]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.h
Merge tag 'drm-amdkfd-next-2017-10-18' of git://people.freedesktop.org/~gabbayo/linux...
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/reservation.h>
45 #include <linux/shmem_fs.h>
46
47 #include <drm/drmP.h>
48 #include <drm/intel-gtt.h>
49 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
50 #include <drm/drm_gem.h>
51 #include <drm/drm_auth.h>
52 #include <drm/drm_cache.h>
53
54 #include "i915_params.h"
55 #include "i915_reg.h"
56 #include "i915_utils.h"
57
58 #include "intel_uncore.h"
59 #include "intel_bios.h"
60 #include "intel_dpll_mgr.h"
61 #include "intel_uc.h"
62 #include "intel_lrc.h"
63 #include "intel_ringbuffer.h"
64
65 #include "i915_gem.h"
66 #include "i915_gem_context.h"
67 #include "i915_gem_fence_reg.h"
68 #include "i915_gem_object.h"
69 #include "i915_gem_gtt.h"
70 #include "i915_gem_render_state.h"
71 #include "i915_gem_request.h"
72 #include "i915_gem_timeline.h"
73
74 #include "i915_vma.h"
75
76 #include "intel_gvt.h"
77
78 /* General customization:
79 */
80
81 #define DRIVER_NAME "i915"
82 #define DRIVER_DESC "Intel Graphics"
83 #define DRIVER_DATE "20171012"
84 #define DRIVER_TIMESTAMP 1507831511
85
86 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
87 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
88 * which may not necessarily be a user visible problem. This will either
89 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
90 * enable distros and users to tailor their preferred amount of i915 abrt
91 * spam.
92 */
93 #define I915_STATE_WARN(condition, format...) ({ \
94 int __ret_warn_on = !!(condition); \
95 if (unlikely(__ret_warn_on)) \
96 if (!WARN(i915_modparams.verbose_state_checks, format)) \
97 DRM_ERROR(format); \
98 unlikely(__ret_warn_on); \
99 })
100
101 #define I915_STATE_WARN_ON(x) \
102 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
103
104 bool __i915_inject_load_failure(const char *func, int line);
105 #define i915_inject_load_failure() \
106 __i915_inject_load_failure(__func__, __LINE__)
107
108 typedef struct {
109 uint32_t val;
110 } uint_fixed_16_16_t;
111
112 #define FP_16_16_MAX ({ \
113 uint_fixed_16_16_t fp; \
114 fp.val = UINT_MAX; \
115 fp; \
116 })
117
118 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
119 {
120 if (val.val == 0)
121 return true;
122 return false;
123 }
124
125 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val)
126 {
127 uint_fixed_16_16_t fp;
128
129 WARN_ON(val > U16_MAX);
130
131 fp.val = val << 16;
132 return fp;
133 }
134
135 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp)
136 {
137 return DIV_ROUND_UP(fp.val, 1 << 16);
138 }
139
140 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp)
141 {
142 return fp.val >> 16;
143 }
144
145 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1,
146 uint_fixed_16_16_t min2)
147 {
148 uint_fixed_16_16_t min;
149
150 min.val = min(min1.val, min2.val);
151 return min;
152 }
153
154 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1,
155 uint_fixed_16_16_t max2)
156 {
157 uint_fixed_16_16_t max;
158
159 max.val = max(max1.val, max2.val);
160 return max;
161 }
162
163 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val)
164 {
165 uint_fixed_16_16_t fp;
166 WARN_ON(val > U32_MAX);
167 fp.val = (uint32_t) val;
168 return fp;
169 }
170
171 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
172 uint_fixed_16_16_t d)
173 {
174 return DIV_ROUND_UP(val.val, d.val);
175 }
176
177 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
178 uint_fixed_16_16_t mul)
179 {
180 uint64_t intermediate_val;
181
182 intermediate_val = (uint64_t) val * mul.val;
183 intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
184 WARN_ON(intermediate_val > U32_MAX);
185 return (uint32_t) intermediate_val;
186 }
187
188 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
189 uint_fixed_16_16_t mul)
190 {
191 uint64_t intermediate_val;
192
193 intermediate_val = (uint64_t) val.val * mul.val;
194 intermediate_val = intermediate_val >> 16;
195 return clamp_u64_to_fixed16(intermediate_val);
196 }
197
198 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d)
199 {
200 uint64_t interm_val;
201
202 interm_val = (uint64_t)val << 16;
203 interm_val = DIV_ROUND_UP_ULL(interm_val, d);
204 return clamp_u64_to_fixed16(interm_val);
205 }
206
207 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
208 uint_fixed_16_16_t d)
209 {
210 uint64_t interm_val;
211
212 interm_val = (uint64_t)val << 16;
213 interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
214 WARN_ON(interm_val > U32_MAX);
215 return (uint32_t) interm_val;
216 }
217
218 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val,
219 uint_fixed_16_16_t mul)
220 {
221 uint64_t intermediate_val;
222
223 intermediate_val = (uint64_t) val * mul.val;
224 return clamp_u64_to_fixed16(intermediate_val);
225 }
226
227 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1,
228 uint_fixed_16_16_t add2)
229 {
230 uint64_t interm_sum;
231
232 interm_sum = (uint64_t) add1.val + add2.val;
233 return clamp_u64_to_fixed16(interm_sum);
234 }
235
236 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1,
237 uint32_t add2)
238 {
239 uint64_t interm_sum;
240 uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2);
241
242 interm_sum = (uint64_t) add1.val + interm_add2.val;
243 return clamp_u64_to_fixed16(interm_sum);
244 }
245
246 static inline const char *yesno(bool v)
247 {
248 return v ? "yes" : "no";
249 }
250
251 static inline const char *onoff(bool v)
252 {
253 return v ? "on" : "off";
254 }
255
256 static inline const char *enableddisabled(bool v)
257 {
258 return v ? "enabled" : "disabled";
259 }
260
261 enum pipe {
262 INVALID_PIPE = -1,
263 PIPE_A = 0,
264 PIPE_B,
265 PIPE_C,
266 _PIPE_EDP,
267 I915_MAX_PIPES = _PIPE_EDP
268 };
269 #define pipe_name(p) ((p) + 'A')
270
271 enum transcoder {
272 TRANSCODER_A = 0,
273 TRANSCODER_B,
274 TRANSCODER_C,
275 TRANSCODER_EDP,
276 TRANSCODER_DSI_A,
277 TRANSCODER_DSI_C,
278 I915_MAX_TRANSCODERS
279 };
280
281 static inline const char *transcoder_name(enum transcoder transcoder)
282 {
283 switch (transcoder) {
284 case TRANSCODER_A:
285 return "A";
286 case TRANSCODER_B:
287 return "B";
288 case TRANSCODER_C:
289 return "C";
290 case TRANSCODER_EDP:
291 return "EDP";
292 case TRANSCODER_DSI_A:
293 return "DSI A";
294 case TRANSCODER_DSI_C:
295 return "DSI C";
296 default:
297 return "<invalid>";
298 }
299 }
300
301 static inline bool transcoder_is_dsi(enum transcoder transcoder)
302 {
303 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
304 }
305
306 /*
307 * Global legacy plane identifier. Valid only for primary/sprite
308 * planes on pre-g4x, and only for primary planes on g4x+.
309 */
310 enum plane {
311 PLANE_A,
312 PLANE_B,
313 PLANE_C,
314 };
315 #define plane_name(p) ((p) + 'A')
316
317 #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A')
318
319 /*
320 * Per-pipe plane identifier.
321 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
322 * number of planes per CRTC. Not all platforms really have this many planes,
323 * which means some arrays of size I915_MAX_PLANES may have unused entries
324 * between the topmost sprite plane and the cursor plane.
325 *
326 * This is expected to be passed to various register macros
327 * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care.
328 */
329 enum plane_id {
330 PLANE_PRIMARY,
331 PLANE_SPRITE0,
332 PLANE_SPRITE1,
333 PLANE_SPRITE2,
334 PLANE_CURSOR,
335 I915_MAX_PLANES,
336 };
337
338 #define for_each_plane_id_on_crtc(__crtc, __p) \
339 for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \
340 for_each_if ((__crtc)->plane_ids_mask & BIT(__p))
341
342 enum port {
343 PORT_NONE = -1,
344 PORT_A = 0,
345 PORT_B,
346 PORT_C,
347 PORT_D,
348 PORT_E,
349 I915_MAX_PORTS
350 };
351 #define port_name(p) ((p) + 'A')
352
353 #define I915_NUM_PHYS_VLV 2
354
355 enum dpio_channel {
356 DPIO_CH0,
357 DPIO_CH1
358 };
359
360 enum dpio_phy {
361 DPIO_PHY0,
362 DPIO_PHY1,
363 DPIO_PHY2,
364 };
365
366 enum intel_display_power_domain {
367 POWER_DOMAIN_PIPE_A,
368 POWER_DOMAIN_PIPE_B,
369 POWER_DOMAIN_PIPE_C,
370 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
371 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
372 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
373 POWER_DOMAIN_TRANSCODER_A,
374 POWER_DOMAIN_TRANSCODER_B,
375 POWER_DOMAIN_TRANSCODER_C,
376 POWER_DOMAIN_TRANSCODER_EDP,
377 POWER_DOMAIN_TRANSCODER_DSI_A,
378 POWER_DOMAIN_TRANSCODER_DSI_C,
379 POWER_DOMAIN_PORT_DDI_A_LANES,
380 POWER_DOMAIN_PORT_DDI_B_LANES,
381 POWER_DOMAIN_PORT_DDI_C_LANES,
382 POWER_DOMAIN_PORT_DDI_D_LANES,
383 POWER_DOMAIN_PORT_DDI_E_LANES,
384 POWER_DOMAIN_PORT_DDI_A_IO,
385 POWER_DOMAIN_PORT_DDI_B_IO,
386 POWER_DOMAIN_PORT_DDI_C_IO,
387 POWER_DOMAIN_PORT_DDI_D_IO,
388 POWER_DOMAIN_PORT_DDI_E_IO,
389 POWER_DOMAIN_PORT_DSI,
390 POWER_DOMAIN_PORT_CRT,
391 POWER_DOMAIN_PORT_OTHER,
392 POWER_DOMAIN_VGA,
393 POWER_DOMAIN_AUDIO,
394 POWER_DOMAIN_PLLS,
395 POWER_DOMAIN_AUX_A,
396 POWER_DOMAIN_AUX_B,
397 POWER_DOMAIN_AUX_C,
398 POWER_DOMAIN_AUX_D,
399 POWER_DOMAIN_GMBUS,
400 POWER_DOMAIN_MODESET,
401 POWER_DOMAIN_INIT,
402
403 POWER_DOMAIN_NUM,
404 };
405
406 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
407 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
408 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
409 #define POWER_DOMAIN_TRANSCODER(tran) \
410 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
411 (tran) + POWER_DOMAIN_TRANSCODER_A)
412
413 enum hpd_pin {
414 HPD_NONE = 0,
415 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
416 HPD_CRT,
417 HPD_SDVO_B,
418 HPD_SDVO_C,
419 HPD_PORT_A,
420 HPD_PORT_B,
421 HPD_PORT_C,
422 HPD_PORT_D,
423 HPD_PORT_E,
424 HPD_NUM_PINS
425 };
426
427 #define for_each_hpd_pin(__pin) \
428 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
429
430 #define HPD_STORM_DEFAULT_THRESHOLD 5
431
432 struct i915_hotplug {
433 struct work_struct hotplug_work;
434
435 struct {
436 unsigned long last_jiffies;
437 int count;
438 enum {
439 HPD_ENABLED = 0,
440 HPD_DISABLED = 1,
441 HPD_MARK_DISABLED = 2
442 } state;
443 } stats[HPD_NUM_PINS];
444 u32 event_bits;
445 struct delayed_work reenable_work;
446
447 struct intel_digital_port *irq_port[I915_MAX_PORTS];
448 u32 long_port_mask;
449 u32 short_port_mask;
450 struct work_struct dig_port_work;
451
452 struct work_struct poll_init_work;
453 bool poll_enabled;
454
455 unsigned int hpd_storm_threshold;
456
457 /*
458 * if we get a HPD irq from DP and a HPD irq from non-DP
459 * the non-DP HPD could block the workqueue on a mode config
460 * mutex getting, that userspace may have taken. However
461 * userspace is waiting on the DP workqueue to run which is
462 * blocked behind the non-DP one.
463 */
464 struct workqueue_struct *dp_wq;
465 };
466
467 #define I915_GEM_GPU_DOMAINS \
468 (I915_GEM_DOMAIN_RENDER | \
469 I915_GEM_DOMAIN_SAMPLER | \
470 I915_GEM_DOMAIN_COMMAND | \
471 I915_GEM_DOMAIN_INSTRUCTION | \
472 I915_GEM_DOMAIN_VERTEX)
473
474 #define for_each_pipe(__dev_priv, __p) \
475 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
476 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
477 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
478 for_each_if ((__mask) & (1 << (__p)))
479 #define for_each_universal_plane(__dev_priv, __pipe, __p) \
480 for ((__p) = 0; \
481 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
482 (__p)++)
483 #define for_each_sprite(__dev_priv, __p, __s) \
484 for ((__s) = 0; \
485 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
486 (__s)++)
487
488 #define for_each_port_masked(__port, __ports_mask) \
489 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
490 for_each_if ((__ports_mask) & (1 << (__port)))
491
492 #define for_each_crtc(dev, crtc) \
493 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
494
495 #define for_each_intel_plane(dev, intel_plane) \
496 list_for_each_entry(intel_plane, \
497 &(dev)->mode_config.plane_list, \
498 base.head)
499
500 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \
501 list_for_each_entry(intel_plane, \
502 &(dev)->mode_config.plane_list, \
503 base.head) \
504 for_each_if ((plane_mask) & \
505 (1 << drm_plane_index(&intel_plane->base)))
506
507 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
508 list_for_each_entry(intel_plane, \
509 &(dev)->mode_config.plane_list, \
510 base.head) \
511 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
512
513 #define for_each_intel_crtc(dev, intel_crtc) \
514 list_for_each_entry(intel_crtc, \
515 &(dev)->mode_config.crtc_list, \
516 base.head)
517
518 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \
519 list_for_each_entry(intel_crtc, \
520 &(dev)->mode_config.crtc_list, \
521 base.head) \
522 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
523
524 #define for_each_intel_encoder(dev, intel_encoder) \
525 list_for_each_entry(intel_encoder, \
526 &(dev)->mode_config.encoder_list, \
527 base.head)
528
529 #define for_each_intel_connector_iter(intel_connector, iter) \
530 while ((intel_connector = to_intel_connector(drm_connector_list_iter_next(iter))))
531
532 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
533 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
534 for_each_if ((intel_encoder)->base.crtc == (__crtc))
535
536 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
537 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
538 for_each_if ((intel_connector)->base.encoder == (__encoder))
539
540 #define for_each_power_domain(domain, mask) \
541 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
542 for_each_if (BIT_ULL(domain) & (mask))
543
544 #define for_each_power_well(__dev_priv, __power_well) \
545 for ((__power_well) = (__dev_priv)->power_domains.power_wells; \
546 (__power_well) - (__dev_priv)->power_domains.power_wells < \
547 (__dev_priv)->power_domains.power_well_count; \
548 (__power_well)++)
549
550 #define for_each_power_well_rev(__dev_priv, __power_well) \
551 for ((__power_well) = (__dev_priv)->power_domains.power_wells + \
552 (__dev_priv)->power_domains.power_well_count - 1; \
553 (__power_well) - (__dev_priv)->power_domains.power_wells >= 0; \
554 (__power_well)--)
555
556 #define for_each_power_domain_well(__dev_priv, __power_well, __domain_mask) \
557 for_each_power_well(__dev_priv, __power_well) \
558 for_each_if ((__power_well)->domains & (__domain_mask))
559
560 #define for_each_power_domain_well_rev(__dev_priv, __power_well, __domain_mask) \
561 for_each_power_well_rev(__dev_priv, __power_well) \
562 for_each_if ((__power_well)->domains & (__domain_mask))
563
564 #define for_each_intel_plane_in_state(__state, plane, plane_state, __i) \
565 for ((__i) = 0; \
566 (__i) < (__state)->base.dev->mode_config.num_total_plane && \
567 ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
568 (plane_state) = to_intel_plane_state((__state)->base.planes[__i].state), 1); \
569 (__i)++) \
570 for_each_if (plane_state)
571
572 #define for_each_new_intel_crtc_in_state(__state, crtc, new_crtc_state, __i) \
573 for ((__i) = 0; \
574 (__i) < (__state)->base.dev->mode_config.num_crtc && \
575 ((crtc) = to_intel_crtc((__state)->base.crtcs[__i].ptr), \
576 (new_crtc_state) = to_intel_crtc_state((__state)->base.crtcs[__i].new_state), 1); \
577 (__i)++) \
578 for_each_if (crtc)
579
580
581 #define for_each_oldnew_intel_plane_in_state(__state, plane, old_plane_state, new_plane_state, __i) \
582 for ((__i) = 0; \
583 (__i) < (__state)->base.dev->mode_config.num_total_plane && \
584 ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
585 (old_plane_state) = to_intel_plane_state((__state)->base.planes[__i].old_state), \
586 (new_plane_state) = to_intel_plane_state((__state)->base.planes[__i].new_state), 1); \
587 (__i)++) \
588 for_each_if (plane)
589
590 struct drm_i915_private;
591 struct i915_mm_struct;
592 struct i915_mmu_object;
593
594 struct drm_i915_file_private {
595 struct drm_i915_private *dev_priv;
596 struct drm_file *file;
597
598 struct {
599 spinlock_t lock;
600 struct list_head request_list;
601 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
602 * chosen to prevent the CPU getting more than a frame ahead of the GPU
603 * (when using lax throttling for the frontbuffer). We also use it to
604 * offer free GPU waitboosts for severely congested workloads.
605 */
606 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
607 } mm;
608 struct idr context_idr;
609
610 struct intel_rps_client {
611 atomic_t boosts;
612 } rps_client;
613
614 unsigned int bsd_engine;
615
616 /* Client can have a maximum of 3 contexts banned before
617 * it is denied of creating new contexts. As one context
618 * ban needs 4 consecutive hangs, and more if there is
619 * progress in between, this is a last resort stop gap measure
620 * to limit the badly behaving clients access to gpu.
621 */
622 #define I915_MAX_CLIENT_CONTEXT_BANS 3
623 atomic_t context_bans;
624 };
625
626 /* Used by dp and fdi links */
627 struct intel_link_m_n {
628 uint32_t tu;
629 uint32_t gmch_m;
630 uint32_t gmch_n;
631 uint32_t link_m;
632 uint32_t link_n;
633 };
634
635 void intel_link_compute_m_n(int bpp, int nlanes,
636 int pixel_clock, int link_clock,
637 struct intel_link_m_n *m_n,
638 bool reduce_m_n);
639
640 /* Interface history:
641 *
642 * 1.1: Original.
643 * 1.2: Add Power Management
644 * 1.3: Add vblank support
645 * 1.4: Fix cmdbuffer path, add heap destroy
646 * 1.5: Add vblank pipe configuration
647 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
648 * - Support vertical blank on secondary display pipe
649 */
650 #define DRIVER_MAJOR 1
651 #define DRIVER_MINOR 6
652 #define DRIVER_PATCHLEVEL 0
653
654 struct opregion_header;
655 struct opregion_acpi;
656 struct opregion_swsci;
657 struct opregion_asle;
658
659 struct intel_opregion {
660 struct opregion_header *header;
661 struct opregion_acpi *acpi;
662 struct opregion_swsci *swsci;
663 u32 swsci_gbda_sub_functions;
664 u32 swsci_sbcb_sub_functions;
665 struct opregion_asle *asle;
666 void *rvda;
667 void *vbt_firmware;
668 const void *vbt;
669 u32 vbt_size;
670 u32 *lid_state;
671 struct work_struct asle_work;
672 };
673 #define OPREGION_SIZE (8*1024)
674
675 struct intel_overlay;
676 struct intel_overlay_error_state;
677
678 struct sdvo_device_mapping {
679 u8 initialized;
680 u8 dvo_port;
681 u8 slave_addr;
682 u8 dvo_wiring;
683 u8 i2c_pin;
684 u8 ddc_pin;
685 };
686
687 struct intel_connector;
688 struct intel_encoder;
689 struct intel_atomic_state;
690 struct intel_crtc_state;
691 struct intel_initial_plane_config;
692 struct intel_crtc;
693 struct intel_limit;
694 struct dpll;
695 struct intel_cdclk_state;
696
697 struct drm_i915_display_funcs {
698 void (*get_cdclk)(struct drm_i915_private *dev_priv,
699 struct intel_cdclk_state *cdclk_state);
700 void (*set_cdclk)(struct drm_i915_private *dev_priv,
701 const struct intel_cdclk_state *cdclk_state);
702 int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane);
703 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
704 int (*compute_intermediate_wm)(struct drm_device *dev,
705 struct intel_crtc *intel_crtc,
706 struct intel_crtc_state *newstate);
707 void (*initial_watermarks)(struct intel_atomic_state *state,
708 struct intel_crtc_state *cstate);
709 void (*atomic_update_watermarks)(struct intel_atomic_state *state,
710 struct intel_crtc_state *cstate);
711 void (*optimize_watermarks)(struct intel_atomic_state *state,
712 struct intel_crtc_state *cstate);
713 int (*compute_global_watermarks)(struct drm_atomic_state *state);
714 void (*update_wm)(struct intel_crtc *crtc);
715 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
716 /* Returns the active state of the crtc, and if the crtc is active,
717 * fills out the pipe-config with the hw state. */
718 bool (*get_pipe_config)(struct intel_crtc *,
719 struct intel_crtc_state *);
720 void (*get_initial_plane_config)(struct intel_crtc *,
721 struct intel_initial_plane_config *);
722 int (*crtc_compute_clock)(struct intel_crtc *crtc,
723 struct intel_crtc_state *crtc_state);
724 void (*crtc_enable)(struct intel_crtc_state *pipe_config,
725 struct drm_atomic_state *old_state);
726 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
727 struct drm_atomic_state *old_state);
728 void (*update_crtcs)(struct drm_atomic_state *state);
729 void (*audio_codec_enable)(struct drm_connector *connector,
730 struct intel_encoder *encoder,
731 const struct drm_display_mode *adjusted_mode);
732 void (*audio_codec_disable)(struct intel_encoder *encoder);
733 void (*fdi_link_train)(struct intel_crtc *crtc,
734 const struct intel_crtc_state *crtc_state);
735 void (*init_clock_gating)(struct drm_i915_private *dev_priv);
736 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
737 /* clock updates for mode set */
738 /* cursor updates */
739 /* render clock increase/decrease */
740 /* display clock increase/decrease */
741 /* pll clock increase/decrease */
742
743 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
744 void (*load_luts)(struct drm_crtc_state *crtc_state);
745 };
746
747 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
748 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
749 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
750
751 struct intel_csr {
752 struct work_struct work;
753 const char *fw_path;
754 uint32_t *dmc_payload;
755 uint32_t dmc_fw_size;
756 uint32_t version;
757 uint32_t mmio_count;
758 i915_reg_t mmioaddr[8];
759 uint32_t mmiodata[8];
760 uint32_t dc_state;
761 uint32_t allowed_dc_mask;
762 };
763
764 #define DEV_INFO_FOR_EACH_FLAG(func) \
765 func(is_mobile); \
766 func(is_lp); \
767 func(is_alpha_support); \
768 /* Keep has_* in alphabetical order */ \
769 func(has_64bit_reloc); \
770 func(has_aliasing_ppgtt); \
771 func(has_csr); \
772 func(has_ddi); \
773 func(has_dp_mst); \
774 func(has_reset_engine); \
775 func(has_fbc); \
776 func(has_fpga_dbg); \
777 func(has_full_ppgtt); \
778 func(has_full_48bit_ppgtt); \
779 func(has_gmch_display); \
780 func(has_guc); \
781 func(has_guc_ct); \
782 func(has_hotplug); \
783 func(has_l3_dpf); \
784 func(has_llc); \
785 func(has_logical_ring_contexts); \
786 func(has_logical_ring_preemption); \
787 func(has_overlay); \
788 func(has_pipe_cxsr); \
789 func(has_pooled_eu); \
790 func(has_psr); \
791 func(has_rc6); \
792 func(has_rc6p); \
793 func(has_resource_streamer); \
794 func(has_runtime_pm); \
795 func(has_snoop); \
796 func(unfenced_needs_alignment); \
797 func(cursor_needs_physical); \
798 func(hws_needs_physical); \
799 func(overlay_needs_physical); \
800 func(supports_tv); \
801 func(has_ipc);
802
803 struct sseu_dev_info {
804 u8 slice_mask;
805 u8 subslice_mask;
806 u8 eu_total;
807 u8 eu_per_subslice;
808 u8 min_eu_in_pool;
809 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
810 u8 subslice_7eu[3];
811 u8 has_slice_pg:1;
812 u8 has_subslice_pg:1;
813 u8 has_eu_pg:1;
814 };
815
816 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu)
817 {
818 return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask);
819 }
820
821 /* Keep in gen based order, and chronological order within a gen */
822 enum intel_platform {
823 INTEL_PLATFORM_UNINITIALIZED = 0,
824 INTEL_I830,
825 INTEL_I845G,
826 INTEL_I85X,
827 INTEL_I865G,
828 INTEL_I915G,
829 INTEL_I915GM,
830 INTEL_I945G,
831 INTEL_I945GM,
832 INTEL_G33,
833 INTEL_PINEVIEW,
834 INTEL_I965G,
835 INTEL_I965GM,
836 INTEL_G45,
837 INTEL_GM45,
838 INTEL_IRONLAKE,
839 INTEL_SANDYBRIDGE,
840 INTEL_IVYBRIDGE,
841 INTEL_VALLEYVIEW,
842 INTEL_HASWELL,
843 INTEL_BROADWELL,
844 INTEL_CHERRYVIEW,
845 INTEL_SKYLAKE,
846 INTEL_BROXTON,
847 INTEL_KABYLAKE,
848 INTEL_GEMINILAKE,
849 INTEL_COFFEELAKE,
850 INTEL_CANNONLAKE,
851 INTEL_MAX_PLATFORMS
852 };
853
854 struct intel_device_info {
855 u16 device_id;
856 u16 gen_mask;
857
858 u8 gen;
859 u8 gt; /* GT number, 0 if undefined */
860 u8 num_rings;
861 u8 ring_mask; /* Rings supported by the HW */
862
863 enum intel_platform platform;
864 u32 platform_mask;
865
866 u32 display_mmio_offset;
867
868 u8 num_pipes;
869 u8 num_sprites[I915_MAX_PIPES];
870 u8 num_scalers[I915_MAX_PIPES];
871
872 unsigned int page_sizes; /* page sizes supported by the HW */
873
874 #define DEFINE_FLAG(name) u8 name:1
875 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG);
876 #undef DEFINE_FLAG
877 u16 ddb_size; /* in blocks */
878
879 /* Register offsets for the various display pipes and transcoders */
880 int pipe_offsets[I915_MAX_TRANSCODERS];
881 int trans_offsets[I915_MAX_TRANSCODERS];
882 int palette_offsets[I915_MAX_PIPES];
883 int cursor_offsets[I915_MAX_PIPES];
884
885 /* Slice/subslice/EU info */
886 struct sseu_dev_info sseu;
887
888 struct color_luts {
889 u16 degamma_lut_size;
890 u16 gamma_lut_size;
891 } color;
892 };
893
894 struct intel_display_error_state;
895
896 struct i915_gpu_state {
897 struct kref ref;
898 struct timeval time;
899 struct timeval boottime;
900 struct timeval uptime;
901
902 struct drm_i915_private *i915;
903
904 char error_msg[128];
905 bool simulated;
906 bool awake;
907 bool wakelock;
908 bool suspended;
909 int iommu;
910 u32 reset_count;
911 u32 suspend_count;
912 struct intel_device_info device_info;
913 struct i915_params params;
914
915 /* Generic register state */
916 u32 eir;
917 u32 pgtbl_er;
918 u32 ier;
919 u32 gtier[4], ngtier;
920 u32 ccid;
921 u32 derrmr;
922 u32 forcewake;
923 u32 error; /* gen6+ */
924 u32 err_int; /* gen7 */
925 u32 fault_data0; /* gen8, gen9 */
926 u32 fault_data1; /* gen8, gen9 */
927 u32 done_reg;
928 u32 gac_eco;
929 u32 gam_ecochk;
930 u32 gab_ctl;
931 u32 gfx_mode;
932
933 u32 nfence;
934 u64 fence[I915_MAX_NUM_FENCES];
935 struct intel_overlay_error_state *overlay;
936 struct intel_display_error_state *display;
937 struct drm_i915_error_object *semaphore;
938 struct drm_i915_error_object *guc_log;
939
940 struct drm_i915_error_engine {
941 int engine_id;
942 /* Software tracked state */
943 bool waiting;
944 int num_waiters;
945 unsigned long hangcheck_timestamp;
946 bool hangcheck_stalled;
947 enum intel_engine_hangcheck_action hangcheck_action;
948 struct i915_address_space *vm;
949 int num_requests;
950 u32 reset_count;
951
952 /* position of active request inside the ring */
953 u32 rq_head, rq_post, rq_tail;
954
955 /* our own tracking of ring head and tail */
956 u32 cpu_ring_head;
957 u32 cpu_ring_tail;
958
959 u32 last_seqno;
960
961 /* Register state */
962 u32 start;
963 u32 tail;
964 u32 head;
965 u32 ctl;
966 u32 mode;
967 u32 hws;
968 u32 ipeir;
969 u32 ipehr;
970 u32 bbstate;
971 u32 instpm;
972 u32 instps;
973 u32 seqno;
974 u64 bbaddr;
975 u64 acthd;
976 u32 fault_reg;
977 u64 faddr;
978 u32 rc_psmi; /* sleep state */
979 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
980 struct intel_instdone instdone;
981
982 struct drm_i915_error_context {
983 char comm[TASK_COMM_LEN];
984 pid_t pid;
985 u32 handle;
986 u32 hw_id;
987 int priority;
988 int ban_score;
989 int active;
990 int guilty;
991 } context;
992
993 struct drm_i915_error_object {
994 u64 gtt_offset;
995 u64 gtt_size;
996 int page_count;
997 int unused;
998 u32 *pages[0];
999 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
1000
1001 struct drm_i915_error_object **user_bo;
1002 long user_bo_count;
1003
1004 struct drm_i915_error_object *wa_ctx;
1005
1006 struct drm_i915_error_request {
1007 long jiffies;
1008 pid_t pid;
1009 u32 context;
1010 int priority;
1011 int ban_score;
1012 u32 seqno;
1013 u32 head;
1014 u32 tail;
1015 } *requests, execlist[EXECLIST_MAX_PORTS];
1016 unsigned int num_ports;
1017
1018 struct drm_i915_error_waiter {
1019 char comm[TASK_COMM_LEN];
1020 pid_t pid;
1021 u32 seqno;
1022 } *waiters;
1023
1024 struct {
1025 u32 gfx_mode;
1026 union {
1027 u64 pdp[4];
1028 u32 pp_dir_base;
1029 };
1030 } vm_info;
1031 } engine[I915_NUM_ENGINES];
1032
1033 struct drm_i915_error_buffer {
1034 u32 size;
1035 u32 name;
1036 u32 rseqno[I915_NUM_ENGINES], wseqno;
1037 u64 gtt_offset;
1038 u32 read_domains;
1039 u32 write_domain;
1040 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
1041 u32 tiling:2;
1042 u32 dirty:1;
1043 u32 purgeable:1;
1044 u32 userptr:1;
1045 s32 engine:4;
1046 u32 cache_level:3;
1047 } *active_bo[I915_NUM_ENGINES], *pinned_bo;
1048 u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
1049 struct i915_address_space *active_vm[I915_NUM_ENGINES];
1050 };
1051
1052 enum i915_cache_level {
1053 I915_CACHE_NONE = 0,
1054 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
1055 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
1056 caches, eg sampler/render caches, and the
1057 large Last-Level-Cache. LLC is coherent with
1058 the CPU, but L3 is only visible to the GPU. */
1059 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
1060 };
1061
1062 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
1063
1064 enum fb_op_origin {
1065 ORIGIN_GTT,
1066 ORIGIN_CPU,
1067 ORIGIN_CS,
1068 ORIGIN_FLIP,
1069 ORIGIN_DIRTYFB,
1070 };
1071
1072 struct intel_fbc {
1073 /* This is always the inner lock when overlapping with struct_mutex and
1074 * it's the outer lock when overlapping with stolen_lock. */
1075 struct mutex lock;
1076 unsigned threshold;
1077 unsigned int possible_framebuffer_bits;
1078 unsigned int busy_bits;
1079 unsigned int visible_pipes_mask;
1080 struct intel_crtc *crtc;
1081
1082 struct drm_mm_node compressed_fb;
1083 struct drm_mm_node *compressed_llb;
1084
1085 bool false_color;
1086
1087 bool enabled;
1088 bool active;
1089
1090 bool underrun_detected;
1091 struct work_struct underrun_work;
1092
1093 /*
1094 * Due to the atomic rules we can't access some structures without the
1095 * appropriate locking, so we cache information here in order to avoid
1096 * these problems.
1097 */
1098 struct intel_fbc_state_cache {
1099 struct i915_vma *vma;
1100
1101 struct {
1102 unsigned int mode_flags;
1103 uint32_t hsw_bdw_pixel_rate;
1104 } crtc;
1105
1106 struct {
1107 unsigned int rotation;
1108 int src_w;
1109 int src_h;
1110 bool visible;
1111 } plane;
1112
1113 struct {
1114 const struct drm_format_info *format;
1115 unsigned int stride;
1116 } fb;
1117 } state_cache;
1118
1119 /*
1120 * This structure contains everything that's relevant to program the
1121 * hardware registers. When we want to figure out if we need to disable
1122 * and re-enable FBC for a new configuration we just check if there's
1123 * something different in the struct. The genx_fbc_activate functions
1124 * are supposed to read from it in order to program the registers.
1125 */
1126 struct intel_fbc_reg_params {
1127 struct i915_vma *vma;
1128
1129 struct {
1130 enum pipe pipe;
1131 enum plane plane;
1132 unsigned int fence_y_offset;
1133 } crtc;
1134
1135 struct {
1136 const struct drm_format_info *format;
1137 unsigned int stride;
1138 } fb;
1139
1140 int cfb_size;
1141 unsigned int gen9_wa_cfb_stride;
1142 } params;
1143
1144 struct intel_fbc_work {
1145 bool scheduled;
1146 u32 scheduled_vblank;
1147 struct work_struct work;
1148 } work;
1149
1150 const char *no_fbc_reason;
1151 };
1152
1153 /*
1154 * HIGH_RR is the highest eDP panel refresh rate read from EDID
1155 * LOW_RR is the lowest eDP panel refresh rate found from EDID
1156 * parsing for same resolution.
1157 */
1158 enum drrs_refresh_rate_type {
1159 DRRS_HIGH_RR,
1160 DRRS_LOW_RR,
1161 DRRS_MAX_RR, /* RR count */
1162 };
1163
1164 enum drrs_support_type {
1165 DRRS_NOT_SUPPORTED = 0,
1166 STATIC_DRRS_SUPPORT = 1,
1167 SEAMLESS_DRRS_SUPPORT = 2
1168 };
1169
1170 struct intel_dp;
1171 struct i915_drrs {
1172 struct mutex mutex;
1173 struct delayed_work work;
1174 struct intel_dp *dp;
1175 unsigned busy_frontbuffer_bits;
1176 enum drrs_refresh_rate_type refresh_rate_type;
1177 enum drrs_support_type type;
1178 };
1179
1180 struct i915_psr {
1181 struct mutex lock;
1182 bool sink_support;
1183 bool source_ok;
1184 struct intel_dp *enabled;
1185 bool active;
1186 struct delayed_work work;
1187 unsigned busy_frontbuffer_bits;
1188 bool psr2_support;
1189 bool aux_frame_sync;
1190 bool link_standby;
1191 bool y_cord_support;
1192 bool colorimetry_support;
1193 bool alpm;
1194
1195 void (*enable_source)(struct intel_dp *,
1196 const struct intel_crtc_state *);
1197 void (*disable_source)(struct intel_dp *,
1198 const struct intel_crtc_state *);
1199 void (*enable_sink)(struct intel_dp *);
1200 void (*activate)(struct intel_dp *);
1201 void (*setup_vsc)(struct intel_dp *, const struct intel_crtc_state *);
1202 };
1203
1204 enum intel_pch {
1205 PCH_NONE = 0, /* No PCH present */
1206 PCH_IBX, /* Ibexpeak PCH */
1207 PCH_CPT, /* Cougarpoint/Pantherpoint PCH */
1208 PCH_LPT, /* Lynxpoint/Wildcatpoint PCH */
1209 PCH_SPT, /* Sunrisepoint PCH */
1210 PCH_KBP, /* Kaby Lake PCH */
1211 PCH_CNP, /* Cannon Lake PCH */
1212 PCH_NOP,
1213 };
1214
1215 enum intel_sbi_destination {
1216 SBI_ICLK,
1217 SBI_MPHY,
1218 };
1219
1220 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1221 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1222 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1223 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1224 #define QUIRK_INCREASE_T12_DELAY (1<<6)
1225
1226 struct intel_fbdev;
1227 struct intel_fbc_work;
1228
1229 struct intel_gmbus {
1230 struct i2c_adapter adapter;
1231 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1232 u32 force_bit;
1233 u32 reg0;
1234 i915_reg_t gpio_reg;
1235 struct i2c_algo_bit_data bit_algo;
1236 struct drm_i915_private *dev_priv;
1237 };
1238
1239 struct i915_suspend_saved_registers {
1240 u32 saveDSPARB;
1241 u32 saveFBC_CONTROL;
1242 u32 saveCACHE_MODE_0;
1243 u32 saveMI_ARB_STATE;
1244 u32 saveSWF0[16];
1245 u32 saveSWF1[16];
1246 u32 saveSWF3[3];
1247 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1248 u32 savePCH_PORT_HOTPLUG;
1249 u16 saveGCDGMBUS;
1250 };
1251
1252 struct vlv_s0ix_state {
1253 /* GAM */
1254 u32 wr_watermark;
1255 u32 gfx_prio_ctrl;
1256 u32 arb_mode;
1257 u32 gfx_pend_tlb0;
1258 u32 gfx_pend_tlb1;
1259 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1260 u32 media_max_req_count;
1261 u32 gfx_max_req_count;
1262 u32 render_hwsp;
1263 u32 ecochk;
1264 u32 bsd_hwsp;
1265 u32 blt_hwsp;
1266 u32 tlb_rd_addr;
1267
1268 /* MBC */
1269 u32 g3dctl;
1270 u32 gsckgctl;
1271 u32 mbctl;
1272
1273 /* GCP */
1274 u32 ucgctl1;
1275 u32 ucgctl3;
1276 u32 rcgctl1;
1277 u32 rcgctl2;
1278 u32 rstctl;
1279 u32 misccpctl;
1280
1281 /* GPM */
1282 u32 gfxpause;
1283 u32 rpdeuhwtc;
1284 u32 rpdeuc;
1285 u32 ecobus;
1286 u32 pwrdwnupctl;
1287 u32 rp_down_timeout;
1288 u32 rp_deucsw;
1289 u32 rcubmabdtmr;
1290 u32 rcedata;
1291 u32 spare2gh;
1292
1293 /* Display 1 CZ domain */
1294 u32 gt_imr;
1295 u32 gt_ier;
1296 u32 pm_imr;
1297 u32 pm_ier;
1298 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1299
1300 /* GT SA CZ domain */
1301 u32 tilectl;
1302 u32 gt_fifoctl;
1303 u32 gtlc_wake_ctrl;
1304 u32 gtlc_survive;
1305 u32 pmwgicz;
1306
1307 /* Display 2 CZ domain */
1308 u32 gu_ctl0;
1309 u32 gu_ctl1;
1310 u32 pcbr;
1311 u32 clock_gate_dis2;
1312 };
1313
1314 struct intel_rps_ei {
1315 ktime_t ktime;
1316 u32 render_c0;
1317 u32 media_c0;
1318 };
1319
1320 struct intel_rps {
1321 /*
1322 * work, interrupts_enabled and pm_iir are protected by
1323 * dev_priv->irq_lock
1324 */
1325 struct work_struct work;
1326 bool interrupts_enabled;
1327 u32 pm_iir;
1328
1329 /* PM interrupt bits that should never be masked */
1330 u32 pm_intrmsk_mbz;
1331
1332 /* Frequencies are stored in potentially platform dependent multiples.
1333 * In other words, *_freq needs to be multiplied by X to be interesting.
1334 * Soft limits are those which are used for the dynamic reclocking done
1335 * by the driver (raise frequencies under heavy loads, and lower for
1336 * lighter loads). Hard limits are those imposed by the hardware.
1337 *
1338 * A distinction is made for overclocking, which is never enabled by
1339 * default, and is considered to be above the hard limit if it's
1340 * possible at all.
1341 */
1342 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1343 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1344 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1345 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1346 u8 min_freq; /* AKA RPn. Minimum frequency */
1347 u8 boost_freq; /* Frequency to request when wait boosting */
1348 u8 idle_freq; /* Frequency to request when we are idle */
1349 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1350 u8 rp1_freq; /* "less than" RP0 power/freqency */
1351 u8 rp0_freq; /* Non-overclocked max frequency. */
1352 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
1353
1354 u8 up_threshold; /* Current %busy required to uplock */
1355 u8 down_threshold; /* Current %busy required to downclock */
1356
1357 int last_adj;
1358 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1359
1360 bool enabled;
1361 atomic_t num_waiters;
1362 atomic_t boosts;
1363
1364 /* manual wa residency calculations */
1365 struct intel_rps_ei ei;
1366 };
1367
1368 struct intel_rc6 {
1369 bool enabled;
1370 };
1371
1372 struct intel_llc_pstate {
1373 bool enabled;
1374 };
1375
1376 struct intel_gen6_power_mgmt {
1377 struct intel_rps rps;
1378 struct intel_rc6 rc6;
1379 struct intel_llc_pstate llc_pstate;
1380 struct delayed_work autoenable_work;
1381 };
1382
1383 /* defined intel_pm.c */
1384 extern spinlock_t mchdev_lock;
1385
1386 struct intel_ilk_power_mgmt {
1387 u8 cur_delay;
1388 u8 min_delay;
1389 u8 max_delay;
1390 u8 fmax;
1391 u8 fstart;
1392
1393 u64 last_count1;
1394 unsigned long last_time1;
1395 unsigned long chipset_power;
1396 u64 last_count2;
1397 u64 last_time2;
1398 unsigned long gfx_power;
1399 u8 corr;
1400
1401 int c_m;
1402 int r_t;
1403 };
1404
1405 struct drm_i915_private;
1406 struct i915_power_well;
1407
1408 struct i915_power_well_ops {
1409 /*
1410 * Synchronize the well's hw state to match the current sw state, for
1411 * example enable/disable it based on the current refcount. Called
1412 * during driver init and resume time, possibly after first calling
1413 * the enable/disable handlers.
1414 */
1415 void (*sync_hw)(struct drm_i915_private *dev_priv,
1416 struct i915_power_well *power_well);
1417 /*
1418 * Enable the well and resources that depend on it (for example
1419 * interrupts located on the well). Called after the 0->1 refcount
1420 * transition.
1421 */
1422 void (*enable)(struct drm_i915_private *dev_priv,
1423 struct i915_power_well *power_well);
1424 /*
1425 * Disable the well and resources that depend on it. Called after
1426 * the 1->0 refcount transition.
1427 */
1428 void (*disable)(struct drm_i915_private *dev_priv,
1429 struct i915_power_well *power_well);
1430 /* Returns the hw enabled state. */
1431 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1432 struct i915_power_well *power_well);
1433 };
1434
1435 /* Power well structure for haswell */
1436 struct i915_power_well {
1437 const char *name;
1438 bool always_on;
1439 /* power well enable/disable usage count */
1440 int count;
1441 /* cached hw enabled state */
1442 bool hw_enabled;
1443 u64 domains;
1444 /* unique identifier for this power well */
1445 enum i915_power_well_id id;
1446 /*
1447 * Arbitraty data associated with this power well. Platform and power
1448 * well specific.
1449 */
1450 union {
1451 struct {
1452 enum dpio_phy phy;
1453 } bxt;
1454 struct {
1455 /* Mask of pipes whose IRQ logic is backed by the pw */
1456 u8 irq_pipe_mask;
1457 /* The pw is backing the VGA functionality */
1458 bool has_vga:1;
1459 bool has_fuses:1;
1460 } hsw;
1461 };
1462 const struct i915_power_well_ops *ops;
1463 };
1464
1465 struct i915_power_domains {
1466 /*
1467 * Power wells needed for initialization at driver init and suspend
1468 * time are on. They are kept on until after the first modeset.
1469 */
1470 bool init_power_on;
1471 bool initializing;
1472 int power_well_count;
1473
1474 struct mutex lock;
1475 int domain_use_count[POWER_DOMAIN_NUM];
1476 struct i915_power_well *power_wells;
1477 };
1478
1479 #define MAX_L3_SLICES 2
1480 struct intel_l3_parity {
1481 u32 *remap_info[MAX_L3_SLICES];
1482 struct work_struct error_work;
1483 int which_slice;
1484 };
1485
1486 struct i915_gem_mm {
1487 /** Memory allocator for GTT stolen memory */
1488 struct drm_mm stolen;
1489 /** Protects the usage of the GTT stolen memory allocator. This is
1490 * always the inner lock when overlapping with struct_mutex. */
1491 struct mutex stolen_lock;
1492
1493 /** List of all objects in gtt_space. Used to restore gtt
1494 * mappings on resume */
1495 struct list_head bound_list;
1496 /**
1497 * List of objects which are not bound to the GTT (thus
1498 * are idle and not used by the GPU). These objects may or may
1499 * not actually have any pages attached.
1500 */
1501 struct list_head unbound_list;
1502
1503 /** List of all objects in gtt_space, currently mmaped by userspace.
1504 * All objects within this list must also be on bound_list.
1505 */
1506 struct list_head userfault_list;
1507
1508 /**
1509 * List of objects which are pending destruction.
1510 */
1511 struct llist_head free_list;
1512 struct work_struct free_work;
1513
1514 /**
1515 * Small stash of WC pages
1516 */
1517 struct pagevec wc_stash;
1518
1519 /** Usable portion of the GTT for GEM */
1520 dma_addr_t stolen_base; /* limited to low memory (32-bit) */
1521
1522 /**
1523 * tmpfs instance used for shmem backed objects
1524 */
1525 struct vfsmount *gemfs;
1526
1527 /** PPGTT used for aliasing the PPGTT with the GTT */
1528 struct i915_hw_ppgtt *aliasing_ppgtt;
1529
1530 struct notifier_block oom_notifier;
1531 struct notifier_block vmap_notifier;
1532 struct shrinker shrinker;
1533
1534 /** LRU list of objects with fence regs on them. */
1535 struct list_head fence_list;
1536
1537 /**
1538 * Workqueue to fault in userptr pages, flushed by the execbuf
1539 * when required but otherwise left to userspace to try again
1540 * on EAGAIN.
1541 */
1542 struct workqueue_struct *userptr_wq;
1543
1544 u64 unordered_timeline;
1545
1546 /* the indicator for dispatch video commands on two BSD rings */
1547 atomic_t bsd_engine_dispatch_index;
1548
1549 /** Bit 6 swizzling required for X tiling */
1550 uint32_t bit_6_swizzle_x;
1551 /** Bit 6 swizzling required for Y tiling */
1552 uint32_t bit_6_swizzle_y;
1553
1554 /* accounting, useful for userland debugging */
1555 spinlock_t object_stat_lock;
1556 u64 object_memory;
1557 u32 object_count;
1558 };
1559
1560 struct drm_i915_error_state_buf {
1561 struct drm_i915_private *i915;
1562 unsigned bytes;
1563 unsigned size;
1564 int err;
1565 u8 *buf;
1566 loff_t start;
1567 loff_t pos;
1568 };
1569
1570 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1571 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1572
1573 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */
1574 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */
1575
1576 struct i915_gpu_error {
1577 /* For hangcheck timer */
1578 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1579 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1580
1581 struct delayed_work hangcheck_work;
1582
1583 /* For reset and error_state handling. */
1584 spinlock_t lock;
1585 /* Protected by the above dev->gpu_error.lock. */
1586 struct i915_gpu_state *first_error;
1587
1588 atomic_t pending_fb_pin;
1589
1590 unsigned long missed_irq_rings;
1591
1592 /**
1593 * State variable controlling the reset flow and count
1594 *
1595 * This is a counter which gets incremented when reset is triggered,
1596 *
1597 * Before the reset commences, the I915_RESET_BACKOFF bit is set
1598 * meaning that any waiters holding onto the struct_mutex should
1599 * relinquish the lock immediately in order for the reset to start.
1600 *
1601 * If reset is not completed succesfully, the I915_WEDGE bit is
1602 * set meaning that hardware is terminally sour and there is no
1603 * recovery. All waiters on the reset_queue will be woken when
1604 * that happens.
1605 *
1606 * This counter is used by the wait_seqno code to notice that reset
1607 * event happened and it needs to restart the entire ioctl (since most
1608 * likely the seqno it waited for won't ever signal anytime soon).
1609 *
1610 * This is important for lock-free wait paths, where no contended lock
1611 * naturally enforces the correct ordering between the bail-out of the
1612 * waiter and the gpu reset work code.
1613 */
1614 unsigned long reset_count;
1615
1616 /**
1617 * flags: Control various stages of the GPU reset
1618 *
1619 * #I915_RESET_BACKOFF - When we start a reset, we want to stop any
1620 * other users acquiring the struct_mutex. To do this we set the
1621 * #I915_RESET_BACKOFF bit in the error flags when we detect a reset
1622 * and then check for that bit before acquiring the struct_mutex (in
1623 * i915_mutex_lock_interruptible()?). I915_RESET_BACKOFF serves a
1624 * secondary role in preventing two concurrent global reset attempts.
1625 *
1626 * #I915_RESET_HANDOFF - To perform the actual GPU reset, we need the
1627 * struct_mutex. We try to acquire the struct_mutex in the reset worker,
1628 * but it may be held by some long running waiter (that we cannot
1629 * interrupt without causing trouble). Once we are ready to do the GPU
1630 * reset, we set the I915_RESET_HANDOFF bit and wakeup any waiters. If
1631 * they already hold the struct_mutex and want to participate they can
1632 * inspect the bit and do the reset directly, otherwise the worker
1633 * waits for the struct_mutex.
1634 *
1635 * #I915_RESET_ENGINE[num_engines] - Since the driver doesn't need to
1636 * acquire the struct_mutex to reset an engine, we need an explicit
1637 * flag to prevent two concurrent reset attempts in the same engine.
1638 * As the number of engines continues to grow, allocate the flags from
1639 * the most significant bits.
1640 *
1641 * #I915_WEDGED - If reset fails and we can no longer use the GPU,
1642 * we set the #I915_WEDGED bit. Prior to command submission, e.g.
1643 * i915_gem_request_alloc(), this bit is checked and the sequence
1644 * aborted (with -EIO reported to userspace) if set.
1645 */
1646 unsigned long flags;
1647 #define I915_RESET_BACKOFF 0
1648 #define I915_RESET_HANDOFF 1
1649 #define I915_RESET_MODESET 2
1650 #define I915_WEDGED (BITS_PER_LONG - 1)
1651 #define I915_RESET_ENGINE (I915_WEDGED - I915_NUM_ENGINES)
1652
1653 /** Number of times an engine has been reset */
1654 u32 reset_engine_count[I915_NUM_ENGINES];
1655
1656 /**
1657 * Waitqueue to signal when a hang is detected. Used to for waiters
1658 * to release the struct_mutex for the reset to procede.
1659 */
1660 wait_queue_head_t wait_queue;
1661
1662 /**
1663 * Waitqueue to signal when the reset has completed. Used by clients
1664 * that wait for dev_priv->mm.wedged to settle.
1665 */
1666 wait_queue_head_t reset_queue;
1667
1668 /* For missed irq/seqno simulation. */
1669 unsigned long test_irq_rings;
1670 };
1671
1672 enum modeset_restore {
1673 MODESET_ON_LID_OPEN,
1674 MODESET_DONE,
1675 MODESET_SUSPENDED,
1676 };
1677
1678 #define DP_AUX_A 0x40
1679 #define DP_AUX_B 0x10
1680 #define DP_AUX_C 0x20
1681 #define DP_AUX_D 0x30
1682
1683 #define DDC_PIN_B 0x05
1684 #define DDC_PIN_C 0x04
1685 #define DDC_PIN_D 0x06
1686
1687 struct ddi_vbt_port_info {
1688 /*
1689 * This is an index in the HDMI/DVI DDI buffer translation table.
1690 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1691 * populate this field.
1692 */
1693 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1694 uint8_t hdmi_level_shift;
1695
1696 uint8_t supports_dvi:1;
1697 uint8_t supports_hdmi:1;
1698 uint8_t supports_dp:1;
1699 uint8_t supports_edp:1;
1700
1701 uint8_t alternate_aux_channel;
1702 uint8_t alternate_ddc_pin;
1703
1704 uint8_t dp_boost_level;
1705 uint8_t hdmi_boost_level;
1706 };
1707
1708 enum psr_lines_to_wait {
1709 PSR_0_LINES_TO_WAIT = 0,
1710 PSR_1_LINE_TO_WAIT,
1711 PSR_4_LINES_TO_WAIT,
1712 PSR_8_LINES_TO_WAIT
1713 };
1714
1715 struct intel_vbt_data {
1716 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1717 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1718
1719 /* Feature bits */
1720 unsigned int int_tv_support:1;
1721 unsigned int lvds_dither:1;
1722 unsigned int lvds_vbt:1;
1723 unsigned int int_crt_support:1;
1724 unsigned int lvds_use_ssc:1;
1725 unsigned int display_clock_mode:1;
1726 unsigned int fdi_rx_polarity_inverted:1;
1727 unsigned int panel_type:4;
1728 int lvds_ssc_freq;
1729 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1730
1731 enum drrs_support_type drrs_type;
1732
1733 struct {
1734 int rate;
1735 int lanes;
1736 int preemphasis;
1737 int vswing;
1738 bool low_vswing;
1739 bool initialized;
1740 bool support;
1741 int bpp;
1742 struct edp_power_seq pps;
1743 } edp;
1744
1745 struct {
1746 bool full_link;
1747 bool require_aux_wakeup;
1748 int idle_frames;
1749 enum psr_lines_to_wait lines_to_wait;
1750 int tp1_wakeup_time;
1751 int tp2_tp3_wakeup_time;
1752 } psr;
1753
1754 struct {
1755 u16 pwm_freq_hz;
1756 bool present;
1757 bool active_low_pwm;
1758 u8 min_brightness; /* min_brightness/255 of max */
1759 u8 controller; /* brightness controller number */
1760 enum intel_backlight_type type;
1761 } backlight;
1762
1763 /* MIPI DSI */
1764 struct {
1765 u16 panel_id;
1766 struct mipi_config *config;
1767 struct mipi_pps_data *pps;
1768 u8 seq_version;
1769 u32 size;
1770 u8 *data;
1771 const u8 *sequence[MIPI_SEQ_MAX];
1772 } dsi;
1773
1774 int crt_ddc_pin;
1775
1776 int child_dev_num;
1777 struct child_device_config *child_dev;
1778
1779 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1780 struct sdvo_device_mapping sdvo_mappings[2];
1781 };
1782
1783 enum intel_ddb_partitioning {
1784 INTEL_DDB_PART_1_2,
1785 INTEL_DDB_PART_5_6, /* IVB+ */
1786 };
1787
1788 struct intel_wm_level {
1789 bool enable;
1790 uint32_t pri_val;
1791 uint32_t spr_val;
1792 uint32_t cur_val;
1793 uint32_t fbc_val;
1794 };
1795
1796 struct ilk_wm_values {
1797 uint32_t wm_pipe[3];
1798 uint32_t wm_lp[3];
1799 uint32_t wm_lp_spr[3];
1800 uint32_t wm_linetime[3];
1801 bool enable_fbc_wm;
1802 enum intel_ddb_partitioning partitioning;
1803 };
1804
1805 struct g4x_pipe_wm {
1806 uint16_t plane[I915_MAX_PLANES];
1807 uint16_t fbc;
1808 };
1809
1810 struct g4x_sr_wm {
1811 uint16_t plane;
1812 uint16_t cursor;
1813 uint16_t fbc;
1814 };
1815
1816 struct vlv_wm_ddl_values {
1817 uint8_t plane[I915_MAX_PLANES];
1818 };
1819
1820 struct vlv_wm_values {
1821 struct g4x_pipe_wm pipe[3];
1822 struct g4x_sr_wm sr;
1823 struct vlv_wm_ddl_values ddl[3];
1824 uint8_t level;
1825 bool cxsr;
1826 };
1827
1828 struct g4x_wm_values {
1829 struct g4x_pipe_wm pipe[2];
1830 struct g4x_sr_wm sr;
1831 struct g4x_sr_wm hpll;
1832 bool cxsr;
1833 bool hpll_en;
1834 bool fbc_en;
1835 };
1836
1837 struct skl_ddb_entry {
1838 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1839 };
1840
1841 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1842 {
1843 return entry->end - entry->start;
1844 }
1845
1846 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1847 const struct skl_ddb_entry *e2)
1848 {
1849 if (e1->start == e2->start && e1->end == e2->end)
1850 return true;
1851
1852 return false;
1853 }
1854
1855 struct skl_ddb_allocation {
1856 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1857 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1858 };
1859
1860 struct skl_wm_values {
1861 unsigned dirty_pipes;
1862 struct skl_ddb_allocation ddb;
1863 };
1864
1865 struct skl_wm_level {
1866 bool plane_en;
1867 uint16_t plane_res_b;
1868 uint8_t plane_res_l;
1869 };
1870
1871 /* Stores plane specific WM parameters */
1872 struct skl_wm_params {
1873 bool x_tiled, y_tiled;
1874 bool rc_surface;
1875 uint32_t width;
1876 uint8_t cpp;
1877 uint32_t plane_pixel_rate;
1878 uint32_t y_min_scanlines;
1879 uint32_t plane_bytes_per_line;
1880 uint_fixed_16_16_t plane_blocks_per_line;
1881 uint_fixed_16_16_t y_tile_minimum;
1882 uint32_t linetime_us;
1883 };
1884
1885 /*
1886 * This struct helps tracking the state needed for runtime PM, which puts the
1887 * device in PCI D3 state. Notice that when this happens, nothing on the
1888 * graphics device works, even register access, so we don't get interrupts nor
1889 * anything else.
1890 *
1891 * Every piece of our code that needs to actually touch the hardware needs to
1892 * either call intel_runtime_pm_get or call intel_display_power_get with the
1893 * appropriate power domain.
1894 *
1895 * Our driver uses the autosuspend delay feature, which means we'll only really
1896 * suspend if we stay with zero refcount for a certain amount of time. The
1897 * default value is currently very conservative (see intel_runtime_pm_enable), but
1898 * it can be changed with the standard runtime PM files from sysfs.
1899 *
1900 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1901 * goes back to false exactly before we reenable the IRQs. We use this variable
1902 * to check if someone is trying to enable/disable IRQs while they're supposed
1903 * to be disabled. This shouldn't happen and we'll print some error messages in
1904 * case it happens.
1905 *
1906 * For more, read the Documentation/power/runtime_pm.txt.
1907 */
1908 struct i915_runtime_pm {
1909 atomic_t wakeref_count;
1910 bool suspended;
1911 bool irqs_enabled;
1912 };
1913
1914 enum intel_pipe_crc_source {
1915 INTEL_PIPE_CRC_SOURCE_NONE,
1916 INTEL_PIPE_CRC_SOURCE_PLANE1,
1917 INTEL_PIPE_CRC_SOURCE_PLANE2,
1918 INTEL_PIPE_CRC_SOURCE_PF,
1919 INTEL_PIPE_CRC_SOURCE_PIPE,
1920 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1921 INTEL_PIPE_CRC_SOURCE_TV,
1922 INTEL_PIPE_CRC_SOURCE_DP_B,
1923 INTEL_PIPE_CRC_SOURCE_DP_C,
1924 INTEL_PIPE_CRC_SOURCE_DP_D,
1925 INTEL_PIPE_CRC_SOURCE_AUTO,
1926 INTEL_PIPE_CRC_SOURCE_MAX,
1927 };
1928
1929 struct intel_pipe_crc_entry {
1930 uint32_t frame;
1931 uint32_t crc[5];
1932 };
1933
1934 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1935 struct intel_pipe_crc {
1936 spinlock_t lock;
1937 bool opened; /* exclusive access to the result file */
1938 struct intel_pipe_crc_entry *entries;
1939 enum intel_pipe_crc_source source;
1940 int head, tail;
1941 wait_queue_head_t wq;
1942 int skipped;
1943 };
1944
1945 struct i915_frontbuffer_tracking {
1946 spinlock_t lock;
1947
1948 /*
1949 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1950 * scheduled flips.
1951 */
1952 unsigned busy_bits;
1953 unsigned flip_bits;
1954 };
1955
1956 struct i915_wa_reg {
1957 i915_reg_t addr;
1958 u32 value;
1959 /* bitmask representing WA bits */
1960 u32 mask;
1961 };
1962
1963 /*
1964 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1965 * allowing it for RCS as we don't foresee any requirement of having
1966 * a whitelist for other engines. When it is really required for
1967 * other engines then the limit need to be increased.
1968 */
1969 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1970
1971 struct i915_workarounds {
1972 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1973 u32 count;
1974 u32 hw_whitelist_count[I915_NUM_ENGINES];
1975 };
1976
1977 struct i915_virtual_gpu {
1978 bool active;
1979 u32 caps;
1980 };
1981
1982 /* used in computing the new watermarks state */
1983 struct intel_wm_config {
1984 unsigned int num_pipes_active;
1985 bool sprites_enabled;
1986 bool sprites_scaled;
1987 };
1988
1989 struct i915_oa_format {
1990 u32 format;
1991 int size;
1992 };
1993
1994 struct i915_oa_reg {
1995 i915_reg_t addr;
1996 u32 value;
1997 };
1998
1999 struct i915_oa_config {
2000 char uuid[UUID_STRING_LEN + 1];
2001 int id;
2002
2003 const struct i915_oa_reg *mux_regs;
2004 u32 mux_regs_len;
2005 const struct i915_oa_reg *b_counter_regs;
2006 u32 b_counter_regs_len;
2007 const struct i915_oa_reg *flex_regs;
2008 u32 flex_regs_len;
2009
2010 struct attribute_group sysfs_metric;
2011 struct attribute *attrs[2];
2012 struct device_attribute sysfs_metric_id;
2013
2014 atomic_t ref_count;
2015 };
2016
2017 struct i915_perf_stream;
2018
2019 /**
2020 * struct i915_perf_stream_ops - the OPs to support a specific stream type
2021 */
2022 struct i915_perf_stream_ops {
2023 /**
2024 * @enable: Enables the collection of HW samples, either in response to
2025 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
2026 * without `I915_PERF_FLAG_DISABLED`.
2027 */
2028 void (*enable)(struct i915_perf_stream *stream);
2029
2030 /**
2031 * @disable: Disables the collection of HW samples, either in response
2032 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
2033 * the stream.
2034 */
2035 void (*disable)(struct i915_perf_stream *stream);
2036
2037 /**
2038 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
2039 * once there is something ready to read() for the stream
2040 */
2041 void (*poll_wait)(struct i915_perf_stream *stream,
2042 struct file *file,
2043 poll_table *wait);
2044
2045 /**
2046 * @wait_unlocked: For handling a blocking read, wait until there is
2047 * something to ready to read() for the stream. E.g. wait on the same
2048 * wait queue that would be passed to poll_wait().
2049 */
2050 int (*wait_unlocked)(struct i915_perf_stream *stream);
2051
2052 /**
2053 * @read: Copy buffered metrics as records to userspace
2054 * **buf**: the userspace, destination buffer
2055 * **count**: the number of bytes to copy, requested by userspace
2056 * **offset**: zero at the start of the read, updated as the read
2057 * proceeds, it represents how many bytes have been copied so far and
2058 * the buffer offset for copying the next record.
2059 *
2060 * Copy as many buffered i915 perf samples and records for this stream
2061 * to userspace as will fit in the given buffer.
2062 *
2063 * Only write complete records; returning -%ENOSPC if there isn't room
2064 * for a complete record.
2065 *
2066 * Return any error condition that results in a short read such as
2067 * -%ENOSPC or -%EFAULT, even though these may be squashed before
2068 * returning to userspace.
2069 */
2070 int (*read)(struct i915_perf_stream *stream,
2071 char __user *buf,
2072 size_t count,
2073 size_t *offset);
2074
2075 /**
2076 * @destroy: Cleanup any stream specific resources.
2077 *
2078 * The stream will always be disabled before this is called.
2079 */
2080 void (*destroy)(struct i915_perf_stream *stream);
2081 };
2082
2083 /**
2084 * struct i915_perf_stream - state for a single open stream FD
2085 */
2086 struct i915_perf_stream {
2087 /**
2088 * @dev_priv: i915 drm device
2089 */
2090 struct drm_i915_private *dev_priv;
2091
2092 /**
2093 * @link: Links the stream into ``&drm_i915_private->streams``
2094 */
2095 struct list_head link;
2096
2097 /**
2098 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
2099 * properties given when opening a stream, representing the contents
2100 * of a single sample as read() by userspace.
2101 */
2102 u32 sample_flags;
2103
2104 /**
2105 * @sample_size: Considering the configured contents of a sample
2106 * combined with the required header size, this is the total size
2107 * of a single sample record.
2108 */
2109 int sample_size;
2110
2111 /**
2112 * @ctx: %NULL if measuring system-wide across all contexts or a
2113 * specific context that is being monitored.
2114 */
2115 struct i915_gem_context *ctx;
2116
2117 /**
2118 * @enabled: Whether the stream is currently enabled, considering
2119 * whether the stream was opened in a disabled state and based
2120 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
2121 */
2122 bool enabled;
2123
2124 /**
2125 * @ops: The callbacks providing the implementation of this specific
2126 * type of configured stream.
2127 */
2128 const struct i915_perf_stream_ops *ops;
2129
2130 /**
2131 * @oa_config: The OA configuration used by the stream.
2132 */
2133 struct i915_oa_config *oa_config;
2134 };
2135
2136 /**
2137 * struct i915_oa_ops - Gen specific implementation of an OA unit stream
2138 */
2139 struct i915_oa_ops {
2140 /**
2141 * @is_valid_b_counter_reg: Validates register's address for
2142 * programming boolean counters for a particular platform.
2143 */
2144 bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
2145 u32 addr);
2146
2147 /**
2148 * @is_valid_mux_reg: Validates register's address for programming mux
2149 * for a particular platform.
2150 */
2151 bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
2152
2153 /**
2154 * @is_valid_flex_reg: Validates register's address for programming
2155 * flex EU filtering for a particular platform.
2156 */
2157 bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
2158
2159 /**
2160 * @init_oa_buffer: Resets the head and tail pointers of the
2161 * circular buffer for periodic OA reports.
2162 *
2163 * Called when first opening a stream for OA metrics, but also may be
2164 * called in response to an OA buffer overflow or other error
2165 * condition.
2166 *
2167 * Note it may be necessary to clear the full OA buffer here as part of
2168 * maintaining the invariable that new reports must be written to
2169 * zeroed memory for us to be able to reliable detect if an expected
2170 * report has not yet landed in memory. (At least on Haswell the OA
2171 * buffer tail pointer is not synchronized with reports being visible
2172 * to the CPU)
2173 */
2174 void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
2175
2176 /**
2177 * @enable_metric_set: Selects and applies any MUX configuration to set
2178 * up the Boolean and Custom (B/C) counters that are part of the
2179 * counter reports being sampled. May apply system constraints such as
2180 * disabling EU clock gating as required.
2181 */
2182 int (*enable_metric_set)(struct drm_i915_private *dev_priv,
2183 const struct i915_oa_config *oa_config);
2184
2185 /**
2186 * @disable_metric_set: Remove system constraints associated with using
2187 * the OA unit.
2188 */
2189 void (*disable_metric_set)(struct drm_i915_private *dev_priv);
2190
2191 /**
2192 * @oa_enable: Enable periodic sampling
2193 */
2194 void (*oa_enable)(struct drm_i915_private *dev_priv);
2195
2196 /**
2197 * @oa_disable: Disable periodic sampling
2198 */
2199 void (*oa_disable)(struct drm_i915_private *dev_priv);
2200
2201 /**
2202 * @read: Copy data from the circular OA buffer into a given userspace
2203 * buffer.
2204 */
2205 int (*read)(struct i915_perf_stream *stream,
2206 char __user *buf,
2207 size_t count,
2208 size_t *offset);
2209
2210 /**
2211 * @oa_hw_tail_read: read the OA tail pointer register
2212 *
2213 * In particular this enables us to share all the fiddly code for
2214 * handling the OA unit tail pointer race that affects multiple
2215 * generations.
2216 */
2217 u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
2218 };
2219
2220 struct intel_cdclk_state {
2221 unsigned int cdclk, vco, ref;
2222 };
2223
2224 struct drm_i915_private {
2225 struct drm_device drm;
2226
2227 struct kmem_cache *objects;
2228 struct kmem_cache *vmas;
2229 struct kmem_cache *luts;
2230 struct kmem_cache *requests;
2231 struct kmem_cache *dependencies;
2232 struct kmem_cache *priorities;
2233
2234 const struct intel_device_info info;
2235
2236 void __iomem *regs;
2237
2238 struct intel_uncore uncore;
2239
2240 struct i915_virtual_gpu vgpu;
2241
2242 struct intel_gvt *gvt;
2243
2244 struct intel_huc huc;
2245 struct intel_guc guc;
2246
2247 struct intel_csr csr;
2248
2249 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
2250
2251 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
2252 * controller on different i2c buses. */
2253 struct mutex gmbus_mutex;
2254
2255 /**
2256 * Base address of the gmbus and gpio block.
2257 */
2258 uint32_t gpio_mmio_base;
2259
2260 /* MMIO base address for MIPI regs */
2261 uint32_t mipi_mmio_base;
2262
2263 uint32_t psr_mmio_base;
2264
2265 uint32_t pps_mmio_base;
2266
2267 wait_queue_head_t gmbus_wait_queue;
2268
2269 struct pci_dev *bridge_dev;
2270 struct intel_engine_cs *engine[I915_NUM_ENGINES];
2271 /* Context used internally to idle the GPU and setup initial state */
2272 struct i915_gem_context *kernel_context;
2273 /* Context only to be used for injecting preemption commands */
2274 struct i915_gem_context *preempt_context;
2275 struct i915_vma *semaphore;
2276
2277 struct drm_dma_handle *status_page_dmah;
2278 struct resource mch_res;
2279
2280 /* protects the irq masks */
2281 spinlock_t irq_lock;
2282
2283 bool display_irqs_enabled;
2284
2285 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
2286 struct pm_qos_request pm_qos;
2287
2288 /* Sideband mailbox protection */
2289 struct mutex sb_lock;
2290
2291 /** Cached value of IMR to avoid reads in updating the bitfield */
2292 union {
2293 u32 irq_mask;
2294 u32 de_irq_mask[I915_MAX_PIPES];
2295 };
2296 u32 gt_irq_mask;
2297 u32 pm_imr;
2298 u32 pm_ier;
2299 u32 pm_rps_events;
2300 u32 pm_guc_events;
2301 u32 pipestat_irq_mask[I915_MAX_PIPES];
2302
2303 struct i915_hotplug hotplug;
2304 struct intel_fbc fbc;
2305 struct i915_drrs drrs;
2306 struct intel_opregion opregion;
2307 struct intel_vbt_data vbt;
2308
2309 bool preserve_bios_swizzle;
2310
2311 /* overlay */
2312 struct intel_overlay *overlay;
2313
2314 /* backlight registers and fields in struct intel_panel */
2315 struct mutex backlight_lock;
2316
2317 /* LVDS info */
2318 bool no_aux_handshake;
2319
2320 /* protects panel power sequencer state */
2321 struct mutex pps_mutex;
2322
2323 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
2324 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
2325
2326 unsigned int fsb_freq, mem_freq, is_ddr3;
2327 unsigned int skl_preferred_vco_freq;
2328 unsigned int max_cdclk_freq;
2329
2330 unsigned int max_dotclk_freq;
2331 unsigned int rawclk_freq;
2332 unsigned int hpll_freq;
2333 unsigned int czclk_freq;
2334
2335 struct {
2336 /*
2337 * The current logical cdclk state.
2338 * See intel_atomic_state.cdclk.logical
2339 *
2340 * For reading holding any crtc lock is sufficient,
2341 * for writing must hold all of them.
2342 */
2343 struct intel_cdclk_state logical;
2344 /*
2345 * The current actual cdclk state.
2346 * See intel_atomic_state.cdclk.actual
2347 */
2348 struct intel_cdclk_state actual;
2349 /* The current hardware cdclk state */
2350 struct intel_cdclk_state hw;
2351 } cdclk;
2352
2353 /**
2354 * wq - Driver workqueue for GEM.
2355 *
2356 * NOTE: Work items scheduled here are not allowed to grab any modeset
2357 * locks, for otherwise the flushing done in the pageflip code will
2358 * result in deadlocks.
2359 */
2360 struct workqueue_struct *wq;
2361
2362 /* Display functions */
2363 struct drm_i915_display_funcs display;
2364
2365 /* PCH chipset type */
2366 enum intel_pch pch_type;
2367 unsigned short pch_id;
2368
2369 unsigned long quirks;
2370
2371 enum modeset_restore modeset_restore;
2372 struct mutex modeset_restore_lock;
2373 struct drm_atomic_state *modeset_restore_state;
2374 struct drm_modeset_acquire_ctx reset_ctx;
2375
2376 struct list_head vm_list; /* Global list of all address spaces */
2377 struct i915_ggtt ggtt; /* VM representing the global address space */
2378
2379 struct i915_gem_mm mm;
2380 DECLARE_HASHTABLE(mm_structs, 7);
2381 struct mutex mm_lock;
2382
2383 struct intel_ppat ppat;
2384
2385 /* Kernel Modesetting */
2386
2387 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
2388 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
2389
2390 #ifdef CONFIG_DEBUG_FS
2391 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
2392 #endif
2393
2394 /* dpll and cdclk state is protected by connection_mutex */
2395 int num_shared_dpll;
2396 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
2397 const struct intel_dpll_mgr *dpll_mgr;
2398
2399 /*
2400 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
2401 * Must be global rather than per dpll, because on some platforms
2402 * plls share registers.
2403 */
2404 struct mutex dpll_lock;
2405
2406 unsigned int active_crtcs;
2407 /* minimum acceptable cdclk for each pipe */
2408 int min_cdclk[I915_MAX_PIPES];
2409
2410 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
2411
2412 struct i915_workarounds workarounds;
2413
2414 struct i915_frontbuffer_tracking fb_tracking;
2415
2416 struct intel_atomic_helper {
2417 struct llist_head free_list;
2418 struct work_struct free_work;
2419 } atomic_helper;
2420
2421 u16 orig_clock;
2422
2423 bool mchbar_need_disable;
2424
2425 struct intel_l3_parity l3_parity;
2426
2427 /* Cannot be determined by PCIID. You must always read a register. */
2428 u32 edram_cap;
2429
2430 /*
2431 * Protects RPS/RC6 register access and PCU communication.
2432 * Must be taken after struct_mutex if nested. Note that
2433 * this lock may be held for long periods of time when
2434 * talking to hw - so only take it when talking to hw!
2435 */
2436 struct mutex pcu_lock;
2437
2438 /* gen6+ GT PM state */
2439 struct intel_gen6_power_mgmt gt_pm;
2440
2441 /* ilk-only ips/rps state. Everything in here is protected by the global
2442 * mchdev_lock in intel_pm.c */
2443 struct intel_ilk_power_mgmt ips;
2444
2445 struct i915_power_domains power_domains;
2446
2447 struct i915_psr psr;
2448
2449 struct i915_gpu_error gpu_error;
2450
2451 struct drm_i915_gem_object *vlv_pctx;
2452
2453 /* list of fbdev register on this device */
2454 struct intel_fbdev *fbdev;
2455 struct work_struct fbdev_suspend_work;
2456
2457 struct drm_property *broadcast_rgb_property;
2458 struct drm_property *force_audio_property;
2459
2460 /* hda/i915 audio component */
2461 struct i915_audio_component *audio_component;
2462 bool audio_component_registered;
2463 /**
2464 * av_mutex - mutex for audio/video sync
2465 *
2466 */
2467 struct mutex av_mutex;
2468
2469 struct {
2470 struct list_head list;
2471 struct llist_head free_list;
2472 struct work_struct free_work;
2473
2474 /* The hw wants to have a stable context identifier for the
2475 * lifetime of the context (for OA, PASID, faults, etc).
2476 * This is limited in execlists to 21 bits.
2477 */
2478 struct ida hw_ida;
2479 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
2480 } contexts;
2481
2482 u32 fdi_rx_config;
2483
2484 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
2485 u32 chv_phy_control;
2486 /*
2487 * Shadows for CHV DPLL_MD regs to keep the state
2488 * checker somewhat working in the presence hardware
2489 * crappiness (can't read out DPLL_MD for pipes B & C).
2490 */
2491 u32 chv_dpll_md[I915_MAX_PIPES];
2492 u32 bxt_phy_grc;
2493
2494 u32 suspend_count;
2495 bool suspended_to_idle;
2496 struct i915_suspend_saved_registers regfile;
2497 struct vlv_s0ix_state vlv_s0ix_state;
2498
2499 enum {
2500 I915_SAGV_UNKNOWN = 0,
2501 I915_SAGV_DISABLED,
2502 I915_SAGV_ENABLED,
2503 I915_SAGV_NOT_CONTROLLED
2504 } sagv_status;
2505
2506 struct {
2507 /*
2508 * Raw watermark latency values:
2509 * in 0.1us units for WM0,
2510 * in 0.5us units for WM1+.
2511 */
2512 /* primary */
2513 uint16_t pri_latency[5];
2514 /* sprite */
2515 uint16_t spr_latency[5];
2516 /* cursor */
2517 uint16_t cur_latency[5];
2518 /*
2519 * Raw watermark memory latency values
2520 * for SKL for all 8 levels
2521 * in 1us units.
2522 */
2523 uint16_t skl_latency[8];
2524
2525 /* current hardware state */
2526 union {
2527 struct ilk_wm_values hw;
2528 struct skl_wm_values skl_hw;
2529 struct vlv_wm_values vlv;
2530 struct g4x_wm_values g4x;
2531 };
2532
2533 uint8_t max_level;
2534
2535 /*
2536 * Should be held around atomic WM register writing; also
2537 * protects * intel_crtc->wm.active and
2538 * cstate->wm.need_postvbl_update.
2539 */
2540 struct mutex wm_mutex;
2541
2542 /*
2543 * Set during HW readout of watermarks/DDB. Some platforms
2544 * need to know when we're still using BIOS-provided values
2545 * (which we don't fully trust).
2546 */
2547 bool distrust_bios_wm;
2548 } wm;
2549
2550 struct i915_runtime_pm runtime_pm;
2551
2552 struct {
2553 bool initialized;
2554
2555 struct kobject *metrics_kobj;
2556 struct ctl_table_header *sysctl_header;
2557
2558 /*
2559 * Lock associated with adding/modifying/removing OA configs
2560 * in dev_priv->perf.metrics_idr.
2561 */
2562 struct mutex metrics_lock;
2563
2564 /*
2565 * List of dynamic configurations, you need to hold
2566 * dev_priv->perf.metrics_lock to access it.
2567 */
2568 struct idr metrics_idr;
2569
2570 /*
2571 * Lock associated with anything below within this structure
2572 * except exclusive_stream.
2573 */
2574 struct mutex lock;
2575 struct list_head streams;
2576
2577 struct {
2578 /*
2579 * The stream currently using the OA unit. If accessed
2580 * outside a syscall associated to its file
2581 * descriptor, you need to hold
2582 * dev_priv->drm.struct_mutex.
2583 */
2584 struct i915_perf_stream *exclusive_stream;
2585
2586 u32 specific_ctx_id;
2587
2588 struct hrtimer poll_check_timer;
2589 wait_queue_head_t poll_wq;
2590 bool pollin;
2591
2592 /**
2593 * For rate limiting any notifications of spurious
2594 * invalid OA reports
2595 */
2596 struct ratelimit_state spurious_report_rs;
2597
2598 bool periodic;
2599 int period_exponent;
2600 int timestamp_frequency;
2601
2602 struct i915_oa_config test_config;
2603
2604 struct {
2605 struct i915_vma *vma;
2606 u8 *vaddr;
2607 u32 last_ctx_id;
2608 int format;
2609 int format_size;
2610
2611 /**
2612 * Locks reads and writes to all head/tail state
2613 *
2614 * Consider: the head and tail pointer state
2615 * needs to be read consistently from a hrtimer
2616 * callback (atomic context) and read() fop
2617 * (user context) with tail pointer updates
2618 * happening in atomic context and head updates
2619 * in user context and the (unlikely)
2620 * possibility of read() errors needing to
2621 * reset all head/tail state.
2622 *
2623 * Note: Contention or performance aren't
2624 * currently a significant concern here
2625 * considering the relatively low frequency of
2626 * hrtimer callbacks (5ms period) and that
2627 * reads typically only happen in response to a
2628 * hrtimer event and likely complete before the
2629 * next callback.
2630 *
2631 * Note: This lock is not held *while* reading
2632 * and copying data to userspace so the value
2633 * of head observed in htrimer callbacks won't
2634 * represent any partial consumption of data.
2635 */
2636 spinlock_t ptr_lock;
2637
2638 /**
2639 * One 'aging' tail pointer and one 'aged'
2640 * tail pointer ready to used for reading.
2641 *
2642 * Initial values of 0xffffffff are invalid
2643 * and imply that an update is required
2644 * (and should be ignored by an attempted
2645 * read)
2646 */
2647 struct {
2648 u32 offset;
2649 } tails[2];
2650
2651 /**
2652 * Index for the aged tail ready to read()
2653 * data up to.
2654 */
2655 unsigned int aged_tail_idx;
2656
2657 /**
2658 * A monotonic timestamp for when the current
2659 * aging tail pointer was read; used to
2660 * determine when it is old enough to trust.
2661 */
2662 u64 aging_timestamp;
2663
2664 /**
2665 * Although we can always read back the head
2666 * pointer register, we prefer to avoid
2667 * trusting the HW state, just to avoid any
2668 * risk that some hardware condition could
2669 * somehow bump the head pointer unpredictably
2670 * and cause us to forward the wrong OA buffer
2671 * data to userspace.
2672 */
2673 u32 head;
2674 } oa_buffer;
2675
2676 u32 gen7_latched_oastatus1;
2677 u32 ctx_oactxctrl_offset;
2678 u32 ctx_flexeu0_offset;
2679
2680 /**
2681 * The RPT_ID/reason field for Gen8+ includes a bit
2682 * to determine if the CTX ID in the report is valid
2683 * but the specific bit differs between Gen 8 and 9
2684 */
2685 u32 gen8_valid_ctx_bit;
2686
2687 struct i915_oa_ops ops;
2688 const struct i915_oa_format *oa_formats;
2689 } oa;
2690 } perf;
2691
2692 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2693 struct {
2694 void (*resume)(struct drm_i915_private *);
2695 void (*cleanup_engine)(struct intel_engine_cs *engine);
2696
2697 struct list_head timelines;
2698 struct i915_gem_timeline global_timeline;
2699 u32 active_requests;
2700
2701 /**
2702 * Is the GPU currently considered idle, or busy executing
2703 * userspace requests? Whilst idle, we allow runtime power
2704 * management to power down the hardware and display clocks.
2705 * In order to reduce the effect on performance, there
2706 * is a slight delay before we do so.
2707 */
2708 bool awake;
2709
2710 /**
2711 * We leave the user IRQ off as much as possible,
2712 * but this means that requests will finish and never
2713 * be retired once the system goes idle. Set a timer to
2714 * fire periodically while the ring is running. When it
2715 * fires, go retire requests.
2716 */
2717 struct delayed_work retire_work;
2718
2719 /**
2720 * When we detect an idle GPU, we want to turn on
2721 * powersaving features. So once we see that there
2722 * are no more requests outstanding and no more
2723 * arrive within a small period of time, we fire
2724 * off the idle_work.
2725 */
2726 struct delayed_work idle_work;
2727
2728 ktime_t last_init_time;
2729 } gt;
2730
2731 /* perform PHY state sanity checks? */
2732 bool chv_phy_assert[2];
2733
2734 bool ipc_enabled;
2735
2736 /* Used to save the pipe-to-encoder mapping for audio */
2737 struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2738
2739 /* necessary resource sharing with HDMI LPE audio driver. */
2740 struct {
2741 struct platform_device *platdev;
2742 int irq;
2743 } lpe_audio;
2744
2745 /*
2746 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2747 * will be rejected. Instead look for a better place.
2748 */
2749 };
2750
2751 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2752 {
2753 return container_of(dev, struct drm_i915_private, drm);
2754 }
2755
2756 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2757 {
2758 return to_i915(dev_get_drvdata(kdev));
2759 }
2760
2761 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2762 {
2763 return container_of(guc, struct drm_i915_private, guc);
2764 }
2765
2766 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2767 {
2768 return container_of(huc, struct drm_i915_private, huc);
2769 }
2770
2771 /* Simple iterator over all initialised engines */
2772 #define for_each_engine(engine__, dev_priv__, id__) \
2773 for ((id__) = 0; \
2774 (id__) < I915_NUM_ENGINES; \
2775 (id__)++) \
2776 for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2777
2778 /* Iterator over subset of engines selected by mask */
2779 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2780 for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask; \
2781 tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2782
2783 enum hdmi_force_audio {
2784 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2785 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2786 HDMI_AUDIO_AUTO, /* trust EDID */
2787 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2788 };
2789
2790 #define I915_GTT_OFFSET_NONE ((u32)-1)
2791
2792 /*
2793 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2794 * considered to be the frontbuffer for the given plane interface-wise. This
2795 * doesn't mean that the hw necessarily already scans it out, but that any
2796 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2797 *
2798 * We have one bit per pipe and per scanout plane type.
2799 */
2800 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2801 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2802 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2803 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2804 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2805 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2806 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2807 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2808 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2809 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2810 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2811 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2812
2813 /*
2814 * Optimised SGL iterator for GEM objects
2815 */
2816 static __always_inline struct sgt_iter {
2817 struct scatterlist *sgp;
2818 union {
2819 unsigned long pfn;
2820 dma_addr_t dma;
2821 };
2822 unsigned int curr;
2823 unsigned int max;
2824 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2825 struct sgt_iter s = { .sgp = sgl };
2826
2827 if (s.sgp) {
2828 s.max = s.curr = s.sgp->offset;
2829 s.max += s.sgp->length;
2830 if (dma)
2831 s.dma = sg_dma_address(s.sgp);
2832 else
2833 s.pfn = page_to_pfn(sg_page(s.sgp));
2834 }
2835
2836 return s;
2837 }
2838
2839 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2840 {
2841 ++sg;
2842 if (unlikely(sg_is_chain(sg)))
2843 sg = sg_chain_ptr(sg);
2844 return sg;
2845 }
2846
2847 /**
2848 * __sg_next - return the next scatterlist entry in a list
2849 * @sg: The current sg entry
2850 *
2851 * Description:
2852 * If the entry is the last, return NULL; otherwise, step to the next
2853 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2854 * otherwise just return the pointer to the current element.
2855 **/
2856 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2857 {
2858 #ifdef CONFIG_DEBUG_SG
2859 BUG_ON(sg->sg_magic != SG_MAGIC);
2860 #endif
2861 return sg_is_last(sg) ? NULL : ____sg_next(sg);
2862 }
2863
2864 /**
2865 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2866 * @__dmap: DMA address (output)
2867 * @__iter: 'struct sgt_iter' (iterator state, internal)
2868 * @__sgt: sg_table to iterate over (input)
2869 */
2870 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2871 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2872 ((__dmap) = (__iter).dma + (__iter).curr); \
2873 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \
2874 (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0)
2875
2876 /**
2877 * for_each_sgt_page - iterate over the pages of the given sg_table
2878 * @__pp: page pointer (output)
2879 * @__iter: 'struct sgt_iter' (iterator state, internal)
2880 * @__sgt: sg_table to iterate over (input)
2881 */
2882 #define for_each_sgt_page(__pp, __iter, __sgt) \
2883 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2884 ((__pp) = (__iter).pfn == 0 ? NULL : \
2885 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2886 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \
2887 (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0)
2888
2889 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg)
2890 {
2891 unsigned int page_sizes;
2892
2893 page_sizes = 0;
2894 while (sg) {
2895 GEM_BUG_ON(sg->offset);
2896 GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE));
2897 page_sizes |= sg->length;
2898 sg = __sg_next(sg);
2899 }
2900
2901 return page_sizes;
2902 }
2903
2904 static inline unsigned int i915_sg_segment_size(void)
2905 {
2906 unsigned int size = swiotlb_max_segment();
2907
2908 if (size == 0)
2909 return SCATTERLIST_MAX_SEGMENT;
2910
2911 size = rounddown(size, PAGE_SIZE);
2912 /* swiotlb_max_segment_size can return 1 byte when it means one page. */
2913 if (size < PAGE_SIZE)
2914 size = PAGE_SIZE;
2915
2916 return size;
2917 }
2918
2919 static inline const struct intel_device_info *
2920 intel_info(const struct drm_i915_private *dev_priv)
2921 {
2922 return &dev_priv->info;
2923 }
2924
2925 #define INTEL_INFO(dev_priv) intel_info((dev_priv))
2926
2927 #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen)
2928 #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id)
2929
2930 #define REVID_FOREVER 0xff
2931 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision)
2932
2933 #define GEN_FOREVER (0)
2934
2935 #define INTEL_GEN_MASK(s, e) ( \
2936 BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \
2937 BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \
2938 GENMASK((e) != GEN_FOREVER ? (e) - 1 : BITS_PER_LONG - 1, \
2939 (s) != GEN_FOREVER ? (s) - 1 : 0) \
2940 )
2941
2942 /*
2943 * Returns true if Gen is in inclusive range [Start, End].
2944 *
2945 * Use GEN_FOREVER for unbound start and or end.
2946 */
2947 #define IS_GEN(dev_priv, s, e) \
2948 (!!((dev_priv)->info.gen_mask & INTEL_GEN_MASK((s), (e))))
2949
2950 /*
2951 * Return true if revision is in range [since,until] inclusive.
2952 *
2953 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2954 */
2955 #define IS_REVID(p, since, until) \
2956 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2957
2958 #define IS_PLATFORM(dev_priv, p) ((dev_priv)->info.platform_mask & BIT(p))
2959
2960 #define IS_I830(dev_priv) IS_PLATFORM(dev_priv, INTEL_I830)
2961 #define IS_I845G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I845G)
2962 #define IS_I85X(dev_priv) IS_PLATFORM(dev_priv, INTEL_I85X)
2963 #define IS_I865G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I865G)
2964 #define IS_I915G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915G)
2965 #define IS_I915GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915GM)
2966 #define IS_I945G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945G)
2967 #define IS_I945GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945GM)
2968 #define IS_I965G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965G)
2969 #define IS_I965GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965GM)
2970 #define IS_G45(dev_priv) IS_PLATFORM(dev_priv, INTEL_G45)
2971 #define IS_GM45(dev_priv) IS_PLATFORM(dev_priv, INTEL_GM45)
2972 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv))
2973 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001)
2974 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011)
2975 #define IS_PINEVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_PINEVIEW)
2976 #define IS_G33(dev_priv) IS_PLATFORM(dev_priv, INTEL_G33)
2977 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046)
2978 #define IS_IVYBRIDGE(dev_priv) IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE)
2979 #define IS_IVB_GT1(dev_priv) (IS_IVYBRIDGE(dev_priv) && \
2980 (dev_priv)->info.gt == 1)
2981 #define IS_VALLEYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW)
2982 #define IS_CHERRYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW)
2983 #define IS_HASWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_HASWELL)
2984 #define IS_BROADWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROADWELL)
2985 #define IS_SKYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_SKYLAKE)
2986 #define IS_BROXTON(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROXTON)
2987 #define IS_KABYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_KABYLAKE)
2988 #define IS_GEMINILAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_GEMINILAKE)
2989 #define IS_COFFEELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_COFFEELAKE)
2990 #define IS_CANNONLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_CANNONLAKE)
2991 #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile)
2992 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2993 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2994 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \
2995 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \
2996 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \
2997 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2998 /* ULX machines are also considered ULT. */
2999 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \
3000 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
3001 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \
3002 (dev_priv)->info.gt == 3)
3003 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \
3004 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
3005 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \
3006 (dev_priv)->info.gt == 3)
3007 /* ULX machines are also considered ULT. */
3008 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \
3009 INTEL_DEVID(dev_priv) == 0x0A1E)
3010 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \
3011 INTEL_DEVID(dev_priv) == 0x1913 || \
3012 INTEL_DEVID(dev_priv) == 0x1916 || \
3013 INTEL_DEVID(dev_priv) == 0x1921 || \
3014 INTEL_DEVID(dev_priv) == 0x1926)
3015 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \
3016 INTEL_DEVID(dev_priv) == 0x1915 || \
3017 INTEL_DEVID(dev_priv) == 0x191E)
3018 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \
3019 INTEL_DEVID(dev_priv) == 0x5913 || \
3020 INTEL_DEVID(dev_priv) == 0x5916 || \
3021 INTEL_DEVID(dev_priv) == 0x5921 || \
3022 INTEL_DEVID(dev_priv) == 0x5926)
3023 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \
3024 INTEL_DEVID(dev_priv) == 0x5915 || \
3025 INTEL_DEVID(dev_priv) == 0x591E)
3026 #define IS_SKL_GT2(dev_priv) (IS_SKYLAKE(dev_priv) && \
3027 (dev_priv)->info.gt == 2)
3028 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \
3029 (dev_priv)->info.gt == 3)
3030 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \
3031 (dev_priv)->info.gt == 4)
3032 #define IS_KBL_GT2(dev_priv) (IS_KABYLAKE(dev_priv) && \
3033 (dev_priv)->info.gt == 2)
3034 #define IS_KBL_GT3(dev_priv) (IS_KABYLAKE(dev_priv) && \
3035 (dev_priv)->info.gt == 3)
3036 #define IS_CFL_ULT(dev_priv) (IS_COFFEELAKE(dev_priv) && \
3037 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
3038 #define IS_CFL_GT2(dev_priv) (IS_COFFEELAKE(dev_priv) && \
3039 (dev_priv)->info.gt == 2)
3040
3041 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
3042
3043 #define SKL_REVID_A0 0x0
3044 #define SKL_REVID_B0 0x1
3045 #define SKL_REVID_C0 0x2
3046 #define SKL_REVID_D0 0x3
3047 #define SKL_REVID_E0 0x4
3048 #define SKL_REVID_F0 0x5
3049 #define SKL_REVID_G0 0x6
3050 #define SKL_REVID_H0 0x7
3051
3052 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
3053
3054 #define BXT_REVID_A0 0x0
3055 #define BXT_REVID_A1 0x1
3056 #define BXT_REVID_B0 0x3
3057 #define BXT_REVID_B_LAST 0x8
3058 #define BXT_REVID_C0 0x9
3059
3060 #define IS_BXT_REVID(dev_priv, since, until) \
3061 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
3062
3063 #define KBL_REVID_A0 0x0
3064 #define KBL_REVID_B0 0x1
3065 #define KBL_REVID_C0 0x2
3066 #define KBL_REVID_D0 0x3
3067 #define KBL_REVID_E0 0x4
3068
3069 #define IS_KBL_REVID(dev_priv, since, until) \
3070 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
3071
3072 #define GLK_REVID_A0 0x0
3073 #define GLK_REVID_A1 0x1
3074
3075 #define IS_GLK_REVID(dev_priv, since, until) \
3076 (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
3077
3078 #define CNL_REVID_A0 0x0
3079 #define CNL_REVID_B0 0x1
3080
3081 #define IS_CNL_REVID(p, since, until) \
3082 (IS_CANNONLAKE(p) && IS_REVID(p, since, until))
3083
3084 /*
3085 * The genX designation typically refers to the render engine, so render
3086 * capability related checks should use IS_GEN, while display and other checks
3087 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
3088 * chips, etc.).
3089 */
3090 #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1)))
3091 #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2)))
3092 #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3)))
3093 #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4)))
3094 #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5)))
3095 #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6)))
3096 #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7)))
3097 #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8)))
3098 #define IS_GEN10(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(9)))
3099
3100 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp)
3101 #define IS_GEN9_LP(dev_priv) (IS_GEN9(dev_priv) && IS_LP(dev_priv))
3102 #define IS_GEN9_BC(dev_priv) (IS_GEN9(dev_priv) && !IS_LP(dev_priv))
3103
3104 #define ENGINE_MASK(id) BIT(id)
3105 #define RENDER_RING ENGINE_MASK(RCS)
3106 #define BSD_RING ENGINE_MASK(VCS)
3107 #define BLT_RING ENGINE_MASK(BCS)
3108 #define VEBOX_RING ENGINE_MASK(VECS)
3109 #define BSD2_RING ENGINE_MASK(VCS2)
3110 #define ALL_ENGINES (~0)
3111
3112 #define HAS_ENGINE(dev_priv, id) \
3113 (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
3114
3115 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
3116 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
3117 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
3118 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
3119
3120 #define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc)
3121 #define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop)
3122 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED))
3123 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \
3124 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
3125
3126 #define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical)
3127
3128 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
3129 ((dev_priv)->info.has_logical_ring_contexts)
3130 #define USES_PPGTT(dev_priv) (i915_modparams.enable_ppgtt)
3131 #define USES_FULL_PPGTT(dev_priv) (i915_modparams.enable_ppgtt >= 2)
3132 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915_modparams.enable_ppgtt == 3)
3133 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \
3134 GEM_BUG_ON((sizes) == 0); \
3135 ((sizes) & ~(dev_priv)->info.page_sizes) == 0; \
3136 })
3137
3138 #define HAS_OVERLAY(dev_priv) ((dev_priv)->info.has_overlay)
3139 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
3140 ((dev_priv)->info.overlay_needs_physical)
3141
3142 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
3143 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv))
3144
3145 /* WaRsDisableCoarsePowerGating:skl,bxt */
3146 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
3147 (IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
3148
3149 /*
3150 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
3151 * even when in MSI mode. This results in spurious interrupt warnings if the
3152 * legacy irq no. is shared with another device. The kernel then disables that
3153 * interrupt source and so prevents the other device from working properly.
3154 *
3155 * Since we don't enable MSI anymore on gen4, we can always use GMBUS/AUX
3156 * interrupts.
3157 */
3158 #define HAS_AUX_IRQ(dev_priv) true
3159 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4)
3160
3161 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
3162 * rows, which changed the alignment requirements and fence programming.
3163 */
3164 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
3165 !(IS_I915G(dev_priv) || \
3166 IS_I915GM(dev_priv)))
3167 #define SUPPORTS_TV(dev_priv) ((dev_priv)->info.supports_tv)
3168 #define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.has_hotplug)
3169
3170 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2)
3171 #define HAS_PIPE_CXSR(dev_priv) ((dev_priv)->info.has_pipe_cxsr)
3172 #define HAS_FBC(dev_priv) ((dev_priv)->info.has_fbc)
3173 #define HAS_CUR_FBC(dev_priv) (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_INFO(dev_priv)->gen >= 7)
3174
3175 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
3176
3177 #define HAS_DP_MST(dev_priv) ((dev_priv)->info.has_dp_mst)
3178
3179 #define HAS_DDI(dev_priv) ((dev_priv)->info.has_ddi)
3180 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
3181 #define HAS_PSR(dev_priv) ((dev_priv)->info.has_psr)
3182 #define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6)
3183 #define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p)
3184
3185 #define HAS_CSR(dev_priv) ((dev_priv)->info.has_csr)
3186
3187 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
3188 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
3189
3190 #define HAS_IPC(dev_priv) ((dev_priv)->info.has_ipc)
3191
3192 /*
3193 * For now, anything with a GuC requires uCode loading, and then supports
3194 * command submission once loaded. But these are logically independent
3195 * properties, so we have separate macros to test them.
3196 */
3197 #define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc)
3198 #define HAS_GUC_CT(dev_priv) ((dev_priv)->info.has_guc_ct)
3199 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3200 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv))
3201 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3202
3203 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
3204
3205 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu)
3206
3207 #define INTEL_PCH_DEVICE_ID_MASK 0xff80
3208 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
3209 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
3210 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
3211 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
3212 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
3213 #define INTEL_PCH_WPT_DEVICE_ID_TYPE 0x8c80
3214 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE 0x9c80
3215 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
3216 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
3217 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA280
3218 #define INTEL_PCH_CNP_DEVICE_ID_TYPE 0xA300
3219 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE 0x9D80
3220 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
3221 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
3222 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
3223
3224 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
3225 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
3226 #define HAS_PCH_CNP_LP(dev_priv) \
3227 ((dev_priv)->pch_id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
3228 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
3229 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
3230 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
3231 #define HAS_PCH_LPT_LP(dev_priv) \
3232 ((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
3233 (dev_priv)->pch_id == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
3234 #define HAS_PCH_LPT_H(dev_priv) \
3235 ((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
3236 (dev_priv)->pch_id == INTEL_PCH_WPT_DEVICE_ID_TYPE)
3237 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
3238 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
3239 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
3240 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
3241
3242 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
3243
3244 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
3245
3246 /* DPF == dynamic parity feature */
3247 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
3248 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
3249 2 : HAS_L3_DPF(dev_priv))
3250
3251 #define GT_FREQUENCY_MULTIPLIER 50
3252 #define GEN9_FREQ_SCALER 3
3253
3254 #include "i915_trace.h"
3255
3256 static inline bool intel_vtd_active(void)
3257 {
3258 #ifdef CONFIG_INTEL_IOMMU
3259 if (intel_iommu_gfx_mapped)
3260 return true;
3261 #endif
3262 return false;
3263 }
3264
3265 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
3266 {
3267 return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
3268 }
3269
3270 static inline bool
3271 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
3272 {
3273 return IS_BROXTON(dev_priv) && intel_vtd_active();
3274 }
3275
3276 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
3277 int enable_ppgtt);
3278
3279 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
3280
3281 /* i915_drv.c */
3282 void __printf(3, 4)
3283 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
3284 const char *fmt, ...);
3285
3286 #define i915_report_error(dev_priv, fmt, ...) \
3287 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
3288
3289 #ifdef CONFIG_COMPAT
3290 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
3291 unsigned long arg);
3292 #else
3293 #define i915_compat_ioctl NULL
3294 #endif
3295 extern const struct dev_pm_ops i915_pm_ops;
3296
3297 extern int i915_driver_load(struct pci_dev *pdev,
3298 const struct pci_device_id *ent);
3299 extern void i915_driver_unload(struct drm_device *dev);
3300 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
3301 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
3302
3303 #define I915_RESET_QUIET BIT(0)
3304 extern void i915_reset(struct drm_i915_private *i915, unsigned int flags);
3305 extern int i915_reset_engine(struct intel_engine_cs *engine,
3306 unsigned int flags);
3307
3308 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
3309 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
3310 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
3311 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
3312 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
3313 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
3314 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
3315 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
3316 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
3317
3318 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
3319 int intel_engines_init(struct drm_i915_private *dev_priv);
3320
3321 /* intel_hotplug.c */
3322 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
3323 u32 pin_mask, u32 long_mask);
3324 void intel_hpd_init(struct drm_i915_private *dev_priv);
3325 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
3326 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
3327 enum port intel_hpd_pin_to_port(enum hpd_pin pin);
3328 enum hpd_pin intel_hpd_pin(enum port port);
3329 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3330 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3331
3332 /* i915_irq.c */
3333 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
3334 {
3335 unsigned long delay;
3336
3337 if (unlikely(!i915_modparams.enable_hangcheck))
3338 return;
3339
3340 /* Don't continually defer the hangcheck so that it is always run at
3341 * least once after work has been scheduled on any ring. Otherwise,
3342 * we will ignore a hung ring if a second ring is kept busy.
3343 */
3344
3345 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
3346 queue_delayed_work(system_long_wq,
3347 &dev_priv->gpu_error.hangcheck_work, delay);
3348 }
3349
3350 __printf(3, 4)
3351 void i915_handle_error(struct drm_i915_private *dev_priv,
3352 u32 engine_mask,
3353 const char *fmt, ...);
3354
3355 extern void intel_irq_init(struct drm_i915_private *dev_priv);
3356 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
3357 int intel_irq_install(struct drm_i915_private *dev_priv);
3358 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
3359
3360 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3361 {
3362 return dev_priv->gvt;
3363 }
3364
3365 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3366 {
3367 return dev_priv->vgpu.active;
3368 }
3369
3370 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
3371 enum pipe pipe);
3372 void
3373 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3374 u32 status_mask);
3375
3376 void
3377 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3378 u32 status_mask);
3379
3380 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3381 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3382 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3383 uint32_t mask,
3384 uint32_t bits);
3385 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3386 uint32_t interrupt_mask,
3387 uint32_t enabled_irq_mask);
3388 static inline void
3389 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3390 {
3391 ilk_update_display_irq(dev_priv, bits, bits);
3392 }
3393 static inline void
3394 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3395 {
3396 ilk_update_display_irq(dev_priv, bits, 0);
3397 }
3398 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3399 enum pipe pipe,
3400 uint32_t interrupt_mask,
3401 uint32_t enabled_irq_mask);
3402 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3403 enum pipe pipe, uint32_t bits)
3404 {
3405 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3406 }
3407 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3408 enum pipe pipe, uint32_t bits)
3409 {
3410 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3411 }
3412 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3413 uint32_t interrupt_mask,
3414 uint32_t enabled_irq_mask);
3415 static inline void
3416 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3417 {
3418 ibx_display_interrupt_update(dev_priv, bits, bits);
3419 }
3420 static inline void
3421 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3422 {
3423 ibx_display_interrupt_update(dev_priv, bits, 0);
3424 }
3425
3426 /* i915_gem.c */
3427 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3428 struct drm_file *file_priv);
3429 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3430 struct drm_file *file_priv);
3431 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3432 struct drm_file *file_priv);
3433 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3434 struct drm_file *file_priv);
3435 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3436 struct drm_file *file_priv);
3437 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3438 struct drm_file *file_priv);
3439 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3440 struct drm_file *file_priv);
3441 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3442 struct drm_file *file_priv);
3443 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3444 struct drm_file *file_priv);
3445 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3446 struct drm_file *file_priv);
3447 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3448 struct drm_file *file);
3449 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3450 struct drm_file *file);
3451 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3452 struct drm_file *file_priv);
3453 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3454 struct drm_file *file_priv);
3455 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
3456 struct drm_file *file_priv);
3457 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
3458 struct drm_file *file_priv);
3459 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3460 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
3461 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3462 struct drm_file *file);
3463 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3464 struct drm_file *file_priv);
3465 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3466 struct drm_file *file_priv);
3467 void i915_gem_sanitize(struct drm_i915_private *i915);
3468 int i915_gem_load_init(struct drm_i915_private *dev_priv);
3469 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv);
3470 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3471 int i915_gem_freeze(struct drm_i915_private *dev_priv);
3472 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3473
3474 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
3475 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3476 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3477 const struct drm_i915_gem_object_ops *ops);
3478 struct drm_i915_gem_object *
3479 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
3480 struct drm_i915_gem_object *
3481 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
3482 const void *data, size_t size);
3483 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3484 void i915_gem_free_object(struct drm_gem_object *obj);
3485
3486 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
3487 {
3488 /* A single pass should suffice to release all the freed objects (along
3489 * most call paths) , but be a little more paranoid in that freeing
3490 * the objects does take a little amount of time, during which the rcu
3491 * callbacks could have added new objects into the freed list, and
3492 * armed the work again.
3493 */
3494 do {
3495 rcu_barrier();
3496 } while (flush_work(&i915->mm.free_work));
3497 }
3498
3499 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
3500 {
3501 /*
3502 * Similar to objects above (see i915_gem_drain_freed-objects), in
3503 * general we have workers that are armed by RCU and then rearm
3504 * themselves in their callbacks. To be paranoid, we need to
3505 * drain the workqueue a second time after waiting for the RCU
3506 * grace period so that we catch work queued via RCU from the first
3507 * pass. As neither drain_workqueue() nor flush_workqueue() report
3508 * a result, we make an assumption that we only don't require more
3509 * than 2 passes to catch all recursive RCU delayed work.
3510 *
3511 */
3512 int pass = 2;
3513 do {
3514 rcu_barrier();
3515 drain_workqueue(i915->wq);
3516 } while (--pass);
3517 }
3518
3519 struct i915_vma * __must_check
3520 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3521 const struct i915_ggtt_view *view,
3522 u64 size,
3523 u64 alignment,
3524 u64 flags);
3525
3526 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3527 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3528
3529 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3530
3531 static inline int __sg_page_count(const struct scatterlist *sg)
3532 {
3533 return sg->length >> PAGE_SHIFT;
3534 }
3535
3536 struct scatterlist *
3537 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3538 unsigned int n, unsigned int *offset);
3539
3540 struct page *
3541 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3542 unsigned int n);
3543
3544 struct page *
3545 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3546 unsigned int n);
3547
3548 dma_addr_t
3549 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3550 unsigned long n);
3551
3552 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3553 struct sg_table *pages,
3554 unsigned int sg_page_sizes);
3555 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3556
3557 static inline int __must_check
3558 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3559 {
3560 might_lock(&obj->mm.lock);
3561
3562 if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3563 return 0;
3564
3565 return __i915_gem_object_get_pages(obj);
3566 }
3567
3568 static inline void
3569 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3570 {
3571 GEM_BUG_ON(!obj->mm.pages);
3572
3573 atomic_inc(&obj->mm.pages_pin_count);
3574 }
3575
3576 static inline bool
3577 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3578 {
3579 return atomic_read(&obj->mm.pages_pin_count);
3580 }
3581
3582 static inline void
3583 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3584 {
3585 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3586 GEM_BUG_ON(!obj->mm.pages);
3587
3588 atomic_dec(&obj->mm.pages_pin_count);
3589 }
3590
3591 static inline void
3592 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3593 {
3594 __i915_gem_object_unpin_pages(obj);
3595 }
3596
3597 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3598 I915_MM_NORMAL = 0,
3599 I915_MM_SHRINKER
3600 };
3601
3602 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3603 enum i915_mm_subclass subclass);
3604 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3605
3606 enum i915_map_type {
3607 I915_MAP_WB = 0,
3608 I915_MAP_WC,
3609 #define I915_MAP_OVERRIDE BIT(31)
3610 I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
3611 I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
3612 };
3613
3614 /**
3615 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3616 * @obj: the object to map into kernel address space
3617 * @type: the type of mapping, used to select pgprot_t
3618 *
3619 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3620 * pages and then returns a contiguous mapping of the backing storage into
3621 * the kernel address space. Based on the @type of mapping, the PTE will be
3622 * set to either WriteBack or WriteCombine (via pgprot_t).
3623 *
3624 * The caller is responsible for calling i915_gem_object_unpin_map() when the
3625 * mapping is no longer required.
3626 *
3627 * Returns the pointer through which to access the mapped object, or an
3628 * ERR_PTR() on error.
3629 */
3630 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3631 enum i915_map_type type);
3632
3633 /**
3634 * i915_gem_object_unpin_map - releases an earlier mapping
3635 * @obj: the object to unmap
3636 *
3637 * After pinning the object and mapping its pages, once you are finished
3638 * with your access, call i915_gem_object_unpin_map() to release the pin
3639 * upon the mapping. Once the pin count reaches zero, that mapping may be
3640 * removed.
3641 */
3642 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3643 {
3644 i915_gem_object_unpin_pages(obj);
3645 }
3646
3647 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3648 unsigned int *needs_clflush);
3649 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3650 unsigned int *needs_clflush);
3651 #define CLFLUSH_BEFORE BIT(0)
3652 #define CLFLUSH_AFTER BIT(1)
3653 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER)
3654
3655 static inline void
3656 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3657 {
3658 i915_gem_object_unpin_pages(obj);
3659 }
3660
3661 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3662 void i915_vma_move_to_active(struct i915_vma *vma,
3663 struct drm_i915_gem_request *req,
3664 unsigned int flags);
3665 int i915_gem_dumb_create(struct drm_file *file_priv,
3666 struct drm_device *dev,
3667 struct drm_mode_create_dumb *args);
3668 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3669 uint32_t handle, uint64_t *offset);
3670 int i915_gem_mmap_gtt_version(void);
3671
3672 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3673 struct drm_i915_gem_object *new,
3674 unsigned frontbuffer_bits);
3675
3676 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3677
3678 struct drm_i915_gem_request *
3679 i915_gem_find_active_request(struct intel_engine_cs *engine);
3680
3681 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3682
3683 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3684 {
3685 return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3686 }
3687
3688 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3689 {
3690 return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3691 }
3692
3693 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3694 {
3695 return unlikely(test_bit(I915_WEDGED, &error->flags));
3696 }
3697
3698 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3699 {
3700 return i915_reset_backoff(error) | i915_terminally_wedged(error);
3701 }
3702
3703 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3704 {
3705 return READ_ONCE(error->reset_count);
3706 }
3707
3708 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3709 struct intel_engine_cs *engine)
3710 {
3711 return READ_ONCE(error->reset_engine_count[engine->id]);
3712 }
3713
3714 struct drm_i915_gem_request *
3715 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3716 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3717 void i915_gem_reset(struct drm_i915_private *dev_priv);
3718 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3719 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3720 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3721 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3722 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3723 struct drm_i915_gem_request *request);
3724
3725 void i915_gem_init_mmio(struct drm_i915_private *i915);
3726 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3727 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3728 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3729 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3730 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3731 unsigned int flags);
3732 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3733 void i915_gem_resume(struct drm_i915_private *dev_priv);
3734 int i915_gem_fault(struct vm_fault *vmf);
3735 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3736 unsigned int flags,
3737 long timeout,
3738 struct intel_rps_client *rps);
3739 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3740 unsigned int flags,
3741 int priority);
3742 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3743
3744 int __must_check
3745 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3746 int __must_check
3747 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3748 int __must_check
3749 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3750 struct i915_vma * __must_check
3751 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3752 u32 alignment,
3753 const struct i915_ggtt_view *view);
3754 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3755 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3756 int align);
3757 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3758 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3759
3760 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3761 enum i915_cache_level cache_level);
3762
3763 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3764 struct dma_buf *dma_buf);
3765
3766 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3767 struct drm_gem_object *gem_obj, int flags);
3768
3769 static inline struct i915_hw_ppgtt *
3770 i915_vm_to_ppgtt(struct i915_address_space *vm)
3771 {
3772 return container_of(vm, struct i915_hw_ppgtt, base);
3773 }
3774
3775 /* i915_gem_fence_reg.c */
3776 struct drm_i915_fence_reg *
3777 i915_reserve_fence(struct drm_i915_private *dev_priv);
3778 void i915_unreserve_fence(struct drm_i915_fence_reg *fence);
3779
3780 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3781 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3782
3783 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3784 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3785 struct sg_table *pages);
3786 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3787 struct sg_table *pages);
3788
3789 static inline struct i915_gem_context *
3790 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3791 {
3792 return idr_find(&file_priv->context_idr, id);
3793 }
3794
3795 static inline struct i915_gem_context *
3796 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3797 {
3798 struct i915_gem_context *ctx;
3799
3800 rcu_read_lock();
3801 ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3802 if (ctx && !kref_get_unless_zero(&ctx->ref))
3803 ctx = NULL;
3804 rcu_read_unlock();
3805
3806 return ctx;
3807 }
3808
3809 static inline struct intel_timeline *
3810 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx,
3811 struct intel_engine_cs *engine)
3812 {
3813 struct i915_address_space *vm;
3814
3815 vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base;
3816 return &vm->timeline.engine[engine->id];
3817 }
3818
3819 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3820 struct drm_file *file);
3821 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3822 struct drm_file *file);
3823 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3824 struct drm_file *file);
3825 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3826 struct i915_gem_context *ctx,
3827 uint32_t *reg_state);
3828
3829 /* i915_gem_evict.c */
3830 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3831 u64 min_size, u64 alignment,
3832 unsigned cache_level,
3833 u64 start, u64 end,
3834 unsigned flags);
3835 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3836 struct drm_mm_node *node,
3837 unsigned int flags);
3838 int i915_gem_evict_vm(struct i915_address_space *vm);
3839
3840 /* belongs in i915_gem_gtt.h */
3841 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3842 {
3843 wmb();
3844 if (INTEL_GEN(dev_priv) < 6)
3845 intel_gtt_chipset_flush();
3846 }
3847
3848 /* i915_gem_stolen.c */
3849 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3850 struct drm_mm_node *node, u64 size,
3851 unsigned alignment);
3852 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3853 struct drm_mm_node *node, u64 size,
3854 unsigned alignment, u64 start,
3855 u64 end);
3856 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3857 struct drm_mm_node *node);
3858 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3859 void i915_gem_cleanup_stolen(struct drm_device *dev);
3860 struct drm_i915_gem_object *
3861 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size);
3862 struct drm_i915_gem_object *
3863 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3864 u32 stolen_offset,
3865 u32 gtt_offset,
3866 u32 size);
3867
3868 /* i915_gem_internal.c */
3869 struct drm_i915_gem_object *
3870 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3871 phys_addr_t size);
3872
3873 /* i915_gem_shrinker.c */
3874 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3875 unsigned long target,
3876 unsigned long *nr_scanned,
3877 unsigned flags);
3878 #define I915_SHRINK_PURGEABLE 0x1
3879 #define I915_SHRINK_UNBOUND 0x2
3880 #define I915_SHRINK_BOUND 0x4
3881 #define I915_SHRINK_ACTIVE 0x8
3882 #define I915_SHRINK_VMAPS 0x10
3883 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3884 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3885 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3886
3887
3888 /* i915_gem_tiling.c */
3889 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3890 {
3891 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3892
3893 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3894 i915_gem_object_is_tiled(obj);
3895 }
3896
3897 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3898 unsigned int tiling, unsigned int stride);
3899 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3900 unsigned int tiling, unsigned int stride);
3901
3902 /* i915_debugfs.c */
3903 #ifdef CONFIG_DEBUG_FS
3904 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3905 int i915_debugfs_connector_add(struct drm_connector *connector);
3906 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3907 #else
3908 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3909 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3910 { return 0; }
3911 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3912 #endif
3913
3914 /* i915_gpu_error.c */
3915 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3916
3917 __printf(2, 3)
3918 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3919 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3920 const struct i915_gpu_state *gpu);
3921 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3922 struct drm_i915_private *i915,
3923 size_t count, loff_t pos);
3924 static inline void i915_error_state_buf_release(
3925 struct drm_i915_error_state_buf *eb)
3926 {
3927 kfree(eb->buf);
3928 }
3929
3930 struct i915_gpu_state *i915_capture_gpu_state(struct drm_i915_private *i915);
3931 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3932 u32 engine_mask,
3933 const char *error_msg);
3934
3935 static inline struct i915_gpu_state *
3936 i915_gpu_state_get(struct i915_gpu_state *gpu)
3937 {
3938 kref_get(&gpu->ref);
3939 return gpu;
3940 }
3941
3942 void __i915_gpu_state_free(struct kref *kref);
3943 static inline void i915_gpu_state_put(struct i915_gpu_state *gpu)
3944 {
3945 if (gpu)
3946 kref_put(&gpu->ref, __i915_gpu_state_free);
3947 }
3948
3949 struct i915_gpu_state *i915_first_error_state(struct drm_i915_private *i915);
3950 void i915_reset_error_state(struct drm_i915_private *i915);
3951
3952 #else
3953
3954 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3955 u32 engine_mask,
3956 const char *error_msg)
3957 {
3958 }
3959
3960 static inline struct i915_gpu_state *
3961 i915_first_error_state(struct drm_i915_private *i915)
3962 {
3963 return NULL;
3964 }
3965
3966 static inline void i915_reset_error_state(struct drm_i915_private *i915)
3967 {
3968 }
3969
3970 #endif
3971
3972 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3973
3974 /* i915_cmd_parser.c */
3975 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3976 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3977 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3978 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3979 struct drm_i915_gem_object *batch_obj,
3980 struct drm_i915_gem_object *shadow_batch_obj,
3981 u32 batch_start_offset,
3982 u32 batch_len,
3983 bool is_master);
3984
3985 /* i915_perf.c */
3986 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3987 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3988 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3989 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3990
3991 /* i915_suspend.c */
3992 extern int i915_save_state(struct drm_i915_private *dev_priv);
3993 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3994
3995 /* i915_sysfs.c */
3996 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3997 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3998
3999 /* intel_lpe_audio.c */
4000 int intel_lpe_audio_init(struct drm_i915_private *dev_priv);
4001 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
4002 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
4003 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
4004 enum pipe pipe, enum port port,
4005 const void *eld, int ls_clock, bool dp_output);
4006
4007 /* intel_i2c.c */
4008 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
4009 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
4010 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
4011 unsigned int pin);
4012
4013 extern struct i2c_adapter *
4014 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
4015 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
4016 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
4017 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
4018 {
4019 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
4020 }
4021 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
4022
4023 /* intel_bios.c */
4024 void intel_bios_init(struct drm_i915_private *dev_priv);
4025 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
4026 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
4027 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
4028 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
4029 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
4030 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
4031 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
4032 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
4033 enum port port);
4034 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
4035 enum port port);
4036
4037
4038 /* intel_opregion.c */
4039 #ifdef CONFIG_ACPI
4040 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
4041 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
4042 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
4043 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
4044 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
4045 bool enable);
4046 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
4047 pci_power_t state);
4048 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
4049 #else
4050 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
4051 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
4052 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
4053 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
4054 {
4055 }
4056 static inline int
4057 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
4058 {
4059 return 0;
4060 }
4061 static inline int
4062 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
4063 {
4064 return 0;
4065 }
4066 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
4067 {
4068 return -ENODEV;
4069 }
4070 #endif
4071
4072 /* intel_acpi.c */
4073 #ifdef CONFIG_ACPI
4074 extern void intel_register_dsm_handler(void);
4075 extern void intel_unregister_dsm_handler(void);
4076 #else
4077 static inline void intel_register_dsm_handler(void) { return; }
4078 static inline void intel_unregister_dsm_handler(void) { return; }
4079 #endif /* CONFIG_ACPI */
4080
4081 /* intel_device_info.c */
4082 static inline struct intel_device_info *
4083 mkwrite_device_info(struct drm_i915_private *dev_priv)
4084 {
4085 return (struct intel_device_info *)&dev_priv->info;
4086 }
4087
4088 const char *intel_platform_name(enum intel_platform platform);
4089 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
4090 void intel_device_info_dump(struct drm_i915_private *dev_priv);
4091
4092 /* modesetting */
4093 extern void intel_modeset_init_hw(struct drm_device *dev);
4094 extern int intel_modeset_init(struct drm_device *dev);
4095 extern void intel_modeset_gem_init(struct drm_device *dev);
4096 extern void intel_modeset_cleanup(struct drm_device *dev);
4097 extern int intel_connector_register(struct drm_connector *);
4098 extern void intel_connector_unregister(struct drm_connector *);
4099 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
4100 bool state);
4101 extern void intel_display_resume(struct drm_device *dev);
4102 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
4103 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
4104 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
4105 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
4106 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
4107 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
4108 bool enable);
4109
4110 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
4111 struct drm_file *file);
4112
4113 /* overlay */
4114 extern struct intel_overlay_error_state *
4115 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
4116 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
4117 struct intel_overlay_error_state *error);
4118
4119 extern struct intel_display_error_state *
4120 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
4121 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
4122 struct intel_display_error_state *error);
4123
4124 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
4125 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
4126 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
4127 u32 reply_mask, u32 reply, int timeout_base_ms);
4128
4129 /* intel_sideband.c */
4130 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
4131 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
4132 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
4133 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
4134 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
4135 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
4136 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4137 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
4138 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4139 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
4140 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4141 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
4142 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
4143 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
4144 enum intel_sbi_destination destination);
4145 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
4146 enum intel_sbi_destination destination);
4147 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
4148 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4149
4150 /* intel_dpio_phy.c */
4151 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
4152 enum dpio_phy *phy, enum dpio_channel *ch);
4153 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
4154 enum port port, u32 margin, u32 scale,
4155 u32 enable, u32 deemphasis);
4156 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4157 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4158 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
4159 enum dpio_phy phy);
4160 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
4161 enum dpio_phy phy);
4162 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
4163 uint8_t lane_count);
4164 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
4165 uint8_t lane_lat_optim_mask);
4166 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
4167
4168 void chv_set_phy_signal_level(struct intel_encoder *encoder,
4169 u32 deemph_reg_value, u32 margin_reg_value,
4170 bool uniq_trans_scale);
4171 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
4172 bool reset);
4173 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
4174 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4175 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
4176 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
4177
4178 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
4179 u32 demph_reg_value, u32 preemph_reg_value,
4180 u32 uniqtranscale_reg_value, u32 tx3_demph);
4181 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
4182 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4183 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
4184
4185 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
4186 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
4187 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
4188 const i915_reg_t reg);
4189
4190 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
4191 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
4192
4193 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
4194 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
4195 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
4196 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
4197
4198 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
4199 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
4200 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
4201 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
4202
4203 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
4204 * will be implemented using 2 32-bit writes in an arbitrary order with
4205 * an arbitrary delay between them. This can cause the hardware to
4206 * act upon the intermediate value, possibly leading to corruption and
4207 * machine death. For this reason we do not support I915_WRITE64, or
4208 * dev_priv->uncore.funcs.mmio_writeq.
4209 *
4210 * When reading a 64-bit value as two 32-bit values, the delay may cause
4211 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
4212 * occasionally a 64-bit register does not actualy support a full readq
4213 * and must be read using two 32-bit reads.
4214 *
4215 * You have been warned.
4216 */
4217 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
4218
4219 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
4220 u32 upper, lower, old_upper, loop = 0; \
4221 upper = I915_READ(upper_reg); \
4222 do { \
4223 old_upper = upper; \
4224 lower = I915_READ(lower_reg); \
4225 upper = I915_READ(upper_reg); \
4226 } while (upper != old_upper && loop++ < 2); \
4227 (u64)upper << 32 | lower; })
4228
4229 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
4230 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
4231
4232 #define __raw_read(x, s) \
4233 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
4234 i915_reg_t reg) \
4235 { \
4236 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
4237 }
4238
4239 #define __raw_write(x, s) \
4240 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
4241 i915_reg_t reg, uint##x##_t val) \
4242 { \
4243 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
4244 }
4245 __raw_read(8, b)
4246 __raw_read(16, w)
4247 __raw_read(32, l)
4248 __raw_read(64, q)
4249
4250 __raw_write(8, b)
4251 __raw_write(16, w)
4252 __raw_write(32, l)
4253 __raw_write(64, q)
4254
4255 #undef __raw_read
4256 #undef __raw_write
4257
4258 /* These are untraced mmio-accessors that are only valid to be used inside
4259 * critical sections, such as inside IRQ handlers, where forcewake is explicitly
4260 * controlled.
4261 *
4262 * Think twice, and think again, before using these.
4263 *
4264 * As an example, these accessors can possibly be used between:
4265 *
4266 * spin_lock_irq(&dev_priv->uncore.lock);
4267 * intel_uncore_forcewake_get__locked();
4268 *
4269 * and
4270 *
4271 * intel_uncore_forcewake_put__locked();
4272 * spin_unlock_irq(&dev_priv->uncore.lock);
4273 *
4274 *
4275 * Note: some registers may not need forcewake held, so
4276 * intel_uncore_forcewake_{get,put} can be omitted, see
4277 * intel_uncore_forcewake_for_reg().
4278 *
4279 * Certain architectures will die if the same cacheline is concurrently accessed
4280 * by different clients (e.g. on Ivybridge). Access to registers should
4281 * therefore generally be serialised, by either the dev_priv->uncore.lock or
4282 * a more localised lock guarding all access to that bank of registers.
4283 */
4284 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
4285 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
4286 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
4287 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
4288
4289 /* "Broadcast RGB" property */
4290 #define INTEL_BROADCAST_RGB_AUTO 0
4291 #define INTEL_BROADCAST_RGB_FULL 1
4292 #define INTEL_BROADCAST_RGB_LIMITED 2
4293
4294 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
4295 {
4296 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4297 return VLV_VGACNTRL;
4298 else if (INTEL_GEN(dev_priv) >= 5)
4299 return CPU_VGACNTRL;
4300 else
4301 return VGACNTRL;
4302 }
4303
4304 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
4305 {
4306 unsigned long j = msecs_to_jiffies(m);
4307
4308 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4309 }
4310
4311 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
4312 {
4313 /* nsecs_to_jiffies64() does not guard against overflow */
4314 if (NSEC_PER_SEC % HZ &&
4315 div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
4316 return MAX_JIFFY_OFFSET;
4317
4318 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
4319 }
4320
4321 static inline unsigned long
4322 timespec_to_jiffies_timeout(const struct timespec *value)
4323 {
4324 unsigned long j = timespec_to_jiffies(value);
4325
4326 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4327 }
4328
4329 /*
4330 * If you need to wait X milliseconds between events A and B, but event B
4331 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
4332 * when event A happened, then just before event B you call this function and
4333 * pass the timestamp as the first argument, and X as the second argument.
4334 */
4335 static inline void
4336 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
4337 {
4338 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
4339
4340 /*
4341 * Don't re-read the value of "jiffies" every time since it may change
4342 * behind our back and break the math.
4343 */
4344 tmp_jiffies = jiffies;
4345 target_jiffies = timestamp_jiffies +
4346 msecs_to_jiffies_timeout(to_wait_ms);
4347
4348 if (time_after(target_jiffies, tmp_jiffies)) {
4349 remaining_jiffies = target_jiffies - tmp_jiffies;
4350 while (remaining_jiffies)
4351 remaining_jiffies =
4352 schedule_timeout_uninterruptible(remaining_jiffies);
4353 }
4354 }
4355
4356 static inline bool
4357 __i915_request_irq_complete(const struct drm_i915_gem_request *req)
4358 {
4359 struct intel_engine_cs *engine = req->engine;
4360 u32 seqno;
4361
4362 /* Note that the engine may have wrapped around the seqno, and
4363 * so our request->global_seqno will be ahead of the hardware,
4364 * even though it completed the request before wrapping. We catch
4365 * this by kicking all the waiters before resetting the seqno
4366 * in hardware, and also signal the fence.
4367 */
4368 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &req->fence.flags))
4369 return true;
4370
4371 /* The request was dequeued before we were awoken. We check after
4372 * inspecting the hw to confirm that this was the same request
4373 * that generated the HWS update. The memory barriers within
4374 * the request execution are sufficient to ensure that a check
4375 * after reading the value from hw matches this request.
4376 */
4377 seqno = i915_gem_request_global_seqno(req);
4378 if (!seqno)
4379 return false;
4380
4381 /* Before we do the heavier coherent read of the seqno,
4382 * check the value (hopefully) in the CPU cacheline.
4383 */
4384 if (__i915_gem_request_completed(req, seqno))
4385 return true;
4386
4387 /* Ensure our read of the seqno is coherent so that we
4388 * do not "miss an interrupt" (i.e. if this is the last
4389 * request and the seqno write from the GPU is not visible
4390 * by the time the interrupt fires, we will see that the
4391 * request is incomplete and go back to sleep awaiting
4392 * another interrupt that will never come.)
4393 *
4394 * Strictly, we only need to do this once after an interrupt,
4395 * but it is easier and safer to do it every time the waiter
4396 * is woken.
4397 */
4398 if (engine->irq_seqno_barrier &&
4399 test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
4400 struct intel_breadcrumbs *b = &engine->breadcrumbs;
4401
4402 /* The ordering of irq_posted versus applying the barrier
4403 * is crucial. The clearing of the current irq_posted must
4404 * be visible before we perform the barrier operation,
4405 * such that if a subsequent interrupt arrives, irq_posted
4406 * is reasserted and our task rewoken (which causes us to
4407 * do another __i915_request_irq_complete() immediately
4408 * and reapply the barrier). Conversely, if the clear
4409 * occurs after the barrier, then an interrupt that arrived
4410 * whilst we waited on the barrier would not trigger a
4411 * barrier on the next pass, and the read may not see the
4412 * seqno update.
4413 */
4414 engine->irq_seqno_barrier(engine);
4415
4416 /* If we consume the irq, but we are no longer the bottom-half,
4417 * the real bottom-half may not have serialised their own
4418 * seqno check with the irq-barrier (i.e. may have inspected
4419 * the seqno before we believe it coherent since they see
4420 * irq_posted == false but we are still running).
4421 */
4422 spin_lock_irq(&b->irq_lock);
4423 if (b->irq_wait && b->irq_wait->tsk != current)
4424 /* Note that if the bottom-half is changed as we
4425 * are sending the wake-up, the new bottom-half will
4426 * be woken by whomever made the change. We only have
4427 * to worry about when we steal the irq-posted for
4428 * ourself.
4429 */
4430 wake_up_process(b->irq_wait->tsk);
4431 spin_unlock_irq(&b->irq_lock);
4432
4433 if (__i915_gem_request_completed(req, seqno))
4434 return true;
4435 }
4436
4437 return false;
4438 }
4439
4440 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
4441 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
4442
4443 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
4444 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
4445 * perform the operation. To check beforehand, pass in the parameters to
4446 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
4447 * you only need to pass in the minor offsets, page-aligned pointers are
4448 * always valid.
4449 *
4450 * For just checking for SSE4.1, in the foreknowledge that the future use
4451 * will be correctly aligned, just use i915_has_memcpy_from_wc().
4452 */
4453 #define i915_can_memcpy_from_wc(dst, src, len) \
4454 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
4455
4456 #define i915_has_memcpy_from_wc() \
4457 i915_memcpy_from_wc(NULL, NULL, 0)
4458
4459 /* i915_mm.c */
4460 int remap_io_mapping(struct vm_area_struct *vma,
4461 unsigned long addr, unsigned long pfn, unsigned long size,
4462 struct io_mapping *iomap);
4463
4464 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915)
4465 {
4466 if (INTEL_GEN(i915) >= 10)
4467 return CNL_HWS_CSB_WRITE_INDEX;
4468 else
4469 return I915_HWS_CSB_WRITE_INDEX;
4470 }
4471
4472 #endif