]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.h
drm/i915: Update DRIVER_DATE to 20170731
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/reservation.h>
45 #include <linux/shmem_fs.h>
46
47 #include <drm/drmP.h>
48 #include <drm/intel-gtt.h>
49 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
50 #include <drm/drm_gem.h>
51 #include <drm/drm_auth.h>
52 #include <drm/drm_cache.h>
53
54 #include "i915_params.h"
55 #include "i915_reg.h"
56 #include "i915_utils.h"
57
58 #include "intel_uncore.h"
59 #include "intel_bios.h"
60 #include "intel_dpll_mgr.h"
61 #include "intel_uc.h"
62 #include "intel_lrc.h"
63 #include "intel_ringbuffer.h"
64
65 #include "i915_gem.h"
66 #include "i915_gem_context.h"
67 #include "i915_gem_fence_reg.h"
68 #include "i915_gem_object.h"
69 #include "i915_gem_gtt.h"
70 #include "i915_gem_render_state.h"
71 #include "i915_gem_request.h"
72 #include "i915_gem_timeline.h"
73
74 #include "i915_vma.h"
75
76 #include "intel_gvt.h"
77
78 /* General customization:
79 */
80
81 #define DRIVER_NAME "i915"
82 #define DRIVER_DESC "Intel Graphics"
83 #define DRIVER_DATE "20170731"
84 #define DRIVER_TIMESTAMP 1501488491
85
86 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
87 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
88 * which may not necessarily be a user visible problem. This will either
89 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
90 * enable distros and users to tailor their preferred amount of i915 abrt
91 * spam.
92 */
93 #define I915_STATE_WARN(condition, format...) ({ \
94 int __ret_warn_on = !!(condition); \
95 if (unlikely(__ret_warn_on)) \
96 if (!WARN(i915.verbose_state_checks, format)) \
97 DRM_ERROR(format); \
98 unlikely(__ret_warn_on); \
99 })
100
101 #define I915_STATE_WARN_ON(x) \
102 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
103
104 bool __i915_inject_load_failure(const char *func, int line);
105 #define i915_inject_load_failure() \
106 __i915_inject_load_failure(__func__, __LINE__)
107
108 typedef struct {
109 uint32_t val;
110 } uint_fixed_16_16_t;
111
112 #define FP_16_16_MAX ({ \
113 uint_fixed_16_16_t fp; \
114 fp.val = UINT_MAX; \
115 fp; \
116 })
117
118 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
119 {
120 if (val.val == 0)
121 return true;
122 return false;
123 }
124
125 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val)
126 {
127 uint_fixed_16_16_t fp;
128
129 WARN_ON(val >> 16);
130
131 fp.val = val << 16;
132 return fp;
133 }
134
135 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp)
136 {
137 return DIV_ROUND_UP(fp.val, 1 << 16);
138 }
139
140 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp)
141 {
142 return fp.val >> 16;
143 }
144
145 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1,
146 uint_fixed_16_16_t min2)
147 {
148 uint_fixed_16_16_t min;
149
150 min.val = min(min1.val, min2.val);
151 return min;
152 }
153
154 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1,
155 uint_fixed_16_16_t max2)
156 {
157 uint_fixed_16_16_t max;
158
159 max.val = max(max1.val, max2.val);
160 return max;
161 }
162
163 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val)
164 {
165 uint_fixed_16_16_t fp;
166 WARN_ON(val >> 32);
167 fp.val = clamp_t(uint32_t, val, 0, ~0);
168 return fp;
169 }
170
171 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
172 uint_fixed_16_16_t d)
173 {
174 return DIV_ROUND_UP(val.val, d.val);
175 }
176
177 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
178 uint_fixed_16_16_t mul)
179 {
180 uint64_t intermediate_val;
181
182 intermediate_val = (uint64_t) val * mul.val;
183 intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
184 WARN_ON(intermediate_val >> 32);
185 return clamp_t(uint32_t, intermediate_val, 0, ~0);
186 }
187
188 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
189 uint_fixed_16_16_t mul)
190 {
191 uint64_t intermediate_val;
192
193 intermediate_val = (uint64_t) val.val * mul.val;
194 intermediate_val = intermediate_val >> 16;
195 return clamp_u64_to_fixed16(intermediate_val);
196 }
197
198 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d)
199 {
200 uint64_t interm_val;
201
202 interm_val = (uint64_t)val << 16;
203 interm_val = DIV_ROUND_UP_ULL(interm_val, d);
204 return clamp_u64_to_fixed16(interm_val);
205 }
206
207 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
208 uint_fixed_16_16_t d)
209 {
210 uint64_t interm_val;
211
212 interm_val = (uint64_t)val << 16;
213 interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
214 WARN_ON(interm_val >> 32);
215 return clamp_t(uint32_t, interm_val, 0, ~0);
216 }
217
218 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val,
219 uint_fixed_16_16_t mul)
220 {
221 uint64_t intermediate_val;
222
223 intermediate_val = (uint64_t) val * mul.val;
224 return clamp_u64_to_fixed16(intermediate_val);
225 }
226
227 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1,
228 uint_fixed_16_16_t add2)
229 {
230 uint64_t interm_sum;
231
232 interm_sum = (uint64_t) add1.val + add2.val;
233 return clamp_u64_to_fixed16(interm_sum);
234 }
235
236 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1,
237 uint32_t add2)
238 {
239 uint64_t interm_sum;
240 uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2);
241
242 interm_sum = (uint64_t) add1.val + interm_add2.val;
243 return clamp_u64_to_fixed16(interm_sum);
244 }
245
246 static inline const char *yesno(bool v)
247 {
248 return v ? "yes" : "no";
249 }
250
251 static inline const char *onoff(bool v)
252 {
253 return v ? "on" : "off";
254 }
255
256 static inline const char *enableddisabled(bool v)
257 {
258 return v ? "enabled" : "disabled";
259 }
260
261 enum pipe {
262 INVALID_PIPE = -1,
263 PIPE_A = 0,
264 PIPE_B,
265 PIPE_C,
266 _PIPE_EDP,
267 I915_MAX_PIPES = _PIPE_EDP
268 };
269 #define pipe_name(p) ((p) + 'A')
270
271 enum transcoder {
272 TRANSCODER_A = 0,
273 TRANSCODER_B,
274 TRANSCODER_C,
275 TRANSCODER_EDP,
276 TRANSCODER_DSI_A,
277 TRANSCODER_DSI_C,
278 I915_MAX_TRANSCODERS
279 };
280
281 static inline const char *transcoder_name(enum transcoder transcoder)
282 {
283 switch (transcoder) {
284 case TRANSCODER_A:
285 return "A";
286 case TRANSCODER_B:
287 return "B";
288 case TRANSCODER_C:
289 return "C";
290 case TRANSCODER_EDP:
291 return "EDP";
292 case TRANSCODER_DSI_A:
293 return "DSI A";
294 case TRANSCODER_DSI_C:
295 return "DSI C";
296 default:
297 return "<invalid>";
298 }
299 }
300
301 static inline bool transcoder_is_dsi(enum transcoder transcoder)
302 {
303 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
304 }
305
306 /*
307 * Global legacy plane identifier. Valid only for primary/sprite
308 * planes on pre-g4x, and only for primary planes on g4x+.
309 */
310 enum plane {
311 PLANE_A,
312 PLANE_B,
313 PLANE_C,
314 };
315 #define plane_name(p) ((p) + 'A')
316
317 #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A')
318
319 /*
320 * Per-pipe plane identifier.
321 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
322 * number of planes per CRTC. Not all platforms really have this many planes,
323 * which means some arrays of size I915_MAX_PLANES may have unused entries
324 * between the topmost sprite plane and the cursor plane.
325 *
326 * This is expected to be passed to various register macros
327 * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care.
328 */
329 enum plane_id {
330 PLANE_PRIMARY,
331 PLANE_SPRITE0,
332 PLANE_SPRITE1,
333 PLANE_SPRITE2,
334 PLANE_CURSOR,
335 I915_MAX_PLANES,
336 };
337
338 #define for_each_plane_id_on_crtc(__crtc, __p) \
339 for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \
340 for_each_if ((__crtc)->plane_ids_mask & BIT(__p))
341
342 enum port {
343 PORT_NONE = -1,
344 PORT_A = 0,
345 PORT_B,
346 PORT_C,
347 PORT_D,
348 PORT_E,
349 I915_MAX_PORTS
350 };
351 #define port_name(p) ((p) + 'A')
352
353 #define I915_NUM_PHYS_VLV 2
354
355 enum dpio_channel {
356 DPIO_CH0,
357 DPIO_CH1
358 };
359
360 enum dpio_phy {
361 DPIO_PHY0,
362 DPIO_PHY1,
363 DPIO_PHY2,
364 };
365
366 enum intel_display_power_domain {
367 POWER_DOMAIN_PIPE_A,
368 POWER_DOMAIN_PIPE_B,
369 POWER_DOMAIN_PIPE_C,
370 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
371 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
372 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
373 POWER_DOMAIN_TRANSCODER_A,
374 POWER_DOMAIN_TRANSCODER_B,
375 POWER_DOMAIN_TRANSCODER_C,
376 POWER_DOMAIN_TRANSCODER_EDP,
377 POWER_DOMAIN_TRANSCODER_DSI_A,
378 POWER_DOMAIN_TRANSCODER_DSI_C,
379 POWER_DOMAIN_PORT_DDI_A_LANES,
380 POWER_DOMAIN_PORT_DDI_B_LANES,
381 POWER_DOMAIN_PORT_DDI_C_LANES,
382 POWER_DOMAIN_PORT_DDI_D_LANES,
383 POWER_DOMAIN_PORT_DDI_E_LANES,
384 POWER_DOMAIN_PORT_DDI_A_IO,
385 POWER_DOMAIN_PORT_DDI_B_IO,
386 POWER_DOMAIN_PORT_DDI_C_IO,
387 POWER_DOMAIN_PORT_DDI_D_IO,
388 POWER_DOMAIN_PORT_DDI_E_IO,
389 POWER_DOMAIN_PORT_DSI,
390 POWER_DOMAIN_PORT_CRT,
391 POWER_DOMAIN_PORT_OTHER,
392 POWER_DOMAIN_VGA,
393 POWER_DOMAIN_AUDIO,
394 POWER_DOMAIN_PLLS,
395 POWER_DOMAIN_AUX_A,
396 POWER_DOMAIN_AUX_B,
397 POWER_DOMAIN_AUX_C,
398 POWER_DOMAIN_AUX_D,
399 POWER_DOMAIN_GMBUS,
400 POWER_DOMAIN_MODESET,
401 POWER_DOMAIN_INIT,
402
403 POWER_DOMAIN_NUM,
404 };
405
406 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
407 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
408 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
409 #define POWER_DOMAIN_TRANSCODER(tran) \
410 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
411 (tran) + POWER_DOMAIN_TRANSCODER_A)
412
413 enum hpd_pin {
414 HPD_NONE = 0,
415 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
416 HPD_CRT,
417 HPD_SDVO_B,
418 HPD_SDVO_C,
419 HPD_PORT_A,
420 HPD_PORT_B,
421 HPD_PORT_C,
422 HPD_PORT_D,
423 HPD_PORT_E,
424 HPD_NUM_PINS
425 };
426
427 #define for_each_hpd_pin(__pin) \
428 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
429
430 #define HPD_STORM_DEFAULT_THRESHOLD 5
431
432 struct i915_hotplug {
433 struct work_struct hotplug_work;
434
435 struct {
436 unsigned long last_jiffies;
437 int count;
438 enum {
439 HPD_ENABLED = 0,
440 HPD_DISABLED = 1,
441 HPD_MARK_DISABLED = 2
442 } state;
443 } stats[HPD_NUM_PINS];
444 u32 event_bits;
445 struct delayed_work reenable_work;
446
447 struct intel_digital_port *irq_port[I915_MAX_PORTS];
448 u32 long_port_mask;
449 u32 short_port_mask;
450 struct work_struct dig_port_work;
451
452 struct work_struct poll_init_work;
453 bool poll_enabled;
454
455 unsigned int hpd_storm_threshold;
456
457 /*
458 * if we get a HPD irq from DP and a HPD irq from non-DP
459 * the non-DP HPD could block the workqueue on a mode config
460 * mutex getting, that userspace may have taken. However
461 * userspace is waiting on the DP workqueue to run which is
462 * blocked behind the non-DP one.
463 */
464 struct workqueue_struct *dp_wq;
465 };
466
467 #define I915_GEM_GPU_DOMAINS \
468 (I915_GEM_DOMAIN_RENDER | \
469 I915_GEM_DOMAIN_SAMPLER | \
470 I915_GEM_DOMAIN_COMMAND | \
471 I915_GEM_DOMAIN_INSTRUCTION | \
472 I915_GEM_DOMAIN_VERTEX)
473
474 #define for_each_pipe(__dev_priv, __p) \
475 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
476 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
477 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
478 for_each_if ((__mask) & (1 << (__p)))
479 #define for_each_universal_plane(__dev_priv, __pipe, __p) \
480 for ((__p) = 0; \
481 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
482 (__p)++)
483 #define for_each_sprite(__dev_priv, __p, __s) \
484 for ((__s) = 0; \
485 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
486 (__s)++)
487
488 #define for_each_port_masked(__port, __ports_mask) \
489 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
490 for_each_if ((__ports_mask) & (1 << (__port)))
491
492 #define for_each_crtc(dev, crtc) \
493 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
494
495 #define for_each_intel_plane(dev, intel_plane) \
496 list_for_each_entry(intel_plane, \
497 &(dev)->mode_config.plane_list, \
498 base.head)
499
500 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \
501 list_for_each_entry(intel_plane, \
502 &(dev)->mode_config.plane_list, \
503 base.head) \
504 for_each_if ((plane_mask) & \
505 (1 << drm_plane_index(&intel_plane->base)))
506
507 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
508 list_for_each_entry(intel_plane, \
509 &(dev)->mode_config.plane_list, \
510 base.head) \
511 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
512
513 #define for_each_intel_crtc(dev, intel_crtc) \
514 list_for_each_entry(intel_crtc, \
515 &(dev)->mode_config.crtc_list, \
516 base.head)
517
518 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \
519 list_for_each_entry(intel_crtc, \
520 &(dev)->mode_config.crtc_list, \
521 base.head) \
522 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
523
524 #define for_each_intel_encoder(dev, intel_encoder) \
525 list_for_each_entry(intel_encoder, \
526 &(dev)->mode_config.encoder_list, \
527 base.head)
528
529 #define for_each_intel_connector_iter(intel_connector, iter) \
530 while ((intel_connector = to_intel_connector(drm_connector_list_iter_next(iter))))
531
532 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
533 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
534 for_each_if ((intel_encoder)->base.crtc == (__crtc))
535
536 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
537 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
538 for_each_if ((intel_connector)->base.encoder == (__encoder))
539
540 #define for_each_power_domain(domain, mask) \
541 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
542 for_each_if (BIT_ULL(domain) & (mask))
543
544 #define for_each_power_well(__dev_priv, __power_well) \
545 for ((__power_well) = (__dev_priv)->power_domains.power_wells; \
546 (__power_well) - (__dev_priv)->power_domains.power_wells < \
547 (__dev_priv)->power_domains.power_well_count; \
548 (__power_well)++)
549
550 #define for_each_power_well_rev(__dev_priv, __power_well) \
551 for ((__power_well) = (__dev_priv)->power_domains.power_wells + \
552 (__dev_priv)->power_domains.power_well_count - 1; \
553 (__power_well) - (__dev_priv)->power_domains.power_wells >= 0; \
554 (__power_well)--)
555
556 #define for_each_power_domain_well(__dev_priv, __power_well, __domain_mask) \
557 for_each_power_well(__dev_priv, __power_well) \
558 for_each_if ((__power_well)->domains & (__domain_mask))
559
560 #define for_each_power_domain_well_rev(__dev_priv, __power_well, __domain_mask) \
561 for_each_power_well_rev(__dev_priv, __power_well) \
562 for_each_if ((__power_well)->domains & (__domain_mask))
563
564 #define for_each_intel_plane_in_state(__state, plane, plane_state, __i) \
565 for ((__i) = 0; \
566 (__i) < (__state)->base.dev->mode_config.num_total_plane && \
567 ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
568 (plane_state) = to_intel_plane_state((__state)->base.planes[__i].state), 1); \
569 (__i)++) \
570 for_each_if (plane_state)
571
572 struct drm_i915_private;
573 struct i915_mm_struct;
574 struct i915_mmu_object;
575
576 struct drm_i915_file_private {
577 struct drm_i915_private *dev_priv;
578 struct drm_file *file;
579
580 struct {
581 spinlock_t lock;
582 struct list_head request_list;
583 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
584 * chosen to prevent the CPU getting more than a frame ahead of the GPU
585 * (when using lax throttling for the frontbuffer). We also use it to
586 * offer free GPU waitboosts for severely congested workloads.
587 */
588 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
589 } mm;
590 struct idr context_idr;
591
592 struct intel_rps_client {
593 atomic_t boosts;
594 } rps;
595
596 unsigned int bsd_engine;
597
598 /* Client can have a maximum of 3 contexts banned before
599 * it is denied of creating new contexts. As one context
600 * ban needs 4 consecutive hangs, and more if there is
601 * progress in between, this is a last resort stop gap measure
602 * to limit the badly behaving clients access to gpu.
603 */
604 #define I915_MAX_CLIENT_CONTEXT_BANS 3
605 atomic_t context_bans;
606 };
607
608 /* Used by dp and fdi links */
609 struct intel_link_m_n {
610 uint32_t tu;
611 uint32_t gmch_m;
612 uint32_t gmch_n;
613 uint32_t link_m;
614 uint32_t link_n;
615 };
616
617 void intel_link_compute_m_n(int bpp, int nlanes,
618 int pixel_clock, int link_clock,
619 struct intel_link_m_n *m_n,
620 bool reduce_m_n);
621
622 /* Interface history:
623 *
624 * 1.1: Original.
625 * 1.2: Add Power Management
626 * 1.3: Add vblank support
627 * 1.4: Fix cmdbuffer path, add heap destroy
628 * 1.5: Add vblank pipe configuration
629 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
630 * - Support vertical blank on secondary display pipe
631 */
632 #define DRIVER_MAJOR 1
633 #define DRIVER_MINOR 6
634 #define DRIVER_PATCHLEVEL 0
635
636 struct opregion_header;
637 struct opregion_acpi;
638 struct opregion_swsci;
639 struct opregion_asle;
640
641 struct intel_opregion {
642 struct opregion_header *header;
643 struct opregion_acpi *acpi;
644 struct opregion_swsci *swsci;
645 u32 swsci_gbda_sub_functions;
646 u32 swsci_sbcb_sub_functions;
647 struct opregion_asle *asle;
648 void *rvda;
649 const void *vbt;
650 u32 vbt_size;
651 u32 *lid_state;
652 struct work_struct asle_work;
653 };
654 #define OPREGION_SIZE (8*1024)
655
656 struct intel_overlay;
657 struct intel_overlay_error_state;
658
659 struct sdvo_device_mapping {
660 u8 initialized;
661 u8 dvo_port;
662 u8 slave_addr;
663 u8 dvo_wiring;
664 u8 i2c_pin;
665 u8 ddc_pin;
666 };
667
668 struct intel_connector;
669 struct intel_encoder;
670 struct intel_atomic_state;
671 struct intel_crtc_state;
672 struct intel_initial_plane_config;
673 struct intel_crtc;
674 struct intel_limit;
675 struct dpll;
676 struct intel_cdclk_state;
677
678 struct drm_i915_display_funcs {
679 void (*get_cdclk)(struct drm_i915_private *dev_priv,
680 struct intel_cdclk_state *cdclk_state);
681 void (*set_cdclk)(struct drm_i915_private *dev_priv,
682 const struct intel_cdclk_state *cdclk_state);
683 int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane);
684 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
685 int (*compute_intermediate_wm)(struct drm_device *dev,
686 struct intel_crtc *intel_crtc,
687 struct intel_crtc_state *newstate);
688 void (*initial_watermarks)(struct intel_atomic_state *state,
689 struct intel_crtc_state *cstate);
690 void (*atomic_update_watermarks)(struct intel_atomic_state *state,
691 struct intel_crtc_state *cstate);
692 void (*optimize_watermarks)(struct intel_atomic_state *state,
693 struct intel_crtc_state *cstate);
694 int (*compute_global_watermarks)(struct drm_atomic_state *state);
695 void (*update_wm)(struct intel_crtc *crtc);
696 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
697 /* Returns the active state of the crtc, and if the crtc is active,
698 * fills out the pipe-config with the hw state. */
699 bool (*get_pipe_config)(struct intel_crtc *,
700 struct intel_crtc_state *);
701 void (*get_initial_plane_config)(struct intel_crtc *,
702 struct intel_initial_plane_config *);
703 int (*crtc_compute_clock)(struct intel_crtc *crtc,
704 struct intel_crtc_state *crtc_state);
705 void (*crtc_enable)(struct intel_crtc_state *pipe_config,
706 struct drm_atomic_state *old_state);
707 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
708 struct drm_atomic_state *old_state);
709 void (*update_crtcs)(struct drm_atomic_state *state,
710 unsigned int *crtc_vblank_mask);
711 void (*audio_codec_enable)(struct drm_connector *connector,
712 struct intel_encoder *encoder,
713 const struct drm_display_mode *adjusted_mode);
714 void (*audio_codec_disable)(struct intel_encoder *encoder);
715 void (*fdi_link_train)(struct intel_crtc *crtc,
716 const struct intel_crtc_state *crtc_state);
717 void (*init_clock_gating)(struct drm_i915_private *dev_priv);
718 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
719 /* clock updates for mode set */
720 /* cursor updates */
721 /* render clock increase/decrease */
722 /* display clock increase/decrease */
723 /* pll clock increase/decrease */
724
725 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
726 void (*load_luts)(struct drm_crtc_state *crtc_state);
727 };
728
729 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
730 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
731 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
732
733 struct intel_csr {
734 struct work_struct work;
735 const char *fw_path;
736 uint32_t *dmc_payload;
737 uint32_t dmc_fw_size;
738 uint32_t version;
739 uint32_t mmio_count;
740 i915_reg_t mmioaddr[8];
741 uint32_t mmiodata[8];
742 uint32_t dc_state;
743 uint32_t allowed_dc_mask;
744 };
745
746 #define DEV_INFO_FOR_EACH_FLAG(func) \
747 func(is_mobile); \
748 func(is_lp); \
749 func(is_alpha_support); \
750 /* Keep has_* in alphabetical order */ \
751 func(has_64bit_reloc); \
752 func(has_aliasing_ppgtt); \
753 func(has_csr); \
754 func(has_ddi); \
755 func(has_dp_mst); \
756 func(has_reset_engine); \
757 func(has_fbc); \
758 func(has_fpga_dbg); \
759 func(has_full_ppgtt); \
760 func(has_full_48bit_ppgtt); \
761 func(has_gmbus_irq); \
762 func(has_gmch_display); \
763 func(has_guc); \
764 func(has_guc_ct); \
765 func(has_hotplug); \
766 func(has_l3_dpf); \
767 func(has_llc); \
768 func(has_logical_ring_contexts); \
769 func(has_overlay); \
770 func(has_pipe_cxsr); \
771 func(has_pooled_eu); \
772 func(has_psr); \
773 func(has_rc6); \
774 func(has_rc6p); \
775 func(has_resource_streamer); \
776 func(has_runtime_pm); \
777 func(has_snoop); \
778 func(unfenced_needs_alignment); \
779 func(cursor_needs_physical); \
780 func(hws_needs_physical); \
781 func(overlay_needs_physical); \
782 func(supports_tv);
783
784 struct sseu_dev_info {
785 u8 slice_mask;
786 u8 subslice_mask;
787 u8 eu_total;
788 u8 eu_per_subslice;
789 u8 min_eu_in_pool;
790 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
791 u8 subslice_7eu[3];
792 u8 has_slice_pg:1;
793 u8 has_subslice_pg:1;
794 u8 has_eu_pg:1;
795 };
796
797 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu)
798 {
799 return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask);
800 }
801
802 /* Keep in gen based order, and chronological order within a gen */
803 enum intel_platform {
804 INTEL_PLATFORM_UNINITIALIZED = 0,
805 INTEL_I830,
806 INTEL_I845G,
807 INTEL_I85X,
808 INTEL_I865G,
809 INTEL_I915G,
810 INTEL_I915GM,
811 INTEL_I945G,
812 INTEL_I945GM,
813 INTEL_G33,
814 INTEL_PINEVIEW,
815 INTEL_I965G,
816 INTEL_I965GM,
817 INTEL_G45,
818 INTEL_GM45,
819 INTEL_IRONLAKE,
820 INTEL_SANDYBRIDGE,
821 INTEL_IVYBRIDGE,
822 INTEL_VALLEYVIEW,
823 INTEL_HASWELL,
824 INTEL_BROADWELL,
825 INTEL_CHERRYVIEW,
826 INTEL_SKYLAKE,
827 INTEL_BROXTON,
828 INTEL_KABYLAKE,
829 INTEL_GEMINILAKE,
830 INTEL_COFFEELAKE,
831 INTEL_CANNONLAKE,
832 INTEL_MAX_PLATFORMS
833 };
834
835 struct intel_device_info {
836 u32 display_mmio_offset;
837 u16 device_id;
838 u8 num_pipes;
839 u8 num_sprites[I915_MAX_PIPES];
840 u8 num_scalers[I915_MAX_PIPES];
841 u8 gen;
842 u16 gen_mask;
843 enum intel_platform platform;
844 u8 ring_mask; /* Rings supported by the HW */
845 u8 num_rings;
846 #define DEFINE_FLAG(name) u8 name:1
847 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG);
848 #undef DEFINE_FLAG
849 u16 ddb_size; /* in blocks */
850 /* Register offsets for the various display pipes and transcoders */
851 int pipe_offsets[I915_MAX_TRANSCODERS];
852 int trans_offsets[I915_MAX_TRANSCODERS];
853 int palette_offsets[I915_MAX_PIPES];
854 int cursor_offsets[I915_MAX_PIPES];
855
856 /* Slice/subslice/EU info */
857 struct sseu_dev_info sseu;
858
859 struct color_luts {
860 u16 degamma_lut_size;
861 u16 gamma_lut_size;
862 } color;
863 };
864
865 struct intel_display_error_state;
866
867 struct i915_gpu_state {
868 struct kref ref;
869 struct timeval time;
870 struct timeval boottime;
871 struct timeval uptime;
872
873 struct drm_i915_private *i915;
874
875 char error_msg[128];
876 bool simulated;
877 bool awake;
878 bool wakelock;
879 bool suspended;
880 int iommu;
881 u32 reset_count;
882 u32 suspend_count;
883 struct intel_device_info device_info;
884 struct i915_params params;
885
886 /* Generic register state */
887 u32 eir;
888 u32 pgtbl_er;
889 u32 ier;
890 u32 gtier[4], ngtier;
891 u32 ccid;
892 u32 derrmr;
893 u32 forcewake;
894 u32 error; /* gen6+ */
895 u32 err_int; /* gen7 */
896 u32 fault_data0; /* gen8, gen9 */
897 u32 fault_data1; /* gen8, gen9 */
898 u32 done_reg;
899 u32 gac_eco;
900 u32 gam_ecochk;
901 u32 gab_ctl;
902 u32 gfx_mode;
903
904 u32 nfence;
905 u64 fence[I915_MAX_NUM_FENCES];
906 struct intel_overlay_error_state *overlay;
907 struct intel_display_error_state *display;
908 struct drm_i915_error_object *semaphore;
909 struct drm_i915_error_object *guc_log;
910
911 struct drm_i915_error_engine {
912 int engine_id;
913 /* Software tracked state */
914 bool waiting;
915 int num_waiters;
916 unsigned long hangcheck_timestamp;
917 bool hangcheck_stalled;
918 enum intel_engine_hangcheck_action hangcheck_action;
919 struct i915_address_space *vm;
920 int num_requests;
921 u32 reset_count;
922
923 /* position of active request inside the ring */
924 u32 rq_head, rq_post, rq_tail;
925
926 /* our own tracking of ring head and tail */
927 u32 cpu_ring_head;
928 u32 cpu_ring_tail;
929
930 u32 last_seqno;
931
932 /* Register state */
933 u32 start;
934 u32 tail;
935 u32 head;
936 u32 ctl;
937 u32 mode;
938 u32 hws;
939 u32 ipeir;
940 u32 ipehr;
941 u32 bbstate;
942 u32 instpm;
943 u32 instps;
944 u32 seqno;
945 u64 bbaddr;
946 u64 acthd;
947 u32 fault_reg;
948 u64 faddr;
949 u32 rc_psmi; /* sleep state */
950 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
951 struct intel_instdone instdone;
952
953 struct drm_i915_error_context {
954 char comm[TASK_COMM_LEN];
955 pid_t pid;
956 u32 handle;
957 u32 hw_id;
958 int ban_score;
959 int active;
960 int guilty;
961 } context;
962
963 struct drm_i915_error_object {
964 u64 gtt_offset;
965 u64 gtt_size;
966 int page_count;
967 int unused;
968 u32 *pages[0];
969 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
970
971 struct drm_i915_error_object **user_bo;
972 long user_bo_count;
973
974 struct drm_i915_error_object *wa_ctx;
975
976 struct drm_i915_error_request {
977 long jiffies;
978 pid_t pid;
979 u32 context;
980 int ban_score;
981 u32 seqno;
982 u32 head;
983 u32 tail;
984 } *requests, execlist[2];
985
986 struct drm_i915_error_waiter {
987 char comm[TASK_COMM_LEN];
988 pid_t pid;
989 u32 seqno;
990 } *waiters;
991
992 struct {
993 u32 gfx_mode;
994 union {
995 u64 pdp[4];
996 u32 pp_dir_base;
997 };
998 } vm_info;
999 } engine[I915_NUM_ENGINES];
1000
1001 struct drm_i915_error_buffer {
1002 u32 size;
1003 u32 name;
1004 u32 rseqno[I915_NUM_ENGINES], wseqno;
1005 u64 gtt_offset;
1006 u32 read_domains;
1007 u32 write_domain;
1008 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
1009 u32 tiling:2;
1010 u32 dirty:1;
1011 u32 purgeable:1;
1012 u32 userptr:1;
1013 s32 engine:4;
1014 u32 cache_level:3;
1015 } *active_bo[I915_NUM_ENGINES], *pinned_bo;
1016 u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
1017 struct i915_address_space *active_vm[I915_NUM_ENGINES];
1018 };
1019
1020 enum i915_cache_level {
1021 I915_CACHE_NONE = 0,
1022 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
1023 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
1024 caches, eg sampler/render caches, and the
1025 large Last-Level-Cache. LLC is coherent with
1026 the CPU, but L3 is only visible to the GPU. */
1027 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
1028 };
1029
1030 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
1031
1032 enum fb_op_origin {
1033 ORIGIN_GTT,
1034 ORIGIN_CPU,
1035 ORIGIN_CS,
1036 ORIGIN_FLIP,
1037 ORIGIN_DIRTYFB,
1038 };
1039
1040 struct intel_fbc {
1041 /* This is always the inner lock when overlapping with struct_mutex and
1042 * it's the outer lock when overlapping with stolen_lock. */
1043 struct mutex lock;
1044 unsigned threshold;
1045 unsigned int possible_framebuffer_bits;
1046 unsigned int busy_bits;
1047 unsigned int visible_pipes_mask;
1048 struct intel_crtc *crtc;
1049
1050 struct drm_mm_node compressed_fb;
1051 struct drm_mm_node *compressed_llb;
1052
1053 bool false_color;
1054
1055 bool enabled;
1056 bool active;
1057
1058 bool underrun_detected;
1059 struct work_struct underrun_work;
1060
1061 /*
1062 * Due to the atomic rules we can't access some structures without the
1063 * appropriate locking, so we cache information here in order to avoid
1064 * these problems.
1065 */
1066 struct intel_fbc_state_cache {
1067 struct i915_vma *vma;
1068
1069 struct {
1070 unsigned int mode_flags;
1071 uint32_t hsw_bdw_pixel_rate;
1072 } crtc;
1073
1074 struct {
1075 unsigned int rotation;
1076 int src_w;
1077 int src_h;
1078 bool visible;
1079 } plane;
1080
1081 struct {
1082 const struct drm_format_info *format;
1083 unsigned int stride;
1084 } fb;
1085 } state_cache;
1086
1087 /*
1088 * This structure contains everything that's relevant to program the
1089 * hardware registers. When we want to figure out if we need to disable
1090 * and re-enable FBC for a new configuration we just check if there's
1091 * something different in the struct. The genx_fbc_activate functions
1092 * are supposed to read from it in order to program the registers.
1093 */
1094 struct intel_fbc_reg_params {
1095 struct i915_vma *vma;
1096
1097 struct {
1098 enum pipe pipe;
1099 enum plane plane;
1100 unsigned int fence_y_offset;
1101 } crtc;
1102
1103 struct {
1104 const struct drm_format_info *format;
1105 unsigned int stride;
1106 } fb;
1107
1108 int cfb_size;
1109 } params;
1110
1111 struct intel_fbc_work {
1112 bool scheduled;
1113 u32 scheduled_vblank;
1114 struct work_struct work;
1115 } work;
1116
1117 const char *no_fbc_reason;
1118 };
1119
1120 /*
1121 * HIGH_RR is the highest eDP panel refresh rate read from EDID
1122 * LOW_RR is the lowest eDP panel refresh rate found from EDID
1123 * parsing for same resolution.
1124 */
1125 enum drrs_refresh_rate_type {
1126 DRRS_HIGH_RR,
1127 DRRS_LOW_RR,
1128 DRRS_MAX_RR, /* RR count */
1129 };
1130
1131 enum drrs_support_type {
1132 DRRS_NOT_SUPPORTED = 0,
1133 STATIC_DRRS_SUPPORT = 1,
1134 SEAMLESS_DRRS_SUPPORT = 2
1135 };
1136
1137 struct intel_dp;
1138 struct i915_drrs {
1139 struct mutex mutex;
1140 struct delayed_work work;
1141 struct intel_dp *dp;
1142 unsigned busy_frontbuffer_bits;
1143 enum drrs_refresh_rate_type refresh_rate_type;
1144 enum drrs_support_type type;
1145 };
1146
1147 struct i915_psr {
1148 struct mutex lock;
1149 bool sink_support;
1150 bool source_ok;
1151 struct intel_dp *enabled;
1152 bool active;
1153 struct delayed_work work;
1154 unsigned busy_frontbuffer_bits;
1155 bool psr2_support;
1156 bool aux_frame_sync;
1157 bool link_standby;
1158 bool y_cord_support;
1159 bool colorimetry_support;
1160 bool alpm;
1161 };
1162
1163 enum intel_pch {
1164 PCH_NONE = 0, /* No PCH present */
1165 PCH_IBX, /* Ibexpeak PCH */
1166 PCH_CPT, /* Cougarpoint/Pantherpoint PCH */
1167 PCH_LPT, /* Lynxpoint/Wildcatpoint PCH */
1168 PCH_SPT, /* Sunrisepoint PCH */
1169 PCH_KBP, /* Kabypoint PCH */
1170 PCH_CNP, /* Cannonpoint PCH */
1171 PCH_NOP,
1172 };
1173
1174 enum intel_sbi_destination {
1175 SBI_ICLK,
1176 SBI_MPHY,
1177 };
1178
1179 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1180 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1181 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1182 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1183 #define QUIRK_INCREASE_T12_DELAY (1<<6)
1184
1185 struct intel_fbdev;
1186 struct intel_fbc_work;
1187
1188 struct intel_gmbus {
1189 struct i2c_adapter adapter;
1190 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1191 u32 force_bit;
1192 u32 reg0;
1193 i915_reg_t gpio_reg;
1194 struct i2c_algo_bit_data bit_algo;
1195 struct drm_i915_private *dev_priv;
1196 };
1197
1198 struct i915_suspend_saved_registers {
1199 u32 saveDSPARB;
1200 u32 saveFBC_CONTROL;
1201 u32 saveCACHE_MODE_0;
1202 u32 saveMI_ARB_STATE;
1203 u32 saveSWF0[16];
1204 u32 saveSWF1[16];
1205 u32 saveSWF3[3];
1206 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1207 u32 savePCH_PORT_HOTPLUG;
1208 u16 saveGCDGMBUS;
1209 };
1210
1211 struct vlv_s0ix_state {
1212 /* GAM */
1213 u32 wr_watermark;
1214 u32 gfx_prio_ctrl;
1215 u32 arb_mode;
1216 u32 gfx_pend_tlb0;
1217 u32 gfx_pend_tlb1;
1218 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1219 u32 media_max_req_count;
1220 u32 gfx_max_req_count;
1221 u32 render_hwsp;
1222 u32 ecochk;
1223 u32 bsd_hwsp;
1224 u32 blt_hwsp;
1225 u32 tlb_rd_addr;
1226
1227 /* MBC */
1228 u32 g3dctl;
1229 u32 gsckgctl;
1230 u32 mbctl;
1231
1232 /* GCP */
1233 u32 ucgctl1;
1234 u32 ucgctl3;
1235 u32 rcgctl1;
1236 u32 rcgctl2;
1237 u32 rstctl;
1238 u32 misccpctl;
1239
1240 /* GPM */
1241 u32 gfxpause;
1242 u32 rpdeuhwtc;
1243 u32 rpdeuc;
1244 u32 ecobus;
1245 u32 pwrdwnupctl;
1246 u32 rp_down_timeout;
1247 u32 rp_deucsw;
1248 u32 rcubmabdtmr;
1249 u32 rcedata;
1250 u32 spare2gh;
1251
1252 /* Display 1 CZ domain */
1253 u32 gt_imr;
1254 u32 gt_ier;
1255 u32 pm_imr;
1256 u32 pm_ier;
1257 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1258
1259 /* GT SA CZ domain */
1260 u32 tilectl;
1261 u32 gt_fifoctl;
1262 u32 gtlc_wake_ctrl;
1263 u32 gtlc_survive;
1264 u32 pmwgicz;
1265
1266 /* Display 2 CZ domain */
1267 u32 gu_ctl0;
1268 u32 gu_ctl1;
1269 u32 pcbr;
1270 u32 clock_gate_dis2;
1271 };
1272
1273 struct intel_rps_ei {
1274 ktime_t ktime;
1275 u32 render_c0;
1276 u32 media_c0;
1277 };
1278
1279 struct intel_gen6_power_mgmt {
1280 /*
1281 * work, interrupts_enabled and pm_iir are protected by
1282 * dev_priv->irq_lock
1283 */
1284 struct work_struct work;
1285 bool interrupts_enabled;
1286 u32 pm_iir;
1287
1288 /* PM interrupt bits that should never be masked */
1289 u32 pm_intrmsk_mbz;
1290
1291 /* Frequencies are stored in potentially platform dependent multiples.
1292 * In other words, *_freq needs to be multiplied by X to be interesting.
1293 * Soft limits are those which are used for the dynamic reclocking done
1294 * by the driver (raise frequencies under heavy loads, and lower for
1295 * lighter loads). Hard limits are those imposed by the hardware.
1296 *
1297 * A distinction is made for overclocking, which is never enabled by
1298 * default, and is considered to be above the hard limit if it's
1299 * possible at all.
1300 */
1301 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1302 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1303 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1304 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1305 u8 min_freq; /* AKA RPn. Minimum frequency */
1306 u8 boost_freq; /* Frequency to request when wait boosting */
1307 u8 idle_freq; /* Frequency to request when we are idle */
1308 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1309 u8 rp1_freq; /* "less than" RP0 power/freqency */
1310 u8 rp0_freq; /* Non-overclocked max frequency. */
1311 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
1312
1313 u8 up_threshold; /* Current %busy required to uplock */
1314 u8 down_threshold; /* Current %busy required to downclock */
1315
1316 int last_adj;
1317 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1318
1319 bool enabled;
1320 struct delayed_work autoenable_work;
1321 atomic_t num_waiters;
1322 atomic_t boosts;
1323
1324 /* manual wa residency calculations */
1325 struct intel_rps_ei ei;
1326
1327 /*
1328 * Protects RPS/RC6 register access and PCU communication.
1329 * Must be taken after struct_mutex if nested. Note that
1330 * this lock may be held for long periods of time when
1331 * talking to hw - so only take it when talking to hw!
1332 */
1333 struct mutex hw_lock;
1334 };
1335
1336 /* defined intel_pm.c */
1337 extern spinlock_t mchdev_lock;
1338
1339 struct intel_ilk_power_mgmt {
1340 u8 cur_delay;
1341 u8 min_delay;
1342 u8 max_delay;
1343 u8 fmax;
1344 u8 fstart;
1345
1346 u64 last_count1;
1347 unsigned long last_time1;
1348 unsigned long chipset_power;
1349 u64 last_count2;
1350 u64 last_time2;
1351 unsigned long gfx_power;
1352 u8 corr;
1353
1354 int c_m;
1355 int r_t;
1356 };
1357
1358 struct drm_i915_private;
1359 struct i915_power_well;
1360
1361 struct i915_power_well_ops {
1362 /*
1363 * Synchronize the well's hw state to match the current sw state, for
1364 * example enable/disable it based on the current refcount. Called
1365 * during driver init and resume time, possibly after first calling
1366 * the enable/disable handlers.
1367 */
1368 void (*sync_hw)(struct drm_i915_private *dev_priv,
1369 struct i915_power_well *power_well);
1370 /*
1371 * Enable the well and resources that depend on it (for example
1372 * interrupts located on the well). Called after the 0->1 refcount
1373 * transition.
1374 */
1375 void (*enable)(struct drm_i915_private *dev_priv,
1376 struct i915_power_well *power_well);
1377 /*
1378 * Disable the well and resources that depend on it. Called after
1379 * the 1->0 refcount transition.
1380 */
1381 void (*disable)(struct drm_i915_private *dev_priv,
1382 struct i915_power_well *power_well);
1383 /* Returns the hw enabled state. */
1384 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1385 struct i915_power_well *power_well);
1386 };
1387
1388 /* Power well structure for haswell */
1389 struct i915_power_well {
1390 const char *name;
1391 bool always_on;
1392 /* power well enable/disable usage count */
1393 int count;
1394 /* cached hw enabled state */
1395 bool hw_enabled;
1396 u64 domains;
1397 /* unique identifier for this power well */
1398 enum i915_power_well_id id;
1399 /*
1400 * Arbitraty data associated with this power well. Platform and power
1401 * well specific.
1402 */
1403 union {
1404 struct {
1405 enum dpio_phy phy;
1406 } bxt;
1407 struct {
1408 /* Mask of pipes whose IRQ logic is backed by the pw */
1409 u8 irq_pipe_mask;
1410 /* The pw is backing the VGA functionality */
1411 bool has_vga:1;
1412 bool has_fuses:1;
1413 } hsw;
1414 };
1415 const struct i915_power_well_ops *ops;
1416 };
1417
1418 struct i915_power_domains {
1419 /*
1420 * Power wells needed for initialization at driver init and suspend
1421 * time are on. They are kept on until after the first modeset.
1422 */
1423 bool init_power_on;
1424 bool initializing;
1425 int power_well_count;
1426
1427 struct mutex lock;
1428 int domain_use_count[POWER_DOMAIN_NUM];
1429 struct i915_power_well *power_wells;
1430 };
1431
1432 #define MAX_L3_SLICES 2
1433 struct intel_l3_parity {
1434 u32 *remap_info[MAX_L3_SLICES];
1435 struct work_struct error_work;
1436 int which_slice;
1437 };
1438
1439 struct i915_gem_mm {
1440 /** Memory allocator for GTT stolen memory */
1441 struct drm_mm stolen;
1442 /** Protects the usage of the GTT stolen memory allocator. This is
1443 * always the inner lock when overlapping with struct_mutex. */
1444 struct mutex stolen_lock;
1445
1446 /** List of all objects in gtt_space. Used to restore gtt
1447 * mappings on resume */
1448 struct list_head bound_list;
1449 /**
1450 * List of objects which are not bound to the GTT (thus
1451 * are idle and not used by the GPU). These objects may or may
1452 * not actually have any pages attached.
1453 */
1454 struct list_head unbound_list;
1455
1456 /** List of all objects in gtt_space, currently mmaped by userspace.
1457 * All objects within this list must also be on bound_list.
1458 */
1459 struct list_head userfault_list;
1460
1461 /**
1462 * List of objects which are pending destruction.
1463 */
1464 struct llist_head free_list;
1465 struct work_struct free_work;
1466
1467 /** Usable portion of the GTT for GEM */
1468 dma_addr_t stolen_base; /* limited to low memory (32-bit) */
1469
1470 /** PPGTT used for aliasing the PPGTT with the GTT */
1471 struct i915_hw_ppgtt *aliasing_ppgtt;
1472
1473 struct notifier_block oom_notifier;
1474 struct notifier_block vmap_notifier;
1475 struct shrinker shrinker;
1476
1477 /** LRU list of objects with fence regs on them. */
1478 struct list_head fence_list;
1479
1480 /**
1481 * Workqueue to fault in userptr pages, flushed by the execbuf
1482 * when required but otherwise left to userspace to try again
1483 * on EAGAIN.
1484 */
1485 struct workqueue_struct *userptr_wq;
1486
1487 u64 unordered_timeline;
1488
1489 /* the indicator for dispatch video commands on two BSD rings */
1490 atomic_t bsd_engine_dispatch_index;
1491
1492 /** Bit 6 swizzling required for X tiling */
1493 uint32_t bit_6_swizzle_x;
1494 /** Bit 6 swizzling required for Y tiling */
1495 uint32_t bit_6_swizzle_y;
1496
1497 /* accounting, useful for userland debugging */
1498 spinlock_t object_stat_lock;
1499 u64 object_memory;
1500 u32 object_count;
1501 };
1502
1503 struct drm_i915_error_state_buf {
1504 struct drm_i915_private *i915;
1505 unsigned bytes;
1506 unsigned size;
1507 int err;
1508 u8 *buf;
1509 loff_t start;
1510 loff_t pos;
1511 };
1512
1513 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1514 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1515
1516 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */
1517 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */
1518
1519 struct i915_gpu_error {
1520 /* For hangcheck timer */
1521 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1522 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1523
1524 struct delayed_work hangcheck_work;
1525
1526 /* For reset and error_state handling. */
1527 spinlock_t lock;
1528 /* Protected by the above dev->gpu_error.lock. */
1529 struct i915_gpu_state *first_error;
1530
1531 unsigned long missed_irq_rings;
1532
1533 /**
1534 * State variable controlling the reset flow and count
1535 *
1536 * This is a counter which gets incremented when reset is triggered,
1537 *
1538 * Before the reset commences, the I915_RESET_BACKOFF bit is set
1539 * meaning that any waiters holding onto the struct_mutex should
1540 * relinquish the lock immediately in order for the reset to start.
1541 *
1542 * If reset is not completed succesfully, the I915_WEDGE bit is
1543 * set meaning that hardware is terminally sour and there is no
1544 * recovery. All waiters on the reset_queue will be woken when
1545 * that happens.
1546 *
1547 * This counter is used by the wait_seqno code to notice that reset
1548 * event happened and it needs to restart the entire ioctl (since most
1549 * likely the seqno it waited for won't ever signal anytime soon).
1550 *
1551 * This is important for lock-free wait paths, where no contended lock
1552 * naturally enforces the correct ordering between the bail-out of the
1553 * waiter and the gpu reset work code.
1554 */
1555 unsigned long reset_count;
1556
1557 /**
1558 * flags: Control various stages of the GPU reset
1559 *
1560 * #I915_RESET_BACKOFF - When we start a reset, we want to stop any
1561 * other users acquiring the struct_mutex. To do this we set the
1562 * #I915_RESET_BACKOFF bit in the error flags when we detect a reset
1563 * and then check for that bit before acquiring the struct_mutex (in
1564 * i915_mutex_lock_interruptible()?). I915_RESET_BACKOFF serves a
1565 * secondary role in preventing two concurrent global reset attempts.
1566 *
1567 * #I915_RESET_HANDOFF - To perform the actual GPU reset, we need the
1568 * struct_mutex. We try to acquire the struct_mutex in the reset worker,
1569 * but it may be held by some long running waiter (that we cannot
1570 * interrupt without causing trouble). Once we are ready to do the GPU
1571 * reset, we set the I915_RESET_HANDOFF bit and wakeup any waiters. If
1572 * they already hold the struct_mutex and want to participate they can
1573 * inspect the bit and do the reset directly, otherwise the worker
1574 * waits for the struct_mutex.
1575 *
1576 * #I915_RESET_ENGINE[num_engines] - Since the driver doesn't need to
1577 * acquire the struct_mutex to reset an engine, we need an explicit
1578 * flag to prevent two concurrent reset attempts in the same engine.
1579 * As the number of engines continues to grow, allocate the flags from
1580 * the most significant bits.
1581 *
1582 * #I915_WEDGED - If reset fails and we can no longer use the GPU,
1583 * we set the #I915_WEDGED bit. Prior to command submission, e.g.
1584 * i915_gem_request_alloc(), this bit is checked and the sequence
1585 * aborted (with -EIO reported to userspace) if set.
1586 */
1587 unsigned long flags;
1588 #define I915_RESET_BACKOFF 0
1589 #define I915_RESET_HANDOFF 1
1590 #define I915_WEDGED (BITS_PER_LONG - 1)
1591 #define I915_RESET_ENGINE (I915_WEDGED - I915_NUM_ENGINES)
1592
1593 /** Number of times an engine has been reset */
1594 u32 reset_engine_count[I915_NUM_ENGINES];
1595
1596 /**
1597 * Waitqueue to signal when a hang is detected. Used to for waiters
1598 * to release the struct_mutex for the reset to procede.
1599 */
1600 wait_queue_head_t wait_queue;
1601
1602 /**
1603 * Waitqueue to signal when the reset has completed. Used by clients
1604 * that wait for dev_priv->mm.wedged to settle.
1605 */
1606 wait_queue_head_t reset_queue;
1607
1608 /* For missed irq/seqno simulation. */
1609 unsigned long test_irq_rings;
1610 };
1611
1612 enum modeset_restore {
1613 MODESET_ON_LID_OPEN,
1614 MODESET_DONE,
1615 MODESET_SUSPENDED,
1616 };
1617
1618 #define DP_AUX_A 0x40
1619 #define DP_AUX_B 0x10
1620 #define DP_AUX_C 0x20
1621 #define DP_AUX_D 0x30
1622
1623 #define DDC_PIN_B 0x05
1624 #define DDC_PIN_C 0x04
1625 #define DDC_PIN_D 0x06
1626
1627 struct ddi_vbt_port_info {
1628 /*
1629 * This is an index in the HDMI/DVI DDI buffer translation table.
1630 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1631 * populate this field.
1632 */
1633 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1634 uint8_t hdmi_level_shift;
1635
1636 uint8_t supports_dvi:1;
1637 uint8_t supports_hdmi:1;
1638 uint8_t supports_dp:1;
1639 uint8_t supports_edp:1;
1640
1641 uint8_t alternate_aux_channel;
1642 uint8_t alternate_ddc_pin;
1643
1644 uint8_t dp_boost_level;
1645 uint8_t hdmi_boost_level;
1646 };
1647
1648 enum psr_lines_to_wait {
1649 PSR_0_LINES_TO_WAIT = 0,
1650 PSR_1_LINE_TO_WAIT,
1651 PSR_4_LINES_TO_WAIT,
1652 PSR_8_LINES_TO_WAIT
1653 };
1654
1655 struct intel_vbt_data {
1656 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1657 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1658
1659 /* Feature bits */
1660 unsigned int int_tv_support:1;
1661 unsigned int lvds_dither:1;
1662 unsigned int lvds_vbt:1;
1663 unsigned int int_crt_support:1;
1664 unsigned int lvds_use_ssc:1;
1665 unsigned int display_clock_mode:1;
1666 unsigned int fdi_rx_polarity_inverted:1;
1667 unsigned int panel_type:4;
1668 int lvds_ssc_freq;
1669 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1670
1671 enum drrs_support_type drrs_type;
1672
1673 struct {
1674 int rate;
1675 int lanes;
1676 int preemphasis;
1677 int vswing;
1678 bool low_vswing;
1679 bool initialized;
1680 bool support;
1681 int bpp;
1682 struct edp_power_seq pps;
1683 } edp;
1684
1685 struct {
1686 bool full_link;
1687 bool require_aux_wakeup;
1688 int idle_frames;
1689 enum psr_lines_to_wait lines_to_wait;
1690 int tp1_wakeup_time;
1691 int tp2_tp3_wakeup_time;
1692 } psr;
1693
1694 struct {
1695 u16 pwm_freq_hz;
1696 bool present;
1697 bool active_low_pwm;
1698 u8 min_brightness; /* min_brightness/255 of max */
1699 u8 controller; /* brightness controller number */
1700 enum intel_backlight_type type;
1701 } backlight;
1702
1703 /* MIPI DSI */
1704 struct {
1705 u16 panel_id;
1706 struct mipi_config *config;
1707 struct mipi_pps_data *pps;
1708 u8 seq_version;
1709 u32 size;
1710 u8 *data;
1711 const u8 *sequence[MIPI_SEQ_MAX];
1712 } dsi;
1713
1714 int crt_ddc_pin;
1715
1716 int child_dev_num;
1717 union child_device_config *child_dev;
1718
1719 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1720 struct sdvo_device_mapping sdvo_mappings[2];
1721 };
1722
1723 enum intel_ddb_partitioning {
1724 INTEL_DDB_PART_1_2,
1725 INTEL_DDB_PART_5_6, /* IVB+ */
1726 };
1727
1728 struct intel_wm_level {
1729 bool enable;
1730 uint32_t pri_val;
1731 uint32_t spr_val;
1732 uint32_t cur_val;
1733 uint32_t fbc_val;
1734 };
1735
1736 struct ilk_wm_values {
1737 uint32_t wm_pipe[3];
1738 uint32_t wm_lp[3];
1739 uint32_t wm_lp_spr[3];
1740 uint32_t wm_linetime[3];
1741 bool enable_fbc_wm;
1742 enum intel_ddb_partitioning partitioning;
1743 };
1744
1745 struct g4x_pipe_wm {
1746 uint16_t plane[I915_MAX_PLANES];
1747 uint16_t fbc;
1748 };
1749
1750 struct g4x_sr_wm {
1751 uint16_t plane;
1752 uint16_t cursor;
1753 uint16_t fbc;
1754 };
1755
1756 struct vlv_wm_ddl_values {
1757 uint8_t plane[I915_MAX_PLANES];
1758 };
1759
1760 struct vlv_wm_values {
1761 struct g4x_pipe_wm pipe[3];
1762 struct g4x_sr_wm sr;
1763 struct vlv_wm_ddl_values ddl[3];
1764 uint8_t level;
1765 bool cxsr;
1766 };
1767
1768 struct g4x_wm_values {
1769 struct g4x_pipe_wm pipe[2];
1770 struct g4x_sr_wm sr;
1771 struct g4x_sr_wm hpll;
1772 bool cxsr;
1773 bool hpll_en;
1774 bool fbc_en;
1775 };
1776
1777 struct skl_ddb_entry {
1778 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1779 };
1780
1781 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1782 {
1783 return entry->end - entry->start;
1784 }
1785
1786 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1787 const struct skl_ddb_entry *e2)
1788 {
1789 if (e1->start == e2->start && e1->end == e2->end)
1790 return true;
1791
1792 return false;
1793 }
1794
1795 struct skl_ddb_allocation {
1796 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1797 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1798 };
1799
1800 struct skl_wm_values {
1801 unsigned dirty_pipes;
1802 struct skl_ddb_allocation ddb;
1803 };
1804
1805 struct skl_wm_level {
1806 bool plane_en;
1807 uint16_t plane_res_b;
1808 uint8_t plane_res_l;
1809 };
1810
1811 /*
1812 * This struct helps tracking the state needed for runtime PM, which puts the
1813 * device in PCI D3 state. Notice that when this happens, nothing on the
1814 * graphics device works, even register access, so we don't get interrupts nor
1815 * anything else.
1816 *
1817 * Every piece of our code that needs to actually touch the hardware needs to
1818 * either call intel_runtime_pm_get or call intel_display_power_get with the
1819 * appropriate power domain.
1820 *
1821 * Our driver uses the autosuspend delay feature, which means we'll only really
1822 * suspend if we stay with zero refcount for a certain amount of time. The
1823 * default value is currently very conservative (see intel_runtime_pm_enable), but
1824 * it can be changed with the standard runtime PM files from sysfs.
1825 *
1826 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1827 * goes back to false exactly before we reenable the IRQs. We use this variable
1828 * to check if someone is trying to enable/disable IRQs while they're supposed
1829 * to be disabled. This shouldn't happen and we'll print some error messages in
1830 * case it happens.
1831 *
1832 * For more, read the Documentation/power/runtime_pm.txt.
1833 */
1834 struct i915_runtime_pm {
1835 atomic_t wakeref_count;
1836 bool suspended;
1837 bool irqs_enabled;
1838 };
1839
1840 enum intel_pipe_crc_source {
1841 INTEL_PIPE_CRC_SOURCE_NONE,
1842 INTEL_PIPE_CRC_SOURCE_PLANE1,
1843 INTEL_PIPE_CRC_SOURCE_PLANE2,
1844 INTEL_PIPE_CRC_SOURCE_PF,
1845 INTEL_PIPE_CRC_SOURCE_PIPE,
1846 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1847 INTEL_PIPE_CRC_SOURCE_TV,
1848 INTEL_PIPE_CRC_SOURCE_DP_B,
1849 INTEL_PIPE_CRC_SOURCE_DP_C,
1850 INTEL_PIPE_CRC_SOURCE_DP_D,
1851 INTEL_PIPE_CRC_SOURCE_AUTO,
1852 INTEL_PIPE_CRC_SOURCE_MAX,
1853 };
1854
1855 struct intel_pipe_crc_entry {
1856 uint32_t frame;
1857 uint32_t crc[5];
1858 };
1859
1860 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1861 struct intel_pipe_crc {
1862 spinlock_t lock;
1863 bool opened; /* exclusive access to the result file */
1864 struct intel_pipe_crc_entry *entries;
1865 enum intel_pipe_crc_source source;
1866 int head, tail;
1867 wait_queue_head_t wq;
1868 int skipped;
1869 };
1870
1871 struct i915_frontbuffer_tracking {
1872 spinlock_t lock;
1873
1874 /*
1875 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1876 * scheduled flips.
1877 */
1878 unsigned busy_bits;
1879 unsigned flip_bits;
1880 };
1881
1882 struct i915_wa_reg {
1883 i915_reg_t addr;
1884 u32 value;
1885 /* bitmask representing WA bits */
1886 u32 mask;
1887 };
1888
1889 /*
1890 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1891 * allowing it for RCS as we don't foresee any requirement of having
1892 * a whitelist for other engines. When it is really required for
1893 * other engines then the limit need to be increased.
1894 */
1895 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1896
1897 struct i915_workarounds {
1898 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1899 u32 count;
1900 u32 hw_whitelist_count[I915_NUM_ENGINES];
1901 };
1902
1903 struct i915_virtual_gpu {
1904 bool active;
1905 };
1906
1907 /* used in computing the new watermarks state */
1908 struct intel_wm_config {
1909 unsigned int num_pipes_active;
1910 bool sprites_enabled;
1911 bool sprites_scaled;
1912 };
1913
1914 struct i915_oa_format {
1915 u32 format;
1916 int size;
1917 };
1918
1919 struct i915_oa_reg {
1920 i915_reg_t addr;
1921 u32 value;
1922 };
1923
1924 struct i915_perf_stream;
1925
1926 /**
1927 * struct i915_perf_stream_ops - the OPs to support a specific stream type
1928 */
1929 struct i915_perf_stream_ops {
1930 /**
1931 * @enable: Enables the collection of HW samples, either in response to
1932 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1933 * without `I915_PERF_FLAG_DISABLED`.
1934 */
1935 void (*enable)(struct i915_perf_stream *stream);
1936
1937 /**
1938 * @disable: Disables the collection of HW samples, either in response
1939 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1940 * the stream.
1941 */
1942 void (*disable)(struct i915_perf_stream *stream);
1943
1944 /**
1945 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1946 * once there is something ready to read() for the stream
1947 */
1948 void (*poll_wait)(struct i915_perf_stream *stream,
1949 struct file *file,
1950 poll_table *wait);
1951
1952 /**
1953 * @wait_unlocked: For handling a blocking read, wait until there is
1954 * something to ready to read() for the stream. E.g. wait on the same
1955 * wait queue that would be passed to poll_wait().
1956 */
1957 int (*wait_unlocked)(struct i915_perf_stream *stream);
1958
1959 /**
1960 * @read: Copy buffered metrics as records to userspace
1961 * **buf**: the userspace, destination buffer
1962 * **count**: the number of bytes to copy, requested by userspace
1963 * **offset**: zero at the start of the read, updated as the read
1964 * proceeds, it represents how many bytes have been copied so far and
1965 * the buffer offset for copying the next record.
1966 *
1967 * Copy as many buffered i915 perf samples and records for this stream
1968 * to userspace as will fit in the given buffer.
1969 *
1970 * Only write complete records; returning -%ENOSPC if there isn't room
1971 * for a complete record.
1972 *
1973 * Return any error condition that results in a short read such as
1974 * -%ENOSPC or -%EFAULT, even though these may be squashed before
1975 * returning to userspace.
1976 */
1977 int (*read)(struct i915_perf_stream *stream,
1978 char __user *buf,
1979 size_t count,
1980 size_t *offset);
1981
1982 /**
1983 * @destroy: Cleanup any stream specific resources.
1984 *
1985 * The stream will always be disabled before this is called.
1986 */
1987 void (*destroy)(struct i915_perf_stream *stream);
1988 };
1989
1990 /**
1991 * struct i915_perf_stream - state for a single open stream FD
1992 */
1993 struct i915_perf_stream {
1994 /**
1995 * @dev_priv: i915 drm device
1996 */
1997 struct drm_i915_private *dev_priv;
1998
1999 /**
2000 * @link: Links the stream into ``&drm_i915_private->streams``
2001 */
2002 struct list_head link;
2003
2004 /**
2005 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
2006 * properties given when opening a stream, representing the contents
2007 * of a single sample as read() by userspace.
2008 */
2009 u32 sample_flags;
2010
2011 /**
2012 * @sample_size: Considering the configured contents of a sample
2013 * combined with the required header size, this is the total size
2014 * of a single sample record.
2015 */
2016 int sample_size;
2017
2018 /**
2019 * @ctx: %NULL if measuring system-wide across all contexts or a
2020 * specific context that is being monitored.
2021 */
2022 struct i915_gem_context *ctx;
2023
2024 /**
2025 * @enabled: Whether the stream is currently enabled, considering
2026 * whether the stream was opened in a disabled state and based
2027 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
2028 */
2029 bool enabled;
2030
2031 /**
2032 * @ops: The callbacks providing the implementation of this specific
2033 * type of configured stream.
2034 */
2035 const struct i915_perf_stream_ops *ops;
2036 };
2037
2038 /**
2039 * struct i915_oa_ops - Gen specific implementation of an OA unit stream
2040 */
2041 struct i915_oa_ops {
2042 /**
2043 * @init_oa_buffer: Resets the head and tail pointers of the
2044 * circular buffer for periodic OA reports.
2045 *
2046 * Called when first opening a stream for OA metrics, but also may be
2047 * called in response to an OA buffer overflow or other error
2048 * condition.
2049 *
2050 * Note it may be necessary to clear the full OA buffer here as part of
2051 * maintaining the invariable that new reports must be written to
2052 * zeroed memory for us to be able to reliable detect if an expected
2053 * report has not yet landed in memory. (At least on Haswell the OA
2054 * buffer tail pointer is not synchronized with reports being visible
2055 * to the CPU)
2056 */
2057 void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
2058
2059 /**
2060 * @select_metric_set: The auto generated code that checks whether a
2061 * requested OA config is applicable to the system and if so sets up
2062 * the mux, oa and flex eu register config pointers according to the
2063 * current dev_priv->perf.oa.metrics_set.
2064 */
2065 int (*select_metric_set)(struct drm_i915_private *dev_priv);
2066
2067 /**
2068 * @enable_metric_set: Selects and applies any MUX configuration to set
2069 * up the Boolean and Custom (B/C) counters that are part of the
2070 * counter reports being sampled. May apply system constraints such as
2071 * disabling EU clock gating as required.
2072 */
2073 int (*enable_metric_set)(struct drm_i915_private *dev_priv);
2074
2075 /**
2076 * @disable_metric_set: Remove system constraints associated with using
2077 * the OA unit.
2078 */
2079 void (*disable_metric_set)(struct drm_i915_private *dev_priv);
2080
2081 /**
2082 * @oa_enable: Enable periodic sampling
2083 */
2084 void (*oa_enable)(struct drm_i915_private *dev_priv);
2085
2086 /**
2087 * @oa_disable: Disable periodic sampling
2088 */
2089 void (*oa_disable)(struct drm_i915_private *dev_priv);
2090
2091 /**
2092 * @read: Copy data from the circular OA buffer into a given userspace
2093 * buffer.
2094 */
2095 int (*read)(struct i915_perf_stream *stream,
2096 char __user *buf,
2097 size_t count,
2098 size_t *offset);
2099
2100 /**
2101 * @oa_hw_tail_read: read the OA tail pointer register
2102 *
2103 * In particular this enables us to share all the fiddly code for
2104 * handling the OA unit tail pointer race that affects multiple
2105 * generations.
2106 */
2107 u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
2108 };
2109
2110 struct intel_cdclk_state {
2111 unsigned int cdclk, vco, ref;
2112 };
2113
2114 struct drm_i915_private {
2115 struct drm_device drm;
2116
2117 struct kmem_cache *objects;
2118 struct kmem_cache *vmas;
2119 struct kmem_cache *requests;
2120 struct kmem_cache *dependencies;
2121 struct kmem_cache *priorities;
2122
2123 const struct intel_device_info info;
2124
2125 void __iomem *regs;
2126
2127 struct intel_uncore uncore;
2128
2129 struct i915_virtual_gpu vgpu;
2130
2131 struct intel_gvt *gvt;
2132
2133 struct intel_huc huc;
2134 struct intel_guc guc;
2135
2136 struct intel_csr csr;
2137
2138 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
2139
2140 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
2141 * controller on different i2c buses. */
2142 struct mutex gmbus_mutex;
2143
2144 /**
2145 * Base address of the gmbus and gpio block.
2146 */
2147 uint32_t gpio_mmio_base;
2148
2149 /* MMIO base address for MIPI regs */
2150 uint32_t mipi_mmio_base;
2151
2152 uint32_t psr_mmio_base;
2153
2154 uint32_t pps_mmio_base;
2155
2156 wait_queue_head_t gmbus_wait_queue;
2157
2158 struct pci_dev *bridge_dev;
2159 struct i915_gem_context *kernel_context;
2160 struct intel_engine_cs *engine[I915_NUM_ENGINES];
2161 struct i915_vma *semaphore;
2162
2163 struct drm_dma_handle *status_page_dmah;
2164 struct resource mch_res;
2165
2166 /* protects the irq masks */
2167 spinlock_t irq_lock;
2168
2169 bool display_irqs_enabled;
2170
2171 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
2172 struct pm_qos_request pm_qos;
2173
2174 /* Sideband mailbox protection */
2175 struct mutex sb_lock;
2176
2177 /** Cached value of IMR to avoid reads in updating the bitfield */
2178 union {
2179 u32 irq_mask;
2180 u32 de_irq_mask[I915_MAX_PIPES];
2181 };
2182 u32 gt_irq_mask;
2183 u32 pm_imr;
2184 u32 pm_ier;
2185 u32 pm_rps_events;
2186 u32 pm_guc_events;
2187 u32 pipestat_irq_mask[I915_MAX_PIPES];
2188
2189 struct i915_hotplug hotplug;
2190 struct intel_fbc fbc;
2191 struct i915_drrs drrs;
2192 struct intel_opregion opregion;
2193 struct intel_vbt_data vbt;
2194
2195 bool preserve_bios_swizzle;
2196
2197 /* overlay */
2198 struct intel_overlay *overlay;
2199
2200 /* backlight registers and fields in struct intel_panel */
2201 struct mutex backlight_lock;
2202
2203 /* LVDS info */
2204 bool no_aux_handshake;
2205
2206 /* protects panel power sequencer state */
2207 struct mutex pps_mutex;
2208
2209 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
2210 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
2211
2212 unsigned int fsb_freq, mem_freq, is_ddr3;
2213 unsigned int skl_preferred_vco_freq;
2214 unsigned int max_cdclk_freq;
2215
2216 unsigned int max_dotclk_freq;
2217 unsigned int rawclk_freq;
2218 unsigned int hpll_freq;
2219 unsigned int czclk_freq;
2220
2221 struct {
2222 /*
2223 * The current logical cdclk state.
2224 * See intel_atomic_state.cdclk.logical
2225 *
2226 * For reading holding any crtc lock is sufficient,
2227 * for writing must hold all of them.
2228 */
2229 struct intel_cdclk_state logical;
2230 /*
2231 * The current actual cdclk state.
2232 * See intel_atomic_state.cdclk.actual
2233 */
2234 struct intel_cdclk_state actual;
2235 /* The current hardware cdclk state */
2236 struct intel_cdclk_state hw;
2237 } cdclk;
2238
2239 /**
2240 * wq - Driver workqueue for GEM.
2241 *
2242 * NOTE: Work items scheduled here are not allowed to grab any modeset
2243 * locks, for otherwise the flushing done in the pageflip code will
2244 * result in deadlocks.
2245 */
2246 struct workqueue_struct *wq;
2247
2248 /* Display functions */
2249 struct drm_i915_display_funcs display;
2250
2251 /* PCH chipset type */
2252 enum intel_pch pch_type;
2253 unsigned short pch_id;
2254
2255 unsigned long quirks;
2256
2257 enum modeset_restore modeset_restore;
2258 struct mutex modeset_restore_lock;
2259 struct drm_atomic_state *modeset_restore_state;
2260 struct drm_modeset_acquire_ctx reset_ctx;
2261
2262 struct list_head vm_list; /* Global list of all address spaces */
2263 struct i915_ggtt ggtt; /* VM representing the global address space */
2264
2265 struct i915_gem_mm mm;
2266 DECLARE_HASHTABLE(mm_structs, 7);
2267 struct mutex mm_lock;
2268
2269 /* Kernel Modesetting */
2270
2271 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
2272 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
2273
2274 #ifdef CONFIG_DEBUG_FS
2275 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
2276 #endif
2277
2278 /* dpll and cdclk state is protected by connection_mutex */
2279 int num_shared_dpll;
2280 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
2281 const struct intel_dpll_mgr *dpll_mgr;
2282
2283 /*
2284 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
2285 * Must be global rather than per dpll, because on some platforms
2286 * plls share registers.
2287 */
2288 struct mutex dpll_lock;
2289
2290 unsigned int active_crtcs;
2291 unsigned int min_pixclk[I915_MAX_PIPES];
2292
2293 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
2294
2295 struct i915_workarounds workarounds;
2296
2297 struct i915_frontbuffer_tracking fb_tracking;
2298
2299 struct intel_atomic_helper {
2300 struct llist_head free_list;
2301 struct work_struct free_work;
2302 } atomic_helper;
2303
2304 u16 orig_clock;
2305
2306 bool mchbar_need_disable;
2307
2308 struct intel_l3_parity l3_parity;
2309
2310 /* Cannot be determined by PCIID. You must always read a register. */
2311 u32 edram_cap;
2312
2313 /* gen6+ rps state */
2314 struct intel_gen6_power_mgmt rps;
2315
2316 /* ilk-only ips/rps state. Everything in here is protected by the global
2317 * mchdev_lock in intel_pm.c */
2318 struct intel_ilk_power_mgmt ips;
2319
2320 struct i915_power_domains power_domains;
2321
2322 struct i915_psr psr;
2323
2324 struct i915_gpu_error gpu_error;
2325
2326 struct drm_i915_gem_object *vlv_pctx;
2327
2328 /* list of fbdev register on this device */
2329 struct intel_fbdev *fbdev;
2330 struct work_struct fbdev_suspend_work;
2331
2332 struct drm_property *broadcast_rgb_property;
2333 struct drm_property *force_audio_property;
2334
2335 /* hda/i915 audio component */
2336 struct i915_audio_component *audio_component;
2337 bool audio_component_registered;
2338 /**
2339 * av_mutex - mutex for audio/video sync
2340 *
2341 */
2342 struct mutex av_mutex;
2343
2344 struct {
2345 struct list_head list;
2346 struct llist_head free_list;
2347 struct work_struct free_work;
2348
2349 /* The hw wants to have a stable context identifier for the
2350 * lifetime of the context (for OA, PASID, faults, etc).
2351 * This is limited in execlists to 21 bits.
2352 */
2353 struct ida hw_ida;
2354 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
2355 } contexts;
2356
2357 u32 fdi_rx_config;
2358
2359 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
2360 u32 chv_phy_control;
2361 /*
2362 * Shadows for CHV DPLL_MD regs to keep the state
2363 * checker somewhat working in the presence hardware
2364 * crappiness (can't read out DPLL_MD for pipes B & C).
2365 */
2366 u32 chv_dpll_md[I915_MAX_PIPES];
2367 u32 bxt_phy_grc;
2368
2369 u32 suspend_count;
2370 bool suspended_to_idle;
2371 struct i915_suspend_saved_registers regfile;
2372 struct vlv_s0ix_state vlv_s0ix_state;
2373
2374 enum {
2375 I915_SAGV_UNKNOWN = 0,
2376 I915_SAGV_DISABLED,
2377 I915_SAGV_ENABLED,
2378 I915_SAGV_NOT_CONTROLLED
2379 } sagv_status;
2380
2381 struct {
2382 /*
2383 * Raw watermark latency values:
2384 * in 0.1us units for WM0,
2385 * in 0.5us units for WM1+.
2386 */
2387 /* primary */
2388 uint16_t pri_latency[5];
2389 /* sprite */
2390 uint16_t spr_latency[5];
2391 /* cursor */
2392 uint16_t cur_latency[5];
2393 /*
2394 * Raw watermark memory latency values
2395 * for SKL for all 8 levels
2396 * in 1us units.
2397 */
2398 uint16_t skl_latency[8];
2399
2400 /* current hardware state */
2401 union {
2402 struct ilk_wm_values hw;
2403 struct skl_wm_values skl_hw;
2404 struct vlv_wm_values vlv;
2405 struct g4x_wm_values g4x;
2406 };
2407
2408 uint8_t max_level;
2409
2410 /*
2411 * Should be held around atomic WM register writing; also
2412 * protects * intel_crtc->wm.active and
2413 * cstate->wm.need_postvbl_update.
2414 */
2415 struct mutex wm_mutex;
2416
2417 /*
2418 * Set during HW readout of watermarks/DDB. Some platforms
2419 * need to know when we're still using BIOS-provided values
2420 * (which we don't fully trust).
2421 */
2422 bool distrust_bios_wm;
2423 } wm;
2424
2425 struct i915_runtime_pm pm;
2426
2427 struct {
2428 bool initialized;
2429
2430 struct kobject *metrics_kobj;
2431 struct ctl_table_header *sysctl_header;
2432
2433 struct mutex lock;
2434 struct list_head streams;
2435
2436 struct {
2437 struct i915_perf_stream *exclusive_stream;
2438
2439 u32 specific_ctx_id;
2440
2441 struct hrtimer poll_check_timer;
2442 wait_queue_head_t poll_wq;
2443 bool pollin;
2444
2445 /**
2446 * For rate limiting any notifications of spurious
2447 * invalid OA reports
2448 */
2449 struct ratelimit_state spurious_report_rs;
2450
2451 bool periodic;
2452 int period_exponent;
2453 int timestamp_frequency;
2454
2455 int metrics_set;
2456
2457 const struct i915_oa_reg *mux_regs[6];
2458 int mux_regs_lens[6];
2459 int n_mux_configs;
2460
2461 const struct i915_oa_reg *b_counter_regs;
2462 int b_counter_regs_len;
2463 const struct i915_oa_reg *flex_regs;
2464 int flex_regs_len;
2465
2466 struct {
2467 struct i915_vma *vma;
2468 u8 *vaddr;
2469 u32 last_ctx_id;
2470 int format;
2471 int format_size;
2472
2473 /**
2474 * Locks reads and writes to all head/tail state
2475 *
2476 * Consider: the head and tail pointer state
2477 * needs to be read consistently from a hrtimer
2478 * callback (atomic context) and read() fop
2479 * (user context) with tail pointer updates
2480 * happening in atomic context and head updates
2481 * in user context and the (unlikely)
2482 * possibility of read() errors needing to
2483 * reset all head/tail state.
2484 *
2485 * Note: Contention or performance aren't
2486 * currently a significant concern here
2487 * considering the relatively low frequency of
2488 * hrtimer callbacks (5ms period) and that
2489 * reads typically only happen in response to a
2490 * hrtimer event and likely complete before the
2491 * next callback.
2492 *
2493 * Note: This lock is not held *while* reading
2494 * and copying data to userspace so the value
2495 * of head observed in htrimer callbacks won't
2496 * represent any partial consumption of data.
2497 */
2498 spinlock_t ptr_lock;
2499
2500 /**
2501 * One 'aging' tail pointer and one 'aged'
2502 * tail pointer ready to used for reading.
2503 *
2504 * Initial values of 0xffffffff are invalid
2505 * and imply that an update is required
2506 * (and should be ignored by an attempted
2507 * read)
2508 */
2509 struct {
2510 u32 offset;
2511 } tails[2];
2512
2513 /**
2514 * Index for the aged tail ready to read()
2515 * data up to.
2516 */
2517 unsigned int aged_tail_idx;
2518
2519 /**
2520 * A monotonic timestamp for when the current
2521 * aging tail pointer was read; used to
2522 * determine when it is old enough to trust.
2523 */
2524 u64 aging_timestamp;
2525
2526 /**
2527 * Although we can always read back the head
2528 * pointer register, we prefer to avoid
2529 * trusting the HW state, just to avoid any
2530 * risk that some hardware condition could
2531 * somehow bump the head pointer unpredictably
2532 * and cause us to forward the wrong OA buffer
2533 * data to userspace.
2534 */
2535 u32 head;
2536 } oa_buffer;
2537
2538 u32 gen7_latched_oastatus1;
2539 u32 ctx_oactxctrl_offset;
2540 u32 ctx_flexeu0_offset;
2541
2542 /**
2543 * The RPT_ID/reason field for Gen8+ includes a bit
2544 * to determine if the CTX ID in the report is valid
2545 * but the specific bit differs between Gen 8 and 9
2546 */
2547 u32 gen8_valid_ctx_bit;
2548
2549 struct i915_oa_ops ops;
2550 const struct i915_oa_format *oa_formats;
2551 int n_builtin_sets;
2552 } oa;
2553 } perf;
2554
2555 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2556 struct {
2557 void (*resume)(struct drm_i915_private *);
2558 void (*cleanup_engine)(struct intel_engine_cs *engine);
2559
2560 struct list_head timelines;
2561 struct i915_gem_timeline global_timeline;
2562 u32 active_requests;
2563
2564 /**
2565 * Is the GPU currently considered idle, or busy executing
2566 * userspace requests? Whilst idle, we allow runtime power
2567 * management to power down the hardware and display clocks.
2568 * In order to reduce the effect on performance, there
2569 * is a slight delay before we do so.
2570 */
2571 bool awake;
2572
2573 /**
2574 * We leave the user IRQ off as much as possible,
2575 * but this means that requests will finish and never
2576 * be retired once the system goes idle. Set a timer to
2577 * fire periodically while the ring is running. When it
2578 * fires, go retire requests.
2579 */
2580 struct delayed_work retire_work;
2581
2582 /**
2583 * When we detect an idle GPU, we want to turn on
2584 * powersaving features. So once we see that there
2585 * are no more requests outstanding and no more
2586 * arrive within a small period of time, we fire
2587 * off the idle_work.
2588 */
2589 struct delayed_work idle_work;
2590
2591 ktime_t last_init_time;
2592 } gt;
2593
2594 /* perform PHY state sanity checks? */
2595 bool chv_phy_assert[2];
2596
2597 bool ipc_enabled;
2598
2599 /* Used to save the pipe-to-encoder mapping for audio */
2600 struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2601
2602 /* necessary resource sharing with HDMI LPE audio driver. */
2603 struct {
2604 struct platform_device *platdev;
2605 int irq;
2606 } lpe_audio;
2607
2608 /*
2609 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2610 * will be rejected. Instead look for a better place.
2611 */
2612 };
2613
2614 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2615 {
2616 return container_of(dev, struct drm_i915_private, drm);
2617 }
2618
2619 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2620 {
2621 return to_i915(dev_get_drvdata(kdev));
2622 }
2623
2624 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2625 {
2626 return container_of(guc, struct drm_i915_private, guc);
2627 }
2628
2629 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2630 {
2631 return container_of(huc, struct drm_i915_private, huc);
2632 }
2633
2634 /* Simple iterator over all initialised engines */
2635 #define for_each_engine(engine__, dev_priv__, id__) \
2636 for ((id__) = 0; \
2637 (id__) < I915_NUM_ENGINES; \
2638 (id__)++) \
2639 for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2640
2641 /* Iterator over subset of engines selected by mask */
2642 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2643 for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask; \
2644 tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2645
2646 enum hdmi_force_audio {
2647 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2648 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2649 HDMI_AUDIO_AUTO, /* trust EDID */
2650 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2651 };
2652
2653 #define I915_GTT_OFFSET_NONE ((u32)-1)
2654
2655 /*
2656 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2657 * considered to be the frontbuffer for the given plane interface-wise. This
2658 * doesn't mean that the hw necessarily already scans it out, but that any
2659 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2660 *
2661 * We have one bit per pipe and per scanout plane type.
2662 */
2663 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2664 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2665 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2666 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2667 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2668 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2669 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2670 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2671 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2672 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2673 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2674 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2675
2676 /*
2677 * Optimised SGL iterator for GEM objects
2678 */
2679 static __always_inline struct sgt_iter {
2680 struct scatterlist *sgp;
2681 union {
2682 unsigned long pfn;
2683 dma_addr_t dma;
2684 };
2685 unsigned int curr;
2686 unsigned int max;
2687 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2688 struct sgt_iter s = { .sgp = sgl };
2689
2690 if (s.sgp) {
2691 s.max = s.curr = s.sgp->offset;
2692 s.max += s.sgp->length;
2693 if (dma)
2694 s.dma = sg_dma_address(s.sgp);
2695 else
2696 s.pfn = page_to_pfn(sg_page(s.sgp));
2697 }
2698
2699 return s;
2700 }
2701
2702 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2703 {
2704 ++sg;
2705 if (unlikely(sg_is_chain(sg)))
2706 sg = sg_chain_ptr(sg);
2707 return sg;
2708 }
2709
2710 /**
2711 * __sg_next - return the next scatterlist entry in a list
2712 * @sg: The current sg entry
2713 *
2714 * Description:
2715 * If the entry is the last, return NULL; otherwise, step to the next
2716 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2717 * otherwise just return the pointer to the current element.
2718 **/
2719 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2720 {
2721 #ifdef CONFIG_DEBUG_SG
2722 BUG_ON(sg->sg_magic != SG_MAGIC);
2723 #endif
2724 return sg_is_last(sg) ? NULL : ____sg_next(sg);
2725 }
2726
2727 /**
2728 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2729 * @__dmap: DMA address (output)
2730 * @__iter: 'struct sgt_iter' (iterator state, internal)
2731 * @__sgt: sg_table to iterate over (input)
2732 */
2733 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2734 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2735 ((__dmap) = (__iter).dma + (__iter).curr); \
2736 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2737 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2738
2739 /**
2740 * for_each_sgt_page - iterate over the pages of the given sg_table
2741 * @__pp: page pointer (output)
2742 * @__iter: 'struct sgt_iter' (iterator state, internal)
2743 * @__sgt: sg_table to iterate over (input)
2744 */
2745 #define for_each_sgt_page(__pp, __iter, __sgt) \
2746 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2747 ((__pp) = (__iter).pfn == 0 ? NULL : \
2748 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2749 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2750 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2751
2752 static inline const struct intel_device_info *
2753 intel_info(const struct drm_i915_private *dev_priv)
2754 {
2755 return &dev_priv->info;
2756 }
2757
2758 #define INTEL_INFO(dev_priv) intel_info((dev_priv))
2759
2760 #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen)
2761 #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id)
2762
2763 #define REVID_FOREVER 0xff
2764 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision)
2765
2766 #define GEN_FOREVER (0)
2767 /*
2768 * Returns true if Gen is in inclusive range [Start, End].
2769 *
2770 * Use GEN_FOREVER for unbound start and or end.
2771 */
2772 #define IS_GEN(dev_priv, s, e) ({ \
2773 unsigned int __s = (s), __e = (e); \
2774 BUILD_BUG_ON(!__builtin_constant_p(s)); \
2775 BUILD_BUG_ON(!__builtin_constant_p(e)); \
2776 if ((__s) != GEN_FOREVER) \
2777 __s = (s) - 1; \
2778 if ((__e) == GEN_FOREVER) \
2779 __e = BITS_PER_LONG - 1; \
2780 else \
2781 __e = (e) - 1; \
2782 !!((dev_priv)->info.gen_mask & GENMASK((__e), (__s))); \
2783 })
2784
2785 /*
2786 * Return true if revision is in range [since,until] inclusive.
2787 *
2788 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2789 */
2790 #define IS_REVID(p, since, until) \
2791 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2792
2793 #define IS_I830(dev_priv) ((dev_priv)->info.platform == INTEL_I830)
2794 #define IS_I845G(dev_priv) ((dev_priv)->info.platform == INTEL_I845G)
2795 #define IS_I85X(dev_priv) ((dev_priv)->info.platform == INTEL_I85X)
2796 #define IS_I865G(dev_priv) ((dev_priv)->info.platform == INTEL_I865G)
2797 #define IS_I915G(dev_priv) ((dev_priv)->info.platform == INTEL_I915G)
2798 #define IS_I915GM(dev_priv) ((dev_priv)->info.platform == INTEL_I915GM)
2799 #define IS_I945G(dev_priv) ((dev_priv)->info.platform == INTEL_I945G)
2800 #define IS_I945GM(dev_priv) ((dev_priv)->info.platform == INTEL_I945GM)
2801 #define IS_I965G(dev_priv) ((dev_priv)->info.platform == INTEL_I965G)
2802 #define IS_I965GM(dev_priv) ((dev_priv)->info.platform == INTEL_I965GM)
2803 #define IS_G45(dev_priv) ((dev_priv)->info.platform == INTEL_G45)
2804 #define IS_GM45(dev_priv) ((dev_priv)->info.platform == INTEL_GM45)
2805 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv))
2806 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001)
2807 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011)
2808 #define IS_PINEVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_PINEVIEW)
2809 #define IS_G33(dev_priv) ((dev_priv)->info.platform == INTEL_G33)
2810 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046)
2811 #define IS_IVYBRIDGE(dev_priv) ((dev_priv)->info.platform == INTEL_IVYBRIDGE)
2812 #define IS_IVB_GT1(dev_priv) (INTEL_DEVID(dev_priv) == 0x0156 || \
2813 INTEL_DEVID(dev_priv) == 0x0152 || \
2814 INTEL_DEVID(dev_priv) == 0x015a)
2815 #define IS_VALLEYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_VALLEYVIEW)
2816 #define IS_CHERRYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_CHERRYVIEW)
2817 #define IS_HASWELL(dev_priv) ((dev_priv)->info.platform == INTEL_HASWELL)
2818 #define IS_BROADWELL(dev_priv) ((dev_priv)->info.platform == INTEL_BROADWELL)
2819 #define IS_SKYLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_SKYLAKE)
2820 #define IS_BROXTON(dev_priv) ((dev_priv)->info.platform == INTEL_BROXTON)
2821 #define IS_KABYLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_KABYLAKE)
2822 #define IS_GEMINILAKE(dev_priv) ((dev_priv)->info.platform == INTEL_GEMINILAKE)
2823 #define IS_COFFEELAKE(dev_priv) ((dev_priv)->info.platform == INTEL_COFFEELAKE)
2824 #define IS_CANNONLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_CANNONLAKE)
2825 #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile)
2826 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2827 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2828 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \
2829 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \
2830 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \
2831 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2832 /* ULX machines are also considered ULT. */
2833 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \
2834 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2835 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \
2836 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2837 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \
2838 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2839 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \
2840 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2841 /* ULX machines are also considered ULT. */
2842 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \
2843 INTEL_DEVID(dev_priv) == 0x0A1E)
2844 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \
2845 INTEL_DEVID(dev_priv) == 0x1913 || \
2846 INTEL_DEVID(dev_priv) == 0x1916 || \
2847 INTEL_DEVID(dev_priv) == 0x1921 || \
2848 INTEL_DEVID(dev_priv) == 0x1926)
2849 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \
2850 INTEL_DEVID(dev_priv) == 0x1915 || \
2851 INTEL_DEVID(dev_priv) == 0x191E)
2852 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \
2853 INTEL_DEVID(dev_priv) == 0x5913 || \
2854 INTEL_DEVID(dev_priv) == 0x5916 || \
2855 INTEL_DEVID(dev_priv) == 0x5921 || \
2856 INTEL_DEVID(dev_priv) == 0x5926)
2857 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \
2858 INTEL_DEVID(dev_priv) == 0x5915 || \
2859 INTEL_DEVID(dev_priv) == 0x591E)
2860 #define IS_SKL_GT2(dev_priv) (IS_SKYLAKE(dev_priv) && \
2861 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0010)
2862 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \
2863 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2864 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \
2865 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0030)
2866 #define IS_KBL_GT2(dev_priv) (IS_KABYLAKE(dev_priv) && \
2867 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0010)
2868 #define IS_KBL_GT3(dev_priv) (IS_KABYLAKE(dev_priv) && \
2869 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2870 #define IS_CFL_ULT(dev_priv) (IS_COFFEELAKE(dev_priv) && \
2871 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2872
2873 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2874
2875 #define SKL_REVID_A0 0x0
2876 #define SKL_REVID_B0 0x1
2877 #define SKL_REVID_C0 0x2
2878 #define SKL_REVID_D0 0x3
2879 #define SKL_REVID_E0 0x4
2880 #define SKL_REVID_F0 0x5
2881 #define SKL_REVID_G0 0x6
2882 #define SKL_REVID_H0 0x7
2883
2884 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2885
2886 #define BXT_REVID_A0 0x0
2887 #define BXT_REVID_A1 0x1
2888 #define BXT_REVID_B0 0x3
2889 #define BXT_REVID_B_LAST 0x8
2890 #define BXT_REVID_C0 0x9
2891
2892 #define IS_BXT_REVID(dev_priv, since, until) \
2893 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2894
2895 #define KBL_REVID_A0 0x0
2896 #define KBL_REVID_B0 0x1
2897 #define KBL_REVID_C0 0x2
2898 #define KBL_REVID_D0 0x3
2899 #define KBL_REVID_E0 0x4
2900
2901 #define IS_KBL_REVID(dev_priv, since, until) \
2902 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2903
2904 #define GLK_REVID_A0 0x0
2905 #define GLK_REVID_A1 0x1
2906
2907 #define IS_GLK_REVID(dev_priv, since, until) \
2908 (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2909
2910 #define CNL_REVID_A0 0x0
2911 #define CNL_REVID_B0 0x1
2912
2913 #define IS_CNL_REVID(p, since, until) \
2914 (IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2915
2916 /*
2917 * The genX designation typically refers to the render engine, so render
2918 * capability related checks should use IS_GEN, while display and other checks
2919 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2920 * chips, etc.).
2921 */
2922 #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1)))
2923 #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2)))
2924 #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3)))
2925 #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4)))
2926 #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5)))
2927 #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6)))
2928 #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7)))
2929 #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8)))
2930 #define IS_GEN10(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(9)))
2931
2932 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp)
2933 #define IS_GEN9_LP(dev_priv) (IS_GEN9(dev_priv) && IS_LP(dev_priv))
2934 #define IS_GEN9_BC(dev_priv) (IS_GEN9(dev_priv) && !IS_LP(dev_priv))
2935
2936 #define ENGINE_MASK(id) BIT(id)
2937 #define RENDER_RING ENGINE_MASK(RCS)
2938 #define BSD_RING ENGINE_MASK(VCS)
2939 #define BLT_RING ENGINE_MASK(BCS)
2940 #define VEBOX_RING ENGINE_MASK(VECS)
2941 #define BSD2_RING ENGINE_MASK(VCS2)
2942 #define ALL_ENGINES (~0)
2943
2944 #define HAS_ENGINE(dev_priv, id) \
2945 (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
2946
2947 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
2948 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
2949 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
2950 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
2951
2952 #define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc)
2953 #define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop)
2954 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED))
2955 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \
2956 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
2957
2958 #define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical)
2959
2960 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
2961 ((dev_priv)->info.has_logical_ring_contexts)
2962 #define USES_PPGTT(dev_priv) (i915.enable_ppgtt)
2963 #define USES_FULL_PPGTT(dev_priv) (i915.enable_ppgtt >= 2)
2964 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915.enable_ppgtt == 3)
2965
2966 #define HAS_OVERLAY(dev_priv) ((dev_priv)->info.has_overlay)
2967 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
2968 ((dev_priv)->info.overlay_needs_physical)
2969
2970 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2971 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv))
2972
2973 /* WaRsDisableCoarsePowerGating:skl,bxt */
2974 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2975 (IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
2976
2977 /*
2978 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2979 * even when in MSI mode. This results in spurious interrupt warnings if the
2980 * legacy irq no. is shared with another device. The kernel then disables that
2981 * interrupt source and so prevents the other device from working properly.
2982 */
2983 #define HAS_AUX_IRQ(dev_priv) ((dev_priv)->info.gen >= 5)
2984 #define HAS_GMBUS_IRQ(dev_priv) ((dev_priv)->info.has_gmbus_irq)
2985
2986 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2987 * rows, which changed the alignment requirements and fence programming.
2988 */
2989 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
2990 !(IS_I915G(dev_priv) || \
2991 IS_I915GM(dev_priv)))
2992 #define SUPPORTS_TV(dev_priv) ((dev_priv)->info.supports_tv)
2993 #define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.has_hotplug)
2994
2995 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2)
2996 #define HAS_PIPE_CXSR(dev_priv) ((dev_priv)->info.has_pipe_cxsr)
2997 #define HAS_FBC(dev_priv) ((dev_priv)->info.has_fbc)
2998 #define HAS_CUR_FBC(dev_priv) (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_INFO(dev_priv)->gen >= 7)
2999
3000 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
3001
3002 #define HAS_DP_MST(dev_priv) ((dev_priv)->info.has_dp_mst)
3003
3004 #define HAS_DDI(dev_priv) ((dev_priv)->info.has_ddi)
3005 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
3006 #define HAS_PSR(dev_priv) ((dev_priv)->info.has_psr)
3007 #define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6)
3008 #define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p)
3009
3010 #define HAS_CSR(dev_priv) ((dev_priv)->info.has_csr)
3011
3012 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
3013 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
3014
3015 /*
3016 * For now, anything with a GuC requires uCode loading, and then supports
3017 * command submission once loaded. But these are logically independent
3018 * properties, so we have separate macros to test them.
3019 */
3020 #define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc)
3021 #define HAS_GUC_CT(dev_priv) ((dev_priv)->info.has_guc_ct)
3022 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3023 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv))
3024 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3025
3026 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
3027
3028 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu)
3029
3030 #define INTEL_PCH_DEVICE_ID_MASK 0xff80
3031 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
3032 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
3033 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
3034 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
3035 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
3036 #define INTEL_PCH_WPT_DEVICE_ID_TYPE 0x8c80
3037 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE 0x9c80
3038 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
3039 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
3040 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA280
3041 #define INTEL_PCH_CNP_DEVICE_ID_TYPE 0xA300
3042 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE 0x9D80
3043 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
3044 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
3045 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
3046
3047 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
3048 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
3049 #define HAS_PCH_CNP_LP(dev_priv) \
3050 ((dev_priv)->pch_id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
3051 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
3052 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
3053 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
3054 #define HAS_PCH_LPT_LP(dev_priv) \
3055 ((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
3056 (dev_priv)->pch_id == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
3057 #define HAS_PCH_LPT_H(dev_priv) \
3058 ((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
3059 (dev_priv)->pch_id == INTEL_PCH_WPT_DEVICE_ID_TYPE)
3060 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
3061 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
3062 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
3063 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
3064
3065 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
3066
3067 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
3068
3069 /* DPF == dynamic parity feature */
3070 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
3071 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
3072 2 : HAS_L3_DPF(dev_priv))
3073
3074 #define GT_FREQUENCY_MULTIPLIER 50
3075 #define GEN9_FREQ_SCALER 3
3076
3077 #include "i915_trace.h"
3078
3079 static inline bool intel_vtd_active(void)
3080 {
3081 #ifdef CONFIG_INTEL_IOMMU
3082 if (intel_iommu_gfx_mapped)
3083 return true;
3084 #endif
3085 return false;
3086 }
3087
3088 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
3089 {
3090 return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
3091 }
3092
3093 static inline bool
3094 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
3095 {
3096 return IS_BROXTON(dev_priv) && intel_vtd_active();
3097 }
3098
3099 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
3100 int enable_ppgtt);
3101
3102 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
3103
3104 /* i915_drv.c */
3105 void __printf(3, 4)
3106 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
3107 const char *fmt, ...);
3108
3109 #define i915_report_error(dev_priv, fmt, ...) \
3110 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
3111
3112 #ifdef CONFIG_COMPAT
3113 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
3114 unsigned long arg);
3115 #else
3116 #define i915_compat_ioctl NULL
3117 #endif
3118 extern const struct dev_pm_ops i915_pm_ops;
3119
3120 extern int i915_driver_load(struct pci_dev *pdev,
3121 const struct pci_device_id *ent);
3122 extern void i915_driver_unload(struct drm_device *dev);
3123 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
3124 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
3125
3126 #define I915_RESET_QUIET BIT(0)
3127 extern void i915_reset(struct drm_i915_private *i915, unsigned int flags);
3128 extern int i915_reset_engine(struct intel_engine_cs *engine,
3129 unsigned int flags);
3130
3131 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
3132 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
3133 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
3134 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
3135 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
3136 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
3137 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
3138 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
3139 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
3140
3141 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
3142 int intel_engines_init(struct drm_i915_private *dev_priv);
3143
3144 /* intel_hotplug.c */
3145 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
3146 u32 pin_mask, u32 long_mask);
3147 void intel_hpd_init(struct drm_i915_private *dev_priv);
3148 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
3149 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
3150 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
3151 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3152 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3153
3154 /* i915_irq.c */
3155 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
3156 {
3157 unsigned long delay;
3158
3159 if (unlikely(!i915.enable_hangcheck))
3160 return;
3161
3162 /* Don't continually defer the hangcheck so that it is always run at
3163 * least once after work has been scheduled on any ring. Otherwise,
3164 * we will ignore a hung ring if a second ring is kept busy.
3165 */
3166
3167 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
3168 queue_delayed_work(system_long_wq,
3169 &dev_priv->gpu_error.hangcheck_work, delay);
3170 }
3171
3172 __printf(3, 4)
3173 void i915_handle_error(struct drm_i915_private *dev_priv,
3174 u32 engine_mask,
3175 const char *fmt, ...);
3176
3177 extern void intel_irq_init(struct drm_i915_private *dev_priv);
3178 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
3179 int intel_irq_install(struct drm_i915_private *dev_priv);
3180 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
3181
3182 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3183 {
3184 return dev_priv->gvt;
3185 }
3186
3187 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3188 {
3189 return dev_priv->vgpu.active;
3190 }
3191
3192 void
3193 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3194 u32 status_mask);
3195
3196 void
3197 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3198 u32 status_mask);
3199
3200 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3201 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3202 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3203 uint32_t mask,
3204 uint32_t bits);
3205 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3206 uint32_t interrupt_mask,
3207 uint32_t enabled_irq_mask);
3208 static inline void
3209 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3210 {
3211 ilk_update_display_irq(dev_priv, bits, bits);
3212 }
3213 static inline void
3214 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3215 {
3216 ilk_update_display_irq(dev_priv, bits, 0);
3217 }
3218 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3219 enum pipe pipe,
3220 uint32_t interrupt_mask,
3221 uint32_t enabled_irq_mask);
3222 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3223 enum pipe pipe, uint32_t bits)
3224 {
3225 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3226 }
3227 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3228 enum pipe pipe, uint32_t bits)
3229 {
3230 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3231 }
3232 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3233 uint32_t interrupt_mask,
3234 uint32_t enabled_irq_mask);
3235 static inline void
3236 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3237 {
3238 ibx_display_interrupt_update(dev_priv, bits, bits);
3239 }
3240 static inline void
3241 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3242 {
3243 ibx_display_interrupt_update(dev_priv, bits, 0);
3244 }
3245
3246 /* i915_gem.c */
3247 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3248 struct drm_file *file_priv);
3249 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3250 struct drm_file *file_priv);
3251 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3252 struct drm_file *file_priv);
3253 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3254 struct drm_file *file_priv);
3255 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3256 struct drm_file *file_priv);
3257 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3258 struct drm_file *file_priv);
3259 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3260 struct drm_file *file_priv);
3261 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3262 struct drm_file *file_priv);
3263 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3264 struct drm_file *file_priv);
3265 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3266 struct drm_file *file_priv);
3267 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3268 struct drm_file *file);
3269 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3270 struct drm_file *file);
3271 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3272 struct drm_file *file_priv);
3273 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3274 struct drm_file *file_priv);
3275 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
3276 struct drm_file *file_priv);
3277 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
3278 struct drm_file *file_priv);
3279 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3280 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
3281 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3282 struct drm_file *file);
3283 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3284 struct drm_file *file_priv);
3285 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3286 struct drm_file *file_priv);
3287 void i915_gem_sanitize(struct drm_i915_private *i915);
3288 int i915_gem_load_init(struct drm_i915_private *dev_priv);
3289 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv);
3290 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3291 int i915_gem_freeze(struct drm_i915_private *dev_priv);
3292 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3293
3294 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
3295 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3296 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3297 const struct drm_i915_gem_object_ops *ops);
3298 struct drm_i915_gem_object *
3299 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
3300 struct drm_i915_gem_object *
3301 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
3302 const void *data, size_t size);
3303 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3304 void i915_gem_free_object(struct drm_gem_object *obj);
3305
3306 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
3307 {
3308 /* A single pass should suffice to release all the freed objects (along
3309 * most call paths) , but be a little more paranoid in that freeing
3310 * the objects does take a little amount of time, during which the rcu
3311 * callbacks could have added new objects into the freed list, and
3312 * armed the work again.
3313 */
3314 do {
3315 rcu_barrier();
3316 } while (flush_work(&i915->mm.free_work));
3317 }
3318
3319 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
3320 {
3321 /*
3322 * Similar to objects above (see i915_gem_drain_freed-objects), in
3323 * general we have workers that are armed by RCU and then rearm
3324 * themselves in their callbacks. To be paranoid, we need to
3325 * drain the workqueue a second time after waiting for the RCU
3326 * grace period so that we catch work queued via RCU from the first
3327 * pass. As neither drain_workqueue() nor flush_workqueue() report
3328 * a result, we make an assumption that we only don't require more
3329 * than 2 passes to catch all recursive RCU delayed work.
3330 *
3331 */
3332 int pass = 2;
3333 do {
3334 rcu_barrier();
3335 drain_workqueue(i915->wq);
3336 } while (--pass);
3337 }
3338
3339 struct i915_vma * __must_check
3340 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3341 const struct i915_ggtt_view *view,
3342 u64 size,
3343 u64 alignment,
3344 u64 flags);
3345
3346 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3347 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3348
3349 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3350
3351 static inline int __sg_page_count(const struct scatterlist *sg)
3352 {
3353 return sg->length >> PAGE_SHIFT;
3354 }
3355
3356 struct scatterlist *
3357 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3358 unsigned int n, unsigned int *offset);
3359
3360 struct page *
3361 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3362 unsigned int n);
3363
3364 struct page *
3365 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3366 unsigned int n);
3367
3368 dma_addr_t
3369 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3370 unsigned long n);
3371
3372 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3373 struct sg_table *pages);
3374 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3375
3376 static inline int __must_check
3377 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3378 {
3379 might_lock(&obj->mm.lock);
3380
3381 if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3382 return 0;
3383
3384 return __i915_gem_object_get_pages(obj);
3385 }
3386
3387 static inline void
3388 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3389 {
3390 GEM_BUG_ON(!obj->mm.pages);
3391
3392 atomic_inc(&obj->mm.pages_pin_count);
3393 }
3394
3395 static inline bool
3396 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3397 {
3398 return atomic_read(&obj->mm.pages_pin_count);
3399 }
3400
3401 static inline void
3402 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3403 {
3404 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3405 GEM_BUG_ON(!obj->mm.pages);
3406
3407 atomic_dec(&obj->mm.pages_pin_count);
3408 }
3409
3410 static inline void
3411 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3412 {
3413 __i915_gem_object_unpin_pages(obj);
3414 }
3415
3416 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3417 I915_MM_NORMAL = 0,
3418 I915_MM_SHRINKER
3419 };
3420
3421 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3422 enum i915_mm_subclass subclass);
3423 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3424
3425 enum i915_map_type {
3426 I915_MAP_WB = 0,
3427 I915_MAP_WC,
3428 };
3429
3430 /**
3431 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3432 * @obj: the object to map into kernel address space
3433 * @type: the type of mapping, used to select pgprot_t
3434 *
3435 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3436 * pages and then returns a contiguous mapping of the backing storage into
3437 * the kernel address space. Based on the @type of mapping, the PTE will be
3438 * set to either WriteBack or WriteCombine (via pgprot_t).
3439 *
3440 * The caller is responsible for calling i915_gem_object_unpin_map() when the
3441 * mapping is no longer required.
3442 *
3443 * Returns the pointer through which to access the mapped object, or an
3444 * ERR_PTR() on error.
3445 */
3446 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3447 enum i915_map_type type);
3448
3449 /**
3450 * i915_gem_object_unpin_map - releases an earlier mapping
3451 * @obj: the object to unmap
3452 *
3453 * After pinning the object and mapping its pages, once you are finished
3454 * with your access, call i915_gem_object_unpin_map() to release the pin
3455 * upon the mapping. Once the pin count reaches zero, that mapping may be
3456 * removed.
3457 */
3458 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3459 {
3460 i915_gem_object_unpin_pages(obj);
3461 }
3462
3463 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3464 unsigned int *needs_clflush);
3465 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3466 unsigned int *needs_clflush);
3467 #define CLFLUSH_BEFORE BIT(0)
3468 #define CLFLUSH_AFTER BIT(1)
3469 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER)
3470
3471 static inline void
3472 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3473 {
3474 i915_gem_object_unpin_pages(obj);
3475 }
3476
3477 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3478 void i915_vma_move_to_active(struct i915_vma *vma,
3479 struct drm_i915_gem_request *req,
3480 unsigned int flags);
3481 int i915_gem_dumb_create(struct drm_file *file_priv,
3482 struct drm_device *dev,
3483 struct drm_mode_create_dumb *args);
3484 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3485 uint32_t handle, uint64_t *offset);
3486 int i915_gem_mmap_gtt_version(void);
3487
3488 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3489 struct drm_i915_gem_object *new,
3490 unsigned frontbuffer_bits);
3491
3492 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3493
3494 struct drm_i915_gem_request *
3495 i915_gem_find_active_request(struct intel_engine_cs *engine);
3496
3497 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3498
3499 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3500 {
3501 return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3502 }
3503
3504 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3505 {
3506 return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3507 }
3508
3509 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3510 {
3511 return unlikely(test_bit(I915_WEDGED, &error->flags));
3512 }
3513
3514 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3515 {
3516 return i915_reset_backoff(error) | i915_terminally_wedged(error);
3517 }
3518
3519 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3520 {
3521 return READ_ONCE(error->reset_count);
3522 }
3523
3524 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3525 struct intel_engine_cs *engine)
3526 {
3527 return READ_ONCE(error->reset_engine_count[engine->id]);
3528 }
3529
3530 struct drm_i915_gem_request *
3531 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3532 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3533 void i915_gem_reset(struct drm_i915_private *dev_priv);
3534 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3535 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3536 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3537 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3538 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3539 struct drm_i915_gem_request *request);
3540
3541 void i915_gem_init_mmio(struct drm_i915_private *i915);
3542 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3543 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3544 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3545 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3546 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3547 unsigned int flags);
3548 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3549 void i915_gem_resume(struct drm_i915_private *dev_priv);
3550 int i915_gem_fault(struct vm_fault *vmf);
3551 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3552 unsigned int flags,
3553 long timeout,
3554 struct intel_rps_client *rps);
3555 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3556 unsigned int flags,
3557 int priority);
3558 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3559
3560 int __must_check
3561 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3562 int __must_check
3563 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3564 int __must_check
3565 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3566 struct i915_vma * __must_check
3567 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3568 u32 alignment,
3569 const struct i915_ggtt_view *view);
3570 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3571 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3572 int align);
3573 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3574 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3575
3576 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3577 enum i915_cache_level cache_level);
3578
3579 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3580 struct dma_buf *dma_buf);
3581
3582 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3583 struct drm_gem_object *gem_obj, int flags);
3584
3585 static inline struct i915_hw_ppgtt *
3586 i915_vm_to_ppgtt(struct i915_address_space *vm)
3587 {
3588 return container_of(vm, struct i915_hw_ppgtt, base);
3589 }
3590
3591 /* i915_gem_fence_reg.c */
3592 int __must_check i915_vma_get_fence(struct i915_vma *vma);
3593 int __must_check i915_vma_put_fence(struct i915_vma *vma);
3594
3595 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3596 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3597
3598 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3599 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3600 struct sg_table *pages);
3601 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3602 struct sg_table *pages);
3603
3604 static inline struct i915_gem_context *
3605 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3606 {
3607 return idr_find(&file_priv->context_idr, id);
3608 }
3609
3610 static inline struct i915_gem_context *
3611 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3612 {
3613 struct i915_gem_context *ctx;
3614
3615 rcu_read_lock();
3616 ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3617 if (ctx && !kref_get_unless_zero(&ctx->ref))
3618 ctx = NULL;
3619 rcu_read_unlock();
3620
3621 return ctx;
3622 }
3623
3624 static inline struct intel_timeline *
3625 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx,
3626 struct intel_engine_cs *engine)
3627 {
3628 struct i915_address_space *vm;
3629
3630 vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base;
3631 return &vm->timeline.engine[engine->id];
3632 }
3633
3634 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3635 struct drm_file *file);
3636 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3637 struct i915_gem_context *ctx,
3638 uint32_t *reg_state);
3639
3640 /* i915_gem_evict.c */
3641 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3642 u64 min_size, u64 alignment,
3643 unsigned cache_level,
3644 u64 start, u64 end,
3645 unsigned flags);
3646 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3647 struct drm_mm_node *node,
3648 unsigned int flags);
3649 int i915_gem_evict_vm(struct i915_address_space *vm);
3650
3651 /* belongs in i915_gem_gtt.h */
3652 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3653 {
3654 wmb();
3655 if (INTEL_GEN(dev_priv) < 6)
3656 intel_gtt_chipset_flush();
3657 }
3658
3659 /* i915_gem_stolen.c */
3660 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3661 struct drm_mm_node *node, u64 size,
3662 unsigned alignment);
3663 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3664 struct drm_mm_node *node, u64 size,
3665 unsigned alignment, u64 start,
3666 u64 end);
3667 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3668 struct drm_mm_node *node);
3669 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3670 void i915_gem_cleanup_stolen(struct drm_device *dev);
3671 struct drm_i915_gem_object *
3672 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size);
3673 struct drm_i915_gem_object *
3674 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3675 u32 stolen_offset,
3676 u32 gtt_offset,
3677 u32 size);
3678
3679 /* i915_gem_internal.c */
3680 struct drm_i915_gem_object *
3681 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3682 phys_addr_t size);
3683
3684 /* i915_gem_shrinker.c */
3685 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3686 unsigned long target,
3687 unsigned flags);
3688 #define I915_SHRINK_PURGEABLE 0x1
3689 #define I915_SHRINK_UNBOUND 0x2
3690 #define I915_SHRINK_BOUND 0x4
3691 #define I915_SHRINK_ACTIVE 0x8
3692 #define I915_SHRINK_VMAPS 0x10
3693 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3694 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3695 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3696
3697
3698 /* i915_gem_tiling.c */
3699 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3700 {
3701 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3702
3703 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3704 i915_gem_object_is_tiled(obj);
3705 }
3706
3707 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3708 unsigned int tiling, unsigned int stride);
3709 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3710 unsigned int tiling, unsigned int stride);
3711
3712 /* i915_debugfs.c */
3713 #ifdef CONFIG_DEBUG_FS
3714 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3715 int i915_debugfs_connector_add(struct drm_connector *connector);
3716 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3717 #else
3718 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3719 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3720 { return 0; }
3721 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3722 #endif
3723
3724 /* i915_gpu_error.c */
3725 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3726
3727 __printf(2, 3)
3728 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3729 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3730 const struct i915_gpu_state *gpu);
3731 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3732 struct drm_i915_private *i915,
3733 size_t count, loff_t pos);
3734 static inline void i915_error_state_buf_release(
3735 struct drm_i915_error_state_buf *eb)
3736 {
3737 kfree(eb->buf);
3738 }
3739
3740 struct i915_gpu_state *i915_capture_gpu_state(struct drm_i915_private *i915);
3741 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3742 u32 engine_mask,
3743 const char *error_msg);
3744
3745 static inline struct i915_gpu_state *
3746 i915_gpu_state_get(struct i915_gpu_state *gpu)
3747 {
3748 kref_get(&gpu->ref);
3749 return gpu;
3750 }
3751
3752 void __i915_gpu_state_free(struct kref *kref);
3753 static inline void i915_gpu_state_put(struct i915_gpu_state *gpu)
3754 {
3755 if (gpu)
3756 kref_put(&gpu->ref, __i915_gpu_state_free);
3757 }
3758
3759 struct i915_gpu_state *i915_first_error_state(struct drm_i915_private *i915);
3760 void i915_reset_error_state(struct drm_i915_private *i915);
3761
3762 #else
3763
3764 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3765 u32 engine_mask,
3766 const char *error_msg)
3767 {
3768 }
3769
3770 static inline struct i915_gpu_state *
3771 i915_first_error_state(struct drm_i915_private *i915)
3772 {
3773 return NULL;
3774 }
3775
3776 static inline void i915_reset_error_state(struct drm_i915_private *i915)
3777 {
3778 }
3779
3780 #endif
3781
3782 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3783
3784 /* i915_cmd_parser.c */
3785 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3786 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3787 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3788 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3789 struct drm_i915_gem_object *batch_obj,
3790 struct drm_i915_gem_object *shadow_batch_obj,
3791 u32 batch_start_offset,
3792 u32 batch_len,
3793 bool is_master);
3794
3795 /* i915_perf.c */
3796 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3797 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3798 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3799 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3800
3801 /* i915_suspend.c */
3802 extern int i915_save_state(struct drm_i915_private *dev_priv);
3803 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3804
3805 /* i915_sysfs.c */
3806 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3807 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3808
3809 /* intel_lpe_audio.c */
3810 int intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3811 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3812 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3813 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3814 enum pipe pipe, enum port port,
3815 const void *eld, int ls_clock, bool dp_output);
3816
3817 /* intel_i2c.c */
3818 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3819 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3820 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3821 unsigned int pin);
3822
3823 extern struct i2c_adapter *
3824 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3825 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3826 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3827 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3828 {
3829 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3830 }
3831 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3832
3833 /* intel_bios.c */
3834 void intel_bios_init(struct drm_i915_private *dev_priv);
3835 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3836 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3837 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3838 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3839 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3840 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3841 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3842 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3843 enum port port);
3844 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3845 enum port port);
3846
3847
3848 /* intel_opregion.c */
3849 #ifdef CONFIG_ACPI
3850 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3851 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3852 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3853 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3854 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3855 bool enable);
3856 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3857 pci_power_t state);
3858 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3859 #else
3860 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3861 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3862 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3863 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3864 {
3865 }
3866 static inline int
3867 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3868 {
3869 return 0;
3870 }
3871 static inline int
3872 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3873 {
3874 return 0;
3875 }
3876 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3877 {
3878 return -ENODEV;
3879 }
3880 #endif
3881
3882 /* intel_acpi.c */
3883 #ifdef CONFIG_ACPI
3884 extern void intel_register_dsm_handler(void);
3885 extern void intel_unregister_dsm_handler(void);
3886 #else
3887 static inline void intel_register_dsm_handler(void) { return; }
3888 static inline void intel_unregister_dsm_handler(void) { return; }
3889 #endif /* CONFIG_ACPI */
3890
3891 /* intel_device_info.c */
3892 static inline struct intel_device_info *
3893 mkwrite_device_info(struct drm_i915_private *dev_priv)
3894 {
3895 return (struct intel_device_info *)&dev_priv->info;
3896 }
3897
3898 const char *intel_platform_name(enum intel_platform platform);
3899 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
3900 void intel_device_info_dump(struct drm_i915_private *dev_priv);
3901
3902 /* modesetting */
3903 extern void intel_modeset_init_hw(struct drm_device *dev);
3904 extern int intel_modeset_init(struct drm_device *dev);
3905 extern void intel_modeset_gem_init(struct drm_device *dev);
3906 extern void intel_modeset_cleanup(struct drm_device *dev);
3907 extern int intel_connector_register(struct drm_connector *);
3908 extern void intel_connector_unregister(struct drm_connector *);
3909 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3910 bool state);
3911 extern void intel_display_resume(struct drm_device *dev);
3912 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3913 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3914 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3915 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3916 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3917 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3918 bool enable);
3919
3920 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3921 struct drm_file *file);
3922
3923 /* overlay */
3924 extern struct intel_overlay_error_state *
3925 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3926 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3927 struct intel_overlay_error_state *error);
3928
3929 extern struct intel_display_error_state *
3930 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3931 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3932 struct intel_display_error_state *error);
3933
3934 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3935 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3936 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3937 u32 reply_mask, u32 reply, int timeout_base_ms);
3938
3939 /* intel_sideband.c */
3940 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3941 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3942 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3943 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3944 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3945 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3946 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3947 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3948 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3949 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3950 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3951 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3952 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3953 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3954 enum intel_sbi_destination destination);
3955 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3956 enum intel_sbi_destination destination);
3957 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3958 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3959
3960 /* intel_dpio_phy.c */
3961 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
3962 enum dpio_phy *phy, enum dpio_channel *ch);
3963 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
3964 enum port port, u32 margin, u32 scale,
3965 u32 enable, u32 deemphasis);
3966 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3967 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3968 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
3969 enum dpio_phy phy);
3970 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
3971 enum dpio_phy phy);
3972 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
3973 uint8_t lane_count);
3974 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
3975 uint8_t lane_lat_optim_mask);
3976 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
3977
3978 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3979 u32 deemph_reg_value, u32 margin_reg_value,
3980 bool uniq_trans_scale);
3981 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3982 bool reset);
3983 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
3984 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3985 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3986 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
3987
3988 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3989 u32 demph_reg_value, u32 preemph_reg_value,
3990 u32 uniqtranscale_reg_value, u32 tx3_demph);
3991 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
3992 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3993 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
3994
3995 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3996 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3997 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
3998 const i915_reg_t reg);
3999
4000 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
4001 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
4002
4003 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
4004 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
4005 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
4006 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
4007
4008 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
4009 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
4010 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
4011 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
4012
4013 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
4014 * will be implemented using 2 32-bit writes in an arbitrary order with
4015 * an arbitrary delay between them. This can cause the hardware to
4016 * act upon the intermediate value, possibly leading to corruption and
4017 * machine death. For this reason we do not support I915_WRITE64, or
4018 * dev_priv->uncore.funcs.mmio_writeq.
4019 *
4020 * When reading a 64-bit value as two 32-bit values, the delay may cause
4021 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
4022 * occasionally a 64-bit register does not actualy support a full readq
4023 * and must be read using two 32-bit reads.
4024 *
4025 * You have been warned.
4026 */
4027 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
4028
4029 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
4030 u32 upper, lower, old_upper, loop = 0; \
4031 upper = I915_READ(upper_reg); \
4032 do { \
4033 old_upper = upper; \
4034 lower = I915_READ(lower_reg); \
4035 upper = I915_READ(upper_reg); \
4036 } while (upper != old_upper && loop++ < 2); \
4037 (u64)upper << 32 | lower; })
4038
4039 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
4040 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
4041
4042 #define __raw_read(x, s) \
4043 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
4044 i915_reg_t reg) \
4045 { \
4046 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
4047 }
4048
4049 #define __raw_write(x, s) \
4050 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
4051 i915_reg_t reg, uint##x##_t val) \
4052 { \
4053 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
4054 }
4055 __raw_read(8, b)
4056 __raw_read(16, w)
4057 __raw_read(32, l)
4058 __raw_read(64, q)
4059
4060 __raw_write(8, b)
4061 __raw_write(16, w)
4062 __raw_write(32, l)
4063 __raw_write(64, q)
4064
4065 #undef __raw_read
4066 #undef __raw_write
4067
4068 /* These are untraced mmio-accessors that are only valid to be used inside
4069 * critical sections, such as inside IRQ handlers, where forcewake is explicitly
4070 * controlled.
4071 *
4072 * Think twice, and think again, before using these.
4073 *
4074 * As an example, these accessors can possibly be used between:
4075 *
4076 * spin_lock_irq(&dev_priv->uncore.lock);
4077 * intel_uncore_forcewake_get__locked();
4078 *
4079 * and
4080 *
4081 * intel_uncore_forcewake_put__locked();
4082 * spin_unlock_irq(&dev_priv->uncore.lock);
4083 *
4084 *
4085 * Note: some registers may not need forcewake held, so
4086 * intel_uncore_forcewake_{get,put} can be omitted, see
4087 * intel_uncore_forcewake_for_reg().
4088 *
4089 * Certain architectures will die if the same cacheline is concurrently accessed
4090 * by different clients (e.g. on Ivybridge). Access to registers should
4091 * therefore generally be serialised, by either the dev_priv->uncore.lock or
4092 * a more localised lock guarding all access to that bank of registers.
4093 */
4094 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
4095 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
4096 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
4097 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
4098
4099 /* "Broadcast RGB" property */
4100 #define INTEL_BROADCAST_RGB_AUTO 0
4101 #define INTEL_BROADCAST_RGB_FULL 1
4102 #define INTEL_BROADCAST_RGB_LIMITED 2
4103
4104 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
4105 {
4106 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4107 return VLV_VGACNTRL;
4108 else if (INTEL_GEN(dev_priv) >= 5)
4109 return CPU_VGACNTRL;
4110 else
4111 return VGACNTRL;
4112 }
4113
4114 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
4115 {
4116 unsigned long j = msecs_to_jiffies(m);
4117
4118 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4119 }
4120
4121 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
4122 {
4123 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
4124 }
4125
4126 static inline unsigned long
4127 timespec_to_jiffies_timeout(const struct timespec *value)
4128 {
4129 unsigned long j = timespec_to_jiffies(value);
4130
4131 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4132 }
4133
4134 /*
4135 * If you need to wait X milliseconds between events A and B, but event B
4136 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
4137 * when event A happened, then just before event B you call this function and
4138 * pass the timestamp as the first argument, and X as the second argument.
4139 */
4140 static inline void
4141 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
4142 {
4143 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
4144
4145 /*
4146 * Don't re-read the value of "jiffies" every time since it may change
4147 * behind our back and break the math.
4148 */
4149 tmp_jiffies = jiffies;
4150 target_jiffies = timestamp_jiffies +
4151 msecs_to_jiffies_timeout(to_wait_ms);
4152
4153 if (time_after(target_jiffies, tmp_jiffies)) {
4154 remaining_jiffies = target_jiffies - tmp_jiffies;
4155 while (remaining_jiffies)
4156 remaining_jiffies =
4157 schedule_timeout_uninterruptible(remaining_jiffies);
4158 }
4159 }
4160
4161 static inline bool
4162 __i915_request_irq_complete(const struct drm_i915_gem_request *req)
4163 {
4164 struct intel_engine_cs *engine = req->engine;
4165 u32 seqno;
4166
4167 /* Note that the engine may have wrapped around the seqno, and
4168 * so our request->global_seqno will be ahead of the hardware,
4169 * even though it completed the request before wrapping. We catch
4170 * this by kicking all the waiters before resetting the seqno
4171 * in hardware, and also signal the fence.
4172 */
4173 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &req->fence.flags))
4174 return true;
4175
4176 /* The request was dequeued before we were awoken. We check after
4177 * inspecting the hw to confirm that this was the same request
4178 * that generated the HWS update. The memory barriers within
4179 * the request execution are sufficient to ensure that a check
4180 * after reading the value from hw matches this request.
4181 */
4182 seqno = i915_gem_request_global_seqno(req);
4183 if (!seqno)
4184 return false;
4185
4186 /* Before we do the heavier coherent read of the seqno,
4187 * check the value (hopefully) in the CPU cacheline.
4188 */
4189 if (__i915_gem_request_completed(req, seqno))
4190 return true;
4191
4192 /* Ensure our read of the seqno is coherent so that we
4193 * do not "miss an interrupt" (i.e. if this is the last
4194 * request and the seqno write from the GPU is not visible
4195 * by the time the interrupt fires, we will see that the
4196 * request is incomplete and go back to sleep awaiting
4197 * another interrupt that will never come.)
4198 *
4199 * Strictly, we only need to do this once after an interrupt,
4200 * but it is easier and safer to do it every time the waiter
4201 * is woken.
4202 */
4203 if (engine->irq_seqno_barrier &&
4204 test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
4205 struct intel_breadcrumbs *b = &engine->breadcrumbs;
4206
4207 /* The ordering of irq_posted versus applying the barrier
4208 * is crucial. The clearing of the current irq_posted must
4209 * be visible before we perform the barrier operation,
4210 * such that if a subsequent interrupt arrives, irq_posted
4211 * is reasserted and our task rewoken (which causes us to
4212 * do another __i915_request_irq_complete() immediately
4213 * and reapply the barrier). Conversely, if the clear
4214 * occurs after the barrier, then an interrupt that arrived
4215 * whilst we waited on the barrier would not trigger a
4216 * barrier on the next pass, and the read may not see the
4217 * seqno update.
4218 */
4219 engine->irq_seqno_barrier(engine);
4220
4221 /* If we consume the irq, but we are no longer the bottom-half,
4222 * the real bottom-half may not have serialised their own
4223 * seqno check with the irq-barrier (i.e. may have inspected
4224 * the seqno before we believe it coherent since they see
4225 * irq_posted == false but we are still running).
4226 */
4227 spin_lock_irq(&b->irq_lock);
4228 if (b->irq_wait && b->irq_wait->tsk != current)
4229 /* Note that if the bottom-half is changed as we
4230 * are sending the wake-up, the new bottom-half will
4231 * be woken by whomever made the change. We only have
4232 * to worry about when we steal the irq-posted for
4233 * ourself.
4234 */
4235 wake_up_process(b->irq_wait->tsk);
4236 spin_unlock_irq(&b->irq_lock);
4237
4238 if (__i915_gem_request_completed(req, seqno))
4239 return true;
4240 }
4241
4242 return false;
4243 }
4244
4245 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
4246 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
4247
4248 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
4249 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
4250 * perform the operation. To check beforehand, pass in the parameters to
4251 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
4252 * you only need to pass in the minor offsets, page-aligned pointers are
4253 * always valid.
4254 *
4255 * For just checking for SSE4.1, in the foreknowledge that the future use
4256 * will be correctly aligned, just use i915_has_memcpy_from_wc().
4257 */
4258 #define i915_can_memcpy_from_wc(dst, src, len) \
4259 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
4260
4261 #define i915_has_memcpy_from_wc() \
4262 i915_memcpy_from_wc(NULL, NULL, 0)
4263
4264 /* i915_mm.c */
4265 int remap_io_mapping(struct vm_area_struct *vma,
4266 unsigned long addr, unsigned long pfn, unsigned long size,
4267 struct io_mapping *iomap);
4268
4269 static inline bool i915_gem_object_is_coherent(struct drm_i915_gem_object *obj)
4270 {
4271 return (obj->cache_level != I915_CACHE_NONE ||
4272 HAS_LLC(to_i915(obj->base.dev)));
4273 }
4274
4275 #endif