i915_perf_stream *stream);
1389
1390 /**
1391 * @read: Copy buffered metrics as records to userspace
1392 * **buf**: the userspace, destination buffer
1393 * **count**: the number of bytes to copy, requested by userspace
1394 * **offset**: zero at the start of the read, updated as the read
1395 * proceeds, it represents how many bytes have been copied so far and
1396 * the buffer offset for copying the next record.
1397 *
1398 * Copy as many buffered i915 perf samples and records for this stream
1399 * to userspace as will fit in the given buffer.
1400 *
1401 * Only write complete records; returning -%ENOSPC if there isn't room
1402 * for a complete record.
1403 *
1404 * Return any error condition that results in a short read such as
1405 * -%ENOSPC or -%EFAULT, even though these may be squashed before
1406 * returning to userspace.
1407 */
1408 int (*read)(struct i915_perf_stream *stream,
1409 char __user *buf,
1410 size_t count,
1411 size_t *offset);
1412
1413 /**
1414 * @destroy: Cleanup any stream specific resources.
1415 *
1416 * The stream will always be disabled before this is called.
1417 */
1418 void (*destroy)(struct i915_perf_stream *stream);
1419 };
1420
1421 /**
1422 * struct i915_perf_stream - state for a single open stream FD
1423 */
1424 struct i915_perf_stream {
1425 /**
1426 * @dev_priv: i915 drm device
1427 */
1428 struct drm_i915_private *dev_priv;
1429
1430 /**
1431 * @link: Links the stream into ``&drm_i915_private->streams``
1432 */
1433 struct list_head link;
1434
1435 /**
1436 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
1437 * properties given when opening a stream, representing the contents
1438 * of a single sample as read() by userspace.
1439 */
1440 u32 sample_flags;
1441
1442 /**
1443 * @sample_size: Considering the configured contents of a sample
1444 * combined with the required header size, this is the total size
1445 * of a single sample record.
1446 */
1447 int sample_size;
1448
1449 /**
1450 * @ctx: %NULL if measuring system-wide across all contexts or a
1451 * specific context that is being monitored.
1452 */
1453 struct i915_gem_context *ctx;
1454
1455 /**
1456 * @enabled: Whether the stream is currently enabled, considering
1457 * whether the stream was opened in a disabled state and based
1458 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
1459 */
1460 bool enabled;
1461
1462 /**
1463 * @ops: The callbacks providing the implementation of this specific
1464 * type of configured stream.
1465 */
1466 const struct i915_perf_stream_ops *ops;
1467
1468 /**
1469 * @oa_config: The OA configuration used by the stream.
1470 */
1471 struct i915_oa_config *oa_config;
1472 };
1473
1474 /**
1475 * struct i915_oa_ops - Gen specific implementation of an OA unit stream
1476 */
1477 struct i915_oa_ops {
1478 /**
1479 * @is_valid_b_counter_reg: Validates register's address for
1480 * programming boolean counters for a particular platform.
1481 */
1482 bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
1483 u32 addr);
1484
1485 /**
1486 * @is_valid_mux_reg: Validates register's address for programming mux
1487 * for a particular platform.
1488 */
1489 bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
1490
1491 /**
1492 * @is_valid_flex_reg: Validates register's address for programming
1493 * flex EU filtering for a particular platform.
1494 */
1495 bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
1496
1497 /**
1498 * @init_oa_buffer: Resets the head and tail pointers of the
1499 * circular buffer for periodic OA reports.
1500 *
1501 * Called when first opening a stream for OA metrics, but also may be
1502 * called in response to an OA buffer overflow or other error
1503 * condition.
1504 *
1505 * Note it may be necessary to clear the full OA buffer here as part of
1506 * maintaining the invariable that new reports must be written to
1507 * zeroed memory for us to be able to reliable detect if an expected
1508 * report has not yet landed in memory. (At least on Haswell the OA
1509 * buffer tail pointer is not synchronized with reports being visible
1510 * to the CPU)
1511 */
1512 void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
1513
1514 /**
1515 * @enable_metric_set: Selects and applies any MUX configuration to set
1516 * up the Boolean and Custom (B/C) counters that are part of the
1517 * counter reports being sampled. May apply system constraints such as
1518 * disabling EU clock gating as required.
1519 */
1520 int (*enable_metric_set)(struct drm_i915_private *dev_priv,
1521 const struct i915_oa_config *oa_config);
1522
1523 /**
1524 * @disable_metric_set: Remove system constraints associated with using
1525 * the OA unit.
1526 */
1527 void (*disable_metric_set)(struct drm_i915_private *dev_priv);
1528
1529 /**
1530 * @oa_enable: Enable periodic sampling
1531 */
1532 void (*oa_enable)(struct drm_i915_private *dev_priv);
1533
1534 /**
1535 * @oa_disable: Disable periodic sampling
1536 */
1537 void (*oa_disable)(struct drm_i915_private *dev_priv);
1538
1539 /**
1540 * @read: Copy data from the circular OA buffer into a given userspace
1541 * buffer.
1542 */
1543 int (*read)(struct i915_perf_stream *stream,
1544 char __user *buf,
1545 size_t count,
1546 size_t *offset);
1547
1548 /**
1549 * @oa_hw_tail_read: read the OA tail pointer register
1550 *
1551 * In particular this enables us to share all the fiddly code for
1552 * handling the OA unit tail pointer race that affects multiple
1553 * generations.
1554 */
1555 u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
1556 };
1557
1558 struct intel_cdclk_state {
1559 unsigned int cdclk, vco, ref, bypass;
1560 u8 voltage_level;
1561 };
1562
1563 struct drm_i915_private {
1564 struct drm_device drm;
1565
1566 struct kmem_cache *objects;
1567 struct kmem_cache *vmas;
1568 struct kmem_cache *luts;
1569 struct kmem_cache *requests;
1570 struct kmem_cache *dependencies;
1571 struct kmem_cache *priorities;
1572
1573 const struct intel_device_info info;
1574 struct intel_driver_caps caps;
1575
1576 /**
1577 * Data Stolen Memory - aka "i915 stolen memory" gives us the start and
1578 * end of stolen which we can optionally use to create GEM objects
1579 * backed by stolen memory. Note that stolen_usable_size tells us
1580 * exactly how much of this we are actually allowed to use, given that
1581 * some portion of it is in fact reserved for use by hardware functions.
1582 */
1583 struct resource dsm;
1584 /**
1585 * Reseved portion of Data Stolen Memory
1586 */
1587 struct resource dsm_reserved;
1588
1589 /*
1590 * Stolen memory is segmented in hardware with different portions
1591 * offlimits to certain functions.
1592 *
1593 * The drm_mm is initialised to the total accessible range, as found
1594 * from the PCI config. On Broadwell+, this is further restricted to
1595 * avoid the first page! The upper end of stolen memory is reserved for
1596 * hardware functions and similarly removed from the accessible range.
1597 */
1598 resource_size_t stolen_usable_size; /* Total size minus reserved ranges */
1599
1600 void __iomem *regs;
1601
1602 struct intel_uncore uncore;
1603
1604 struct i915_virtual_gpu vgpu;
1605
1606 struct intel_gvt *gvt;
1607
1608 struct intel_wopcm wopcm;
1609
1610 struct intel_huc huc;
1611 struct intel_guc guc;
1612
1613 struct intel_csr csr;
1614
1615 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1616
1617 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
1618 * controller on different i2c buses. */
1619 struct mutex gmbus_mutex;
1620
1621 /**
1622 * Base address of the gmbus and gpio block.
1623 */
1624 uint32_t gpio_mmio_base;
1625
1626 /* MMIO base address for MIPI regs */
1627 uint32_t mipi_mmio_base;
1628
1629 uint32_t psr_mmio_base;
1630
1631 uint32_t pps_mmio_base;
1632
1633 wait_queue_head_t gmbus_wait_queue;
1634
1635 struct pci_dev *bridge_dev;
1636 struct intel_engine_cs *engine[I915_NUM_ENGINES];
1637 /* Context used internally to idle the GPU and setup initial state */
1638 struct i915_gem_context *kernel_context;
1639 /* Context only to be used for injecting preemption commands */
1640 struct i915_gem_context *preempt_context;
1641 struct intel_engine_cs *engine_class[MAX_ENGINE_CLASS + 1]
1642 [MAX_ENGINE_INSTANCE + 1];
1643
1644 struct drm_dma_handle *status_page_dmah;
1645 struct resource mch_res;
1646
1647 /* protects the irq masks */
1648 spinlock_t irq_lock;
1649
1650 bool display_irqs_enabled;
1651
1652 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1653 struct pm_qos_request pm_qos;
1654
1655 /* Sideband mailbox protection */
1656 struct mutex sb_lock;
1657
1658 /** Cached value of IMR to avoid reads in updating the bitfield */
1659 union {
1660 u32 irq_mask;
1661 u32 de_irq_mask[I915_MAX_PIPES];
1662 };
1663 u32 gt_irq_mask;
1664 u32 pm_imr;
1665 u32 pm_ier;
1666 u32 pm_rps_events;
1667 u32 pm_guc_events;
1668 u32 pipestat_irq_mask[I915_MAX_PIPES];
1669
1670 struct i915_hotplug hotplug;
1671 struct intel_fbc fbc;
1672 struct i915_drrs drrs;
1673 struct intel_opregion opregion;
1674 struct intel_vbt_data vbt;
1675
1676 bool preserve_bios_swizzle;
1677
1678 /* overlay */
1679 struct intel_overlay *overlay;
1680
1681 /* backlight registers and fields in struct intel_panel */
1682 struct mutex backlight_lock;
1683
1684 /* LVDS info */
1685 bool no_aux_handshake;
1686
1687 /* protects panel power sequencer state */
1688 struct mutex pps_mutex;
1689
1690 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1691 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1692
1693 unsigned int fsb_freq, mem_freq, is_ddr3;
1694 unsigned int skl_preferred_vco_freq;
1695 unsigned int max_cdclk_freq;
1696
1697 unsigned int max_dotclk_freq;
1698 unsigned int rawclk_freq;
1699 unsigned int hpll_freq;
1700 unsigned int fdi_pll_freq;
1701 unsigned int czclk_freq;
1702
1703 struct {
1704 /*
1705 * The current logical cdclk state.
1706 * See intel_atomic_state.cdclk.logical
1707 *
1708 * For reading holding any crtc lock is sufficient,
1709 * for writing must hold all of them.
1710 */
1711 struct intel_cdclk_state logical;
1712 /*
1713 * The current actual cdclk state.
1714 * See intel_atomic_state.cdclk.actual
1715 */
1716 struct intel_cdclk_state actual;
1717 /* The current hardware cdclk state */
1718 struct intel_cdclk_state hw;
1719 } cdclk;
1720
1721 /**
1722 * wq - Driver workqueue for GEM.
1723 *
1724 * NOTE: Work items scheduled here are not allowed to grab any modeset
1725 * locks, for otherwise the flushing done in the pageflip code will
1726 * result in deadlocks.
1727 */
1728 struct workqueue_struct *wq;
1729
1730 /* ordered wq for modesets */
1731 struct workqueue_struct *modeset_wq;
1732
1733 /* Display functions */
1734 struct drm_i915_display_funcs display;
1735
1736 /* PCH chipset type */
1737 enum intel_pch pch_type;
1738 unsigned short pch_id;
1739
1740 unsigned long quirks;
1741
1742 enum modeset_restore modeset_restore;
1743 struct mutex modeset_restore_lock;
1744 struct drm_atomic_state *modeset_restore_state;
1745 struct drm_modeset_acquire_ctx reset_ctx;
1746
1747 struct list_head vm_list; /* Global list of all address spaces */
1748 struct i915_ggtt ggtt; /* VM representing the global address space */
1749
1750 struct i915_gem_mm mm;
1751 DECLARE_HASHTABLE(mm_structs, 7);
1752 struct mutex mm_lock;
1753
1754 struct intel_ppat ppat;
1755
1756 /* Kernel Modesetting */
1757
1758 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1759 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1760
1761 #ifdef CONFIG_DEBUG_FS
1762 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1763 #endif
1764
1765 /* dpll and cdclk state is protected by connection_mutex */
1766 int num_shared_dpll;
1767 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1768 const struct intel_dpll_mgr *dpll_mgr;
1769
1770 /*
1771 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1772 * Must be global rather than per dpll, because on some platforms
1773 * plls share registers.
1774 */
1775 struct mutex dpll_lock;
1776
1777 unsigned int active_crtcs;
1778 /* minimum acceptable cdclk for each pipe */
1779 int min_cdclk[I915_MAX_PIPES];
1780 /* minimum acceptable voltage level for each pipe */
1781 u8 min_voltage_level[I915_MAX_PIPES];
1782
1783 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1784
1785 struct i915_workarounds workarounds;
1786
1787 struct i915_frontbuffer_tracking fb_tracking;
1788
1789 struct intel_atomic_helper {
1790 struct llist_head free_list;
1791 struct work_struct free_work;
1792 } atomic_helper;
1793
1794 u16 orig_clock;
1795
1796 bool mchbar_need_disable;
1797
1798 struct intel_l3_parity l3_parity;
1799
1800 /* Cannot be determined by PCIID. You must always read a register. */
1801 u32 edram_cap;
1802
1803 /*
1804 * Protects RPS/RC6 register access and PCU communication.
1805 * Must be taken after struct_mutex if nested. Note that
1806 * this lock may be held for long periods of time when
1807 * talking to hw - so only take it when talking to hw!
1808 */
1809 struct mutex pcu_lock;
1810
1811 /* gen6+ GT PM state */
1812 struct intel_gen6_power_mgmt gt_pm;
1813
1814 /* ilk-only ips/rps state. Everything in here is protected by the global
1815 * mchdev_lock in intel_pm.c */
1816 struct intel_ilk_power_mgmt ips;
1817
1818 struct i915_power_domains power_domains;
1819
1820 struct i915_psr psr;
1821
1822 struct i915_gpu_error gpu_error;
1823
1824 struct drm_i915_gem_object *vlv_pctx;
1825
1826 /* list of fbdev register on this device */
1827 struct intel_fbdev *fbdev;
1828 struct work_struct fbdev_suspend_work;
1829
1830 struct drm_property *broadcast_rgb_property;
1831 struct drm_property *force_audio_property;
1832
1833 /* hda/i915 audio component */
1834 struct i915_audio_component *audio_component;
1835 bool audio_component_registered;
1836 /**
1837 * av_mutex - mutex for audio/video sync
1838 *
1839 */
1840 struct mutex av_mutex;
1841
1842 struct {
1843 struct list_head list;
1844 struct llist_head free_list;
1845 struct work_struct free_work;
1846
1847 /* The hw wants to have a stable context identifier for the
1848 * lifetime of the context (for OA, PASID, faults, etc).
1849 * This is limited in execlists to 21 bits.
1850 */
1851 struct ida hw_ida;
1852 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1853 #define GEN11_MAX_CONTEXT_HW_ID (1<<11) /* exclusive */
1854 } contexts;
1855
1856 u32 fdi_rx_config;
1857
1858 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
1859 u32 chv_phy_control;
1860 /*
1861 * Shadows for CHV DPLL_MD regs to keep the state
1862 * checker somewhat working in the presence hardware
1863 * crappiness (can't read out DPLL_MD for pipes B & C).
1864 */
1865 u32 chv_dpll_md[I915_MAX_PIPES];
1866 u32 bxt_phy_grc;
1867
1868 u32 suspend_count;
1869 bool power_domains_suspended;
1870 struct i915_suspend_saved_registers regfile;
1871 struct vlv_s0ix_state vlv_s0ix_state;
1872
1873 enum {
1874 I915_SAGV_UNKNOWN = 0,
1875 I915_SAGV_DISABLED,
1876 I915_SAGV_ENABLED,
1877 I915_SAGV_NOT_CONTROLLED
1878 } sagv_status;
1879
1880 struct {
1881 /*
1882 * Raw watermark latency values:
1883 * in 0.1us units for WM0,
1884 * in 0.5us units for WM1+.
1885 */
1886 /* primary */
1887 uint16_t pri_latency[5];
1888 /* sprite */
1889 uint16_t spr_latency[5];
1890 /* cursor */
1891 uint16_t cur_latency[5];
1892 /*
1893 * Raw watermark memory latency values
1894 * for SKL for all 8 levels
1895 * in 1us units.
1896 */
1897 uint16_t skl_latency[8];
1898
1899 /* current hardware state */
1900 union {
1901 struct ilk_wm_values hw;
1902 struct skl_ddb_values skl_hw;
1903 struct vlv_wm_values vlv;
1904 struct g4x_wm_values g4x;
1905 };
1906
1907 uint8_t max_level;
1908
1909 /*
1910 * Should be held around atomic WM register writing; also
1911 * protects * intel_crtc->wm.active and
1912 * cstate->wm.need_postvbl_update.
1913 */
1914 struct mutex wm_mutex;
1915
1916 /*
1917 * Set during HW readout of watermarks/DDB. Some platforms
1918 * need to know when we're still using BIOS-provided values
1919 * (which we don't fully trust).
1920 */
1921 bool distrust_bios_wm;
1922 } wm;
1923
1924 struct i915_runtime_pm runtime_pm;
1925
1926 struct {
1927 bool initialized;
1928
1929 struct kobject *metrics_kobj;
1930 struct ctl_table_header *sysctl_header;
1931
1932 /*
1933 * Lock associated with adding/modifying/removing OA configs
1934 * in dev_priv->perf.metrics_idr.
1935 */
1936 struct mutex metrics_lock;
1937
1938 /*
1939 * List of dynamic configurations, you need to hold
1940 * dev_priv->perf.metrics_lock to access it.
1941 */
1942 struct idr metrics_idr;
1943
1944 /*
1945 * Lock associated with anything below within this structure
1946 * except exclusive_stream.
1947 */
1948 struct mutex lock;
1949 struct list_head streams;
1950
1951 struct {
1952 /*
1953 * The stream currently using the OA unit. If accessed
1954 * outside a syscall associated to its file
1955 * descriptor, you need to hold
1956 * dev_priv->drm.struct_mutex.
1957 */
1958 struct i915_perf_stream *exclusive_stream;
1959
1960 u32 specific_ctx_id;
1961
1962 struct hrtimer poll_check_timer;
1963 wait_queue_head_t poll_wq;
1964 bool pollin;
1965
1966 /**
1967 * For rate limiting any notifications of spurious
1968 * invalid OA reports
1969 */
1970 struct ratelimit_state spurious_report_rs;
1971
1972 bool periodic;
1973 int period_exponent;
1974
1975 struct i915_oa_config test_config;
1976
1977 struct {
1978 struct i915_vma *vma;
1979 u8 *vaddr;
1980 u32 last_ctx_id;
1981 int format;
1982 int format_size;
1983
1984 /**
1985 * Locks reads and writes to all head/tail state
1986 *
1987 * Consider: the head and tail pointer state
1988 * needs to be read consistently from a hrtimer
1989 * callback (atomic context) and read() fop
1990 * (user context) with tail pointer updates
1991 * happening in atomic context and head updates
1992 * in user context and the (unlikely)
1993 * possibility of read() errors needing to
1994 * reset all head/tail state.
1995 *
1996 * Note: Contention or performance aren't
1997 * currently a significant concern here
1998 * considering the relatively low frequency of
1999 * hrtimer callbacks (5ms period) and that
2000 * reads typically only happen in response to a
2001 * hrtimer event and likely complete before the
2002 * next callback.
2003 *
2004 * Note: This lock is not held *while* reading
2005 * and copying data to userspace so the value
2006 * of head observed in htrimer callbacks won't
2007 * represent any partial consumption of data.
2008 */
2009 spinlock_t ptr_lock;
2010
2011 /**
2012 * One 'aging' tail pointer and one 'aged'
2013 * tail pointer ready to used for reading.
2014 *
2015 * Initial values of 0xffffffff are invalid
2016 * and imply that an update is required
2017 * (and should be ignored by an attempted
2018 * read)
2019 */
2020 struct {
2021 u32 offset;
2022 } tails[2];
2023
2024 /**
2025 * Index for the aged tail ready to read()
2026 * data up to.
2027 */
2028 unsigned int aged_tail_idx;
2029
2030 /**
2031 * A monotonic timestamp for when the current
2032 * aging tail pointer was read; used to
2033 * determine when it is old enough to trust.
2034 */
2035 u64 aging_timestamp;
2036
2037 /**
2038 * Although we can always read back the head
2039 * pointer register, we prefer to avoid
2040 * trusting the HW state, just to avoid any
2041 * risk that some hardware condition could
2042 * somehow bump the head pointer unpredictably
2043 * and cause us to forward the wrong OA buffer
2044 * data to userspace.
2045 */
2046 u32 head;
2047 } oa_buffer;
2048
2049 u32 gen7_latched_oastatus1;
2050 u32 ctx_oactxctrl_offset;
2051 u32 ctx_flexeu0_offset;
2052
2053 /**
2054 * The RPT_ID/reason field for Gen8+ includes a bit
2055 * to determine if the CTX ID in the report is valid
2056 * but the specific bit differs between Gen 8 and 9
2057 */
2058 u32 gen8_valid_ctx_bit;
2059
2060 struct i915_oa_ops ops;
2061 const struct i915_oa_format *oa_formats;
2062 } oa;
2063 } perf;
2064
2065 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2066 struct {
2067 void (*resume)(struct drm_i915_private *);
2068 void (*cleanup_engine)(struct intel_engine_cs *engine);
2069
2070 struct list_head timelines;
2071
2072 struct list_head active_rings;
2073 struct list_head closed_vma;
2074 u32 active_requests;
2075 u32 request_serial;
2076
2077 /**
2078 * Is the GPU currently considered idle, or busy executing
2079 * userspace requests? Whilst idle, we allow runtime power
2080 * management to power down the hardware and display clocks.
2081 * In order to reduce the effect on performance, there
2082 * is a slight delay before we do so.
2083 */
2084 bool awake;
2085
2086 /**
2087 * The number of times we have woken up.
2088 */
2089 unsigned int epoch;
2090 #define I915_EPOCH_INVALID 0
2091
2092 /**
2093 * We leave the user IRQ off as much as possible,
2094 * but this means that requests will finish and never
2095 * be retired once the system goes idle. Set a timer to
2096 * fire periodically while the ring is running. When it
2097 * fires, go retire requests.
2098 */
2099 struct delayed_work retire_work;
2100
2101 /**
2102 * When we detect an idle GPU, we want to turn on
2103 * powersaving features. So once we see that there
2104 * are no more requests outstanding and no more
2105 * arrive within a small period of time, we fire
2106 * off the idle_work.
2107 */
2108 struct delayed_work idle_work;
2109
2110 ktime_t last_init_time;
2111 } gt;
2112
2113 /* perform PHY state sanity checks? */
2114 bool chv_phy_assert[2];
2115
2116 bool ipc_enabled;
2117
2118 /* Used to save the pipe-to-encoder mapping for audio */
2119 struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2120
2121 /* necessary resource sharing with HDMI LPE audio driver. */
2122 struct {
2123 struct platform_device *platdev;
2124 int irq;
2125 } lpe_audio;
2126
2127 struct i915_pmu pmu;
2128
2129 /*
2130 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2131 * will be rejected. Instead look for a better place.
2132 */
2133 };
2134
2135 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2136 {
2137 return container_of(dev, struct drm_i915_private, drm);
2138 }
2139
2140 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2141 {
2142 return to_i915(dev_get_drvdata(kdev));
2143 }
2144
2145 static inline struct drm_i915_private *wopcm_to_i915(struct intel_wopcm *wopcm)
2146 {
2147 return container_of(wopcm, struct drm_i915_private, wopcm);
2148 }
2149
2150 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2151 {
2152 return container_of(guc, struct drm_i915_private, guc);
2153 }
2154
2155 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2156 {
2157 return container_of(huc, struct drm_i915_private, huc);
2158 }
2159
2160 /* Simple iterator over all initialised engines */
2161 #define for_each_engine(engine__, dev_priv__, id__) \
2162 for ((id__) = 0; \
2163 (id__) < I915_NUM_ENGINES; \
2164 (id__)++) \
2165 for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2166
2167 /* Iterator over subset of engines selected by mask */
2168 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2169 for ((tmp__) = (mask__) & INTEL_INFO(dev_priv__)->ring_mask; \
2170 (tmp__) ? \
2171 ((engine__) = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : \
2172 0;)
2173
2174 enum hdmi_force_audio {
2175 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2176 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2177 HDMI_AUDIO_AUTO, /* trust EDID */
2178 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2179 };
2180
2181 #define I915_GTT_OFFSET_NONE ((u32)-1)
2182
2183 /*
2184 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2185 * considered to be the frontbuffer for the given plane interface-wise. This
2186 * doesn't mean that the hw necessarily already scans it out, but that any
2187 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2188 *
2189 * We have one bit per pipe and per scanout plane type.
2190 */
2191 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2192 #define INTEL_FRONTBUFFER(pipe, plane_id) ({ \
2193 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES > 32); \
2194 BUILD_BUG_ON(I915_MAX_PLANES > INTEL_FRONTBUFFER_BITS_PER_PIPE); \
2195 BIT((plane_id) + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)); \
2196 })
2197 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2198 BIT(INTEL_FRONTBUFFER_BITS_PER_PIPE - 1 + INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2199 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2200 GENMASK(INTEL_FRONTBUFFER_BITS_PER_PIPE * ((pipe) + 1) - 1, \
2201 INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))
2202
2203 /*
2204 * Optimised SGL iterator for GEM objects
2205 */
2206 static __always_inline struct sgt_iter {
2207 struct scatterlist *sgp;
2208 union {
2209 unsigned long pfn;
2210 dma_addr_t dma;
2211 };
2212 unsigned int curr;
2213 unsigned int max;
2214 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2215 struct sgt_iter s = { .sgp = sgl };
2216
2217 if (s.sgp) {
2218 s.max = s.curr = s.sgp->offset;
2219 s.max += s.sgp->length;
2220 if (dma)
2221 s.dma = sg_dma_address(s.sgp);
2222 else
2223 s.pfn = page_to_pfn(sg_page(s.sgp));
2224 }
2225
2226 return s;
2227 }
2228
2229 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2230 {
2231 ++sg;
2232 if (unlikely(sg_is_chain(sg)))
2233 sg = sg_chain_ptr(sg);
2234 return sg;
2235 }
2236
2237 /**
2238 * __sg_next - return the next scatterlist entry in a list
2239 * @sg: The current sg entry
2240 *
2241 * Description:
2242 * If the entry is the last, return NULL; otherwise, step to the next
2243 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2244 * otherwise just return the pointer to the current element.
2245 **/
2246 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2247 {
2248 #ifdef CONFIG_DEBUG_SG
2249 BUG_ON(sg->sg_magic != SG_MAGIC);
2250 #endif
2251 return sg_is_last(sg) ? NULL : ____sg_next(sg);
2252 }
2253
2254 /**
2255 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2256 * @__dmap: DMA address (output)
2257 * @__iter: 'struct sgt_iter' (iterator state, internal)
2258 * @__sgt: sg_table to iterate over (input)
2259 */
2260 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2261 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2262 ((__dmap) = (__iter).dma + (__iter).curr); \
2263 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \
2264 (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0)
2265
2266 /**
2267 * for_each_sgt_page - iterate over the pages of the given sg_table
2268 * @__pp: page pointer (output)
2269 * @__iter: 'struct sgt_iter' (iterator state, internal)
2270 * @__sgt: sg_table to iterate over (input)
2271 */
2272 #define for_each_sgt_page(__pp, __iter, __sgt) \
2273 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2274 ((__pp) = (__iter).pfn == 0 ? NULL : \
2275 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2276 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \
2277 (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0)
2278
2279 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg)
2280 {
2281 unsigned int page_sizes;
2282
2283 page_sizes = 0;
2284 while (sg) {
2285 GEM_BUG_ON(sg->offset);
2286 GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE));
2287 page_sizes |= sg->length;
2288 sg = __sg_next(sg);
2289 }
2290
2291 return page_sizes;
2292 }
2293
2294 static inline unsigned int i915_sg_segment_size(void)
2295 {
2296 unsigned int size = swiotlb_max_segment();
2297
2298 if (size == 0)
2299 return SCATTERLIST_MAX_SEGMENT;
2300
2301 size = rounddown(size, PAGE_SIZE);
2302 /* swiotlb_max_segment_size can return 1 byte when it means one page. */
2303 if (size < PAGE_SIZE)
2304 size = PAGE_SIZE;
2305
2306 return size;
2307 }
2308
2309 static inline const struct intel_device_info *
2310 intel_info(const struct drm_i915_private *dev_priv)
2311 {
2312 return &dev_priv->info;
2313 }
2314
2315 #define INTEL_INFO(dev_priv) intel_info((dev_priv))
2316
2317 #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen)
2318 #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id)
2319
2320 #define REVID_FOREVER 0xff
2321 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision)
2322
2323 #define GEN_FOREVER (0)
2324
2325 #define INTEL_GEN_MASK(s, e) ( \
2326 BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \
2327 BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \
2328 GENMASK((e) != GEN_FOREVER ? (e) - 1 : BITS_PER_LONG - 1, \
2329 (s) != GEN_FOREVER ? (s) - 1 : 0) \
2330 )
2331
2332 /*
2333 * Returns true if Gen is in inclusive range [Start, End].
2334 *
2335 * Use GEN_FOREVER for unbound start and or end.
2336 */
2337 #define IS_GEN(dev_priv, s, e) \
2338 (!!((dev_priv)->info.gen_mask & INTEL_GEN_MASK((s), (e))))
2339
2340 /*
2341 * Return true if revision is in range [since,until] inclusive.
2342 *
2343 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2344 */
2345 #define IS_REVID(p, since, until) \
2346 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2347
2348 #define IS_PLATFORM(dev_priv, p) ((dev_priv)->info.platform_mask & BIT(p))
2349
2350 #define IS_I830(dev_priv) IS_PLATFORM(dev_priv, INTEL_I830)
2351 #define IS_I845G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I845G)
2352 #define IS_I85X(dev_priv) IS_PLATFORM(dev_priv, INTEL_I85X)
2353 #define IS_I865G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I865G)
2354 #define IS_I915G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915G)
2355 #define IS_I915GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915GM)
2356 #define IS_I945G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945G)
2357 #define IS_I945GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945GM)
2358 #define IS_I965G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965G)
2359 #define IS_I965GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965GM)
2360 #define IS_G45(dev_priv) IS_PLATFORM(dev_priv, INTEL_G45)
2361 #define IS_GM45(dev_priv) IS_PLATFORM(dev_priv, INTEL_GM45)
2362 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv))
2363 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001)
2364 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011)
2365 #define IS_PINEVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_PINEVIEW)
2366 #define IS_G33(dev_priv) IS_PLATFORM(dev_priv, INTEL_G33)
2367 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046)
2368 #define IS_IVYBRIDGE(dev_priv) IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE)
2369 #define IS_IVB_GT1(dev_priv) (IS_IVYBRIDGE(dev_priv) && \
2370 (dev_priv)->info.gt == 1)
2371 #define IS_VALLEYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW)
2372 #define IS_CHERRYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW)
2373 #define IS_HASWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_HASWELL)
2374 #define IS_BROADWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROADWELL)
2375 #define IS_SKYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_SKYLAKE)
2376 #define IS_BROXTON(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROXTON)
2377 #define IS_KABYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_KABYLAKE)
2378 #define IS_GEMINILAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_GEMINILAKE)
2379 #define IS_COFFEELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_COFFEELAKE)
2380 #define IS_CANNONLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_CANNONLAKE)
2381 #define IS_ICELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_ICELAKE)
2382 #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile)
2383 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2384 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2385 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \
2386 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \
2387 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \
2388 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2389 /* ULX machines are also considered ULT. */
2390 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \
2391 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2392 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \
2393 (dev_priv)->info.gt == 3)
2394 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \
2395 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2396 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \
2397 (dev_priv)->info.gt == 3)
2398 /* ULX machines are also considered ULT. */
2399 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \
2400 INTEL_DEVID(dev_priv) == 0x0A1E)
2401 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \
2402 INTEL_DEVID(dev_priv) == 0x1913 || \
2403 INTEL_DEVID(dev_priv) == 0x1916 || \
2404 INTEL_DEVID(dev_priv) == 0x1921 || \
2405 INTEL_DEVID(dev_priv) == 0x1926)
2406 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \
2407 INTEL_DEVID(dev_priv) == 0x1915 || \
2408 INTEL_DEVID(dev_priv) == 0x191E)
2409 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \
2410 INTEL_DEVID(dev_priv) == 0x5913 || \
2411 INTEL_DEVID(dev_priv) == 0x5916 || \
2412 INTEL_DEVID(dev_priv) == 0x5921 || \
2413 INTEL_DEVID(dev_priv) == 0x5926)
2414 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \
2415 INTEL_DEVID(dev_priv) == 0x5915 || \
2416 INTEL_DEVID(dev_priv) == 0x591E)
2417 #define IS_SKL_GT2(dev_priv) (IS_SKYLAKE(dev_priv) && \
2418 (dev_priv)->info.gt == 2)
2419 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \
2420 (dev_priv)->info.gt == 3)
2421 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \
2422 (dev_priv)->info.gt == 4)
2423 #define IS_KBL_GT2(dev_priv) (IS_KABYLAKE(dev_priv) && \
2424 (dev_priv)->info.gt == 2)
2425 #define IS_KBL_GT3(dev_priv) (IS_KABYLAKE(dev_priv) && \
2426 (dev_priv)->info.gt == 3)
2427 #define IS_CFL_ULT(dev_priv) (IS_COFFEELAKE(dev_priv) && \
2428 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2429 #define IS_CFL_GT2(dev_priv) (IS_COFFEELAKE(dev_priv) && \
2430 (dev_priv)->info.gt == 2)
2431 #define IS_CFL_GT3(dev_priv) (IS_COFFEELAKE(dev_priv) && \
2432 (dev_priv)->info.gt == 3)
2433 #define IS_CNL_WITH_PORT_F(dev_priv) (IS_CANNONLAKE(dev_priv) && \
2434 (INTEL_DEVID(dev_priv) & 0x0004) == 0x0004)
2435
2436 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2437
2438 #define SKL_REVID_A0 0x0
2439 #define SKL_REVID_B0 0x1
2440 #define SKL_REVID_C0 0x2
2441 #define SKL_REVID_D0 0x3
2442 #define SKL_REVID_E0 0x4
2443 #define SKL_REVID_F0 0x5
2444 #define SKL_REVID_G0 0x6
2445 #define SKL_REVID_H0 0x7
2446
2447 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2448
2449 #define BXT_REVID_A0 0x0
2450 #define BXT_REVID_A1 0x1
2451 #define BXT_REVID_B0 0x3
2452 #define BXT_REVID_B_LAST 0x8
2453 #define BXT_REVID_C0 0x9
2454
2455 #define IS_BXT_REVID(dev_priv, since, until) \
2456 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2457
2458 #define KBL_REVID_A0 0x0
2459 #define KBL_REVID_B0 0x1
2460 #define KBL_REVID_C0 0x2
2461 #define KBL_REVID_D0 0x3
2462 #define KBL_REVID_E0 0x4
2463
2464 #define IS_KBL_REVID(dev_priv, since, until) \
2465 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2466
2467 #define GLK_REVID_A0 0x0
2468 #define GLK_REVID_A1 0x1
2469
2470 #define IS_GLK_REVID(dev_priv, since, until) \
2471 (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2472
2473 #define CNL_REVID_A0 0x0
2474 #define CNL_REVID_B0 0x1
2475 #define CNL_REVID_C0 0x2
2476
2477 #define IS_CNL_REVID(p, since, until) \
2478 (IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2479
2480 #define ICL_REVID_A0 0x0
2481 #define ICL_REVID_A2 0x1
2482 #define ICL_REVID_B0 0x3
2483 #define ICL_REVID_B2 0x4
2484 #define ICL_REVID_C0 0x5
2485
2486 #define IS_ICL_REVID(p, since, until) \
2487 (IS_ICELAKE(p) && IS_REVID(p, since, until))
2488
2489 /*
2490 * The genX designation typically refers to the render engine, so render
2491 * capability related checks should use IS_GEN, while display and other checks
2492 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2493 * chips, etc.).
2494 */
2495 #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1)))
2496 #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2)))
2497 #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3)))
2498 #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4)))
2499 #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5)))
2500 #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6)))
2501 #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7)))
2502 #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8)))
2503 #define IS_GEN10(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(9)))
2504 #define IS_GEN11(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(10)))
2505
2506 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp)
2507 #define IS_GEN9_LP(dev_priv) (IS_GEN9(dev_priv) && IS_LP(dev_priv))
2508 #define IS_GEN9_BC(dev_priv) (IS_GEN9(dev_priv) && !IS_LP(dev_priv))
2509
2510 #define ENGINE_MASK(id) BIT(id)
2511 #define RENDER_RING ENGINE_MASK(RCS)
2512 #define BSD_RING ENGINE_MASK(VCS)
2513 #define BLT_RING ENGINE_MASK(BCS)
2514 #define VEBOX_RING ENGINE_MASK(VECS)
2515 #define BSD2_RING ENGINE_MASK(VCS2)
2516 #define BSD3_RING ENGINE_MASK(VCS3)
2517 #define BSD4_RING ENGINE_MASK(VCS4)
2518 #define VEBOX2_RING ENGINE_MASK(VECS2)
2519 #define ALL_ENGINES (~0)
2520
2521 #define HAS_ENGINE(dev_priv, id) \
2522 (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
2523
2524 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
2525 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
2526 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
2527 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
2528
2529 #define HAS_LEGACY_SEMAPHORES(dev_priv) IS_GEN7(dev_priv)
2530
2531 #define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc)
2532 #define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop)
2533 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED))
2534 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \
2535 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
2536
2537 #define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical)
2538
2539 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
2540 ((dev_priv)->info.has_logical_ring_contexts)
2541 #define HAS_LOGICAL_RING_ELSQ(dev_priv) \
2542 ((dev_priv)->info.has_logical_ring_elsq)
2543 #define HAS_LOGICAL_RING_PREEMPTION(dev_priv) \
2544 ((dev_priv)->info.has_logical_ring_preemption)
2545
2546 #define HAS_EXECLISTS(dev_priv) HAS_LOGICAL_RING_CONTEXTS(dev_priv)
2547
2548 #define USES_PPGTT(dev_priv) (i915_modparams.enable_ppgtt)
2549 #define USES_FULL_PPGTT(dev_priv) (i915_modparams.enable_ppgtt >= 2)
2550 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915_modparams.enable_ppgtt == 3)
2551 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \
2552 GEM_BUG_ON((sizes) == 0); \
2553 ((sizes) & ~(dev_priv)->info.page_sizes) == 0; \
2554 })
2555
2556 #define HAS_OVERLAY(dev_priv) ((dev_priv)->info.has_overlay)
2557 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
2558 ((dev_priv)->info.overlay_needs_physical)
2559
2560 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2561 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv))
2562
2563 /* WaRsDisableCoarsePowerGating:skl,cnl */
2564 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2565 (IS_CANNONLAKE(dev_priv) || \
2566 IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
2567
2568 /*
2569 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2570 * even when in MSI mode. This results in spurious interrupt warnings if the
2571 * legacy irq no. is shared with another device. The kernel then disables that
2572 * interrupt source and so prevents the other device from working properly.
2573 *
2574 * Since we don't enable MSI anymore on gen4, we can always use GMBUS/AUX
2575 * interrupts.
2576 */
2577 #define HAS_AUX_IRQ(dev_priv) true
2578 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4)
2579
2580 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2581 * rows, which changed the alignment requirements and fence programming.
2582 */
2583 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
2584 !(IS_I915G(dev_priv) || \
2585 IS_I915GM(dev_priv)))
2586 #define SUPPORTS_TV(dev_priv) ((dev_priv)->info.supports_tv)
2587 #define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.has_hotplug)
2588
2589 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2)
2590 #define HAS_FBC(dev_priv) ((dev_priv)->info.has_fbc)
2591 #define HAS_CUR_FBC(dev_priv) (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 7)
2592
2593 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
2594
2595 #define HAS_DP_MST(dev_priv) ((dev_priv)->info.has_dp_mst)
2596
2597 #define HAS_DDI(dev_priv) ((dev_priv)->info.has_ddi)
2598 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
2599 #define HAS_PSR(dev_priv) ((dev_priv)->info.has_psr)
2600
2601 #define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6)
2602 #define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p)
2603 #define HAS_RC6pp(dev_priv) (false) /* HW was never validated */
2604
2605 #define HAS_CSR(dev_priv) ((dev_priv)->info.has_csr)
2606
2607 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
2608 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
2609
2610 #define HAS_IPC(dev_priv) ((dev_priv)->info.has_ipc)
2611
2612 /*
2613 * For now, anything with a GuC requires uCode loading, and then supports
2614 * command submission once loaded. But these are logically independent
2615 * properties, so we have separate macros to test them.
2616 */
2617 #define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc)
2618 #define HAS_GUC_CT(dev_priv) ((dev_priv)->info.has_guc_ct)
2619 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
2620 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv))
2621
2622 /* For now, anything with a GuC has also HuC */
2623 #define HAS_HUC(dev_priv) (HAS_GUC(dev_priv))
2624 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
2625
2626 /* Having a GuC is not the same as using a GuC */
2627 #define USES_GUC(dev_priv) intel_uc_is_using_guc()
2628 #define USES_GUC_SUBMISSION(dev_priv) intel_uc_is_using_guc_submission()
2629 #define USES_HUC(dev_priv) intel_uc_is_using_huc()
2630
2631 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
2632
2633 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu)
2634
2635 #define INTEL_PCH_DEVICE_ID_MASK 0xff80
2636 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
2637 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
2638 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
2639 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
2640 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
2641 #define INTEL_PCH_WPT_DEVICE_ID_TYPE 0x8c80
2642 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE 0x9c80
2643 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
2644 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
2645 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA280
2646 #define INTEL_PCH_CNP_DEVICE_ID_TYPE 0xA300
2647 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE 0x9D80
2648 #define INTEL_PCH_ICP_DEVICE_ID_TYPE 0x3480
2649 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
2650 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
2651 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
2652
2653 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
2654 #define INTEL_PCH_ID(dev_priv) ((dev_priv)->pch_id)
2655 #define HAS_PCH_ICP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_ICP)
2656 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
2657 #define HAS_PCH_CNP_LP(dev_priv) \
2658 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
2659 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
2660 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
2661 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
2662 #define HAS_PCH_LPT_LP(dev_priv) \
2663 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
2664 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
2665 #define HAS_PCH_LPT_H(dev_priv) \
2666 (INTEL_PCH_ID(dev_priv) == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
2667 INTEL_PCH_ID(dev_priv) == INTEL_PCH_WPT_DEVICE_ID_TYPE)
2668 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
2669 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
2670 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
2671 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
2672
2673 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
2674
2675 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
2676
2677 /* DPF == dynamic parity feature */
2678 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
2679 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
2680 2 : HAS_L3_DPF(dev_priv))
2681
2682 #define GT_FREQUENCY_MULTIPLIER 50
2683 #define GEN9_FREQ_SCALER 3
2684
2685 #include "i915_trace.h"
2686
2687 static inline bool intel_vtd_active(void)
2688 {
2689 #ifdef CONFIG_INTEL_IOMMU
2690 if (intel_iommu_gfx_mapped)
2691 return true;
2692 #endif
2693 return false;
2694 }
2695
2696 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2697 {
2698 return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
2699 }
2700
2701 static inline bool
2702 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
2703 {
2704 return IS_BROXTON(dev_priv) && intel_vtd_active();
2705 }
2706
2707 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
2708 int enable_ppgtt);
2709
2710 /* i915_drv.c */
2711 void __printf(3, 4)
2712 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2713 const char *fmt, ...);
2714
2715 #define i915_report_error(dev_priv, fmt, ...) \
2716 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2717
2718 #ifdef CONFIG_COMPAT
2719 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2720 unsigned long arg);
2721 #else
2722 #define i915_compat_ioctl NULL
2723 #endif
2724 extern const struct dev_pm_ops i915_pm_ops;
2725
2726 extern int i915_driver_load(struct pci_dev *pdev,
2727 const struct pci_device_id *ent);
2728 extern void i915_driver_unload(struct drm_device *dev);
2729 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
2730 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
2731
2732 extern void i915_reset(struct drm_i915_private *i915,
2733 unsigned int stalled_mask,
2734 const char *reason);
2735 extern int i915_reset_engine(struct intel_engine_cs *engine,
2736 const char *reason);
2737
2738 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
2739 extern int intel_reset_guc(struct drm_i915_private *dev_priv);
2740 extern int intel_guc_reset_engine(struct intel_guc *guc,
2741 struct intel_engine_cs *engine);
2742 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2743 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
2744 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2745 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2746 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2747 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2748 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2749
2750 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
2751 int intel_engines_init(struct drm_i915_private *dev_priv);
2752
2753 /* intel_hotplug.c */
2754 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2755 u32 pin_mask, u32 long_mask);
2756 void intel_hpd_init(struct drm_i915_private *dev_priv);
2757 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2758 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2759 enum port intel_hpd_pin_to_port(struct drm_i915_private *dev_priv,
2760 enum hpd_pin pin);
2761 enum hpd_pin intel_hpd_pin_default(struct drm_i915_private *dev_priv,
2762 enum port port);
2763 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2764 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2765
2766 /* i915_irq.c */
2767 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2768 {
2769 unsigned long delay;
2770
2771 if (unlikely(!i915_modparams.enable_hangcheck))
2772 return;
2773
2774 /* Don't continually defer the hangcheck so that it is always run at
2775 * least once after work has been scheduled on any ring. Otherwise,
2776 * we will ignore a hung ring if a second ring is kept busy.
2777 */
2778
2779 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2780 queue_delayed_work(system_long_wq,
2781 &dev_priv->gpu_error.hangcheck_work, delay);
2782 }
2783
2784 __printf(4, 5)
2785 void i915_handle_error(struct drm_i915_private *dev_priv,
2786 u32 engine_mask,
2787 unsigned long flags,
2788 const char *fmt, ...);
2789 #define I915_ERROR_CAPTURE BIT(0)
2790
2791 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2792 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
2793 int intel_irq_install(struct drm_i915_private *dev_priv);
2794 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2795
2796 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
2797 {
2798 return dev_priv->gvt;
2799 }
2800
2801 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
2802 {
2803 return dev_priv->vgpu.active;
2804 }
2805
2806 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
2807 enum pipe pipe);
2808 void
2809 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2810 u32 status_mask);
2811
2812 void
2813 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2814 u32 status_mask);
2815
2816 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
2817 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
2818 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
2819 uint32_t mask,
2820 uint32_t bits);
2821 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
2822 uint32_t interrupt_mask,
2823 uint32_t enabled_irq_mask);
2824 static inline void
2825 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2826 {
2827 ilk_update_display_irq(dev_priv, bits, bits);
2828 }
2829 static inline void
2830 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2831 {
2832 ilk_update_display_irq(dev_priv, bits, 0);
2833 }
2834 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
2835 enum pipe pipe,
2836 uint32_t interrupt_mask,
2837 uint32_t enabled_irq_mask);
2838 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
2839 enum pipe pipe, uint32_t bits)
2840 {
2841 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
2842 }
2843 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
2844 enum pipe pipe, uint32_t bits)
2845 {
2846 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
2847 }
2848 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
2849 uint32_t interrupt_mask,
2850 uint32_t enabled_irq_mask);
2851 static inline void
2852 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2853 {
2854 ibx_display_interrupt_update(dev_priv, bits, bits);
2855 }
2856 static inline void
2857 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2858 {
2859 ibx_display_interrupt_update(dev_priv, bits, 0);
2860 }
2861
2862 /* i915_gem.c */
2863 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
2864 struct drm_file *file_priv);
2865 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
2866 struct drm_file *file_priv);
2867 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
2868 struct drm_file *file_priv);
2869 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
2870 struct drm_file *file_priv);
2871 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2872 struct drm_file *file_priv);
2873 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
2874 struct drm_file *file_priv);
2875 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
2876 struct drm_file *file_priv);
2877 int i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2878 struct drm_file *file_priv);
2879 int i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2880 struct drm_file *file_priv);
2881 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2882 struct drm_file *file_priv);
2883 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
2884 struct drm_file *file);
2885 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
2886 struct drm_file *file);
2887 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2888 struct drm_file *file_priv);
2889 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
2890 struct drm_file *file_priv);
2891 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
2892 struct drm_file *file_priv);
2893 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
2894 struct drm_file *file_priv);
2895 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
2896 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
2897 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
2898 struct drm_file *file);
2899 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
2900 struct drm_file *file_priv);
2901 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
2902 struct drm_file *file_priv);
2903 void i915_gem_sanitize(struct drm_i915_private *i915);
2904 int i915_gem_init_early(struct drm_i915_private *dev_priv);
2905 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv);
2906 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
2907 int i915_gem_freeze(struct drm_i915_private *dev_priv);
2908 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
2909
2910 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
2911 void i915_gem_object_free(struct drm_i915_gem_object *obj);
2912 void i915_gem_object_init(struct drm_i915_gem_object *obj,
2913 const struct drm_i915_gem_object_ops *ops);
2914 struct drm_i915_gem_object *
2915 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
2916 struct drm_i915_gem_object *
2917 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
2918 const void *data, size_t size);
2919 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
2920 void i915_gem_free_object(struct drm_gem_object *obj);
2921
2922 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
2923 {
2924 if (!atomic_read(&i915->mm.free_count))
2925 return;
2926
2927 /* A single pass should suffice to release all the freed objects (along
2928 * most call paths) , but be a little more paranoid in that freeing
2929 * the objects does take a little amount of time, during which the rcu
2930 * callbacks could have added new objects into the freed list, and
2931 * armed the work again.
2932 */
2933 do {
2934 rcu_barrier();
2935 } while (flush_work(&i915->mm.free_work));
2936 }
2937
2938 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
2939 {
2940 /*
2941 * Similar to objects above (see i915_gem_drain_freed-objects), in
2942 * general we have workers that are armed by RCU and then rearm
2943 * themselves in their callbacks. To be paranoid, we need to
2944 * drain the workqueue a second time after waiting for the RCU
2945 * grace period so that we catch work queued via RCU from the first
2946 * pass. As neither drain_workqueue() nor flush_workqueue() report
2947 * a result, we make an assumption that we only don't require more
2948 * than 2 passes to catch all recursive RCU delayed work.
2949 *
2950 */
2951 int pass = 2;
2952 do {
2953 rcu_barrier();
2954 drain_workqueue(i915->wq);
2955 } while (--pass);
2956 }
2957
2958 struct i915_vma * __must_check
2959 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
2960 const struct i915_ggtt_view *view,
2961 u64 size,
2962 u64 alignment,
2963 u64 flags);
2964
2965 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
2966 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
2967
2968 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
2969
2970 static inline int __sg_page_count(const struct scatterlist *sg)
2971 {
2972 return sg->length >> PAGE_SHIFT;
2973 }
2974
2975 struct scatterlist *
2976 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
2977 unsigned int n, unsigned int *offset);
2978
2979 struct page *
2980 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
2981 unsigned int n);
2982
2983 struct page *
2984 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
2985 unsigned int n);
2986
2987 dma_addr_t
2988 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
2989 unsigned long n);
2990
2991 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2992 struct sg_table *pages,
2993 unsigned int sg_page_sizes);
2994 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
2995
2996 static inline int __must_check
2997 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
2998 {
2999 might_lock(&obj->mm.lock);
3000
3001 if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3002 return 0;
3003
3004 return __i915_gem_object_get_pages(obj);
3005 }
3006
3007 static inline bool
3008 i915_gem_object_has_pages(struct drm_i915_gem_object *obj)
3009 {
3010 return !IS_ERR_OR_NULL(READ_ONCE(obj->mm.pages));
3011 }
3012
3013 static inline void
3014 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3015 {
3016 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
3017
3018 atomic_inc(&obj->mm.pages_pin_count);
3019 }
3020
3021 static inline bool
3022 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3023 {
3024 return atomic_read(&obj->mm.pages_pin_count);
3025 }
3026
3027 static inline void
3028 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3029 {
3030 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
3031 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3032
3033 atomic_dec(&obj->mm.pages_pin_count);
3034 }
3035
3036 static inline void
3037 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3038 {
3039 __i915_gem_object_unpin_pages(obj);
3040 }
3041
3042 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3043 I915_MM_NORMAL = 0,
3044 I915_MM_SHRINKER
3045 };
3046
3047 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3048 enum i915_mm_subclass subclass);
3049 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3050
3051 enum i915_map_type {
3052 I915_MAP_WB = 0,
3053 I915_MAP_WC,
3054 #define I915_MAP_OVERRIDE BIT(31)
3055 I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
3056 I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
3057 };
3058
3059 /**
3060 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3061 * @obj: the object to map into kernel address space
3062 * @type: the type of mapping, used to select pgprot_t
3063 *
3064 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3065 * pages and then returns a contiguous mapping of the backing storage into
3066 * the kernel address space. Based on the @type of mapping, the PTE will be
3067 * set to either WriteBack or WriteCombine (via pgprot_t).
3068 *
3069 * The caller is responsible for calling i915_gem_object_unpin_map() when the
3070 * mapping is no longer required.
3071 *
3072 * Returns the pointer through which to access the mapped object, or an
3073 * ERR_PTR() on error.
3074 */
3075 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3076 enum i915_map_type type);
3077
3078 /**
3079 * i915_gem_object_unpin_map - releases an earlier mapping
3080 * @obj: the object to unmap
3081 *
3082 * After pinning the object and mapping its pages, once you are finished
3083 * with your access, call i915_gem_object_unpin_map() to release the pin
3084 * upon the mapping. Once the pin count reaches zero, that mapping may be
3085 * removed.
3086 */
3087 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3088 {
3089 i915_gem_object_unpin_pages(obj);
3090 }
3091
3092 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3093 unsigned int *needs_clflush);
3094 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3095 unsigned int *needs_clflush);
3096 #define CLFLUSH_BEFORE BIT(0)
3097 #define CLFLUSH_AFTER BIT(1)
3098 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER)
3099
3100 static inline void
3101 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3102 {
3103 i915_gem_object_unpin_pages(obj);
3104 }
3105
3106 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3107 void i915_vma_move_to_active(struct i915_vma *vma,
3108 struct i915_request *rq,
3109 unsigned int flags);
3110 int i915_gem_dumb_create(struct drm_file *file_priv,
3111 struct drm_device *dev,
3112 struct drm_mode_create_dumb *args);
3113 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3114 uint32_t handle, uint64_t *offset);
3115 int i915_gem_mmap_gtt_version(void);
3116
3117 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3118 struct drm_i915_gem_object *new,
3119 unsigned frontbuffer_bits);
3120
3121 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3122
3123 struct i915_request *
3124 i915_gem_find_active_request(struct intel_engine_cs *engine);
3125
3126 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3127 {
3128 return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3129 }
3130
3131 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3132 {
3133 return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3134 }
3135
3136 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3137 {
3138 return unlikely(test_bit(I915_WEDGED, &error->flags));
3139 }
3140
3141 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3142 {
3143 return i915_reset_backoff(error) | i915_terminally_wedged(error);
3144 }
3145
3146 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3147 {
3148 return READ_ONCE(error->reset_count);
3149 }
3150
3151 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3152 struct intel_engine_cs *engine)
3153 {
3154 return READ_ONCE(error->reset_engine_count[engine->id]);
3155 }
3156
3157 struct i915_request *
3158 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3159 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3160 void i915_gem_reset(struct drm_i915_private *dev_priv,
3161 unsigned int stalled_mask);
3162 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3163 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3164 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3165 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3166 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3167 struct i915_request *request,
3168 bool stalled);
3169
3170 void i915_gem_init_mmio(struct drm_i915_private *i915);
3171 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3172 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3173 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3174 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3175 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3176 unsigned int flags);
3177 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3178 void i915_gem_resume(struct drm_i915_private *dev_priv);
3179 int i915_gem_fault(struct vm_fault *vmf);
3180 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3181 unsigned int flags,
3182 long timeout,
3183 struct intel_rps_client *rps);
3184 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3185 unsigned int flags,
3186 const struct i915_sched_attr *attr);
3187 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3188
3189 int __must_check
3190 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3191 int __must_check
3192 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3193 int __must_check
3194 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3195 struct i915_vma * __must_check
3196 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3197 u32 alignment,
3198 const struct i915_ggtt_view *view,
3199 unsigned int flags);
3200 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3201 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3202 int align);
3203 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3204 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3205
3206 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3207 enum i915_cache_level cache_level);
3208
3209 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3210 struct dma_buf *dma_buf);
3211
3212 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3213 struct drm_gem_object *gem_obj, int flags);
3214
3215 static inline struct i915_hw_ppgtt *
3216 i915_vm_to_ppgtt(struct i915_address_space *vm)
3217 {
3218 return container_of(vm, struct i915_hw_ppgtt, base);
3219 }
3220
3221 /* i915_gem_fence_reg.c */
3222 struct drm_i915_fence_reg *
3223 i915_reserve_fence(struct drm_i915_private *dev_priv);
3224 void i915_unreserve_fence(struct drm_i915_fence_reg *fence);
3225
3226 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3227 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3228
3229 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3230 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3231 struct sg_table *pages);
3232 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3233 struct sg_table *pages);
3234
3235 static inline struct i915_gem_context *
3236 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3237 {
3238 return idr_find(&file_priv->context_idr, id);
3239 }
3240
3241 static inline struct i915_gem_context *
3242 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3243 {
3244 struct i915_gem_context *ctx;
3245
3246 rcu_read_lock();
3247 ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3248 if (ctx && !kref_get_unless_zero(&ctx->ref))
3249 ctx = NULL;
3250 rcu_read_unlock();
3251
3252 return ctx;
3253 }
3254
3255 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3256 struct drm_file *file);
3257 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3258 struct drm_file *file);
3259 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3260 struct drm_file *file);
3261 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3262 struct i915_gem_context *ctx,
3263 uint32_t *reg_state);
3264
3265 /* i915_gem_evict.c */
3266 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3267 u64 min_size, u64 alignment,
3268 unsigned cache_level,
3269 u64 start, u64 end,
3270 unsigned flags);
3271 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3272 struct drm_mm_node *node,
3273 unsigned int flags);
3274 int i915_gem_evict_vm(struct i915_address_space *vm);
3275
3276 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv);
3277
3278 /* belongs in i915_gem_gtt.h */
3279 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3280 {
3281 wmb();
3282 if (INTEL_GEN(dev_priv) < 6)
3283 intel_gtt_chipset_flush();
3284 }
3285
3286 /* i915_gem_stolen.c */
3287 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3288 struct drm_mm_node *node, u64 size,
3289 unsigned alignment);
3290 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3291 struct drm_mm_node *node, u64 size,
3292 unsigned alignment, u64 start,
3293 u64 end);
3294 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3295 struct drm_mm_node *node);
3296 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3297 void i915_gem_cleanup_stolen(struct drm_device *dev);
3298 struct drm_i915_gem_object *
3299 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv,
3300 resource_size_t size);
3301 struct drm_i915_gem_object *
3302 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3303 resource_size_t stolen_offset,
3304 resource_size_t gtt_offset,
3305 resource_size_t size);
3306
3307 /* i915_gem_internal.c */
3308 struct drm_i915_gem_object *
3309 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3310 phys_addr_t size);
3311
3312 /* i915_gem_shrinker.c */
3313 unsigned long i915_gem_shrink(struct drm_i915_private *i915,
3314 unsigned long target,
3315 unsigned long *nr_scanned,
3316 unsigned flags);
3317 #define I915_SHRINK_PURGEABLE 0x1
3318 #define I915_SHRINK_UNBOUND 0x2
3319 #define I915_SHRINK_BOUND 0x4
3320 #define I915_SHRINK_ACTIVE 0x8
3321 #define I915_SHRINK_VMAPS 0x10
3322 unsigned long i915_gem_shrink_all(struct drm_i915_private *i915);
3323 void i915_gem_shrinker_register(struct drm_i915_private *i915);
3324 void i915_gem_shrinker_unregister(struct drm_i915_private *i915);
3325
3326
3327 /* i915_gem_tiling.c */
3328 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3329 {
3330 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3331
3332 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3333 i915_gem_object_is_tiled(obj);
3334 }
3335
3336 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3337 unsigned int tiling, unsigned int stride);
3338 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3339 unsigned int tiling, unsigned int stride);
3340
3341 /* i915_debugfs.c */
3342 #ifdef CONFIG_DEBUG_FS
3343 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3344 int i915_debugfs_connector_add(struct drm_connector *connector);
3345 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3346 #else
3347 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3348 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3349 { return 0; }
3350 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3351 #endif
3352
3353 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3354
3355 /* i915_cmd_parser.c */
3356 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3357 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3358 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3359 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3360 struct drm_i915_gem_object *batch_obj,
3361 struct drm_i915_gem_object *shadow_batch_obj,
3362 u32 batch_start_offset,
3363 u32 batch_len,
3364 bool is_master);
3365
3366 /* i915_perf.c */
3367 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3368 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3369 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3370 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3371
3372 /* i915_suspend.c */
3373 extern int i915_save_state(struct drm_i915_private *dev_priv);
3374 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3375
3376 /* i915_sysfs.c */
3377 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3378 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3379
3380 /* intel_lpe_audio.c */
3381 int intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3382 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3383 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3384 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3385 enum pipe pipe, enum port port,
3386 const void *eld, int ls_clock, bool dp_output);
3387
3388 /* intel_i2c.c */
3389 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3390 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3391 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3392 unsigned int pin);
3393 extern int intel_gmbus_output_aksv(struct i2c_adapter *adapter);
3394
3395 extern struct i2c_adapter *
3396 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3397 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3398 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3399 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3400 {
3401 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3402 }
3403 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3404
3405 /* intel_bios.c */
3406 void intel_bios_init(struct drm_i915_private *dev_priv);
3407 void intel_bios_cleanup(struct drm_i915_private *dev_priv);
3408 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3409 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3410 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3411 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3412 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3413 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3414 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3415 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3416 enum port port);
3417 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3418 enum port port);
3419
3420 /* intel_acpi.c */
3421 #ifdef CONFIG_ACPI
3422 extern void intel_register_dsm_handler(void);
3423 extern void intel_unregister_dsm_handler(void);
3424 #else
3425 static inline void intel_register_dsm_handler(void) { return; }
3426 static inline void intel_unregister_dsm_handler(void) { return; }
3427 #endif /* CONFIG_ACPI */
3428
3429 /* intel_device_info.c */
3430 static inline struct intel_device_info *
3431 mkwrite_device_info(struct drm_i915_private *dev_priv)
3432 {
3433 return (struct intel_device_info *)&dev_priv->info;
3434 }
3435
3436 /* modesetting */
3437 extern void intel_modeset_init_hw(struct drm_device *dev);
3438 extern int intel_modeset_init(struct drm_device *dev);
3439 extern void intel_modeset_cleanup(struct drm_device *dev);
3440 extern int intel_connector_register(struct drm_connector *);
3441 extern void intel_connector_unregister(struct drm_connector *);
3442 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3443 bool state);
3444 extern void intel_display_resume(struct drm_device *dev);
3445 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3446 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3447 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3448 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3449 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3450 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3451 bool enable);
3452
3453 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3454 struct drm_file *file);
3455
3456 /* overlay */
3457 extern struct intel_overlay_error_state *
3458 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3459 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3460 struct intel_overlay_error_state *error);
3461
3462 extern struct intel_display_error_state *
3463 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3464 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3465 struct intel_display_error_state *error);
3466
3467 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3468 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv, u32 mbox,
3469 u32 val, int fast_timeout_us,
3470 int slow_timeout_ms);
3471 #define sandybridge_pcode_write(dev_priv, mbox, val) \
3472 sandybridge_pcode_write_timeout(dev_priv, mbox, val, 500, 0)
3473
3474 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3475 u32 reply_mask, u32 reply, int timeout_base_ms);
3476
3477 /* intel_sideband.c */
3478 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3479 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3480 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3481 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3482 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3483 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3484 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3485 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3486 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3487 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3488 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3489 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3490 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3491 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3492 enum intel_sbi_destination destination);
3493 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3494 enum intel_sbi_destination destination);
3495 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3496 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3497
3498 /* intel_dpio_phy.c */
3499 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
3500 enum dpio_phy *phy, enum dpio_channel *ch);
3501 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
3502 enum port port, u32 margin, u32 scale,
3503 u32 enable, u32 deemphasis);
3504 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3505 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3506 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
3507 enum dpio_phy phy);
3508 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
3509 enum dpio_phy phy);
3510 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(uint8_t lane_count);
3511 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
3512 uint8_t lane_lat_optim_mask);
3513 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
3514
3515 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3516 u32 deemph_reg_value, u32 margin_reg_value,
3517 bool uniq_trans_scale);
3518 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3519 const struct intel_crtc_state *crtc_state,
3520 bool reset);
3521 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
3522 const struct intel_crtc_state *crtc_state);
3523 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3524 const struct intel_crtc_state *crtc_state);
3525 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3526 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
3527 const struct intel_crtc_state *old_crtc_state);
3528
3529 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3530 u32 demph_reg_value, u32 preemph_reg_value,
3531 u32 uniqtranscale_reg_value, u32 tx3_demph);
3532 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
3533 const struct intel_crtc_state *crtc_state);
3534 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
3535 const struct intel_crtc_state *crtc_state);
3536 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
3537 const struct intel_crtc_state *old_crtc_state);
3538
3539 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3540 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3541 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
3542 const i915_reg_t reg);
3543
3544 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat1);
3545
3546 static inline u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
3547 const i915_reg_t reg)
3548 {
3549 return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000);
3550 }
3551
3552 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3553 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3554
3555 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3556 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3557 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3558 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3559
3560 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3561 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3562 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3563 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3564
3565 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3566 * will be implemented using 2 32-bit writes in an arbitrary order with
3567 * an arbitrary delay between them. This can cause the hardware to
3568 * act upon the intermediate value, possibly leading to corruption and
3569 * machine death. For this reason we do not support I915_WRITE64, or
3570 * dev_priv->uncore.funcs.mmio_writeq.
3571 *
3572 * When reading a 64-bit value as two 32-bit values, the delay may cause
3573 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
3574 * occasionally a 64-bit register does not actualy support a full readq
3575 * and must be read using two 32-bit reads.
3576 *
3577 * You have been warned.
3578 */
3579 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3580
3581 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
3582 u32 upper, lower, old_upper, loop = 0; \
3583 upper = I915_READ(upper_reg); \
3584 do { \
3585 old_upper = upper; \
3586 lower = I915_READ(lower_reg); \
3587 upper = I915_READ(upper_reg); \
3588 } while (upper != old_upper && loop++ < 2); \
3589 (u64)upper << 32 | lower; })
3590
3591 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
3592 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
3593
3594 #define __raw_read(x, s) \
3595 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
3596 i915_reg_t reg) \
3597 { \
3598 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3599 }
3600
3601 #define __raw_write(x, s) \
3602 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
3603 i915_reg_t reg, uint##x##_t val) \
3604 { \
3605 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3606 }
3607 __raw_read(8, b)
3608 __raw_read(16, w)
3609 __raw_read(32, l)
3610 __raw_read(64, q)
3611
3612 __raw_write(8, b)
3613 __raw_write(16, w)
3614 __raw_write(32, l)
3615 __raw_write(64, q)
3616
3617 #undef __raw_read
3618 #undef __raw_write
3619
3620 /* These are untraced mmio-accessors that are only valid to be used inside
3621 * critical sections, such as inside IRQ handlers, where forcewake is explicitly
3622 * controlled.
3623 *
3624 * Think twice, and think again, before using these.
3625 *
3626 * As an example, these accessors can possibly be used between:
3627 *
3628 * spin_lock_irq(&dev_priv->uncore.lock);
3629 * intel_uncore_forcewake_get__locked();
3630 *
3631 * and
3632 *
3633 * intel_uncore_forcewake_put__locked();
3634 * spin_unlock_irq(&dev_priv->uncore.lock);
3635 *
3636 *
3637 * Note: some registers may not need forcewake held, so
3638 * intel_uncore_forcewake_{get,put} can be omitted, see
3639 * intel_uncore_forcewake_for_reg().
3640 *
3641 * Certain architectures will die if the same cacheline is concurrently accessed
3642 * by different clients (e.g. on Ivybridge). Access to registers should
3643 * therefore generally be serialised, by either the dev_priv->uncore.lock or
3644 * a more localised lock guarding all access to that bank of registers.
3645 */
3646 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3647 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3648 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3649 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3650
3651 /* "Broadcast RGB" property */
3652 #define INTEL_BROADCAST_RGB_AUTO 0
3653 #define INTEL_BROADCAST_RGB_FULL 1
3654 #define INTEL_BROADCAST_RGB_LIMITED 2
3655
3656 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
3657 {
3658 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3659 return VLV_VGACNTRL;
3660 else if (INTEL_GEN(dev_priv) >= 5)
3661 return CPU_VGACNTRL;
3662 else
3663 return VGACNTRL;
3664 }
3665
3666 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3667 {
3668 unsigned long j = msecs_to_jiffies(m);
3669
3670 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3671 }
3672
3673 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3674 {
3675 /* nsecs_to_jiffies64() does not guard against overflow */
3676 if (NSEC_PER_SEC % HZ &&
3677 div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
3678 return MAX_JIFFY_OFFSET;
3679
3680 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3681 }
3682
3683 static inline unsigned long
3684 timespec_to_jiffies_timeout(const struct timespec *value)
3685 {
3686 unsigned long j = timespec_to_jiffies(value);
3687
3688 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3689 }
3690
3691 /*
3692 * If you need to wait X milliseconds between events A and B, but event B
3693 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3694 * when event A happened, then just before event B you call this function and
3695 * pass the timestamp as the first argument, and X as the second argument.
3696 */
3697 static inline void
3698 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3699 {
3700 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3701
3702 /*
3703 * Don't re-read the value of "jiffies" every time since it may change
3704 * behind our back and break the math.
3705 */
3706 tmp_jiffies = jiffies;
3707 target_jiffies = timestamp_jiffies +
3708 msecs_to_jiffies_timeout(to_wait_ms);
3709
3710 if (time_after(target_jiffies, tmp_jiffies)) {
3711 remaining_jiffies = target_jiffies - tmp_jiffies;
3712 while (remaining_jiffies)
3713 remaining_jiffies =
3714 schedule_timeout_uninterruptible(remaining_jiffies);
3715 }
3716 }
3717
3718 static inline bool
3719 __i915_request_irq_complete(const struct i915_request *rq)
3720 {
3721 struct intel_engine_cs *engine = rq->engine;
3722 u32 seqno;
3723
3724 /* Note that the engine may have wrapped around the seqno, and
3725 * so our request->global_seqno will be ahead of the hardware,
3726 * even though it completed the request before wrapping. We catch
3727 * this by kicking all the waiters before resetting the seqno
3728 * in hardware, and also signal the fence.
3729 */
3730 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
3731 return true;
3732
3733 /* The request was dequeued before we were awoken. We check after
3734 * inspecting the hw to confirm that this was the same request
3735 * that generated the HWS update. The memory barriers within
3736 * the request execution are sufficient to ensure that a check
3737 * after reading the value from hw matches this request.
3738 */
3739 seqno = i915_request_global_seqno(rq);
3740 if (!seqno)
3741 return false;
3742
3743 /* Before we do the heavier coherent read of the seqno,
3744 * check the value (hopefully) in the CPU cacheline.
3745 */
3746 if (__i915_request_completed(rq, seqno))
3747 return true;
3748
3749 /* Ensure our read of the seqno is coherent so that we
3750 * do not "miss an interrupt" (i.e. if this is the last
3751 * request and the seqno write from the GPU is not visible
3752 * by the time the interrupt fires, we will see that the
3753 * request is incomplete and go back to sleep awaiting
3754 * another interrupt that will never come.)
3755 *
3756 * Strictly, we only need to do this once after an interrupt,
3757 * but it is easier and safer to do it every time the waiter
3758 * is woken.
3759 */
3760 if (engine->irq_seqno_barrier &&
3761 test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
3762 struct intel_breadcrumbs *b = &engine->breadcrumbs;
3763
3764 /* The ordering of irq_posted versus applying the barrier
3765 * is crucial. The clearing of the current irq_posted must
3766 * be visible before we perform the barrier operation,
3767 * such that if a subsequent interrupt arrives, irq_posted
3768 * is reasserted and our task rewoken (which causes us to
3769 * do another __i915_request_irq_complete() immediately
3770 * and reapply the barrier). Conversely, if the clear
3771 * occurs after the barrier, then an interrupt that arrived
3772 * whilst we waited on the barrier would not trigger a
3773 * barrier on the next pass, and the read may not see the
3774 * seqno update.
3775 */
3776 engine->irq_seqno_barrier(engine);
3777
3778 /* If we consume the irq, but we are no longer the bottom-half,
3779 * the real bottom-half may not have serialised their own
3780 * seqno check with the irq-barrier (i.e. may have inspected
3781 * the seqno before we believe it coherent since they see
3782 * irq_posted == false but we are still running).
3783 */
3784 spin_lock_irq(&b->irq_lock);
3785 if (b->irq_wait && b->irq_wait->tsk != current)
3786 /* Note that if the bottom-half is changed as we
3787 * are sending the wake-up, the new bottom-half will
3788 * be woken by whomever made the change. We only have
3789 * to worry about when we steal the irq-posted for
3790 * ourself.
3791 */
3792 wake_up_process(b->irq_wait->tsk);
3793 spin_unlock_irq(&b->irq_lock);
3794
3795 if (__i915_request_completed(rq, seqno))
3796 return true;
3797 }
3798
3799 return false;
3800 }
3801
3802 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
3803 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
3804
3805 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
3806 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
3807 * perform the operation. To check beforehand, pass in the parameters to
3808 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
3809 * you only need to pass in the minor offsets, page-aligned pointers are
3810 * always valid.
3811 *
3812 * For just checking for SSE4.1, in the foreknowledge that the future use
3813 * will be correctly aligned, just use i915_has_memcpy_from_wc().
3814 */
3815 #define i915_can_memcpy_from_wc(dst, src, len) \
3816 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
3817
3818 #define i915_has_memcpy_from_wc() \
3819 i915_memcpy_from_wc(NULL, NULL, 0)
3820
3821 /* i915_mm.c */
3822 int remap_io_mapping(struct vm_area_struct *vma,
3823 unsigned long addr, unsigned long pfn, unsigned long size,
3824 struct io_mapping *iomap);
3825
3826 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915)
3827 {
3828 if (INTEL_GEN(i915) >= 10)
3829 return CNL_HWS_CSB_WRITE_INDEX;
3830 else
3831 return I915_HWS_CSB_WRITE_INDEX;
3832 }
3833
3834 #endif