]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.h
Merge tag 'drm-misc-next-2017-09-20' of git://anongit.freedesktop.org/git/drm-misc...
[mirror_ubuntu-jammy-kernel.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/reservation.h>
45 #include <linux/shmem_fs.h>
46
47 #include <drm/drmP.h>
48 #include <drm/intel-gtt.h>
49 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
50 #include <drm/drm_gem.h>
51 #include <drm/drm_auth.h>
52 #include <drm/drm_cache.h>
53
54 #include "i915_params.h"
55 #include "i915_reg.h"
56 #include "i915_utils.h"
57
58 #include "intel_uncore.h"
59 #include "intel_bios.h"
60 #include "intel_dpll_mgr.h"
61 #include "intel_uc.h"
62 #include "intel_lrc.h"
63 #include "intel_ringbuffer.h"
64
65 #include "i915_gem.h"
66 #include "i915_gem_context.h"
67 #include "i915_gem_fence_reg.h"
68 #include "i915_gem_object.h"
69 #include "i915_gem_gtt.h"
70 #include "i915_gem_render_state.h"
71 #include "i915_gem_request.h"
72 #include "i915_gem_timeline.h"
73
74 #include "i915_vma.h"
75
76 #include "intel_gvt.h"
77
78 /* General customization:
79 */
80
81 #define DRIVER_NAME "i915"
82 #define DRIVER_DESC "Intel Graphics"
83 #define DRIVER_DATE "20170818"
84 #define DRIVER_TIMESTAMP 1503088845
85
86 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
87 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
88 * which may not necessarily be a user visible problem. This will either
89 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
90 * enable distros and users to tailor their preferred amount of i915 abrt
91 * spam.
92 */
93 #define I915_STATE_WARN(condition, format...) ({ \
94 int __ret_warn_on = !!(condition); \
95 if (unlikely(__ret_warn_on)) \
96 if (!WARN(i915.verbose_state_checks, format)) \
97 DRM_ERROR(format); \
98 unlikely(__ret_warn_on); \
99 })
100
101 #define I915_STATE_WARN_ON(x) \
102 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
103
104 bool __i915_inject_load_failure(const char *func, int line);
105 #define i915_inject_load_failure() \
106 __i915_inject_load_failure(__func__, __LINE__)
107
108 typedef struct {
109 uint32_t val;
110 } uint_fixed_16_16_t;
111
112 #define FP_16_16_MAX ({ \
113 uint_fixed_16_16_t fp; \
114 fp.val = UINT_MAX; \
115 fp; \
116 })
117
118 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
119 {
120 if (val.val == 0)
121 return true;
122 return false;
123 }
124
125 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val)
126 {
127 uint_fixed_16_16_t fp;
128
129 WARN_ON(val >> 16);
130
131 fp.val = val << 16;
132 return fp;
133 }
134
135 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp)
136 {
137 return DIV_ROUND_UP(fp.val, 1 << 16);
138 }
139
140 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp)
141 {
142 return fp.val >> 16;
143 }
144
145 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1,
146 uint_fixed_16_16_t min2)
147 {
148 uint_fixed_16_16_t min;
149
150 min.val = min(min1.val, min2.val);
151 return min;
152 }
153
154 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1,
155 uint_fixed_16_16_t max2)
156 {
157 uint_fixed_16_16_t max;
158
159 max.val = max(max1.val, max2.val);
160 return max;
161 }
162
163 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val)
164 {
165 uint_fixed_16_16_t fp;
166 WARN_ON(val >> 32);
167 fp.val = clamp_t(uint32_t, val, 0, ~0);
168 return fp;
169 }
170
171 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
172 uint_fixed_16_16_t d)
173 {
174 return DIV_ROUND_UP(val.val, d.val);
175 }
176
177 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
178 uint_fixed_16_16_t mul)
179 {
180 uint64_t intermediate_val;
181
182 intermediate_val = (uint64_t) val * mul.val;
183 intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
184 WARN_ON(intermediate_val >> 32);
185 return clamp_t(uint32_t, intermediate_val, 0, ~0);
186 }
187
188 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
189 uint_fixed_16_16_t mul)
190 {
191 uint64_t intermediate_val;
192
193 intermediate_val = (uint64_t) val.val * mul.val;
194 intermediate_val = intermediate_val >> 16;
195 return clamp_u64_to_fixed16(intermediate_val);
196 }
197
198 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d)
199 {
200 uint64_t interm_val;
201
202 interm_val = (uint64_t)val << 16;
203 interm_val = DIV_ROUND_UP_ULL(interm_val, d);
204 return clamp_u64_to_fixed16(interm_val);
205 }
206
207 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
208 uint_fixed_16_16_t d)
209 {
210 uint64_t interm_val;
211
212 interm_val = (uint64_t)val << 16;
213 interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
214 WARN_ON(interm_val >> 32);
215 return clamp_t(uint32_t, interm_val, 0, ~0);
216 }
217
218 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val,
219 uint_fixed_16_16_t mul)
220 {
221 uint64_t intermediate_val;
222
223 intermediate_val = (uint64_t) val * mul.val;
224 return clamp_u64_to_fixed16(intermediate_val);
225 }
226
227 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1,
228 uint_fixed_16_16_t add2)
229 {
230 uint64_t interm_sum;
231
232 interm_sum = (uint64_t) add1.val + add2.val;
233 return clamp_u64_to_fixed16(interm_sum);
234 }
235
236 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1,
237 uint32_t add2)
238 {
239 uint64_t interm_sum;
240 uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2);
241
242 interm_sum = (uint64_t) add1.val + interm_add2.val;
243 return clamp_u64_to_fixed16(interm_sum);
244 }
245
246 static inline const char *yesno(bool v)
247 {
248 return v ? "yes" : "no";
249 }
250
251 static inline const char *onoff(bool v)
252 {
253 return v ? "on" : "off";
254 }
255
256 static inline const char *enableddisabled(bool v)
257 {
258 return v ? "enabled" : "disabled";
259 }
260
261 enum pipe {
262 INVALID_PIPE = -1,
263 PIPE_A = 0,
264 PIPE_B,
265 PIPE_C,
266 _PIPE_EDP,
267 I915_MAX_PIPES = _PIPE_EDP
268 };
269 #define pipe_name(p) ((p) + 'A')
270
271 enum transcoder {
272 TRANSCODER_A = 0,
273 TRANSCODER_B,
274 TRANSCODER_C,
275 TRANSCODER_EDP,
276 TRANSCODER_DSI_A,
277 TRANSCODER_DSI_C,
278 I915_MAX_TRANSCODERS
279 };
280
281 static inline const char *transcoder_name(enum transcoder transcoder)
282 {
283 switch (transcoder) {
284 case TRANSCODER_A:
285 return "A";
286 case TRANSCODER_B:
287 return "B";
288 case TRANSCODER_C:
289 return "C";
290 case TRANSCODER_EDP:
291 return "EDP";
292 case TRANSCODER_DSI_A:
293 return "DSI A";
294 case TRANSCODER_DSI_C:
295 return "DSI C";
296 default:
297 return "<invalid>";
298 }
299 }
300
301 static inline bool transcoder_is_dsi(enum transcoder transcoder)
302 {
303 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
304 }
305
306 /*
307 * Global legacy plane identifier. Valid only for primary/sprite
308 * planes on pre-g4x, and only for primary planes on g4x+.
309 */
310 enum plane {
311 PLANE_A,
312 PLANE_B,
313 PLANE_C,
314 };
315 #define plane_name(p) ((p) + 'A')
316
317 #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A')
318
319 /*
320 * Per-pipe plane identifier.
321 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
322 * number of planes per CRTC. Not all platforms really have this many planes,
323 * which means some arrays of size I915_MAX_PLANES may have unused entries
324 * between the topmost sprite plane and the cursor plane.
325 *
326 * This is expected to be passed to various register macros
327 * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care.
328 */
329 enum plane_id {
330 PLANE_PRIMARY,
331 PLANE_SPRITE0,
332 PLANE_SPRITE1,
333 PLANE_SPRITE2,
334 PLANE_CURSOR,
335 I915_MAX_PLANES,
336 };
337
338 #define for_each_plane_id_on_crtc(__crtc, __p) \
339 for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \
340 for_each_if ((__crtc)->plane_ids_mask & BIT(__p))
341
342 enum port {
343 PORT_NONE = -1,
344 PORT_A = 0,
345 PORT_B,
346 PORT_C,
347 PORT_D,
348 PORT_E,
349 I915_MAX_PORTS
350 };
351 #define port_name(p) ((p) + 'A')
352
353 #define I915_NUM_PHYS_VLV 2
354
355 enum dpio_channel {
356 DPIO_CH0,
357 DPIO_CH1
358 };
359
360 enum dpio_phy {
361 DPIO_PHY0,
362 DPIO_PHY1,
363 DPIO_PHY2,
364 };
365
366 enum intel_display_power_domain {
367 POWER_DOMAIN_PIPE_A,
368 POWER_DOMAIN_PIPE_B,
369 POWER_DOMAIN_PIPE_C,
370 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
371 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
372 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
373 POWER_DOMAIN_TRANSCODER_A,
374 POWER_DOMAIN_TRANSCODER_B,
375 POWER_DOMAIN_TRANSCODER_C,
376 POWER_DOMAIN_TRANSCODER_EDP,
377 POWER_DOMAIN_TRANSCODER_DSI_A,
378 POWER_DOMAIN_TRANSCODER_DSI_C,
379 POWER_DOMAIN_PORT_DDI_A_LANES,
380 POWER_DOMAIN_PORT_DDI_B_LANES,
381 POWER_DOMAIN_PORT_DDI_C_LANES,
382 POWER_DOMAIN_PORT_DDI_D_LANES,
383 POWER_DOMAIN_PORT_DDI_E_LANES,
384 POWER_DOMAIN_PORT_DDI_A_IO,
385 POWER_DOMAIN_PORT_DDI_B_IO,
386 POWER_DOMAIN_PORT_DDI_C_IO,
387 POWER_DOMAIN_PORT_DDI_D_IO,
388 POWER_DOMAIN_PORT_DDI_E_IO,
389 POWER_DOMAIN_PORT_DSI,
390 POWER_DOMAIN_PORT_CRT,
391 POWER_DOMAIN_PORT_OTHER,
392 POWER_DOMAIN_VGA,
393 POWER_DOMAIN_AUDIO,
394 POWER_DOMAIN_PLLS,
395 POWER_DOMAIN_AUX_A,
396 POWER_DOMAIN_AUX_B,
397 POWER_DOMAIN_AUX_C,
398 POWER_DOMAIN_AUX_D,
399 POWER_DOMAIN_GMBUS,
400 POWER_DOMAIN_MODESET,
401 POWER_DOMAIN_INIT,
402
403 POWER_DOMAIN_NUM,
404 };
405
406 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
407 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
408 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
409 #define POWER_DOMAIN_TRANSCODER(tran) \
410 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
411 (tran) + POWER_DOMAIN_TRANSCODER_A)
412
413 enum hpd_pin {
414 HPD_NONE = 0,
415 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
416 HPD_CRT,
417 HPD_SDVO_B,
418 HPD_SDVO_C,
419 HPD_PORT_A,
420 HPD_PORT_B,
421 HPD_PORT_C,
422 HPD_PORT_D,
423 HPD_PORT_E,
424 HPD_NUM_PINS
425 };
426
427 #define for_each_hpd_pin(__pin) \
428 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
429
430 #define HPD_STORM_DEFAULT_THRESHOLD 5
431
432 struct i915_hotplug {
433 struct work_struct hotplug_work;
434
435 struct {
436 unsigned long last_jiffies;
437 int count;
438 enum {
439 HPD_ENABLED = 0,
440 HPD_DISABLED = 1,
441 HPD_MARK_DISABLED = 2
442 } state;
443 } stats[HPD_NUM_PINS];
444 u32 event_bits;
445 struct delayed_work reenable_work;
446
447 struct intel_digital_port *irq_port[I915_MAX_PORTS];
448 u32 long_port_mask;
449 u32 short_port_mask;
450 struct work_struct dig_port_work;
451
452 struct work_struct poll_init_work;
453 bool poll_enabled;
454
455 unsigned int hpd_storm_threshold;
456
457 /*
458 * if we get a HPD irq from DP and a HPD irq from non-DP
459 * the non-DP HPD could block the workqueue on a mode config
460 * mutex getting, that userspace may have taken. However
461 * userspace is waiting on the DP workqueue to run which is
462 * blocked behind the non-DP one.
463 */
464 struct workqueue_struct *dp_wq;
465 };
466
467 #define I915_GEM_GPU_DOMAINS \
468 (I915_GEM_DOMAIN_RENDER | \
469 I915_GEM_DOMAIN_SAMPLER | \
470 I915_GEM_DOMAIN_COMMAND | \
471 I915_GEM_DOMAIN_INSTRUCTION | \
472 I915_GEM_DOMAIN_VERTEX)
473
474 #define for_each_pipe(__dev_priv, __p) \
475 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
476 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
477 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
478 for_each_if ((__mask) & (1 << (__p)))
479 #define for_each_universal_plane(__dev_priv, __pipe, __p) \
480 for ((__p) = 0; \
481 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
482 (__p)++)
483 #define for_each_sprite(__dev_priv, __p, __s) \
484 for ((__s) = 0; \
485 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
486 (__s)++)
487
488 #define for_each_port_masked(__port, __ports_mask) \
489 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
490 for_each_if ((__ports_mask) & (1 << (__port)))
491
492 #define for_each_crtc(dev, crtc) \
493 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
494
495 #define for_each_intel_plane(dev, intel_plane) \
496 list_for_each_entry(intel_plane, \
497 &(dev)->mode_config.plane_list, \
498 base.head)
499
500 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \
501 list_for_each_entry(intel_plane, \
502 &(dev)->mode_config.plane_list, \
503 base.head) \
504 for_each_if ((plane_mask) & \
505 (1 << drm_plane_index(&intel_plane->base)))
506
507 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
508 list_for_each_entry(intel_plane, \
509 &(dev)->mode_config.plane_list, \
510 base.head) \
511 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
512
513 #define for_each_intel_crtc(dev, intel_crtc) \
514 list_for_each_entry(intel_crtc, \
515 &(dev)->mode_config.crtc_list, \
516 base.head)
517
518 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \
519 list_for_each_entry(intel_crtc, \
520 &(dev)->mode_config.crtc_list, \
521 base.head) \
522 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
523
524 #define for_each_intel_encoder(dev, intel_encoder) \
525 list_for_each_entry(intel_encoder, \
526 &(dev)->mode_config.encoder_list, \
527 base.head)
528
529 #define for_each_intel_connector_iter(intel_connector, iter) \
530 while ((intel_connector = to_intel_connector(drm_connector_list_iter_next(iter))))
531
532 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
533 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
534 for_each_if ((intel_encoder)->base.crtc == (__crtc))
535
536 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
537 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
538 for_each_if ((intel_connector)->base.encoder == (__encoder))
539
540 #define for_each_power_domain(domain, mask) \
541 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
542 for_each_if (BIT_ULL(domain) & (mask))
543
544 #define for_each_power_well(__dev_priv, __power_well) \
545 for ((__power_well) = (__dev_priv)->power_domains.power_wells; \
546 (__power_well) - (__dev_priv)->power_domains.power_wells < \
547 (__dev_priv)->power_domains.power_well_count; \
548 (__power_well)++)
549
550 #define for_each_power_well_rev(__dev_priv, __power_well) \
551 for ((__power_well) = (__dev_priv)->power_domains.power_wells + \
552 (__dev_priv)->power_domains.power_well_count - 1; \
553 (__power_well) - (__dev_priv)->power_domains.power_wells >= 0; \
554 (__power_well)--)
555
556 #define for_each_power_domain_well(__dev_priv, __power_well, __domain_mask) \
557 for_each_power_well(__dev_priv, __power_well) \
558 for_each_if ((__power_well)->domains & (__domain_mask))
559
560 #define for_each_power_domain_well_rev(__dev_priv, __power_well, __domain_mask) \
561 for_each_power_well_rev(__dev_priv, __power_well) \
562 for_each_if ((__power_well)->domains & (__domain_mask))
563
564 #define for_each_intel_plane_in_state(__state, plane, plane_state, __i) \
565 for ((__i) = 0; \
566 (__i) < (__state)->base.dev->mode_config.num_total_plane && \
567 ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
568 (plane_state) = to_intel_plane_state((__state)->base.planes[__i].state), 1); \
569 (__i)++) \
570 for_each_if (plane_state)
571
572 struct drm_i915_private;
573 struct i915_mm_struct;
574 struct i915_mmu_object;
575
576 struct drm_i915_file_private {
577 struct drm_i915_private *dev_priv;
578 struct drm_file *file;
579
580 struct {
581 spinlock_t lock;
582 struct list_head request_list;
583 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
584 * chosen to prevent the CPU getting more than a frame ahead of the GPU
585 * (when using lax throttling for the frontbuffer). We also use it to
586 * offer free GPU waitboosts for severely congested workloads.
587 */
588 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
589 } mm;
590 struct idr context_idr;
591
592 struct intel_rps_client {
593 atomic_t boosts;
594 } rps;
595
596 unsigned int bsd_engine;
597
598 /* Client can have a maximum of 3 contexts banned before
599 * it is denied of creating new contexts. As one context
600 * ban needs 4 consecutive hangs, and more if there is
601 * progress in between, this is a last resort stop gap measure
602 * to limit the badly behaving clients access to gpu.
603 */
604 #define I915_MAX_CLIENT_CONTEXT_BANS 3
605 atomic_t context_bans;
606 };
607
608 /* Used by dp and fdi links */
609 struct intel_link_m_n {
610 uint32_t tu;
611 uint32_t gmch_m;
612 uint32_t gmch_n;
613 uint32_t link_m;
614 uint32_t link_n;
615 };
616
617 void intel_link_compute_m_n(int bpp, int nlanes,
618 int pixel_clock, int link_clock,
619 struct intel_link_m_n *m_n,
620 bool reduce_m_n);
621
622 /* Interface history:
623 *
624 * 1.1: Original.
625 * 1.2: Add Power Management
626 * 1.3: Add vblank support
627 * 1.4: Fix cmdbuffer path, add heap destroy
628 * 1.5: Add vblank pipe configuration
629 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
630 * - Support vertical blank on secondary display pipe
631 */
632 #define DRIVER_MAJOR 1
633 #define DRIVER_MINOR 6
634 #define DRIVER_PATCHLEVEL 0
635
636 struct opregion_header;
637 struct opregion_acpi;
638 struct opregion_swsci;
639 struct opregion_asle;
640
641 struct intel_opregion {
642 struct opregion_header *header;
643 struct opregion_acpi *acpi;
644 struct opregion_swsci *swsci;
645 u32 swsci_gbda_sub_functions;
646 u32 swsci_sbcb_sub_functions;
647 struct opregion_asle *asle;
648 void *rvda;
649 void *vbt_firmware;
650 const void *vbt;
651 u32 vbt_size;
652 u32 *lid_state;
653 struct work_struct asle_work;
654 };
655 #define OPREGION_SIZE (8*1024)
656
657 struct intel_overlay;
658 struct intel_overlay_error_state;
659
660 struct sdvo_device_mapping {
661 u8 initialized;
662 u8 dvo_port;
663 u8 slave_addr;
664 u8 dvo_wiring;
665 u8 i2c_pin;
666 u8 ddc_pin;
667 };
668
669 struct intel_connector;
670 struct intel_encoder;
671 struct intel_atomic_state;
672 struct intel_crtc_state;
673 struct intel_initial_plane_config;
674 struct intel_crtc;
675 struct intel_limit;
676 struct dpll;
677 struct intel_cdclk_state;
678
679 struct drm_i915_display_funcs {
680 void (*get_cdclk)(struct drm_i915_private *dev_priv,
681 struct intel_cdclk_state *cdclk_state);
682 void (*set_cdclk)(struct drm_i915_private *dev_priv,
683 const struct intel_cdclk_state *cdclk_state);
684 int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane);
685 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
686 int (*compute_intermediate_wm)(struct drm_device *dev,
687 struct intel_crtc *intel_crtc,
688 struct intel_crtc_state *newstate);
689 void (*initial_watermarks)(struct intel_atomic_state *state,
690 struct intel_crtc_state *cstate);
691 void (*atomic_update_watermarks)(struct intel_atomic_state *state,
692 struct intel_crtc_state *cstate);
693 void (*optimize_watermarks)(struct intel_atomic_state *state,
694 struct intel_crtc_state *cstate);
695 int (*compute_global_watermarks)(struct drm_atomic_state *state);
696 void (*update_wm)(struct intel_crtc *crtc);
697 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
698 /* Returns the active state of the crtc, and if the crtc is active,
699 * fills out the pipe-config with the hw state. */
700 bool (*get_pipe_config)(struct intel_crtc *,
701 struct intel_crtc_state *);
702 void (*get_initial_plane_config)(struct intel_crtc *,
703 struct intel_initial_plane_config *);
704 int (*crtc_compute_clock)(struct intel_crtc *crtc,
705 struct intel_crtc_state *crtc_state);
706 void (*crtc_enable)(struct intel_crtc_state *pipe_config,
707 struct drm_atomic_state *old_state);
708 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
709 struct drm_atomic_state *old_state);
710 void (*update_crtcs)(struct drm_atomic_state *state);
711 void (*audio_codec_enable)(struct drm_connector *connector,
712 struct intel_encoder *encoder,
713 const struct drm_display_mode *adjusted_mode);
714 void (*audio_codec_disable)(struct intel_encoder *encoder);
715 void (*fdi_link_train)(struct intel_crtc *crtc,
716 const struct intel_crtc_state *crtc_state);
717 void (*init_clock_gating)(struct drm_i915_private *dev_priv);
718 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
719 /* clock updates for mode set */
720 /* cursor updates */
721 /* render clock increase/decrease */
722 /* display clock increase/decrease */
723 /* pll clock increase/decrease */
724
725 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
726 void (*load_luts)(struct drm_crtc_state *crtc_state);
727 };
728
729 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
730 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
731 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
732
733 struct intel_csr {
734 struct work_struct work;
735 const char *fw_path;
736 uint32_t *dmc_payload;
737 uint32_t dmc_fw_size;
738 uint32_t version;
739 uint32_t mmio_count;
740 i915_reg_t mmioaddr[8];
741 uint32_t mmiodata[8];
742 uint32_t dc_state;
743 uint32_t allowed_dc_mask;
744 };
745
746 #define DEV_INFO_FOR_EACH_FLAG(func) \
747 func(is_mobile); \
748 func(is_lp); \
749 func(is_alpha_support); \
750 /* Keep has_* in alphabetical order */ \
751 func(has_64bit_reloc); \
752 func(has_aliasing_ppgtt); \
753 func(has_csr); \
754 func(has_ddi); \
755 func(has_dp_mst); \
756 func(has_reset_engine); \
757 func(has_fbc); \
758 func(has_fpga_dbg); \
759 func(has_full_ppgtt); \
760 func(has_full_48bit_ppgtt); \
761 func(has_gmbus_irq); \
762 func(has_gmch_display); \
763 func(has_guc); \
764 func(has_guc_ct); \
765 func(has_hotplug); \
766 func(has_l3_dpf); \
767 func(has_llc); \
768 func(has_logical_ring_contexts); \
769 func(has_overlay); \
770 func(has_pipe_cxsr); \
771 func(has_pooled_eu); \
772 func(has_psr); \
773 func(has_rc6); \
774 func(has_rc6p); \
775 func(has_resource_streamer); \
776 func(has_runtime_pm); \
777 func(has_snoop); \
778 func(unfenced_needs_alignment); \
779 func(cursor_needs_physical); \
780 func(hws_needs_physical); \
781 func(overlay_needs_physical); \
782 func(supports_tv);
783
784 struct sseu_dev_info {
785 u8 slice_mask;
786 u8 subslice_mask;
787 u8 eu_total;
788 u8 eu_per_subslice;
789 u8 min_eu_in_pool;
790 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
791 u8 subslice_7eu[3];
792 u8 has_slice_pg:1;
793 u8 has_subslice_pg:1;
794 u8 has_eu_pg:1;
795 };
796
797 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu)
798 {
799 return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask);
800 }
801
802 /* Keep in gen based order, and chronological order within a gen */
803 enum intel_platform {
804 INTEL_PLATFORM_UNINITIALIZED = 0,
805 INTEL_I830,
806 INTEL_I845G,
807 INTEL_I85X,
808 INTEL_I865G,
809 INTEL_I915G,
810 INTEL_I915GM,
811 INTEL_I945G,
812 INTEL_I945GM,
813 INTEL_G33,
814 INTEL_PINEVIEW,
815 INTEL_I965G,
816 INTEL_I965GM,
817 INTEL_G45,
818 INTEL_GM45,
819 INTEL_IRONLAKE,
820 INTEL_SANDYBRIDGE,
821 INTEL_IVYBRIDGE,
822 INTEL_VALLEYVIEW,
823 INTEL_HASWELL,
824 INTEL_BROADWELL,
825 INTEL_CHERRYVIEW,
826 INTEL_SKYLAKE,
827 INTEL_BROXTON,
828 INTEL_KABYLAKE,
829 INTEL_GEMINILAKE,
830 INTEL_COFFEELAKE,
831 INTEL_CANNONLAKE,
832 INTEL_MAX_PLATFORMS
833 };
834
835 struct intel_device_info {
836 u32 display_mmio_offset;
837 u16 device_id;
838 u8 num_pipes;
839 u8 num_sprites[I915_MAX_PIPES];
840 u8 num_scalers[I915_MAX_PIPES];
841 u8 gen;
842 u16 gen_mask;
843 enum intel_platform platform;
844 u8 ring_mask; /* Rings supported by the HW */
845 u8 num_rings;
846 #define DEFINE_FLAG(name) u8 name:1
847 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG);
848 #undef DEFINE_FLAG
849 u16 ddb_size; /* in blocks */
850 /* Register offsets for the various display pipes and transcoders */
851 int pipe_offsets[I915_MAX_TRANSCODERS];
852 int trans_offsets[I915_MAX_TRANSCODERS];
853 int palette_offsets[I915_MAX_PIPES];
854 int cursor_offsets[I915_MAX_PIPES];
855
856 /* Slice/subslice/EU info */
857 struct sseu_dev_info sseu;
858
859 struct color_luts {
860 u16 degamma_lut_size;
861 u16 gamma_lut_size;
862 } color;
863 };
864
865 struct intel_display_error_state;
866
867 struct i915_gpu_state {
868 struct kref ref;
869 struct timeval time;
870 struct timeval boottime;
871 struct timeval uptime;
872
873 struct drm_i915_private *i915;
874
875 char error_msg[128];
876 bool simulated;
877 bool awake;
878 bool wakelock;
879 bool suspended;
880 int iommu;
881 u32 reset_count;
882 u32 suspend_count;
883 struct intel_device_info device_info;
884 struct i915_params params;
885
886 /* Generic register state */
887 u32 eir;
888 u32 pgtbl_er;
889 u32 ier;
890 u32 gtier[4], ngtier;
891 u32 ccid;
892 u32 derrmr;
893 u32 forcewake;
894 u32 error; /* gen6+ */
895 u32 err_int; /* gen7 */
896 u32 fault_data0; /* gen8, gen9 */
897 u32 fault_data1; /* gen8, gen9 */
898 u32 done_reg;
899 u32 gac_eco;
900 u32 gam_ecochk;
901 u32 gab_ctl;
902 u32 gfx_mode;
903
904 u32 nfence;
905 u64 fence[I915_MAX_NUM_FENCES];
906 struct intel_overlay_error_state *overlay;
907 struct intel_display_error_state *display;
908 struct drm_i915_error_object *semaphore;
909 struct drm_i915_error_object *guc_log;
910
911 struct drm_i915_error_engine {
912 int engine_id;
913 /* Software tracked state */
914 bool waiting;
915 int num_waiters;
916 unsigned long hangcheck_timestamp;
917 bool hangcheck_stalled;
918 enum intel_engine_hangcheck_action hangcheck_action;
919 struct i915_address_space *vm;
920 int num_requests;
921 u32 reset_count;
922
923 /* position of active request inside the ring */
924 u32 rq_head, rq_post, rq_tail;
925
926 /* our own tracking of ring head and tail */
927 u32 cpu_ring_head;
928 u32 cpu_ring_tail;
929
930 u32 last_seqno;
931
932 /* Register state */
933 u32 start;
934 u32 tail;
935 u32 head;
936 u32 ctl;
937 u32 mode;
938 u32 hws;
939 u32 ipeir;
940 u32 ipehr;
941 u32 bbstate;
942 u32 instpm;
943 u32 instps;
944 u32 seqno;
945 u64 bbaddr;
946 u64 acthd;
947 u32 fault_reg;
948 u64 faddr;
949 u32 rc_psmi; /* sleep state */
950 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
951 struct intel_instdone instdone;
952
953 struct drm_i915_error_context {
954 char comm[TASK_COMM_LEN];
955 pid_t pid;
956 u32 handle;
957 u32 hw_id;
958 int ban_score;
959 int active;
960 int guilty;
961 } context;
962
963 struct drm_i915_error_object {
964 u64 gtt_offset;
965 u64 gtt_size;
966 int page_count;
967 int unused;
968 u32 *pages[0];
969 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
970
971 struct drm_i915_error_object **user_bo;
972 long user_bo_count;
973
974 struct drm_i915_error_object *wa_ctx;
975
976 struct drm_i915_error_request {
977 long jiffies;
978 pid_t pid;
979 u32 context;
980 int ban_score;
981 u32 seqno;
982 u32 head;
983 u32 tail;
984 } *requests, execlist[2];
985
986 struct drm_i915_error_waiter {
987 char comm[TASK_COMM_LEN];
988 pid_t pid;
989 u32 seqno;
990 } *waiters;
991
992 struct {
993 u32 gfx_mode;
994 union {
995 u64 pdp[4];
996 u32 pp_dir_base;
997 };
998 } vm_info;
999 } engine[I915_NUM_ENGINES];
1000
1001 struct drm_i915_error_buffer {
1002 u32 size;
1003 u32 name;
1004 u32 rseqno[I915_NUM_ENGINES], wseqno;
1005 u64 gtt_offset;
1006 u32 read_domains;
1007 u32 write_domain;
1008 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
1009 u32 tiling:2;
1010 u32 dirty:1;
1011 u32 purgeable:1;
1012 u32 userptr:1;
1013 s32 engine:4;
1014 u32 cache_level:3;
1015 } *active_bo[I915_NUM_ENGINES], *pinned_bo;
1016 u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
1017 struct i915_address_space *active_vm[I915_NUM_ENGINES];
1018 };
1019
1020 enum i915_cache_level {
1021 I915_CACHE_NONE = 0,
1022 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
1023 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
1024 caches, eg sampler/render caches, and the
1025 large Last-Level-Cache. LLC is coherent with
1026 the CPU, but L3 is only visible to the GPU. */
1027 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
1028 };
1029
1030 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
1031
1032 enum fb_op_origin {
1033 ORIGIN_GTT,
1034 ORIGIN_CPU,
1035 ORIGIN_CS,
1036 ORIGIN_FLIP,
1037 ORIGIN_DIRTYFB,
1038 };
1039
1040 struct intel_fbc {
1041 /* This is always the inner lock when overlapping with struct_mutex and
1042 * it's the outer lock when overlapping with stolen_lock. */
1043 struct mutex lock;
1044 unsigned threshold;
1045 unsigned int possible_framebuffer_bits;
1046 unsigned int busy_bits;
1047 unsigned int visible_pipes_mask;
1048 struct intel_crtc *crtc;
1049
1050 struct drm_mm_node compressed_fb;
1051 struct drm_mm_node *compressed_llb;
1052
1053 bool false_color;
1054
1055 bool enabled;
1056 bool active;
1057
1058 bool underrun_detected;
1059 struct work_struct underrun_work;
1060
1061 /*
1062 * Due to the atomic rules we can't access some structures without the
1063 * appropriate locking, so we cache information here in order to avoid
1064 * these problems.
1065 */
1066 struct intel_fbc_state_cache {
1067 struct i915_vma *vma;
1068
1069 struct {
1070 unsigned int mode_flags;
1071 uint32_t hsw_bdw_pixel_rate;
1072 } crtc;
1073
1074 struct {
1075 unsigned int rotation;
1076 int src_w;
1077 int src_h;
1078 bool visible;
1079 } plane;
1080
1081 struct {
1082 const struct drm_format_info *format;
1083 unsigned int stride;
1084 } fb;
1085 } state_cache;
1086
1087 /*
1088 * This structure contains everything that's relevant to program the
1089 * hardware registers. When we want to figure out if we need to disable
1090 * and re-enable FBC for a new configuration we just check if there's
1091 * something different in the struct. The genx_fbc_activate functions
1092 * are supposed to read from it in order to program the registers.
1093 */
1094 struct intel_fbc_reg_params {
1095 struct i915_vma *vma;
1096
1097 struct {
1098 enum pipe pipe;
1099 enum plane plane;
1100 unsigned int fence_y_offset;
1101 } crtc;
1102
1103 struct {
1104 const struct drm_format_info *format;
1105 unsigned int stride;
1106 } fb;
1107
1108 int cfb_size;
1109 } params;
1110
1111 struct intel_fbc_work {
1112 bool scheduled;
1113 u32 scheduled_vblank;
1114 struct work_struct work;
1115 } work;
1116
1117 const char *no_fbc_reason;
1118 };
1119
1120 /*
1121 * HIGH_RR is the highest eDP panel refresh rate read from EDID
1122 * LOW_RR is the lowest eDP panel refresh rate found from EDID
1123 * parsing for same resolution.
1124 */
1125 enum drrs_refresh_rate_type {
1126 DRRS_HIGH_RR,
1127 DRRS_LOW_RR,
1128 DRRS_MAX_RR, /* RR count */
1129 };
1130
1131 enum drrs_support_type {
1132 DRRS_NOT_SUPPORTED = 0,
1133 STATIC_DRRS_SUPPORT = 1,
1134 SEAMLESS_DRRS_SUPPORT = 2
1135 };
1136
1137 struct intel_dp;
1138 struct i915_drrs {
1139 struct mutex mutex;
1140 struct delayed_work work;
1141 struct intel_dp *dp;
1142 unsigned busy_frontbuffer_bits;
1143 enum drrs_refresh_rate_type refresh_rate_type;
1144 enum drrs_support_type type;
1145 };
1146
1147 struct i915_psr {
1148 struct mutex lock;
1149 bool sink_support;
1150 bool source_ok;
1151 struct intel_dp *enabled;
1152 bool active;
1153 struct delayed_work work;
1154 unsigned busy_frontbuffer_bits;
1155 bool psr2_support;
1156 bool aux_frame_sync;
1157 bool link_standby;
1158 bool y_cord_support;
1159 bool colorimetry_support;
1160 bool alpm;
1161 };
1162
1163 enum intel_pch {
1164 PCH_NONE = 0, /* No PCH present */
1165 PCH_IBX, /* Ibexpeak PCH */
1166 PCH_CPT, /* Cougarpoint/Pantherpoint PCH */
1167 PCH_LPT, /* Lynxpoint/Wildcatpoint PCH */
1168 PCH_SPT, /* Sunrisepoint PCH */
1169 PCH_KBP, /* Kaby Lake PCH */
1170 PCH_CNP, /* Cannon Lake PCH */
1171 PCH_NOP,
1172 };
1173
1174 enum intel_sbi_destination {
1175 SBI_ICLK,
1176 SBI_MPHY,
1177 };
1178
1179 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1180 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1181 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1182 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1183 #define QUIRK_INCREASE_T12_DELAY (1<<6)
1184
1185 struct intel_fbdev;
1186 struct intel_fbc_work;
1187
1188 struct intel_gmbus {
1189 struct i2c_adapter adapter;
1190 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1191 u32 force_bit;
1192 u32 reg0;
1193 i915_reg_t gpio_reg;
1194 struct i2c_algo_bit_data bit_algo;
1195 struct drm_i915_private *dev_priv;
1196 };
1197
1198 struct i915_suspend_saved_registers {
1199 u32 saveDSPARB;
1200 u32 saveFBC_CONTROL;
1201 u32 saveCACHE_MODE_0;
1202 u32 saveMI_ARB_STATE;
1203 u32 saveSWF0[16];
1204 u32 saveSWF1[16];
1205 u32 saveSWF3[3];
1206 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1207 u32 savePCH_PORT_HOTPLUG;
1208 u16 saveGCDGMBUS;
1209 };
1210
1211 struct vlv_s0ix_state {
1212 /* GAM */
1213 u32 wr_watermark;
1214 u32 gfx_prio_ctrl;
1215 u32 arb_mode;
1216 u32 gfx_pend_tlb0;
1217 u32 gfx_pend_tlb1;
1218 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1219 u32 media_max_req_count;
1220 u32 gfx_max_req_count;
1221 u32 render_hwsp;
1222 u32 ecochk;
1223 u32 bsd_hwsp;
1224 u32 blt_hwsp;
1225 u32 tlb_rd_addr;
1226
1227 /* MBC */
1228 u32 g3dctl;
1229 u32 gsckgctl;
1230 u32 mbctl;
1231
1232 /* GCP */
1233 u32 ucgctl1;
1234 u32 ucgctl3;
1235 u32 rcgctl1;
1236 u32 rcgctl2;
1237 u32 rstctl;
1238 u32 misccpctl;
1239
1240 /* GPM */
1241 u32 gfxpause;
1242 u32 rpdeuhwtc;
1243 u32 rpdeuc;
1244 u32 ecobus;
1245 u32 pwrdwnupctl;
1246 u32 rp_down_timeout;
1247 u32 rp_deucsw;
1248 u32 rcubmabdtmr;
1249 u32 rcedata;
1250 u32 spare2gh;
1251
1252 /* Display 1 CZ domain */
1253 u32 gt_imr;
1254 u32 gt_ier;
1255 u32 pm_imr;
1256 u32 pm_ier;
1257 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1258
1259 /* GT SA CZ domain */
1260 u32 tilectl;
1261 u32 gt_fifoctl;
1262 u32 gtlc_wake_ctrl;
1263 u32 gtlc_survive;
1264 u32 pmwgicz;
1265
1266 /* Display 2 CZ domain */
1267 u32 gu_ctl0;
1268 u32 gu_ctl1;
1269 u32 pcbr;
1270 u32 clock_gate_dis2;
1271 };
1272
1273 struct intel_rps_ei {
1274 ktime_t ktime;
1275 u32 render_c0;
1276 u32 media_c0;
1277 };
1278
1279 struct intel_gen6_power_mgmt {
1280 /*
1281 * work, interrupts_enabled and pm_iir are protected by
1282 * dev_priv->irq_lock
1283 */
1284 struct work_struct work;
1285 bool interrupts_enabled;
1286 u32 pm_iir;
1287
1288 /* PM interrupt bits that should never be masked */
1289 u32 pm_intrmsk_mbz;
1290
1291 /* Frequencies are stored in potentially platform dependent multiples.
1292 * In other words, *_freq needs to be multiplied by X to be interesting.
1293 * Soft limits are those which are used for the dynamic reclocking done
1294 * by the driver (raise frequencies under heavy loads, and lower for
1295 * lighter loads). Hard limits are those imposed by the hardware.
1296 *
1297 * A distinction is made for overclocking, which is never enabled by
1298 * default, and is considered to be above the hard limit if it's
1299 * possible at all.
1300 */
1301 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1302 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1303 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1304 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1305 u8 min_freq; /* AKA RPn. Minimum frequency */
1306 u8 boost_freq; /* Frequency to request when wait boosting */
1307 u8 idle_freq; /* Frequency to request when we are idle */
1308 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1309 u8 rp1_freq; /* "less than" RP0 power/freqency */
1310 u8 rp0_freq; /* Non-overclocked max frequency. */
1311 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
1312
1313 u8 up_threshold; /* Current %busy required to uplock */
1314 u8 down_threshold; /* Current %busy required to downclock */
1315
1316 int last_adj;
1317 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1318
1319 bool enabled;
1320 struct delayed_work autoenable_work;
1321 atomic_t num_waiters;
1322 atomic_t boosts;
1323
1324 /* manual wa residency calculations */
1325 struct intel_rps_ei ei;
1326
1327 /*
1328 * Protects RPS/RC6 register access and PCU communication.
1329 * Must be taken after struct_mutex if nested. Note that
1330 * this lock may be held for long periods of time when
1331 * talking to hw - so only take it when talking to hw!
1332 */
1333 struct mutex hw_lock;
1334 };
1335
1336 /* defined intel_pm.c */
1337 extern spinlock_t mchdev_lock;
1338
1339 struct intel_ilk_power_mgmt {
1340 u8 cur_delay;
1341 u8 min_delay;
1342 u8 max_delay;
1343 u8 fmax;
1344 u8 fstart;
1345
1346 u64 last_count1;
1347 unsigned long last_time1;
1348 unsigned long chipset_power;
1349 u64 last_count2;
1350 u64 last_time2;
1351 unsigned long gfx_power;
1352 u8 corr;
1353
1354 int c_m;
1355 int r_t;
1356 };
1357
1358 struct drm_i915_private;
1359 struct i915_power_well;
1360
1361 struct i915_power_well_ops {
1362 /*
1363 * Synchronize the well's hw state to match the current sw state, for
1364 * example enable/disable it based on the current refcount. Called
1365 * during driver init and resume time, possibly after first calling
1366 * the enable/disable handlers.
1367 */
1368 void (*sync_hw)(struct drm_i915_private *dev_priv,
1369 struct i915_power_well *power_well);
1370 /*
1371 * Enable the well and resources that depend on it (for example
1372 * interrupts located on the well). Called after the 0->1 refcount
1373 * transition.
1374 */
1375 void (*enable)(struct drm_i915_private *dev_priv,
1376 struct i915_power_well *power_well);
1377 /*
1378 * Disable the well and resources that depend on it. Called after
1379 * the 1->0 refcount transition.
1380 */
1381 void (*disable)(struct drm_i915_private *dev_priv,
1382 struct i915_power_well *power_well);
1383 /* Returns the hw enabled state. */
1384 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1385 struct i915_power_well *power_well);
1386 };
1387
1388 /* Power well structure for haswell */
1389 struct i915_power_well {
1390 const char *name;
1391 bool always_on;
1392 /* power well enable/disable usage count */
1393 int count;
1394 /* cached hw enabled state */
1395 bool hw_enabled;
1396 u64 domains;
1397 /* unique identifier for this power well */
1398 enum i915_power_well_id id;
1399 /*
1400 * Arbitraty data associated with this power well. Platform and power
1401 * well specific.
1402 */
1403 union {
1404 struct {
1405 enum dpio_phy phy;
1406 } bxt;
1407 struct {
1408 /* Mask of pipes whose IRQ logic is backed by the pw */
1409 u8 irq_pipe_mask;
1410 /* The pw is backing the VGA functionality */
1411 bool has_vga:1;
1412 bool has_fuses:1;
1413 } hsw;
1414 };
1415 const struct i915_power_well_ops *ops;
1416 };
1417
1418 struct i915_power_domains {
1419 /*
1420 * Power wells needed for initialization at driver init and suspend
1421 * time are on. They are kept on until after the first modeset.
1422 */
1423 bool init_power_on;
1424 bool initializing;
1425 int power_well_count;
1426
1427 struct mutex lock;
1428 int domain_use_count[POWER_DOMAIN_NUM];
1429 struct i915_power_well *power_wells;
1430 };
1431
1432 #define MAX_L3_SLICES 2
1433 struct intel_l3_parity {
1434 u32 *remap_info[MAX_L3_SLICES];
1435 struct work_struct error_work;
1436 int which_slice;
1437 };
1438
1439 struct i915_gem_mm {
1440 /** Memory allocator for GTT stolen memory */
1441 struct drm_mm stolen;
1442 /** Protects the usage of the GTT stolen memory allocator. This is
1443 * always the inner lock when overlapping with struct_mutex. */
1444 struct mutex stolen_lock;
1445
1446 /** List of all objects in gtt_space. Used to restore gtt
1447 * mappings on resume */
1448 struct list_head bound_list;
1449 /**
1450 * List of objects which are not bound to the GTT (thus
1451 * are idle and not used by the GPU). These objects may or may
1452 * not actually have any pages attached.
1453 */
1454 struct list_head unbound_list;
1455
1456 /** List of all objects in gtt_space, currently mmaped by userspace.
1457 * All objects within this list must also be on bound_list.
1458 */
1459 struct list_head userfault_list;
1460
1461 /**
1462 * List of objects which are pending destruction.
1463 */
1464 struct llist_head free_list;
1465 struct work_struct free_work;
1466
1467 /** Usable portion of the GTT for GEM */
1468 dma_addr_t stolen_base; /* limited to low memory (32-bit) */
1469
1470 /** PPGTT used for aliasing the PPGTT with the GTT */
1471 struct i915_hw_ppgtt *aliasing_ppgtt;
1472
1473 struct notifier_block oom_notifier;
1474 struct notifier_block vmap_notifier;
1475 struct shrinker shrinker;
1476
1477 /** LRU list of objects with fence regs on them. */
1478 struct list_head fence_list;
1479
1480 /**
1481 * Workqueue to fault in userptr pages, flushed by the execbuf
1482 * when required but otherwise left to userspace to try again
1483 * on EAGAIN.
1484 */
1485 struct workqueue_struct *userptr_wq;
1486
1487 u64 unordered_timeline;
1488
1489 /* the indicator for dispatch video commands on two BSD rings */
1490 atomic_t bsd_engine_dispatch_index;
1491
1492 /** Bit 6 swizzling required for X tiling */
1493 uint32_t bit_6_swizzle_x;
1494 /** Bit 6 swizzling required for Y tiling */
1495 uint32_t bit_6_swizzle_y;
1496
1497 /* accounting, useful for userland debugging */
1498 spinlock_t object_stat_lock;
1499 u64 object_memory;
1500 u32 object_count;
1501 };
1502
1503 struct drm_i915_error_state_buf {
1504 struct drm_i915_private *i915;
1505 unsigned bytes;
1506 unsigned size;
1507 int err;
1508 u8 *buf;
1509 loff_t start;
1510 loff_t pos;
1511 };
1512
1513 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1514 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1515
1516 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */
1517 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */
1518
1519 struct i915_gpu_error {
1520 /* For hangcheck timer */
1521 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1522 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1523
1524 struct delayed_work hangcheck_work;
1525
1526 /* For reset and error_state handling. */
1527 spinlock_t lock;
1528 /* Protected by the above dev->gpu_error.lock. */
1529 struct i915_gpu_state *first_error;
1530
1531 atomic_t pending_fb_pin;
1532
1533 unsigned long missed_irq_rings;
1534
1535 /**
1536 * State variable controlling the reset flow and count
1537 *
1538 * This is a counter which gets incremented when reset is triggered,
1539 *
1540 * Before the reset commences, the I915_RESET_BACKOFF bit is set
1541 * meaning that any waiters holding onto the struct_mutex should
1542 * relinquish the lock immediately in order for the reset to start.
1543 *
1544 * If reset is not completed succesfully, the I915_WEDGE bit is
1545 * set meaning that hardware is terminally sour and there is no
1546 * recovery. All waiters on the reset_queue will be woken when
1547 * that happens.
1548 *
1549 * This counter is used by the wait_seqno code to notice that reset
1550 * event happened and it needs to restart the entire ioctl (since most
1551 * likely the seqno it waited for won't ever signal anytime soon).
1552 *
1553 * This is important for lock-free wait paths, where no contended lock
1554 * naturally enforces the correct ordering between the bail-out of the
1555 * waiter and the gpu reset work code.
1556 */
1557 unsigned long reset_count;
1558
1559 /**
1560 * flags: Control various stages of the GPU reset
1561 *
1562 * #I915_RESET_BACKOFF - When we start a reset, we want to stop any
1563 * other users acquiring the struct_mutex. To do this we set the
1564 * #I915_RESET_BACKOFF bit in the error flags when we detect a reset
1565 * and then check for that bit before acquiring the struct_mutex (in
1566 * i915_mutex_lock_interruptible()?). I915_RESET_BACKOFF serves a
1567 * secondary role in preventing two concurrent global reset attempts.
1568 *
1569 * #I915_RESET_HANDOFF - To perform the actual GPU reset, we need the
1570 * struct_mutex. We try to acquire the struct_mutex in the reset worker,
1571 * but it may be held by some long running waiter (that we cannot
1572 * interrupt without causing trouble). Once we are ready to do the GPU
1573 * reset, we set the I915_RESET_HANDOFF bit and wakeup any waiters. If
1574 * they already hold the struct_mutex and want to participate they can
1575 * inspect the bit and do the reset directly, otherwise the worker
1576 * waits for the struct_mutex.
1577 *
1578 * #I915_RESET_ENGINE[num_engines] - Since the driver doesn't need to
1579 * acquire the struct_mutex to reset an engine, we need an explicit
1580 * flag to prevent two concurrent reset attempts in the same engine.
1581 * As the number of engines continues to grow, allocate the flags from
1582 * the most significant bits.
1583 *
1584 * #I915_WEDGED - If reset fails and we can no longer use the GPU,
1585 * we set the #I915_WEDGED bit. Prior to command submission, e.g.
1586 * i915_gem_request_alloc(), this bit is checked and the sequence
1587 * aborted (with -EIO reported to userspace) if set.
1588 */
1589 unsigned long flags;
1590 #define I915_RESET_BACKOFF 0
1591 #define I915_RESET_HANDOFF 1
1592 #define I915_RESET_MODESET 2
1593 #define I915_WEDGED (BITS_PER_LONG - 1)
1594 #define I915_RESET_ENGINE (I915_WEDGED - I915_NUM_ENGINES)
1595
1596 /** Number of times an engine has been reset */
1597 u32 reset_engine_count[I915_NUM_ENGINES];
1598
1599 /**
1600 * Waitqueue to signal when a hang is detected. Used to for waiters
1601 * to release the struct_mutex for the reset to procede.
1602 */
1603 wait_queue_head_t wait_queue;
1604
1605 /**
1606 * Waitqueue to signal when the reset has completed. Used by clients
1607 * that wait for dev_priv->mm.wedged to settle.
1608 */
1609 wait_queue_head_t reset_queue;
1610
1611 /* For missed irq/seqno simulation. */
1612 unsigned long test_irq_rings;
1613 };
1614
1615 enum modeset_restore {
1616 MODESET_ON_LID_OPEN,
1617 MODESET_DONE,
1618 MODESET_SUSPENDED,
1619 };
1620
1621 #define DP_AUX_A 0x40
1622 #define DP_AUX_B 0x10
1623 #define DP_AUX_C 0x20
1624 #define DP_AUX_D 0x30
1625
1626 #define DDC_PIN_B 0x05
1627 #define DDC_PIN_C 0x04
1628 #define DDC_PIN_D 0x06
1629
1630 struct ddi_vbt_port_info {
1631 /*
1632 * This is an index in the HDMI/DVI DDI buffer translation table.
1633 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1634 * populate this field.
1635 */
1636 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1637 uint8_t hdmi_level_shift;
1638
1639 uint8_t supports_dvi:1;
1640 uint8_t supports_hdmi:1;
1641 uint8_t supports_dp:1;
1642 uint8_t supports_edp:1;
1643
1644 uint8_t alternate_aux_channel;
1645 uint8_t alternate_ddc_pin;
1646
1647 uint8_t dp_boost_level;
1648 uint8_t hdmi_boost_level;
1649 };
1650
1651 enum psr_lines_to_wait {
1652 PSR_0_LINES_TO_WAIT = 0,
1653 PSR_1_LINE_TO_WAIT,
1654 PSR_4_LINES_TO_WAIT,
1655 PSR_8_LINES_TO_WAIT
1656 };
1657
1658 struct intel_vbt_data {
1659 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1660 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1661
1662 /* Feature bits */
1663 unsigned int int_tv_support:1;
1664 unsigned int lvds_dither:1;
1665 unsigned int lvds_vbt:1;
1666 unsigned int int_crt_support:1;
1667 unsigned int lvds_use_ssc:1;
1668 unsigned int display_clock_mode:1;
1669 unsigned int fdi_rx_polarity_inverted:1;
1670 unsigned int panel_type:4;
1671 int lvds_ssc_freq;
1672 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1673
1674 enum drrs_support_type drrs_type;
1675
1676 struct {
1677 int rate;
1678 int lanes;
1679 int preemphasis;
1680 int vswing;
1681 bool low_vswing;
1682 bool initialized;
1683 bool support;
1684 int bpp;
1685 struct edp_power_seq pps;
1686 } edp;
1687
1688 struct {
1689 bool full_link;
1690 bool require_aux_wakeup;
1691 int idle_frames;
1692 enum psr_lines_to_wait lines_to_wait;
1693 int tp1_wakeup_time;
1694 int tp2_tp3_wakeup_time;
1695 } psr;
1696
1697 struct {
1698 u16 pwm_freq_hz;
1699 bool present;
1700 bool active_low_pwm;
1701 u8 min_brightness; /* min_brightness/255 of max */
1702 u8 controller; /* brightness controller number */
1703 enum intel_backlight_type type;
1704 } backlight;
1705
1706 /* MIPI DSI */
1707 struct {
1708 u16 panel_id;
1709 struct mipi_config *config;
1710 struct mipi_pps_data *pps;
1711 u8 seq_version;
1712 u32 size;
1713 u8 *data;
1714 const u8 *sequence[MIPI_SEQ_MAX];
1715 } dsi;
1716
1717 int crt_ddc_pin;
1718
1719 int child_dev_num;
1720 union child_device_config *child_dev;
1721
1722 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1723 struct sdvo_device_mapping sdvo_mappings[2];
1724 };
1725
1726 enum intel_ddb_partitioning {
1727 INTEL_DDB_PART_1_2,
1728 INTEL_DDB_PART_5_6, /* IVB+ */
1729 };
1730
1731 struct intel_wm_level {
1732 bool enable;
1733 uint32_t pri_val;
1734 uint32_t spr_val;
1735 uint32_t cur_val;
1736 uint32_t fbc_val;
1737 };
1738
1739 struct ilk_wm_values {
1740 uint32_t wm_pipe[3];
1741 uint32_t wm_lp[3];
1742 uint32_t wm_lp_spr[3];
1743 uint32_t wm_linetime[3];
1744 bool enable_fbc_wm;
1745 enum intel_ddb_partitioning partitioning;
1746 };
1747
1748 struct g4x_pipe_wm {
1749 uint16_t plane[I915_MAX_PLANES];
1750 uint16_t fbc;
1751 };
1752
1753 struct g4x_sr_wm {
1754 uint16_t plane;
1755 uint16_t cursor;
1756 uint16_t fbc;
1757 };
1758
1759 struct vlv_wm_ddl_values {
1760 uint8_t plane[I915_MAX_PLANES];
1761 };
1762
1763 struct vlv_wm_values {
1764 struct g4x_pipe_wm pipe[3];
1765 struct g4x_sr_wm sr;
1766 struct vlv_wm_ddl_values ddl[3];
1767 uint8_t level;
1768 bool cxsr;
1769 };
1770
1771 struct g4x_wm_values {
1772 struct g4x_pipe_wm pipe[2];
1773 struct g4x_sr_wm sr;
1774 struct g4x_sr_wm hpll;
1775 bool cxsr;
1776 bool hpll_en;
1777 bool fbc_en;
1778 };
1779
1780 struct skl_ddb_entry {
1781 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1782 };
1783
1784 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1785 {
1786 return entry->end - entry->start;
1787 }
1788
1789 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1790 const struct skl_ddb_entry *e2)
1791 {
1792 if (e1->start == e2->start && e1->end == e2->end)
1793 return true;
1794
1795 return false;
1796 }
1797
1798 struct skl_ddb_allocation {
1799 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1800 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1801 };
1802
1803 struct skl_wm_values {
1804 unsigned dirty_pipes;
1805 struct skl_ddb_allocation ddb;
1806 };
1807
1808 struct skl_wm_level {
1809 bool plane_en;
1810 uint16_t plane_res_b;
1811 uint8_t plane_res_l;
1812 };
1813
1814 /*
1815 * This struct helps tracking the state needed for runtime PM, which puts the
1816 * device in PCI D3 state. Notice that when this happens, nothing on the
1817 * graphics device works, even register access, so we don't get interrupts nor
1818 * anything else.
1819 *
1820 * Every piece of our code that needs to actually touch the hardware needs to
1821 * either call intel_runtime_pm_get or call intel_display_power_get with the
1822 * appropriate power domain.
1823 *
1824 * Our driver uses the autosuspend delay feature, which means we'll only really
1825 * suspend if we stay with zero refcount for a certain amount of time. The
1826 * default value is currently very conservative (see intel_runtime_pm_enable), but
1827 * it can be changed with the standard runtime PM files from sysfs.
1828 *
1829 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1830 * goes back to false exactly before we reenable the IRQs. We use this variable
1831 * to check if someone is trying to enable/disable IRQs while they're supposed
1832 * to be disabled. This shouldn't happen and we'll print some error messages in
1833 * case it happens.
1834 *
1835 * For more, read the Documentation/power/runtime_pm.txt.
1836 */
1837 struct i915_runtime_pm {
1838 atomic_t wakeref_count;
1839 bool suspended;
1840 bool irqs_enabled;
1841 };
1842
1843 enum intel_pipe_crc_source {
1844 INTEL_PIPE_CRC_SOURCE_NONE,
1845 INTEL_PIPE_CRC_SOURCE_PLANE1,
1846 INTEL_PIPE_CRC_SOURCE_PLANE2,
1847 INTEL_PIPE_CRC_SOURCE_PF,
1848 INTEL_PIPE_CRC_SOURCE_PIPE,
1849 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1850 INTEL_PIPE_CRC_SOURCE_TV,
1851 INTEL_PIPE_CRC_SOURCE_DP_B,
1852 INTEL_PIPE_CRC_SOURCE_DP_C,
1853 INTEL_PIPE_CRC_SOURCE_DP_D,
1854 INTEL_PIPE_CRC_SOURCE_AUTO,
1855 INTEL_PIPE_CRC_SOURCE_MAX,
1856 };
1857
1858 struct intel_pipe_crc_entry {
1859 uint32_t frame;
1860 uint32_t crc[5];
1861 };
1862
1863 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1864 struct intel_pipe_crc {
1865 spinlock_t lock;
1866 bool opened; /* exclusive access to the result file */
1867 struct intel_pipe_crc_entry *entries;
1868 enum intel_pipe_crc_source source;
1869 int head, tail;
1870 wait_queue_head_t wq;
1871 int skipped;
1872 };
1873
1874 struct i915_frontbuffer_tracking {
1875 spinlock_t lock;
1876
1877 /*
1878 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1879 * scheduled flips.
1880 */
1881 unsigned busy_bits;
1882 unsigned flip_bits;
1883 };
1884
1885 struct i915_wa_reg {
1886 i915_reg_t addr;
1887 u32 value;
1888 /* bitmask representing WA bits */
1889 u32 mask;
1890 };
1891
1892 /*
1893 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1894 * allowing it for RCS as we don't foresee any requirement of having
1895 * a whitelist for other engines. When it is really required for
1896 * other engines then the limit need to be increased.
1897 */
1898 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1899
1900 struct i915_workarounds {
1901 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1902 u32 count;
1903 u32 hw_whitelist_count[I915_NUM_ENGINES];
1904 };
1905
1906 struct i915_virtual_gpu {
1907 bool active;
1908 u32 caps;
1909 };
1910
1911 /* used in computing the new watermarks state */
1912 struct intel_wm_config {
1913 unsigned int num_pipes_active;
1914 bool sprites_enabled;
1915 bool sprites_scaled;
1916 };
1917
1918 struct i915_oa_format {
1919 u32 format;
1920 int size;
1921 };
1922
1923 struct i915_oa_reg {
1924 i915_reg_t addr;
1925 u32 value;
1926 };
1927
1928 struct i915_oa_config {
1929 char uuid[UUID_STRING_LEN + 1];
1930 int id;
1931
1932 const struct i915_oa_reg *mux_regs;
1933 u32 mux_regs_len;
1934 const struct i915_oa_reg *b_counter_regs;
1935 u32 b_counter_regs_len;
1936 const struct i915_oa_reg *flex_regs;
1937 u32 flex_regs_len;
1938
1939 struct attribute_group sysfs_metric;
1940 struct attribute *attrs[2];
1941 struct device_attribute sysfs_metric_id;
1942
1943 atomic_t ref_count;
1944 };
1945
1946 struct i915_perf_stream;
1947
1948 /**
1949 * struct i915_perf_stream_ops - the OPs to support a specific stream type
1950 */
1951 struct i915_perf_stream_ops {
1952 /**
1953 * @enable: Enables the collection of HW samples, either in response to
1954 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1955 * without `I915_PERF_FLAG_DISABLED`.
1956 */
1957 void (*enable)(struct i915_perf_stream *stream);
1958
1959 /**
1960 * @disable: Disables the collection of HW samples, either in response
1961 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1962 * the stream.
1963 */
1964 void (*disable)(struct i915_perf_stream *stream);
1965
1966 /**
1967 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1968 * once there is something ready to read() for the stream
1969 */
1970 void (*poll_wait)(struct i915_perf_stream *stream,
1971 struct file *file,
1972 poll_table *wait);
1973
1974 /**
1975 * @wait_unlocked: For handling a blocking read, wait until there is
1976 * something to ready to read() for the stream. E.g. wait on the same
1977 * wait queue that would be passed to poll_wait().
1978 */
1979 int (*wait_unlocked)(struct i915_perf_stream *stream);
1980
1981 /**
1982 * @read: Copy buffered metrics as records to userspace
1983 * **buf**: the userspace, destination buffer
1984 * **count**: the number of bytes to copy, requested by userspace
1985 * **offset**: zero at the start of the read, updated as the read
1986 * proceeds, it represents how many bytes have been copied so far and
1987 * the buffer offset for copying the next record.
1988 *
1989 * Copy as many buffered i915 perf samples and records for this stream
1990 * to userspace as will fit in the given buffer.
1991 *
1992 * Only write complete records; returning -%ENOSPC if there isn't room
1993 * for a complete record.
1994 *
1995 * Return any error condition that results in a short read such as
1996 * -%ENOSPC or -%EFAULT, even though these may be squashed before
1997 * returning to userspace.
1998 */
1999 int (*read)(struct i915_perf_stream *stream,
2000 char __user *buf,
2001 size_t count,
2002 size_t *offset);
2003
2004 /**
2005 * @destroy: Cleanup any stream specific resources.
2006 *
2007 * The stream will always be disabled before this is called.
2008 */
2009 void (*destroy)(struct i915_perf_stream *stream);
2010 };
2011
2012 /**
2013 * struct i915_perf_stream - state for a single open stream FD
2014 */
2015 struct i915_perf_stream {
2016 /**
2017 * @dev_priv: i915 drm device
2018 */
2019 struct drm_i915_private *dev_priv;
2020
2021 /**
2022 * @link: Links the stream into ``&drm_i915_private->streams``
2023 */
2024 struct list_head link;
2025
2026 /**
2027 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
2028 * properties given when opening a stream, representing the contents
2029 * of a single sample as read() by userspace.
2030 */
2031 u32 sample_flags;
2032
2033 /**
2034 * @sample_size: Considering the configured contents of a sample
2035 * combined with the required header size, this is the total size
2036 * of a single sample record.
2037 */
2038 int sample_size;
2039
2040 /**
2041 * @ctx: %NULL if measuring system-wide across all contexts or a
2042 * specific context that is being monitored.
2043 */
2044 struct i915_gem_context *ctx;
2045
2046 /**
2047 * @enabled: Whether the stream is currently enabled, considering
2048 * whether the stream was opened in a disabled state and based
2049 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
2050 */
2051 bool enabled;
2052
2053 /**
2054 * @ops: The callbacks providing the implementation of this specific
2055 * type of configured stream.
2056 */
2057 const struct i915_perf_stream_ops *ops;
2058
2059 /**
2060 * @oa_config: The OA configuration used by the stream.
2061 */
2062 struct i915_oa_config *oa_config;
2063 };
2064
2065 /**
2066 * struct i915_oa_ops - Gen specific implementation of an OA unit stream
2067 */
2068 struct i915_oa_ops {
2069 /**
2070 * @is_valid_b_counter_reg: Validates register's address for
2071 * programming boolean counters for a particular platform.
2072 */
2073 bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
2074 u32 addr);
2075
2076 /**
2077 * @is_valid_mux_reg: Validates register's address for programming mux
2078 * for a particular platform.
2079 */
2080 bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
2081
2082 /**
2083 * @is_valid_flex_reg: Validates register's address for programming
2084 * flex EU filtering for a particular platform.
2085 */
2086 bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
2087
2088 /**
2089 * @init_oa_buffer: Resets the head and tail pointers of the
2090 * circular buffer for periodic OA reports.
2091 *
2092 * Called when first opening a stream for OA metrics, but also may be
2093 * called in response to an OA buffer overflow or other error
2094 * condition.
2095 *
2096 * Note it may be necessary to clear the full OA buffer here as part of
2097 * maintaining the invariable that new reports must be written to
2098 * zeroed memory for us to be able to reliable detect if an expected
2099 * report has not yet landed in memory. (At least on Haswell the OA
2100 * buffer tail pointer is not synchronized with reports being visible
2101 * to the CPU)
2102 */
2103 void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
2104
2105 /**
2106 * @enable_metric_set: Selects and applies any MUX configuration to set
2107 * up the Boolean and Custom (B/C) counters that are part of the
2108 * counter reports being sampled. May apply system constraints such as
2109 * disabling EU clock gating as required.
2110 */
2111 int (*enable_metric_set)(struct drm_i915_private *dev_priv,
2112 const struct i915_oa_config *oa_config);
2113
2114 /**
2115 * @disable_metric_set: Remove system constraints associated with using
2116 * the OA unit.
2117 */
2118 void (*disable_metric_set)(struct drm_i915_private *dev_priv);
2119
2120 /**
2121 * @oa_enable: Enable periodic sampling
2122 */
2123 void (*oa_enable)(struct drm_i915_private *dev_priv);
2124
2125 /**
2126 * @oa_disable: Disable periodic sampling
2127 */
2128 void (*oa_disable)(struct drm_i915_private *dev_priv);
2129
2130 /**
2131 * @read: Copy data from the circular OA buffer into a given userspace
2132 * buffer.
2133 */
2134 int (*read)(struct i915_perf_stream *stream,
2135 char __user *buf,
2136 size_t count,
2137 size_t *offset);
2138
2139 /**
2140 * @oa_hw_tail_read: read the OA tail pointer register
2141 *
2142 * In particular this enables us to share all the fiddly code for
2143 * handling the OA unit tail pointer race that affects multiple
2144 * generations.
2145 */
2146 u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
2147 };
2148
2149 struct intel_cdclk_state {
2150 unsigned int cdclk, vco, ref;
2151 };
2152
2153 struct drm_i915_private {
2154 struct drm_device drm;
2155
2156 struct kmem_cache *objects;
2157 struct kmem_cache *vmas;
2158 struct kmem_cache *luts;
2159 struct kmem_cache *requests;
2160 struct kmem_cache *dependencies;
2161 struct kmem_cache *priorities;
2162
2163 const struct intel_device_info info;
2164
2165 void __iomem *regs;
2166
2167 struct intel_uncore uncore;
2168
2169 struct i915_virtual_gpu vgpu;
2170
2171 struct intel_gvt *gvt;
2172
2173 struct intel_huc huc;
2174 struct intel_guc guc;
2175
2176 struct intel_csr csr;
2177
2178 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
2179
2180 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
2181 * controller on different i2c buses. */
2182 struct mutex gmbus_mutex;
2183
2184 /**
2185 * Base address of the gmbus and gpio block.
2186 */
2187 uint32_t gpio_mmio_base;
2188
2189 /* MMIO base address for MIPI regs */
2190 uint32_t mipi_mmio_base;
2191
2192 uint32_t psr_mmio_base;
2193
2194 uint32_t pps_mmio_base;
2195
2196 wait_queue_head_t gmbus_wait_queue;
2197
2198 struct pci_dev *bridge_dev;
2199 struct i915_gem_context *kernel_context;
2200 struct intel_engine_cs *engine[I915_NUM_ENGINES];
2201 struct i915_vma *semaphore;
2202
2203 struct drm_dma_handle *status_page_dmah;
2204 struct resource mch_res;
2205
2206 /* protects the irq masks */
2207 spinlock_t irq_lock;
2208
2209 bool display_irqs_enabled;
2210
2211 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
2212 struct pm_qos_request pm_qos;
2213
2214 /* Sideband mailbox protection */
2215 struct mutex sb_lock;
2216
2217 /** Cached value of IMR to avoid reads in updating the bitfield */
2218 union {
2219 u32 irq_mask;
2220 u32 de_irq_mask[I915_MAX_PIPES];
2221 };
2222 u32 gt_irq_mask;
2223 u32 pm_imr;
2224 u32 pm_ier;
2225 u32 pm_rps_events;
2226 u32 pm_guc_events;
2227 u32 pipestat_irq_mask[I915_MAX_PIPES];
2228
2229 struct i915_hotplug hotplug;
2230 struct intel_fbc fbc;
2231 struct i915_drrs drrs;
2232 struct intel_opregion opregion;
2233 struct intel_vbt_data vbt;
2234
2235 bool preserve_bios_swizzle;
2236
2237 /* overlay */
2238 struct intel_overlay *overlay;
2239
2240 /* backlight registers and fields in struct intel_panel */
2241 struct mutex backlight_lock;
2242
2243 /* LVDS info */
2244 bool no_aux_handshake;
2245
2246 /* protects panel power sequencer state */
2247 struct mutex pps_mutex;
2248
2249 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
2250 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
2251
2252 unsigned int fsb_freq, mem_freq, is_ddr3;
2253 unsigned int skl_preferred_vco_freq;
2254 unsigned int max_cdclk_freq;
2255
2256 unsigned int max_dotclk_freq;
2257 unsigned int rawclk_freq;
2258 unsigned int hpll_freq;
2259 unsigned int czclk_freq;
2260
2261 struct {
2262 /*
2263 * The current logical cdclk state.
2264 * See intel_atomic_state.cdclk.logical
2265 *
2266 * For reading holding any crtc lock is sufficient,
2267 * for writing must hold all of them.
2268 */
2269 struct intel_cdclk_state logical;
2270 /*
2271 * The current actual cdclk state.
2272 * See intel_atomic_state.cdclk.actual
2273 */
2274 struct intel_cdclk_state actual;
2275 /* The current hardware cdclk state */
2276 struct intel_cdclk_state hw;
2277 } cdclk;
2278
2279 /**
2280 * wq - Driver workqueue for GEM.
2281 *
2282 * NOTE: Work items scheduled here are not allowed to grab any modeset
2283 * locks, for otherwise the flushing done in the pageflip code will
2284 * result in deadlocks.
2285 */
2286 struct workqueue_struct *wq;
2287
2288 /* Display functions */
2289 struct drm_i915_display_funcs display;
2290
2291 /* PCH chipset type */
2292 enum intel_pch pch_type;
2293 unsigned short pch_id;
2294
2295 unsigned long quirks;
2296
2297 enum modeset_restore modeset_restore;
2298 struct mutex modeset_restore_lock;
2299 struct drm_atomic_state *modeset_restore_state;
2300 struct drm_modeset_acquire_ctx reset_ctx;
2301
2302 struct list_head vm_list; /* Global list of all address spaces */
2303 struct i915_ggtt ggtt; /* VM representing the global address space */
2304
2305 struct i915_gem_mm mm;
2306 DECLARE_HASHTABLE(mm_structs, 7);
2307 struct mutex mm_lock;
2308
2309 /* Kernel Modesetting */
2310
2311 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
2312 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
2313
2314 #ifdef CONFIG_DEBUG_FS
2315 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
2316 #endif
2317
2318 /* dpll and cdclk state is protected by connection_mutex */
2319 int num_shared_dpll;
2320 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
2321 const struct intel_dpll_mgr *dpll_mgr;
2322
2323 /*
2324 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
2325 * Must be global rather than per dpll, because on some platforms
2326 * plls share registers.
2327 */
2328 struct mutex dpll_lock;
2329
2330 unsigned int active_crtcs;
2331 unsigned int min_pixclk[I915_MAX_PIPES];
2332
2333 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
2334
2335 struct i915_workarounds workarounds;
2336
2337 struct i915_frontbuffer_tracking fb_tracking;
2338
2339 struct intel_atomic_helper {
2340 struct llist_head free_list;
2341 struct work_struct free_work;
2342 } atomic_helper;
2343
2344 u16 orig_clock;
2345
2346 bool mchbar_need_disable;
2347
2348 struct intel_l3_parity l3_parity;
2349
2350 /* Cannot be determined by PCIID. You must always read a register. */
2351 u32 edram_cap;
2352
2353 /* gen6+ rps state */
2354 struct intel_gen6_power_mgmt rps;
2355
2356 /* ilk-only ips/rps state. Everything in here is protected by the global
2357 * mchdev_lock in intel_pm.c */
2358 struct intel_ilk_power_mgmt ips;
2359
2360 struct i915_power_domains power_domains;
2361
2362 struct i915_psr psr;
2363
2364 struct i915_gpu_error gpu_error;
2365
2366 struct drm_i915_gem_object *vlv_pctx;
2367
2368 /* list of fbdev register on this device */
2369 struct intel_fbdev *fbdev;
2370 struct work_struct fbdev_suspend_work;
2371
2372 struct drm_property *broadcast_rgb_property;
2373 struct drm_property *force_audio_property;
2374
2375 /* hda/i915 audio component */
2376 struct i915_audio_component *audio_component;
2377 bool audio_component_registered;
2378 /**
2379 * av_mutex - mutex for audio/video sync
2380 *
2381 */
2382 struct mutex av_mutex;
2383
2384 struct {
2385 struct list_head list;
2386 struct llist_head free_list;
2387 struct work_struct free_work;
2388
2389 /* The hw wants to have a stable context identifier for the
2390 * lifetime of the context (for OA, PASID, faults, etc).
2391 * This is limited in execlists to 21 bits.
2392 */
2393 struct ida hw_ida;
2394 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
2395 } contexts;
2396
2397 u32 fdi_rx_config;
2398
2399 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
2400 u32 chv_phy_control;
2401 /*
2402 * Shadows for CHV DPLL_MD regs to keep the state
2403 * checker somewhat working in the presence hardware
2404 * crappiness (can't read out DPLL_MD for pipes B & C).
2405 */
2406 u32 chv_dpll_md[I915_MAX_PIPES];
2407 u32 bxt_phy_grc;
2408
2409 u32 suspend_count;
2410 bool suspended_to_idle;
2411 struct i915_suspend_saved_registers regfile;
2412 struct vlv_s0ix_state vlv_s0ix_state;
2413
2414 enum {
2415 I915_SAGV_UNKNOWN = 0,
2416 I915_SAGV_DISABLED,
2417 I915_SAGV_ENABLED,
2418 I915_SAGV_NOT_CONTROLLED
2419 } sagv_status;
2420
2421 struct {
2422 /*
2423 * Raw watermark latency values:
2424 * in 0.1us units for WM0,
2425 * in 0.5us units for WM1+.
2426 */
2427 /* primary */
2428 uint16_t pri_latency[5];
2429 /* sprite */
2430 uint16_t spr_latency[5];
2431 /* cursor */
2432 uint16_t cur_latency[5];
2433 /*
2434 * Raw watermark memory latency values
2435 * for SKL for all 8 levels
2436 * in 1us units.
2437 */
2438 uint16_t skl_latency[8];
2439
2440 /* current hardware state */
2441 union {
2442 struct ilk_wm_values hw;
2443 struct skl_wm_values skl_hw;
2444 struct vlv_wm_values vlv;
2445 struct g4x_wm_values g4x;
2446 };
2447
2448 uint8_t max_level;
2449
2450 /*
2451 * Should be held around atomic WM register writing; also
2452 * protects * intel_crtc->wm.active and
2453 * cstate->wm.need_postvbl_update.
2454 */
2455 struct mutex wm_mutex;
2456
2457 /*
2458 * Set during HW readout of watermarks/DDB. Some platforms
2459 * need to know when we're still using BIOS-provided values
2460 * (which we don't fully trust).
2461 */
2462 bool distrust_bios_wm;
2463 } wm;
2464
2465 struct i915_runtime_pm pm;
2466
2467 struct {
2468 bool initialized;
2469
2470 struct kobject *metrics_kobj;
2471 struct ctl_table_header *sysctl_header;
2472
2473 /*
2474 * Lock associated with adding/modifying/removing OA configs
2475 * in dev_priv->perf.metrics_idr.
2476 */
2477 struct mutex metrics_lock;
2478
2479 /*
2480 * List of dynamic configurations, you need to hold
2481 * dev_priv->perf.metrics_lock to access it.
2482 */
2483 struct idr metrics_idr;
2484
2485 /*
2486 * Lock associated with anything below within this structure
2487 * except exclusive_stream.
2488 */
2489 struct mutex lock;
2490 struct list_head streams;
2491
2492 struct {
2493 /*
2494 * The stream currently using the OA unit. If accessed
2495 * outside a syscall associated to its file
2496 * descriptor, you need to hold
2497 * dev_priv->drm.struct_mutex.
2498 */
2499 struct i915_perf_stream *exclusive_stream;
2500
2501 u32 specific_ctx_id;
2502
2503 struct hrtimer poll_check_timer;
2504 wait_queue_head_t poll_wq;
2505 bool pollin;
2506
2507 /**
2508 * For rate limiting any notifications of spurious
2509 * invalid OA reports
2510 */
2511 struct ratelimit_state spurious_report_rs;
2512
2513 bool periodic;
2514 int period_exponent;
2515 int timestamp_frequency;
2516
2517 struct i915_oa_config test_config;
2518
2519 struct {
2520 struct i915_vma *vma;
2521 u8 *vaddr;
2522 u32 last_ctx_id;
2523 int format;
2524 int format_size;
2525
2526 /**
2527 * Locks reads and writes to all head/tail state
2528 *
2529 * Consider: the head and tail pointer state
2530 * needs to be read consistently from a hrtimer
2531 * callback (atomic context) and read() fop
2532 * (user context) with tail pointer updates
2533 * happening in atomic context and head updates
2534 * in user context and the (unlikely)
2535 * possibility of read() errors needing to
2536 * reset all head/tail state.
2537 *
2538 * Note: Contention or performance aren't
2539 * currently a significant concern here
2540 * considering the relatively low frequency of
2541 * hrtimer callbacks (5ms period) and that
2542 * reads typically only happen in response to a
2543 * hrtimer event and likely complete before the
2544 * next callback.
2545 *
2546 * Note: This lock is not held *while* reading
2547 * and copying data to userspace so the value
2548 * of head observed in htrimer callbacks won't
2549 * represent any partial consumption of data.
2550 */
2551 spinlock_t ptr_lock;
2552
2553 /**
2554 * One 'aging' tail pointer and one 'aged'
2555 * tail pointer ready to used for reading.
2556 *
2557 * Initial values of 0xffffffff are invalid
2558 * and imply that an update is required
2559 * (and should be ignored by an attempted
2560 * read)
2561 */
2562 struct {
2563 u32 offset;
2564 } tails[2];
2565
2566 /**
2567 * Index for the aged tail ready to read()
2568 * data up to.
2569 */
2570 unsigned int aged_tail_idx;
2571
2572 /**
2573 * A monotonic timestamp for when the current
2574 * aging tail pointer was read; used to
2575 * determine when it is old enough to trust.
2576 */
2577 u64 aging_timestamp;
2578
2579 /**
2580 * Although we can always read back the head
2581 * pointer register, we prefer to avoid
2582 * trusting the HW state, just to avoid any
2583 * risk that some hardware condition could
2584 * somehow bump the head pointer unpredictably
2585 * and cause us to forward the wrong OA buffer
2586 * data to userspace.
2587 */
2588 u32 head;
2589 } oa_buffer;
2590
2591 u32 gen7_latched_oastatus1;
2592 u32 ctx_oactxctrl_offset;
2593 u32 ctx_flexeu0_offset;
2594
2595 /**
2596 * The RPT_ID/reason field for Gen8+ includes a bit
2597 * to determine if the CTX ID in the report is valid
2598 * but the specific bit differs between Gen 8 and 9
2599 */
2600 u32 gen8_valid_ctx_bit;
2601
2602 struct i915_oa_ops ops;
2603 const struct i915_oa_format *oa_formats;
2604 } oa;
2605 } perf;
2606
2607 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2608 struct {
2609 void (*resume)(struct drm_i915_private *);
2610 void (*cleanup_engine)(struct intel_engine_cs *engine);
2611
2612 struct list_head timelines;
2613 struct i915_gem_timeline global_timeline;
2614 u32 active_requests;
2615
2616 /**
2617 * Is the GPU currently considered idle, or busy executing
2618 * userspace requests? Whilst idle, we allow runtime power
2619 * management to power down the hardware and display clocks.
2620 * In order to reduce the effect on performance, there
2621 * is a slight delay before we do so.
2622 */
2623 bool awake;
2624
2625 /**
2626 * We leave the user IRQ off as much as possible,
2627 * but this means that requests will finish and never
2628 * be retired once the system goes idle. Set a timer to
2629 * fire periodically while the ring is running. When it
2630 * fires, go retire requests.
2631 */
2632 struct delayed_work retire_work;
2633
2634 /**
2635 * When we detect an idle GPU, we want to turn on
2636 * powersaving features. So once we see that there
2637 * are no more requests outstanding and no more
2638 * arrive within a small period of time, we fire
2639 * off the idle_work.
2640 */
2641 struct delayed_work idle_work;
2642
2643 ktime_t last_init_time;
2644 } gt;
2645
2646 /* perform PHY state sanity checks? */
2647 bool chv_phy_assert[2];
2648
2649 bool ipc_enabled;
2650
2651 /* Used to save the pipe-to-encoder mapping for audio */
2652 struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2653
2654 /* necessary resource sharing with HDMI LPE audio driver. */
2655 struct {
2656 struct platform_device *platdev;
2657 int irq;
2658 } lpe_audio;
2659
2660 /*
2661 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2662 * will be rejected. Instead look for a better place.
2663 */
2664 };
2665
2666 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2667 {
2668 return container_of(dev, struct drm_i915_private, drm);
2669 }
2670
2671 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2672 {
2673 return to_i915(dev_get_drvdata(kdev));
2674 }
2675
2676 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2677 {
2678 return container_of(guc, struct drm_i915_private, guc);
2679 }
2680
2681 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2682 {
2683 return container_of(huc, struct drm_i915_private, huc);
2684 }
2685
2686 /* Simple iterator over all initialised engines */
2687 #define for_each_engine(engine__, dev_priv__, id__) \
2688 for ((id__) = 0; \
2689 (id__) < I915_NUM_ENGINES; \
2690 (id__)++) \
2691 for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2692
2693 /* Iterator over subset of engines selected by mask */
2694 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2695 for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask; \
2696 tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2697
2698 enum hdmi_force_audio {
2699 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2700 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2701 HDMI_AUDIO_AUTO, /* trust EDID */
2702 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2703 };
2704
2705 #define I915_GTT_OFFSET_NONE ((u32)-1)
2706
2707 /*
2708 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2709 * considered to be the frontbuffer for the given plane interface-wise. This
2710 * doesn't mean that the hw necessarily already scans it out, but that any
2711 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2712 *
2713 * We have one bit per pipe and per scanout plane type.
2714 */
2715 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2716 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2717 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2718 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2719 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2720 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2721 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2722 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2723 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2724 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2725 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2726 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2727
2728 /*
2729 * Optimised SGL iterator for GEM objects
2730 */
2731 static __always_inline struct sgt_iter {
2732 struct scatterlist *sgp;
2733 union {
2734 unsigned long pfn;
2735 dma_addr_t dma;
2736 };
2737 unsigned int curr;
2738 unsigned int max;
2739 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2740 struct sgt_iter s = { .sgp = sgl };
2741
2742 if (s.sgp) {
2743 s.max = s.curr = s.sgp->offset;
2744 s.max += s.sgp->length;
2745 if (dma)
2746 s.dma = sg_dma_address(s.sgp);
2747 else
2748 s.pfn = page_to_pfn(sg_page(s.sgp));
2749 }
2750
2751 return s;
2752 }
2753
2754 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2755 {
2756 ++sg;
2757 if (unlikely(sg_is_chain(sg)))
2758 sg = sg_chain_ptr(sg);
2759 return sg;
2760 }
2761
2762 /**
2763 * __sg_next - return the next scatterlist entry in a list
2764 * @sg: The current sg entry
2765 *
2766 * Description:
2767 * If the entry is the last, return NULL; otherwise, step to the next
2768 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2769 * otherwise just return the pointer to the current element.
2770 **/
2771 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2772 {
2773 #ifdef CONFIG_DEBUG_SG
2774 BUG_ON(sg->sg_magic != SG_MAGIC);
2775 #endif
2776 return sg_is_last(sg) ? NULL : ____sg_next(sg);
2777 }
2778
2779 /**
2780 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2781 * @__dmap: DMA address (output)
2782 * @__iter: 'struct sgt_iter' (iterator state, internal)
2783 * @__sgt: sg_table to iterate over (input)
2784 */
2785 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2786 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2787 ((__dmap) = (__iter).dma + (__iter).curr); \
2788 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2789 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2790
2791 /**
2792 * for_each_sgt_page - iterate over the pages of the given sg_table
2793 * @__pp: page pointer (output)
2794 * @__iter: 'struct sgt_iter' (iterator state, internal)
2795 * @__sgt: sg_table to iterate over (input)
2796 */
2797 #define for_each_sgt_page(__pp, __iter, __sgt) \
2798 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2799 ((__pp) = (__iter).pfn == 0 ? NULL : \
2800 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2801 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2802 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2803
2804 static inline const struct intel_device_info *
2805 intel_info(const struct drm_i915_private *dev_priv)
2806 {
2807 return &dev_priv->info;
2808 }
2809
2810 #define INTEL_INFO(dev_priv) intel_info((dev_priv))
2811
2812 #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen)
2813 #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id)
2814
2815 #define REVID_FOREVER 0xff
2816 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision)
2817
2818 #define GEN_FOREVER (0)
2819 /*
2820 * Returns true if Gen is in inclusive range [Start, End].
2821 *
2822 * Use GEN_FOREVER for unbound start and or end.
2823 */
2824 #define IS_GEN(dev_priv, s, e) ({ \
2825 unsigned int __s = (s), __e = (e); \
2826 BUILD_BUG_ON(!__builtin_constant_p(s)); \
2827 BUILD_BUG_ON(!__builtin_constant_p(e)); \
2828 if ((__s) != GEN_FOREVER) \
2829 __s = (s) - 1; \
2830 if ((__e) == GEN_FOREVER) \
2831 __e = BITS_PER_LONG - 1; \
2832 else \
2833 __e = (e) - 1; \
2834 !!((dev_priv)->info.gen_mask & GENMASK((__e), (__s))); \
2835 })
2836
2837 /*
2838 * Return true if revision is in range [since,until] inclusive.
2839 *
2840 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2841 */
2842 #define IS_REVID(p, since, until) \
2843 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2844
2845 #define IS_I830(dev_priv) ((dev_priv)->info.platform == INTEL_I830)
2846 #define IS_I845G(dev_priv) ((dev_priv)->info.platform == INTEL_I845G)
2847 #define IS_I85X(dev_priv) ((dev_priv)->info.platform == INTEL_I85X)
2848 #define IS_I865G(dev_priv) ((dev_priv)->info.platform == INTEL_I865G)
2849 #define IS_I915G(dev_priv) ((dev_priv)->info.platform == INTEL_I915G)
2850 #define IS_I915GM(dev_priv) ((dev_priv)->info.platform == INTEL_I915GM)
2851 #define IS_I945G(dev_priv) ((dev_priv)->info.platform == INTEL_I945G)
2852 #define IS_I945GM(dev_priv) ((dev_priv)->info.platform == INTEL_I945GM)
2853 #define IS_I965G(dev_priv) ((dev_priv)->info.platform == INTEL_I965G)
2854 #define IS_I965GM(dev_priv) ((dev_priv)->info.platform == INTEL_I965GM)
2855 #define IS_G45(dev_priv) ((dev_priv)->info.platform == INTEL_G45)
2856 #define IS_GM45(dev_priv) ((dev_priv)->info.platform == INTEL_GM45)
2857 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv))
2858 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001)
2859 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011)
2860 #define IS_PINEVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_PINEVIEW)
2861 #define IS_G33(dev_priv) ((dev_priv)->info.platform == INTEL_G33)
2862 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046)
2863 #define IS_IVYBRIDGE(dev_priv) ((dev_priv)->info.platform == INTEL_IVYBRIDGE)
2864 #define IS_IVB_GT1(dev_priv) (INTEL_DEVID(dev_priv) == 0x0156 || \
2865 INTEL_DEVID(dev_priv) == 0x0152 || \
2866 INTEL_DEVID(dev_priv) == 0x015a)
2867 #define IS_VALLEYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_VALLEYVIEW)
2868 #define IS_CHERRYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_CHERRYVIEW)
2869 #define IS_HASWELL(dev_priv) ((dev_priv)->info.platform == INTEL_HASWELL)
2870 #define IS_BROADWELL(dev_priv) ((dev_priv)->info.platform == INTEL_BROADWELL)
2871 #define IS_SKYLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_SKYLAKE)
2872 #define IS_BROXTON(dev_priv) ((dev_priv)->info.platform == INTEL_BROXTON)
2873 #define IS_KABYLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_KABYLAKE)
2874 #define IS_GEMINILAKE(dev_priv) ((dev_priv)->info.platform == INTEL_GEMINILAKE)
2875 #define IS_COFFEELAKE(dev_priv) ((dev_priv)->info.platform == INTEL_COFFEELAKE)
2876 #define IS_CANNONLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_CANNONLAKE)
2877 #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile)
2878 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2879 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2880 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \
2881 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \
2882 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \
2883 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2884 /* ULX machines are also considered ULT. */
2885 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \
2886 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2887 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \
2888 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2889 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \
2890 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2891 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \
2892 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2893 /* ULX machines are also considered ULT. */
2894 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \
2895 INTEL_DEVID(dev_priv) == 0x0A1E)
2896 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \
2897 INTEL_DEVID(dev_priv) == 0x1913 || \
2898 INTEL_DEVID(dev_priv) == 0x1916 || \
2899 INTEL_DEVID(dev_priv) == 0x1921 || \
2900 INTEL_DEVID(dev_priv) == 0x1926)
2901 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \
2902 INTEL_DEVID(dev_priv) == 0x1915 || \
2903 INTEL_DEVID(dev_priv) == 0x191E)
2904 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \
2905 INTEL_DEVID(dev_priv) == 0x5913 || \
2906 INTEL_DEVID(dev_priv) == 0x5916 || \
2907 INTEL_DEVID(dev_priv) == 0x5921 || \
2908 INTEL_DEVID(dev_priv) == 0x5926)
2909 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \
2910 INTEL_DEVID(dev_priv) == 0x5915 || \
2911 INTEL_DEVID(dev_priv) == 0x591E)
2912 #define IS_SKL_GT2(dev_priv) (IS_SKYLAKE(dev_priv) && \
2913 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0010)
2914 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \
2915 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2916 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \
2917 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0030)
2918 #define IS_KBL_GT2(dev_priv) (IS_KABYLAKE(dev_priv) && \
2919 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0010)
2920 #define IS_KBL_GT3(dev_priv) (IS_KABYLAKE(dev_priv) && \
2921 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2922 #define IS_CFL_ULT(dev_priv) (IS_COFFEELAKE(dev_priv) && \
2923 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2924
2925 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2926
2927 #define SKL_REVID_A0 0x0
2928 #define SKL_REVID_B0 0x1
2929 #define SKL_REVID_C0 0x2
2930 #define SKL_REVID_D0 0x3
2931 #define SKL_REVID_E0 0x4
2932 #define SKL_REVID_F0 0x5
2933 #define SKL_REVID_G0 0x6
2934 #define SKL_REVID_H0 0x7
2935
2936 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2937
2938 #define BXT_REVID_A0 0x0
2939 #define BXT_REVID_A1 0x1
2940 #define BXT_REVID_B0 0x3
2941 #define BXT_REVID_B_LAST 0x8
2942 #define BXT_REVID_C0 0x9
2943
2944 #define IS_BXT_REVID(dev_priv, since, until) \
2945 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2946
2947 #define KBL_REVID_A0 0x0
2948 #define KBL_REVID_B0 0x1
2949 #define KBL_REVID_C0 0x2
2950 #define KBL_REVID_D0 0x3
2951 #define KBL_REVID_E0 0x4
2952
2953 #define IS_KBL_REVID(dev_priv, since, until) \
2954 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2955
2956 #define GLK_REVID_A0 0x0
2957 #define GLK_REVID_A1 0x1
2958
2959 #define IS_GLK_REVID(dev_priv, since, until) \
2960 (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2961
2962 #define CNL_REVID_A0 0x0
2963 #define CNL_REVID_B0 0x1
2964
2965 #define IS_CNL_REVID(p, since, until) \
2966 (IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2967
2968 /*
2969 * The genX designation typically refers to the render engine, so render
2970 * capability related checks should use IS_GEN, while display and other checks
2971 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2972 * chips, etc.).
2973 */
2974 #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1)))
2975 #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2)))
2976 #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3)))
2977 #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4)))
2978 #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5)))
2979 #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6)))
2980 #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7)))
2981 #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8)))
2982 #define IS_GEN10(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(9)))
2983
2984 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp)
2985 #define IS_GEN9_LP(dev_priv) (IS_GEN9(dev_priv) && IS_LP(dev_priv))
2986 #define IS_GEN9_BC(dev_priv) (IS_GEN9(dev_priv) && !IS_LP(dev_priv))
2987
2988 #define ENGINE_MASK(id) BIT(id)
2989 #define RENDER_RING ENGINE_MASK(RCS)
2990 #define BSD_RING ENGINE_MASK(VCS)
2991 #define BLT_RING ENGINE_MASK(BCS)
2992 #define VEBOX_RING ENGINE_MASK(VECS)
2993 #define BSD2_RING ENGINE_MASK(VCS2)
2994 #define ALL_ENGINES (~0)
2995
2996 #define HAS_ENGINE(dev_priv, id) \
2997 (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
2998
2999 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
3000 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
3001 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
3002 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
3003
3004 #define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc)
3005 #define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop)
3006 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED))
3007 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \
3008 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
3009
3010 #define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical)
3011
3012 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
3013 ((dev_priv)->info.has_logical_ring_contexts)
3014 #define USES_PPGTT(dev_priv) (i915.enable_ppgtt)
3015 #define USES_FULL_PPGTT(dev_priv) (i915.enable_ppgtt >= 2)
3016 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915.enable_ppgtt == 3)
3017
3018 #define HAS_OVERLAY(dev_priv) ((dev_priv)->info.has_overlay)
3019 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
3020 ((dev_priv)->info.overlay_needs_physical)
3021
3022 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
3023 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv))
3024
3025 /* WaRsDisableCoarsePowerGating:skl,bxt */
3026 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
3027 (IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
3028
3029 /*
3030 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
3031 * even when in MSI mode. This results in spurious interrupt warnings if the
3032 * legacy irq no. is shared with another device. The kernel then disables that
3033 * interrupt source and so prevents the other device from working properly.
3034 */
3035 #define HAS_AUX_IRQ(dev_priv) ((dev_priv)->info.gen >= 5)
3036 #define HAS_GMBUS_IRQ(dev_priv) ((dev_priv)->info.has_gmbus_irq)
3037
3038 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
3039 * rows, which changed the alignment requirements and fence programming.
3040 */
3041 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
3042 !(IS_I915G(dev_priv) || \
3043 IS_I915GM(dev_priv)))
3044 #define SUPPORTS_TV(dev_priv) ((dev_priv)->info.supports_tv)
3045 #define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.has_hotplug)
3046
3047 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2)
3048 #define HAS_PIPE_CXSR(dev_priv) ((dev_priv)->info.has_pipe_cxsr)
3049 #define HAS_FBC(dev_priv) ((dev_priv)->info.has_fbc)
3050 #define HAS_CUR_FBC(dev_priv) (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_INFO(dev_priv)->gen >= 7)
3051
3052 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
3053
3054 #define HAS_DP_MST(dev_priv) ((dev_priv)->info.has_dp_mst)
3055
3056 #define HAS_DDI(dev_priv) ((dev_priv)->info.has_ddi)
3057 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
3058 #define HAS_PSR(dev_priv) ((dev_priv)->info.has_psr)
3059 #define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6)
3060 #define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p)
3061
3062 #define HAS_CSR(dev_priv) ((dev_priv)->info.has_csr)
3063
3064 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
3065 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
3066
3067 /*
3068 * For now, anything with a GuC requires uCode loading, and then supports
3069 * command submission once loaded. But these are logically independent
3070 * properties, so we have separate macros to test them.
3071 */
3072 #define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc)
3073 #define HAS_GUC_CT(dev_priv) ((dev_priv)->info.has_guc_ct)
3074 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3075 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv))
3076 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3077
3078 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
3079
3080 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu)
3081
3082 #define INTEL_PCH_DEVICE_ID_MASK 0xff80
3083 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
3084 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
3085 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
3086 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
3087 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
3088 #define INTEL_PCH_WPT_DEVICE_ID_TYPE 0x8c80
3089 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE 0x9c80
3090 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
3091 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
3092 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA280
3093 #define INTEL_PCH_CNP_DEVICE_ID_TYPE 0xA300
3094 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE 0x9D80
3095 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
3096 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
3097 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
3098
3099 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
3100 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
3101 #define HAS_PCH_CNP_LP(dev_priv) \
3102 ((dev_priv)->pch_id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
3103 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
3104 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
3105 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
3106 #define HAS_PCH_LPT_LP(dev_priv) \
3107 ((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
3108 (dev_priv)->pch_id == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
3109 #define HAS_PCH_LPT_H(dev_priv) \
3110 ((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
3111 (dev_priv)->pch_id == INTEL_PCH_WPT_DEVICE_ID_TYPE)
3112 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
3113 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
3114 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
3115 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
3116
3117 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
3118
3119 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
3120
3121 /* DPF == dynamic parity feature */
3122 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
3123 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
3124 2 : HAS_L3_DPF(dev_priv))
3125
3126 #define GT_FREQUENCY_MULTIPLIER 50
3127 #define GEN9_FREQ_SCALER 3
3128
3129 #include "i915_trace.h"
3130
3131 static inline bool intel_vtd_active(void)
3132 {
3133 #ifdef CONFIG_INTEL_IOMMU
3134 if (intel_iommu_gfx_mapped)
3135 return true;
3136 #endif
3137 return false;
3138 }
3139
3140 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
3141 {
3142 return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
3143 }
3144
3145 static inline bool
3146 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
3147 {
3148 return IS_BROXTON(dev_priv) && intel_vtd_active();
3149 }
3150
3151 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
3152 int enable_ppgtt);
3153
3154 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
3155
3156 /* i915_drv.c */
3157 void __printf(3, 4)
3158 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
3159 const char *fmt, ...);
3160
3161 #define i915_report_error(dev_priv, fmt, ...) \
3162 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
3163
3164 #ifdef CONFIG_COMPAT
3165 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
3166 unsigned long arg);
3167 #else
3168 #define i915_compat_ioctl NULL
3169 #endif
3170 extern const struct dev_pm_ops i915_pm_ops;
3171
3172 extern int i915_driver_load(struct pci_dev *pdev,
3173 const struct pci_device_id *ent);
3174 extern void i915_driver_unload(struct drm_device *dev);
3175 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
3176 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
3177
3178 #define I915_RESET_QUIET BIT(0)
3179 extern void i915_reset(struct drm_i915_private *i915, unsigned int flags);
3180 extern int i915_reset_engine(struct intel_engine_cs *engine,
3181 unsigned int flags);
3182
3183 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
3184 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
3185 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
3186 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
3187 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
3188 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
3189 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
3190 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
3191 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
3192
3193 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
3194 int intel_engines_init(struct drm_i915_private *dev_priv);
3195
3196 /* intel_hotplug.c */
3197 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
3198 u32 pin_mask, u32 long_mask);
3199 void intel_hpd_init(struct drm_i915_private *dev_priv);
3200 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
3201 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
3202 enum port intel_hpd_pin_to_port(enum hpd_pin pin);
3203 enum hpd_pin intel_hpd_pin(enum port port);
3204 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3205 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3206
3207 /* i915_irq.c */
3208 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
3209 {
3210 unsigned long delay;
3211
3212 if (unlikely(!i915.enable_hangcheck))
3213 return;
3214
3215 /* Don't continually defer the hangcheck so that it is always run at
3216 * least once after work has been scheduled on any ring. Otherwise,
3217 * we will ignore a hung ring if a second ring is kept busy.
3218 */
3219
3220 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
3221 queue_delayed_work(system_long_wq,
3222 &dev_priv->gpu_error.hangcheck_work, delay);
3223 }
3224
3225 __printf(3, 4)
3226 void i915_handle_error(struct drm_i915_private *dev_priv,
3227 u32 engine_mask,
3228 const char *fmt, ...);
3229
3230 extern void intel_irq_init(struct drm_i915_private *dev_priv);
3231 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
3232 int intel_irq_install(struct drm_i915_private *dev_priv);
3233 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
3234
3235 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3236 {
3237 return dev_priv->gvt;
3238 }
3239
3240 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3241 {
3242 return dev_priv->vgpu.active;
3243 }
3244
3245 void
3246 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3247 u32 status_mask);
3248
3249 void
3250 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3251 u32 status_mask);
3252
3253 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3254 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3255 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3256 uint32_t mask,
3257 uint32_t bits);
3258 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3259 uint32_t interrupt_mask,
3260 uint32_t enabled_irq_mask);
3261 static inline void
3262 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3263 {
3264 ilk_update_display_irq(dev_priv, bits, bits);
3265 }
3266 static inline void
3267 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3268 {
3269 ilk_update_display_irq(dev_priv, bits, 0);
3270 }
3271 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3272 enum pipe pipe,
3273 uint32_t interrupt_mask,
3274 uint32_t enabled_irq_mask);
3275 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3276 enum pipe pipe, uint32_t bits)
3277 {
3278 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3279 }
3280 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3281 enum pipe pipe, uint32_t bits)
3282 {
3283 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3284 }
3285 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3286 uint32_t interrupt_mask,
3287 uint32_t enabled_irq_mask);
3288 static inline void
3289 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3290 {
3291 ibx_display_interrupt_update(dev_priv, bits, bits);
3292 }
3293 static inline void
3294 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3295 {
3296 ibx_display_interrupt_update(dev_priv, bits, 0);
3297 }
3298
3299 /* i915_gem.c */
3300 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3301 struct drm_file *file_priv);
3302 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3303 struct drm_file *file_priv);
3304 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3305 struct drm_file *file_priv);
3306 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3307 struct drm_file *file_priv);
3308 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3309 struct drm_file *file_priv);
3310 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3311 struct drm_file *file_priv);
3312 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3313 struct drm_file *file_priv);
3314 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3315 struct drm_file *file_priv);
3316 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3317 struct drm_file *file_priv);
3318 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3319 struct drm_file *file_priv);
3320 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3321 struct drm_file *file);
3322 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3323 struct drm_file *file);
3324 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3325 struct drm_file *file_priv);
3326 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3327 struct drm_file *file_priv);
3328 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
3329 struct drm_file *file_priv);
3330 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
3331 struct drm_file *file_priv);
3332 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3333 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
3334 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3335 struct drm_file *file);
3336 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3337 struct drm_file *file_priv);
3338 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3339 struct drm_file *file_priv);
3340 void i915_gem_sanitize(struct drm_i915_private *i915);
3341 int i915_gem_load_init(struct drm_i915_private *dev_priv);
3342 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv);
3343 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3344 int i915_gem_freeze(struct drm_i915_private *dev_priv);
3345 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3346
3347 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
3348 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3349 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3350 const struct drm_i915_gem_object_ops *ops);
3351 struct drm_i915_gem_object *
3352 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
3353 struct drm_i915_gem_object *
3354 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
3355 const void *data, size_t size);
3356 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3357 void i915_gem_free_object(struct drm_gem_object *obj);
3358
3359 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
3360 {
3361 /* A single pass should suffice to release all the freed objects (along
3362 * most call paths) , but be a little more paranoid in that freeing
3363 * the objects does take a little amount of time, during which the rcu
3364 * callbacks could have added new objects into the freed list, and
3365 * armed the work again.
3366 */
3367 do {
3368 rcu_barrier();
3369 } while (flush_work(&i915->mm.free_work));
3370 }
3371
3372 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
3373 {
3374 /*
3375 * Similar to objects above (see i915_gem_drain_freed-objects), in
3376 * general we have workers that are armed by RCU and then rearm
3377 * themselves in their callbacks. To be paranoid, we need to
3378 * drain the workqueue a second time after waiting for the RCU
3379 * grace period so that we catch work queued via RCU from the first
3380 * pass. As neither drain_workqueue() nor flush_workqueue() report
3381 * a result, we make an assumption that we only don't require more
3382 * than 2 passes to catch all recursive RCU delayed work.
3383 *
3384 */
3385 int pass = 2;
3386 do {
3387 rcu_barrier();
3388 drain_workqueue(i915->wq);
3389 } while (--pass);
3390 }
3391
3392 struct i915_vma * __must_check
3393 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3394 const struct i915_ggtt_view *view,
3395 u64 size,
3396 u64 alignment,
3397 u64 flags);
3398
3399 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3400 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3401
3402 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3403
3404 static inline int __sg_page_count(const struct scatterlist *sg)
3405 {
3406 return sg->length >> PAGE_SHIFT;
3407 }
3408
3409 struct scatterlist *
3410 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3411 unsigned int n, unsigned int *offset);
3412
3413 struct page *
3414 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3415 unsigned int n);
3416
3417 struct page *
3418 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3419 unsigned int n);
3420
3421 dma_addr_t
3422 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3423 unsigned long n);
3424
3425 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3426 struct sg_table *pages);
3427 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3428
3429 static inline int __must_check
3430 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3431 {
3432 might_lock(&obj->mm.lock);
3433
3434 if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3435 return 0;
3436
3437 return __i915_gem_object_get_pages(obj);
3438 }
3439
3440 static inline void
3441 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3442 {
3443 GEM_BUG_ON(!obj->mm.pages);
3444
3445 atomic_inc(&obj->mm.pages_pin_count);
3446 }
3447
3448 static inline bool
3449 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3450 {
3451 return atomic_read(&obj->mm.pages_pin_count);
3452 }
3453
3454 static inline void
3455 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3456 {
3457 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3458 GEM_BUG_ON(!obj->mm.pages);
3459
3460 atomic_dec(&obj->mm.pages_pin_count);
3461 }
3462
3463 static inline void
3464 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3465 {
3466 __i915_gem_object_unpin_pages(obj);
3467 }
3468
3469 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3470 I915_MM_NORMAL = 0,
3471 I915_MM_SHRINKER
3472 };
3473
3474 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3475 enum i915_mm_subclass subclass);
3476 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3477
3478 enum i915_map_type {
3479 I915_MAP_WB = 0,
3480 I915_MAP_WC,
3481 #define I915_MAP_OVERRIDE BIT(31)
3482 I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
3483 I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
3484 };
3485
3486 /**
3487 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3488 * @obj: the object to map into kernel address space
3489 * @type: the type of mapping, used to select pgprot_t
3490 *
3491 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3492 * pages and then returns a contiguous mapping of the backing storage into
3493 * the kernel address space. Based on the @type of mapping, the PTE will be
3494 * set to either WriteBack or WriteCombine (via pgprot_t).
3495 *
3496 * The caller is responsible for calling i915_gem_object_unpin_map() when the
3497 * mapping is no longer required.
3498 *
3499 * Returns the pointer through which to access the mapped object, or an
3500 * ERR_PTR() on error.
3501 */
3502 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3503 enum i915_map_type type);
3504
3505 /**
3506 * i915_gem_object_unpin_map - releases an earlier mapping
3507 * @obj: the object to unmap
3508 *
3509 * After pinning the object and mapping its pages, once you are finished
3510 * with your access, call i915_gem_object_unpin_map() to release the pin
3511 * upon the mapping. Once the pin count reaches zero, that mapping may be
3512 * removed.
3513 */
3514 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3515 {
3516 i915_gem_object_unpin_pages(obj);
3517 }
3518
3519 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3520 unsigned int *needs_clflush);
3521 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3522 unsigned int *needs_clflush);
3523 #define CLFLUSH_BEFORE BIT(0)
3524 #define CLFLUSH_AFTER BIT(1)
3525 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER)
3526
3527 static inline void
3528 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3529 {
3530 i915_gem_object_unpin_pages(obj);
3531 }
3532
3533 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3534 void i915_vma_move_to_active(struct i915_vma *vma,
3535 struct drm_i915_gem_request *req,
3536 unsigned int flags);
3537 int i915_gem_dumb_create(struct drm_file *file_priv,
3538 struct drm_device *dev,
3539 struct drm_mode_create_dumb *args);
3540 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3541 uint32_t handle, uint64_t *offset);
3542 int i915_gem_mmap_gtt_version(void);
3543
3544 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3545 struct drm_i915_gem_object *new,
3546 unsigned frontbuffer_bits);
3547
3548 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3549
3550 struct drm_i915_gem_request *
3551 i915_gem_find_active_request(struct intel_engine_cs *engine);
3552
3553 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3554
3555 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3556 {
3557 return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3558 }
3559
3560 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3561 {
3562 return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3563 }
3564
3565 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3566 {
3567 return unlikely(test_bit(I915_WEDGED, &error->flags));
3568 }
3569
3570 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3571 {
3572 return i915_reset_backoff(error) | i915_terminally_wedged(error);
3573 }
3574
3575 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3576 {
3577 return READ_ONCE(error->reset_count);
3578 }
3579
3580 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3581 struct intel_engine_cs *engine)
3582 {
3583 return READ_ONCE(error->reset_engine_count[engine->id]);
3584 }
3585
3586 struct drm_i915_gem_request *
3587 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3588 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3589 void i915_gem_reset(struct drm_i915_private *dev_priv);
3590 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3591 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3592 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3593 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3594 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3595 struct drm_i915_gem_request *request);
3596
3597 void i915_gem_init_mmio(struct drm_i915_private *i915);
3598 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3599 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3600 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3601 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3602 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3603 unsigned int flags);
3604 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3605 void i915_gem_resume(struct drm_i915_private *dev_priv);
3606 int i915_gem_fault(struct vm_fault *vmf);
3607 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3608 unsigned int flags,
3609 long timeout,
3610 struct intel_rps_client *rps);
3611 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3612 unsigned int flags,
3613 int priority);
3614 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3615
3616 int __must_check
3617 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3618 int __must_check
3619 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3620 int __must_check
3621 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3622 struct i915_vma * __must_check
3623 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3624 u32 alignment,
3625 const struct i915_ggtt_view *view);
3626 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3627 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3628 int align);
3629 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3630 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3631
3632 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3633 enum i915_cache_level cache_level);
3634
3635 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3636 struct dma_buf *dma_buf);
3637
3638 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3639 struct drm_gem_object *gem_obj, int flags);
3640
3641 static inline struct i915_hw_ppgtt *
3642 i915_vm_to_ppgtt(struct i915_address_space *vm)
3643 {
3644 return container_of(vm, struct i915_hw_ppgtt, base);
3645 }
3646
3647 /* i915_gem_fence_reg.c */
3648 int __must_check i915_vma_get_fence(struct i915_vma *vma);
3649 int __must_check i915_vma_put_fence(struct i915_vma *vma);
3650
3651 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3652 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3653
3654 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3655 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3656 struct sg_table *pages);
3657 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3658 struct sg_table *pages);
3659
3660 static inline struct i915_gem_context *
3661 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3662 {
3663 return idr_find(&file_priv->context_idr, id);
3664 }
3665
3666 static inline struct i915_gem_context *
3667 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3668 {
3669 struct i915_gem_context *ctx;
3670
3671 rcu_read_lock();
3672 ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3673 if (ctx && !kref_get_unless_zero(&ctx->ref))
3674 ctx = NULL;
3675 rcu_read_unlock();
3676
3677 return ctx;
3678 }
3679
3680 static inline struct intel_timeline *
3681 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx,
3682 struct intel_engine_cs *engine)
3683 {
3684 struct i915_address_space *vm;
3685
3686 vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base;
3687 return &vm->timeline.engine[engine->id];
3688 }
3689
3690 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3691 struct drm_file *file);
3692 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3693 struct drm_file *file);
3694 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3695 struct drm_file *file);
3696 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3697 struct i915_gem_context *ctx,
3698 uint32_t *reg_state);
3699
3700 /* i915_gem_evict.c */
3701 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3702 u64 min_size, u64 alignment,
3703 unsigned cache_level,
3704 u64 start, u64 end,
3705 unsigned flags);
3706 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3707 struct drm_mm_node *node,
3708 unsigned int flags);
3709 int i915_gem_evict_vm(struct i915_address_space *vm);
3710
3711 /* belongs in i915_gem_gtt.h */
3712 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3713 {
3714 wmb();
3715 if (INTEL_GEN(dev_priv) < 6)
3716 intel_gtt_chipset_flush();
3717 }
3718
3719 /* i915_gem_stolen.c */
3720 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3721 struct drm_mm_node *node, u64 size,
3722 unsigned alignment);
3723 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3724 struct drm_mm_node *node, u64 size,
3725 unsigned alignment, u64 start,
3726 u64 end);
3727 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3728 struct drm_mm_node *node);
3729 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3730 void i915_gem_cleanup_stolen(struct drm_device *dev);
3731 struct drm_i915_gem_object *
3732 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size);
3733 struct drm_i915_gem_object *
3734 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3735 u32 stolen_offset,
3736 u32 gtt_offset,
3737 u32 size);
3738
3739 /* i915_gem_internal.c */
3740 struct drm_i915_gem_object *
3741 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3742 phys_addr_t size);
3743
3744 /* i915_gem_shrinker.c */
3745 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3746 unsigned long target,
3747 unsigned long *nr_scanned,
3748 unsigned flags);
3749 #define I915_SHRINK_PURGEABLE 0x1
3750 #define I915_SHRINK_UNBOUND 0x2
3751 #define I915_SHRINK_BOUND 0x4
3752 #define I915_SHRINK_ACTIVE 0x8
3753 #define I915_SHRINK_VMAPS 0x10
3754 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3755 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3756 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3757
3758
3759 /* i915_gem_tiling.c */
3760 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3761 {
3762 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3763
3764 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3765 i915_gem_object_is_tiled(obj);
3766 }
3767
3768 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3769 unsigned int tiling, unsigned int stride);
3770 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3771 unsigned int tiling, unsigned int stride);
3772
3773 /* i915_debugfs.c */
3774 #ifdef CONFIG_DEBUG_FS
3775 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3776 int i915_debugfs_connector_add(struct drm_connector *connector);
3777 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3778 #else
3779 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3780 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3781 { return 0; }
3782 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3783 #endif
3784
3785 /* i915_gpu_error.c */
3786 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3787
3788 __printf(2, 3)
3789 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3790 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3791 const struct i915_gpu_state *gpu);
3792 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3793 struct drm_i915_private *i915,
3794 size_t count, loff_t pos);
3795 static inline void i915_error_state_buf_release(
3796 struct drm_i915_error_state_buf *eb)
3797 {
3798 kfree(eb->buf);
3799 }
3800
3801 struct i915_gpu_state *i915_capture_gpu_state(struct drm_i915_private *i915);
3802 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3803 u32 engine_mask,
3804 const char *error_msg);
3805
3806 static inline struct i915_gpu_state *
3807 i915_gpu_state_get(struct i915_gpu_state *gpu)
3808 {
3809 kref_get(&gpu->ref);
3810 return gpu;
3811 }
3812
3813 void __i915_gpu_state_free(struct kref *kref);
3814 static inline void i915_gpu_state_put(struct i915_gpu_state *gpu)
3815 {
3816 if (gpu)
3817 kref_put(&gpu->ref, __i915_gpu_state_free);
3818 }
3819
3820 struct i915_gpu_state *i915_first_error_state(struct drm_i915_private *i915);
3821 void i915_reset_error_state(struct drm_i915_private *i915);
3822
3823 #else
3824
3825 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3826 u32 engine_mask,
3827 const char *error_msg)
3828 {
3829 }
3830
3831 static inline struct i915_gpu_state *
3832 i915_first_error_state(struct drm_i915_private *i915)
3833 {
3834 return NULL;
3835 }
3836
3837 static inline void i915_reset_error_state(struct drm_i915_private *i915)
3838 {
3839 }
3840
3841 #endif
3842
3843 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3844
3845 /* i915_cmd_parser.c */
3846 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3847 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3848 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3849 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3850 struct drm_i915_gem_object *batch_obj,
3851 struct drm_i915_gem_object *shadow_batch_obj,
3852 u32 batch_start_offset,
3853 u32 batch_len,
3854 bool is_master);
3855
3856 /* i915_perf.c */
3857 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3858 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3859 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3860 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3861
3862 /* i915_suspend.c */
3863 extern int i915_save_state(struct drm_i915_private *dev_priv);
3864 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3865
3866 /* i915_sysfs.c */
3867 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3868 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3869
3870 /* intel_lpe_audio.c */
3871 int intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3872 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3873 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3874 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3875 enum pipe pipe, enum port port,
3876 const void *eld, int ls_clock, bool dp_output);
3877
3878 /* intel_i2c.c */
3879 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3880 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3881 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3882 unsigned int pin);
3883
3884 extern struct i2c_adapter *
3885 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3886 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3887 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3888 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3889 {
3890 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3891 }
3892 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3893
3894 /* intel_bios.c */
3895 void intel_bios_init(struct drm_i915_private *dev_priv);
3896 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3897 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3898 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3899 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3900 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3901 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3902 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3903 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3904 enum port port);
3905 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3906 enum port port);
3907
3908
3909 /* intel_opregion.c */
3910 #ifdef CONFIG_ACPI
3911 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3912 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3913 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3914 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3915 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3916 bool enable);
3917 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3918 pci_power_t state);
3919 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3920 #else
3921 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3922 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3923 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3924 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3925 {
3926 }
3927 static inline int
3928 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3929 {
3930 return 0;
3931 }
3932 static inline int
3933 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3934 {
3935 return 0;
3936 }
3937 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3938 {
3939 return -ENODEV;
3940 }
3941 #endif
3942
3943 /* intel_acpi.c */
3944 #ifdef CONFIG_ACPI
3945 extern void intel_register_dsm_handler(void);
3946 extern void intel_unregister_dsm_handler(void);
3947 #else
3948 static inline void intel_register_dsm_handler(void) { return; }
3949 static inline void intel_unregister_dsm_handler(void) { return; }
3950 #endif /* CONFIG_ACPI */
3951
3952 /* intel_device_info.c */
3953 static inline struct intel_device_info *
3954 mkwrite_device_info(struct drm_i915_private *dev_priv)
3955 {
3956 return (struct intel_device_info *)&dev_priv->info;
3957 }
3958
3959 const char *intel_platform_name(enum intel_platform platform);
3960 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
3961 void intel_device_info_dump(struct drm_i915_private *dev_priv);
3962
3963 /* modesetting */
3964 extern void intel_modeset_init_hw(struct drm_device *dev);
3965 extern int intel_modeset_init(struct drm_device *dev);
3966 extern void intel_modeset_gem_init(struct drm_device *dev);
3967 extern void intel_modeset_cleanup(struct drm_device *dev);
3968 extern int intel_connector_register(struct drm_connector *);
3969 extern void intel_connector_unregister(struct drm_connector *);
3970 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3971 bool state);
3972 extern void intel_display_resume(struct drm_device *dev);
3973 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3974 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3975 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3976 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3977 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3978 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3979 bool enable);
3980
3981 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3982 struct drm_file *file);
3983
3984 /* overlay */
3985 extern struct intel_overlay_error_state *
3986 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3987 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3988 struct intel_overlay_error_state *error);
3989
3990 extern struct intel_display_error_state *
3991 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3992 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3993 struct intel_display_error_state *error);
3994
3995 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3996 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3997 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3998 u32 reply_mask, u32 reply, int timeout_base_ms);
3999
4000 /* intel_sideband.c */
4001 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
4002 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
4003 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
4004 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
4005 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
4006 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
4007 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4008 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
4009 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4010 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
4011 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4012 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
4013 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
4014 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
4015 enum intel_sbi_destination destination);
4016 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
4017 enum intel_sbi_destination destination);
4018 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
4019 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4020
4021 /* intel_dpio_phy.c */
4022 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
4023 enum dpio_phy *phy, enum dpio_channel *ch);
4024 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
4025 enum port port, u32 margin, u32 scale,
4026 u32 enable, u32 deemphasis);
4027 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4028 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4029 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
4030 enum dpio_phy phy);
4031 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
4032 enum dpio_phy phy);
4033 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
4034 uint8_t lane_count);
4035 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
4036 uint8_t lane_lat_optim_mask);
4037 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
4038
4039 void chv_set_phy_signal_level(struct intel_encoder *encoder,
4040 u32 deemph_reg_value, u32 margin_reg_value,
4041 bool uniq_trans_scale);
4042 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
4043 bool reset);
4044 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
4045 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4046 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
4047 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
4048
4049 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
4050 u32 demph_reg_value, u32 preemph_reg_value,
4051 u32 uniqtranscale_reg_value, u32 tx3_demph);
4052 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
4053 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4054 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
4055
4056 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
4057 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
4058 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
4059 const i915_reg_t reg);
4060
4061 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
4062 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
4063
4064 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
4065 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
4066 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
4067 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
4068
4069 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
4070 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
4071 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
4072 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
4073
4074 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
4075 * will be implemented using 2 32-bit writes in an arbitrary order with
4076 * an arbitrary delay between them. This can cause the hardware to
4077 * act upon the intermediate value, possibly leading to corruption and
4078 * machine death. For this reason we do not support I915_WRITE64, or
4079 * dev_priv->uncore.funcs.mmio_writeq.
4080 *
4081 * When reading a 64-bit value as two 32-bit values, the delay may cause
4082 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
4083 * occasionally a 64-bit register does not actualy support a full readq
4084 * and must be read using two 32-bit reads.
4085 *
4086 * You have been warned.
4087 */
4088 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
4089
4090 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
4091 u32 upper, lower, old_upper, loop = 0; \
4092 upper = I915_READ(upper_reg); \
4093 do { \
4094 old_upper = upper; \
4095 lower = I915_READ(lower_reg); \
4096 upper = I915_READ(upper_reg); \
4097 } while (upper != old_upper && loop++ < 2); \
4098 (u64)upper << 32 | lower; })
4099
4100 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
4101 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
4102
4103 #define __raw_read(x, s) \
4104 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
4105 i915_reg_t reg) \
4106 { \
4107 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
4108 }
4109
4110 #define __raw_write(x, s) \
4111 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
4112 i915_reg_t reg, uint##x##_t val) \
4113 { \
4114 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
4115 }
4116 __raw_read(8, b)
4117 __raw_read(16, w)
4118 __raw_read(32, l)
4119 __raw_read(64, q)
4120
4121 __raw_write(8, b)
4122 __raw_write(16, w)
4123 __raw_write(32, l)
4124 __raw_write(64, q)
4125
4126 #undef __raw_read
4127 #undef __raw_write
4128
4129 /* These are untraced mmio-accessors that are only valid to be used inside
4130 * critical sections, such as inside IRQ handlers, where forcewake is explicitly
4131 * controlled.
4132 *
4133 * Think twice, and think again, before using these.
4134 *
4135 * As an example, these accessors can possibly be used between:
4136 *
4137 * spin_lock_irq(&dev_priv->uncore.lock);
4138 * intel_uncore_forcewake_get__locked();
4139 *
4140 * and
4141 *
4142 * intel_uncore_forcewake_put__locked();
4143 * spin_unlock_irq(&dev_priv->uncore.lock);
4144 *
4145 *
4146 * Note: some registers may not need forcewake held, so
4147 * intel_uncore_forcewake_{get,put} can be omitted, see
4148 * intel_uncore_forcewake_for_reg().
4149 *
4150 * Certain architectures will die if the same cacheline is concurrently accessed
4151 * by different clients (e.g. on Ivybridge). Access to registers should
4152 * therefore generally be serialised, by either the dev_priv->uncore.lock or
4153 * a more localised lock guarding all access to that bank of registers.
4154 */
4155 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
4156 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
4157 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
4158 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
4159
4160 /* "Broadcast RGB" property */
4161 #define INTEL_BROADCAST_RGB_AUTO 0
4162 #define INTEL_BROADCAST_RGB_FULL 1
4163 #define INTEL_BROADCAST_RGB_LIMITED 2
4164
4165 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
4166 {
4167 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4168 return VLV_VGACNTRL;
4169 else if (INTEL_GEN(dev_priv) >= 5)
4170 return CPU_VGACNTRL;
4171 else
4172 return VGACNTRL;
4173 }
4174
4175 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
4176 {
4177 unsigned long j = msecs_to_jiffies(m);
4178
4179 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4180 }
4181
4182 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
4183 {
4184 /* nsecs_to_jiffies64() does not guard against overflow */
4185 if (NSEC_PER_SEC % HZ &&
4186 div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
4187 return MAX_JIFFY_OFFSET;
4188
4189 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
4190 }
4191
4192 static inline unsigned long
4193 timespec_to_jiffies_timeout(const struct timespec *value)
4194 {
4195 unsigned long j = timespec_to_jiffies(value);
4196
4197 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4198 }
4199
4200 /*
4201 * If you need to wait X milliseconds between events A and B, but event B
4202 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
4203 * when event A happened, then just before event B you call this function and
4204 * pass the timestamp as the first argument, and X as the second argument.
4205 */
4206 static inline void
4207 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
4208 {
4209 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
4210
4211 /*
4212 * Don't re-read the value of "jiffies" every time since it may change
4213 * behind our back and break the math.
4214 */
4215 tmp_jiffies = jiffies;
4216 target_jiffies = timestamp_jiffies +
4217 msecs_to_jiffies_timeout(to_wait_ms);
4218
4219 if (time_after(target_jiffies, tmp_jiffies)) {
4220 remaining_jiffies = target_jiffies - tmp_jiffies;
4221 while (remaining_jiffies)
4222 remaining_jiffies =
4223 schedule_timeout_uninterruptible(remaining_jiffies);
4224 }
4225 }
4226
4227 static inline bool
4228 __i915_request_irq_complete(const struct drm_i915_gem_request *req)
4229 {
4230 struct intel_engine_cs *engine = req->engine;
4231 u32 seqno;
4232
4233 /* Note that the engine may have wrapped around the seqno, and
4234 * so our request->global_seqno will be ahead of the hardware,
4235 * even though it completed the request before wrapping. We catch
4236 * this by kicking all the waiters before resetting the seqno
4237 * in hardware, and also signal the fence.
4238 */
4239 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &req->fence.flags))
4240 return true;
4241
4242 /* The request was dequeued before we were awoken. We check after
4243 * inspecting the hw to confirm that this was the same request
4244 * that generated the HWS update. The memory barriers within
4245 * the request execution are sufficient to ensure that a check
4246 * after reading the value from hw matches this request.
4247 */
4248 seqno = i915_gem_request_global_seqno(req);
4249 if (!seqno)
4250 return false;
4251
4252 /* Before we do the heavier coherent read of the seqno,
4253 * check the value (hopefully) in the CPU cacheline.
4254 */
4255 if (__i915_gem_request_completed(req, seqno))
4256 return true;
4257
4258 /* Ensure our read of the seqno is coherent so that we
4259 * do not "miss an interrupt" (i.e. if this is the last
4260 * request and the seqno write from the GPU is not visible
4261 * by the time the interrupt fires, we will see that the
4262 * request is incomplete and go back to sleep awaiting
4263 * another interrupt that will never come.)
4264 *
4265 * Strictly, we only need to do this once after an interrupt,
4266 * but it is easier and safer to do it every time the waiter
4267 * is woken.
4268 */
4269 if (engine->irq_seqno_barrier &&
4270 test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
4271 struct intel_breadcrumbs *b = &engine->breadcrumbs;
4272
4273 /* The ordering of irq_posted versus applying the barrier
4274 * is crucial. The clearing of the current irq_posted must
4275 * be visible before we perform the barrier operation,
4276 * such that if a subsequent interrupt arrives, irq_posted
4277 * is reasserted and our task rewoken (which causes us to
4278 * do another __i915_request_irq_complete() immediately
4279 * and reapply the barrier). Conversely, if the clear
4280 * occurs after the barrier, then an interrupt that arrived
4281 * whilst we waited on the barrier would not trigger a
4282 * barrier on the next pass, and the read may not see the
4283 * seqno update.
4284 */
4285 engine->irq_seqno_barrier(engine);
4286
4287 /* If we consume the irq, but we are no longer the bottom-half,
4288 * the real bottom-half may not have serialised their own
4289 * seqno check with the irq-barrier (i.e. may have inspected
4290 * the seqno before we believe it coherent since they see
4291 * irq_posted == false but we are still running).
4292 */
4293 spin_lock_irq(&b->irq_lock);
4294 if (b->irq_wait && b->irq_wait->tsk != current)
4295 /* Note that if the bottom-half is changed as we
4296 * are sending the wake-up, the new bottom-half will
4297 * be woken by whomever made the change. We only have
4298 * to worry about when we steal the irq-posted for
4299 * ourself.
4300 */
4301 wake_up_process(b->irq_wait->tsk);
4302 spin_unlock_irq(&b->irq_lock);
4303
4304 if (__i915_gem_request_completed(req, seqno))
4305 return true;
4306 }
4307
4308 return false;
4309 }
4310
4311 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
4312 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
4313
4314 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
4315 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
4316 * perform the operation. To check beforehand, pass in the parameters to
4317 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
4318 * you only need to pass in the minor offsets, page-aligned pointers are
4319 * always valid.
4320 *
4321 * For just checking for SSE4.1, in the foreknowledge that the future use
4322 * will be correctly aligned, just use i915_has_memcpy_from_wc().
4323 */
4324 #define i915_can_memcpy_from_wc(dst, src, len) \
4325 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
4326
4327 #define i915_has_memcpy_from_wc() \
4328 i915_memcpy_from_wc(NULL, NULL, 0)
4329
4330 /* i915_mm.c */
4331 int remap_io_mapping(struct vm_area_struct *vma,
4332 unsigned long addr, unsigned long pfn, unsigned long size,
4333 struct io_mapping *iomap);
4334
4335 static inline bool
4336 intel_engine_can_store_dword(struct intel_engine_cs *engine)
4337 {
4338 return __intel_engine_can_store_dword(INTEL_GEN(engine->i915),
4339 engine->class);
4340 }
4341
4342 #endif