]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.h
7cd15556fc09ba54eb18228b0103784035c0d6ef
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include "i915_reg.h"
37 #include "intel_bios.h"
38 #include "intel_ringbuffer.h"
39 #include "intel_lrc.h"
40 #include "i915_gem_gtt.h"
41 #include "i915_gem_render_state.h"
42 #include <linux/io-mapping.h>
43 #include <linux/i2c.h>
44 #include <linux/i2c-algo-bit.h>
45 #include <drm/intel-gtt.h>
46 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
47 #include <drm/drm_gem.h>
48 #include <linux/backlight.h>
49 #include <linux/hashtable.h>
50 #include <linux/intel-iommu.h>
51 #include <linux/kref.h>
52 #include <linux/pm_qos.h>
53 #include "intel_guc.h"
54
55 /* General customization:
56 */
57
58 #define DRIVER_NAME "i915"
59 #define DRIVER_DESC "Intel Graphics"
60 #define DRIVER_DATE "20150731"
61
62 #undef WARN_ON
63 /* Many gcc seem to no see through this and fall over :( */
64 #if 0
65 #define WARN_ON(x) ({ \
66 bool __i915_warn_cond = (x); \
67 if (__builtin_constant_p(__i915_warn_cond)) \
68 BUILD_BUG_ON(__i915_warn_cond); \
69 WARN(__i915_warn_cond, "WARN_ON(" #x ")"); })
70 #else
71 #define WARN_ON(x) WARN((x), "WARN_ON(%s)", #x )
72 #endif
73
74 #undef WARN_ON_ONCE
75 #define WARN_ON_ONCE(x) WARN_ONCE((x), "WARN_ON_ONCE(%s)", #x )
76
77 #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \
78 (long) (x), __func__);
79
80 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
81 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
82 * which may not necessarily be a user visible problem. This will either
83 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
84 * enable distros and users to tailor their preferred amount of i915 abrt
85 * spam.
86 */
87 #define I915_STATE_WARN(condition, format...) ({ \
88 int __ret_warn_on = !!(condition); \
89 if (unlikely(__ret_warn_on)) { \
90 if (i915.verbose_state_checks) \
91 WARN(1, format); \
92 else \
93 DRM_ERROR(format); \
94 } \
95 unlikely(__ret_warn_on); \
96 })
97
98 #define I915_STATE_WARN_ON(condition) ({ \
99 int __ret_warn_on = !!(condition); \
100 if (unlikely(__ret_warn_on)) { \
101 if (i915.verbose_state_checks) \
102 WARN(1, "WARN_ON(" #condition ")\n"); \
103 else \
104 DRM_ERROR("WARN_ON(" #condition ")\n"); \
105 } \
106 unlikely(__ret_warn_on); \
107 })
108
109 enum pipe {
110 INVALID_PIPE = -1,
111 PIPE_A = 0,
112 PIPE_B,
113 PIPE_C,
114 _PIPE_EDP,
115 I915_MAX_PIPES = _PIPE_EDP
116 };
117 #define pipe_name(p) ((p) + 'A')
118
119 enum transcoder {
120 TRANSCODER_A = 0,
121 TRANSCODER_B,
122 TRANSCODER_C,
123 TRANSCODER_EDP,
124 I915_MAX_TRANSCODERS
125 };
126 #define transcoder_name(t) ((t) + 'A')
127
128 /*
129 * This is the maximum (across all platforms) number of planes (primary +
130 * sprites) that can be active at the same time on one pipe.
131 *
132 * This value doesn't count the cursor plane.
133 */
134 #define I915_MAX_PLANES 4
135
136 enum plane {
137 PLANE_A = 0,
138 PLANE_B,
139 PLANE_C,
140 };
141 #define plane_name(p) ((p) + 'A')
142
143 #define sprite_name(p, s) ((p) * INTEL_INFO(dev)->num_sprites[(p)] + (s) + 'A')
144
145 enum port {
146 PORT_A = 0,
147 PORT_B,
148 PORT_C,
149 PORT_D,
150 PORT_E,
151 I915_MAX_PORTS
152 };
153 #define port_name(p) ((p) + 'A')
154
155 #define I915_NUM_PHYS_VLV 2
156
157 enum dpio_channel {
158 DPIO_CH0,
159 DPIO_CH1
160 };
161
162 enum dpio_phy {
163 DPIO_PHY0,
164 DPIO_PHY1
165 };
166
167 enum intel_display_power_domain {
168 POWER_DOMAIN_PIPE_A,
169 POWER_DOMAIN_PIPE_B,
170 POWER_DOMAIN_PIPE_C,
171 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
172 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
173 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
174 POWER_DOMAIN_TRANSCODER_A,
175 POWER_DOMAIN_TRANSCODER_B,
176 POWER_DOMAIN_TRANSCODER_C,
177 POWER_DOMAIN_TRANSCODER_EDP,
178 POWER_DOMAIN_PORT_DDI_A_2_LANES,
179 POWER_DOMAIN_PORT_DDI_A_4_LANES,
180 POWER_DOMAIN_PORT_DDI_B_2_LANES,
181 POWER_DOMAIN_PORT_DDI_B_4_LANES,
182 POWER_DOMAIN_PORT_DDI_C_2_LANES,
183 POWER_DOMAIN_PORT_DDI_C_4_LANES,
184 POWER_DOMAIN_PORT_DDI_D_2_LANES,
185 POWER_DOMAIN_PORT_DDI_D_4_LANES,
186 POWER_DOMAIN_PORT_DSI,
187 POWER_DOMAIN_PORT_CRT,
188 POWER_DOMAIN_PORT_OTHER,
189 POWER_DOMAIN_VGA,
190 POWER_DOMAIN_AUDIO,
191 POWER_DOMAIN_PLLS,
192 POWER_DOMAIN_AUX_A,
193 POWER_DOMAIN_AUX_B,
194 POWER_DOMAIN_AUX_C,
195 POWER_DOMAIN_AUX_D,
196 POWER_DOMAIN_INIT,
197
198 POWER_DOMAIN_NUM,
199 };
200
201 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
202 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
203 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
204 #define POWER_DOMAIN_TRANSCODER(tran) \
205 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
206 (tran) + POWER_DOMAIN_TRANSCODER_A)
207
208 enum hpd_pin {
209 HPD_NONE = 0,
210 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
211 HPD_CRT,
212 HPD_SDVO_B,
213 HPD_SDVO_C,
214 HPD_PORT_A,
215 HPD_PORT_B,
216 HPD_PORT_C,
217 HPD_PORT_D,
218 HPD_NUM_PINS
219 };
220
221 #define for_each_hpd_pin(__pin) \
222 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
223
224 struct i915_hotplug {
225 struct work_struct hotplug_work;
226
227 struct {
228 unsigned long last_jiffies;
229 int count;
230 enum {
231 HPD_ENABLED = 0,
232 HPD_DISABLED = 1,
233 HPD_MARK_DISABLED = 2
234 } state;
235 } stats[HPD_NUM_PINS];
236 u32 event_bits;
237 struct delayed_work reenable_work;
238
239 struct intel_digital_port *irq_port[I915_MAX_PORTS];
240 u32 long_port_mask;
241 u32 short_port_mask;
242 struct work_struct dig_port_work;
243
244 /*
245 * if we get a HPD irq from DP and a HPD irq from non-DP
246 * the non-DP HPD could block the workqueue on a mode config
247 * mutex getting, that userspace may have taken. However
248 * userspace is waiting on the DP workqueue to run which is
249 * blocked behind the non-DP one.
250 */
251 struct workqueue_struct *dp_wq;
252 };
253
254 #define I915_GEM_GPU_DOMAINS \
255 (I915_GEM_DOMAIN_RENDER | \
256 I915_GEM_DOMAIN_SAMPLER | \
257 I915_GEM_DOMAIN_COMMAND | \
258 I915_GEM_DOMAIN_INSTRUCTION | \
259 I915_GEM_DOMAIN_VERTEX)
260
261 #define for_each_pipe(__dev_priv, __p) \
262 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
263 #define for_each_plane(__dev_priv, __pipe, __p) \
264 for ((__p) = 0; \
265 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
266 (__p)++)
267 #define for_each_sprite(__dev_priv, __p, __s) \
268 for ((__s) = 0; \
269 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
270 (__s)++)
271
272 #define for_each_crtc(dev, crtc) \
273 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
274
275 #define for_each_intel_plane(dev, intel_plane) \
276 list_for_each_entry(intel_plane, \
277 &dev->mode_config.plane_list, \
278 base.head)
279
280 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
281 list_for_each_entry(intel_plane, \
282 &(dev)->mode_config.plane_list, \
283 base.head) \
284 if ((intel_plane)->pipe == (intel_crtc)->pipe)
285
286 #define for_each_intel_crtc(dev, intel_crtc) \
287 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head)
288
289 #define for_each_intel_encoder(dev, intel_encoder) \
290 list_for_each_entry(intel_encoder, \
291 &(dev)->mode_config.encoder_list, \
292 base.head)
293
294 #define for_each_intel_connector(dev, intel_connector) \
295 list_for_each_entry(intel_connector, \
296 &dev->mode_config.connector_list, \
297 base.head)
298
299 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
300 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
301 if ((intel_encoder)->base.crtc == (__crtc))
302
303 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
304 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
305 if ((intel_connector)->base.encoder == (__encoder))
306
307 #define for_each_power_domain(domain, mask) \
308 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
309 if ((1 << (domain)) & (mask))
310
311 struct drm_i915_private;
312 struct i915_mm_struct;
313 struct i915_mmu_object;
314
315 struct drm_i915_file_private {
316 struct drm_i915_private *dev_priv;
317 struct drm_file *file;
318
319 struct {
320 spinlock_t lock;
321 struct list_head request_list;
322 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
323 * chosen to prevent the CPU getting more than a frame ahead of the GPU
324 * (when using lax throttling for the frontbuffer). We also use it to
325 * offer free GPU waitboosts for severely congested workloads.
326 */
327 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
328 } mm;
329 struct idr context_idr;
330
331 struct intel_rps_client {
332 struct list_head link;
333 unsigned boosts;
334 } rps;
335
336 struct intel_engine_cs *bsd_ring;
337 };
338
339 enum intel_dpll_id {
340 DPLL_ID_PRIVATE = -1, /* non-shared dpll in use */
341 /* real shared dpll ids must be >= 0 */
342 DPLL_ID_PCH_PLL_A = 0,
343 DPLL_ID_PCH_PLL_B = 1,
344 /* hsw/bdw */
345 DPLL_ID_WRPLL1 = 0,
346 DPLL_ID_WRPLL2 = 1,
347 /* skl */
348 DPLL_ID_SKL_DPLL1 = 0,
349 DPLL_ID_SKL_DPLL2 = 1,
350 DPLL_ID_SKL_DPLL3 = 2,
351 };
352 #define I915_NUM_PLLS 3
353
354 struct intel_dpll_hw_state {
355 /* i9xx, pch plls */
356 uint32_t dpll;
357 uint32_t dpll_md;
358 uint32_t fp0;
359 uint32_t fp1;
360
361 /* hsw, bdw */
362 uint32_t wrpll;
363
364 /* skl */
365 /*
366 * DPLL_CTRL1 has 6 bits for each each this DPLL. We store those in
367 * lower part of ctrl1 and they get shifted into position when writing
368 * the register. This allows us to easily compare the state to share
369 * the DPLL.
370 */
371 uint32_t ctrl1;
372 /* HDMI only, 0 when used for DP */
373 uint32_t cfgcr1, cfgcr2;
374
375 /* bxt */
376 uint32_t ebb0, ebb4, pll0, pll1, pll2, pll3, pll6, pll8, pll9, pll10,
377 pcsdw12;
378 };
379
380 struct intel_shared_dpll_config {
381 unsigned crtc_mask; /* mask of CRTCs sharing this PLL */
382 struct intel_dpll_hw_state hw_state;
383 };
384
385 struct intel_shared_dpll {
386 struct intel_shared_dpll_config config;
387
388 int active; /* count of number of active CRTCs (i.e. DPMS on) */
389 bool on; /* is the PLL actually active? Disabled during modeset */
390 const char *name;
391 /* should match the index in the dev_priv->shared_dplls array */
392 enum intel_dpll_id id;
393 /* The mode_set hook is optional and should be used together with the
394 * intel_prepare_shared_dpll function. */
395 void (*mode_set)(struct drm_i915_private *dev_priv,
396 struct intel_shared_dpll *pll);
397 void (*enable)(struct drm_i915_private *dev_priv,
398 struct intel_shared_dpll *pll);
399 void (*disable)(struct drm_i915_private *dev_priv,
400 struct intel_shared_dpll *pll);
401 bool (*get_hw_state)(struct drm_i915_private *dev_priv,
402 struct intel_shared_dpll *pll,
403 struct intel_dpll_hw_state *hw_state);
404 };
405
406 #define SKL_DPLL0 0
407 #define SKL_DPLL1 1
408 #define SKL_DPLL2 2
409 #define SKL_DPLL3 3
410
411 /* Used by dp and fdi links */
412 struct intel_link_m_n {
413 uint32_t tu;
414 uint32_t gmch_m;
415 uint32_t gmch_n;
416 uint32_t link_m;
417 uint32_t link_n;
418 };
419
420 void intel_link_compute_m_n(int bpp, int nlanes,
421 int pixel_clock, int link_clock,
422 struct intel_link_m_n *m_n);
423
424 /* Interface history:
425 *
426 * 1.1: Original.
427 * 1.2: Add Power Management
428 * 1.3: Add vblank support
429 * 1.4: Fix cmdbuffer path, add heap destroy
430 * 1.5: Add vblank pipe configuration
431 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
432 * - Support vertical blank on secondary display pipe
433 */
434 #define DRIVER_MAJOR 1
435 #define DRIVER_MINOR 6
436 #define DRIVER_PATCHLEVEL 0
437
438 #define WATCH_LISTS 0
439
440 struct opregion_header;
441 struct opregion_acpi;
442 struct opregion_swsci;
443 struct opregion_asle;
444
445 struct intel_opregion {
446 struct opregion_header __iomem *header;
447 struct opregion_acpi __iomem *acpi;
448 struct opregion_swsci __iomem *swsci;
449 u32 swsci_gbda_sub_functions;
450 u32 swsci_sbcb_sub_functions;
451 struct opregion_asle __iomem *asle;
452 void __iomem *vbt;
453 u32 __iomem *lid_state;
454 struct work_struct asle_work;
455 };
456 #define OPREGION_SIZE (8*1024)
457
458 struct intel_overlay;
459 struct intel_overlay_error_state;
460
461 #define I915_FENCE_REG_NONE -1
462 #define I915_MAX_NUM_FENCES 32
463 /* 32 fences + sign bit for FENCE_REG_NONE */
464 #define I915_MAX_NUM_FENCE_BITS 6
465
466 struct drm_i915_fence_reg {
467 struct list_head lru_list;
468 struct drm_i915_gem_object *obj;
469 int pin_count;
470 };
471
472 struct sdvo_device_mapping {
473 u8 initialized;
474 u8 dvo_port;
475 u8 slave_addr;
476 u8 dvo_wiring;
477 u8 i2c_pin;
478 u8 ddc_pin;
479 };
480
481 struct intel_display_error_state;
482
483 struct drm_i915_error_state {
484 struct kref ref;
485 struct timeval time;
486
487 char error_msg[128];
488 int iommu;
489 u32 reset_count;
490 u32 suspend_count;
491
492 /* Generic register state */
493 u32 eir;
494 u32 pgtbl_er;
495 u32 ier;
496 u32 gtier[4];
497 u32 ccid;
498 u32 derrmr;
499 u32 forcewake;
500 u32 error; /* gen6+ */
501 u32 err_int; /* gen7 */
502 u32 fault_data0; /* gen8, gen9 */
503 u32 fault_data1; /* gen8, gen9 */
504 u32 done_reg;
505 u32 gac_eco;
506 u32 gam_ecochk;
507 u32 gab_ctl;
508 u32 gfx_mode;
509 u32 extra_instdone[I915_NUM_INSTDONE_REG];
510 u64 fence[I915_MAX_NUM_FENCES];
511 struct intel_overlay_error_state *overlay;
512 struct intel_display_error_state *display;
513 struct drm_i915_error_object *semaphore_obj;
514
515 struct drm_i915_error_ring {
516 bool valid;
517 /* Software tracked state */
518 bool waiting;
519 int hangcheck_score;
520 enum intel_ring_hangcheck_action hangcheck_action;
521 int num_requests;
522
523 /* our own tracking of ring head and tail */
524 u32 cpu_ring_head;
525 u32 cpu_ring_tail;
526
527 u32 semaphore_seqno[I915_NUM_RINGS - 1];
528
529 /* Register state */
530 u32 start;
531 u32 tail;
532 u32 head;
533 u32 ctl;
534 u32 hws;
535 u32 ipeir;
536 u32 ipehr;
537 u32 instdone;
538 u32 bbstate;
539 u32 instpm;
540 u32 instps;
541 u32 seqno;
542 u64 bbaddr;
543 u64 acthd;
544 u32 fault_reg;
545 u64 faddr;
546 u32 rc_psmi; /* sleep state */
547 u32 semaphore_mboxes[I915_NUM_RINGS - 1];
548
549 struct drm_i915_error_object {
550 int page_count;
551 u64 gtt_offset;
552 u32 *pages[0];
553 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
554
555 struct drm_i915_error_request {
556 long jiffies;
557 u32 seqno;
558 u32 tail;
559 } *requests;
560
561 struct {
562 u32 gfx_mode;
563 union {
564 u64 pdp[4];
565 u32 pp_dir_base;
566 };
567 } vm_info;
568
569 pid_t pid;
570 char comm[TASK_COMM_LEN];
571 } ring[I915_NUM_RINGS];
572
573 struct drm_i915_error_buffer {
574 u32 size;
575 u32 name;
576 u32 rseqno[I915_NUM_RINGS], wseqno;
577 u64 gtt_offset;
578 u32 read_domains;
579 u32 write_domain;
580 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
581 s32 pinned:2;
582 u32 tiling:2;
583 u32 dirty:1;
584 u32 purgeable:1;
585 u32 userptr:1;
586 s32 ring:4;
587 u32 cache_level:3;
588 } **active_bo, **pinned_bo;
589
590 u32 *active_bo_count, *pinned_bo_count;
591 u32 vm_count;
592 };
593
594 struct intel_connector;
595 struct intel_encoder;
596 struct intel_crtc_state;
597 struct intel_initial_plane_config;
598 struct intel_crtc;
599 struct intel_limit;
600 struct dpll;
601
602 struct drm_i915_display_funcs {
603 int (*get_display_clock_speed)(struct drm_device *dev);
604 int (*get_fifo_size)(struct drm_device *dev, int plane);
605 /**
606 * find_dpll() - Find the best values for the PLL
607 * @limit: limits for the PLL
608 * @crtc: current CRTC
609 * @target: target frequency in kHz
610 * @refclk: reference clock frequency in kHz
611 * @match_clock: if provided, @best_clock P divider must
612 * match the P divider from @match_clock
613 * used for LVDS downclocking
614 * @best_clock: best PLL values found
615 *
616 * Returns true on success, false on failure.
617 */
618 bool (*find_dpll)(const struct intel_limit *limit,
619 struct intel_crtc_state *crtc_state,
620 int target, int refclk,
621 struct dpll *match_clock,
622 struct dpll *best_clock);
623 void (*update_wm)(struct drm_crtc *crtc);
624 void (*update_sprite_wm)(struct drm_plane *plane,
625 struct drm_crtc *crtc,
626 uint32_t sprite_width, uint32_t sprite_height,
627 int pixel_size, bool enable, bool scaled);
628 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
629 void (*modeset_commit_cdclk)(struct drm_atomic_state *state);
630 /* Returns the active state of the crtc, and if the crtc is active,
631 * fills out the pipe-config with the hw state. */
632 bool (*get_pipe_config)(struct intel_crtc *,
633 struct intel_crtc_state *);
634 void (*get_initial_plane_config)(struct intel_crtc *,
635 struct intel_initial_plane_config *);
636 int (*crtc_compute_clock)(struct intel_crtc *crtc,
637 struct intel_crtc_state *crtc_state);
638 void (*crtc_enable)(struct drm_crtc *crtc);
639 void (*crtc_disable)(struct drm_crtc *crtc);
640 void (*audio_codec_enable)(struct drm_connector *connector,
641 struct intel_encoder *encoder,
642 struct drm_display_mode *mode);
643 void (*audio_codec_disable)(struct intel_encoder *encoder);
644 void (*fdi_link_train)(struct drm_crtc *crtc);
645 void (*init_clock_gating)(struct drm_device *dev);
646 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc,
647 struct drm_framebuffer *fb,
648 struct drm_i915_gem_object *obj,
649 struct drm_i915_gem_request *req,
650 uint32_t flags);
651 void (*update_primary_plane)(struct drm_crtc *crtc,
652 struct drm_framebuffer *fb,
653 int x, int y);
654 void (*hpd_irq_setup)(struct drm_device *dev);
655 /* clock updates for mode set */
656 /* cursor updates */
657 /* render clock increase/decrease */
658 /* display clock increase/decrease */
659 /* pll clock increase/decrease */
660
661 int (*setup_backlight)(struct intel_connector *connector, enum pipe pipe);
662 uint32_t (*get_backlight)(struct intel_connector *connector);
663 void (*set_backlight)(struct intel_connector *connector,
664 uint32_t level);
665 void (*disable_backlight)(struct intel_connector *connector);
666 void (*enable_backlight)(struct intel_connector *connector);
667 };
668
669 enum forcewake_domain_id {
670 FW_DOMAIN_ID_RENDER = 0,
671 FW_DOMAIN_ID_BLITTER,
672 FW_DOMAIN_ID_MEDIA,
673
674 FW_DOMAIN_ID_COUNT
675 };
676
677 enum forcewake_domains {
678 FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER),
679 FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER),
680 FORCEWAKE_MEDIA = (1 << FW_DOMAIN_ID_MEDIA),
681 FORCEWAKE_ALL = (FORCEWAKE_RENDER |
682 FORCEWAKE_BLITTER |
683 FORCEWAKE_MEDIA)
684 };
685
686 struct intel_uncore_funcs {
687 void (*force_wake_get)(struct drm_i915_private *dev_priv,
688 enum forcewake_domains domains);
689 void (*force_wake_put)(struct drm_i915_private *dev_priv,
690 enum forcewake_domains domains);
691
692 uint8_t (*mmio_readb)(struct drm_i915_private *dev_priv, off_t offset, bool trace);
693 uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, off_t offset, bool trace);
694 uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, off_t offset, bool trace);
695 uint64_t (*mmio_readq)(struct drm_i915_private *dev_priv, off_t offset, bool trace);
696
697 void (*mmio_writeb)(struct drm_i915_private *dev_priv, off_t offset,
698 uint8_t val, bool trace);
699 void (*mmio_writew)(struct drm_i915_private *dev_priv, off_t offset,
700 uint16_t val, bool trace);
701 void (*mmio_writel)(struct drm_i915_private *dev_priv, off_t offset,
702 uint32_t val, bool trace);
703 void (*mmio_writeq)(struct drm_i915_private *dev_priv, off_t offset,
704 uint64_t val, bool trace);
705 };
706
707 struct intel_uncore {
708 spinlock_t lock; /** lock is also taken in irq contexts. */
709
710 struct intel_uncore_funcs funcs;
711
712 unsigned fifo_count;
713 enum forcewake_domains fw_domains;
714
715 struct intel_uncore_forcewake_domain {
716 struct drm_i915_private *i915;
717 enum forcewake_domain_id id;
718 unsigned wake_count;
719 struct timer_list timer;
720 u32 reg_set;
721 u32 val_set;
722 u32 val_clear;
723 u32 reg_ack;
724 u32 reg_post;
725 u32 val_reset;
726 } fw_domain[FW_DOMAIN_ID_COUNT];
727 };
728
729 /* Iterate over initialised fw domains */
730 #define for_each_fw_domain_mask(domain__, mask__, dev_priv__, i__) \
731 for ((i__) = 0, (domain__) = &(dev_priv__)->uncore.fw_domain[0]; \
732 (i__) < FW_DOMAIN_ID_COUNT; \
733 (i__)++, (domain__) = &(dev_priv__)->uncore.fw_domain[i__]) \
734 if (((mask__) & (dev_priv__)->uncore.fw_domains) & (1 << (i__)))
735
736 #define for_each_fw_domain(domain__, dev_priv__, i__) \
737 for_each_fw_domain_mask(domain__, FORCEWAKE_ALL, dev_priv__, i__)
738
739 enum csr_state {
740 FW_UNINITIALIZED = 0,
741 FW_LOADED,
742 FW_FAILED
743 };
744
745 struct intel_csr {
746 const char *fw_path;
747 uint32_t *dmc_payload;
748 uint32_t dmc_fw_size;
749 uint32_t mmio_count;
750 uint32_t mmioaddr[8];
751 uint32_t mmiodata[8];
752 enum csr_state state;
753 };
754
755 #define DEV_INFO_FOR_EACH_FLAG(func, sep) \
756 func(is_mobile) sep \
757 func(is_i85x) sep \
758 func(is_i915g) sep \
759 func(is_i945gm) sep \
760 func(is_g33) sep \
761 func(need_gfx_hws) sep \
762 func(is_g4x) sep \
763 func(is_pineview) sep \
764 func(is_broadwater) sep \
765 func(is_crestline) sep \
766 func(is_ivybridge) sep \
767 func(is_valleyview) sep \
768 func(is_haswell) sep \
769 func(is_skylake) sep \
770 func(is_preliminary) sep \
771 func(has_fbc) sep \
772 func(has_pipe_cxsr) sep \
773 func(has_hotplug) sep \
774 func(cursor_needs_physical) sep \
775 func(has_overlay) sep \
776 func(overlay_needs_physical) sep \
777 func(supports_tv) sep \
778 func(has_llc) sep \
779 func(has_ddi) sep \
780 func(has_fpga_dbg)
781
782 #define DEFINE_FLAG(name) u8 name:1
783 #define SEP_SEMICOLON ;
784
785 struct intel_device_info {
786 u32 display_mmio_offset;
787 u16 device_id;
788 u8 num_pipes:3;
789 u8 num_sprites[I915_MAX_PIPES];
790 u8 gen;
791 u8 ring_mask; /* Rings supported by the HW */
792 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG, SEP_SEMICOLON);
793 /* Register offsets for the various display pipes and transcoders */
794 int pipe_offsets[I915_MAX_TRANSCODERS];
795 int trans_offsets[I915_MAX_TRANSCODERS];
796 int palette_offsets[I915_MAX_PIPES];
797 int cursor_offsets[I915_MAX_PIPES];
798
799 /* Slice/subslice/EU info */
800 u8 slice_total;
801 u8 subslice_total;
802 u8 subslice_per_slice;
803 u8 eu_total;
804 u8 eu_per_subslice;
805 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
806 u8 subslice_7eu[3];
807 u8 has_slice_pg:1;
808 u8 has_subslice_pg:1;
809 u8 has_eu_pg:1;
810 };
811
812 #undef DEFINE_FLAG
813 #undef SEP_SEMICOLON
814
815 enum i915_cache_level {
816 I915_CACHE_NONE = 0,
817 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
818 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
819 caches, eg sampler/render caches, and the
820 large Last-Level-Cache. LLC is coherent with
821 the CPU, but L3 is only visible to the GPU. */
822 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
823 };
824
825 struct i915_ctx_hang_stats {
826 /* This context had batch pending when hang was declared */
827 unsigned batch_pending;
828
829 /* This context had batch active when hang was declared */
830 unsigned batch_active;
831
832 /* Time when this context was last blamed for a GPU reset */
833 unsigned long guilty_ts;
834
835 /* If the contexts causes a second GPU hang within this time,
836 * it is permanently banned from submitting any more work.
837 */
838 unsigned long ban_period_seconds;
839
840 /* This context is banned to submit more work */
841 bool banned;
842 };
843
844 /* This must match up with the value previously used for execbuf2.rsvd1. */
845 #define DEFAULT_CONTEXT_HANDLE 0
846
847 #define CONTEXT_NO_ZEROMAP (1<<0)
848 /**
849 * struct intel_context - as the name implies, represents a context.
850 * @ref: reference count.
851 * @user_handle: userspace tracking identity for this context.
852 * @remap_slice: l3 row remapping information.
853 * @flags: context specific flags:
854 * CONTEXT_NO_ZEROMAP: do not allow mapping things to page 0.
855 * @file_priv: filp associated with this context (NULL for global default
856 * context).
857 * @hang_stats: information about the role of this context in possible GPU
858 * hangs.
859 * @ppgtt: virtual memory space used by this context.
860 * @legacy_hw_ctx: render context backing object and whether it is correctly
861 * initialized (legacy ring submission mechanism only).
862 * @link: link in the global list of contexts.
863 *
864 * Contexts are memory images used by the hardware to store copies of their
865 * internal state.
866 */
867 struct intel_context {
868 struct kref ref;
869 int user_handle;
870 uint8_t remap_slice;
871 struct drm_i915_private *i915;
872 int flags;
873 struct drm_i915_file_private *file_priv;
874 struct i915_ctx_hang_stats hang_stats;
875 struct i915_hw_ppgtt *ppgtt;
876
877 /* Legacy ring buffer submission */
878 struct {
879 struct drm_i915_gem_object *rcs_state;
880 bool initialized;
881 } legacy_hw_ctx;
882
883 /* Execlists */
884 bool rcs_initialized;
885 struct {
886 struct drm_i915_gem_object *state;
887 struct intel_ringbuffer *ringbuf;
888 int pin_count;
889 } engine[I915_NUM_RINGS];
890
891 struct list_head link;
892 };
893
894 enum fb_op_origin {
895 ORIGIN_GTT,
896 ORIGIN_CPU,
897 ORIGIN_CS,
898 ORIGIN_FLIP,
899 ORIGIN_DIRTYFB,
900 };
901
902 struct i915_fbc {
903 /* This is always the inner lock when overlapping with struct_mutex and
904 * it's the outer lock when overlapping with stolen_lock. */
905 struct mutex lock;
906 unsigned long uncompressed_size;
907 unsigned threshold;
908 unsigned int fb_id;
909 unsigned int possible_framebuffer_bits;
910 unsigned int busy_bits;
911 struct intel_crtc *crtc;
912 int y;
913
914 struct drm_mm_node compressed_fb;
915 struct drm_mm_node *compressed_llb;
916
917 bool false_color;
918
919 /* Tracks whether the HW is actually enabled, not whether the feature is
920 * possible. */
921 bool enabled;
922
923 struct intel_fbc_work {
924 struct delayed_work work;
925 struct intel_crtc *crtc;
926 struct drm_framebuffer *fb;
927 } *fbc_work;
928
929 enum no_fbc_reason {
930 FBC_OK, /* FBC is enabled */
931 FBC_UNSUPPORTED, /* FBC is not supported by this chipset */
932 FBC_NO_OUTPUT, /* no outputs enabled to compress */
933 FBC_STOLEN_TOO_SMALL, /* not enough space for buffers */
934 FBC_UNSUPPORTED_MODE, /* interlace or doublescanned mode */
935 FBC_MODE_TOO_LARGE, /* mode too large for compression */
936 FBC_BAD_PLANE, /* fbc not supported on plane */
937 FBC_NOT_TILED, /* buffer not tiled */
938 FBC_MULTIPLE_PIPES, /* more than one pipe active */
939 FBC_MODULE_PARAM,
940 FBC_CHIP_DEFAULT, /* disabled by default on this chip */
941 FBC_ROTATION, /* rotation is not supported */
942 FBC_IN_DBG_MASTER, /* kernel debugger is active */
943 } no_fbc_reason;
944
945 bool (*fbc_enabled)(struct drm_i915_private *dev_priv);
946 void (*enable_fbc)(struct intel_crtc *crtc);
947 void (*disable_fbc)(struct drm_i915_private *dev_priv);
948 };
949
950 /**
951 * HIGH_RR is the highest eDP panel refresh rate read from EDID
952 * LOW_RR is the lowest eDP panel refresh rate found from EDID
953 * parsing for same resolution.
954 */
955 enum drrs_refresh_rate_type {
956 DRRS_HIGH_RR,
957 DRRS_LOW_RR,
958 DRRS_MAX_RR, /* RR count */
959 };
960
961 enum drrs_support_type {
962 DRRS_NOT_SUPPORTED = 0,
963 STATIC_DRRS_SUPPORT = 1,
964 SEAMLESS_DRRS_SUPPORT = 2
965 };
966
967 struct intel_dp;
968 struct i915_drrs {
969 struct mutex mutex;
970 struct delayed_work work;
971 struct intel_dp *dp;
972 unsigned busy_frontbuffer_bits;
973 enum drrs_refresh_rate_type refresh_rate_type;
974 enum drrs_support_type type;
975 };
976
977 struct i915_psr {
978 struct mutex lock;
979 bool sink_support;
980 bool source_ok;
981 struct intel_dp *enabled;
982 bool active;
983 struct delayed_work work;
984 unsigned busy_frontbuffer_bits;
985 bool psr2_support;
986 bool aux_frame_sync;
987 };
988
989 enum intel_pch {
990 PCH_NONE = 0, /* No PCH present */
991 PCH_IBX, /* Ibexpeak PCH */
992 PCH_CPT, /* Cougarpoint PCH */
993 PCH_LPT, /* Lynxpoint PCH */
994 PCH_SPT, /* Sunrisepoint PCH */
995 PCH_NOP,
996 };
997
998 enum intel_sbi_destination {
999 SBI_ICLK,
1000 SBI_MPHY,
1001 };
1002
1003 #define QUIRK_PIPEA_FORCE (1<<0)
1004 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1005 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1006 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1007 #define QUIRK_PIPEB_FORCE (1<<4)
1008 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1009
1010 struct intel_fbdev;
1011 struct intel_fbc_work;
1012
1013 struct intel_gmbus {
1014 struct i2c_adapter adapter;
1015 u32 force_bit;
1016 u32 reg0;
1017 u32 gpio_reg;
1018 struct i2c_algo_bit_data bit_algo;
1019 struct drm_i915_private *dev_priv;
1020 };
1021
1022 struct i915_suspend_saved_registers {
1023 u32 saveDSPARB;
1024 u32 saveLVDS;
1025 u32 savePP_ON_DELAYS;
1026 u32 savePP_OFF_DELAYS;
1027 u32 savePP_ON;
1028 u32 savePP_OFF;
1029 u32 savePP_CONTROL;
1030 u32 savePP_DIVISOR;
1031 u32 saveFBC_CONTROL;
1032 u32 saveCACHE_MODE_0;
1033 u32 saveMI_ARB_STATE;
1034 u32 saveSWF0[16];
1035 u32 saveSWF1[16];
1036 u32 saveSWF2[3];
1037 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1038 u32 savePCH_PORT_HOTPLUG;
1039 u16 saveGCDGMBUS;
1040 };
1041
1042 struct vlv_s0ix_state {
1043 /* GAM */
1044 u32 wr_watermark;
1045 u32 gfx_prio_ctrl;
1046 u32 arb_mode;
1047 u32 gfx_pend_tlb0;
1048 u32 gfx_pend_tlb1;
1049 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1050 u32 media_max_req_count;
1051 u32 gfx_max_req_count;
1052 u32 render_hwsp;
1053 u32 ecochk;
1054 u32 bsd_hwsp;
1055 u32 blt_hwsp;
1056 u32 tlb_rd_addr;
1057
1058 /* MBC */
1059 u32 g3dctl;
1060 u32 gsckgctl;
1061 u32 mbctl;
1062
1063 /* GCP */
1064 u32 ucgctl1;
1065 u32 ucgctl3;
1066 u32 rcgctl1;
1067 u32 rcgctl2;
1068 u32 rstctl;
1069 u32 misccpctl;
1070
1071 /* GPM */
1072 u32 gfxpause;
1073 u32 rpdeuhwtc;
1074 u32 rpdeuc;
1075 u32 ecobus;
1076 u32 pwrdwnupctl;
1077 u32 rp_down_timeout;
1078 u32 rp_deucsw;
1079 u32 rcubmabdtmr;
1080 u32 rcedata;
1081 u32 spare2gh;
1082
1083 /* Display 1 CZ domain */
1084 u32 gt_imr;
1085 u32 gt_ier;
1086 u32 pm_imr;
1087 u32 pm_ier;
1088 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1089
1090 /* GT SA CZ domain */
1091 u32 tilectl;
1092 u32 gt_fifoctl;
1093 u32 gtlc_wake_ctrl;
1094 u32 gtlc_survive;
1095 u32 pmwgicz;
1096
1097 /* Display 2 CZ domain */
1098 u32 gu_ctl0;
1099 u32 gu_ctl1;
1100 u32 pcbr;
1101 u32 clock_gate_dis2;
1102 };
1103
1104 struct intel_rps_ei {
1105 u32 cz_clock;
1106 u32 render_c0;
1107 u32 media_c0;
1108 };
1109
1110 struct intel_gen6_power_mgmt {
1111 /*
1112 * work, interrupts_enabled and pm_iir are protected by
1113 * dev_priv->irq_lock
1114 */
1115 struct work_struct work;
1116 bool interrupts_enabled;
1117 u32 pm_iir;
1118
1119 /* Frequencies are stored in potentially platform dependent multiples.
1120 * In other words, *_freq needs to be multiplied by X to be interesting.
1121 * Soft limits are those which are used for the dynamic reclocking done
1122 * by the driver (raise frequencies under heavy loads, and lower for
1123 * lighter loads). Hard limits are those imposed by the hardware.
1124 *
1125 * A distinction is made for overclocking, which is never enabled by
1126 * default, and is considered to be above the hard limit if it's
1127 * possible at all.
1128 */
1129 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1130 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1131 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1132 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1133 u8 min_freq; /* AKA RPn. Minimum frequency */
1134 u8 idle_freq; /* Frequency to request when we are idle */
1135 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1136 u8 rp1_freq; /* "less than" RP0 power/freqency */
1137 u8 rp0_freq; /* Non-overclocked max frequency. */
1138 u32 cz_freq;
1139
1140 u8 up_threshold; /* Current %busy required to uplock */
1141 u8 down_threshold; /* Current %busy required to downclock */
1142
1143 int last_adj;
1144 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1145
1146 spinlock_t client_lock;
1147 struct list_head clients;
1148 bool client_boost;
1149
1150 bool enabled;
1151 struct delayed_work delayed_resume_work;
1152 unsigned boosts;
1153
1154 struct intel_rps_client semaphores, mmioflips;
1155
1156 /* manual wa residency calculations */
1157 struct intel_rps_ei up_ei, down_ei;
1158
1159 /*
1160 * Protects RPS/RC6 register access and PCU communication.
1161 * Must be taken after struct_mutex if nested. Note that
1162 * this lock may be held for long periods of time when
1163 * talking to hw - so only take it when talking to hw!
1164 */
1165 struct mutex hw_lock;
1166 };
1167
1168 /* defined intel_pm.c */
1169 extern spinlock_t mchdev_lock;
1170
1171 struct intel_ilk_power_mgmt {
1172 u8 cur_delay;
1173 u8 min_delay;
1174 u8 max_delay;
1175 u8 fmax;
1176 u8 fstart;
1177
1178 u64 last_count1;
1179 unsigned long last_time1;
1180 unsigned long chipset_power;
1181 u64 last_count2;
1182 u64 last_time2;
1183 unsigned long gfx_power;
1184 u8 corr;
1185
1186 int c_m;
1187 int r_t;
1188 };
1189
1190 struct drm_i915_private;
1191 struct i915_power_well;
1192
1193 struct i915_power_well_ops {
1194 /*
1195 * Synchronize the well's hw state to match the current sw state, for
1196 * example enable/disable it based on the current refcount. Called
1197 * during driver init and resume time, possibly after first calling
1198 * the enable/disable handlers.
1199 */
1200 void (*sync_hw)(struct drm_i915_private *dev_priv,
1201 struct i915_power_well *power_well);
1202 /*
1203 * Enable the well and resources that depend on it (for example
1204 * interrupts located on the well). Called after the 0->1 refcount
1205 * transition.
1206 */
1207 void (*enable)(struct drm_i915_private *dev_priv,
1208 struct i915_power_well *power_well);
1209 /*
1210 * Disable the well and resources that depend on it. Called after
1211 * the 1->0 refcount transition.
1212 */
1213 void (*disable)(struct drm_i915_private *dev_priv,
1214 struct i915_power_well *power_well);
1215 /* Returns the hw enabled state. */
1216 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1217 struct i915_power_well *power_well);
1218 };
1219
1220 /* Power well structure for haswell */
1221 struct i915_power_well {
1222 const char *name;
1223 bool always_on;
1224 /* power well enable/disable usage count */
1225 int count;
1226 /* cached hw enabled state */
1227 bool hw_enabled;
1228 unsigned long domains;
1229 unsigned long data;
1230 const struct i915_power_well_ops *ops;
1231 };
1232
1233 struct i915_power_domains {
1234 /*
1235 * Power wells needed for initialization at driver init and suspend
1236 * time are on. They are kept on until after the first modeset.
1237 */
1238 bool init_power_on;
1239 bool initializing;
1240 int power_well_count;
1241
1242 struct mutex lock;
1243 int domain_use_count[POWER_DOMAIN_NUM];
1244 struct i915_power_well *power_wells;
1245 };
1246
1247 #define MAX_L3_SLICES 2
1248 struct intel_l3_parity {
1249 u32 *remap_info[MAX_L3_SLICES];
1250 struct work_struct error_work;
1251 int which_slice;
1252 };
1253
1254 struct i915_gem_mm {
1255 /** Memory allocator for GTT stolen memory */
1256 struct drm_mm stolen;
1257 /** Protects the usage of the GTT stolen memory allocator. This is
1258 * always the inner lock when overlapping with struct_mutex. */
1259 struct mutex stolen_lock;
1260
1261 /** List of all objects in gtt_space. Used to restore gtt
1262 * mappings on resume */
1263 struct list_head bound_list;
1264 /**
1265 * List of objects which are not bound to the GTT (thus
1266 * are idle and not used by the GPU) but still have
1267 * (presumably uncached) pages still attached.
1268 */
1269 struct list_head unbound_list;
1270
1271 /** Usable portion of the GTT for GEM */
1272 unsigned long stolen_base; /* limited to low memory (32-bit) */
1273
1274 /** PPGTT used for aliasing the PPGTT with the GTT */
1275 struct i915_hw_ppgtt *aliasing_ppgtt;
1276
1277 struct notifier_block oom_notifier;
1278 struct shrinker shrinker;
1279 bool shrinker_no_lock_stealing;
1280
1281 /** LRU list of objects with fence regs on them. */
1282 struct list_head fence_list;
1283
1284 /**
1285 * We leave the user IRQ off as much as possible,
1286 * but this means that requests will finish and never
1287 * be retired once the system goes idle. Set a timer to
1288 * fire periodically while the ring is running. When it
1289 * fires, go retire requests.
1290 */
1291 struct delayed_work retire_work;
1292
1293 /**
1294 * When we detect an idle GPU, we want to turn on
1295 * powersaving features. So once we see that there
1296 * are no more requests outstanding and no more
1297 * arrive within a small period of time, we fire
1298 * off the idle_work.
1299 */
1300 struct delayed_work idle_work;
1301
1302 /**
1303 * Are we in a non-interruptible section of code like
1304 * modesetting?
1305 */
1306 bool interruptible;
1307
1308 /**
1309 * Is the GPU currently considered idle, or busy executing userspace
1310 * requests? Whilst idle, we attempt to power down the hardware and
1311 * display clocks. In order to reduce the effect on performance, there
1312 * is a slight delay before we do so.
1313 */
1314 bool busy;
1315
1316 /* the indicator for dispatch video commands on two BSD rings */
1317 int bsd_ring_dispatch_index;
1318
1319 /** Bit 6 swizzling required for X tiling */
1320 uint32_t bit_6_swizzle_x;
1321 /** Bit 6 swizzling required for Y tiling */
1322 uint32_t bit_6_swizzle_y;
1323
1324 /* accounting, useful for userland debugging */
1325 spinlock_t object_stat_lock;
1326 size_t object_memory;
1327 u32 object_count;
1328 };
1329
1330 struct drm_i915_error_state_buf {
1331 struct drm_i915_private *i915;
1332 unsigned bytes;
1333 unsigned size;
1334 int err;
1335 u8 *buf;
1336 loff_t start;
1337 loff_t pos;
1338 };
1339
1340 struct i915_error_state_file_priv {
1341 struct drm_device *dev;
1342 struct drm_i915_error_state *error;
1343 };
1344
1345 struct i915_gpu_error {
1346 /* For hangcheck timer */
1347 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1348 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1349 /* Hang gpu twice in this window and your context gets banned */
1350 #define DRM_I915_CTX_BAN_PERIOD DIV_ROUND_UP(8*DRM_I915_HANGCHECK_PERIOD, 1000)
1351
1352 struct workqueue_struct *hangcheck_wq;
1353 struct delayed_work hangcheck_work;
1354
1355 /* For reset and error_state handling. */
1356 spinlock_t lock;
1357 /* Protected by the above dev->gpu_error.lock. */
1358 struct drm_i915_error_state *first_error;
1359
1360 unsigned long missed_irq_rings;
1361
1362 /**
1363 * State variable controlling the reset flow and count
1364 *
1365 * This is a counter which gets incremented when reset is triggered,
1366 * and again when reset has been handled. So odd values (lowest bit set)
1367 * means that reset is in progress and even values that
1368 * (reset_counter >> 1):th reset was successfully completed.
1369 *
1370 * If reset is not completed succesfully, the I915_WEDGE bit is
1371 * set meaning that hardware is terminally sour and there is no
1372 * recovery. All waiters on the reset_queue will be woken when
1373 * that happens.
1374 *
1375 * This counter is used by the wait_seqno code to notice that reset
1376 * event happened and it needs to restart the entire ioctl (since most
1377 * likely the seqno it waited for won't ever signal anytime soon).
1378 *
1379 * This is important for lock-free wait paths, where no contended lock
1380 * naturally enforces the correct ordering between the bail-out of the
1381 * waiter and the gpu reset work code.
1382 */
1383 atomic_t reset_counter;
1384
1385 #define I915_RESET_IN_PROGRESS_FLAG 1
1386 #define I915_WEDGED (1 << 31)
1387
1388 /**
1389 * Waitqueue to signal when the reset has completed. Used by clients
1390 * that wait for dev_priv->mm.wedged to settle.
1391 */
1392 wait_queue_head_t reset_queue;
1393
1394 /* Userspace knobs for gpu hang simulation;
1395 * combines both a ring mask, and extra flags
1396 */
1397 u32 stop_rings;
1398 #define I915_STOP_RING_ALLOW_BAN (1 << 31)
1399 #define I915_STOP_RING_ALLOW_WARN (1 << 30)
1400
1401 /* For missed irq/seqno simulation. */
1402 unsigned int test_irq_rings;
1403
1404 /* Used to prevent gem_check_wedged returning -EAGAIN during gpu reset */
1405 bool reload_in_reset;
1406 };
1407
1408 enum modeset_restore {
1409 MODESET_ON_LID_OPEN,
1410 MODESET_DONE,
1411 MODESET_SUSPENDED,
1412 };
1413
1414 #define DP_AUX_A 0x40
1415 #define DP_AUX_B 0x10
1416 #define DP_AUX_C 0x20
1417 #define DP_AUX_D 0x30
1418
1419 struct ddi_vbt_port_info {
1420 /*
1421 * This is an index in the HDMI/DVI DDI buffer translation table.
1422 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1423 * populate this field.
1424 */
1425 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1426 uint8_t hdmi_level_shift;
1427
1428 uint8_t supports_dvi:1;
1429 uint8_t supports_hdmi:1;
1430 uint8_t supports_dp:1;
1431
1432 uint8_t alternate_aux_channel;
1433
1434 uint8_t dp_boost_level;
1435 uint8_t hdmi_boost_level;
1436 };
1437
1438 enum psr_lines_to_wait {
1439 PSR_0_LINES_TO_WAIT = 0,
1440 PSR_1_LINE_TO_WAIT,
1441 PSR_4_LINES_TO_WAIT,
1442 PSR_8_LINES_TO_WAIT
1443 };
1444
1445 struct intel_vbt_data {
1446 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1447 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1448
1449 /* Feature bits */
1450 unsigned int int_tv_support:1;
1451 unsigned int lvds_dither:1;
1452 unsigned int lvds_vbt:1;
1453 unsigned int int_crt_support:1;
1454 unsigned int lvds_use_ssc:1;
1455 unsigned int display_clock_mode:1;
1456 unsigned int fdi_rx_polarity_inverted:1;
1457 unsigned int has_mipi:1;
1458 int lvds_ssc_freq;
1459 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1460
1461 enum drrs_support_type drrs_type;
1462
1463 /* eDP */
1464 int edp_rate;
1465 int edp_lanes;
1466 int edp_preemphasis;
1467 int edp_vswing;
1468 bool edp_initialized;
1469 bool edp_support;
1470 int edp_bpp;
1471 struct edp_power_seq edp_pps;
1472
1473 struct {
1474 bool full_link;
1475 bool require_aux_wakeup;
1476 int idle_frames;
1477 enum psr_lines_to_wait lines_to_wait;
1478 int tp1_wakeup_time;
1479 int tp2_tp3_wakeup_time;
1480 } psr;
1481
1482 struct {
1483 u16 pwm_freq_hz;
1484 bool present;
1485 bool active_low_pwm;
1486 u8 min_brightness; /* min_brightness/255 of max */
1487 } backlight;
1488
1489 /* MIPI DSI */
1490 struct {
1491 u16 port;
1492 u16 panel_id;
1493 struct mipi_config *config;
1494 struct mipi_pps_data *pps;
1495 u8 seq_version;
1496 u32 size;
1497 u8 *data;
1498 u8 *sequence[MIPI_SEQ_MAX];
1499 } dsi;
1500
1501 int crt_ddc_pin;
1502
1503 int child_dev_num;
1504 union child_device_config *child_dev;
1505
1506 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1507 };
1508
1509 enum intel_ddb_partitioning {
1510 INTEL_DDB_PART_1_2,
1511 INTEL_DDB_PART_5_6, /* IVB+ */
1512 };
1513
1514 struct intel_wm_level {
1515 bool enable;
1516 uint32_t pri_val;
1517 uint32_t spr_val;
1518 uint32_t cur_val;
1519 uint32_t fbc_val;
1520 };
1521
1522 struct ilk_wm_values {
1523 uint32_t wm_pipe[3];
1524 uint32_t wm_lp[3];
1525 uint32_t wm_lp_spr[3];
1526 uint32_t wm_linetime[3];
1527 bool enable_fbc_wm;
1528 enum intel_ddb_partitioning partitioning;
1529 };
1530
1531 struct vlv_pipe_wm {
1532 uint16_t primary;
1533 uint16_t sprite[2];
1534 uint8_t cursor;
1535 };
1536
1537 struct vlv_sr_wm {
1538 uint16_t plane;
1539 uint8_t cursor;
1540 };
1541
1542 struct vlv_wm_values {
1543 struct vlv_pipe_wm pipe[3];
1544 struct vlv_sr_wm sr;
1545 struct {
1546 uint8_t cursor;
1547 uint8_t sprite[2];
1548 uint8_t primary;
1549 } ddl[3];
1550 uint8_t level;
1551 bool cxsr;
1552 };
1553
1554 struct skl_ddb_entry {
1555 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1556 };
1557
1558 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1559 {
1560 return entry->end - entry->start;
1561 }
1562
1563 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1564 const struct skl_ddb_entry *e2)
1565 {
1566 if (e1->start == e2->start && e1->end == e2->end)
1567 return true;
1568
1569 return false;
1570 }
1571
1572 struct skl_ddb_allocation {
1573 struct skl_ddb_entry pipe[I915_MAX_PIPES];
1574 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1575 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* y-plane */
1576 struct skl_ddb_entry cursor[I915_MAX_PIPES];
1577 };
1578
1579 struct skl_wm_values {
1580 bool dirty[I915_MAX_PIPES];
1581 struct skl_ddb_allocation ddb;
1582 uint32_t wm_linetime[I915_MAX_PIPES];
1583 uint32_t plane[I915_MAX_PIPES][I915_MAX_PLANES][8];
1584 uint32_t cursor[I915_MAX_PIPES][8];
1585 uint32_t plane_trans[I915_MAX_PIPES][I915_MAX_PLANES];
1586 uint32_t cursor_trans[I915_MAX_PIPES];
1587 };
1588
1589 struct skl_wm_level {
1590 bool plane_en[I915_MAX_PLANES];
1591 bool cursor_en;
1592 uint16_t plane_res_b[I915_MAX_PLANES];
1593 uint8_t plane_res_l[I915_MAX_PLANES];
1594 uint16_t cursor_res_b;
1595 uint8_t cursor_res_l;
1596 };
1597
1598 /*
1599 * This struct helps tracking the state needed for runtime PM, which puts the
1600 * device in PCI D3 state. Notice that when this happens, nothing on the
1601 * graphics device works, even register access, so we don't get interrupts nor
1602 * anything else.
1603 *
1604 * Every piece of our code that needs to actually touch the hardware needs to
1605 * either call intel_runtime_pm_get or call intel_display_power_get with the
1606 * appropriate power domain.
1607 *
1608 * Our driver uses the autosuspend delay feature, which means we'll only really
1609 * suspend if we stay with zero refcount for a certain amount of time. The
1610 * default value is currently very conservative (see intel_runtime_pm_enable), but
1611 * it can be changed with the standard runtime PM files from sysfs.
1612 *
1613 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1614 * goes back to false exactly before we reenable the IRQs. We use this variable
1615 * to check if someone is trying to enable/disable IRQs while they're supposed
1616 * to be disabled. This shouldn't happen and we'll print some error messages in
1617 * case it happens.
1618 *
1619 * For more, read the Documentation/power/runtime_pm.txt.
1620 */
1621 struct i915_runtime_pm {
1622 bool suspended;
1623 bool irqs_enabled;
1624 };
1625
1626 enum intel_pipe_crc_source {
1627 INTEL_PIPE_CRC_SOURCE_NONE,
1628 INTEL_PIPE_CRC_SOURCE_PLANE1,
1629 INTEL_PIPE_CRC_SOURCE_PLANE2,
1630 INTEL_PIPE_CRC_SOURCE_PF,
1631 INTEL_PIPE_CRC_SOURCE_PIPE,
1632 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1633 INTEL_PIPE_CRC_SOURCE_TV,
1634 INTEL_PIPE_CRC_SOURCE_DP_B,
1635 INTEL_PIPE_CRC_SOURCE_DP_C,
1636 INTEL_PIPE_CRC_SOURCE_DP_D,
1637 INTEL_PIPE_CRC_SOURCE_AUTO,
1638 INTEL_PIPE_CRC_SOURCE_MAX,
1639 };
1640
1641 struct intel_pipe_crc_entry {
1642 uint32_t frame;
1643 uint32_t crc[5];
1644 };
1645
1646 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1647 struct intel_pipe_crc {
1648 spinlock_t lock;
1649 bool opened; /* exclusive access to the result file */
1650 struct intel_pipe_crc_entry *entries;
1651 enum intel_pipe_crc_source source;
1652 int head, tail;
1653 wait_queue_head_t wq;
1654 };
1655
1656 struct i915_frontbuffer_tracking {
1657 struct mutex lock;
1658
1659 /*
1660 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1661 * scheduled flips.
1662 */
1663 unsigned busy_bits;
1664 unsigned flip_bits;
1665 };
1666
1667 struct i915_wa_reg {
1668 u32 addr;
1669 u32 value;
1670 /* bitmask representing WA bits */
1671 u32 mask;
1672 };
1673
1674 #define I915_MAX_WA_REGS 16
1675
1676 struct i915_workarounds {
1677 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1678 u32 count;
1679 };
1680
1681 struct i915_virtual_gpu {
1682 bool active;
1683 };
1684
1685 struct i915_execbuffer_params {
1686 struct drm_device *dev;
1687 struct drm_file *file;
1688 uint32_t dispatch_flags;
1689 uint32_t args_batch_start_offset;
1690 uint64_t batch_obj_vm_offset;
1691 struct intel_engine_cs *ring;
1692 struct drm_i915_gem_object *batch_obj;
1693 struct intel_context *ctx;
1694 struct drm_i915_gem_request *request;
1695 };
1696
1697 struct drm_i915_private {
1698 struct drm_device *dev;
1699 struct kmem_cache *objects;
1700 struct kmem_cache *vmas;
1701 struct kmem_cache *requests;
1702
1703 const struct intel_device_info info;
1704
1705 int relative_constants_mode;
1706
1707 void __iomem *regs;
1708
1709 struct intel_uncore uncore;
1710
1711 struct i915_virtual_gpu vgpu;
1712
1713 struct intel_guc guc;
1714
1715 struct intel_csr csr;
1716
1717 /* Display CSR-related protection */
1718 struct mutex csr_lock;
1719
1720 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1721
1722 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
1723 * controller on different i2c buses. */
1724 struct mutex gmbus_mutex;
1725
1726 /**
1727 * Base address of the gmbus and gpio block.
1728 */
1729 uint32_t gpio_mmio_base;
1730
1731 /* MMIO base address for MIPI regs */
1732 uint32_t mipi_mmio_base;
1733
1734 wait_queue_head_t gmbus_wait_queue;
1735
1736 struct pci_dev *bridge_dev;
1737 struct intel_engine_cs ring[I915_NUM_RINGS];
1738 struct drm_i915_gem_object *semaphore_obj;
1739 uint32_t last_seqno, next_seqno;
1740
1741 struct drm_dma_handle *status_page_dmah;
1742 struct resource mch_res;
1743
1744 /* protects the irq masks */
1745 spinlock_t irq_lock;
1746
1747 /* protects the mmio flip data */
1748 spinlock_t mmio_flip_lock;
1749
1750 bool display_irqs_enabled;
1751
1752 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1753 struct pm_qos_request pm_qos;
1754
1755 /* Sideband mailbox protection */
1756 struct mutex sb_lock;
1757
1758 /** Cached value of IMR to avoid reads in updating the bitfield */
1759 union {
1760 u32 irq_mask;
1761 u32 de_irq_mask[I915_MAX_PIPES];
1762 };
1763 u32 gt_irq_mask;
1764 u32 pm_irq_mask;
1765 u32 pm_rps_events;
1766 u32 pipestat_irq_mask[I915_MAX_PIPES];
1767
1768 struct i915_hotplug hotplug;
1769 struct i915_fbc fbc;
1770 struct i915_drrs drrs;
1771 struct intel_opregion opregion;
1772 struct intel_vbt_data vbt;
1773
1774 bool preserve_bios_swizzle;
1775
1776 /* overlay */
1777 struct intel_overlay *overlay;
1778
1779 /* backlight registers and fields in struct intel_panel */
1780 struct mutex backlight_lock;
1781
1782 /* LVDS info */
1783 bool no_aux_handshake;
1784
1785 /* protects panel power sequencer state */
1786 struct mutex pps_mutex;
1787
1788 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1789 int fence_reg_start; /* 4 if userland hasn't ioctl'd us yet */
1790 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1791
1792 unsigned int fsb_freq, mem_freq, is_ddr3;
1793 unsigned int skl_boot_cdclk;
1794 unsigned int cdclk_freq, max_cdclk_freq;
1795 unsigned int max_dotclk_freq;
1796 unsigned int hpll_freq;
1797
1798 /**
1799 * wq - Driver workqueue for GEM.
1800 *
1801 * NOTE: Work items scheduled here are not allowed to grab any modeset
1802 * locks, for otherwise the flushing done in the pageflip code will
1803 * result in deadlocks.
1804 */
1805 struct workqueue_struct *wq;
1806
1807 /* Display functions */
1808 struct drm_i915_display_funcs display;
1809
1810 /* PCH chipset type */
1811 enum intel_pch pch_type;
1812 unsigned short pch_id;
1813
1814 unsigned long quirks;
1815
1816 enum modeset_restore modeset_restore;
1817 struct mutex modeset_restore_lock;
1818
1819 struct list_head vm_list; /* Global list of all address spaces */
1820 struct i915_gtt gtt; /* VM representing the global address space */
1821
1822 struct i915_gem_mm mm;
1823 DECLARE_HASHTABLE(mm_structs, 7);
1824 struct mutex mm_lock;
1825
1826 /* Kernel Modesetting */
1827
1828 struct sdvo_device_mapping sdvo_mappings[2];
1829
1830 struct drm_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1831 struct drm_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1832 wait_queue_head_t pending_flip_queue;
1833
1834 #ifdef CONFIG_DEBUG_FS
1835 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1836 #endif
1837
1838 int num_shared_dpll;
1839 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1840 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1841
1842 struct i915_workarounds workarounds;
1843
1844 /* Reclocking support */
1845 bool render_reclock_avail;
1846
1847 struct i915_frontbuffer_tracking fb_tracking;
1848
1849 u16 orig_clock;
1850
1851 bool mchbar_need_disable;
1852
1853 struct intel_l3_parity l3_parity;
1854
1855 /* Cannot be determined by PCIID. You must always read a register. */
1856 size_t ellc_size;
1857
1858 /* gen6+ rps state */
1859 struct intel_gen6_power_mgmt rps;
1860
1861 /* ilk-only ips/rps state. Everything in here is protected by the global
1862 * mchdev_lock in intel_pm.c */
1863 struct intel_ilk_power_mgmt ips;
1864
1865 struct i915_power_domains power_domains;
1866
1867 struct i915_psr psr;
1868
1869 struct i915_gpu_error gpu_error;
1870
1871 struct drm_i915_gem_object *vlv_pctx;
1872
1873 #ifdef CONFIG_DRM_I915_FBDEV
1874 /* list of fbdev register on this device */
1875 struct intel_fbdev *fbdev;
1876 struct work_struct fbdev_suspend_work;
1877 #endif
1878
1879 struct drm_property *broadcast_rgb_property;
1880 struct drm_property *force_audio_property;
1881
1882 /* hda/i915 audio component */
1883 bool audio_component_registered;
1884
1885 uint32_t hw_context_size;
1886 struct list_head context_list;
1887
1888 u32 fdi_rx_config;
1889
1890 u32 chv_phy_control;
1891
1892 u32 suspend_count;
1893 struct i915_suspend_saved_registers regfile;
1894 struct vlv_s0ix_state vlv_s0ix_state;
1895
1896 struct {
1897 /*
1898 * Raw watermark latency values:
1899 * in 0.1us units for WM0,
1900 * in 0.5us units for WM1+.
1901 */
1902 /* primary */
1903 uint16_t pri_latency[5];
1904 /* sprite */
1905 uint16_t spr_latency[5];
1906 /* cursor */
1907 uint16_t cur_latency[5];
1908 /*
1909 * Raw watermark memory latency values
1910 * for SKL for all 8 levels
1911 * in 1us units.
1912 */
1913 uint16_t skl_latency[8];
1914
1915 /*
1916 * The skl_wm_values structure is a bit too big for stack
1917 * allocation, so we keep the staging struct where we store
1918 * intermediate results here instead.
1919 */
1920 struct skl_wm_values skl_results;
1921
1922 /* current hardware state */
1923 union {
1924 struct ilk_wm_values hw;
1925 struct skl_wm_values skl_hw;
1926 struct vlv_wm_values vlv;
1927 };
1928 } wm;
1929
1930 struct i915_runtime_pm pm;
1931
1932 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
1933 struct {
1934 int (*execbuf_submit)(struct i915_execbuffer_params *params,
1935 struct drm_i915_gem_execbuffer2 *args,
1936 struct list_head *vmas);
1937 int (*init_rings)(struct drm_device *dev);
1938 void (*cleanup_ring)(struct intel_engine_cs *ring);
1939 void (*stop_ring)(struct intel_engine_cs *ring);
1940 } gt;
1941
1942 bool edp_low_vswing;
1943
1944 /*
1945 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
1946 * will be rejected. Instead look for a better place.
1947 */
1948 };
1949
1950 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
1951 {
1952 return dev->dev_private;
1953 }
1954
1955 static inline struct drm_i915_private *dev_to_i915(struct device *dev)
1956 {
1957 return to_i915(dev_get_drvdata(dev));
1958 }
1959
1960 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
1961 {
1962 return container_of(guc, struct drm_i915_private, guc);
1963 }
1964
1965 /* Iterate over initialised rings */
1966 #define for_each_ring(ring__, dev_priv__, i__) \
1967 for ((i__) = 0; (i__) < I915_NUM_RINGS; (i__)++) \
1968 if (((ring__) = &(dev_priv__)->ring[(i__)]), intel_ring_initialized((ring__)))
1969
1970 enum hdmi_force_audio {
1971 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
1972 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
1973 HDMI_AUDIO_AUTO, /* trust EDID */
1974 HDMI_AUDIO_ON, /* force turn on HDMI audio */
1975 };
1976
1977 #define I915_GTT_OFFSET_NONE ((u32)-1)
1978
1979 struct drm_i915_gem_object_ops {
1980 /* Interface between the GEM object and its backing storage.
1981 * get_pages() is called once prior to the use of the associated set
1982 * of pages before to binding them into the GTT, and put_pages() is
1983 * called after we no longer need them. As we expect there to be
1984 * associated cost with migrating pages between the backing storage
1985 * and making them available for the GPU (e.g. clflush), we may hold
1986 * onto the pages after they are no longer referenced by the GPU
1987 * in case they may be used again shortly (for example migrating the
1988 * pages to a different memory domain within the GTT). put_pages()
1989 * will therefore most likely be called when the object itself is
1990 * being released or under memory pressure (where we attempt to
1991 * reap pages for the shrinker).
1992 */
1993 int (*get_pages)(struct drm_i915_gem_object *);
1994 void (*put_pages)(struct drm_i915_gem_object *);
1995 int (*dmabuf_export)(struct drm_i915_gem_object *);
1996 void (*release)(struct drm_i915_gem_object *);
1997 };
1998
1999 /*
2000 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2001 * considered to be the frontbuffer for the given plane interface-vise. This
2002 * doesn't mean that the hw necessarily already scans it out, but that any
2003 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2004 *
2005 * We have one bit per pipe and per scanout plane type.
2006 */
2007 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 4
2008 #define INTEL_FRONTBUFFER_BITS \
2009 (INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES)
2010 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2011 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2012 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2013 (1 << (1 +(INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2014 #define INTEL_FRONTBUFFER_SPRITE(pipe) \
2015 (1 << (2 +(INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2016 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2017 (1 << (3 +(INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2018 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2019 (0xf << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2020
2021 struct drm_i915_gem_object {
2022 struct drm_gem_object base;
2023
2024 const struct drm_i915_gem_object_ops *ops;
2025
2026 /** List of VMAs backed by this object */
2027 struct list_head vma_list;
2028
2029 /** Stolen memory for this object, instead of being backed by shmem. */
2030 struct drm_mm_node *stolen;
2031 struct list_head global_list;
2032
2033 struct list_head ring_list[I915_NUM_RINGS];
2034 /** Used in execbuf to temporarily hold a ref */
2035 struct list_head obj_exec_link;
2036
2037 struct list_head batch_pool_link;
2038
2039 /**
2040 * This is set if the object is on the active lists (has pending
2041 * rendering and so a non-zero seqno), and is not set if it i s on
2042 * inactive (ready to be unbound) list.
2043 */
2044 unsigned int active:I915_NUM_RINGS;
2045
2046 /**
2047 * This is set if the object has been written to since last bound
2048 * to the GTT
2049 */
2050 unsigned int dirty:1;
2051
2052 /**
2053 * Fence register bits (if any) for this object. Will be set
2054 * as needed when mapped into the GTT.
2055 * Protected by dev->struct_mutex.
2056 */
2057 signed int fence_reg:I915_MAX_NUM_FENCE_BITS;
2058
2059 /**
2060 * Advice: are the backing pages purgeable?
2061 */
2062 unsigned int madv:2;
2063
2064 /**
2065 * Current tiling mode for the object.
2066 */
2067 unsigned int tiling_mode:2;
2068 /**
2069 * Whether the tiling parameters for the currently associated fence
2070 * register have changed. Note that for the purposes of tracking
2071 * tiling changes we also treat the unfenced register, the register
2072 * slot that the object occupies whilst it executes a fenced
2073 * command (such as BLT on gen2/3), as a "fence".
2074 */
2075 unsigned int fence_dirty:1;
2076
2077 /**
2078 * Is the object at the current location in the gtt mappable and
2079 * fenceable? Used to avoid costly recalculations.
2080 */
2081 unsigned int map_and_fenceable:1;
2082
2083 /**
2084 * Whether the current gtt mapping needs to be mappable (and isn't just
2085 * mappable by accident). Track pin and fault separate for a more
2086 * accurate mappable working set.
2087 */
2088 unsigned int fault_mappable:1;
2089
2090 /*
2091 * Is the object to be mapped as read-only to the GPU
2092 * Only honoured if hardware has relevant pte bit
2093 */
2094 unsigned long gt_ro:1;
2095 unsigned int cache_level:3;
2096 unsigned int cache_dirty:1;
2097
2098 unsigned int frontbuffer_bits:INTEL_FRONTBUFFER_BITS;
2099
2100 unsigned int pin_display;
2101
2102 struct sg_table *pages;
2103 int pages_pin_count;
2104 struct get_page {
2105 struct scatterlist *sg;
2106 int last;
2107 } get_page;
2108
2109 /* prime dma-buf support */
2110 void *dma_buf_vmapping;
2111 int vmapping_count;
2112
2113 /** Breadcrumb of last rendering to the buffer.
2114 * There can only be one writer, but we allow for multiple readers.
2115 * If there is a writer that necessarily implies that all other
2116 * read requests are complete - but we may only be lazily clearing
2117 * the read requests. A read request is naturally the most recent
2118 * request on a ring, so we may have two different write and read
2119 * requests on one ring where the write request is older than the
2120 * read request. This allows for the CPU to read from an active
2121 * buffer by only waiting for the write to complete.
2122 * */
2123 struct drm_i915_gem_request *last_read_req[I915_NUM_RINGS];
2124 struct drm_i915_gem_request *last_write_req;
2125 /** Breadcrumb of last fenced GPU access to the buffer. */
2126 struct drm_i915_gem_request *last_fenced_req;
2127
2128 /** Current tiling stride for the object, if it's tiled. */
2129 uint32_t stride;
2130
2131 /** References from framebuffers, locks out tiling changes. */
2132 unsigned long framebuffer_references;
2133
2134 /** Record of address bit 17 of each page at last unbind. */
2135 unsigned long *bit_17;
2136
2137 union {
2138 /** for phy allocated objects */
2139 struct drm_dma_handle *phys_handle;
2140
2141 struct i915_gem_userptr {
2142 uintptr_t ptr;
2143 unsigned read_only :1;
2144 unsigned workers :4;
2145 #define I915_GEM_USERPTR_MAX_WORKERS 15
2146
2147 struct i915_mm_struct *mm;
2148 struct i915_mmu_object *mmu_object;
2149 struct work_struct *work;
2150 } userptr;
2151 };
2152 };
2153 #define to_intel_bo(x) container_of(x, struct drm_i915_gem_object, base)
2154
2155 void i915_gem_track_fb(struct drm_i915_gem_object *old,
2156 struct drm_i915_gem_object *new,
2157 unsigned frontbuffer_bits);
2158
2159 /**
2160 * Request queue structure.
2161 *
2162 * The request queue allows us to note sequence numbers that have been emitted
2163 * and may be associated with active buffers to be retired.
2164 *
2165 * By keeping this list, we can avoid having to do questionable sequence
2166 * number comparisons on buffer last_read|write_seqno. It also allows an
2167 * emission time to be associated with the request for tracking how far ahead
2168 * of the GPU the submission is.
2169 *
2170 * The requests are reference counted, so upon creation they should have an
2171 * initial reference taken using kref_init
2172 */
2173 struct drm_i915_gem_request {
2174 struct kref ref;
2175
2176 /** On Which ring this request was generated */
2177 struct drm_i915_private *i915;
2178 struct intel_engine_cs *ring;
2179
2180 /** GEM sequence number associated with this request. */
2181 uint32_t seqno;
2182
2183 /** Position in the ringbuffer of the start of the request */
2184 u32 head;
2185
2186 /**
2187 * Position in the ringbuffer of the start of the postfix.
2188 * This is required to calculate the maximum available ringbuffer
2189 * space without overwriting the postfix.
2190 */
2191 u32 postfix;
2192
2193 /** Position in the ringbuffer of the end of the whole request */
2194 u32 tail;
2195
2196 /**
2197 * Context and ring buffer related to this request
2198 * Contexts are refcounted, so when this request is associated with a
2199 * context, we must increment the context's refcount, to guarantee that
2200 * it persists while any request is linked to it. Requests themselves
2201 * are also refcounted, so the request will only be freed when the last
2202 * reference to it is dismissed, and the code in
2203 * i915_gem_request_free() will then decrement the refcount on the
2204 * context.
2205 */
2206 struct intel_context *ctx;
2207 struct intel_ringbuffer *ringbuf;
2208
2209 /** Batch buffer related to this request if any (used for
2210 error state dump only) */
2211 struct drm_i915_gem_object *batch_obj;
2212
2213 /** Time at which this request was emitted, in jiffies. */
2214 unsigned long emitted_jiffies;
2215
2216 /** global list entry for this request */
2217 struct list_head list;
2218
2219 struct drm_i915_file_private *file_priv;
2220 /** file_priv list entry for this request */
2221 struct list_head client_list;
2222
2223 /** process identifier submitting this request */
2224 struct pid *pid;
2225
2226 /**
2227 * The ELSP only accepts two elements at a time, so we queue
2228 * context/tail pairs on a given queue (ring->execlist_queue) until the
2229 * hardware is available. The queue serves a double purpose: we also use
2230 * it to keep track of the up to 2 contexts currently in the hardware
2231 * (usually one in execution and the other queued up by the GPU): We
2232 * only remove elements from the head of the queue when the hardware
2233 * informs us that an element has been completed.
2234 *
2235 * All accesses to the queue are mediated by a spinlock
2236 * (ring->execlist_lock).
2237 */
2238
2239 /** Execlist link in the submission queue.*/
2240 struct list_head execlist_link;
2241
2242 /** Execlists no. of times this request has been sent to the ELSP */
2243 int elsp_submitted;
2244
2245 };
2246
2247 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2248 struct intel_context *ctx,
2249 struct drm_i915_gem_request **req_out);
2250 void i915_gem_request_cancel(struct drm_i915_gem_request *req);
2251 void i915_gem_request_free(struct kref *req_ref);
2252 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
2253 struct drm_file *file);
2254
2255 static inline uint32_t
2256 i915_gem_request_get_seqno(struct drm_i915_gem_request *req)
2257 {
2258 return req ? req->seqno : 0;
2259 }
2260
2261 static inline struct intel_engine_cs *
2262 i915_gem_request_get_ring(struct drm_i915_gem_request *req)
2263 {
2264 return req ? req->ring : NULL;
2265 }
2266
2267 static inline struct drm_i915_gem_request *
2268 i915_gem_request_reference(struct drm_i915_gem_request *req)
2269 {
2270 if (req)
2271 kref_get(&req->ref);
2272 return req;
2273 }
2274
2275 static inline void
2276 i915_gem_request_unreference(struct drm_i915_gem_request *req)
2277 {
2278 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
2279 kref_put(&req->ref, i915_gem_request_free);
2280 }
2281
2282 static inline void
2283 i915_gem_request_unreference__unlocked(struct drm_i915_gem_request *req)
2284 {
2285 struct drm_device *dev;
2286
2287 if (!req)
2288 return;
2289
2290 dev = req->ring->dev;
2291 if (kref_put_mutex(&req->ref, i915_gem_request_free, &dev->struct_mutex))
2292 mutex_unlock(&dev->struct_mutex);
2293 }
2294
2295 static inline void i915_gem_request_assign(struct drm_i915_gem_request **pdst,
2296 struct drm_i915_gem_request *src)
2297 {
2298 if (src)
2299 i915_gem_request_reference(src);
2300
2301 if (*pdst)
2302 i915_gem_request_unreference(*pdst);
2303
2304 *pdst = src;
2305 }
2306
2307 /*
2308 * XXX: i915_gem_request_completed should be here but currently needs the
2309 * definition of i915_seqno_passed() which is below. It will be moved in
2310 * a later patch when the call to i915_seqno_passed() is obsoleted...
2311 */
2312
2313 /*
2314 * A command that requires special handling by the command parser.
2315 */
2316 struct drm_i915_cmd_descriptor {
2317 /*
2318 * Flags describing how the command parser processes the command.
2319 *
2320 * CMD_DESC_FIXED: The command has a fixed length if this is set,
2321 * a length mask if not set
2322 * CMD_DESC_SKIP: The command is allowed but does not follow the
2323 * standard length encoding for the opcode range in
2324 * which it falls
2325 * CMD_DESC_REJECT: The command is never allowed
2326 * CMD_DESC_REGISTER: The command should be checked against the
2327 * register whitelist for the appropriate ring
2328 * CMD_DESC_MASTER: The command is allowed if the submitting process
2329 * is the DRM master
2330 */
2331 u32 flags;
2332 #define CMD_DESC_FIXED (1<<0)
2333 #define CMD_DESC_SKIP (1<<1)
2334 #define CMD_DESC_REJECT (1<<2)
2335 #define CMD_DESC_REGISTER (1<<3)
2336 #define CMD_DESC_BITMASK (1<<4)
2337 #define CMD_DESC_MASTER (1<<5)
2338
2339 /*
2340 * The command's unique identification bits and the bitmask to get them.
2341 * This isn't strictly the opcode field as defined in the spec and may
2342 * also include type, subtype, and/or subop fields.
2343 */
2344 struct {
2345 u32 value;
2346 u32 mask;
2347 } cmd;
2348
2349 /*
2350 * The command's length. The command is either fixed length (i.e. does
2351 * not include a length field) or has a length field mask. The flag
2352 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
2353 * a length mask. All command entries in a command table must include
2354 * length information.
2355 */
2356 union {
2357 u32 fixed;
2358 u32 mask;
2359 } length;
2360
2361 /*
2362 * Describes where to find a register address in the command to check
2363 * against the ring's register whitelist. Only valid if flags has the
2364 * CMD_DESC_REGISTER bit set.
2365 *
2366 * A non-zero step value implies that the command may access multiple
2367 * registers in sequence (e.g. LRI), in that case step gives the
2368 * distance in dwords between individual offset fields.
2369 */
2370 struct {
2371 u32 offset;
2372 u32 mask;
2373 u32 step;
2374 } reg;
2375
2376 #define MAX_CMD_DESC_BITMASKS 3
2377 /*
2378 * Describes command checks where a particular dword is masked and
2379 * compared against an expected value. If the command does not match
2380 * the expected value, the parser rejects it. Only valid if flags has
2381 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
2382 * are valid.
2383 *
2384 * If the check specifies a non-zero condition_mask then the parser
2385 * only performs the check when the bits specified by condition_mask
2386 * are non-zero.
2387 */
2388 struct {
2389 u32 offset;
2390 u32 mask;
2391 u32 expected;
2392 u32 condition_offset;
2393 u32 condition_mask;
2394 } bits[MAX_CMD_DESC_BITMASKS];
2395 };
2396
2397 /*
2398 * A table of commands requiring special handling by the command parser.
2399 *
2400 * Each ring has an array of tables. Each table consists of an array of command
2401 * descriptors, which must be sorted with command opcodes in ascending order.
2402 */
2403 struct drm_i915_cmd_table {
2404 const struct drm_i915_cmd_descriptor *table;
2405 int count;
2406 };
2407
2408 /* Note that the (struct drm_i915_private *) cast is just to shut up gcc. */
2409 #define __I915__(p) ({ \
2410 struct drm_i915_private *__p; \
2411 if (__builtin_types_compatible_p(typeof(*p), struct drm_i915_private)) \
2412 __p = (struct drm_i915_private *)p; \
2413 else if (__builtin_types_compatible_p(typeof(*p), struct drm_device)) \
2414 __p = to_i915((struct drm_device *)p); \
2415 else \
2416 BUILD_BUG(); \
2417 __p; \
2418 })
2419 #define INTEL_INFO(p) (&__I915__(p)->info)
2420 #define INTEL_DEVID(p) (INTEL_INFO(p)->device_id)
2421 #define INTEL_REVID(p) (__I915__(p)->dev->pdev->revision)
2422
2423 #define IS_I830(dev) (INTEL_DEVID(dev) == 0x3577)
2424 #define IS_845G(dev) (INTEL_DEVID(dev) == 0x2562)
2425 #define IS_I85X(dev) (INTEL_INFO(dev)->is_i85x)
2426 #define IS_I865G(dev) (INTEL_DEVID(dev) == 0x2572)
2427 #define IS_I915G(dev) (INTEL_INFO(dev)->is_i915g)
2428 #define IS_I915GM(dev) (INTEL_DEVID(dev) == 0x2592)
2429 #define IS_I945G(dev) (INTEL_DEVID(dev) == 0x2772)
2430 #define IS_I945GM(dev) (INTEL_INFO(dev)->is_i945gm)
2431 #define IS_BROADWATER(dev) (INTEL_INFO(dev)->is_broadwater)
2432 #define IS_CRESTLINE(dev) (INTEL_INFO(dev)->is_crestline)
2433 #define IS_GM45(dev) (INTEL_DEVID(dev) == 0x2A42)
2434 #define IS_G4X(dev) (INTEL_INFO(dev)->is_g4x)
2435 #define IS_PINEVIEW_G(dev) (INTEL_DEVID(dev) == 0xa001)
2436 #define IS_PINEVIEW_M(dev) (INTEL_DEVID(dev) == 0xa011)
2437 #define IS_PINEVIEW(dev) (INTEL_INFO(dev)->is_pineview)
2438 #define IS_G33(dev) (INTEL_INFO(dev)->is_g33)
2439 #define IS_IRONLAKE_M(dev) (INTEL_DEVID(dev) == 0x0046)
2440 #define IS_IVYBRIDGE(dev) (INTEL_INFO(dev)->is_ivybridge)
2441 #define IS_IVB_GT1(dev) (INTEL_DEVID(dev) == 0x0156 || \
2442 INTEL_DEVID(dev) == 0x0152 || \
2443 INTEL_DEVID(dev) == 0x015a)
2444 #define IS_VALLEYVIEW(dev) (INTEL_INFO(dev)->is_valleyview)
2445 #define IS_CHERRYVIEW(dev) (INTEL_INFO(dev)->is_valleyview && IS_GEN8(dev))
2446 #define IS_HASWELL(dev) (INTEL_INFO(dev)->is_haswell)
2447 #define IS_BROADWELL(dev) (!INTEL_INFO(dev)->is_valleyview && IS_GEN8(dev))
2448 #define IS_SKYLAKE(dev) (INTEL_INFO(dev)->is_skylake)
2449 #define IS_BROXTON(dev) (!INTEL_INFO(dev)->is_skylake && IS_GEN9(dev))
2450 #define IS_MOBILE(dev) (INTEL_INFO(dev)->is_mobile)
2451 #define IS_HSW_EARLY_SDV(dev) (IS_HASWELL(dev) && \
2452 (INTEL_DEVID(dev) & 0xFF00) == 0x0C00)
2453 #define IS_BDW_ULT(dev) (IS_BROADWELL(dev) && \
2454 ((INTEL_DEVID(dev) & 0xf) == 0x6 || \
2455 (INTEL_DEVID(dev) & 0xf) == 0xb || \
2456 (INTEL_DEVID(dev) & 0xf) == 0xe))
2457 /* ULX machines are also considered ULT. */
2458 #define IS_BDW_ULX(dev) (IS_BROADWELL(dev) && \
2459 (INTEL_DEVID(dev) & 0xf) == 0xe)
2460 #define IS_BDW_GT3(dev) (IS_BROADWELL(dev) && \
2461 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2462 #define IS_HSW_ULT(dev) (IS_HASWELL(dev) && \
2463 (INTEL_DEVID(dev) & 0xFF00) == 0x0A00)
2464 #define IS_HSW_GT3(dev) (IS_HASWELL(dev) && \
2465 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2466 /* ULX machines are also considered ULT. */
2467 #define IS_HSW_ULX(dev) (INTEL_DEVID(dev) == 0x0A0E || \
2468 INTEL_DEVID(dev) == 0x0A1E)
2469 #define IS_SKL_ULT(dev) (INTEL_DEVID(dev) == 0x1906 || \
2470 INTEL_DEVID(dev) == 0x1913 || \
2471 INTEL_DEVID(dev) == 0x1916 || \
2472 INTEL_DEVID(dev) == 0x1921 || \
2473 INTEL_DEVID(dev) == 0x1926)
2474 #define IS_SKL_ULX(dev) (INTEL_DEVID(dev) == 0x190E || \
2475 INTEL_DEVID(dev) == 0x1915 || \
2476 INTEL_DEVID(dev) == 0x191E)
2477 #define IS_PRELIMINARY_HW(intel_info) ((intel_info)->is_preliminary)
2478
2479 #define SKL_REVID_A0 (0x0)
2480 #define SKL_REVID_B0 (0x1)
2481 #define SKL_REVID_C0 (0x2)
2482 #define SKL_REVID_D0 (0x3)
2483 #define SKL_REVID_E0 (0x4)
2484 #define SKL_REVID_F0 (0x5)
2485
2486 #define BXT_REVID_A0 (0x0)
2487 #define BXT_REVID_B0 (0x3)
2488 #define BXT_REVID_C0 (0x6)
2489
2490 /*
2491 * The genX designation typically refers to the render engine, so render
2492 * capability related checks should use IS_GEN, while display and other checks
2493 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2494 * chips, etc.).
2495 */
2496 #define IS_GEN2(dev) (INTEL_INFO(dev)->gen == 2)
2497 #define IS_GEN3(dev) (INTEL_INFO(dev)->gen == 3)
2498 #define IS_GEN4(dev) (INTEL_INFO(dev)->gen == 4)
2499 #define IS_GEN5(dev) (INTEL_INFO(dev)->gen == 5)
2500 #define IS_GEN6(dev) (INTEL_INFO(dev)->gen == 6)
2501 #define IS_GEN7(dev) (INTEL_INFO(dev)->gen == 7)
2502 #define IS_GEN8(dev) (INTEL_INFO(dev)->gen == 8)
2503 #define IS_GEN9(dev) (INTEL_INFO(dev)->gen == 9)
2504
2505 #define RENDER_RING (1<<RCS)
2506 #define BSD_RING (1<<VCS)
2507 #define BLT_RING (1<<BCS)
2508 #define VEBOX_RING (1<<VECS)
2509 #define BSD2_RING (1<<VCS2)
2510 #define HAS_BSD(dev) (INTEL_INFO(dev)->ring_mask & BSD_RING)
2511 #define HAS_BSD2(dev) (INTEL_INFO(dev)->ring_mask & BSD2_RING)
2512 #define HAS_BLT(dev) (INTEL_INFO(dev)->ring_mask & BLT_RING)
2513 #define HAS_VEBOX(dev) (INTEL_INFO(dev)->ring_mask & VEBOX_RING)
2514 #define HAS_LLC(dev) (INTEL_INFO(dev)->has_llc)
2515 #define HAS_WT(dev) ((IS_HASWELL(dev) || IS_BROADWELL(dev)) && \
2516 __I915__(dev)->ellc_size)
2517 #define I915_NEED_GFX_HWS(dev) (INTEL_INFO(dev)->need_gfx_hws)
2518
2519 #define HAS_HW_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 6)
2520 #define HAS_LOGICAL_RING_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 8)
2521 #define USES_PPGTT(dev) (i915.enable_ppgtt)
2522 #define USES_FULL_PPGTT(dev) (i915.enable_ppgtt >= 2)
2523 #define USES_FULL_48BIT_PPGTT(dev) (i915.enable_ppgtt == 3)
2524
2525 #define HAS_OVERLAY(dev) (INTEL_INFO(dev)->has_overlay)
2526 #define OVERLAY_NEEDS_PHYSICAL(dev) (INTEL_INFO(dev)->overlay_needs_physical)
2527
2528 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2529 #define HAS_BROKEN_CS_TLB(dev) (IS_I830(dev) || IS_845G(dev))
2530 /*
2531 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2532 * even when in MSI mode. This results in spurious interrupt warnings if the
2533 * legacy irq no. is shared with another device. The kernel then disables that
2534 * interrupt source and so prevents the other device from working properly.
2535 */
2536 #define HAS_AUX_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2537 #define HAS_GMBUS_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2538
2539 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2540 * rows, which changed the alignment requirements and fence programming.
2541 */
2542 #define HAS_128_BYTE_Y_TILING(dev) (!IS_GEN2(dev) && !(IS_I915G(dev) || \
2543 IS_I915GM(dev)))
2544 #define SUPPORTS_TV(dev) (INTEL_INFO(dev)->supports_tv)
2545 #define I915_HAS_HOTPLUG(dev) (INTEL_INFO(dev)->has_hotplug)
2546
2547 #define HAS_FW_BLC(dev) (INTEL_INFO(dev)->gen > 2)
2548 #define HAS_PIPE_CXSR(dev) (INTEL_INFO(dev)->has_pipe_cxsr)
2549 #define HAS_FBC(dev) (INTEL_INFO(dev)->has_fbc)
2550
2551 #define HAS_IPS(dev) (IS_HSW_ULT(dev) || IS_BROADWELL(dev))
2552
2553 #define HAS_DP_MST(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2554 INTEL_INFO(dev)->gen >= 9)
2555
2556 #define HAS_DDI(dev) (INTEL_INFO(dev)->has_ddi)
2557 #define HAS_FPGA_DBG_UNCLAIMED(dev) (INTEL_INFO(dev)->has_fpga_dbg)
2558 #define HAS_PSR(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2559 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || \
2560 IS_SKYLAKE(dev))
2561 #define HAS_RUNTIME_PM(dev) (IS_GEN6(dev) || IS_HASWELL(dev) || \
2562 IS_BROADWELL(dev) || IS_VALLEYVIEW(dev) || \
2563 IS_SKYLAKE(dev))
2564 #define HAS_RC6(dev) (INTEL_INFO(dev)->gen >= 6)
2565 #define HAS_RC6p(dev) (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
2566
2567 #define HAS_CSR(dev) (IS_SKYLAKE(dev))
2568
2569 #define HAS_GUC_UCODE(dev) (IS_GEN9(dev))
2570 #define HAS_GUC_SCHED(dev) (IS_GEN9(dev))
2571
2572 #define HAS_RESOURCE_STREAMER(dev) (IS_HASWELL(dev) || \
2573 INTEL_INFO(dev)->gen >= 8)
2574
2575 #define HAS_CORE_RING_FREQ(dev) (INTEL_INFO(dev)->gen >= 6 && \
2576 !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
2577
2578 #define INTEL_PCH_DEVICE_ID_MASK 0xff00
2579 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
2580 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
2581 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
2582 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
2583 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
2584 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
2585 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
2586
2587 #define INTEL_PCH_TYPE(dev) (__I915__(dev)->pch_type)
2588 #define HAS_PCH_SPT(dev) (INTEL_PCH_TYPE(dev) == PCH_SPT)
2589 #define HAS_PCH_LPT(dev) (INTEL_PCH_TYPE(dev) == PCH_LPT)
2590 #define HAS_PCH_CPT(dev) (INTEL_PCH_TYPE(dev) == PCH_CPT)
2591 #define HAS_PCH_IBX(dev) (INTEL_PCH_TYPE(dev) == PCH_IBX)
2592 #define HAS_PCH_NOP(dev) (INTEL_PCH_TYPE(dev) == PCH_NOP)
2593 #define HAS_PCH_SPLIT(dev) (INTEL_PCH_TYPE(dev) != PCH_NONE)
2594
2595 #define HAS_GMCH_DISPLAY(dev) (INTEL_INFO(dev)->gen < 5 || IS_VALLEYVIEW(dev))
2596
2597 /* DPF == dynamic parity feature */
2598 #define HAS_L3_DPF(dev) (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
2599 #define NUM_L3_SLICES(dev) (IS_HSW_GT3(dev) ? 2 : HAS_L3_DPF(dev))
2600
2601 #define GT_FREQUENCY_MULTIPLIER 50
2602 #define GEN9_FREQ_SCALER 3
2603
2604 #include "i915_trace.h"
2605
2606 extern const struct drm_ioctl_desc i915_ioctls[];
2607 extern int i915_max_ioctl;
2608
2609 extern int i915_suspend_legacy(struct drm_device *dev, pm_message_t state);
2610 extern int i915_resume_legacy(struct drm_device *dev);
2611
2612 /* i915_params.c */
2613 struct i915_params {
2614 int modeset;
2615 int panel_ignore_lid;
2616 int semaphores;
2617 int lvds_channel_mode;
2618 int panel_use_ssc;
2619 int vbt_sdvo_panel_type;
2620 int enable_rc6;
2621 int enable_fbc;
2622 int enable_ppgtt;
2623 int enable_execlists;
2624 int enable_psr;
2625 unsigned int preliminary_hw_support;
2626 int disable_power_well;
2627 int enable_ips;
2628 int invert_brightness;
2629 int enable_cmd_parser;
2630 /* leave bools at the end to not create holes */
2631 bool enable_hangcheck;
2632 bool fastboot;
2633 bool prefault_disable;
2634 bool load_detect_test;
2635 bool reset;
2636 bool disable_display;
2637 bool disable_vtd_wa;
2638 bool enable_guc_submission;
2639 int guc_log_level;
2640 int use_mmio_flip;
2641 int mmio_debug;
2642 bool verbose_state_checks;
2643 bool nuclear_pageflip;
2644 int edp_vswing;
2645 };
2646 extern struct i915_params i915 __read_mostly;
2647
2648 /* i915_dma.c */
2649 extern int i915_driver_load(struct drm_device *, unsigned long flags);
2650 extern int i915_driver_unload(struct drm_device *);
2651 extern int i915_driver_open(struct drm_device *dev, struct drm_file *file);
2652 extern void i915_driver_lastclose(struct drm_device * dev);
2653 extern void i915_driver_preclose(struct drm_device *dev,
2654 struct drm_file *file);
2655 extern void i915_driver_postclose(struct drm_device *dev,
2656 struct drm_file *file);
2657 #ifdef CONFIG_COMPAT
2658 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2659 unsigned long arg);
2660 #endif
2661 extern int intel_gpu_reset(struct drm_device *dev);
2662 extern bool intel_has_gpu_reset(struct drm_device *dev);
2663 extern int i915_reset(struct drm_device *dev);
2664 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2665 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2666 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2667 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2668 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2669 void i915_firmware_load_error_print(const char *fw_path, int err);
2670
2671 /* intel_hotplug.c */
2672 void intel_hpd_irq_handler(struct drm_device *dev, u32 pin_mask, u32 long_mask);
2673 void intel_hpd_init(struct drm_i915_private *dev_priv);
2674 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2675 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2676 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
2677
2678 /* i915_irq.c */
2679 void i915_queue_hangcheck(struct drm_device *dev);
2680 __printf(3, 4)
2681 void i915_handle_error(struct drm_device *dev, bool wedged,
2682 const char *fmt, ...);
2683
2684 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2685 int intel_irq_install(struct drm_i915_private *dev_priv);
2686 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2687
2688 extern void intel_uncore_sanitize(struct drm_device *dev);
2689 extern void intel_uncore_early_sanitize(struct drm_device *dev,
2690 bool restore_forcewake);
2691 extern void intel_uncore_init(struct drm_device *dev);
2692 extern void intel_uncore_check_errors(struct drm_device *dev);
2693 extern void intel_uncore_fini(struct drm_device *dev);
2694 extern void intel_uncore_forcewake_reset(struct drm_device *dev, bool restore);
2695 const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id);
2696 void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv,
2697 enum forcewake_domains domains);
2698 void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv,
2699 enum forcewake_domains domains);
2700 /* Like above but the caller must manage the uncore.lock itself.
2701 * Must be used with I915_READ_FW and friends.
2702 */
2703 void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv,
2704 enum forcewake_domains domains);
2705 void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv,
2706 enum forcewake_domains domains);
2707 void assert_forcewakes_inactive(struct drm_i915_private *dev_priv);
2708 static inline bool intel_vgpu_active(struct drm_device *dev)
2709 {
2710 return to_i915(dev)->vgpu.active;
2711 }
2712
2713 void
2714 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2715 u32 status_mask);
2716
2717 void
2718 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2719 u32 status_mask);
2720
2721 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
2722 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
2723 void
2724 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask);
2725 void
2726 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask);
2727 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
2728 uint32_t interrupt_mask,
2729 uint32_t enabled_irq_mask);
2730 #define ibx_enable_display_interrupt(dev_priv, bits) \
2731 ibx_display_interrupt_update((dev_priv), (bits), (bits))
2732 #define ibx_disable_display_interrupt(dev_priv, bits) \
2733 ibx_display_interrupt_update((dev_priv), (bits), 0)
2734
2735 /* i915_gem.c */
2736 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
2737 struct drm_file *file_priv);
2738 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
2739 struct drm_file *file_priv);
2740 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
2741 struct drm_file *file_priv);
2742 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
2743 struct drm_file *file_priv);
2744 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2745 struct drm_file *file_priv);
2746 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
2747 struct drm_file *file_priv);
2748 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
2749 struct drm_file *file_priv);
2750 void i915_gem_execbuffer_move_to_active(struct list_head *vmas,
2751 struct drm_i915_gem_request *req);
2752 void i915_gem_execbuffer_retire_commands(struct i915_execbuffer_params *params);
2753 int i915_gem_ringbuffer_submission(struct i915_execbuffer_params *params,
2754 struct drm_i915_gem_execbuffer2 *args,
2755 struct list_head *vmas);
2756 int i915_gem_execbuffer(struct drm_device *dev, void *data,
2757 struct drm_file *file_priv);
2758 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
2759 struct drm_file *file_priv);
2760 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2761 struct drm_file *file_priv);
2762 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
2763 struct drm_file *file);
2764 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
2765 struct drm_file *file);
2766 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2767 struct drm_file *file_priv);
2768 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
2769 struct drm_file *file_priv);
2770 int i915_gem_set_tiling(struct drm_device *dev, void *data,
2771 struct drm_file *file_priv);
2772 int i915_gem_get_tiling(struct drm_device *dev, void *data,
2773 struct drm_file *file_priv);
2774 int i915_gem_init_userptr(struct drm_device *dev);
2775 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
2776 struct drm_file *file);
2777 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
2778 struct drm_file *file_priv);
2779 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
2780 struct drm_file *file_priv);
2781 void i915_gem_load(struct drm_device *dev);
2782 void *i915_gem_object_alloc(struct drm_device *dev);
2783 void i915_gem_object_free(struct drm_i915_gem_object *obj);
2784 void i915_gem_object_init(struct drm_i915_gem_object *obj,
2785 const struct drm_i915_gem_object_ops *ops);
2786 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
2787 size_t size);
2788 struct drm_i915_gem_object *i915_gem_object_create_from_data(
2789 struct drm_device *dev, const void *data, size_t size);
2790 void i915_init_vm(struct drm_i915_private *dev_priv,
2791 struct i915_address_space *vm);
2792 void i915_gem_free_object(struct drm_gem_object *obj);
2793 void i915_gem_vma_destroy(struct i915_vma *vma);
2794
2795 /* Flags used by pin/bind&friends. */
2796 #define PIN_MAPPABLE (1<<0)
2797 #define PIN_NONBLOCK (1<<1)
2798 #define PIN_GLOBAL (1<<2)
2799 #define PIN_OFFSET_BIAS (1<<3)
2800 #define PIN_USER (1<<4)
2801 #define PIN_UPDATE (1<<5)
2802 #define PIN_OFFSET_MASK (~4095)
2803 int __must_check
2804 i915_gem_object_pin(struct drm_i915_gem_object *obj,
2805 struct i915_address_space *vm,
2806 uint32_t alignment,
2807 uint64_t flags);
2808 int __must_check
2809 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
2810 const struct i915_ggtt_view *view,
2811 uint32_t alignment,
2812 uint64_t flags);
2813
2814 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
2815 u32 flags);
2816 int __must_check i915_vma_unbind(struct i915_vma *vma);
2817 int i915_gem_object_put_pages(struct drm_i915_gem_object *obj);
2818 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv);
2819 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
2820
2821 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
2822 int *needs_clflush);
2823
2824 int __must_check i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
2825
2826 static inline int __sg_page_count(struct scatterlist *sg)
2827 {
2828 return sg->length >> PAGE_SHIFT;
2829 }
2830
2831 static inline struct page *
2832 i915_gem_object_get_page(struct drm_i915_gem_object *obj, int n)
2833 {
2834 if (WARN_ON(n >= obj->base.size >> PAGE_SHIFT))
2835 return NULL;
2836
2837 if (n < obj->get_page.last) {
2838 obj->get_page.sg = obj->pages->sgl;
2839 obj->get_page.last = 0;
2840 }
2841
2842 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
2843 obj->get_page.last += __sg_page_count(obj->get_page.sg++);
2844 if (unlikely(sg_is_chain(obj->get_page.sg)))
2845 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
2846 }
2847
2848 return nth_page(sg_page(obj->get_page.sg), n - obj->get_page.last);
2849 }
2850
2851 static inline void i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
2852 {
2853 BUG_ON(obj->pages == NULL);
2854 obj->pages_pin_count++;
2855 }
2856 static inline void i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
2857 {
2858 BUG_ON(obj->pages_pin_count == 0);
2859 obj->pages_pin_count--;
2860 }
2861
2862 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
2863 int i915_gem_object_sync(struct drm_i915_gem_object *obj,
2864 struct intel_engine_cs *to,
2865 struct drm_i915_gem_request **to_req);
2866 void i915_vma_move_to_active(struct i915_vma *vma,
2867 struct drm_i915_gem_request *req);
2868 int i915_gem_dumb_create(struct drm_file *file_priv,
2869 struct drm_device *dev,
2870 struct drm_mode_create_dumb *args);
2871 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
2872 uint32_t handle, uint64_t *offset);
2873 /**
2874 * Returns true if seq1 is later than seq2.
2875 */
2876 static inline bool
2877 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
2878 {
2879 return (int32_t)(seq1 - seq2) >= 0;
2880 }
2881
2882 static inline bool i915_gem_request_completed(struct drm_i915_gem_request *req,
2883 bool lazy_coherency)
2884 {
2885 u32 seqno;
2886
2887 BUG_ON(req == NULL);
2888
2889 seqno = req->ring->get_seqno(req->ring, lazy_coherency);
2890
2891 return i915_seqno_passed(seqno, req->seqno);
2892 }
2893
2894 int __must_check i915_gem_get_seqno(struct drm_device *dev, u32 *seqno);
2895 int __must_check i915_gem_set_seqno(struct drm_device *dev, u32 seqno);
2896
2897 struct drm_i915_gem_request *
2898 i915_gem_find_active_request(struct intel_engine_cs *ring);
2899
2900 bool i915_gem_retire_requests(struct drm_device *dev);
2901 void i915_gem_retire_requests_ring(struct intel_engine_cs *ring);
2902 int __must_check i915_gem_check_wedge(struct i915_gpu_error *error,
2903 bool interruptible);
2904
2905 static inline bool i915_reset_in_progress(struct i915_gpu_error *error)
2906 {
2907 return unlikely(atomic_read(&error->reset_counter)
2908 & (I915_RESET_IN_PROGRESS_FLAG | I915_WEDGED));
2909 }
2910
2911 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
2912 {
2913 return atomic_read(&error->reset_counter) & I915_WEDGED;
2914 }
2915
2916 static inline u32 i915_reset_count(struct i915_gpu_error *error)
2917 {
2918 return ((atomic_read(&error->reset_counter) & ~I915_WEDGED) + 1) / 2;
2919 }
2920
2921 static inline bool i915_stop_ring_allow_ban(struct drm_i915_private *dev_priv)
2922 {
2923 return dev_priv->gpu_error.stop_rings == 0 ||
2924 dev_priv->gpu_error.stop_rings & I915_STOP_RING_ALLOW_BAN;
2925 }
2926
2927 static inline bool i915_stop_ring_allow_warn(struct drm_i915_private *dev_priv)
2928 {
2929 return dev_priv->gpu_error.stop_rings == 0 ||
2930 dev_priv->gpu_error.stop_rings & I915_STOP_RING_ALLOW_WARN;
2931 }
2932
2933 void i915_gem_reset(struct drm_device *dev);
2934 bool i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force);
2935 int __must_check i915_gem_init(struct drm_device *dev);
2936 int i915_gem_init_rings(struct drm_device *dev);
2937 int __must_check i915_gem_init_hw(struct drm_device *dev);
2938 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice);
2939 void i915_gem_init_swizzling(struct drm_device *dev);
2940 void i915_gem_cleanup_ringbuffer(struct drm_device *dev);
2941 int __must_check i915_gpu_idle(struct drm_device *dev);
2942 int __must_check i915_gem_suspend(struct drm_device *dev);
2943 void __i915_add_request(struct drm_i915_gem_request *req,
2944 struct drm_i915_gem_object *batch_obj,
2945 bool flush_caches);
2946 #define i915_add_request(req) \
2947 __i915_add_request(req, NULL, true)
2948 #define i915_add_request_no_flush(req) \
2949 __i915_add_request(req, NULL, false)
2950 int __i915_wait_request(struct drm_i915_gem_request *req,
2951 unsigned reset_counter,
2952 bool interruptible,
2953 s64 *timeout,
2954 struct intel_rps_client *rps);
2955 int __must_check i915_wait_request(struct drm_i915_gem_request *req);
2956 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf);
2957 int __must_check
2958 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
2959 bool readonly);
2960 int __must_check
2961 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj,
2962 bool write);
2963 int __must_check
2964 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
2965 int __must_check
2966 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
2967 u32 alignment,
2968 struct intel_engine_cs *pipelined,
2969 struct drm_i915_gem_request **pipelined_request,
2970 const struct i915_ggtt_view *view);
2971 void i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
2972 const struct i915_ggtt_view *view);
2973 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
2974 int align);
2975 int i915_gem_open(struct drm_device *dev, struct drm_file *file);
2976 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
2977
2978 uint32_t
2979 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode);
2980 uint32_t
2981 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2982 int tiling_mode, bool fenced);
2983
2984 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2985 enum i915_cache_level cache_level);
2986
2987 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
2988 struct dma_buf *dma_buf);
2989
2990 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
2991 struct drm_gem_object *gem_obj, int flags);
2992
2993 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
2994 const struct i915_ggtt_view *view);
2995 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
2996 struct i915_address_space *vm);
2997 static inline u64
2998 i915_gem_obj_ggtt_offset(struct drm_i915_gem_object *o)
2999 {
3000 return i915_gem_obj_ggtt_offset_view(o, &i915_ggtt_view_normal);
3001 }
3002
3003 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o);
3004 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
3005 const struct i915_ggtt_view *view);
3006 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
3007 struct i915_address_space *vm);
3008
3009 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
3010 struct i915_address_space *vm);
3011 struct i915_vma *
3012 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
3013 struct i915_address_space *vm);
3014 struct i915_vma *
3015 i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
3016 const struct i915_ggtt_view *view);
3017
3018 struct i915_vma *
3019 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3020 struct i915_address_space *vm);
3021 struct i915_vma *
3022 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3023 const struct i915_ggtt_view *view);
3024
3025 static inline struct i915_vma *
3026 i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
3027 {
3028 return i915_gem_obj_to_ggtt_view(obj, &i915_ggtt_view_normal);
3029 }
3030 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj);
3031
3032 /* Some GGTT VM helpers */
3033 #define i915_obj_to_ggtt(obj) \
3034 (&((struct drm_i915_private *)(obj)->base.dev->dev_private)->gtt.base)
3035 static inline bool i915_is_ggtt(struct i915_address_space *vm)
3036 {
3037 struct i915_address_space *ggtt =
3038 &((struct drm_i915_private *)(vm)->dev->dev_private)->gtt.base;
3039 return vm == ggtt;
3040 }
3041
3042 static inline struct i915_hw_ppgtt *
3043 i915_vm_to_ppgtt(struct i915_address_space *vm)
3044 {
3045 WARN_ON(i915_is_ggtt(vm));
3046
3047 return container_of(vm, struct i915_hw_ppgtt, base);
3048 }
3049
3050
3051 static inline bool i915_gem_obj_ggtt_bound(struct drm_i915_gem_object *obj)
3052 {
3053 return i915_gem_obj_ggtt_bound_view(obj, &i915_ggtt_view_normal);
3054 }
3055
3056 static inline unsigned long
3057 i915_gem_obj_ggtt_size(struct drm_i915_gem_object *obj)
3058 {
3059 return i915_gem_obj_size(obj, i915_obj_to_ggtt(obj));
3060 }
3061
3062 static inline int __must_check
3063 i915_gem_obj_ggtt_pin(struct drm_i915_gem_object *obj,
3064 uint32_t alignment,
3065 unsigned flags)
3066 {
3067 return i915_gem_object_pin(obj, i915_obj_to_ggtt(obj),
3068 alignment, flags | PIN_GLOBAL);
3069 }
3070
3071 static inline int
3072 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
3073 {
3074 return i915_vma_unbind(i915_gem_obj_to_ggtt(obj));
3075 }
3076
3077 void i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
3078 const struct i915_ggtt_view *view);
3079 static inline void
3080 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
3081 {
3082 i915_gem_object_ggtt_unpin_view(obj, &i915_ggtt_view_normal);
3083 }
3084
3085 /* i915_gem_fence.c */
3086 int __must_check i915_gem_object_get_fence(struct drm_i915_gem_object *obj);
3087 int __must_check i915_gem_object_put_fence(struct drm_i915_gem_object *obj);
3088
3089 bool i915_gem_object_pin_fence(struct drm_i915_gem_object *obj);
3090 void i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj);
3091
3092 void i915_gem_restore_fences(struct drm_device *dev);
3093
3094 void i915_gem_detect_bit_6_swizzle(struct drm_device *dev);
3095 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj);
3096 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj);
3097
3098 /* i915_gem_context.c */
3099 int __must_check i915_gem_context_init(struct drm_device *dev);
3100 void i915_gem_context_fini(struct drm_device *dev);
3101 void i915_gem_context_reset(struct drm_device *dev);
3102 int i915_gem_context_open(struct drm_device *dev, struct drm_file *file);
3103 int i915_gem_context_enable(struct drm_i915_gem_request *req);
3104 void i915_gem_context_close(struct drm_device *dev, struct drm_file *file);
3105 int i915_switch_context(struct drm_i915_gem_request *req);
3106 struct intel_context *
3107 i915_gem_context_get(struct drm_i915_file_private *file_priv, u32 id);
3108 void i915_gem_context_free(struct kref *ctx_ref);
3109 struct drm_i915_gem_object *
3110 i915_gem_alloc_context_obj(struct drm_device *dev, size_t size);
3111 static inline void i915_gem_context_reference(struct intel_context *ctx)
3112 {
3113 kref_get(&ctx->ref);
3114 }
3115
3116 static inline void i915_gem_context_unreference(struct intel_context *ctx)
3117 {
3118 kref_put(&ctx->ref, i915_gem_context_free);
3119 }
3120
3121 static inline bool i915_gem_context_is_default(const struct intel_context *c)
3122 {
3123 return c->user_handle == DEFAULT_CONTEXT_HANDLE;
3124 }
3125
3126 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
3127 struct drm_file *file);
3128 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
3129 struct drm_file *file);
3130 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
3131 struct drm_file *file_priv);
3132 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
3133 struct drm_file *file_priv);
3134
3135 /* i915_gem_evict.c */
3136 int __must_check i915_gem_evict_something(struct drm_device *dev,
3137 struct i915_address_space *vm,
3138 int min_size,
3139 unsigned alignment,
3140 unsigned cache_level,
3141 unsigned long start,
3142 unsigned long end,
3143 unsigned flags);
3144 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle);
3145 int i915_gem_evict_everything(struct drm_device *dev);
3146
3147 /* belongs in i915_gem_gtt.h */
3148 static inline void i915_gem_chipset_flush(struct drm_device *dev)
3149 {
3150 if (INTEL_INFO(dev)->gen < 6)
3151 intel_gtt_chipset_flush();
3152 }
3153
3154 /* i915_gem_stolen.c */
3155 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3156 struct drm_mm_node *node, u64 size,
3157 unsigned alignment);
3158 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3159 struct drm_mm_node *node);
3160 int i915_gem_init_stolen(struct drm_device *dev);
3161 void i915_gem_cleanup_stolen(struct drm_device *dev);
3162 struct drm_i915_gem_object *
3163 i915_gem_object_create_stolen(struct drm_device *dev, u32 size);
3164 struct drm_i915_gem_object *
3165 i915_gem_object_create_stolen_for_preallocated(struct drm_device *dev,
3166 u32 stolen_offset,
3167 u32 gtt_offset,
3168 u32 size);
3169
3170 /* i915_gem_shrinker.c */
3171 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3172 long target,
3173 unsigned flags);
3174 #define I915_SHRINK_PURGEABLE 0x1
3175 #define I915_SHRINK_UNBOUND 0x2
3176 #define I915_SHRINK_BOUND 0x4
3177 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3178 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3179
3180
3181 /* i915_gem_tiling.c */
3182 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3183 {
3184 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3185
3186 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3187 obj->tiling_mode != I915_TILING_NONE;
3188 }
3189
3190 /* i915_gem_debug.c */
3191 #if WATCH_LISTS
3192 int i915_verify_lists(struct drm_device *dev);
3193 #else
3194 #define i915_verify_lists(dev) 0
3195 #endif
3196
3197 /* i915_debugfs.c */
3198 int i915_debugfs_init(struct drm_minor *minor);
3199 void i915_debugfs_cleanup(struct drm_minor *minor);
3200 #ifdef CONFIG_DEBUG_FS
3201 int i915_debugfs_connector_add(struct drm_connector *connector);
3202 void intel_display_crc_init(struct drm_device *dev);
3203 #else
3204 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3205 { return 0; }
3206 static inline void intel_display_crc_init(struct drm_device *dev) {}
3207 #endif
3208
3209 /* i915_gpu_error.c */
3210 __printf(2, 3)
3211 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3212 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3213 const struct i915_error_state_file_priv *error);
3214 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3215 struct drm_i915_private *i915,
3216 size_t count, loff_t pos);
3217 static inline void i915_error_state_buf_release(
3218 struct drm_i915_error_state_buf *eb)
3219 {
3220 kfree(eb->buf);
3221 }
3222 void i915_capture_error_state(struct drm_device *dev, bool wedge,
3223 const char *error_msg);
3224 void i915_error_state_get(struct drm_device *dev,
3225 struct i915_error_state_file_priv *error_priv);
3226 void i915_error_state_put(struct i915_error_state_file_priv *error_priv);
3227 void i915_destroy_error_state(struct drm_device *dev);
3228
3229 void i915_get_extra_instdone(struct drm_device *dev, uint32_t *instdone);
3230 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3231
3232 /* i915_cmd_parser.c */
3233 int i915_cmd_parser_get_version(void);
3234 int i915_cmd_parser_init_ring(struct intel_engine_cs *ring);
3235 void i915_cmd_parser_fini_ring(struct intel_engine_cs *ring);
3236 bool i915_needs_cmd_parser(struct intel_engine_cs *ring);
3237 int i915_parse_cmds(struct intel_engine_cs *ring,
3238 struct drm_i915_gem_object *batch_obj,
3239 struct drm_i915_gem_object *shadow_batch_obj,
3240 u32 batch_start_offset,
3241 u32 batch_len,
3242 bool is_master);
3243
3244 /* i915_suspend.c */
3245 extern int i915_save_state(struct drm_device *dev);
3246 extern int i915_restore_state(struct drm_device *dev);
3247
3248 /* i915_sysfs.c */
3249 void i915_setup_sysfs(struct drm_device *dev_priv);
3250 void i915_teardown_sysfs(struct drm_device *dev_priv);
3251
3252 /* intel_i2c.c */
3253 extern int intel_setup_gmbus(struct drm_device *dev);
3254 extern void intel_teardown_gmbus(struct drm_device *dev);
3255 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3256 unsigned int pin);
3257
3258 extern struct i2c_adapter *
3259 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3260 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3261 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3262 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3263 {
3264 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3265 }
3266 extern void intel_i2c_reset(struct drm_device *dev);
3267
3268 /* intel_opregion.c */
3269 #ifdef CONFIG_ACPI
3270 extern int intel_opregion_setup(struct drm_device *dev);
3271 extern void intel_opregion_init(struct drm_device *dev);
3272 extern void intel_opregion_fini(struct drm_device *dev);
3273 extern void intel_opregion_asle_intr(struct drm_device *dev);
3274 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3275 bool enable);
3276 extern int intel_opregion_notify_adapter(struct drm_device *dev,
3277 pci_power_t state);
3278 #else
3279 static inline int intel_opregion_setup(struct drm_device *dev) { return 0; }
3280 static inline void intel_opregion_init(struct drm_device *dev) { return; }
3281 static inline void intel_opregion_fini(struct drm_device *dev) { return; }
3282 static inline void intel_opregion_asle_intr(struct drm_device *dev) { return; }
3283 static inline int
3284 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3285 {
3286 return 0;
3287 }
3288 static inline int
3289 intel_opregion_notify_adapter(struct drm_device *dev, pci_power_t state)
3290 {
3291 return 0;
3292 }
3293 #endif
3294
3295 /* intel_acpi.c */
3296 #ifdef CONFIG_ACPI
3297 extern void intel_register_dsm_handler(void);
3298 extern void intel_unregister_dsm_handler(void);
3299 #else
3300 static inline void intel_register_dsm_handler(void) { return; }
3301 static inline void intel_unregister_dsm_handler(void) { return; }
3302 #endif /* CONFIG_ACPI */
3303
3304 /* modesetting */
3305 extern void intel_modeset_init_hw(struct drm_device *dev);
3306 extern void intel_modeset_init(struct drm_device *dev);
3307 extern void intel_modeset_gem_init(struct drm_device *dev);
3308 extern void intel_modeset_cleanup(struct drm_device *dev);
3309 extern void intel_connector_unregister(struct intel_connector *);
3310 extern int intel_modeset_vga_set_state(struct drm_device *dev, bool state);
3311 extern void intel_display_resume(struct drm_device *dev);
3312 extern void i915_redisable_vga(struct drm_device *dev);
3313 extern void i915_redisable_vga_power_on(struct drm_device *dev);
3314 extern bool ironlake_set_drps(struct drm_device *dev, u8 val);
3315 extern void intel_init_pch_refclk(struct drm_device *dev);
3316 extern void intel_set_rps(struct drm_device *dev, u8 val);
3317 extern void intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3318 bool enable);
3319 extern void intel_detect_pch(struct drm_device *dev);
3320 extern int intel_trans_dp_port_sel(struct drm_crtc *crtc);
3321 extern int intel_enable_rc6(const struct drm_device *dev);
3322
3323 extern bool i915_semaphore_is_enabled(struct drm_device *dev);
3324 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3325 struct drm_file *file);
3326 int i915_get_reset_stats_ioctl(struct drm_device *dev, void *data,
3327 struct drm_file *file);
3328
3329 /* overlay */
3330 extern struct intel_overlay_error_state *intel_overlay_capture_error_state(struct drm_device *dev);
3331 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3332 struct intel_overlay_error_state *error);
3333
3334 extern struct intel_display_error_state *intel_display_capture_error_state(struct drm_device *dev);
3335 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3336 struct drm_device *dev,
3337 struct intel_display_error_state *error);
3338
3339 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3340 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3341
3342 /* intel_sideband.c */
3343 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3344 void vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3345 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3346 u32 vlv_gpio_nc_read(struct drm_i915_private *dev_priv, u32 reg);
3347 void vlv_gpio_nc_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3348 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3349 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3350 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3351 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3352 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3353 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3354 u32 vlv_gps_core_read(struct drm_i915_private *dev_priv, u32 reg);
3355 void vlv_gps_core_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3356 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3357 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3358 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3359 enum intel_sbi_destination destination);
3360 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3361 enum intel_sbi_destination destination);
3362 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3363 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3364
3365 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3366 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3367
3368 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3369 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3370
3371 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3372 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3373 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3374 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3375
3376 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3377 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3378 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3379 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3380
3381 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3382 * will be implemented using 2 32-bit writes in an arbitrary order with
3383 * an arbitrary delay between them. This can cause the hardware to
3384 * act upon the intermediate value, possibly leading to corruption and
3385 * machine death. You have been warned.
3386 */
3387 #define I915_WRITE64(reg, val) dev_priv->uncore.funcs.mmio_writeq(dev_priv, (reg), (val), true)
3388 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3389
3390 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
3391 u32 upper, lower, tmp; \
3392 tmp = I915_READ(upper_reg); \
3393 do { \
3394 upper = tmp; \
3395 lower = I915_READ(lower_reg); \
3396 tmp = I915_READ(upper_reg); \
3397 } while (upper != tmp); \
3398 (u64)upper << 32 | lower; })
3399
3400 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
3401 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
3402
3403 /* These are untraced mmio-accessors that are only valid to be used inside
3404 * criticial sections inside IRQ handlers where forcewake is explicitly
3405 * controlled.
3406 * Think twice, and think again, before using these.
3407 * Note: Should only be used between intel_uncore_forcewake_irqlock() and
3408 * intel_uncore_forcewake_irqunlock().
3409 */
3410 #define I915_READ_FW(reg__) readl(dev_priv->regs + (reg__))
3411 #define I915_WRITE_FW(reg__, val__) writel(val__, dev_priv->regs + (reg__))
3412 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3413
3414 /* "Broadcast RGB" property */
3415 #define INTEL_BROADCAST_RGB_AUTO 0
3416 #define INTEL_BROADCAST_RGB_FULL 1
3417 #define INTEL_BROADCAST_RGB_LIMITED 2
3418
3419 static inline uint32_t i915_vgacntrl_reg(struct drm_device *dev)
3420 {
3421 if (IS_VALLEYVIEW(dev))
3422 return VLV_VGACNTRL;
3423 else if (INTEL_INFO(dev)->gen >= 5)
3424 return CPU_VGACNTRL;
3425 else
3426 return VGACNTRL;
3427 }
3428
3429 static inline void __user *to_user_ptr(u64 address)
3430 {
3431 return (void __user *)(uintptr_t)address;
3432 }
3433
3434 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3435 {
3436 unsigned long j = msecs_to_jiffies(m);
3437
3438 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3439 }
3440
3441 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3442 {
3443 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3444 }
3445
3446 static inline unsigned long
3447 timespec_to_jiffies_timeout(const struct timespec *value)
3448 {
3449 unsigned long j = timespec_to_jiffies(value);
3450
3451 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3452 }
3453
3454 /*
3455 * If you need to wait X milliseconds between events A and B, but event B
3456 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3457 * when event A happened, then just before event B you call this function and
3458 * pass the timestamp as the first argument, and X as the second argument.
3459 */
3460 static inline void
3461 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3462 {
3463 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3464
3465 /*
3466 * Don't re-read the value of "jiffies" every time since it may change
3467 * behind our back and break the math.
3468 */
3469 tmp_jiffies = jiffies;
3470 target_jiffies = timestamp_jiffies +
3471 msecs_to_jiffies_timeout(to_wait_ms);
3472
3473 if (time_after(target_jiffies, tmp_jiffies)) {
3474 remaining_jiffies = target_jiffies - tmp_jiffies;
3475 while (remaining_jiffies)
3476 remaining_jiffies =
3477 schedule_timeout_uninterruptible(remaining_jiffies);
3478 }
3479 }
3480
3481 static inline void i915_trace_irq_get(struct intel_engine_cs *ring,
3482 struct drm_i915_gem_request *req)
3483 {
3484 if (ring->trace_irq_req == NULL && ring->irq_get(ring))
3485 i915_gem_request_assign(&ring->trace_irq_req, req);
3486 }
3487
3488 #endif