]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.h
c1aef3a1ceb9a21d6e26f3e9528ab9e13988ab2c
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/reservation.h>
45 #include <linux/shmem_fs.h>
46
47 #include <drm/drmP.h>
48 #include <drm/intel-gtt.h>
49 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
50 #include <drm/drm_gem.h>
51 #include <drm/drm_auth.h>
52 #include <drm/drm_cache.h>
53
54 #include "i915_params.h"
55 #include "i915_reg.h"
56 #include "i915_utils.h"
57
58 #include "intel_uncore.h"
59 #include "intel_bios.h"
60 #include "intel_dpll_mgr.h"
61 #include "intel_uc.h"
62 #include "intel_lrc.h"
63 #include "intel_ringbuffer.h"
64
65 #include "i915_gem.h"
66 #include "i915_gem_context.h"
67 #include "i915_gem_fence_reg.h"
68 #include "i915_gem_object.h"
69 #include "i915_gem_gtt.h"
70 #include "i915_gem_render_state.h"
71 #include "i915_gem_request.h"
72 #include "i915_gem_timeline.h"
73
74 #include "i915_vma.h"
75
76 #include "intel_gvt.h"
77
78 /* General customization:
79 */
80
81 #define DRIVER_NAME "i915"
82 #define DRIVER_DESC "Intel Graphics"
83 #define DRIVER_DATE "20170907"
84 #define DRIVER_TIMESTAMP 1504772900
85
86 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
87 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
88 * which may not necessarily be a user visible problem. This will either
89 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
90 * enable distros and users to tailor their preferred amount of i915 abrt
91 * spam.
92 */
93 #define I915_STATE_WARN(condition, format...) ({ \
94 int __ret_warn_on = !!(condition); \
95 if (unlikely(__ret_warn_on)) \
96 if (!WARN(i915.verbose_state_checks, format)) \
97 DRM_ERROR(format); \
98 unlikely(__ret_warn_on); \
99 })
100
101 #define I915_STATE_WARN_ON(x) \
102 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
103
104 bool __i915_inject_load_failure(const char *func, int line);
105 #define i915_inject_load_failure() \
106 __i915_inject_load_failure(__func__, __LINE__)
107
108 typedef struct {
109 uint32_t val;
110 } uint_fixed_16_16_t;
111
112 #define FP_16_16_MAX ({ \
113 uint_fixed_16_16_t fp; \
114 fp.val = UINT_MAX; \
115 fp; \
116 })
117
118 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
119 {
120 if (val.val == 0)
121 return true;
122 return false;
123 }
124
125 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val)
126 {
127 uint_fixed_16_16_t fp;
128
129 WARN_ON(val >> 16);
130
131 fp.val = val << 16;
132 return fp;
133 }
134
135 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp)
136 {
137 return DIV_ROUND_UP(fp.val, 1 << 16);
138 }
139
140 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp)
141 {
142 return fp.val >> 16;
143 }
144
145 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1,
146 uint_fixed_16_16_t min2)
147 {
148 uint_fixed_16_16_t min;
149
150 min.val = min(min1.val, min2.val);
151 return min;
152 }
153
154 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1,
155 uint_fixed_16_16_t max2)
156 {
157 uint_fixed_16_16_t max;
158
159 max.val = max(max1.val, max2.val);
160 return max;
161 }
162
163 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val)
164 {
165 uint_fixed_16_16_t fp;
166 WARN_ON(val >> 32);
167 fp.val = clamp_t(uint32_t, val, 0, ~0);
168 return fp;
169 }
170
171 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
172 uint_fixed_16_16_t d)
173 {
174 return DIV_ROUND_UP(val.val, d.val);
175 }
176
177 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
178 uint_fixed_16_16_t mul)
179 {
180 uint64_t intermediate_val;
181
182 intermediate_val = (uint64_t) val * mul.val;
183 intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
184 WARN_ON(intermediate_val >> 32);
185 return clamp_t(uint32_t, intermediate_val, 0, ~0);
186 }
187
188 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
189 uint_fixed_16_16_t mul)
190 {
191 uint64_t intermediate_val;
192
193 intermediate_val = (uint64_t) val.val * mul.val;
194 intermediate_val = intermediate_val >> 16;
195 return clamp_u64_to_fixed16(intermediate_val);
196 }
197
198 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d)
199 {
200 uint64_t interm_val;
201
202 interm_val = (uint64_t)val << 16;
203 interm_val = DIV_ROUND_UP_ULL(interm_val, d);
204 return clamp_u64_to_fixed16(interm_val);
205 }
206
207 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
208 uint_fixed_16_16_t d)
209 {
210 uint64_t interm_val;
211
212 interm_val = (uint64_t)val << 16;
213 interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
214 WARN_ON(interm_val >> 32);
215 return clamp_t(uint32_t, interm_val, 0, ~0);
216 }
217
218 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val,
219 uint_fixed_16_16_t mul)
220 {
221 uint64_t intermediate_val;
222
223 intermediate_val = (uint64_t) val * mul.val;
224 return clamp_u64_to_fixed16(intermediate_val);
225 }
226
227 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1,
228 uint_fixed_16_16_t add2)
229 {
230 uint64_t interm_sum;
231
232 interm_sum = (uint64_t) add1.val + add2.val;
233 return clamp_u64_to_fixed16(interm_sum);
234 }
235
236 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1,
237 uint32_t add2)
238 {
239 uint64_t interm_sum;
240 uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2);
241
242 interm_sum = (uint64_t) add1.val + interm_add2.val;
243 return clamp_u64_to_fixed16(interm_sum);
244 }
245
246 static inline const char *yesno(bool v)
247 {
248 return v ? "yes" : "no";
249 }
250
251 static inline const char *onoff(bool v)
252 {
253 return v ? "on" : "off";
254 }
255
256 static inline const char *enableddisabled(bool v)
257 {
258 return v ? "enabled" : "disabled";
259 }
260
261 enum pipe {
262 INVALID_PIPE = -1,
263 PIPE_A = 0,
264 PIPE_B,
265 PIPE_C,
266 _PIPE_EDP,
267 I915_MAX_PIPES = _PIPE_EDP
268 };
269 #define pipe_name(p) ((p) + 'A')
270
271 enum transcoder {
272 TRANSCODER_A = 0,
273 TRANSCODER_B,
274 TRANSCODER_C,
275 TRANSCODER_EDP,
276 TRANSCODER_DSI_A,
277 TRANSCODER_DSI_C,
278 I915_MAX_TRANSCODERS
279 };
280
281 static inline const char *transcoder_name(enum transcoder transcoder)
282 {
283 switch (transcoder) {
284 case TRANSCODER_A:
285 return "A";
286 case TRANSCODER_B:
287 return "B";
288 case TRANSCODER_C:
289 return "C";
290 case TRANSCODER_EDP:
291 return "EDP";
292 case TRANSCODER_DSI_A:
293 return "DSI A";
294 case TRANSCODER_DSI_C:
295 return "DSI C";
296 default:
297 return "<invalid>";
298 }
299 }
300
301 static inline bool transcoder_is_dsi(enum transcoder transcoder)
302 {
303 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
304 }
305
306 /*
307 * Global legacy plane identifier. Valid only for primary/sprite
308 * planes on pre-g4x, and only for primary planes on g4x+.
309 */
310 enum plane {
311 PLANE_A,
312 PLANE_B,
313 PLANE_C,
314 };
315 #define plane_name(p) ((p) + 'A')
316
317 #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A')
318
319 /*
320 * Per-pipe plane identifier.
321 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
322 * number of planes per CRTC. Not all platforms really have this many planes,
323 * which means some arrays of size I915_MAX_PLANES may have unused entries
324 * between the topmost sprite plane and the cursor plane.
325 *
326 * This is expected to be passed to various register macros
327 * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care.
328 */
329 enum plane_id {
330 PLANE_PRIMARY,
331 PLANE_SPRITE0,
332 PLANE_SPRITE1,
333 PLANE_SPRITE2,
334 PLANE_CURSOR,
335 I915_MAX_PLANES,
336 };
337
338 #define for_each_plane_id_on_crtc(__crtc, __p) \
339 for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \
340 for_each_if ((__crtc)->plane_ids_mask & BIT(__p))
341
342 enum port {
343 PORT_NONE = -1,
344 PORT_A = 0,
345 PORT_B,
346 PORT_C,
347 PORT_D,
348 PORT_E,
349 I915_MAX_PORTS
350 };
351 #define port_name(p) ((p) + 'A')
352
353 #define I915_NUM_PHYS_VLV 2
354
355 enum dpio_channel {
356 DPIO_CH0,
357 DPIO_CH1
358 };
359
360 enum dpio_phy {
361 DPIO_PHY0,
362 DPIO_PHY1,
363 DPIO_PHY2,
364 };
365
366 enum intel_display_power_domain {
367 POWER_DOMAIN_PIPE_A,
368 POWER_DOMAIN_PIPE_B,
369 POWER_DOMAIN_PIPE_C,
370 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
371 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
372 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
373 POWER_DOMAIN_TRANSCODER_A,
374 POWER_DOMAIN_TRANSCODER_B,
375 POWER_DOMAIN_TRANSCODER_C,
376 POWER_DOMAIN_TRANSCODER_EDP,
377 POWER_DOMAIN_TRANSCODER_DSI_A,
378 POWER_DOMAIN_TRANSCODER_DSI_C,
379 POWER_DOMAIN_PORT_DDI_A_LANES,
380 POWER_DOMAIN_PORT_DDI_B_LANES,
381 POWER_DOMAIN_PORT_DDI_C_LANES,
382 POWER_DOMAIN_PORT_DDI_D_LANES,
383 POWER_DOMAIN_PORT_DDI_E_LANES,
384 POWER_DOMAIN_PORT_DDI_A_IO,
385 POWER_DOMAIN_PORT_DDI_B_IO,
386 POWER_DOMAIN_PORT_DDI_C_IO,
387 POWER_DOMAIN_PORT_DDI_D_IO,
388 POWER_DOMAIN_PORT_DDI_E_IO,
389 POWER_DOMAIN_PORT_DSI,
390 POWER_DOMAIN_PORT_CRT,
391 POWER_DOMAIN_PORT_OTHER,
392 POWER_DOMAIN_VGA,
393 POWER_DOMAIN_AUDIO,
394 POWER_DOMAIN_PLLS,
395 POWER_DOMAIN_AUX_A,
396 POWER_DOMAIN_AUX_B,
397 POWER_DOMAIN_AUX_C,
398 POWER_DOMAIN_AUX_D,
399 POWER_DOMAIN_GMBUS,
400 POWER_DOMAIN_MODESET,
401 POWER_DOMAIN_INIT,
402
403 POWER_DOMAIN_NUM,
404 };
405
406 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
407 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
408 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
409 #define POWER_DOMAIN_TRANSCODER(tran) \
410 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
411 (tran) + POWER_DOMAIN_TRANSCODER_A)
412
413 enum hpd_pin {
414 HPD_NONE = 0,
415 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
416 HPD_CRT,
417 HPD_SDVO_B,
418 HPD_SDVO_C,
419 HPD_PORT_A,
420 HPD_PORT_B,
421 HPD_PORT_C,
422 HPD_PORT_D,
423 HPD_PORT_E,
424 HPD_NUM_PINS
425 };
426
427 #define for_each_hpd_pin(__pin) \
428 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
429
430 #define HPD_STORM_DEFAULT_THRESHOLD 5
431
432 struct i915_hotplug {
433 struct work_struct hotplug_work;
434
435 struct {
436 unsigned long last_jiffies;
437 int count;
438 enum {
439 HPD_ENABLED = 0,
440 HPD_DISABLED = 1,
441 HPD_MARK_DISABLED = 2
442 } state;
443 } stats[HPD_NUM_PINS];
444 u32 event_bits;
445 struct delayed_work reenable_work;
446
447 struct intel_digital_port *irq_port[I915_MAX_PORTS];
448 u32 long_port_mask;
449 u32 short_port_mask;
450 struct work_struct dig_port_work;
451
452 struct work_struct poll_init_work;
453 bool poll_enabled;
454
455 unsigned int hpd_storm_threshold;
456
457 /*
458 * if we get a HPD irq from DP and a HPD irq from non-DP
459 * the non-DP HPD could block the workqueue on a mode config
460 * mutex getting, that userspace may have taken. However
461 * userspace is waiting on the DP workqueue to run which is
462 * blocked behind the non-DP one.
463 */
464 struct workqueue_struct *dp_wq;
465 };
466
467 #define I915_GEM_GPU_DOMAINS \
468 (I915_GEM_DOMAIN_RENDER | \
469 I915_GEM_DOMAIN_SAMPLER | \
470 I915_GEM_DOMAIN_COMMAND | \
471 I915_GEM_DOMAIN_INSTRUCTION | \
472 I915_GEM_DOMAIN_VERTEX)
473
474 #define for_each_pipe(__dev_priv, __p) \
475 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
476 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
477 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
478 for_each_if ((__mask) & (1 << (__p)))
479 #define for_each_universal_plane(__dev_priv, __pipe, __p) \
480 for ((__p) = 0; \
481 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
482 (__p)++)
483 #define for_each_sprite(__dev_priv, __p, __s) \
484 for ((__s) = 0; \
485 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
486 (__s)++)
487
488 #define for_each_port_masked(__port, __ports_mask) \
489 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
490 for_each_if ((__ports_mask) & (1 << (__port)))
491
492 #define for_each_crtc(dev, crtc) \
493 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
494
495 #define for_each_intel_plane(dev, intel_plane) \
496 list_for_each_entry(intel_plane, \
497 &(dev)->mode_config.plane_list, \
498 base.head)
499
500 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \
501 list_for_each_entry(intel_plane, \
502 &(dev)->mode_config.plane_list, \
503 base.head) \
504 for_each_if ((plane_mask) & \
505 (1 << drm_plane_index(&intel_plane->base)))
506
507 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
508 list_for_each_entry(intel_plane, \
509 &(dev)->mode_config.plane_list, \
510 base.head) \
511 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
512
513 #define for_each_intel_crtc(dev, intel_crtc) \
514 list_for_each_entry(intel_crtc, \
515 &(dev)->mode_config.crtc_list, \
516 base.head)
517
518 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \
519 list_for_each_entry(intel_crtc, \
520 &(dev)->mode_config.crtc_list, \
521 base.head) \
522 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
523
524 #define for_each_intel_encoder(dev, intel_encoder) \
525 list_for_each_entry(intel_encoder, \
526 &(dev)->mode_config.encoder_list, \
527 base.head)
528
529 #define for_each_intel_connector_iter(intel_connector, iter) \
530 while ((intel_connector = to_intel_connector(drm_connector_list_iter_next(iter))))
531
532 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
533 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
534 for_each_if ((intel_encoder)->base.crtc == (__crtc))
535
536 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
537 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
538 for_each_if ((intel_connector)->base.encoder == (__encoder))
539
540 #define for_each_power_domain(domain, mask) \
541 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
542 for_each_if (BIT_ULL(domain) & (mask))
543
544 #define for_each_power_well(__dev_priv, __power_well) \
545 for ((__power_well) = (__dev_priv)->power_domains.power_wells; \
546 (__power_well) - (__dev_priv)->power_domains.power_wells < \
547 (__dev_priv)->power_domains.power_well_count; \
548 (__power_well)++)
549
550 #define for_each_power_well_rev(__dev_priv, __power_well) \
551 for ((__power_well) = (__dev_priv)->power_domains.power_wells + \
552 (__dev_priv)->power_domains.power_well_count - 1; \
553 (__power_well) - (__dev_priv)->power_domains.power_wells >= 0; \
554 (__power_well)--)
555
556 #define for_each_power_domain_well(__dev_priv, __power_well, __domain_mask) \
557 for_each_power_well(__dev_priv, __power_well) \
558 for_each_if ((__power_well)->domains & (__domain_mask))
559
560 #define for_each_power_domain_well_rev(__dev_priv, __power_well, __domain_mask) \
561 for_each_power_well_rev(__dev_priv, __power_well) \
562 for_each_if ((__power_well)->domains & (__domain_mask))
563
564 #define for_each_intel_plane_in_state(__state, plane, plane_state, __i) \
565 for ((__i) = 0; \
566 (__i) < (__state)->base.dev->mode_config.num_total_plane && \
567 ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
568 (plane_state) = to_intel_plane_state((__state)->base.planes[__i].state), 1); \
569 (__i)++) \
570 for_each_if (plane_state)
571
572 #define for_each_new_intel_crtc_in_state(__state, crtc, new_crtc_state, __i) \
573 for ((__i) = 0; \
574 (__i) < (__state)->base.dev->mode_config.num_crtc && \
575 ((crtc) = to_intel_crtc((__state)->base.crtcs[__i].ptr), \
576 (new_crtc_state) = to_intel_crtc_state((__state)->base.crtcs[__i].new_state), 1); \
577 (__i)++) \
578 for_each_if (crtc)
579
580
581 #define for_each_oldnew_intel_plane_in_state(__state, plane, old_plane_state, new_plane_state, __i) \
582 for ((__i) = 0; \
583 (__i) < (__state)->base.dev->mode_config.num_total_plane && \
584 ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
585 (old_plane_state) = to_intel_plane_state((__state)->base.planes[__i].old_state), \
586 (new_plane_state) = to_intel_plane_state((__state)->base.planes[__i].new_state), 1); \
587 (__i)++) \
588 for_each_if (plane)
589
590 struct drm_i915_private;
591 struct i915_mm_struct;
592 struct i915_mmu_object;
593
594 struct drm_i915_file_private {
595 struct drm_i915_private *dev_priv;
596 struct drm_file *file;
597
598 struct {
599 spinlock_t lock;
600 struct list_head request_list;
601 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
602 * chosen to prevent the CPU getting more than a frame ahead of the GPU
603 * (when using lax throttling for the frontbuffer). We also use it to
604 * offer free GPU waitboosts for severely congested workloads.
605 */
606 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
607 } mm;
608 struct idr context_idr;
609
610 struct intel_rps_client {
611 atomic_t boosts;
612 } rps;
613
614 unsigned int bsd_engine;
615
616 /* Client can have a maximum of 3 contexts banned before
617 * it is denied of creating new contexts. As one context
618 * ban needs 4 consecutive hangs, and more if there is
619 * progress in between, this is a last resort stop gap measure
620 * to limit the badly behaving clients access to gpu.
621 */
622 #define I915_MAX_CLIENT_CONTEXT_BANS 3
623 atomic_t context_bans;
624 };
625
626 /* Used by dp and fdi links */
627 struct intel_link_m_n {
628 uint32_t tu;
629 uint32_t gmch_m;
630 uint32_t gmch_n;
631 uint32_t link_m;
632 uint32_t link_n;
633 };
634
635 void intel_link_compute_m_n(int bpp, int nlanes,
636 int pixel_clock, int link_clock,
637 struct intel_link_m_n *m_n,
638 bool reduce_m_n);
639
640 /* Interface history:
641 *
642 * 1.1: Original.
643 * 1.2: Add Power Management
644 * 1.3: Add vblank support
645 * 1.4: Fix cmdbuffer path, add heap destroy
646 * 1.5: Add vblank pipe configuration
647 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
648 * - Support vertical blank on secondary display pipe
649 */
650 #define DRIVER_MAJOR 1
651 #define DRIVER_MINOR 6
652 #define DRIVER_PATCHLEVEL 0
653
654 struct opregion_header;
655 struct opregion_acpi;
656 struct opregion_swsci;
657 struct opregion_asle;
658
659 struct intel_opregion {
660 struct opregion_header *header;
661 struct opregion_acpi *acpi;
662 struct opregion_swsci *swsci;
663 u32 swsci_gbda_sub_functions;
664 u32 swsci_sbcb_sub_functions;
665 struct opregion_asle *asle;
666 void *rvda;
667 void *vbt_firmware;
668 const void *vbt;
669 u32 vbt_size;
670 u32 *lid_state;
671 struct work_struct asle_work;
672 };
673 #define OPREGION_SIZE (8*1024)
674
675 struct intel_overlay;
676 struct intel_overlay_error_state;
677
678 struct sdvo_device_mapping {
679 u8 initialized;
680 u8 dvo_port;
681 u8 slave_addr;
682 u8 dvo_wiring;
683 u8 i2c_pin;
684 u8 ddc_pin;
685 };
686
687 struct intel_connector;
688 struct intel_encoder;
689 struct intel_atomic_state;
690 struct intel_crtc_state;
691 struct intel_initial_plane_config;
692 struct intel_crtc;
693 struct intel_limit;
694 struct dpll;
695 struct intel_cdclk_state;
696
697 struct drm_i915_display_funcs {
698 void (*get_cdclk)(struct drm_i915_private *dev_priv,
699 struct intel_cdclk_state *cdclk_state);
700 void (*set_cdclk)(struct drm_i915_private *dev_priv,
701 const struct intel_cdclk_state *cdclk_state);
702 int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane);
703 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
704 int (*compute_intermediate_wm)(struct drm_device *dev,
705 struct intel_crtc *intel_crtc,
706 struct intel_crtc_state *newstate);
707 void (*initial_watermarks)(struct intel_atomic_state *state,
708 struct intel_crtc_state *cstate);
709 void (*atomic_update_watermarks)(struct intel_atomic_state *state,
710 struct intel_crtc_state *cstate);
711 void (*optimize_watermarks)(struct intel_atomic_state *state,
712 struct intel_crtc_state *cstate);
713 int (*compute_global_watermarks)(struct drm_atomic_state *state);
714 void (*update_wm)(struct intel_crtc *crtc);
715 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
716 /* Returns the active state of the crtc, and if the crtc is active,
717 * fills out the pipe-config with the hw state. */
718 bool (*get_pipe_config)(struct intel_crtc *,
719 struct intel_crtc_state *);
720 void (*get_initial_plane_config)(struct intel_crtc *,
721 struct intel_initial_plane_config *);
722 int (*crtc_compute_clock)(struct intel_crtc *crtc,
723 struct intel_crtc_state *crtc_state);
724 void (*crtc_enable)(struct intel_crtc_state *pipe_config,
725 struct drm_atomic_state *old_state);
726 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
727 struct drm_atomic_state *old_state);
728 void (*update_crtcs)(struct drm_atomic_state *state,
729 unsigned int *crtc_vblank_mask);
730 void (*audio_codec_enable)(struct drm_connector *connector,
731 struct intel_encoder *encoder,
732 const struct drm_display_mode *adjusted_mode);
733 void (*audio_codec_disable)(struct intel_encoder *encoder);
734 void (*fdi_link_train)(struct intel_crtc *crtc,
735 const struct intel_crtc_state *crtc_state);
736 void (*init_clock_gating)(struct drm_i915_private *dev_priv);
737 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
738 /* clock updates for mode set */
739 /* cursor updates */
740 /* render clock increase/decrease */
741 /* display clock increase/decrease */
742 /* pll clock increase/decrease */
743
744 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
745 void (*load_luts)(struct drm_crtc_state *crtc_state);
746 };
747
748 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
749 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
750 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
751
752 struct intel_csr {
753 struct work_struct work;
754 const char *fw_path;
755 uint32_t *dmc_payload;
756 uint32_t dmc_fw_size;
757 uint32_t version;
758 uint32_t mmio_count;
759 i915_reg_t mmioaddr[8];
760 uint32_t mmiodata[8];
761 uint32_t dc_state;
762 uint32_t allowed_dc_mask;
763 };
764
765 #define DEV_INFO_FOR_EACH_FLAG(func) \
766 func(is_mobile); \
767 func(is_lp); \
768 func(is_alpha_support); \
769 /* Keep has_* in alphabetical order */ \
770 func(has_64bit_reloc); \
771 func(has_aliasing_ppgtt); \
772 func(has_csr); \
773 func(has_ddi); \
774 func(has_dp_mst); \
775 func(has_reset_engine); \
776 func(has_fbc); \
777 func(has_fpga_dbg); \
778 func(has_full_ppgtt); \
779 func(has_full_48bit_ppgtt); \
780 func(has_gmbus_irq); \
781 func(has_gmch_display); \
782 func(has_guc); \
783 func(has_guc_ct); \
784 func(has_hotplug); \
785 func(has_l3_dpf); \
786 func(has_llc); \
787 func(has_logical_ring_contexts); \
788 func(has_overlay); \
789 func(has_pipe_cxsr); \
790 func(has_pooled_eu); \
791 func(has_psr); \
792 func(has_rc6); \
793 func(has_rc6p); \
794 func(has_resource_streamer); \
795 func(has_runtime_pm); \
796 func(has_snoop); \
797 func(unfenced_needs_alignment); \
798 func(cursor_needs_physical); \
799 func(hws_needs_physical); \
800 func(overlay_needs_physical); \
801 func(supports_tv);
802
803 struct sseu_dev_info {
804 u8 slice_mask;
805 u8 subslice_mask;
806 u8 eu_total;
807 u8 eu_per_subslice;
808 u8 min_eu_in_pool;
809 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
810 u8 subslice_7eu[3];
811 u8 has_slice_pg:1;
812 u8 has_subslice_pg:1;
813 u8 has_eu_pg:1;
814 };
815
816 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu)
817 {
818 return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask);
819 }
820
821 /* Keep in gen based order, and chronological order within a gen */
822 enum intel_platform {
823 INTEL_PLATFORM_UNINITIALIZED = 0,
824 INTEL_I830,
825 INTEL_I845G,
826 INTEL_I85X,
827 INTEL_I865G,
828 INTEL_I915G,
829 INTEL_I915GM,
830 INTEL_I945G,
831 INTEL_I945GM,
832 INTEL_G33,
833 INTEL_PINEVIEW,
834 INTEL_I965G,
835 INTEL_I965GM,
836 INTEL_G45,
837 INTEL_GM45,
838 INTEL_IRONLAKE,
839 INTEL_SANDYBRIDGE,
840 INTEL_IVYBRIDGE,
841 INTEL_VALLEYVIEW,
842 INTEL_HASWELL,
843 INTEL_BROADWELL,
844 INTEL_CHERRYVIEW,
845 INTEL_SKYLAKE,
846 INTEL_BROXTON,
847 INTEL_KABYLAKE,
848 INTEL_GEMINILAKE,
849 INTEL_COFFEELAKE,
850 INTEL_CANNONLAKE,
851 INTEL_MAX_PLATFORMS
852 };
853
854 struct intel_device_info {
855 u32 display_mmio_offset;
856 u16 device_id;
857 u8 num_pipes;
858 u8 num_sprites[I915_MAX_PIPES];
859 u8 num_scalers[I915_MAX_PIPES];
860 u8 gen;
861 u16 gen_mask;
862 enum intel_platform platform;
863 u8 gt; /* GT number, 0 if undefined */
864 u8 ring_mask; /* Rings supported by the HW */
865 u8 num_rings;
866 #define DEFINE_FLAG(name) u8 name:1
867 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG);
868 #undef DEFINE_FLAG
869 u16 ddb_size; /* in blocks */
870 /* Register offsets for the various display pipes and transcoders */
871 int pipe_offsets[I915_MAX_TRANSCODERS];
872 int trans_offsets[I915_MAX_TRANSCODERS];
873 int palette_offsets[I915_MAX_PIPES];
874 int cursor_offsets[I915_MAX_PIPES];
875
876 /* Slice/subslice/EU info */
877 struct sseu_dev_info sseu;
878
879 struct color_luts {
880 u16 degamma_lut_size;
881 u16 gamma_lut_size;
882 } color;
883 };
884
885 struct intel_display_error_state;
886
887 struct i915_gpu_state {
888 struct kref ref;
889 struct timeval time;
890 struct timeval boottime;
891 struct timeval uptime;
892
893 struct drm_i915_private *i915;
894
895 char error_msg[128];
896 bool simulated;
897 bool awake;
898 bool wakelock;
899 bool suspended;
900 int iommu;
901 u32 reset_count;
902 u32 suspend_count;
903 struct intel_device_info device_info;
904 struct i915_params params;
905
906 /* Generic register state */
907 u32 eir;
908 u32 pgtbl_er;
909 u32 ier;
910 u32 gtier[4], ngtier;
911 u32 ccid;
912 u32 derrmr;
913 u32 forcewake;
914 u32 error; /* gen6+ */
915 u32 err_int; /* gen7 */
916 u32 fault_data0; /* gen8, gen9 */
917 u32 fault_data1; /* gen8, gen9 */
918 u32 done_reg;
919 u32 gac_eco;
920 u32 gam_ecochk;
921 u32 gab_ctl;
922 u32 gfx_mode;
923
924 u32 nfence;
925 u64 fence[I915_MAX_NUM_FENCES];
926 struct intel_overlay_error_state *overlay;
927 struct intel_display_error_state *display;
928 struct drm_i915_error_object *semaphore;
929 struct drm_i915_error_object *guc_log;
930
931 struct drm_i915_error_engine {
932 int engine_id;
933 /* Software tracked state */
934 bool waiting;
935 int num_waiters;
936 unsigned long hangcheck_timestamp;
937 bool hangcheck_stalled;
938 enum intel_engine_hangcheck_action hangcheck_action;
939 struct i915_address_space *vm;
940 int num_requests;
941 u32 reset_count;
942
943 /* position of active request inside the ring */
944 u32 rq_head, rq_post, rq_tail;
945
946 /* our own tracking of ring head and tail */
947 u32 cpu_ring_head;
948 u32 cpu_ring_tail;
949
950 u32 last_seqno;
951
952 /* Register state */
953 u32 start;
954 u32 tail;
955 u32 head;
956 u32 ctl;
957 u32 mode;
958 u32 hws;
959 u32 ipeir;
960 u32 ipehr;
961 u32 bbstate;
962 u32 instpm;
963 u32 instps;
964 u32 seqno;
965 u64 bbaddr;
966 u64 acthd;
967 u32 fault_reg;
968 u64 faddr;
969 u32 rc_psmi; /* sleep state */
970 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
971 struct intel_instdone instdone;
972
973 struct drm_i915_error_context {
974 char comm[TASK_COMM_LEN];
975 pid_t pid;
976 u32 handle;
977 u32 hw_id;
978 int ban_score;
979 int active;
980 int guilty;
981 } context;
982
983 struct drm_i915_error_object {
984 u64 gtt_offset;
985 u64 gtt_size;
986 int page_count;
987 int unused;
988 u32 *pages[0];
989 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
990
991 struct drm_i915_error_object **user_bo;
992 long user_bo_count;
993
994 struct drm_i915_error_object *wa_ctx;
995
996 struct drm_i915_error_request {
997 long jiffies;
998 pid_t pid;
999 u32 context;
1000 int ban_score;
1001 u32 seqno;
1002 u32 head;
1003 u32 tail;
1004 } *requests, execlist[2];
1005
1006 struct drm_i915_error_waiter {
1007 char comm[TASK_COMM_LEN];
1008 pid_t pid;
1009 u32 seqno;
1010 } *waiters;
1011
1012 struct {
1013 u32 gfx_mode;
1014 union {
1015 u64 pdp[4];
1016 u32 pp_dir_base;
1017 };
1018 } vm_info;
1019 } engine[I915_NUM_ENGINES];
1020
1021 struct drm_i915_error_buffer {
1022 u32 size;
1023 u32 name;
1024 u32 rseqno[I915_NUM_ENGINES], wseqno;
1025 u64 gtt_offset;
1026 u32 read_domains;
1027 u32 write_domain;
1028 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
1029 u32 tiling:2;
1030 u32 dirty:1;
1031 u32 purgeable:1;
1032 u32 userptr:1;
1033 s32 engine:4;
1034 u32 cache_level:3;
1035 } *active_bo[I915_NUM_ENGINES], *pinned_bo;
1036 u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
1037 struct i915_address_space *active_vm[I915_NUM_ENGINES];
1038 };
1039
1040 enum i915_cache_level {
1041 I915_CACHE_NONE = 0,
1042 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
1043 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
1044 caches, eg sampler/render caches, and the
1045 large Last-Level-Cache. LLC is coherent with
1046 the CPU, but L3 is only visible to the GPU. */
1047 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
1048 };
1049
1050 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
1051
1052 enum fb_op_origin {
1053 ORIGIN_GTT,
1054 ORIGIN_CPU,
1055 ORIGIN_CS,
1056 ORIGIN_FLIP,
1057 ORIGIN_DIRTYFB,
1058 };
1059
1060 struct intel_fbc {
1061 /* This is always the inner lock when overlapping with struct_mutex and
1062 * it's the outer lock when overlapping with stolen_lock. */
1063 struct mutex lock;
1064 unsigned threshold;
1065 unsigned int possible_framebuffer_bits;
1066 unsigned int busy_bits;
1067 unsigned int visible_pipes_mask;
1068 struct intel_crtc *crtc;
1069
1070 struct drm_mm_node compressed_fb;
1071 struct drm_mm_node *compressed_llb;
1072
1073 bool false_color;
1074
1075 bool enabled;
1076 bool active;
1077
1078 bool underrun_detected;
1079 struct work_struct underrun_work;
1080
1081 /*
1082 * Due to the atomic rules we can't access some structures without the
1083 * appropriate locking, so we cache information here in order to avoid
1084 * these problems.
1085 */
1086 struct intel_fbc_state_cache {
1087 struct i915_vma *vma;
1088
1089 struct {
1090 unsigned int mode_flags;
1091 uint32_t hsw_bdw_pixel_rate;
1092 } crtc;
1093
1094 struct {
1095 unsigned int rotation;
1096 int src_w;
1097 int src_h;
1098 bool visible;
1099 } plane;
1100
1101 struct {
1102 const struct drm_format_info *format;
1103 unsigned int stride;
1104 } fb;
1105 } state_cache;
1106
1107 /*
1108 * This structure contains everything that's relevant to program the
1109 * hardware registers. When we want to figure out if we need to disable
1110 * and re-enable FBC for a new configuration we just check if there's
1111 * something different in the struct. The genx_fbc_activate functions
1112 * are supposed to read from it in order to program the registers.
1113 */
1114 struct intel_fbc_reg_params {
1115 struct i915_vma *vma;
1116
1117 struct {
1118 enum pipe pipe;
1119 enum plane plane;
1120 unsigned int fence_y_offset;
1121 } crtc;
1122
1123 struct {
1124 const struct drm_format_info *format;
1125 unsigned int stride;
1126 } fb;
1127
1128 int cfb_size;
1129 unsigned int gen9_wa_cfb_stride;
1130 } params;
1131
1132 struct intel_fbc_work {
1133 bool scheduled;
1134 u32 scheduled_vblank;
1135 struct work_struct work;
1136 } work;
1137
1138 const char *no_fbc_reason;
1139 };
1140
1141 /*
1142 * HIGH_RR is the highest eDP panel refresh rate read from EDID
1143 * LOW_RR is the lowest eDP panel refresh rate found from EDID
1144 * parsing for same resolution.
1145 */
1146 enum drrs_refresh_rate_type {
1147 DRRS_HIGH_RR,
1148 DRRS_LOW_RR,
1149 DRRS_MAX_RR, /* RR count */
1150 };
1151
1152 enum drrs_support_type {
1153 DRRS_NOT_SUPPORTED = 0,
1154 STATIC_DRRS_SUPPORT = 1,
1155 SEAMLESS_DRRS_SUPPORT = 2
1156 };
1157
1158 struct intel_dp;
1159 struct i915_drrs {
1160 struct mutex mutex;
1161 struct delayed_work work;
1162 struct intel_dp *dp;
1163 unsigned busy_frontbuffer_bits;
1164 enum drrs_refresh_rate_type refresh_rate_type;
1165 enum drrs_support_type type;
1166 };
1167
1168 struct i915_psr {
1169 struct mutex lock;
1170 bool sink_support;
1171 bool source_ok;
1172 struct intel_dp *enabled;
1173 bool active;
1174 struct delayed_work work;
1175 unsigned busy_frontbuffer_bits;
1176 bool psr2_support;
1177 bool aux_frame_sync;
1178 bool link_standby;
1179 bool y_cord_support;
1180 bool colorimetry_support;
1181 bool alpm;
1182 };
1183
1184 enum intel_pch {
1185 PCH_NONE = 0, /* No PCH present */
1186 PCH_IBX, /* Ibexpeak PCH */
1187 PCH_CPT, /* Cougarpoint/Pantherpoint PCH */
1188 PCH_LPT, /* Lynxpoint/Wildcatpoint PCH */
1189 PCH_SPT, /* Sunrisepoint PCH */
1190 PCH_KBP, /* Kaby Lake PCH */
1191 PCH_CNP, /* Cannon Lake PCH */
1192 PCH_NOP,
1193 };
1194
1195 enum intel_sbi_destination {
1196 SBI_ICLK,
1197 SBI_MPHY,
1198 };
1199
1200 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1201 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1202 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1203 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1204 #define QUIRK_INCREASE_T12_DELAY (1<<6)
1205
1206 struct intel_fbdev;
1207 struct intel_fbc_work;
1208
1209 struct intel_gmbus {
1210 struct i2c_adapter adapter;
1211 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1212 u32 force_bit;
1213 u32 reg0;
1214 i915_reg_t gpio_reg;
1215 struct i2c_algo_bit_data bit_algo;
1216 struct drm_i915_private *dev_priv;
1217 };
1218
1219 struct i915_suspend_saved_registers {
1220 u32 saveDSPARB;
1221 u32 saveFBC_CONTROL;
1222 u32 saveCACHE_MODE_0;
1223 u32 saveMI_ARB_STATE;
1224 u32 saveSWF0[16];
1225 u32 saveSWF1[16];
1226 u32 saveSWF3[3];
1227 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1228 u32 savePCH_PORT_HOTPLUG;
1229 u16 saveGCDGMBUS;
1230 };
1231
1232 struct vlv_s0ix_state {
1233 /* GAM */
1234 u32 wr_watermark;
1235 u32 gfx_prio_ctrl;
1236 u32 arb_mode;
1237 u32 gfx_pend_tlb0;
1238 u32 gfx_pend_tlb1;
1239 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1240 u32 media_max_req_count;
1241 u32 gfx_max_req_count;
1242 u32 render_hwsp;
1243 u32 ecochk;
1244 u32 bsd_hwsp;
1245 u32 blt_hwsp;
1246 u32 tlb_rd_addr;
1247
1248 /* MBC */
1249 u32 g3dctl;
1250 u32 gsckgctl;
1251 u32 mbctl;
1252
1253 /* GCP */
1254 u32 ucgctl1;
1255 u32 ucgctl3;
1256 u32 rcgctl1;
1257 u32 rcgctl2;
1258 u32 rstctl;
1259 u32 misccpctl;
1260
1261 /* GPM */
1262 u32 gfxpause;
1263 u32 rpdeuhwtc;
1264 u32 rpdeuc;
1265 u32 ecobus;
1266 u32 pwrdwnupctl;
1267 u32 rp_down_timeout;
1268 u32 rp_deucsw;
1269 u32 rcubmabdtmr;
1270 u32 rcedata;
1271 u32 spare2gh;
1272
1273 /* Display 1 CZ domain */
1274 u32 gt_imr;
1275 u32 gt_ier;
1276 u32 pm_imr;
1277 u32 pm_ier;
1278 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1279
1280 /* GT SA CZ domain */
1281 u32 tilectl;
1282 u32 gt_fifoctl;
1283 u32 gtlc_wake_ctrl;
1284 u32 gtlc_survive;
1285 u32 pmwgicz;
1286
1287 /* Display 2 CZ domain */
1288 u32 gu_ctl0;
1289 u32 gu_ctl1;
1290 u32 pcbr;
1291 u32 clock_gate_dis2;
1292 };
1293
1294 struct intel_rps_ei {
1295 ktime_t ktime;
1296 u32 render_c0;
1297 u32 media_c0;
1298 };
1299
1300 struct intel_gen6_power_mgmt {
1301 /*
1302 * work, interrupts_enabled and pm_iir are protected by
1303 * dev_priv->irq_lock
1304 */
1305 struct work_struct work;
1306 bool interrupts_enabled;
1307 u32 pm_iir;
1308
1309 /* PM interrupt bits that should never be masked */
1310 u32 pm_intrmsk_mbz;
1311
1312 /* Frequencies are stored in potentially platform dependent multiples.
1313 * In other words, *_freq needs to be multiplied by X to be interesting.
1314 * Soft limits are those which are used for the dynamic reclocking done
1315 * by the driver (raise frequencies under heavy loads, and lower for
1316 * lighter loads). Hard limits are those imposed by the hardware.
1317 *
1318 * A distinction is made for overclocking, which is never enabled by
1319 * default, and is considered to be above the hard limit if it's
1320 * possible at all.
1321 */
1322 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1323 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1324 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1325 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1326 u8 min_freq; /* AKA RPn. Minimum frequency */
1327 u8 boost_freq; /* Frequency to request when wait boosting */
1328 u8 idle_freq; /* Frequency to request when we are idle */
1329 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1330 u8 rp1_freq; /* "less than" RP0 power/freqency */
1331 u8 rp0_freq; /* Non-overclocked max frequency. */
1332 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
1333
1334 u8 up_threshold; /* Current %busy required to uplock */
1335 u8 down_threshold; /* Current %busy required to downclock */
1336
1337 int last_adj;
1338 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1339
1340 bool enabled;
1341 struct delayed_work autoenable_work;
1342 atomic_t num_waiters;
1343 atomic_t boosts;
1344
1345 /* manual wa residency calculations */
1346 struct intel_rps_ei ei;
1347
1348 /*
1349 * Protects RPS/RC6 register access and PCU communication.
1350 * Must be taken after struct_mutex if nested. Note that
1351 * this lock may be held for long periods of time when
1352 * talking to hw - so only take it when talking to hw!
1353 */
1354 struct mutex hw_lock;
1355 };
1356
1357 /* defined intel_pm.c */
1358 extern spinlock_t mchdev_lock;
1359
1360 struct intel_ilk_power_mgmt {
1361 u8 cur_delay;
1362 u8 min_delay;
1363 u8 max_delay;
1364 u8 fmax;
1365 u8 fstart;
1366
1367 u64 last_count1;
1368 unsigned long last_time1;
1369 unsigned long chipset_power;
1370 u64 last_count2;
1371 u64 last_time2;
1372 unsigned long gfx_power;
1373 u8 corr;
1374
1375 int c_m;
1376 int r_t;
1377 };
1378
1379 struct drm_i915_private;
1380 struct i915_power_well;
1381
1382 struct i915_power_well_ops {
1383 /*
1384 * Synchronize the well's hw state to match the current sw state, for
1385 * example enable/disable it based on the current refcount. Called
1386 * during driver init and resume time, possibly after first calling
1387 * the enable/disable handlers.
1388 */
1389 void (*sync_hw)(struct drm_i915_private *dev_priv,
1390 struct i915_power_well *power_well);
1391 /*
1392 * Enable the well and resources that depend on it (for example
1393 * interrupts located on the well). Called after the 0->1 refcount
1394 * transition.
1395 */
1396 void (*enable)(struct drm_i915_private *dev_priv,
1397 struct i915_power_well *power_well);
1398 /*
1399 * Disable the well and resources that depend on it. Called after
1400 * the 1->0 refcount transition.
1401 */
1402 void (*disable)(struct drm_i915_private *dev_priv,
1403 struct i915_power_well *power_well);
1404 /* Returns the hw enabled state. */
1405 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1406 struct i915_power_well *power_well);
1407 };
1408
1409 /* Power well structure for haswell */
1410 struct i915_power_well {
1411 const char *name;
1412 bool always_on;
1413 /* power well enable/disable usage count */
1414 int count;
1415 /* cached hw enabled state */
1416 bool hw_enabled;
1417 u64 domains;
1418 /* unique identifier for this power well */
1419 enum i915_power_well_id id;
1420 /*
1421 * Arbitraty data associated with this power well. Platform and power
1422 * well specific.
1423 */
1424 union {
1425 struct {
1426 enum dpio_phy phy;
1427 } bxt;
1428 struct {
1429 /* Mask of pipes whose IRQ logic is backed by the pw */
1430 u8 irq_pipe_mask;
1431 /* The pw is backing the VGA functionality */
1432 bool has_vga:1;
1433 bool has_fuses:1;
1434 } hsw;
1435 };
1436 const struct i915_power_well_ops *ops;
1437 };
1438
1439 struct i915_power_domains {
1440 /*
1441 * Power wells needed for initialization at driver init and suspend
1442 * time are on. They are kept on until after the first modeset.
1443 */
1444 bool init_power_on;
1445 bool initializing;
1446 int power_well_count;
1447
1448 struct mutex lock;
1449 int domain_use_count[POWER_DOMAIN_NUM];
1450 struct i915_power_well *power_wells;
1451 };
1452
1453 #define MAX_L3_SLICES 2
1454 struct intel_l3_parity {
1455 u32 *remap_info[MAX_L3_SLICES];
1456 struct work_struct error_work;
1457 int which_slice;
1458 };
1459
1460 struct i915_gem_mm {
1461 /** Memory allocator for GTT stolen memory */
1462 struct drm_mm stolen;
1463 /** Protects the usage of the GTT stolen memory allocator. This is
1464 * always the inner lock when overlapping with struct_mutex. */
1465 struct mutex stolen_lock;
1466
1467 /** List of all objects in gtt_space. Used to restore gtt
1468 * mappings on resume */
1469 struct list_head bound_list;
1470 /**
1471 * List of objects which are not bound to the GTT (thus
1472 * are idle and not used by the GPU). These objects may or may
1473 * not actually have any pages attached.
1474 */
1475 struct list_head unbound_list;
1476
1477 /** List of all objects in gtt_space, currently mmaped by userspace.
1478 * All objects within this list must also be on bound_list.
1479 */
1480 struct list_head userfault_list;
1481
1482 /**
1483 * List of objects which are pending destruction.
1484 */
1485 struct llist_head free_list;
1486 struct work_struct free_work;
1487
1488 /**
1489 * Small stash of WC pages
1490 */
1491 struct pagevec wc_stash;
1492
1493 /** Usable portion of the GTT for GEM */
1494 dma_addr_t stolen_base; /* limited to low memory (32-bit) */
1495
1496 /** PPGTT used for aliasing the PPGTT with the GTT */
1497 struct i915_hw_ppgtt *aliasing_ppgtt;
1498
1499 struct notifier_block oom_notifier;
1500 struct notifier_block vmap_notifier;
1501 struct shrinker shrinker;
1502
1503 /** LRU list of objects with fence regs on them. */
1504 struct list_head fence_list;
1505
1506 /**
1507 * Workqueue to fault in userptr pages, flushed by the execbuf
1508 * when required but otherwise left to userspace to try again
1509 * on EAGAIN.
1510 */
1511 struct workqueue_struct *userptr_wq;
1512
1513 u64 unordered_timeline;
1514
1515 /* the indicator for dispatch video commands on two BSD rings */
1516 atomic_t bsd_engine_dispatch_index;
1517
1518 /** Bit 6 swizzling required for X tiling */
1519 uint32_t bit_6_swizzle_x;
1520 /** Bit 6 swizzling required for Y tiling */
1521 uint32_t bit_6_swizzle_y;
1522
1523 /* accounting, useful for userland debugging */
1524 spinlock_t object_stat_lock;
1525 u64 object_memory;
1526 u32 object_count;
1527 };
1528
1529 struct drm_i915_error_state_buf {
1530 struct drm_i915_private *i915;
1531 unsigned bytes;
1532 unsigned size;
1533 int err;
1534 u8 *buf;
1535 loff_t start;
1536 loff_t pos;
1537 };
1538
1539 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1540 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1541
1542 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */
1543 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */
1544
1545 struct i915_gpu_error {
1546 /* For hangcheck timer */
1547 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1548 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1549
1550 struct delayed_work hangcheck_work;
1551
1552 /* For reset and error_state handling. */
1553 spinlock_t lock;
1554 /* Protected by the above dev->gpu_error.lock. */
1555 struct i915_gpu_state *first_error;
1556
1557 atomic_t pending_fb_pin;
1558
1559 unsigned long missed_irq_rings;
1560
1561 /**
1562 * State variable controlling the reset flow and count
1563 *
1564 * This is a counter which gets incremented when reset is triggered,
1565 *
1566 * Before the reset commences, the I915_RESET_BACKOFF bit is set
1567 * meaning that any waiters holding onto the struct_mutex should
1568 * relinquish the lock immediately in order for the reset to start.
1569 *
1570 * If reset is not completed succesfully, the I915_WEDGE bit is
1571 * set meaning that hardware is terminally sour and there is no
1572 * recovery. All waiters on the reset_queue will be woken when
1573 * that happens.
1574 *
1575 * This counter is used by the wait_seqno code to notice that reset
1576 * event happened and it needs to restart the entire ioctl (since most
1577 * likely the seqno it waited for won't ever signal anytime soon).
1578 *
1579 * This is important for lock-free wait paths, where no contended lock
1580 * naturally enforces the correct ordering between the bail-out of the
1581 * waiter and the gpu reset work code.
1582 */
1583 unsigned long reset_count;
1584
1585 /**
1586 * flags: Control various stages of the GPU reset
1587 *
1588 * #I915_RESET_BACKOFF - When we start a reset, we want to stop any
1589 * other users acquiring the struct_mutex. To do this we set the
1590 * #I915_RESET_BACKOFF bit in the error flags when we detect a reset
1591 * and then check for that bit before acquiring the struct_mutex (in
1592 * i915_mutex_lock_interruptible()?). I915_RESET_BACKOFF serves a
1593 * secondary role in preventing two concurrent global reset attempts.
1594 *
1595 * #I915_RESET_HANDOFF - To perform the actual GPU reset, we need the
1596 * struct_mutex. We try to acquire the struct_mutex in the reset worker,
1597 * but it may be held by some long running waiter (that we cannot
1598 * interrupt without causing trouble). Once we are ready to do the GPU
1599 * reset, we set the I915_RESET_HANDOFF bit and wakeup any waiters. If
1600 * they already hold the struct_mutex and want to participate they can
1601 * inspect the bit and do the reset directly, otherwise the worker
1602 * waits for the struct_mutex.
1603 *
1604 * #I915_RESET_ENGINE[num_engines] - Since the driver doesn't need to
1605 * acquire the struct_mutex to reset an engine, we need an explicit
1606 * flag to prevent two concurrent reset attempts in the same engine.
1607 * As the number of engines continues to grow, allocate the flags from
1608 * the most significant bits.
1609 *
1610 * #I915_WEDGED - If reset fails and we can no longer use the GPU,
1611 * we set the #I915_WEDGED bit. Prior to command submission, e.g.
1612 * i915_gem_request_alloc(), this bit is checked and the sequence
1613 * aborted (with -EIO reported to userspace) if set.
1614 */
1615 unsigned long flags;
1616 #define I915_RESET_BACKOFF 0
1617 #define I915_RESET_HANDOFF 1
1618 #define I915_RESET_MODESET 2
1619 #define I915_WEDGED (BITS_PER_LONG - 1)
1620 #define I915_RESET_ENGINE (I915_WEDGED - I915_NUM_ENGINES)
1621
1622 /** Number of times an engine has been reset */
1623 u32 reset_engine_count[I915_NUM_ENGINES];
1624
1625 /**
1626 * Waitqueue to signal when a hang is detected. Used to for waiters
1627 * to release the struct_mutex for the reset to procede.
1628 */
1629 wait_queue_head_t wait_queue;
1630
1631 /**
1632 * Waitqueue to signal when the reset has completed. Used by clients
1633 * that wait for dev_priv->mm.wedged to settle.
1634 */
1635 wait_queue_head_t reset_queue;
1636
1637 /* For missed irq/seqno simulation. */
1638 unsigned long test_irq_rings;
1639 };
1640
1641 enum modeset_restore {
1642 MODESET_ON_LID_OPEN,
1643 MODESET_DONE,
1644 MODESET_SUSPENDED,
1645 };
1646
1647 #define DP_AUX_A 0x40
1648 #define DP_AUX_B 0x10
1649 #define DP_AUX_C 0x20
1650 #define DP_AUX_D 0x30
1651
1652 #define DDC_PIN_B 0x05
1653 #define DDC_PIN_C 0x04
1654 #define DDC_PIN_D 0x06
1655
1656 struct ddi_vbt_port_info {
1657 /*
1658 * This is an index in the HDMI/DVI DDI buffer translation table.
1659 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1660 * populate this field.
1661 */
1662 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1663 uint8_t hdmi_level_shift;
1664
1665 uint8_t supports_dvi:1;
1666 uint8_t supports_hdmi:1;
1667 uint8_t supports_dp:1;
1668 uint8_t supports_edp:1;
1669
1670 uint8_t alternate_aux_channel;
1671 uint8_t alternate_ddc_pin;
1672
1673 uint8_t dp_boost_level;
1674 uint8_t hdmi_boost_level;
1675 };
1676
1677 enum psr_lines_to_wait {
1678 PSR_0_LINES_TO_WAIT = 0,
1679 PSR_1_LINE_TO_WAIT,
1680 PSR_4_LINES_TO_WAIT,
1681 PSR_8_LINES_TO_WAIT
1682 };
1683
1684 struct intel_vbt_data {
1685 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1686 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1687
1688 /* Feature bits */
1689 unsigned int int_tv_support:1;
1690 unsigned int lvds_dither:1;
1691 unsigned int lvds_vbt:1;
1692 unsigned int int_crt_support:1;
1693 unsigned int lvds_use_ssc:1;
1694 unsigned int display_clock_mode:1;
1695 unsigned int fdi_rx_polarity_inverted:1;
1696 unsigned int panel_type:4;
1697 int lvds_ssc_freq;
1698 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1699
1700 enum drrs_support_type drrs_type;
1701
1702 struct {
1703 int rate;
1704 int lanes;
1705 int preemphasis;
1706 int vswing;
1707 bool low_vswing;
1708 bool initialized;
1709 bool support;
1710 int bpp;
1711 struct edp_power_seq pps;
1712 } edp;
1713
1714 struct {
1715 bool full_link;
1716 bool require_aux_wakeup;
1717 int idle_frames;
1718 enum psr_lines_to_wait lines_to_wait;
1719 int tp1_wakeup_time;
1720 int tp2_tp3_wakeup_time;
1721 } psr;
1722
1723 struct {
1724 u16 pwm_freq_hz;
1725 bool present;
1726 bool active_low_pwm;
1727 u8 min_brightness; /* min_brightness/255 of max */
1728 u8 controller; /* brightness controller number */
1729 enum intel_backlight_type type;
1730 } backlight;
1731
1732 /* MIPI DSI */
1733 struct {
1734 u16 panel_id;
1735 struct mipi_config *config;
1736 struct mipi_pps_data *pps;
1737 u8 seq_version;
1738 u32 size;
1739 u8 *data;
1740 const u8 *sequence[MIPI_SEQ_MAX];
1741 } dsi;
1742
1743 int crt_ddc_pin;
1744
1745 int child_dev_num;
1746 struct child_device_config *child_dev;
1747
1748 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1749 struct sdvo_device_mapping sdvo_mappings[2];
1750 };
1751
1752 enum intel_ddb_partitioning {
1753 INTEL_DDB_PART_1_2,
1754 INTEL_DDB_PART_5_6, /* IVB+ */
1755 };
1756
1757 struct intel_wm_level {
1758 bool enable;
1759 uint32_t pri_val;
1760 uint32_t spr_val;
1761 uint32_t cur_val;
1762 uint32_t fbc_val;
1763 };
1764
1765 struct ilk_wm_values {
1766 uint32_t wm_pipe[3];
1767 uint32_t wm_lp[3];
1768 uint32_t wm_lp_spr[3];
1769 uint32_t wm_linetime[3];
1770 bool enable_fbc_wm;
1771 enum intel_ddb_partitioning partitioning;
1772 };
1773
1774 struct g4x_pipe_wm {
1775 uint16_t plane[I915_MAX_PLANES];
1776 uint16_t fbc;
1777 };
1778
1779 struct g4x_sr_wm {
1780 uint16_t plane;
1781 uint16_t cursor;
1782 uint16_t fbc;
1783 };
1784
1785 struct vlv_wm_ddl_values {
1786 uint8_t plane[I915_MAX_PLANES];
1787 };
1788
1789 struct vlv_wm_values {
1790 struct g4x_pipe_wm pipe[3];
1791 struct g4x_sr_wm sr;
1792 struct vlv_wm_ddl_values ddl[3];
1793 uint8_t level;
1794 bool cxsr;
1795 };
1796
1797 struct g4x_wm_values {
1798 struct g4x_pipe_wm pipe[2];
1799 struct g4x_sr_wm sr;
1800 struct g4x_sr_wm hpll;
1801 bool cxsr;
1802 bool hpll_en;
1803 bool fbc_en;
1804 };
1805
1806 struct skl_ddb_entry {
1807 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1808 };
1809
1810 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1811 {
1812 return entry->end - entry->start;
1813 }
1814
1815 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1816 const struct skl_ddb_entry *e2)
1817 {
1818 if (e1->start == e2->start && e1->end == e2->end)
1819 return true;
1820
1821 return false;
1822 }
1823
1824 struct skl_ddb_allocation {
1825 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1826 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1827 };
1828
1829 struct skl_wm_values {
1830 unsigned dirty_pipes;
1831 struct skl_ddb_allocation ddb;
1832 };
1833
1834 struct skl_wm_level {
1835 bool plane_en;
1836 uint16_t plane_res_b;
1837 uint8_t plane_res_l;
1838 };
1839
1840 /*
1841 * This struct helps tracking the state needed for runtime PM, which puts the
1842 * device in PCI D3 state. Notice that when this happens, nothing on the
1843 * graphics device works, even register access, so we don't get interrupts nor
1844 * anything else.
1845 *
1846 * Every piece of our code that needs to actually touch the hardware needs to
1847 * either call intel_runtime_pm_get or call intel_display_power_get with the
1848 * appropriate power domain.
1849 *
1850 * Our driver uses the autosuspend delay feature, which means we'll only really
1851 * suspend if we stay with zero refcount for a certain amount of time. The
1852 * default value is currently very conservative (see intel_runtime_pm_enable), but
1853 * it can be changed with the standard runtime PM files from sysfs.
1854 *
1855 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1856 * goes back to false exactly before we reenable the IRQs. We use this variable
1857 * to check if someone is trying to enable/disable IRQs while they're supposed
1858 * to be disabled. This shouldn't happen and we'll print some error messages in
1859 * case it happens.
1860 *
1861 * For more, read the Documentation/power/runtime_pm.txt.
1862 */
1863 struct i915_runtime_pm {
1864 atomic_t wakeref_count;
1865 bool suspended;
1866 bool irqs_enabled;
1867 };
1868
1869 enum intel_pipe_crc_source {
1870 INTEL_PIPE_CRC_SOURCE_NONE,
1871 INTEL_PIPE_CRC_SOURCE_PLANE1,
1872 INTEL_PIPE_CRC_SOURCE_PLANE2,
1873 INTEL_PIPE_CRC_SOURCE_PF,
1874 INTEL_PIPE_CRC_SOURCE_PIPE,
1875 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1876 INTEL_PIPE_CRC_SOURCE_TV,
1877 INTEL_PIPE_CRC_SOURCE_DP_B,
1878 INTEL_PIPE_CRC_SOURCE_DP_C,
1879 INTEL_PIPE_CRC_SOURCE_DP_D,
1880 INTEL_PIPE_CRC_SOURCE_AUTO,
1881 INTEL_PIPE_CRC_SOURCE_MAX,
1882 };
1883
1884 struct intel_pipe_crc_entry {
1885 uint32_t frame;
1886 uint32_t crc[5];
1887 };
1888
1889 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1890 struct intel_pipe_crc {
1891 spinlock_t lock;
1892 bool opened; /* exclusive access to the result file */
1893 struct intel_pipe_crc_entry *entries;
1894 enum intel_pipe_crc_source source;
1895 int head, tail;
1896 wait_queue_head_t wq;
1897 int skipped;
1898 };
1899
1900 struct i915_frontbuffer_tracking {
1901 spinlock_t lock;
1902
1903 /*
1904 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1905 * scheduled flips.
1906 */
1907 unsigned busy_bits;
1908 unsigned flip_bits;
1909 };
1910
1911 struct i915_wa_reg {
1912 i915_reg_t addr;
1913 u32 value;
1914 /* bitmask representing WA bits */
1915 u32 mask;
1916 };
1917
1918 /*
1919 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1920 * allowing it for RCS as we don't foresee any requirement of having
1921 * a whitelist for other engines. When it is really required for
1922 * other engines then the limit need to be increased.
1923 */
1924 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1925
1926 struct i915_workarounds {
1927 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1928 u32 count;
1929 u32 hw_whitelist_count[I915_NUM_ENGINES];
1930 };
1931
1932 struct i915_virtual_gpu {
1933 bool active;
1934 u32 caps;
1935 };
1936
1937 /* used in computing the new watermarks state */
1938 struct intel_wm_config {
1939 unsigned int num_pipes_active;
1940 bool sprites_enabled;
1941 bool sprites_scaled;
1942 };
1943
1944 struct i915_oa_format {
1945 u32 format;
1946 int size;
1947 };
1948
1949 struct i915_oa_reg {
1950 i915_reg_t addr;
1951 u32 value;
1952 };
1953
1954 struct i915_oa_config {
1955 char uuid[UUID_STRING_LEN + 1];
1956 int id;
1957
1958 const struct i915_oa_reg *mux_regs;
1959 u32 mux_regs_len;
1960 const struct i915_oa_reg *b_counter_regs;
1961 u32 b_counter_regs_len;
1962 const struct i915_oa_reg *flex_regs;
1963 u32 flex_regs_len;
1964
1965 struct attribute_group sysfs_metric;
1966 struct attribute *attrs[2];
1967 struct device_attribute sysfs_metric_id;
1968
1969 atomic_t ref_count;
1970 };
1971
1972 struct i915_perf_stream;
1973
1974 /**
1975 * struct i915_perf_stream_ops - the OPs to support a specific stream type
1976 */
1977 struct i915_perf_stream_ops {
1978 /**
1979 * @enable: Enables the collection of HW samples, either in response to
1980 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1981 * without `I915_PERF_FLAG_DISABLED`.
1982 */
1983 void (*enable)(struct i915_perf_stream *stream);
1984
1985 /**
1986 * @disable: Disables the collection of HW samples, either in response
1987 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1988 * the stream.
1989 */
1990 void (*disable)(struct i915_perf_stream *stream);
1991
1992 /**
1993 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1994 * once there is something ready to read() for the stream
1995 */
1996 void (*poll_wait)(struct i915_perf_stream *stream,
1997 struct file *file,
1998 poll_table *wait);
1999
2000 /**
2001 * @wait_unlocked: For handling a blocking read, wait until there is
2002 * something to ready to read() for the stream. E.g. wait on the same
2003 * wait queue that would be passed to poll_wait().
2004 */
2005 int (*wait_unlocked)(struct i915_perf_stream *stream);
2006
2007 /**
2008 * @read: Copy buffered metrics as records to userspace
2009 * **buf**: the userspace, destination buffer
2010 * **count**: the number of bytes to copy, requested by userspace
2011 * **offset**: zero at the start of the read, updated as the read
2012 * proceeds, it represents how many bytes have been copied so far and
2013 * the buffer offset for copying the next record.
2014 *
2015 * Copy as many buffered i915 perf samples and records for this stream
2016 * to userspace as will fit in the given buffer.
2017 *
2018 * Only write complete records; returning -%ENOSPC if there isn't room
2019 * for a complete record.
2020 *
2021 * Return any error condition that results in a short read such as
2022 * -%ENOSPC or -%EFAULT, even though these may be squashed before
2023 * returning to userspace.
2024 */
2025 int (*read)(struct i915_perf_stream *stream,
2026 char __user *buf,
2027 size_t count,
2028 size_t *offset);
2029
2030 /**
2031 * @destroy: Cleanup any stream specific resources.
2032 *
2033 * The stream will always be disabled before this is called.
2034 */
2035 void (*destroy)(struct i915_perf_stream *stream);
2036 };
2037
2038 /**
2039 * struct i915_perf_stream - state for a single open stream FD
2040 */
2041 struct i915_perf_stream {
2042 /**
2043 * @dev_priv: i915 drm device
2044 */
2045 struct drm_i915_private *dev_priv;
2046
2047 /**
2048 * @link: Links the stream into ``&drm_i915_private->streams``
2049 */
2050 struct list_head link;
2051
2052 /**
2053 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
2054 * properties given when opening a stream, representing the contents
2055 * of a single sample as read() by userspace.
2056 */
2057 u32 sample_flags;
2058
2059 /**
2060 * @sample_size: Considering the configured contents of a sample
2061 * combined with the required header size, this is the total size
2062 * of a single sample record.
2063 */
2064 int sample_size;
2065
2066 /**
2067 * @ctx: %NULL if measuring system-wide across all contexts or a
2068 * specific context that is being monitored.
2069 */
2070 struct i915_gem_context *ctx;
2071
2072 /**
2073 * @enabled: Whether the stream is currently enabled, considering
2074 * whether the stream was opened in a disabled state and based
2075 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
2076 */
2077 bool enabled;
2078
2079 /**
2080 * @ops: The callbacks providing the implementation of this specific
2081 * type of configured stream.
2082 */
2083 const struct i915_perf_stream_ops *ops;
2084
2085 /**
2086 * @oa_config: The OA configuration used by the stream.
2087 */
2088 struct i915_oa_config *oa_config;
2089 };
2090
2091 /**
2092 * struct i915_oa_ops - Gen specific implementation of an OA unit stream
2093 */
2094 struct i915_oa_ops {
2095 /**
2096 * @is_valid_b_counter_reg: Validates register's address for
2097 * programming boolean counters for a particular platform.
2098 */
2099 bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
2100 u32 addr);
2101
2102 /**
2103 * @is_valid_mux_reg: Validates register's address for programming mux
2104 * for a particular platform.
2105 */
2106 bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
2107
2108 /**
2109 * @is_valid_flex_reg: Validates register's address for programming
2110 * flex EU filtering for a particular platform.
2111 */
2112 bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
2113
2114 /**
2115 * @init_oa_buffer: Resets the head and tail pointers of the
2116 * circular buffer for periodic OA reports.
2117 *
2118 * Called when first opening a stream for OA metrics, but also may be
2119 * called in response to an OA buffer overflow or other error
2120 * condition.
2121 *
2122 * Note it may be necessary to clear the full OA buffer here as part of
2123 * maintaining the invariable that new reports must be written to
2124 * zeroed memory for us to be able to reliable detect if an expected
2125 * report has not yet landed in memory. (At least on Haswell the OA
2126 * buffer tail pointer is not synchronized with reports being visible
2127 * to the CPU)
2128 */
2129 void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
2130
2131 /**
2132 * @enable_metric_set: Selects and applies any MUX configuration to set
2133 * up the Boolean and Custom (B/C) counters that are part of the
2134 * counter reports being sampled. May apply system constraints such as
2135 * disabling EU clock gating as required.
2136 */
2137 int (*enable_metric_set)(struct drm_i915_private *dev_priv,
2138 const struct i915_oa_config *oa_config);
2139
2140 /**
2141 * @disable_metric_set: Remove system constraints associated with using
2142 * the OA unit.
2143 */
2144 void (*disable_metric_set)(struct drm_i915_private *dev_priv);
2145
2146 /**
2147 * @oa_enable: Enable periodic sampling
2148 */
2149 void (*oa_enable)(struct drm_i915_private *dev_priv);
2150
2151 /**
2152 * @oa_disable: Disable periodic sampling
2153 */
2154 void (*oa_disable)(struct drm_i915_private *dev_priv);
2155
2156 /**
2157 * @read: Copy data from the circular OA buffer into a given userspace
2158 * buffer.
2159 */
2160 int (*read)(struct i915_perf_stream *stream,
2161 char __user *buf,
2162 size_t count,
2163 size_t *offset);
2164
2165 /**
2166 * @oa_hw_tail_read: read the OA tail pointer register
2167 *
2168 * In particular this enables us to share all the fiddly code for
2169 * handling the OA unit tail pointer race that affects multiple
2170 * generations.
2171 */
2172 u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
2173 };
2174
2175 struct intel_cdclk_state {
2176 unsigned int cdclk, vco, ref;
2177 };
2178
2179 struct drm_i915_private {
2180 struct drm_device drm;
2181
2182 struct kmem_cache *objects;
2183 struct kmem_cache *vmas;
2184 struct kmem_cache *luts;
2185 struct kmem_cache *requests;
2186 struct kmem_cache *dependencies;
2187 struct kmem_cache *priorities;
2188
2189 const struct intel_device_info info;
2190
2191 void __iomem *regs;
2192
2193 struct intel_uncore uncore;
2194
2195 struct i915_virtual_gpu vgpu;
2196
2197 struct intel_gvt *gvt;
2198
2199 struct intel_huc huc;
2200 struct intel_guc guc;
2201
2202 struct intel_csr csr;
2203
2204 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
2205
2206 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
2207 * controller on different i2c buses. */
2208 struct mutex gmbus_mutex;
2209
2210 /**
2211 * Base address of the gmbus and gpio block.
2212 */
2213 uint32_t gpio_mmio_base;
2214
2215 /* MMIO base address for MIPI regs */
2216 uint32_t mipi_mmio_base;
2217
2218 uint32_t psr_mmio_base;
2219
2220 uint32_t pps_mmio_base;
2221
2222 wait_queue_head_t gmbus_wait_queue;
2223
2224 struct pci_dev *bridge_dev;
2225 struct i915_gem_context *kernel_context;
2226 struct intel_engine_cs *engine[I915_NUM_ENGINES];
2227 struct i915_vma *semaphore;
2228
2229 struct drm_dma_handle *status_page_dmah;
2230 struct resource mch_res;
2231
2232 /* protects the irq masks */
2233 spinlock_t irq_lock;
2234
2235 bool display_irqs_enabled;
2236
2237 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
2238 struct pm_qos_request pm_qos;
2239
2240 /* Sideband mailbox protection */
2241 struct mutex sb_lock;
2242
2243 /** Cached value of IMR to avoid reads in updating the bitfield */
2244 union {
2245 u32 irq_mask;
2246 u32 de_irq_mask[I915_MAX_PIPES];
2247 };
2248 u32 gt_irq_mask;
2249 u32 pm_imr;
2250 u32 pm_ier;
2251 u32 pm_rps_events;
2252 u32 pm_guc_events;
2253 u32 pipestat_irq_mask[I915_MAX_PIPES];
2254
2255 struct i915_hotplug hotplug;
2256 struct intel_fbc fbc;
2257 struct i915_drrs drrs;
2258 struct intel_opregion opregion;
2259 struct intel_vbt_data vbt;
2260
2261 bool preserve_bios_swizzle;
2262
2263 /* overlay */
2264 struct intel_overlay *overlay;
2265
2266 /* backlight registers and fields in struct intel_panel */
2267 struct mutex backlight_lock;
2268
2269 /* LVDS info */
2270 bool no_aux_handshake;
2271
2272 /* protects panel power sequencer state */
2273 struct mutex pps_mutex;
2274
2275 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
2276 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
2277
2278 unsigned int fsb_freq, mem_freq, is_ddr3;
2279 unsigned int skl_preferred_vco_freq;
2280 unsigned int max_cdclk_freq;
2281
2282 unsigned int max_dotclk_freq;
2283 unsigned int rawclk_freq;
2284 unsigned int hpll_freq;
2285 unsigned int czclk_freq;
2286
2287 struct {
2288 /*
2289 * The current logical cdclk state.
2290 * See intel_atomic_state.cdclk.logical
2291 *
2292 * For reading holding any crtc lock is sufficient,
2293 * for writing must hold all of them.
2294 */
2295 struct intel_cdclk_state logical;
2296 /*
2297 * The current actual cdclk state.
2298 * See intel_atomic_state.cdclk.actual
2299 */
2300 struct intel_cdclk_state actual;
2301 /* The current hardware cdclk state */
2302 struct intel_cdclk_state hw;
2303 } cdclk;
2304
2305 /**
2306 * wq - Driver workqueue for GEM.
2307 *
2308 * NOTE: Work items scheduled here are not allowed to grab any modeset
2309 * locks, for otherwise the flushing done in the pageflip code will
2310 * result in deadlocks.
2311 */
2312 struct workqueue_struct *wq;
2313
2314 /* Display functions */
2315 struct drm_i915_display_funcs display;
2316
2317 /* PCH chipset type */
2318 enum intel_pch pch_type;
2319 unsigned short pch_id;
2320
2321 unsigned long quirks;
2322
2323 enum modeset_restore modeset_restore;
2324 struct mutex modeset_restore_lock;
2325 struct drm_atomic_state *modeset_restore_state;
2326 struct drm_modeset_acquire_ctx reset_ctx;
2327
2328 struct list_head vm_list; /* Global list of all address spaces */
2329 struct i915_ggtt ggtt; /* VM representing the global address space */
2330
2331 struct i915_gem_mm mm;
2332 DECLARE_HASHTABLE(mm_structs, 7);
2333 struct mutex mm_lock;
2334
2335 /* Kernel Modesetting */
2336
2337 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
2338 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
2339
2340 #ifdef CONFIG_DEBUG_FS
2341 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
2342 #endif
2343
2344 /* dpll and cdclk state is protected by connection_mutex */
2345 int num_shared_dpll;
2346 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
2347 const struct intel_dpll_mgr *dpll_mgr;
2348
2349 /*
2350 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
2351 * Must be global rather than per dpll, because on some platforms
2352 * plls share registers.
2353 */
2354 struct mutex dpll_lock;
2355
2356 unsigned int active_crtcs;
2357 /* minimum acceptable cdclk for each pipe */
2358 int min_cdclk[I915_MAX_PIPES];
2359
2360 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
2361
2362 struct i915_workarounds workarounds;
2363
2364 struct i915_frontbuffer_tracking fb_tracking;
2365
2366 struct intel_atomic_helper {
2367 struct llist_head free_list;
2368 struct work_struct free_work;
2369 } atomic_helper;
2370
2371 u16 orig_clock;
2372
2373 bool mchbar_need_disable;
2374
2375 struct intel_l3_parity l3_parity;
2376
2377 /* Cannot be determined by PCIID. You must always read a register. */
2378 u32 edram_cap;
2379
2380 /* gen6+ rps state */
2381 struct intel_gen6_power_mgmt rps;
2382
2383 /* ilk-only ips/rps state. Everything in here is protected by the global
2384 * mchdev_lock in intel_pm.c */
2385 struct intel_ilk_power_mgmt ips;
2386
2387 struct i915_power_domains power_domains;
2388
2389 struct i915_psr psr;
2390
2391 struct i915_gpu_error gpu_error;
2392
2393 struct drm_i915_gem_object *vlv_pctx;
2394
2395 /* list of fbdev register on this device */
2396 struct intel_fbdev *fbdev;
2397 struct work_struct fbdev_suspend_work;
2398
2399 struct drm_property *broadcast_rgb_property;
2400 struct drm_property *force_audio_property;
2401
2402 /* hda/i915 audio component */
2403 struct i915_audio_component *audio_component;
2404 bool audio_component_registered;
2405 /**
2406 * av_mutex - mutex for audio/video sync
2407 *
2408 */
2409 struct mutex av_mutex;
2410
2411 struct {
2412 struct list_head list;
2413 struct llist_head free_list;
2414 struct work_struct free_work;
2415
2416 /* The hw wants to have a stable context identifier for the
2417 * lifetime of the context (for OA, PASID, faults, etc).
2418 * This is limited in execlists to 21 bits.
2419 */
2420 struct ida hw_ida;
2421 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
2422 } contexts;
2423
2424 u32 fdi_rx_config;
2425
2426 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
2427 u32 chv_phy_control;
2428 /*
2429 * Shadows for CHV DPLL_MD regs to keep the state
2430 * checker somewhat working in the presence hardware
2431 * crappiness (can't read out DPLL_MD for pipes B & C).
2432 */
2433 u32 chv_dpll_md[I915_MAX_PIPES];
2434 u32 bxt_phy_grc;
2435
2436 u32 suspend_count;
2437 bool suspended_to_idle;
2438 struct i915_suspend_saved_registers regfile;
2439 struct vlv_s0ix_state vlv_s0ix_state;
2440
2441 enum {
2442 I915_SAGV_UNKNOWN = 0,
2443 I915_SAGV_DISABLED,
2444 I915_SAGV_ENABLED,
2445 I915_SAGV_NOT_CONTROLLED
2446 } sagv_status;
2447
2448 struct {
2449 /*
2450 * Raw watermark latency values:
2451 * in 0.1us units for WM0,
2452 * in 0.5us units for WM1+.
2453 */
2454 /* primary */
2455 uint16_t pri_latency[5];
2456 /* sprite */
2457 uint16_t spr_latency[5];
2458 /* cursor */
2459 uint16_t cur_latency[5];
2460 /*
2461 * Raw watermark memory latency values
2462 * for SKL for all 8 levels
2463 * in 1us units.
2464 */
2465 uint16_t skl_latency[8];
2466
2467 /* current hardware state */
2468 union {
2469 struct ilk_wm_values hw;
2470 struct skl_wm_values skl_hw;
2471 struct vlv_wm_values vlv;
2472 struct g4x_wm_values g4x;
2473 };
2474
2475 uint8_t max_level;
2476
2477 /*
2478 * Should be held around atomic WM register writing; also
2479 * protects * intel_crtc->wm.active and
2480 * cstate->wm.need_postvbl_update.
2481 */
2482 struct mutex wm_mutex;
2483
2484 /*
2485 * Set during HW readout of watermarks/DDB. Some platforms
2486 * need to know when we're still using BIOS-provided values
2487 * (which we don't fully trust).
2488 */
2489 bool distrust_bios_wm;
2490 } wm;
2491
2492 struct i915_runtime_pm pm;
2493
2494 struct {
2495 bool initialized;
2496
2497 struct kobject *metrics_kobj;
2498 struct ctl_table_header *sysctl_header;
2499
2500 /*
2501 * Lock associated with adding/modifying/removing OA configs
2502 * in dev_priv->perf.metrics_idr.
2503 */
2504 struct mutex metrics_lock;
2505
2506 /*
2507 * List of dynamic configurations, you need to hold
2508 * dev_priv->perf.metrics_lock to access it.
2509 */
2510 struct idr metrics_idr;
2511
2512 /*
2513 * Lock associated with anything below within this structure
2514 * except exclusive_stream.
2515 */
2516 struct mutex lock;
2517 struct list_head streams;
2518
2519 struct {
2520 /*
2521 * The stream currently using the OA unit. If accessed
2522 * outside a syscall associated to its file
2523 * descriptor, you need to hold
2524 * dev_priv->drm.struct_mutex.
2525 */
2526 struct i915_perf_stream *exclusive_stream;
2527
2528 u32 specific_ctx_id;
2529
2530 struct hrtimer poll_check_timer;
2531 wait_queue_head_t poll_wq;
2532 bool pollin;
2533
2534 /**
2535 * For rate limiting any notifications of spurious
2536 * invalid OA reports
2537 */
2538 struct ratelimit_state spurious_report_rs;
2539
2540 bool periodic;
2541 int period_exponent;
2542 int timestamp_frequency;
2543
2544 struct i915_oa_config test_config;
2545
2546 struct {
2547 struct i915_vma *vma;
2548 u8 *vaddr;
2549 u32 last_ctx_id;
2550 int format;
2551 int format_size;
2552
2553 /**
2554 * Locks reads and writes to all head/tail state
2555 *
2556 * Consider: the head and tail pointer state
2557 * needs to be read consistently from a hrtimer
2558 * callback (atomic context) and read() fop
2559 * (user context) with tail pointer updates
2560 * happening in atomic context and head updates
2561 * in user context and the (unlikely)
2562 * possibility of read() errors needing to
2563 * reset all head/tail state.
2564 *
2565 * Note: Contention or performance aren't
2566 * currently a significant concern here
2567 * considering the relatively low frequency of
2568 * hrtimer callbacks (5ms period) and that
2569 * reads typically only happen in response to a
2570 * hrtimer event and likely complete before the
2571 * next callback.
2572 *
2573 * Note: This lock is not held *while* reading
2574 * and copying data to userspace so the value
2575 * of head observed in htrimer callbacks won't
2576 * represent any partial consumption of data.
2577 */
2578 spinlock_t ptr_lock;
2579
2580 /**
2581 * One 'aging' tail pointer and one 'aged'
2582 * tail pointer ready to used for reading.
2583 *
2584 * Initial values of 0xffffffff are invalid
2585 * and imply that an update is required
2586 * (and should be ignored by an attempted
2587 * read)
2588 */
2589 struct {
2590 u32 offset;
2591 } tails[2];
2592
2593 /**
2594 * Index for the aged tail ready to read()
2595 * data up to.
2596 */
2597 unsigned int aged_tail_idx;
2598
2599 /**
2600 * A monotonic timestamp for when the current
2601 * aging tail pointer was read; used to
2602 * determine when it is old enough to trust.
2603 */
2604 u64 aging_timestamp;
2605
2606 /**
2607 * Although we can always read back the head
2608 * pointer register, we prefer to avoid
2609 * trusting the HW state, just to avoid any
2610 * risk that some hardware condition could
2611 * somehow bump the head pointer unpredictably
2612 * and cause us to forward the wrong OA buffer
2613 * data to userspace.
2614 */
2615 u32 head;
2616 } oa_buffer;
2617
2618 u32 gen7_latched_oastatus1;
2619 u32 ctx_oactxctrl_offset;
2620 u32 ctx_flexeu0_offset;
2621
2622 /**
2623 * The RPT_ID/reason field for Gen8+ includes a bit
2624 * to determine if the CTX ID in the report is valid
2625 * but the specific bit differs between Gen 8 and 9
2626 */
2627 u32 gen8_valid_ctx_bit;
2628
2629 struct i915_oa_ops ops;
2630 const struct i915_oa_format *oa_formats;
2631 } oa;
2632 } perf;
2633
2634 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2635 struct {
2636 void (*resume)(struct drm_i915_private *);
2637 void (*cleanup_engine)(struct intel_engine_cs *engine);
2638
2639 struct list_head timelines;
2640 struct i915_gem_timeline global_timeline;
2641 u32 active_requests;
2642
2643 /**
2644 * Is the GPU currently considered idle, or busy executing
2645 * userspace requests? Whilst idle, we allow runtime power
2646 * management to power down the hardware and display clocks.
2647 * In order to reduce the effect on performance, there
2648 * is a slight delay before we do so.
2649 */
2650 bool awake;
2651
2652 /**
2653 * We leave the user IRQ off as much as possible,
2654 * but this means that requests will finish and never
2655 * be retired once the system goes idle. Set a timer to
2656 * fire periodically while the ring is running. When it
2657 * fires, go retire requests.
2658 */
2659 struct delayed_work retire_work;
2660
2661 /**
2662 * When we detect an idle GPU, we want to turn on
2663 * powersaving features. So once we see that there
2664 * are no more requests outstanding and no more
2665 * arrive within a small period of time, we fire
2666 * off the idle_work.
2667 */
2668 struct delayed_work idle_work;
2669
2670 ktime_t last_init_time;
2671 } gt;
2672
2673 /* perform PHY state sanity checks? */
2674 bool chv_phy_assert[2];
2675
2676 bool ipc_enabled;
2677
2678 /* Used to save the pipe-to-encoder mapping for audio */
2679 struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2680
2681 /* necessary resource sharing with HDMI LPE audio driver. */
2682 struct {
2683 struct platform_device *platdev;
2684 int irq;
2685 } lpe_audio;
2686
2687 /*
2688 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2689 * will be rejected. Instead look for a better place.
2690 */
2691 };
2692
2693 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2694 {
2695 return container_of(dev, struct drm_i915_private, drm);
2696 }
2697
2698 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2699 {
2700 return to_i915(dev_get_drvdata(kdev));
2701 }
2702
2703 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2704 {
2705 return container_of(guc, struct drm_i915_private, guc);
2706 }
2707
2708 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2709 {
2710 return container_of(huc, struct drm_i915_private, huc);
2711 }
2712
2713 /* Simple iterator over all initialised engines */
2714 #define for_each_engine(engine__, dev_priv__, id__) \
2715 for ((id__) = 0; \
2716 (id__) < I915_NUM_ENGINES; \
2717 (id__)++) \
2718 for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2719
2720 /* Iterator over subset of engines selected by mask */
2721 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2722 for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask; \
2723 tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2724
2725 enum hdmi_force_audio {
2726 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2727 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2728 HDMI_AUDIO_AUTO, /* trust EDID */
2729 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2730 };
2731
2732 #define I915_GTT_OFFSET_NONE ((u32)-1)
2733
2734 /*
2735 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2736 * considered to be the frontbuffer for the given plane interface-wise. This
2737 * doesn't mean that the hw necessarily already scans it out, but that any
2738 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2739 *
2740 * We have one bit per pipe and per scanout plane type.
2741 */
2742 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2743 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2744 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2745 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2746 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2747 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2748 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2749 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2750 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2751 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2752 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2753 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2754
2755 /*
2756 * Optimised SGL iterator for GEM objects
2757 */
2758 static __always_inline struct sgt_iter {
2759 struct scatterlist *sgp;
2760 union {
2761 unsigned long pfn;
2762 dma_addr_t dma;
2763 };
2764 unsigned int curr;
2765 unsigned int max;
2766 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2767 struct sgt_iter s = { .sgp = sgl };
2768
2769 if (s.sgp) {
2770 s.max = s.curr = s.sgp->offset;
2771 s.max += s.sgp->length;
2772 if (dma)
2773 s.dma = sg_dma_address(s.sgp);
2774 else
2775 s.pfn = page_to_pfn(sg_page(s.sgp));
2776 }
2777
2778 return s;
2779 }
2780
2781 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2782 {
2783 ++sg;
2784 if (unlikely(sg_is_chain(sg)))
2785 sg = sg_chain_ptr(sg);
2786 return sg;
2787 }
2788
2789 /**
2790 * __sg_next - return the next scatterlist entry in a list
2791 * @sg: The current sg entry
2792 *
2793 * Description:
2794 * If the entry is the last, return NULL; otherwise, step to the next
2795 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2796 * otherwise just return the pointer to the current element.
2797 **/
2798 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2799 {
2800 #ifdef CONFIG_DEBUG_SG
2801 BUG_ON(sg->sg_magic != SG_MAGIC);
2802 #endif
2803 return sg_is_last(sg) ? NULL : ____sg_next(sg);
2804 }
2805
2806 /**
2807 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2808 * @__dmap: DMA address (output)
2809 * @__iter: 'struct sgt_iter' (iterator state, internal)
2810 * @__sgt: sg_table to iterate over (input)
2811 */
2812 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2813 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2814 ((__dmap) = (__iter).dma + (__iter).curr); \
2815 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2816 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2817
2818 /**
2819 * for_each_sgt_page - iterate over the pages of the given sg_table
2820 * @__pp: page pointer (output)
2821 * @__iter: 'struct sgt_iter' (iterator state, internal)
2822 * @__sgt: sg_table to iterate over (input)
2823 */
2824 #define for_each_sgt_page(__pp, __iter, __sgt) \
2825 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2826 ((__pp) = (__iter).pfn == 0 ? NULL : \
2827 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2828 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2829 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2830
2831 static inline const struct intel_device_info *
2832 intel_info(const struct drm_i915_private *dev_priv)
2833 {
2834 return &dev_priv->info;
2835 }
2836
2837 #define INTEL_INFO(dev_priv) intel_info((dev_priv))
2838
2839 #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen)
2840 #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id)
2841
2842 #define REVID_FOREVER 0xff
2843 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision)
2844
2845 #define GEN_FOREVER (0)
2846 /*
2847 * Returns true if Gen is in inclusive range [Start, End].
2848 *
2849 * Use GEN_FOREVER for unbound start and or end.
2850 */
2851 #define IS_GEN(dev_priv, s, e) ({ \
2852 unsigned int __s = (s), __e = (e); \
2853 BUILD_BUG_ON(!__builtin_constant_p(s)); \
2854 BUILD_BUG_ON(!__builtin_constant_p(e)); \
2855 if ((__s) != GEN_FOREVER) \
2856 __s = (s) - 1; \
2857 if ((__e) == GEN_FOREVER) \
2858 __e = BITS_PER_LONG - 1; \
2859 else \
2860 __e = (e) - 1; \
2861 !!((dev_priv)->info.gen_mask & GENMASK((__e), (__s))); \
2862 })
2863
2864 /*
2865 * Return true if revision is in range [since,until] inclusive.
2866 *
2867 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2868 */
2869 #define IS_REVID(p, since, until) \
2870 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2871
2872 #define IS_I830(dev_priv) ((dev_priv)->info.platform == INTEL_I830)
2873 #define IS_I845G(dev_priv) ((dev_priv)->info.platform == INTEL_I845G)
2874 #define IS_I85X(dev_priv) ((dev_priv)->info.platform == INTEL_I85X)
2875 #define IS_I865G(dev_priv) ((dev_priv)->info.platform == INTEL_I865G)
2876 #define IS_I915G(dev_priv) ((dev_priv)->info.platform == INTEL_I915G)
2877 #define IS_I915GM(dev_priv) ((dev_priv)->info.platform == INTEL_I915GM)
2878 #define IS_I945G(dev_priv) ((dev_priv)->info.platform == INTEL_I945G)
2879 #define IS_I945GM(dev_priv) ((dev_priv)->info.platform == INTEL_I945GM)
2880 #define IS_I965G(dev_priv) ((dev_priv)->info.platform == INTEL_I965G)
2881 #define IS_I965GM(dev_priv) ((dev_priv)->info.platform == INTEL_I965GM)
2882 #define IS_G45(dev_priv) ((dev_priv)->info.platform == INTEL_G45)
2883 #define IS_GM45(dev_priv) ((dev_priv)->info.platform == INTEL_GM45)
2884 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv))
2885 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001)
2886 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011)
2887 #define IS_PINEVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_PINEVIEW)
2888 #define IS_G33(dev_priv) ((dev_priv)->info.platform == INTEL_G33)
2889 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046)
2890 #define IS_IVYBRIDGE(dev_priv) ((dev_priv)->info.platform == INTEL_IVYBRIDGE)
2891 #define IS_IVB_GT1(dev_priv) (IS_IVYBRIDGE(dev_priv) && \
2892 (dev_priv)->info.gt == 1)
2893 #define IS_VALLEYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_VALLEYVIEW)
2894 #define IS_CHERRYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_CHERRYVIEW)
2895 #define IS_HASWELL(dev_priv) ((dev_priv)->info.platform == INTEL_HASWELL)
2896 #define IS_BROADWELL(dev_priv) ((dev_priv)->info.platform == INTEL_BROADWELL)
2897 #define IS_SKYLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_SKYLAKE)
2898 #define IS_BROXTON(dev_priv) ((dev_priv)->info.platform == INTEL_BROXTON)
2899 #define IS_KABYLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_KABYLAKE)
2900 #define IS_GEMINILAKE(dev_priv) ((dev_priv)->info.platform == INTEL_GEMINILAKE)
2901 #define IS_COFFEELAKE(dev_priv) ((dev_priv)->info.platform == INTEL_COFFEELAKE)
2902 #define IS_CANNONLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_CANNONLAKE)
2903 #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile)
2904 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2905 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2906 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \
2907 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \
2908 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \
2909 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2910 /* ULX machines are also considered ULT. */
2911 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \
2912 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2913 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \
2914 (dev_priv)->info.gt == 3)
2915 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \
2916 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2917 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \
2918 (dev_priv)->info.gt == 3)
2919 /* ULX machines are also considered ULT. */
2920 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \
2921 INTEL_DEVID(dev_priv) == 0x0A1E)
2922 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \
2923 INTEL_DEVID(dev_priv) == 0x1913 || \
2924 INTEL_DEVID(dev_priv) == 0x1916 || \
2925 INTEL_DEVID(dev_priv) == 0x1921 || \
2926 INTEL_DEVID(dev_priv) == 0x1926)
2927 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \
2928 INTEL_DEVID(dev_priv) == 0x1915 || \
2929 INTEL_DEVID(dev_priv) == 0x191E)
2930 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \
2931 INTEL_DEVID(dev_priv) == 0x5913 || \
2932 INTEL_DEVID(dev_priv) == 0x5916 || \
2933 INTEL_DEVID(dev_priv) == 0x5921 || \
2934 INTEL_DEVID(dev_priv) == 0x5926)
2935 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \
2936 INTEL_DEVID(dev_priv) == 0x5915 || \
2937 INTEL_DEVID(dev_priv) == 0x591E)
2938 #define IS_SKL_GT2(dev_priv) (IS_SKYLAKE(dev_priv) && \
2939 (dev_priv)->info.gt == 2)
2940 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \
2941 (dev_priv)->info.gt == 3)
2942 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \
2943 (dev_priv)->info.gt == 4)
2944 #define IS_KBL_GT2(dev_priv) (IS_KABYLAKE(dev_priv) && \
2945 (dev_priv)->info.gt == 2)
2946 #define IS_KBL_GT3(dev_priv) (IS_KABYLAKE(dev_priv) && \
2947 (dev_priv)->info.gt == 3)
2948 #define IS_CFL_ULT(dev_priv) (IS_COFFEELAKE(dev_priv) && \
2949 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2950
2951 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2952
2953 #define SKL_REVID_A0 0x0
2954 #define SKL_REVID_B0 0x1
2955 #define SKL_REVID_C0 0x2
2956 #define SKL_REVID_D0 0x3
2957 #define SKL_REVID_E0 0x4
2958 #define SKL_REVID_F0 0x5
2959 #define SKL_REVID_G0 0x6
2960 #define SKL_REVID_H0 0x7
2961
2962 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2963
2964 #define BXT_REVID_A0 0x0
2965 #define BXT_REVID_A1 0x1
2966 #define BXT_REVID_B0 0x3
2967 #define BXT_REVID_B_LAST 0x8
2968 #define BXT_REVID_C0 0x9
2969
2970 #define IS_BXT_REVID(dev_priv, since, until) \
2971 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2972
2973 #define KBL_REVID_A0 0x0
2974 #define KBL_REVID_B0 0x1
2975 #define KBL_REVID_C0 0x2
2976 #define KBL_REVID_D0 0x3
2977 #define KBL_REVID_E0 0x4
2978
2979 #define IS_KBL_REVID(dev_priv, since, until) \
2980 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2981
2982 #define GLK_REVID_A0 0x0
2983 #define GLK_REVID_A1 0x1
2984
2985 #define IS_GLK_REVID(dev_priv, since, until) \
2986 (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2987
2988 #define CNL_REVID_A0 0x0
2989 #define CNL_REVID_B0 0x1
2990
2991 #define IS_CNL_REVID(p, since, until) \
2992 (IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2993
2994 /*
2995 * The genX designation typically refers to the render engine, so render
2996 * capability related checks should use IS_GEN, while display and other checks
2997 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2998 * chips, etc.).
2999 */
3000 #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1)))
3001 #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2)))
3002 #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3)))
3003 #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4)))
3004 #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5)))
3005 #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6)))
3006 #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7)))
3007 #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8)))
3008 #define IS_GEN10(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(9)))
3009
3010 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp)
3011 #define IS_GEN9_LP(dev_priv) (IS_GEN9(dev_priv) && IS_LP(dev_priv))
3012 #define IS_GEN9_BC(dev_priv) (IS_GEN9(dev_priv) && !IS_LP(dev_priv))
3013
3014 #define ENGINE_MASK(id) BIT(id)
3015 #define RENDER_RING ENGINE_MASK(RCS)
3016 #define BSD_RING ENGINE_MASK(VCS)
3017 #define BLT_RING ENGINE_MASK(BCS)
3018 #define VEBOX_RING ENGINE_MASK(VECS)
3019 #define BSD2_RING ENGINE_MASK(VCS2)
3020 #define ALL_ENGINES (~0)
3021
3022 #define HAS_ENGINE(dev_priv, id) \
3023 (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
3024
3025 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
3026 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
3027 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
3028 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
3029
3030 #define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc)
3031 #define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop)
3032 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED))
3033 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \
3034 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
3035
3036 #define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical)
3037
3038 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
3039 ((dev_priv)->info.has_logical_ring_contexts)
3040 #define USES_PPGTT(dev_priv) (i915.enable_ppgtt)
3041 #define USES_FULL_PPGTT(dev_priv) (i915.enable_ppgtt >= 2)
3042 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915.enable_ppgtt == 3)
3043
3044 #define HAS_OVERLAY(dev_priv) ((dev_priv)->info.has_overlay)
3045 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
3046 ((dev_priv)->info.overlay_needs_physical)
3047
3048 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
3049 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv))
3050
3051 /* WaRsDisableCoarsePowerGating:skl,bxt */
3052 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
3053 (IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
3054
3055 /*
3056 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
3057 * even when in MSI mode. This results in spurious interrupt warnings if the
3058 * legacy irq no. is shared with another device. The kernel then disables that
3059 * interrupt source and so prevents the other device from working properly.
3060 */
3061 #define HAS_AUX_IRQ(dev_priv) ((dev_priv)->info.gen >= 5)
3062 #define HAS_GMBUS_IRQ(dev_priv) ((dev_priv)->info.has_gmbus_irq)
3063
3064 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
3065 * rows, which changed the alignment requirements and fence programming.
3066 */
3067 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
3068 !(IS_I915G(dev_priv) || \
3069 IS_I915GM(dev_priv)))
3070 #define SUPPORTS_TV(dev_priv) ((dev_priv)->info.supports_tv)
3071 #define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.has_hotplug)
3072
3073 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2)
3074 #define HAS_PIPE_CXSR(dev_priv) ((dev_priv)->info.has_pipe_cxsr)
3075 #define HAS_FBC(dev_priv) ((dev_priv)->info.has_fbc)
3076 #define HAS_CUR_FBC(dev_priv) (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_INFO(dev_priv)->gen >= 7)
3077
3078 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
3079
3080 #define HAS_DP_MST(dev_priv) ((dev_priv)->info.has_dp_mst)
3081
3082 #define HAS_DDI(dev_priv) ((dev_priv)->info.has_ddi)
3083 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
3084 #define HAS_PSR(dev_priv) ((dev_priv)->info.has_psr)
3085 #define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6)
3086 #define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p)
3087
3088 #define HAS_CSR(dev_priv) ((dev_priv)->info.has_csr)
3089
3090 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
3091 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
3092
3093 /*
3094 * For now, anything with a GuC requires uCode loading, and then supports
3095 * command submission once loaded. But these are logically independent
3096 * properties, so we have separate macros to test them.
3097 */
3098 #define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc)
3099 #define HAS_GUC_CT(dev_priv) ((dev_priv)->info.has_guc_ct)
3100 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3101 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv))
3102 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3103
3104 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
3105
3106 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu)
3107
3108 #define INTEL_PCH_DEVICE_ID_MASK 0xff80
3109 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
3110 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
3111 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
3112 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
3113 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
3114 #define INTEL_PCH_WPT_DEVICE_ID_TYPE 0x8c80
3115 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE 0x9c80
3116 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
3117 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
3118 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA280
3119 #define INTEL_PCH_CNP_DEVICE_ID_TYPE 0xA300
3120 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE 0x9D80
3121 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
3122 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
3123 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
3124
3125 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
3126 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
3127 #define HAS_PCH_CNP_LP(dev_priv) \
3128 ((dev_priv)->pch_id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
3129 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
3130 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
3131 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
3132 #define HAS_PCH_LPT_LP(dev_priv) \
3133 ((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
3134 (dev_priv)->pch_id == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
3135 #define HAS_PCH_LPT_H(dev_priv) \
3136 ((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
3137 (dev_priv)->pch_id == INTEL_PCH_WPT_DEVICE_ID_TYPE)
3138 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
3139 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
3140 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
3141 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
3142
3143 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
3144
3145 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
3146
3147 /* DPF == dynamic parity feature */
3148 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
3149 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
3150 2 : HAS_L3_DPF(dev_priv))
3151
3152 #define GT_FREQUENCY_MULTIPLIER 50
3153 #define GEN9_FREQ_SCALER 3
3154
3155 #include "i915_trace.h"
3156
3157 static inline bool intel_vtd_active(void)
3158 {
3159 #ifdef CONFIG_INTEL_IOMMU
3160 if (intel_iommu_gfx_mapped)
3161 return true;
3162 #endif
3163 return false;
3164 }
3165
3166 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
3167 {
3168 return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
3169 }
3170
3171 static inline bool
3172 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
3173 {
3174 return IS_BROXTON(dev_priv) && intel_vtd_active();
3175 }
3176
3177 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
3178 int enable_ppgtt);
3179
3180 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
3181
3182 /* i915_drv.c */
3183 void __printf(3, 4)
3184 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
3185 const char *fmt, ...);
3186
3187 #define i915_report_error(dev_priv, fmt, ...) \
3188 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
3189
3190 #ifdef CONFIG_COMPAT
3191 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
3192 unsigned long arg);
3193 #else
3194 #define i915_compat_ioctl NULL
3195 #endif
3196 extern const struct dev_pm_ops i915_pm_ops;
3197
3198 extern int i915_driver_load(struct pci_dev *pdev,
3199 const struct pci_device_id *ent);
3200 extern void i915_driver_unload(struct drm_device *dev);
3201 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
3202 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
3203
3204 #define I915_RESET_QUIET BIT(0)
3205 extern void i915_reset(struct drm_i915_private *i915, unsigned int flags);
3206 extern int i915_reset_engine(struct intel_engine_cs *engine,
3207 unsigned int flags);
3208
3209 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
3210 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
3211 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
3212 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
3213 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
3214 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
3215 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
3216 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
3217 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
3218
3219 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
3220 int intel_engines_init(struct drm_i915_private *dev_priv);
3221
3222 /* intel_hotplug.c */
3223 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
3224 u32 pin_mask, u32 long_mask);
3225 void intel_hpd_init(struct drm_i915_private *dev_priv);
3226 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
3227 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
3228 enum port intel_hpd_pin_to_port(enum hpd_pin pin);
3229 enum hpd_pin intel_hpd_pin(enum port port);
3230 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3231 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3232
3233 /* i915_irq.c */
3234 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
3235 {
3236 unsigned long delay;
3237
3238 if (unlikely(!i915.enable_hangcheck))
3239 return;
3240
3241 /* Don't continually defer the hangcheck so that it is always run at
3242 * least once after work has been scheduled on any ring. Otherwise,
3243 * we will ignore a hung ring if a second ring is kept busy.
3244 */
3245
3246 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
3247 queue_delayed_work(system_long_wq,
3248 &dev_priv->gpu_error.hangcheck_work, delay);
3249 }
3250
3251 __printf(3, 4)
3252 void i915_handle_error(struct drm_i915_private *dev_priv,
3253 u32 engine_mask,
3254 const char *fmt, ...);
3255
3256 extern void intel_irq_init(struct drm_i915_private *dev_priv);
3257 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
3258 int intel_irq_install(struct drm_i915_private *dev_priv);
3259 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
3260
3261 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3262 {
3263 return dev_priv->gvt;
3264 }
3265
3266 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3267 {
3268 return dev_priv->vgpu.active;
3269 }
3270
3271 void
3272 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3273 u32 status_mask);
3274
3275 void
3276 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3277 u32 status_mask);
3278
3279 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3280 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3281 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3282 uint32_t mask,
3283 uint32_t bits);
3284 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3285 uint32_t interrupt_mask,
3286 uint32_t enabled_irq_mask);
3287 static inline void
3288 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3289 {
3290 ilk_update_display_irq(dev_priv, bits, bits);
3291 }
3292 static inline void
3293 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3294 {
3295 ilk_update_display_irq(dev_priv, bits, 0);
3296 }
3297 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3298 enum pipe pipe,
3299 uint32_t interrupt_mask,
3300 uint32_t enabled_irq_mask);
3301 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3302 enum pipe pipe, uint32_t bits)
3303 {
3304 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3305 }
3306 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3307 enum pipe pipe, uint32_t bits)
3308 {
3309 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3310 }
3311 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3312 uint32_t interrupt_mask,
3313 uint32_t enabled_irq_mask);
3314 static inline void
3315 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3316 {
3317 ibx_display_interrupt_update(dev_priv, bits, bits);
3318 }
3319 static inline void
3320 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3321 {
3322 ibx_display_interrupt_update(dev_priv, bits, 0);
3323 }
3324
3325 /* i915_gem.c */
3326 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3327 struct drm_file *file_priv);
3328 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3329 struct drm_file *file_priv);
3330 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3331 struct drm_file *file_priv);
3332 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3333 struct drm_file *file_priv);
3334 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3335 struct drm_file *file_priv);
3336 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3337 struct drm_file *file_priv);
3338 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3339 struct drm_file *file_priv);
3340 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3341 struct drm_file *file_priv);
3342 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3343 struct drm_file *file_priv);
3344 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3345 struct drm_file *file_priv);
3346 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3347 struct drm_file *file);
3348 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3349 struct drm_file *file);
3350 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3351 struct drm_file *file_priv);
3352 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3353 struct drm_file *file_priv);
3354 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
3355 struct drm_file *file_priv);
3356 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
3357 struct drm_file *file_priv);
3358 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3359 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
3360 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3361 struct drm_file *file);
3362 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3363 struct drm_file *file_priv);
3364 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3365 struct drm_file *file_priv);
3366 void i915_gem_sanitize(struct drm_i915_private *i915);
3367 int i915_gem_load_init(struct drm_i915_private *dev_priv);
3368 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv);
3369 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3370 int i915_gem_freeze(struct drm_i915_private *dev_priv);
3371 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3372
3373 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
3374 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3375 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3376 const struct drm_i915_gem_object_ops *ops);
3377 struct drm_i915_gem_object *
3378 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
3379 struct drm_i915_gem_object *
3380 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
3381 const void *data, size_t size);
3382 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3383 void i915_gem_free_object(struct drm_gem_object *obj);
3384
3385 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
3386 {
3387 /* A single pass should suffice to release all the freed objects (along
3388 * most call paths) , but be a little more paranoid in that freeing
3389 * the objects does take a little amount of time, during which the rcu
3390 * callbacks could have added new objects into the freed list, and
3391 * armed the work again.
3392 */
3393 do {
3394 rcu_barrier();
3395 } while (flush_work(&i915->mm.free_work));
3396 }
3397
3398 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
3399 {
3400 /*
3401 * Similar to objects above (see i915_gem_drain_freed-objects), in
3402 * general we have workers that are armed by RCU and then rearm
3403 * themselves in their callbacks. To be paranoid, we need to
3404 * drain the workqueue a second time after waiting for the RCU
3405 * grace period so that we catch work queued via RCU from the first
3406 * pass. As neither drain_workqueue() nor flush_workqueue() report
3407 * a result, we make an assumption that we only don't require more
3408 * than 2 passes to catch all recursive RCU delayed work.
3409 *
3410 */
3411 int pass = 2;
3412 do {
3413 rcu_barrier();
3414 drain_workqueue(i915->wq);
3415 } while (--pass);
3416 }
3417
3418 struct i915_vma * __must_check
3419 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3420 const struct i915_ggtt_view *view,
3421 u64 size,
3422 u64 alignment,
3423 u64 flags);
3424
3425 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3426 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3427
3428 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3429
3430 static inline int __sg_page_count(const struct scatterlist *sg)
3431 {
3432 return sg->length >> PAGE_SHIFT;
3433 }
3434
3435 struct scatterlist *
3436 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3437 unsigned int n, unsigned int *offset);
3438
3439 struct page *
3440 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3441 unsigned int n);
3442
3443 struct page *
3444 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3445 unsigned int n);
3446
3447 dma_addr_t
3448 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3449 unsigned long n);
3450
3451 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3452 struct sg_table *pages);
3453 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3454
3455 static inline int __must_check
3456 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3457 {
3458 might_lock(&obj->mm.lock);
3459
3460 if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3461 return 0;
3462
3463 return __i915_gem_object_get_pages(obj);
3464 }
3465
3466 static inline void
3467 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3468 {
3469 GEM_BUG_ON(!obj->mm.pages);
3470
3471 atomic_inc(&obj->mm.pages_pin_count);
3472 }
3473
3474 static inline bool
3475 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3476 {
3477 return atomic_read(&obj->mm.pages_pin_count);
3478 }
3479
3480 static inline void
3481 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3482 {
3483 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3484 GEM_BUG_ON(!obj->mm.pages);
3485
3486 atomic_dec(&obj->mm.pages_pin_count);
3487 }
3488
3489 static inline void
3490 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3491 {
3492 __i915_gem_object_unpin_pages(obj);
3493 }
3494
3495 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3496 I915_MM_NORMAL = 0,
3497 I915_MM_SHRINKER
3498 };
3499
3500 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3501 enum i915_mm_subclass subclass);
3502 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3503
3504 enum i915_map_type {
3505 I915_MAP_WB = 0,
3506 I915_MAP_WC,
3507 #define I915_MAP_OVERRIDE BIT(31)
3508 I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
3509 I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
3510 };
3511
3512 /**
3513 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3514 * @obj: the object to map into kernel address space
3515 * @type: the type of mapping, used to select pgprot_t
3516 *
3517 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3518 * pages and then returns a contiguous mapping of the backing storage into
3519 * the kernel address space. Based on the @type of mapping, the PTE will be
3520 * set to either WriteBack or WriteCombine (via pgprot_t).
3521 *
3522 * The caller is responsible for calling i915_gem_object_unpin_map() when the
3523 * mapping is no longer required.
3524 *
3525 * Returns the pointer through which to access the mapped object, or an
3526 * ERR_PTR() on error.
3527 */
3528 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3529 enum i915_map_type type);
3530
3531 /**
3532 * i915_gem_object_unpin_map - releases an earlier mapping
3533 * @obj: the object to unmap
3534 *
3535 * After pinning the object and mapping its pages, once you are finished
3536 * with your access, call i915_gem_object_unpin_map() to release the pin
3537 * upon the mapping. Once the pin count reaches zero, that mapping may be
3538 * removed.
3539 */
3540 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3541 {
3542 i915_gem_object_unpin_pages(obj);
3543 }
3544
3545 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3546 unsigned int *needs_clflush);
3547 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3548 unsigned int *needs_clflush);
3549 #define CLFLUSH_BEFORE BIT(0)
3550 #define CLFLUSH_AFTER BIT(1)
3551 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER)
3552
3553 static inline void
3554 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3555 {
3556 i915_gem_object_unpin_pages(obj);
3557 }
3558
3559 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3560 void i915_vma_move_to_active(struct i915_vma *vma,
3561 struct drm_i915_gem_request *req,
3562 unsigned int flags);
3563 int i915_gem_dumb_create(struct drm_file *file_priv,
3564 struct drm_device *dev,
3565 struct drm_mode_create_dumb *args);
3566 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3567 uint32_t handle, uint64_t *offset);
3568 int i915_gem_mmap_gtt_version(void);
3569
3570 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3571 struct drm_i915_gem_object *new,
3572 unsigned frontbuffer_bits);
3573
3574 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3575
3576 struct drm_i915_gem_request *
3577 i915_gem_find_active_request(struct intel_engine_cs *engine);
3578
3579 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3580
3581 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3582 {
3583 return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3584 }
3585
3586 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3587 {
3588 return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3589 }
3590
3591 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3592 {
3593 return unlikely(test_bit(I915_WEDGED, &error->flags));
3594 }
3595
3596 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3597 {
3598 return i915_reset_backoff(error) | i915_terminally_wedged(error);
3599 }
3600
3601 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3602 {
3603 return READ_ONCE(error->reset_count);
3604 }
3605
3606 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3607 struct intel_engine_cs *engine)
3608 {
3609 return READ_ONCE(error->reset_engine_count[engine->id]);
3610 }
3611
3612 struct drm_i915_gem_request *
3613 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3614 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3615 void i915_gem_reset(struct drm_i915_private *dev_priv);
3616 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3617 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3618 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3619 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3620 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3621 struct drm_i915_gem_request *request);
3622
3623 void i915_gem_init_mmio(struct drm_i915_private *i915);
3624 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3625 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3626 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3627 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3628 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3629 unsigned int flags);
3630 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3631 void i915_gem_resume(struct drm_i915_private *dev_priv);
3632 int i915_gem_fault(struct vm_fault *vmf);
3633 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3634 unsigned int flags,
3635 long timeout,
3636 struct intel_rps_client *rps);
3637 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3638 unsigned int flags,
3639 int priority);
3640 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3641
3642 int __must_check
3643 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3644 int __must_check
3645 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3646 int __must_check
3647 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3648 struct i915_vma * __must_check
3649 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3650 u32 alignment,
3651 const struct i915_ggtt_view *view);
3652 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3653 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3654 int align);
3655 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3656 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3657
3658 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3659 enum i915_cache_level cache_level);
3660
3661 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3662 struct dma_buf *dma_buf);
3663
3664 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3665 struct drm_gem_object *gem_obj, int flags);
3666
3667 static inline struct i915_hw_ppgtt *
3668 i915_vm_to_ppgtt(struct i915_address_space *vm)
3669 {
3670 return container_of(vm, struct i915_hw_ppgtt, base);
3671 }
3672
3673 /* i915_gem_fence_reg.c */
3674 int __must_check i915_vma_get_fence(struct i915_vma *vma);
3675 int __must_check i915_vma_put_fence(struct i915_vma *vma);
3676 struct drm_i915_fence_reg *
3677 i915_reserve_fence(struct drm_i915_private *dev_priv);
3678 void i915_unreserve_fence(struct drm_i915_fence_reg *fence);
3679
3680 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3681 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3682
3683 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3684 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3685 struct sg_table *pages);
3686 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3687 struct sg_table *pages);
3688
3689 static inline struct i915_gem_context *
3690 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3691 {
3692 return idr_find(&file_priv->context_idr, id);
3693 }
3694
3695 static inline struct i915_gem_context *
3696 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3697 {
3698 struct i915_gem_context *ctx;
3699
3700 rcu_read_lock();
3701 ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3702 if (ctx && !kref_get_unless_zero(&ctx->ref))
3703 ctx = NULL;
3704 rcu_read_unlock();
3705
3706 return ctx;
3707 }
3708
3709 static inline struct intel_timeline *
3710 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx,
3711 struct intel_engine_cs *engine)
3712 {
3713 struct i915_address_space *vm;
3714
3715 vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base;
3716 return &vm->timeline.engine[engine->id];
3717 }
3718
3719 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3720 struct drm_file *file);
3721 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3722 struct drm_file *file);
3723 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3724 struct drm_file *file);
3725 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3726 struct i915_gem_context *ctx,
3727 uint32_t *reg_state);
3728
3729 /* i915_gem_evict.c */
3730 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3731 u64 min_size, u64 alignment,
3732 unsigned cache_level,
3733 u64 start, u64 end,
3734 unsigned flags);
3735 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3736 struct drm_mm_node *node,
3737 unsigned int flags);
3738 int i915_gem_evict_vm(struct i915_address_space *vm);
3739
3740 /* belongs in i915_gem_gtt.h */
3741 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3742 {
3743 wmb();
3744 if (INTEL_GEN(dev_priv) < 6)
3745 intel_gtt_chipset_flush();
3746 }
3747
3748 /* i915_gem_stolen.c */
3749 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3750 struct drm_mm_node *node, u64 size,
3751 unsigned alignment);
3752 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3753 struct drm_mm_node *node, u64 size,
3754 unsigned alignment, u64 start,
3755 u64 end);
3756 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3757 struct drm_mm_node *node);
3758 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3759 void i915_gem_cleanup_stolen(struct drm_device *dev);
3760 struct drm_i915_gem_object *
3761 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size);
3762 struct drm_i915_gem_object *
3763 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3764 u32 stolen_offset,
3765 u32 gtt_offset,
3766 u32 size);
3767
3768 /* i915_gem_internal.c */
3769 struct drm_i915_gem_object *
3770 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3771 phys_addr_t size);
3772
3773 /* i915_gem_shrinker.c */
3774 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3775 unsigned long target,
3776 unsigned flags);
3777 #define I915_SHRINK_PURGEABLE 0x1
3778 #define I915_SHRINK_UNBOUND 0x2
3779 #define I915_SHRINK_BOUND 0x4
3780 #define I915_SHRINK_ACTIVE 0x8
3781 #define I915_SHRINK_VMAPS 0x10
3782 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3783 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3784 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3785
3786
3787 /* i915_gem_tiling.c */
3788 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3789 {
3790 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3791
3792 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3793 i915_gem_object_is_tiled(obj);
3794 }
3795
3796 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3797 unsigned int tiling, unsigned int stride);
3798 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3799 unsigned int tiling, unsigned int stride);
3800
3801 /* i915_debugfs.c */
3802 #ifdef CONFIG_DEBUG_FS
3803 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3804 int i915_debugfs_connector_add(struct drm_connector *connector);
3805 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3806 #else
3807 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3808 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3809 { return 0; }
3810 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3811 #endif
3812
3813 /* i915_gpu_error.c */
3814 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3815
3816 __printf(2, 3)
3817 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3818 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3819 const struct i915_gpu_state *gpu);
3820 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3821 struct drm_i915_private *i915,
3822 size_t count, loff_t pos);
3823 static inline void i915_error_state_buf_release(
3824 struct drm_i915_error_state_buf *eb)
3825 {
3826 kfree(eb->buf);
3827 }
3828
3829 struct i915_gpu_state *i915_capture_gpu_state(struct drm_i915_private *i915);
3830 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3831 u32 engine_mask,
3832 const char *error_msg);
3833
3834 static inline struct i915_gpu_state *
3835 i915_gpu_state_get(struct i915_gpu_state *gpu)
3836 {
3837 kref_get(&gpu->ref);
3838 return gpu;
3839 }
3840
3841 void __i915_gpu_state_free(struct kref *kref);
3842 static inline void i915_gpu_state_put(struct i915_gpu_state *gpu)
3843 {
3844 if (gpu)
3845 kref_put(&gpu->ref, __i915_gpu_state_free);
3846 }
3847
3848 struct i915_gpu_state *i915_first_error_state(struct drm_i915_private *i915);
3849 void i915_reset_error_state(struct drm_i915_private *i915);
3850
3851 #else
3852
3853 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3854 u32 engine_mask,
3855 const char *error_msg)
3856 {
3857 }
3858
3859 static inline struct i915_gpu_state *
3860 i915_first_error_state(struct drm_i915_private *i915)
3861 {
3862 return NULL;
3863 }
3864
3865 static inline void i915_reset_error_state(struct drm_i915_private *i915)
3866 {
3867 }
3868
3869 #endif
3870
3871 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3872
3873 /* i915_cmd_parser.c */
3874 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3875 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3876 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3877 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3878 struct drm_i915_gem_object *batch_obj,
3879 struct drm_i915_gem_object *shadow_batch_obj,
3880 u32 batch_start_offset,
3881 u32 batch_len,
3882 bool is_master);
3883
3884 /* i915_perf.c */
3885 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3886 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3887 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3888 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3889
3890 /* i915_suspend.c */
3891 extern int i915_save_state(struct drm_i915_private *dev_priv);
3892 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3893
3894 /* i915_sysfs.c */
3895 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3896 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3897
3898 /* intel_lpe_audio.c */
3899 int intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3900 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3901 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3902 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3903 enum pipe pipe, enum port port,
3904 const void *eld, int ls_clock, bool dp_output);
3905
3906 /* intel_i2c.c */
3907 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3908 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3909 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3910 unsigned int pin);
3911
3912 extern struct i2c_adapter *
3913 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3914 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3915 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3916 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3917 {
3918 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3919 }
3920 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3921
3922 /* intel_bios.c */
3923 void intel_bios_init(struct drm_i915_private *dev_priv);
3924 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3925 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3926 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3927 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3928 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3929 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3930 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3931 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3932 enum port port);
3933 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3934 enum port port);
3935
3936
3937 /* intel_opregion.c */
3938 #ifdef CONFIG_ACPI
3939 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3940 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3941 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3942 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3943 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3944 bool enable);
3945 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3946 pci_power_t state);
3947 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3948 #else
3949 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3950 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3951 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3952 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3953 {
3954 }
3955 static inline int
3956 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3957 {
3958 return 0;
3959 }
3960 static inline int
3961 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3962 {
3963 return 0;
3964 }
3965 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3966 {
3967 return -ENODEV;
3968 }
3969 #endif
3970
3971 /* intel_acpi.c */
3972 #ifdef CONFIG_ACPI
3973 extern void intel_register_dsm_handler(void);
3974 extern void intel_unregister_dsm_handler(void);
3975 #else
3976 static inline void intel_register_dsm_handler(void) { return; }
3977 static inline void intel_unregister_dsm_handler(void) { return; }
3978 #endif /* CONFIG_ACPI */
3979
3980 /* intel_device_info.c */
3981 static inline struct intel_device_info *
3982 mkwrite_device_info(struct drm_i915_private *dev_priv)
3983 {
3984 return (struct intel_device_info *)&dev_priv->info;
3985 }
3986
3987 const char *intel_platform_name(enum intel_platform platform);
3988 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
3989 void intel_device_info_dump(struct drm_i915_private *dev_priv);
3990
3991 /* modesetting */
3992 extern void intel_modeset_init_hw(struct drm_device *dev);
3993 extern int intel_modeset_init(struct drm_device *dev);
3994 extern void intel_modeset_gem_init(struct drm_device *dev);
3995 extern void intel_modeset_cleanup(struct drm_device *dev);
3996 extern int intel_connector_register(struct drm_connector *);
3997 extern void intel_connector_unregister(struct drm_connector *);
3998 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3999 bool state);
4000 extern void intel_display_resume(struct drm_device *dev);
4001 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
4002 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
4003 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
4004 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
4005 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
4006 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
4007 bool enable);
4008
4009 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
4010 struct drm_file *file);
4011
4012 /* overlay */
4013 extern struct intel_overlay_error_state *
4014 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
4015 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
4016 struct intel_overlay_error_state *error);
4017
4018 extern struct intel_display_error_state *
4019 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
4020 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
4021 struct intel_display_error_state *error);
4022
4023 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
4024 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
4025 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
4026 u32 reply_mask, u32 reply, int timeout_base_ms);
4027
4028 /* intel_sideband.c */
4029 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
4030 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
4031 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
4032 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
4033 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
4034 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
4035 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4036 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
4037 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4038 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
4039 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4040 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
4041 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
4042 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
4043 enum intel_sbi_destination destination);
4044 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
4045 enum intel_sbi_destination destination);
4046 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
4047 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4048
4049 /* intel_dpio_phy.c */
4050 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
4051 enum dpio_phy *phy, enum dpio_channel *ch);
4052 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
4053 enum port port, u32 margin, u32 scale,
4054 u32 enable, u32 deemphasis);
4055 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4056 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4057 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
4058 enum dpio_phy phy);
4059 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
4060 enum dpio_phy phy);
4061 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
4062 uint8_t lane_count);
4063 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
4064 uint8_t lane_lat_optim_mask);
4065 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
4066
4067 void chv_set_phy_signal_level(struct intel_encoder *encoder,
4068 u32 deemph_reg_value, u32 margin_reg_value,
4069 bool uniq_trans_scale);
4070 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
4071 bool reset);
4072 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
4073 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4074 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
4075 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
4076
4077 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
4078 u32 demph_reg_value, u32 preemph_reg_value,
4079 u32 uniqtranscale_reg_value, u32 tx3_demph);
4080 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
4081 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4082 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
4083
4084 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
4085 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
4086 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
4087 const i915_reg_t reg);
4088
4089 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
4090 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
4091
4092 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
4093 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
4094 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
4095 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
4096
4097 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
4098 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
4099 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
4100 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
4101
4102 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
4103 * will be implemented using 2 32-bit writes in an arbitrary order with
4104 * an arbitrary delay between them. This can cause the hardware to
4105 * act upon the intermediate value, possibly leading to corruption and
4106 * machine death. For this reason we do not support I915_WRITE64, or
4107 * dev_priv->uncore.funcs.mmio_writeq.
4108 *
4109 * When reading a 64-bit value as two 32-bit values, the delay may cause
4110 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
4111 * occasionally a 64-bit register does not actualy support a full readq
4112 * and must be read using two 32-bit reads.
4113 *
4114 * You have been warned.
4115 */
4116 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
4117
4118 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
4119 u32 upper, lower, old_upper, loop = 0; \
4120 upper = I915_READ(upper_reg); \
4121 do { \
4122 old_upper = upper; \
4123 lower = I915_READ(lower_reg); \
4124 upper = I915_READ(upper_reg); \
4125 } while (upper != old_upper && loop++ < 2); \
4126 (u64)upper << 32 | lower; })
4127
4128 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
4129 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
4130
4131 #define __raw_read(x, s) \
4132 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
4133 i915_reg_t reg) \
4134 { \
4135 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
4136 }
4137
4138 #define __raw_write(x, s) \
4139 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
4140 i915_reg_t reg, uint##x##_t val) \
4141 { \
4142 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
4143 }
4144 __raw_read(8, b)
4145 __raw_read(16, w)
4146 __raw_read(32, l)
4147 __raw_read(64, q)
4148
4149 __raw_write(8, b)
4150 __raw_write(16, w)
4151 __raw_write(32, l)
4152 __raw_write(64, q)
4153
4154 #undef __raw_read
4155 #undef __raw_write
4156
4157 /* These are untraced mmio-accessors that are only valid to be used inside
4158 * critical sections, such as inside IRQ handlers, where forcewake is explicitly
4159 * controlled.
4160 *
4161 * Think twice, and think again, before using these.
4162 *
4163 * As an example, these accessors can possibly be used between:
4164 *
4165 * spin_lock_irq(&dev_priv->uncore.lock);
4166 * intel_uncore_forcewake_get__locked();
4167 *
4168 * and
4169 *
4170 * intel_uncore_forcewake_put__locked();
4171 * spin_unlock_irq(&dev_priv->uncore.lock);
4172 *
4173 *
4174 * Note: some registers may not need forcewake held, so
4175 * intel_uncore_forcewake_{get,put} can be omitted, see
4176 * intel_uncore_forcewake_for_reg().
4177 *
4178 * Certain architectures will die if the same cacheline is concurrently accessed
4179 * by different clients (e.g. on Ivybridge). Access to registers should
4180 * therefore generally be serialised, by either the dev_priv->uncore.lock or
4181 * a more localised lock guarding all access to that bank of registers.
4182 */
4183 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
4184 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
4185 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
4186 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
4187
4188 /* "Broadcast RGB" property */
4189 #define INTEL_BROADCAST_RGB_AUTO 0
4190 #define INTEL_BROADCAST_RGB_FULL 1
4191 #define INTEL_BROADCAST_RGB_LIMITED 2
4192
4193 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
4194 {
4195 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4196 return VLV_VGACNTRL;
4197 else if (INTEL_GEN(dev_priv) >= 5)
4198 return CPU_VGACNTRL;
4199 else
4200 return VGACNTRL;
4201 }
4202
4203 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
4204 {
4205 unsigned long j = msecs_to_jiffies(m);
4206
4207 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4208 }
4209
4210 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
4211 {
4212 /* nsecs_to_jiffies64() does not guard against overflow */
4213 if (NSEC_PER_SEC % HZ &&
4214 div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
4215 return MAX_JIFFY_OFFSET;
4216
4217 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
4218 }
4219
4220 static inline unsigned long
4221 timespec_to_jiffies_timeout(const struct timespec *value)
4222 {
4223 unsigned long j = timespec_to_jiffies(value);
4224
4225 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4226 }
4227
4228 /*
4229 * If you need to wait X milliseconds between events A and B, but event B
4230 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
4231 * when event A happened, then just before event B you call this function and
4232 * pass the timestamp as the first argument, and X as the second argument.
4233 */
4234 static inline void
4235 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
4236 {
4237 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
4238
4239 /*
4240 * Don't re-read the value of "jiffies" every time since it may change
4241 * behind our back and break the math.
4242 */
4243 tmp_jiffies = jiffies;
4244 target_jiffies = timestamp_jiffies +
4245 msecs_to_jiffies_timeout(to_wait_ms);
4246
4247 if (time_after(target_jiffies, tmp_jiffies)) {
4248 remaining_jiffies = target_jiffies - tmp_jiffies;
4249 while (remaining_jiffies)
4250 remaining_jiffies =
4251 schedule_timeout_uninterruptible(remaining_jiffies);
4252 }
4253 }
4254
4255 static inline bool
4256 __i915_request_irq_complete(const struct drm_i915_gem_request *req)
4257 {
4258 struct intel_engine_cs *engine = req->engine;
4259 u32 seqno;
4260
4261 /* Note that the engine may have wrapped around the seqno, and
4262 * so our request->global_seqno will be ahead of the hardware,
4263 * even though it completed the request before wrapping. We catch
4264 * this by kicking all the waiters before resetting the seqno
4265 * in hardware, and also signal the fence.
4266 */
4267 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &req->fence.flags))
4268 return true;
4269
4270 /* The request was dequeued before we were awoken. We check after
4271 * inspecting the hw to confirm that this was the same request
4272 * that generated the HWS update. The memory barriers within
4273 * the request execution are sufficient to ensure that a check
4274 * after reading the value from hw matches this request.
4275 */
4276 seqno = i915_gem_request_global_seqno(req);
4277 if (!seqno)
4278 return false;
4279
4280 /* Before we do the heavier coherent read of the seqno,
4281 * check the value (hopefully) in the CPU cacheline.
4282 */
4283 if (__i915_gem_request_completed(req, seqno))
4284 return true;
4285
4286 /* Ensure our read of the seqno is coherent so that we
4287 * do not "miss an interrupt" (i.e. if this is the last
4288 * request and the seqno write from the GPU is not visible
4289 * by the time the interrupt fires, we will see that the
4290 * request is incomplete and go back to sleep awaiting
4291 * another interrupt that will never come.)
4292 *
4293 * Strictly, we only need to do this once after an interrupt,
4294 * but it is easier and safer to do it every time the waiter
4295 * is woken.
4296 */
4297 if (engine->irq_seqno_barrier &&
4298 test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
4299 struct intel_breadcrumbs *b = &engine->breadcrumbs;
4300
4301 /* The ordering of irq_posted versus applying the barrier
4302 * is crucial. The clearing of the current irq_posted must
4303 * be visible before we perform the barrier operation,
4304 * such that if a subsequent interrupt arrives, irq_posted
4305 * is reasserted and our task rewoken (which causes us to
4306 * do another __i915_request_irq_complete() immediately
4307 * and reapply the barrier). Conversely, if the clear
4308 * occurs after the barrier, then an interrupt that arrived
4309 * whilst we waited on the barrier would not trigger a
4310 * barrier on the next pass, and the read may not see the
4311 * seqno update.
4312 */
4313 engine->irq_seqno_barrier(engine);
4314
4315 /* If we consume the irq, but we are no longer the bottom-half,
4316 * the real bottom-half may not have serialised their own
4317 * seqno check with the irq-barrier (i.e. may have inspected
4318 * the seqno before we believe it coherent since they see
4319 * irq_posted == false but we are still running).
4320 */
4321 spin_lock_irq(&b->irq_lock);
4322 if (b->irq_wait && b->irq_wait->tsk != current)
4323 /* Note that if the bottom-half is changed as we
4324 * are sending the wake-up, the new bottom-half will
4325 * be woken by whomever made the change. We only have
4326 * to worry about when we steal the irq-posted for
4327 * ourself.
4328 */
4329 wake_up_process(b->irq_wait->tsk);
4330 spin_unlock_irq(&b->irq_lock);
4331
4332 if (__i915_gem_request_completed(req, seqno))
4333 return true;
4334 }
4335
4336 return false;
4337 }
4338
4339 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
4340 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
4341
4342 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
4343 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
4344 * perform the operation. To check beforehand, pass in the parameters to
4345 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
4346 * you only need to pass in the minor offsets, page-aligned pointers are
4347 * always valid.
4348 *
4349 * For just checking for SSE4.1, in the foreknowledge that the future use
4350 * will be correctly aligned, just use i915_has_memcpy_from_wc().
4351 */
4352 #define i915_can_memcpy_from_wc(dst, src, len) \
4353 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
4354
4355 #define i915_has_memcpy_from_wc() \
4356 i915_memcpy_from_wc(NULL, NULL, 0)
4357
4358 /* i915_mm.c */
4359 int remap_io_mapping(struct vm_area_struct *vma,
4360 unsigned long addr, unsigned long pfn, unsigned long size,
4361 struct io_mapping *iomap);
4362
4363 #endif