]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.h
ddb5ee8e0535c8c76ec40b246c1c427b137894be
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/reservation.h>
45 #include <linux/shmem_fs.h>
46
47 #include <drm/drmP.h>
48 #include <drm/intel-gtt.h>
49 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
50 #include <drm/drm_gem.h>
51 #include <drm/drm_auth.h>
52 #include <drm/drm_cache.h>
53
54 #include "i915_params.h"
55 #include "i915_reg.h"
56 #include "i915_utils.h"
57
58 #include "intel_uncore.h"
59 #include "intel_bios.h"
60 #include "intel_dpll_mgr.h"
61 #include "intel_uc.h"
62 #include "intel_lrc.h"
63 #include "intel_ringbuffer.h"
64
65 #include "i915_gem.h"
66 #include "i915_gem_context.h"
67 #include "i915_gem_fence_reg.h"
68 #include "i915_gem_object.h"
69 #include "i915_gem_gtt.h"
70 #include "i915_gem_render_state.h"
71 #include "i915_gem_request.h"
72 #include "i915_gem_timeline.h"
73
74 #include "i915_vma.h"
75
76 #include "intel_gvt.h"
77
78 /* General customization:
79 */
80
81 #define DRIVER_NAME "i915"
82 #define DRIVER_DESC "Intel Graphics"
83 #define DRIVER_DATE "20170619"
84 #define DRIVER_TIMESTAMP 1497857498
85
86 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
87 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
88 * which may not necessarily be a user visible problem. This will either
89 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
90 * enable distros and users to tailor their preferred amount of i915 abrt
91 * spam.
92 */
93 #define I915_STATE_WARN(condition, format...) ({ \
94 int __ret_warn_on = !!(condition); \
95 if (unlikely(__ret_warn_on)) \
96 if (!WARN(i915.verbose_state_checks, format)) \
97 DRM_ERROR(format); \
98 unlikely(__ret_warn_on); \
99 })
100
101 #define I915_STATE_WARN_ON(x) \
102 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
103
104 bool __i915_inject_load_failure(const char *func, int line);
105 #define i915_inject_load_failure() \
106 __i915_inject_load_failure(__func__, __LINE__)
107
108 typedef struct {
109 uint32_t val;
110 } uint_fixed_16_16_t;
111
112 #define FP_16_16_MAX ({ \
113 uint_fixed_16_16_t fp; \
114 fp.val = UINT_MAX; \
115 fp; \
116 })
117
118 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
119 {
120 if (val.val == 0)
121 return true;
122 return false;
123 }
124
125 static inline uint_fixed_16_16_t u32_to_fixed_16_16(uint32_t val)
126 {
127 uint_fixed_16_16_t fp;
128
129 WARN_ON(val >> 16);
130
131 fp.val = val << 16;
132 return fp;
133 }
134
135 static inline uint32_t fixed_16_16_to_u32_round_up(uint_fixed_16_16_t fp)
136 {
137 return DIV_ROUND_UP(fp.val, 1 << 16);
138 }
139
140 static inline uint32_t fixed_16_16_to_u32(uint_fixed_16_16_t fp)
141 {
142 return fp.val >> 16;
143 }
144
145 static inline uint_fixed_16_16_t min_fixed_16_16(uint_fixed_16_16_t min1,
146 uint_fixed_16_16_t min2)
147 {
148 uint_fixed_16_16_t min;
149
150 min.val = min(min1.val, min2.val);
151 return min;
152 }
153
154 static inline uint_fixed_16_16_t max_fixed_16_16(uint_fixed_16_16_t max1,
155 uint_fixed_16_16_t max2)
156 {
157 uint_fixed_16_16_t max;
158
159 max.val = max(max1.val, max2.val);
160 return max;
161 }
162
163 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
164 uint_fixed_16_16_t d)
165 {
166 return DIV_ROUND_UP(val.val, d.val);
167 }
168
169 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
170 uint_fixed_16_16_t mul)
171 {
172 uint64_t intermediate_val;
173 uint32_t result;
174
175 intermediate_val = (uint64_t) val * mul.val;
176 intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
177 WARN_ON(intermediate_val >> 32);
178 result = clamp_t(uint32_t, intermediate_val, 0, ~0);
179 return result;
180 }
181
182 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
183 uint_fixed_16_16_t mul)
184 {
185 uint64_t intermediate_val;
186 uint_fixed_16_16_t fp;
187
188 intermediate_val = (uint64_t) val.val * mul.val;
189 intermediate_val = intermediate_val >> 16;
190 WARN_ON(intermediate_val >> 32);
191 fp.val = clamp_t(uint32_t, intermediate_val, 0, ~0);
192 return fp;
193 }
194
195 static inline uint_fixed_16_16_t fixed_16_16_div(uint32_t val, uint32_t d)
196 {
197 uint_fixed_16_16_t fp, res;
198
199 fp = u32_to_fixed_16_16(val);
200 res.val = DIV_ROUND_UP(fp.val, d);
201 return res;
202 }
203
204 static inline uint_fixed_16_16_t fixed_16_16_div_u64(uint32_t val, uint32_t d)
205 {
206 uint_fixed_16_16_t res;
207 uint64_t interm_val;
208
209 interm_val = (uint64_t)val << 16;
210 interm_val = DIV_ROUND_UP_ULL(interm_val, d);
211 WARN_ON(interm_val >> 32);
212 res.val = (uint32_t) interm_val;
213
214 return res;
215 }
216
217 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
218 uint_fixed_16_16_t d)
219 {
220 uint64_t interm_val;
221
222 interm_val = (uint64_t)val << 16;
223 interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
224 WARN_ON(interm_val >> 32);
225 return clamp_t(uint32_t, interm_val, 0, ~0);
226 }
227
228 static inline uint_fixed_16_16_t mul_u32_fixed_16_16(uint32_t val,
229 uint_fixed_16_16_t mul)
230 {
231 uint64_t intermediate_val;
232 uint_fixed_16_16_t fp;
233
234 intermediate_val = (uint64_t) val * mul.val;
235 WARN_ON(intermediate_val >> 32);
236 fp.val = (uint32_t) intermediate_val;
237 return fp;
238 }
239
240 static inline const char *yesno(bool v)
241 {
242 return v ? "yes" : "no";
243 }
244
245 static inline const char *onoff(bool v)
246 {
247 return v ? "on" : "off";
248 }
249
250 static inline const char *enableddisabled(bool v)
251 {
252 return v ? "enabled" : "disabled";
253 }
254
255 enum pipe {
256 INVALID_PIPE = -1,
257 PIPE_A = 0,
258 PIPE_B,
259 PIPE_C,
260 _PIPE_EDP,
261 I915_MAX_PIPES = _PIPE_EDP
262 };
263 #define pipe_name(p) ((p) + 'A')
264
265 enum transcoder {
266 TRANSCODER_A = 0,
267 TRANSCODER_B,
268 TRANSCODER_C,
269 TRANSCODER_EDP,
270 TRANSCODER_DSI_A,
271 TRANSCODER_DSI_C,
272 I915_MAX_TRANSCODERS
273 };
274
275 static inline const char *transcoder_name(enum transcoder transcoder)
276 {
277 switch (transcoder) {
278 case TRANSCODER_A:
279 return "A";
280 case TRANSCODER_B:
281 return "B";
282 case TRANSCODER_C:
283 return "C";
284 case TRANSCODER_EDP:
285 return "EDP";
286 case TRANSCODER_DSI_A:
287 return "DSI A";
288 case TRANSCODER_DSI_C:
289 return "DSI C";
290 default:
291 return "<invalid>";
292 }
293 }
294
295 static inline bool transcoder_is_dsi(enum transcoder transcoder)
296 {
297 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
298 }
299
300 /*
301 * Global legacy plane identifier. Valid only for primary/sprite
302 * planes on pre-g4x, and only for primary planes on g4x+.
303 */
304 enum plane {
305 PLANE_A,
306 PLANE_B,
307 PLANE_C,
308 };
309 #define plane_name(p) ((p) + 'A')
310
311 #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A')
312
313 /*
314 * Per-pipe plane identifier.
315 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
316 * number of planes per CRTC. Not all platforms really have this many planes,
317 * which means some arrays of size I915_MAX_PLANES may have unused entries
318 * between the topmost sprite plane and the cursor plane.
319 *
320 * This is expected to be passed to various register macros
321 * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care.
322 */
323 enum plane_id {
324 PLANE_PRIMARY,
325 PLANE_SPRITE0,
326 PLANE_SPRITE1,
327 PLANE_SPRITE2,
328 PLANE_CURSOR,
329 I915_MAX_PLANES,
330 };
331
332 #define for_each_plane_id_on_crtc(__crtc, __p) \
333 for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \
334 for_each_if ((__crtc)->plane_ids_mask & BIT(__p))
335
336 enum port {
337 PORT_NONE = -1,
338 PORT_A = 0,
339 PORT_B,
340 PORT_C,
341 PORT_D,
342 PORT_E,
343 I915_MAX_PORTS
344 };
345 #define port_name(p) ((p) + 'A')
346
347 #define I915_NUM_PHYS_VLV 2
348
349 enum dpio_channel {
350 DPIO_CH0,
351 DPIO_CH1
352 };
353
354 enum dpio_phy {
355 DPIO_PHY0,
356 DPIO_PHY1,
357 DPIO_PHY2,
358 };
359
360 enum intel_display_power_domain {
361 POWER_DOMAIN_PIPE_A,
362 POWER_DOMAIN_PIPE_B,
363 POWER_DOMAIN_PIPE_C,
364 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
365 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
366 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
367 POWER_DOMAIN_TRANSCODER_A,
368 POWER_DOMAIN_TRANSCODER_B,
369 POWER_DOMAIN_TRANSCODER_C,
370 POWER_DOMAIN_TRANSCODER_EDP,
371 POWER_DOMAIN_TRANSCODER_DSI_A,
372 POWER_DOMAIN_TRANSCODER_DSI_C,
373 POWER_DOMAIN_PORT_DDI_A_LANES,
374 POWER_DOMAIN_PORT_DDI_B_LANES,
375 POWER_DOMAIN_PORT_DDI_C_LANES,
376 POWER_DOMAIN_PORT_DDI_D_LANES,
377 POWER_DOMAIN_PORT_DDI_E_LANES,
378 POWER_DOMAIN_PORT_DDI_A_IO,
379 POWER_DOMAIN_PORT_DDI_B_IO,
380 POWER_DOMAIN_PORT_DDI_C_IO,
381 POWER_DOMAIN_PORT_DDI_D_IO,
382 POWER_DOMAIN_PORT_DDI_E_IO,
383 POWER_DOMAIN_PORT_DSI,
384 POWER_DOMAIN_PORT_CRT,
385 POWER_DOMAIN_PORT_OTHER,
386 POWER_DOMAIN_VGA,
387 POWER_DOMAIN_AUDIO,
388 POWER_DOMAIN_PLLS,
389 POWER_DOMAIN_AUX_A,
390 POWER_DOMAIN_AUX_B,
391 POWER_DOMAIN_AUX_C,
392 POWER_DOMAIN_AUX_D,
393 POWER_DOMAIN_GMBUS,
394 POWER_DOMAIN_MODESET,
395 POWER_DOMAIN_INIT,
396
397 POWER_DOMAIN_NUM,
398 };
399
400 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
401 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
402 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
403 #define POWER_DOMAIN_TRANSCODER(tran) \
404 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
405 (tran) + POWER_DOMAIN_TRANSCODER_A)
406
407 enum hpd_pin {
408 HPD_NONE = 0,
409 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
410 HPD_CRT,
411 HPD_SDVO_B,
412 HPD_SDVO_C,
413 HPD_PORT_A,
414 HPD_PORT_B,
415 HPD_PORT_C,
416 HPD_PORT_D,
417 HPD_PORT_E,
418 HPD_NUM_PINS
419 };
420
421 #define for_each_hpd_pin(__pin) \
422 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
423
424 #define HPD_STORM_DEFAULT_THRESHOLD 5
425
426 struct i915_hotplug {
427 struct work_struct hotplug_work;
428
429 struct {
430 unsigned long last_jiffies;
431 int count;
432 enum {
433 HPD_ENABLED = 0,
434 HPD_DISABLED = 1,
435 HPD_MARK_DISABLED = 2
436 } state;
437 } stats[HPD_NUM_PINS];
438 u32 event_bits;
439 struct delayed_work reenable_work;
440
441 struct intel_digital_port *irq_port[I915_MAX_PORTS];
442 u32 long_port_mask;
443 u32 short_port_mask;
444 struct work_struct dig_port_work;
445
446 struct work_struct poll_init_work;
447 bool poll_enabled;
448
449 unsigned int hpd_storm_threshold;
450
451 /*
452 * if we get a HPD irq from DP and a HPD irq from non-DP
453 * the non-DP HPD could block the workqueue on a mode config
454 * mutex getting, that userspace may have taken. However
455 * userspace is waiting on the DP workqueue to run which is
456 * blocked behind the non-DP one.
457 */
458 struct workqueue_struct *dp_wq;
459 };
460
461 #define I915_GEM_GPU_DOMAINS \
462 (I915_GEM_DOMAIN_RENDER | \
463 I915_GEM_DOMAIN_SAMPLER | \
464 I915_GEM_DOMAIN_COMMAND | \
465 I915_GEM_DOMAIN_INSTRUCTION | \
466 I915_GEM_DOMAIN_VERTEX)
467
468 #define for_each_pipe(__dev_priv, __p) \
469 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
470 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
471 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
472 for_each_if ((__mask) & (1 << (__p)))
473 #define for_each_universal_plane(__dev_priv, __pipe, __p) \
474 for ((__p) = 0; \
475 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
476 (__p)++)
477 #define for_each_sprite(__dev_priv, __p, __s) \
478 for ((__s) = 0; \
479 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
480 (__s)++)
481
482 #define for_each_port_masked(__port, __ports_mask) \
483 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
484 for_each_if ((__ports_mask) & (1 << (__port)))
485
486 #define for_each_crtc(dev, crtc) \
487 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
488
489 #define for_each_intel_plane(dev, intel_plane) \
490 list_for_each_entry(intel_plane, \
491 &(dev)->mode_config.plane_list, \
492 base.head)
493
494 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \
495 list_for_each_entry(intel_plane, \
496 &(dev)->mode_config.plane_list, \
497 base.head) \
498 for_each_if ((plane_mask) & \
499 (1 << drm_plane_index(&intel_plane->base)))
500
501 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
502 list_for_each_entry(intel_plane, \
503 &(dev)->mode_config.plane_list, \
504 base.head) \
505 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
506
507 #define for_each_intel_crtc(dev, intel_crtc) \
508 list_for_each_entry(intel_crtc, \
509 &(dev)->mode_config.crtc_list, \
510 base.head)
511
512 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \
513 list_for_each_entry(intel_crtc, \
514 &(dev)->mode_config.crtc_list, \
515 base.head) \
516 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
517
518 #define for_each_intel_encoder(dev, intel_encoder) \
519 list_for_each_entry(intel_encoder, \
520 &(dev)->mode_config.encoder_list, \
521 base.head)
522
523 #define for_each_intel_connector_iter(intel_connector, iter) \
524 while ((intel_connector = to_intel_connector(drm_connector_list_iter_next(iter))))
525
526 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
527 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
528 for_each_if ((intel_encoder)->base.crtc == (__crtc))
529
530 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
531 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
532 for_each_if ((intel_connector)->base.encoder == (__encoder))
533
534 #define for_each_power_domain(domain, mask) \
535 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
536 for_each_if (BIT_ULL(domain) & (mask))
537
538 #define for_each_power_well(__dev_priv, __power_well) \
539 for ((__power_well) = (__dev_priv)->power_domains.power_wells; \
540 (__power_well) - (__dev_priv)->power_domains.power_wells < \
541 (__dev_priv)->power_domains.power_well_count; \
542 (__power_well)++)
543
544 #define for_each_power_well_rev(__dev_priv, __power_well) \
545 for ((__power_well) = (__dev_priv)->power_domains.power_wells + \
546 (__dev_priv)->power_domains.power_well_count - 1; \
547 (__power_well) - (__dev_priv)->power_domains.power_wells >= 0; \
548 (__power_well)--)
549
550 #define for_each_power_domain_well(__dev_priv, __power_well, __domain_mask) \
551 for_each_power_well(__dev_priv, __power_well) \
552 for_each_if ((__power_well)->domains & (__domain_mask))
553
554 #define for_each_power_domain_well_rev(__dev_priv, __power_well, __domain_mask) \
555 for_each_power_well_rev(__dev_priv, __power_well) \
556 for_each_if ((__power_well)->domains & (__domain_mask))
557
558 #define for_each_intel_plane_in_state(__state, plane, plane_state, __i) \
559 for ((__i) = 0; \
560 (__i) < (__state)->base.dev->mode_config.num_total_plane && \
561 ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
562 (plane_state) = to_intel_plane_state((__state)->base.planes[__i].state), 1); \
563 (__i)++) \
564 for_each_if (plane_state)
565
566 struct drm_i915_private;
567 struct i915_mm_struct;
568 struct i915_mmu_object;
569
570 struct drm_i915_file_private {
571 struct drm_i915_private *dev_priv;
572 struct drm_file *file;
573
574 struct {
575 spinlock_t lock;
576 struct list_head request_list;
577 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
578 * chosen to prevent the CPU getting more than a frame ahead of the GPU
579 * (when using lax throttling for the frontbuffer). We also use it to
580 * offer free GPU waitboosts for severely congested workloads.
581 */
582 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
583 } mm;
584 struct idr context_idr;
585
586 struct intel_rps_client {
587 atomic_t boosts;
588 } rps;
589
590 unsigned int bsd_engine;
591
592 /* Client can have a maximum of 3 contexts banned before
593 * it is denied of creating new contexts. As one context
594 * ban needs 4 consecutive hangs, and more if there is
595 * progress in between, this is a last resort stop gap measure
596 * to limit the badly behaving clients access to gpu.
597 */
598 #define I915_MAX_CLIENT_CONTEXT_BANS 3
599 int context_bans;
600 };
601
602 /* Used by dp and fdi links */
603 struct intel_link_m_n {
604 uint32_t tu;
605 uint32_t gmch_m;
606 uint32_t gmch_n;
607 uint32_t link_m;
608 uint32_t link_n;
609 };
610
611 void intel_link_compute_m_n(int bpp, int nlanes,
612 int pixel_clock, int link_clock,
613 struct intel_link_m_n *m_n);
614
615 /* Interface history:
616 *
617 * 1.1: Original.
618 * 1.2: Add Power Management
619 * 1.3: Add vblank support
620 * 1.4: Fix cmdbuffer path, add heap destroy
621 * 1.5: Add vblank pipe configuration
622 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
623 * - Support vertical blank on secondary display pipe
624 */
625 #define DRIVER_MAJOR 1
626 #define DRIVER_MINOR 6
627 #define DRIVER_PATCHLEVEL 0
628
629 struct opregion_header;
630 struct opregion_acpi;
631 struct opregion_swsci;
632 struct opregion_asle;
633
634 struct intel_opregion {
635 struct opregion_header *header;
636 struct opregion_acpi *acpi;
637 struct opregion_swsci *swsci;
638 u32 swsci_gbda_sub_functions;
639 u32 swsci_sbcb_sub_functions;
640 struct opregion_asle *asle;
641 void *rvda;
642 const void *vbt;
643 u32 vbt_size;
644 u32 *lid_state;
645 struct work_struct asle_work;
646 };
647 #define OPREGION_SIZE (8*1024)
648
649 struct intel_overlay;
650 struct intel_overlay_error_state;
651
652 struct sdvo_device_mapping {
653 u8 initialized;
654 u8 dvo_port;
655 u8 slave_addr;
656 u8 dvo_wiring;
657 u8 i2c_pin;
658 u8 ddc_pin;
659 };
660
661 struct intel_connector;
662 struct intel_encoder;
663 struct intel_atomic_state;
664 struct intel_crtc_state;
665 struct intel_initial_plane_config;
666 struct intel_crtc;
667 struct intel_limit;
668 struct dpll;
669 struct intel_cdclk_state;
670
671 struct drm_i915_display_funcs {
672 void (*get_cdclk)(struct drm_i915_private *dev_priv,
673 struct intel_cdclk_state *cdclk_state);
674 void (*set_cdclk)(struct drm_i915_private *dev_priv,
675 const struct intel_cdclk_state *cdclk_state);
676 int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane);
677 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
678 int (*compute_intermediate_wm)(struct drm_device *dev,
679 struct intel_crtc *intel_crtc,
680 struct intel_crtc_state *newstate);
681 void (*initial_watermarks)(struct intel_atomic_state *state,
682 struct intel_crtc_state *cstate);
683 void (*atomic_update_watermarks)(struct intel_atomic_state *state,
684 struct intel_crtc_state *cstate);
685 void (*optimize_watermarks)(struct intel_atomic_state *state,
686 struct intel_crtc_state *cstate);
687 int (*compute_global_watermarks)(struct drm_atomic_state *state);
688 void (*update_wm)(struct intel_crtc *crtc);
689 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
690 /* Returns the active state of the crtc, and if the crtc is active,
691 * fills out the pipe-config with the hw state. */
692 bool (*get_pipe_config)(struct intel_crtc *,
693 struct intel_crtc_state *);
694 void (*get_initial_plane_config)(struct intel_crtc *,
695 struct intel_initial_plane_config *);
696 int (*crtc_compute_clock)(struct intel_crtc *crtc,
697 struct intel_crtc_state *crtc_state);
698 void (*crtc_enable)(struct intel_crtc_state *pipe_config,
699 struct drm_atomic_state *old_state);
700 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
701 struct drm_atomic_state *old_state);
702 void (*update_crtcs)(struct drm_atomic_state *state,
703 unsigned int *crtc_vblank_mask);
704 void (*audio_codec_enable)(struct drm_connector *connector,
705 struct intel_encoder *encoder,
706 const struct drm_display_mode *adjusted_mode);
707 void (*audio_codec_disable)(struct intel_encoder *encoder);
708 void (*fdi_link_train)(struct intel_crtc *crtc,
709 const struct intel_crtc_state *crtc_state);
710 void (*init_clock_gating)(struct drm_i915_private *dev_priv);
711 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc,
712 struct drm_framebuffer *fb,
713 struct drm_i915_gem_object *obj,
714 struct drm_i915_gem_request *req,
715 uint32_t flags);
716 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
717 /* clock updates for mode set */
718 /* cursor updates */
719 /* render clock increase/decrease */
720 /* display clock increase/decrease */
721 /* pll clock increase/decrease */
722
723 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
724 void (*load_luts)(struct drm_crtc_state *crtc_state);
725 };
726
727 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
728 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
729 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
730
731 struct intel_csr {
732 struct work_struct work;
733 const char *fw_path;
734 uint32_t *dmc_payload;
735 uint32_t dmc_fw_size;
736 uint32_t version;
737 uint32_t mmio_count;
738 i915_reg_t mmioaddr[8];
739 uint32_t mmiodata[8];
740 uint32_t dc_state;
741 uint32_t allowed_dc_mask;
742 };
743
744 #define DEV_INFO_FOR_EACH_FLAG(func) \
745 func(is_mobile); \
746 func(is_lp); \
747 func(is_alpha_support); \
748 /* Keep has_* in alphabetical order */ \
749 func(has_64bit_reloc); \
750 func(has_aliasing_ppgtt); \
751 func(has_csr); \
752 func(has_ddi); \
753 func(has_dp_mst); \
754 func(has_reset_engine); \
755 func(has_fbc); \
756 func(has_fpga_dbg); \
757 func(has_full_ppgtt); \
758 func(has_full_48bit_ppgtt); \
759 func(has_gmbus_irq); \
760 func(has_gmch_display); \
761 func(has_guc); \
762 func(has_guc_ct); \
763 func(has_hotplug); \
764 func(has_l3_dpf); \
765 func(has_llc); \
766 func(has_logical_ring_contexts); \
767 func(has_overlay); \
768 func(has_pipe_cxsr); \
769 func(has_pooled_eu); \
770 func(has_psr); \
771 func(has_rc6); \
772 func(has_rc6p); \
773 func(has_resource_streamer); \
774 func(has_runtime_pm); \
775 func(has_snoop); \
776 func(unfenced_needs_alignment); \
777 func(cursor_needs_physical); \
778 func(hws_needs_physical); \
779 func(overlay_needs_physical); \
780 func(supports_tv);
781
782 struct sseu_dev_info {
783 u8 slice_mask;
784 u8 subslice_mask;
785 u8 eu_total;
786 u8 eu_per_subslice;
787 u8 min_eu_in_pool;
788 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
789 u8 subslice_7eu[3];
790 u8 has_slice_pg:1;
791 u8 has_subslice_pg:1;
792 u8 has_eu_pg:1;
793 };
794
795 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu)
796 {
797 return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask);
798 }
799
800 /* Keep in gen based order, and chronological order within a gen */
801 enum intel_platform {
802 INTEL_PLATFORM_UNINITIALIZED = 0,
803 INTEL_I830,
804 INTEL_I845G,
805 INTEL_I85X,
806 INTEL_I865G,
807 INTEL_I915G,
808 INTEL_I915GM,
809 INTEL_I945G,
810 INTEL_I945GM,
811 INTEL_G33,
812 INTEL_PINEVIEW,
813 INTEL_I965G,
814 INTEL_I965GM,
815 INTEL_G45,
816 INTEL_GM45,
817 INTEL_IRONLAKE,
818 INTEL_SANDYBRIDGE,
819 INTEL_IVYBRIDGE,
820 INTEL_VALLEYVIEW,
821 INTEL_HASWELL,
822 INTEL_BROADWELL,
823 INTEL_CHERRYVIEW,
824 INTEL_SKYLAKE,
825 INTEL_BROXTON,
826 INTEL_KABYLAKE,
827 INTEL_GEMINILAKE,
828 INTEL_COFFEELAKE,
829 INTEL_CANNONLAKE,
830 INTEL_MAX_PLATFORMS
831 };
832
833 struct intel_device_info {
834 u32 display_mmio_offset;
835 u16 device_id;
836 u8 num_pipes;
837 u8 num_sprites[I915_MAX_PIPES];
838 u8 num_scalers[I915_MAX_PIPES];
839 u8 gen;
840 u16 gen_mask;
841 enum intel_platform platform;
842 u8 ring_mask; /* Rings supported by the HW */
843 u8 num_rings;
844 #define DEFINE_FLAG(name) u8 name:1
845 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG);
846 #undef DEFINE_FLAG
847 u16 ddb_size; /* in blocks */
848 /* Register offsets for the various display pipes and transcoders */
849 int pipe_offsets[I915_MAX_TRANSCODERS];
850 int trans_offsets[I915_MAX_TRANSCODERS];
851 int palette_offsets[I915_MAX_PIPES];
852 int cursor_offsets[I915_MAX_PIPES];
853
854 /* Slice/subslice/EU info */
855 struct sseu_dev_info sseu;
856
857 struct color_luts {
858 u16 degamma_lut_size;
859 u16 gamma_lut_size;
860 } color;
861 };
862
863 struct intel_display_error_state;
864
865 struct i915_gpu_state {
866 struct kref ref;
867 struct timeval time;
868 struct timeval boottime;
869 struct timeval uptime;
870
871 struct drm_i915_private *i915;
872
873 char error_msg[128];
874 bool simulated;
875 bool awake;
876 bool wakelock;
877 bool suspended;
878 int iommu;
879 u32 reset_count;
880 u32 suspend_count;
881 struct intel_device_info device_info;
882 struct i915_params params;
883
884 /* Generic register state */
885 u32 eir;
886 u32 pgtbl_er;
887 u32 ier;
888 u32 gtier[4], ngtier;
889 u32 ccid;
890 u32 derrmr;
891 u32 forcewake;
892 u32 error; /* gen6+ */
893 u32 err_int; /* gen7 */
894 u32 fault_data0; /* gen8, gen9 */
895 u32 fault_data1; /* gen8, gen9 */
896 u32 done_reg;
897 u32 gac_eco;
898 u32 gam_ecochk;
899 u32 gab_ctl;
900 u32 gfx_mode;
901
902 u32 nfence;
903 u64 fence[I915_MAX_NUM_FENCES];
904 struct intel_overlay_error_state *overlay;
905 struct intel_display_error_state *display;
906 struct drm_i915_error_object *semaphore;
907 struct drm_i915_error_object *guc_log;
908
909 struct drm_i915_error_engine {
910 int engine_id;
911 /* Software tracked state */
912 bool waiting;
913 int num_waiters;
914 unsigned long hangcheck_timestamp;
915 bool hangcheck_stalled;
916 enum intel_engine_hangcheck_action hangcheck_action;
917 struct i915_address_space *vm;
918 int num_requests;
919 u32 reset_count;
920
921 /* position of active request inside the ring */
922 u32 rq_head, rq_post, rq_tail;
923
924 /* our own tracking of ring head and tail */
925 u32 cpu_ring_head;
926 u32 cpu_ring_tail;
927
928 u32 last_seqno;
929
930 /* Register state */
931 u32 start;
932 u32 tail;
933 u32 head;
934 u32 ctl;
935 u32 mode;
936 u32 hws;
937 u32 ipeir;
938 u32 ipehr;
939 u32 bbstate;
940 u32 instpm;
941 u32 instps;
942 u32 seqno;
943 u64 bbaddr;
944 u64 acthd;
945 u32 fault_reg;
946 u64 faddr;
947 u32 rc_psmi; /* sleep state */
948 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
949 struct intel_instdone instdone;
950
951 struct drm_i915_error_context {
952 char comm[TASK_COMM_LEN];
953 pid_t pid;
954 u32 handle;
955 u32 hw_id;
956 int ban_score;
957 int active;
958 int guilty;
959 } context;
960
961 struct drm_i915_error_object {
962 u64 gtt_offset;
963 u64 gtt_size;
964 int page_count;
965 int unused;
966 u32 *pages[0];
967 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
968
969 struct drm_i915_error_object **user_bo;
970 long user_bo_count;
971
972 struct drm_i915_error_object *wa_ctx;
973
974 struct drm_i915_error_request {
975 long jiffies;
976 pid_t pid;
977 u32 context;
978 int ban_score;
979 u32 seqno;
980 u32 head;
981 u32 tail;
982 } *requests, execlist[2];
983
984 struct drm_i915_error_waiter {
985 char comm[TASK_COMM_LEN];
986 pid_t pid;
987 u32 seqno;
988 } *waiters;
989
990 struct {
991 u32 gfx_mode;
992 union {
993 u64 pdp[4];
994 u32 pp_dir_base;
995 };
996 } vm_info;
997 } engine[I915_NUM_ENGINES];
998
999 struct drm_i915_error_buffer {
1000 u32 size;
1001 u32 name;
1002 u32 rseqno[I915_NUM_ENGINES], wseqno;
1003 u64 gtt_offset;
1004 u32 read_domains;
1005 u32 write_domain;
1006 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
1007 u32 tiling:2;
1008 u32 dirty:1;
1009 u32 purgeable:1;
1010 u32 userptr:1;
1011 s32 engine:4;
1012 u32 cache_level:3;
1013 } *active_bo[I915_NUM_ENGINES], *pinned_bo;
1014 u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
1015 struct i915_address_space *active_vm[I915_NUM_ENGINES];
1016 };
1017
1018 enum i915_cache_level {
1019 I915_CACHE_NONE = 0,
1020 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
1021 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
1022 caches, eg sampler/render caches, and the
1023 large Last-Level-Cache. LLC is coherent with
1024 the CPU, but L3 is only visible to the GPU. */
1025 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
1026 };
1027
1028 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
1029
1030 enum fb_op_origin {
1031 ORIGIN_GTT,
1032 ORIGIN_CPU,
1033 ORIGIN_CS,
1034 ORIGIN_FLIP,
1035 ORIGIN_DIRTYFB,
1036 };
1037
1038 struct intel_fbc {
1039 /* This is always the inner lock when overlapping with struct_mutex and
1040 * it's the outer lock when overlapping with stolen_lock. */
1041 struct mutex lock;
1042 unsigned threshold;
1043 unsigned int possible_framebuffer_bits;
1044 unsigned int busy_bits;
1045 unsigned int visible_pipes_mask;
1046 struct intel_crtc *crtc;
1047
1048 struct drm_mm_node compressed_fb;
1049 struct drm_mm_node *compressed_llb;
1050
1051 bool false_color;
1052
1053 bool enabled;
1054 bool active;
1055
1056 bool underrun_detected;
1057 struct work_struct underrun_work;
1058
1059 struct intel_fbc_state_cache {
1060 struct i915_vma *vma;
1061
1062 struct {
1063 unsigned int mode_flags;
1064 uint32_t hsw_bdw_pixel_rate;
1065 } crtc;
1066
1067 struct {
1068 unsigned int rotation;
1069 int src_w;
1070 int src_h;
1071 bool visible;
1072 } plane;
1073
1074 struct {
1075 const struct drm_format_info *format;
1076 unsigned int stride;
1077 } fb;
1078 } state_cache;
1079
1080 struct intel_fbc_reg_params {
1081 struct i915_vma *vma;
1082
1083 struct {
1084 enum pipe pipe;
1085 enum plane plane;
1086 unsigned int fence_y_offset;
1087 } crtc;
1088
1089 struct {
1090 const struct drm_format_info *format;
1091 unsigned int stride;
1092 } fb;
1093
1094 int cfb_size;
1095 } params;
1096
1097 struct intel_fbc_work {
1098 bool scheduled;
1099 u32 scheduled_vblank;
1100 struct work_struct work;
1101 } work;
1102
1103 const char *no_fbc_reason;
1104 };
1105
1106 /*
1107 * HIGH_RR is the highest eDP panel refresh rate read from EDID
1108 * LOW_RR is the lowest eDP panel refresh rate found from EDID
1109 * parsing for same resolution.
1110 */
1111 enum drrs_refresh_rate_type {
1112 DRRS_HIGH_RR,
1113 DRRS_LOW_RR,
1114 DRRS_MAX_RR, /* RR count */
1115 };
1116
1117 enum drrs_support_type {
1118 DRRS_NOT_SUPPORTED = 0,
1119 STATIC_DRRS_SUPPORT = 1,
1120 SEAMLESS_DRRS_SUPPORT = 2
1121 };
1122
1123 struct intel_dp;
1124 struct i915_drrs {
1125 struct mutex mutex;
1126 struct delayed_work work;
1127 struct intel_dp *dp;
1128 unsigned busy_frontbuffer_bits;
1129 enum drrs_refresh_rate_type refresh_rate_type;
1130 enum drrs_support_type type;
1131 };
1132
1133 struct i915_psr {
1134 struct mutex lock;
1135 bool sink_support;
1136 bool source_ok;
1137 struct intel_dp *enabled;
1138 bool active;
1139 struct delayed_work work;
1140 unsigned busy_frontbuffer_bits;
1141 bool psr2_support;
1142 bool aux_frame_sync;
1143 bool link_standby;
1144 bool y_cord_support;
1145 bool colorimetry_support;
1146 bool alpm;
1147 };
1148
1149 enum intel_pch {
1150 PCH_NONE = 0, /* No PCH present */
1151 PCH_IBX, /* Ibexpeak PCH */
1152 PCH_CPT, /* Cougarpoint/Pantherpoint PCH */
1153 PCH_LPT, /* Lynxpoint/Wildcatpoint PCH */
1154 PCH_SPT, /* Sunrisepoint PCH */
1155 PCH_KBP, /* Kabypoint PCH */
1156 PCH_CNP, /* Cannonpoint PCH */
1157 PCH_NOP,
1158 };
1159
1160 enum intel_sbi_destination {
1161 SBI_ICLK,
1162 SBI_MPHY,
1163 };
1164
1165 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1166 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1167 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1168 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1169
1170 struct intel_fbdev;
1171 struct intel_fbc_work;
1172
1173 struct intel_gmbus {
1174 struct i2c_adapter adapter;
1175 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1176 u32 force_bit;
1177 u32 reg0;
1178 i915_reg_t gpio_reg;
1179 struct i2c_algo_bit_data bit_algo;
1180 struct drm_i915_private *dev_priv;
1181 };
1182
1183 struct i915_suspend_saved_registers {
1184 u32 saveDSPARB;
1185 u32 saveFBC_CONTROL;
1186 u32 saveCACHE_MODE_0;
1187 u32 saveMI_ARB_STATE;
1188 u32 saveSWF0[16];
1189 u32 saveSWF1[16];
1190 u32 saveSWF3[3];
1191 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1192 u32 savePCH_PORT_HOTPLUG;
1193 u16 saveGCDGMBUS;
1194 };
1195
1196 struct vlv_s0ix_state {
1197 /* GAM */
1198 u32 wr_watermark;
1199 u32 gfx_prio_ctrl;
1200 u32 arb_mode;
1201 u32 gfx_pend_tlb0;
1202 u32 gfx_pend_tlb1;
1203 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1204 u32 media_max_req_count;
1205 u32 gfx_max_req_count;
1206 u32 render_hwsp;
1207 u32 ecochk;
1208 u32 bsd_hwsp;
1209 u32 blt_hwsp;
1210 u32 tlb_rd_addr;
1211
1212 /* MBC */
1213 u32 g3dctl;
1214 u32 gsckgctl;
1215 u32 mbctl;
1216
1217 /* GCP */
1218 u32 ucgctl1;
1219 u32 ucgctl3;
1220 u32 rcgctl1;
1221 u32 rcgctl2;
1222 u32 rstctl;
1223 u32 misccpctl;
1224
1225 /* GPM */
1226 u32 gfxpause;
1227 u32 rpdeuhwtc;
1228 u32 rpdeuc;
1229 u32 ecobus;
1230 u32 pwrdwnupctl;
1231 u32 rp_down_timeout;
1232 u32 rp_deucsw;
1233 u32 rcubmabdtmr;
1234 u32 rcedata;
1235 u32 spare2gh;
1236
1237 /* Display 1 CZ domain */
1238 u32 gt_imr;
1239 u32 gt_ier;
1240 u32 pm_imr;
1241 u32 pm_ier;
1242 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1243
1244 /* GT SA CZ domain */
1245 u32 tilectl;
1246 u32 gt_fifoctl;
1247 u32 gtlc_wake_ctrl;
1248 u32 gtlc_survive;
1249 u32 pmwgicz;
1250
1251 /* Display 2 CZ domain */
1252 u32 gu_ctl0;
1253 u32 gu_ctl1;
1254 u32 pcbr;
1255 u32 clock_gate_dis2;
1256 };
1257
1258 struct intel_rps_ei {
1259 ktime_t ktime;
1260 u32 render_c0;
1261 u32 media_c0;
1262 };
1263
1264 struct intel_gen6_power_mgmt {
1265 /*
1266 * work, interrupts_enabled and pm_iir are protected by
1267 * dev_priv->irq_lock
1268 */
1269 struct work_struct work;
1270 bool interrupts_enabled;
1271 u32 pm_iir;
1272
1273 /* PM interrupt bits that should never be masked */
1274 u32 pm_intrmsk_mbz;
1275
1276 /* Frequencies are stored in potentially platform dependent multiples.
1277 * In other words, *_freq needs to be multiplied by X to be interesting.
1278 * Soft limits are those which are used for the dynamic reclocking done
1279 * by the driver (raise frequencies under heavy loads, and lower for
1280 * lighter loads). Hard limits are those imposed by the hardware.
1281 *
1282 * A distinction is made for overclocking, which is never enabled by
1283 * default, and is considered to be above the hard limit if it's
1284 * possible at all.
1285 */
1286 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1287 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1288 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1289 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1290 u8 min_freq; /* AKA RPn. Minimum frequency */
1291 u8 boost_freq; /* Frequency to request when wait boosting */
1292 u8 idle_freq; /* Frequency to request when we are idle */
1293 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1294 u8 rp1_freq; /* "less than" RP0 power/freqency */
1295 u8 rp0_freq; /* Non-overclocked max frequency. */
1296 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
1297
1298 u8 up_threshold; /* Current %busy required to uplock */
1299 u8 down_threshold; /* Current %busy required to downclock */
1300
1301 int last_adj;
1302 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1303
1304 bool enabled;
1305 struct delayed_work autoenable_work;
1306 atomic_t num_waiters;
1307 atomic_t boosts;
1308
1309 /* manual wa residency calculations */
1310 struct intel_rps_ei ei;
1311
1312 /*
1313 * Protects RPS/RC6 register access and PCU communication.
1314 * Must be taken after struct_mutex if nested. Note that
1315 * this lock may be held for long periods of time when
1316 * talking to hw - so only take it when talking to hw!
1317 */
1318 struct mutex hw_lock;
1319 };
1320
1321 /* defined intel_pm.c */
1322 extern spinlock_t mchdev_lock;
1323
1324 struct intel_ilk_power_mgmt {
1325 u8 cur_delay;
1326 u8 min_delay;
1327 u8 max_delay;
1328 u8 fmax;
1329 u8 fstart;
1330
1331 u64 last_count1;
1332 unsigned long last_time1;
1333 unsigned long chipset_power;
1334 u64 last_count2;
1335 u64 last_time2;
1336 unsigned long gfx_power;
1337 u8 corr;
1338
1339 int c_m;
1340 int r_t;
1341 };
1342
1343 struct drm_i915_private;
1344 struct i915_power_well;
1345
1346 struct i915_power_well_ops {
1347 /*
1348 * Synchronize the well's hw state to match the current sw state, for
1349 * example enable/disable it based on the current refcount. Called
1350 * during driver init and resume time, possibly after first calling
1351 * the enable/disable handlers.
1352 */
1353 void (*sync_hw)(struct drm_i915_private *dev_priv,
1354 struct i915_power_well *power_well);
1355 /*
1356 * Enable the well and resources that depend on it (for example
1357 * interrupts located on the well). Called after the 0->1 refcount
1358 * transition.
1359 */
1360 void (*enable)(struct drm_i915_private *dev_priv,
1361 struct i915_power_well *power_well);
1362 /*
1363 * Disable the well and resources that depend on it. Called after
1364 * the 1->0 refcount transition.
1365 */
1366 void (*disable)(struct drm_i915_private *dev_priv,
1367 struct i915_power_well *power_well);
1368 /* Returns the hw enabled state. */
1369 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1370 struct i915_power_well *power_well);
1371 };
1372
1373 /* Power well structure for haswell */
1374 struct i915_power_well {
1375 const char *name;
1376 bool always_on;
1377 /* power well enable/disable usage count */
1378 int count;
1379 /* cached hw enabled state */
1380 bool hw_enabled;
1381 u64 domains;
1382 /* unique identifier for this power well */
1383 unsigned long id;
1384 /*
1385 * Arbitraty data associated with this power well. Platform and power
1386 * well specific.
1387 */
1388 unsigned long data;
1389 const struct i915_power_well_ops *ops;
1390 };
1391
1392 struct i915_power_domains {
1393 /*
1394 * Power wells needed for initialization at driver init and suspend
1395 * time are on. They are kept on until after the first modeset.
1396 */
1397 bool init_power_on;
1398 bool initializing;
1399 int power_well_count;
1400
1401 struct mutex lock;
1402 int domain_use_count[POWER_DOMAIN_NUM];
1403 struct i915_power_well *power_wells;
1404 };
1405
1406 #define MAX_L3_SLICES 2
1407 struct intel_l3_parity {
1408 u32 *remap_info[MAX_L3_SLICES];
1409 struct work_struct error_work;
1410 int which_slice;
1411 };
1412
1413 struct i915_gem_mm {
1414 /** Memory allocator for GTT stolen memory */
1415 struct drm_mm stolen;
1416 /** Protects the usage of the GTT stolen memory allocator. This is
1417 * always the inner lock when overlapping with struct_mutex. */
1418 struct mutex stolen_lock;
1419
1420 /** List of all objects in gtt_space. Used to restore gtt
1421 * mappings on resume */
1422 struct list_head bound_list;
1423 /**
1424 * List of objects which are not bound to the GTT (thus
1425 * are idle and not used by the GPU). These objects may or may
1426 * not actually have any pages attached.
1427 */
1428 struct list_head unbound_list;
1429
1430 /** List of all objects in gtt_space, currently mmaped by userspace.
1431 * All objects within this list must also be on bound_list.
1432 */
1433 struct list_head userfault_list;
1434
1435 /**
1436 * List of objects which are pending destruction.
1437 */
1438 struct llist_head free_list;
1439 struct work_struct free_work;
1440
1441 /** Usable portion of the GTT for GEM */
1442 dma_addr_t stolen_base; /* limited to low memory (32-bit) */
1443
1444 /** PPGTT used for aliasing the PPGTT with the GTT */
1445 struct i915_hw_ppgtt *aliasing_ppgtt;
1446
1447 struct notifier_block oom_notifier;
1448 struct notifier_block vmap_notifier;
1449 struct shrinker shrinker;
1450
1451 /** LRU list of objects with fence regs on them. */
1452 struct list_head fence_list;
1453
1454 /**
1455 * Workqueue to fault in userptr pages, flushed by the execbuf
1456 * when required but otherwise left to userspace to try again
1457 * on EAGAIN.
1458 */
1459 struct workqueue_struct *userptr_wq;
1460
1461 u64 unordered_timeline;
1462
1463 /* the indicator for dispatch video commands on two BSD rings */
1464 atomic_t bsd_engine_dispatch_index;
1465
1466 /** Bit 6 swizzling required for X tiling */
1467 uint32_t bit_6_swizzle_x;
1468 /** Bit 6 swizzling required for Y tiling */
1469 uint32_t bit_6_swizzle_y;
1470
1471 /* accounting, useful for userland debugging */
1472 spinlock_t object_stat_lock;
1473 u64 object_memory;
1474 u32 object_count;
1475 };
1476
1477 struct drm_i915_error_state_buf {
1478 struct drm_i915_private *i915;
1479 unsigned bytes;
1480 unsigned size;
1481 int err;
1482 u8 *buf;
1483 loff_t start;
1484 loff_t pos;
1485 };
1486
1487 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1488 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1489
1490 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */
1491 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */
1492
1493 struct i915_gpu_error {
1494 /* For hangcheck timer */
1495 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1496 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1497
1498 struct delayed_work hangcheck_work;
1499
1500 /* For reset and error_state handling. */
1501 spinlock_t lock;
1502 /* Protected by the above dev->gpu_error.lock. */
1503 struct i915_gpu_state *first_error;
1504
1505 unsigned long missed_irq_rings;
1506
1507 /**
1508 * State variable controlling the reset flow and count
1509 *
1510 * This is a counter which gets incremented when reset is triggered,
1511 *
1512 * Before the reset commences, the I915_RESET_BACKOFF bit is set
1513 * meaning that any waiters holding onto the struct_mutex should
1514 * relinquish the lock immediately in order for the reset to start.
1515 *
1516 * If reset is not completed succesfully, the I915_WEDGE bit is
1517 * set meaning that hardware is terminally sour and there is no
1518 * recovery. All waiters on the reset_queue will be woken when
1519 * that happens.
1520 *
1521 * This counter is used by the wait_seqno code to notice that reset
1522 * event happened and it needs to restart the entire ioctl (since most
1523 * likely the seqno it waited for won't ever signal anytime soon).
1524 *
1525 * This is important for lock-free wait paths, where no contended lock
1526 * naturally enforces the correct ordering between the bail-out of the
1527 * waiter and the gpu reset work code.
1528 */
1529 unsigned long reset_count;
1530
1531 /**
1532 * flags: Control various stages of the GPU reset
1533 *
1534 * #I915_RESET_BACKOFF - When we start a reset, we want to stop any
1535 * other users acquiring the struct_mutex. To do this we set the
1536 * #I915_RESET_BACKOFF bit in the error flags when we detect a reset
1537 * and then check for that bit before acquiring the struct_mutex (in
1538 * i915_mutex_lock_interruptible()?). I915_RESET_BACKOFF serves a
1539 * secondary role in preventing two concurrent global reset attempts.
1540 *
1541 * #I915_RESET_HANDOFF - To perform the actual GPU reset, we need the
1542 * struct_mutex. We try to acquire the struct_mutex in the reset worker,
1543 * but it may be held by some long running waiter (that we cannot
1544 * interrupt without causing trouble). Once we are ready to do the GPU
1545 * reset, we set the I915_RESET_HANDOFF bit and wakeup any waiters. If
1546 * they already hold the struct_mutex and want to participate they can
1547 * inspect the bit and do the reset directly, otherwise the worker
1548 * waits for the struct_mutex.
1549 *
1550 * #I915_RESET_ENGINE[num_engines] - Since the driver doesn't need to
1551 * acquire the struct_mutex to reset an engine, we need an explicit
1552 * flag to prevent two concurrent reset attempts in the same engine.
1553 * As the number of engines continues to grow, allocate the flags from
1554 * the most significant bits.
1555 *
1556 * #I915_WEDGED - If reset fails and we can no longer use the GPU,
1557 * we set the #I915_WEDGED bit. Prior to command submission, e.g.
1558 * i915_gem_request_alloc(), this bit is checked and the sequence
1559 * aborted (with -EIO reported to userspace) if set.
1560 */
1561 unsigned long flags;
1562 #define I915_RESET_BACKOFF 0
1563 #define I915_RESET_HANDOFF 1
1564 #define I915_WEDGED (BITS_PER_LONG - 1)
1565 #define I915_RESET_ENGINE (I915_WEDGED - I915_NUM_ENGINES)
1566
1567 /** Number of times an engine has been reset */
1568 u32 reset_engine_count[I915_NUM_ENGINES];
1569
1570 /**
1571 * Waitqueue to signal when a hang is detected. Used to for waiters
1572 * to release the struct_mutex for the reset to procede.
1573 */
1574 wait_queue_head_t wait_queue;
1575
1576 /**
1577 * Waitqueue to signal when the reset has completed. Used by clients
1578 * that wait for dev_priv->mm.wedged to settle.
1579 */
1580 wait_queue_head_t reset_queue;
1581
1582 /* For missed irq/seqno simulation. */
1583 unsigned long test_irq_rings;
1584 };
1585
1586 enum modeset_restore {
1587 MODESET_ON_LID_OPEN,
1588 MODESET_DONE,
1589 MODESET_SUSPENDED,
1590 };
1591
1592 #define DP_AUX_A 0x40
1593 #define DP_AUX_B 0x10
1594 #define DP_AUX_C 0x20
1595 #define DP_AUX_D 0x30
1596
1597 #define DDC_PIN_B 0x05
1598 #define DDC_PIN_C 0x04
1599 #define DDC_PIN_D 0x06
1600
1601 struct ddi_vbt_port_info {
1602 /*
1603 * This is an index in the HDMI/DVI DDI buffer translation table.
1604 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1605 * populate this field.
1606 */
1607 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1608 uint8_t hdmi_level_shift;
1609
1610 uint8_t supports_dvi:1;
1611 uint8_t supports_hdmi:1;
1612 uint8_t supports_dp:1;
1613 uint8_t supports_edp:1;
1614
1615 uint8_t alternate_aux_channel;
1616 uint8_t alternate_ddc_pin;
1617
1618 uint8_t dp_boost_level;
1619 uint8_t hdmi_boost_level;
1620 };
1621
1622 enum psr_lines_to_wait {
1623 PSR_0_LINES_TO_WAIT = 0,
1624 PSR_1_LINE_TO_WAIT,
1625 PSR_4_LINES_TO_WAIT,
1626 PSR_8_LINES_TO_WAIT
1627 };
1628
1629 struct intel_vbt_data {
1630 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1631 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1632
1633 /* Feature bits */
1634 unsigned int int_tv_support:1;
1635 unsigned int lvds_dither:1;
1636 unsigned int lvds_vbt:1;
1637 unsigned int int_crt_support:1;
1638 unsigned int lvds_use_ssc:1;
1639 unsigned int display_clock_mode:1;
1640 unsigned int fdi_rx_polarity_inverted:1;
1641 unsigned int panel_type:4;
1642 int lvds_ssc_freq;
1643 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1644
1645 enum drrs_support_type drrs_type;
1646
1647 struct {
1648 int rate;
1649 int lanes;
1650 int preemphasis;
1651 int vswing;
1652 bool low_vswing;
1653 bool initialized;
1654 bool support;
1655 int bpp;
1656 struct edp_power_seq pps;
1657 } edp;
1658
1659 struct {
1660 bool full_link;
1661 bool require_aux_wakeup;
1662 int idle_frames;
1663 enum psr_lines_to_wait lines_to_wait;
1664 int tp1_wakeup_time;
1665 int tp2_tp3_wakeup_time;
1666 } psr;
1667
1668 struct {
1669 u16 pwm_freq_hz;
1670 bool present;
1671 bool active_low_pwm;
1672 u8 min_brightness; /* min_brightness/255 of max */
1673 u8 controller; /* brightness controller number */
1674 enum intel_backlight_type type;
1675 } backlight;
1676
1677 /* MIPI DSI */
1678 struct {
1679 u16 panel_id;
1680 struct mipi_config *config;
1681 struct mipi_pps_data *pps;
1682 u8 seq_version;
1683 u32 size;
1684 u8 *data;
1685 const u8 *sequence[MIPI_SEQ_MAX];
1686 } dsi;
1687
1688 int crt_ddc_pin;
1689
1690 int child_dev_num;
1691 union child_device_config *child_dev;
1692
1693 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1694 struct sdvo_device_mapping sdvo_mappings[2];
1695 };
1696
1697 enum intel_ddb_partitioning {
1698 INTEL_DDB_PART_1_2,
1699 INTEL_DDB_PART_5_6, /* IVB+ */
1700 };
1701
1702 struct intel_wm_level {
1703 bool enable;
1704 uint32_t pri_val;
1705 uint32_t spr_val;
1706 uint32_t cur_val;
1707 uint32_t fbc_val;
1708 };
1709
1710 struct ilk_wm_values {
1711 uint32_t wm_pipe[3];
1712 uint32_t wm_lp[3];
1713 uint32_t wm_lp_spr[3];
1714 uint32_t wm_linetime[3];
1715 bool enable_fbc_wm;
1716 enum intel_ddb_partitioning partitioning;
1717 };
1718
1719 struct g4x_pipe_wm {
1720 uint16_t plane[I915_MAX_PLANES];
1721 uint16_t fbc;
1722 };
1723
1724 struct g4x_sr_wm {
1725 uint16_t plane;
1726 uint16_t cursor;
1727 uint16_t fbc;
1728 };
1729
1730 struct vlv_wm_ddl_values {
1731 uint8_t plane[I915_MAX_PLANES];
1732 };
1733
1734 struct vlv_wm_values {
1735 struct g4x_pipe_wm pipe[3];
1736 struct g4x_sr_wm sr;
1737 struct vlv_wm_ddl_values ddl[3];
1738 uint8_t level;
1739 bool cxsr;
1740 };
1741
1742 struct g4x_wm_values {
1743 struct g4x_pipe_wm pipe[2];
1744 struct g4x_sr_wm sr;
1745 struct g4x_sr_wm hpll;
1746 bool cxsr;
1747 bool hpll_en;
1748 bool fbc_en;
1749 };
1750
1751 struct skl_ddb_entry {
1752 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1753 };
1754
1755 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1756 {
1757 return entry->end - entry->start;
1758 }
1759
1760 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1761 const struct skl_ddb_entry *e2)
1762 {
1763 if (e1->start == e2->start && e1->end == e2->end)
1764 return true;
1765
1766 return false;
1767 }
1768
1769 struct skl_ddb_allocation {
1770 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1771 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1772 };
1773
1774 struct skl_wm_values {
1775 unsigned dirty_pipes;
1776 struct skl_ddb_allocation ddb;
1777 };
1778
1779 struct skl_wm_level {
1780 bool plane_en;
1781 uint16_t plane_res_b;
1782 uint8_t plane_res_l;
1783 };
1784
1785 /*
1786 * This struct helps tracking the state needed for runtime PM, which puts the
1787 * device in PCI D3 state. Notice that when this happens, nothing on the
1788 * graphics device works, even register access, so we don't get interrupts nor
1789 * anything else.
1790 *
1791 * Every piece of our code that needs to actually touch the hardware needs to
1792 * either call intel_runtime_pm_get or call intel_display_power_get with the
1793 * appropriate power domain.
1794 *
1795 * Our driver uses the autosuspend delay feature, which means we'll only really
1796 * suspend if we stay with zero refcount for a certain amount of time. The
1797 * default value is currently very conservative (see intel_runtime_pm_enable), but
1798 * it can be changed with the standard runtime PM files from sysfs.
1799 *
1800 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1801 * goes back to false exactly before we reenable the IRQs. We use this variable
1802 * to check if someone is trying to enable/disable IRQs while they're supposed
1803 * to be disabled. This shouldn't happen and we'll print some error messages in
1804 * case it happens.
1805 *
1806 * For more, read the Documentation/power/runtime_pm.txt.
1807 */
1808 struct i915_runtime_pm {
1809 atomic_t wakeref_count;
1810 bool suspended;
1811 bool irqs_enabled;
1812 };
1813
1814 enum intel_pipe_crc_source {
1815 INTEL_PIPE_CRC_SOURCE_NONE,
1816 INTEL_PIPE_CRC_SOURCE_PLANE1,
1817 INTEL_PIPE_CRC_SOURCE_PLANE2,
1818 INTEL_PIPE_CRC_SOURCE_PF,
1819 INTEL_PIPE_CRC_SOURCE_PIPE,
1820 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1821 INTEL_PIPE_CRC_SOURCE_TV,
1822 INTEL_PIPE_CRC_SOURCE_DP_B,
1823 INTEL_PIPE_CRC_SOURCE_DP_C,
1824 INTEL_PIPE_CRC_SOURCE_DP_D,
1825 INTEL_PIPE_CRC_SOURCE_AUTO,
1826 INTEL_PIPE_CRC_SOURCE_MAX,
1827 };
1828
1829 struct intel_pipe_crc_entry {
1830 uint32_t frame;
1831 uint32_t crc[5];
1832 };
1833
1834 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1835 struct intel_pipe_crc {
1836 spinlock_t lock;
1837 bool opened; /* exclusive access to the result file */
1838 struct intel_pipe_crc_entry *entries;
1839 enum intel_pipe_crc_source source;
1840 int head, tail;
1841 wait_queue_head_t wq;
1842 int skipped;
1843 };
1844
1845 struct i915_frontbuffer_tracking {
1846 spinlock_t lock;
1847
1848 /*
1849 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1850 * scheduled flips.
1851 */
1852 unsigned busy_bits;
1853 unsigned flip_bits;
1854 };
1855
1856 struct i915_wa_reg {
1857 i915_reg_t addr;
1858 u32 value;
1859 /* bitmask representing WA bits */
1860 u32 mask;
1861 };
1862
1863 /*
1864 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1865 * allowing it for RCS as we don't foresee any requirement of having
1866 * a whitelist for other engines. When it is really required for
1867 * other engines then the limit need to be increased.
1868 */
1869 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1870
1871 struct i915_workarounds {
1872 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1873 u32 count;
1874 u32 hw_whitelist_count[I915_NUM_ENGINES];
1875 };
1876
1877 struct i915_virtual_gpu {
1878 bool active;
1879 };
1880
1881 /* used in computing the new watermarks state */
1882 struct intel_wm_config {
1883 unsigned int num_pipes_active;
1884 bool sprites_enabled;
1885 bool sprites_scaled;
1886 };
1887
1888 struct i915_oa_format {
1889 u32 format;
1890 int size;
1891 };
1892
1893 struct i915_oa_reg {
1894 i915_reg_t addr;
1895 u32 value;
1896 };
1897
1898 struct i915_perf_stream;
1899
1900 /**
1901 * struct i915_perf_stream_ops - the OPs to support a specific stream type
1902 */
1903 struct i915_perf_stream_ops {
1904 /**
1905 * @enable: Enables the collection of HW samples, either in response to
1906 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1907 * without `I915_PERF_FLAG_DISABLED`.
1908 */
1909 void (*enable)(struct i915_perf_stream *stream);
1910
1911 /**
1912 * @disable: Disables the collection of HW samples, either in response
1913 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1914 * the stream.
1915 */
1916 void (*disable)(struct i915_perf_stream *stream);
1917
1918 /**
1919 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1920 * once there is something ready to read() for the stream
1921 */
1922 void (*poll_wait)(struct i915_perf_stream *stream,
1923 struct file *file,
1924 poll_table *wait);
1925
1926 /**
1927 * @wait_unlocked: For handling a blocking read, wait until there is
1928 * something to ready to read() for the stream. E.g. wait on the same
1929 * wait queue that would be passed to poll_wait().
1930 */
1931 int (*wait_unlocked)(struct i915_perf_stream *stream);
1932
1933 /**
1934 * @read: Copy buffered metrics as records to userspace
1935 * **buf**: the userspace, destination buffer
1936 * **count**: the number of bytes to copy, requested by userspace
1937 * **offset**: zero at the start of the read, updated as the read
1938 * proceeds, it represents how many bytes have been copied so far and
1939 * the buffer offset for copying the next record.
1940 *
1941 * Copy as many buffered i915 perf samples and records for this stream
1942 * to userspace as will fit in the given buffer.
1943 *
1944 * Only write complete records; returning -%ENOSPC if there isn't room
1945 * for a complete record.
1946 *
1947 * Return any error condition that results in a short read such as
1948 * -%ENOSPC or -%EFAULT, even though these may be squashed before
1949 * returning to userspace.
1950 */
1951 int (*read)(struct i915_perf_stream *stream,
1952 char __user *buf,
1953 size_t count,
1954 size_t *offset);
1955
1956 /**
1957 * @destroy: Cleanup any stream specific resources.
1958 *
1959 * The stream will always be disabled before this is called.
1960 */
1961 void (*destroy)(struct i915_perf_stream *stream);
1962 };
1963
1964 /**
1965 * struct i915_perf_stream - state for a single open stream FD
1966 */
1967 struct i915_perf_stream {
1968 /**
1969 * @dev_priv: i915 drm device
1970 */
1971 struct drm_i915_private *dev_priv;
1972
1973 /**
1974 * @link: Links the stream into ``&drm_i915_private->streams``
1975 */
1976 struct list_head link;
1977
1978 /**
1979 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
1980 * properties given when opening a stream, representing the contents
1981 * of a single sample as read() by userspace.
1982 */
1983 u32 sample_flags;
1984
1985 /**
1986 * @sample_size: Considering the configured contents of a sample
1987 * combined with the required header size, this is the total size
1988 * of a single sample record.
1989 */
1990 int sample_size;
1991
1992 /**
1993 * @ctx: %NULL if measuring system-wide across all contexts or a
1994 * specific context that is being monitored.
1995 */
1996 struct i915_gem_context *ctx;
1997
1998 /**
1999 * @enabled: Whether the stream is currently enabled, considering
2000 * whether the stream was opened in a disabled state and based
2001 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
2002 */
2003 bool enabled;
2004
2005 /**
2006 * @ops: The callbacks providing the implementation of this specific
2007 * type of configured stream.
2008 */
2009 const struct i915_perf_stream_ops *ops;
2010 };
2011
2012 /**
2013 * struct i915_oa_ops - Gen specific implementation of an OA unit stream
2014 */
2015 struct i915_oa_ops {
2016 /**
2017 * @init_oa_buffer: Resets the head and tail pointers of the
2018 * circular buffer for periodic OA reports.
2019 *
2020 * Called when first opening a stream for OA metrics, but also may be
2021 * called in response to an OA buffer overflow or other error
2022 * condition.
2023 *
2024 * Note it may be necessary to clear the full OA buffer here as part of
2025 * maintaining the invariable that new reports must be written to
2026 * zeroed memory for us to be able to reliable detect if an expected
2027 * report has not yet landed in memory. (At least on Haswell the OA
2028 * buffer tail pointer is not synchronized with reports being visible
2029 * to the CPU)
2030 */
2031 void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
2032
2033 /**
2034 * @select_metric_set: The auto generated code that checks whether a
2035 * requested OA config is applicable to the system and if so sets up
2036 * the mux, oa and flex eu register config pointers according to the
2037 * current dev_priv->perf.oa.metrics_set.
2038 */
2039 int (*select_metric_set)(struct drm_i915_private *dev_priv);
2040
2041 /**
2042 * @enable_metric_set: Selects and applies any MUX configuration to set
2043 * up the Boolean and Custom (B/C) counters that are part of the
2044 * counter reports being sampled. May apply system constraints such as
2045 * disabling EU clock gating as required.
2046 */
2047 int (*enable_metric_set)(struct drm_i915_private *dev_priv);
2048
2049 /**
2050 * @disable_metric_set: Remove system constraints associated with using
2051 * the OA unit.
2052 */
2053 void (*disable_metric_set)(struct drm_i915_private *dev_priv);
2054
2055 /**
2056 * @oa_enable: Enable periodic sampling
2057 */
2058 void (*oa_enable)(struct drm_i915_private *dev_priv);
2059
2060 /**
2061 * @oa_disable: Disable periodic sampling
2062 */
2063 void (*oa_disable)(struct drm_i915_private *dev_priv);
2064
2065 /**
2066 * @read: Copy data from the circular OA buffer into a given userspace
2067 * buffer.
2068 */
2069 int (*read)(struct i915_perf_stream *stream,
2070 char __user *buf,
2071 size_t count,
2072 size_t *offset);
2073
2074 /**
2075 * @oa_hw_tail_read: read the OA tail pointer register
2076 *
2077 * In particular this enables us to share all the fiddly code for
2078 * handling the OA unit tail pointer race that affects multiple
2079 * generations.
2080 */
2081 u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
2082 };
2083
2084 struct intel_cdclk_state {
2085 unsigned int cdclk, vco, ref;
2086 };
2087
2088 struct drm_i915_private {
2089 struct drm_device drm;
2090
2091 struct kmem_cache *objects;
2092 struct kmem_cache *vmas;
2093 struct kmem_cache *requests;
2094 struct kmem_cache *dependencies;
2095 struct kmem_cache *priorities;
2096
2097 const struct intel_device_info info;
2098
2099 void __iomem *regs;
2100
2101 struct intel_uncore uncore;
2102
2103 struct i915_virtual_gpu vgpu;
2104
2105 struct intel_gvt *gvt;
2106
2107 struct intel_huc huc;
2108 struct intel_guc guc;
2109
2110 struct intel_csr csr;
2111
2112 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
2113
2114 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
2115 * controller on different i2c buses. */
2116 struct mutex gmbus_mutex;
2117
2118 /**
2119 * Base address of the gmbus and gpio block.
2120 */
2121 uint32_t gpio_mmio_base;
2122
2123 /* MMIO base address for MIPI regs */
2124 uint32_t mipi_mmio_base;
2125
2126 uint32_t psr_mmio_base;
2127
2128 uint32_t pps_mmio_base;
2129
2130 wait_queue_head_t gmbus_wait_queue;
2131
2132 struct pci_dev *bridge_dev;
2133 struct i915_gem_context *kernel_context;
2134 struct intel_engine_cs *engine[I915_NUM_ENGINES];
2135 struct i915_vma *semaphore;
2136
2137 struct drm_dma_handle *status_page_dmah;
2138 struct resource mch_res;
2139
2140 /* protects the irq masks */
2141 spinlock_t irq_lock;
2142
2143 /* protects the mmio flip data */
2144 spinlock_t mmio_flip_lock;
2145
2146 bool display_irqs_enabled;
2147
2148 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
2149 struct pm_qos_request pm_qos;
2150
2151 /* Sideband mailbox protection */
2152 struct mutex sb_lock;
2153
2154 /** Cached value of IMR to avoid reads in updating the bitfield */
2155 union {
2156 u32 irq_mask;
2157 u32 de_irq_mask[I915_MAX_PIPES];
2158 };
2159 u32 gt_irq_mask;
2160 u32 pm_imr;
2161 u32 pm_ier;
2162 u32 pm_rps_events;
2163 u32 pm_guc_events;
2164 u32 pipestat_irq_mask[I915_MAX_PIPES];
2165
2166 struct i915_hotplug hotplug;
2167 struct intel_fbc fbc;
2168 struct i915_drrs drrs;
2169 struct intel_opregion opregion;
2170 struct intel_vbt_data vbt;
2171
2172 bool preserve_bios_swizzle;
2173
2174 /* overlay */
2175 struct intel_overlay *overlay;
2176
2177 /* backlight registers and fields in struct intel_panel */
2178 struct mutex backlight_lock;
2179
2180 /* LVDS info */
2181 bool no_aux_handshake;
2182
2183 /* protects panel power sequencer state */
2184 struct mutex pps_mutex;
2185
2186 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
2187 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
2188
2189 unsigned int fsb_freq, mem_freq, is_ddr3;
2190 unsigned int skl_preferred_vco_freq;
2191 unsigned int max_cdclk_freq;
2192
2193 unsigned int max_dotclk_freq;
2194 unsigned int rawclk_freq;
2195 unsigned int hpll_freq;
2196 unsigned int czclk_freq;
2197
2198 struct {
2199 /*
2200 * The current logical cdclk state.
2201 * See intel_atomic_state.cdclk.logical
2202 *
2203 * For reading holding any crtc lock is sufficient,
2204 * for writing must hold all of them.
2205 */
2206 struct intel_cdclk_state logical;
2207 /*
2208 * The current actual cdclk state.
2209 * See intel_atomic_state.cdclk.actual
2210 */
2211 struct intel_cdclk_state actual;
2212 /* The current hardware cdclk state */
2213 struct intel_cdclk_state hw;
2214 } cdclk;
2215
2216 /**
2217 * wq - Driver workqueue for GEM.
2218 *
2219 * NOTE: Work items scheduled here are not allowed to grab any modeset
2220 * locks, for otherwise the flushing done in the pageflip code will
2221 * result in deadlocks.
2222 */
2223 struct workqueue_struct *wq;
2224
2225 /* Display functions */
2226 struct drm_i915_display_funcs display;
2227
2228 /* PCH chipset type */
2229 enum intel_pch pch_type;
2230 unsigned short pch_id;
2231
2232 unsigned long quirks;
2233
2234 enum modeset_restore modeset_restore;
2235 struct mutex modeset_restore_lock;
2236 struct drm_atomic_state *modeset_restore_state;
2237 struct drm_modeset_acquire_ctx reset_ctx;
2238
2239 struct list_head vm_list; /* Global list of all address spaces */
2240 struct i915_ggtt ggtt; /* VM representing the global address space */
2241
2242 struct i915_gem_mm mm;
2243 DECLARE_HASHTABLE(mm_structs, 7);
2244 struct mutex mm_lock;
2245
2246 /* Kernel Modesetting */
2247
2248 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
2249 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
2250 wait_queue_head_t pending_flip_queue;
2251
2252 #ifdef CONFIG_DEBUG_FS
2253 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
2254 #endif
2255
2256 /* dpll and cdclk state is protected by connection_mutex */
2257 int num_shared_dpll;
2258 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
2259 const struct intel_dpll_mgr *dpll_mgr;
2260
2261 /*
2262 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
2263 * Must be global rather than per dpll, because on some platforms
2264 * plls share registers.
2265 */
2266 struct mutex dpll_lock;
2267
2268 unsigned int active_crtcs;
2269 unsigned int min_pixclk[I915_MAX_PIPES];
2270
2271 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
2272
2273 struct i915_workarounds workarounds;
2274
2275 struct i915_frontbuffer_tracking fb_tracking;
2276
2277 struct intel_atomic_helper {
2278 struct llist_head free_list;
2279 struct work_struct free_work;
2280 } atomic_helper;
2281
2282 u16 orig_clock;
2283
2284 bool mchbar_need_disable;
2285
2286 struct intel_l3_parity l3_parity;
2287
2288 /* Cannot be determined by PCIID. You must always read a register. */
2289 u32 edram_cap;
2290
2291 /* gen6+ rps state */
2292 struct intel_gen6_power_mgmt rps;
2293
2294 /* ilk-only ips/rps state. Everything in here is protected by the global
2295 * mchdev_lock in intel_pm.c */
2296 struct intel_ilk_power_mgmt ips;
2297
2298 struct i915_power_domains power_domains;
2299
2300 struct i915_psr psr;
2301
2302 struct i915_gpu_error gpu_error;
2303
2304 struct drm_i915_gem_object *vlv_pctx;
2305
2306 #ifdef CONFIG_DRM_FBDEV_EMULATION
2307 /* list of fbdev register on this device */
2308 struct intel_fbdev *fbdev;
2309 struct work_struct fbdev_suspend_work;
2310 #endif
2311
2312 struct drm_property *broadcast_rgb_property;
2313 struct drm_property *force_audio_property;
2314
2315 /* hda/i915 audio component */
2316 struct i915_audio_component *audio_component;
2317 bool audio_component_registered;
2318 /**
2319 * av_mutex - mutex for audio/video sync
2320 *
2321 */
2322 struct mutex av_mutex;
2323
2324 struct {
2325 struct list_head list;
2326 struct llist_head free_list;
2327 struct work_struct free_work;
2328
2329 /* The hw wants to have a stable context identifier for the
2330 * lifetime of the context (for OA, PASID, faults, etc).
2331 * This is limited in execlists to 21 bits.
2332 */
2333 struct ida hw_ida;
2334 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
2335 } contexts;
2336
2337 u32 fdi_rx_config;
2338
2339 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
2340 u32 chv_phy_control;
2341 /*
2342 * Shadows for CHV DPLL_MD regs to keep the state
2343 * checker somewhat working in the presence hardware
2344 * crappiness (can't read out DPLL_MD for pipes B & C).
2345 */
2346 u32 chv_dpll_md[I915_MAX_PIPES];
2347 u32 bxt_phy_grc;
2348
2349 u32 suspend_count;
2350 bool suspended_to_idle;
2351 struct i915_suspend_saved_registers regfile;
2352 struct vlv_s0ix_state vlv_s0ix_state;
2353
2354 enum {
2355 I915_SAGV_UNKNOWN = 0,
2356 I915_SAGV_DISABLED,
2357 I915_SAGV_ENABLED,
2358 I915_SAGV_NOT_CONTROLLED
2359 } sagv_status;
2360
2361 struct {
2362 /*
2363 * Raw watermark latency values:
2364 * in 0.1us units for WM0,
2365 * in 0.5us units for WM1+.
2366 */
2367 /* primary */
2368 uint16_t pri_latency[5];
2369 /* sprite */
2370 uint16_t spr_latency[5];
2371 /* cursor */
2372 uint16_t cur_latency[5];
2373 /*
2374 * Raw watermark memory latency values
2375 * for SKL for all 8 levels
2376 * in 1us units.
2377 */
2378 uint16_t skl_latency[8];
2379
2380 /* current hardware state */
2381 union {
2382 struct ilk_wm_values hw;
2383 struct skl_wm_values skl_hw;
2384 struct vlv_wm_values vlv;
2385 struct g4x_wm_values g4x;
2386 };
2387
2388 uint8_t max_level;
2389
2390 /*
2391 * Should be held around atomic WM register writing; also
2392 * protects * intel_crtc->wm.active and
2393 * cstate->wm.need_postvbl_update.
2394 */
2395 struct mutex wm_mutex;
2396
2397 /*
2398 * Set during HW readout of watermarks/DDB. Some platforms
2399 * need to know when we're still using BIOS-provided values
2400 * (which we don't fully trust).
2401 */
2402 bool distrust_bios_wm;
2403 } wm;
2404
2405 struct i915_runtime_pm pm;
2406
2407 struct {
2408 bool initialized;
2409
2410 struct kobject *metrics_kobj;
2411 struct ctl_table_header *sysctl_header;
2412
2413 struct mutex lock;
2414 struct list_head streams;
2415
2416 struct {
2417 struct i915_perf_stream *exclusive_stream;
2418
2419 u32 specific_ctx_id;
2420
2421 struct hrtimer poll_check_timer;
2422 wait_queue_head_t poll_wq;
2423 bool pollin;
2424
2425 /**
2426 * For rate limiting any notifications of spurious
2427 * invalid OA reports
2428 */
2429 struct ratelimit_state spurious_report_rs;
2430
2431 bool periodic;
2432 int period_exponent;
2433 int timestamp_frequency;
2434
2435 int metrics_set;
2436
2437 const struct i915_oa_reg *mux_regs[6];
2438 int mux_regs_lens[6];
2439 int n_mux_configs;
2440
2441 const struct i915_oa_reg *b_counter_regs;
2442 int b_counter_regs_len;
2443 const struct i915_oa_reg *flex_regs;
2444 int flex_regs_len;
2445
2446 struct {
2447 struct i915_vma *vma;
2448 u8 *vaddr;
2449 u32 last_ctx_id;
2450 int format;
2451 int format_size;
2452
2453 /**
2454 * Locks reads and writes to all head/tail state
2455 *
2456 * Consider: the head and tail pointer state
2457 * needs to be read consistently from a hrtimer
2458 * callback (atomic context) and read() fop
2459 * (user context) with tail pointer updates
2460 * happening in atomic context and head updates
2461 * in user context and the (unlikely)
2462 * possibility of read() errors needing to
2463 * reset all head/tail state.
2464 *
2465 * Note: Contention or performance aren't
2466 * currently a significant concern here
2467 * considering the relatively low frequency of
2468 * hrtimer callbacks (5ms period) and that
2469 * reads typically only happen in response to a
2470 * hrtimer event and likely complete before the
2471 * next callback.
2472 *
2473 * Note: This lock is not held *while* reading
2474 * and copying data to userspace so the value
2475 * of head observed in htrimer callbacks won't
2476 * represent any partial consumption of data.
2477 */
2478 spinlock_t ptr_lock;
2479
2480 /**
2481 * One 'aging' tail pointer and one 'aged'
2482 * tail pointer ready to used for reading.
2483 *
2484 * Initial values of 0xffffffff are invalid
2485 * and imply that an update is required
2486 * (and should be ignored by an attempted
2487 * read)
2488 */
2489 struct {
2490 u32 offset;
2491 } tails[2];
2492
2493 /**
2494 * Index for the aged tail ready to read()
2495 * data up to.
2496 */
2497 unsigned int aged_tail_idx;
2498
2499 /**
2500 * A monotonic timestamp for when the current
2501 * aging tail pointer was read; used to
2502 * determine when it is old enough to trust.
2503 */
2504 u64 aging_timestamp;
2505
2506 /**
2507 * Although we can always read back the head
2508 * pointer register, we prefer to avoid
2509 * trusting the HW state, just to avoid any
2510 * risk that some hardware condition could
2511 * somehow bump the head pointer unpredictably
2512 * and cause us to forward the wrong OA buffer
2513 * data to userspace.
2514 */
2515 u32 head;
2516 } oa_buffer;
2517
2518 u32 gen7_latched_oastatus1;
2519 u32 ctx_oactxctrl_offset;
2520 u32 ctx_flexeu0_offset;
2521
2522 /**
2523 * The RPT_ID/reason field for Gen8+ includes a bit
2524 * to determine if the CTX ID in the report is valid
2525 * but the specific bit differs between Gen 8 and 9
2526 */
2527 u32 gen8_valid_ctx_bit;
2528
2529 struct i915_oa_ops ops;
2530 const struct i915_oa_format *oa_formats;
2531 int n_builtin_sets;
2532 } oa;
2533 } perf;
2534
2535 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2536 struct {
2537 void (*resume)(struct drm_i915_private *);
2538 void (*cleanup_engine)(struct intel_engine_cs *engine);
2539
2540 struct list_head timelines;
2541 struct i915_gem_timeline global_timeline;
2542 u32 active_requests;
2543
2544 /**
2545 * Is the GPU currently considered idle, or busy executing
2546 * userspace requests? Whilst idle, we allow runtime power
2547 * management to power down the hardware and display clocks.
2548 * In order to reduce the effect on performance, there
2549 * is a slight delay before we do so.
2550 */
2551 bool awake;
2552
2553 /**
2554 * We leave the user IRQ off as much as possible,
2555 * but this means that requests will finish and never
2556 * be retired once the system goes idle. Set a timer to
2557 * fire periodically while the ring is running. When it
2558 * fires, go retire requests.
2559 */
2560 struct delayed_work retire_work;
2561
2562 /**
2563 * When we detect an idle GPU, we want to turn on
2564 * powersaving features. So once we see that there
2565 * are no more requests outstanding and no more
2566 * arrive within a small period of time, we fire
2567 * off the idle_work.
2568 */
2569 struct delayed_work idle_work;
2570
2571 ktime_t last_init_time;
2572 } gt;
2573
2574 /* perform PHY state sanity checks? */
2575 bool chv_phy_assert[2];
2576
2577 bool ipc_enabled;
2578
2579 /* Used to save the pipe-to-encoder mapping for audio */
2580 struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2581
2582 /* necessary resource sharing with HDMI LPE audio driver. */
2583 struct {
2584 struct platform_device *platdev;
2585 int irq;
2586 } lpe_audio;
2587
2588 /*
2589 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2590 * will be rejected. Instead look for a better place.
2591 */
2592 };
2593
2594 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2595 {
2596 return container_of(dev, struct drm_i915_private, drm);
2597 }
2598
2599 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2600 {
2601 return to_i915(dev_get_drvdata(kdev));
2602 }
2603
2604 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2605 {
2606 return container_of(guc, struct drm_i915_private, guc);
2607 }
2608
2609 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2610 {
2611 return container_of(huc, struct drm_i915_private, huc);
2612 }
2613
2614 /* Simple iterator over all initialised engines */
2615 #define for_each_engine(engine__, dev_priv__, id__) \
2616 for ((id__) = 0; \
2617 (id__) < I915_NUM_ENGINES; \
2618 (id__)++) \
2619 for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2620
2621 /* Iterator over subset of engines selected by mask */
2622 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2623 for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask; \
2624 tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2625
2626 enum hdmi_force_audio {
2627 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2628 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2629 HDMI_AUDIO_AUTO, /* trust EDID */
2630 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2631 };
2632
2633 #define I915_GTT_OFFSET_NONE ((u32)-1)
2634
2635 /*
2636 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2637 * considered to be the frontbuffer for the given plane interface-wise. This
2638 * doesn't mean that the hw necessarily already scans it out, but that any
2639 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2640 *
2641 * We have one bit per pipe and per scanout plane type.
2642 */
2643 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2644 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2645 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2646 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2647 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2648 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2649 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2650 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2651 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2652 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2653 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2654 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2655
2656 /*
2657 * Optimised SGL iterator for GEM objects
2658 */
2659 static __always_inline struct sgt_iter {
2660 struct scatterlist *sgp;
2661 union {
2662 unsigned long pfn;
2663 dma_addr_t dma;
2664 };
2665 unsigned int curr;
2666 unsigned int max;
2667 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2668 struct sgt_iter s = { .sgp = sgl };
2669
2670 if (s.sgp) {
2671 s.max = s.curr = s.sgp->offset;
2672 s.max += s.sgp->length;
2673 if (dma)
2674 s.dma = sg_dma_address(s.sgp);
2675 else
2676 s.pfn = page_to_pfn(sg_page(s.sgp));
2677 }
2678
2679 return s;
2680 }
2681
2682 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2683 {
2684 ++sg;
2685 if (unlikely(sg_is_chain(sg)))
2686 sg = sg_chain_ptr(sg);
2687 return sg;
2688 }
2689
2690 /**
2691 * __sg_next - return the next scatterlist entry in a list
2692 * @sg: The current sg entry
2693 *
2694 * Description:
2695 * If the entry is the last, return NULL; otherwise, step to the next
2696 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2697 * otherwise just return the pointer to the current element.
2698 **/
2699 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2700 {
2701 #ifdef CONFIG_DEBUG_SG
2702 BUG_ON(sg->sg_magic != SG_MAGIC);
2703 #endif
2704 return sg_is_last(sg) ? NULL : ____sg_next(sg);
2705 }
2706
2707 /**
2708 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2709 * @__dmap: DMA address (output)
2710 * @__iter: 'struct sgt_iter' (iterator state, internal)
2711 * @__sgt: sg_table to iterate over (input)
2712 */
2713 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2714 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2715 ((__dmap) = (__iter).dma + (__iter).curr); \
2716 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2717 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2718
2719 /**
2720 * for_each_sgt_page - iterate over the pages of the given sg_table
2721 * @__pp: page pointer (output)
2722 * @__iter: 'struct sgt_iter' (iterator state, internal)
2723 * @__sgt: sg_table to iterate over (input)
2724 */
2725 #define for_each_sgt_page(__pp, __iter, __sgt) \
2726 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2727 ((__pp) = (__iter).pfn == 0 ? NULL : \
2728 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2729 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2730 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2731
2732 static inline const struct intel_device_info *
2733 intel_info(const struct drm_i915_private *dev_priv)
2734 {
2735 return &dev_priv->info;
2736 }
2737
2738 #define INTEL_INFO(dev_priv) intel_info((dev_priv))
2739
2740 #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen)
2741 #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id)
2742
2743 #define REVID_FOREVER 0xff
2744 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision)
2745
2746 #define GEN_FOREVER (0)
2747 /*
2748 * Returns true if Gen is in inclusive range [Start, End].
2749 *
2750 * Use GEN_FOREVER for unbound start and or end.
2751 */
2752 #define IS_GEN(dev_priv, s, e) ({ \
2753 unsigned int __s = (s), __e = (e); \
2754 BUILD_BUG_ON(!__builtin_constant_p(s)); \
2755 BUILD_BUG_ON(!__builtin_constant_p(e)); \
2756 if ((__s) != GEN_FOREVER) \
2757 __s = (s) - 1; \
2758 if ((__e) == GEN_FOREVER) \
2759 __e = BITS_PER_LONG - 1; \
2760 else \
2761 __e = (e) - 1; \
2762 !!((dev_priv)->info.gen_mask & GENMASK((__e), (__s))); \
2763 })
2764
2765 /*
2766 * Return true if revision is in range [since,until] inclusive.
2767 *
2768 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2769 */
2770 #define IS_REVID(p, since, until) \
2771 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2772
2773 #define IS_I830(dev_priv) ((dev_priv)->info.platform == INTEL_I830)
2774 #define IS_I845G(dev_priv) ((dev_priv)->info.platform == INTEL_I845G)
2775 #define IS_I85X(dev_priv) ((dev_priv)->info.platform == INTEL_I85X)
2776 #define IS_I865G(dev_priv) ((dev_priv)->info.platform == INTEL_I865G)
2777 #define IS_I915G(dev_priv) ((dev_priv)->info.platform == INTEL_I915G)
2778 #define IS_I915GM(dev_priv) ((dev_priv)->info.platform == INTEL_I915GM)
2779 #define IS_I945G(dev_priv) ((dev_priv)->info.platform == INTEL_I945G)
2780 #define IS_I945GM(dev_priv) ((dev_priv)->info.platform == INTEL_I945GM)
2781 #define IS_I965G(dev_priv) ((dev_priv)->info.platform == INTEL_I965G)
2782 #define IS_I965GM(dev_priv) ((dev_priv)->info.platform == INTEL_I965GM)
2783 #define IS_G45(dev_priv) ((dev_priv)->info.platform == INTEL_G45)
2784 #define IS_GM45(dev_priv) ((dev_priv)->info.platform == INTEL_GM45)
2785 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv))
2786 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001)
2787 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011)
2788 #define IS_PINEVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_PINEVIEW)
2789 #define IS_G33(dev_priv) ((dev_priv)->info.platform == INTEL_G33)
2790 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046)
2791 #define IS_IVYBRIDGE(dev_priv) ((dev_priv)->info.platform == INTEL_IVYBRIDGE)
2792 #define IS_IVB_GT1(dev_priv) (INTEL_DEVID(dev_priv) == 0x0156 || \
2793 INTEL_DEVID(dev_priv) == 0x0152 || \
2794 INTEL_DEVID(dev_priv) == 0x015a)
2795 #define IS_VALLEYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_VALLEYVIEW)
2796 #define IS_CHERRYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_CHERRYVIEW)
2797 #define IS_HASWELL(dev_priv) ((dev_priv)->info.platform == INTEL_HASWELL)
2798 #define IS_BROADWELL(dev_priv) ((dev_priv)->info.platform == INTEL_BROADWELL)
2799 #define IS_SKYLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_SKYLAKE)
2800 #define IS_BROXTON(dev_priv) ((dev_priv)->info.platform == INTEL_BROXTON)
2801 #define IS_KABYLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_KABYLAKE)
2802 #define IS_GEMINILAKE(dev_priv) ((dev_priv)->info.platform == INTEL_GEMINILAKE)
2803 #define IS_COFFEELAKE(dev_priv) ((dev_priv)->info.platform == INTEL_COFFEELAKE)
2804 #define IS_CANNONLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_CANNONLAKE)
2805 #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile)
2806 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2807 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2808 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \
2809 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \
2810 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \
2811 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2812 /* ULX machines are also considered ULT. */
2813 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \
2814 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2815 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \
2816 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2817 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \
2818 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2819 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \
2820 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2821 /* ULX machines are also considered ULT. */
2822 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \
2823 INTEL_DEVID(dev_priv) == 0x0A1E)
2824 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \
2825 INTEL_DEVID(dev_priv) == 0x1913 || \
2826 INTEL_DEVID(dev_priv) == 0x1916 || \
2827 INTEL_DEVID(dev_priv) == 0x1921 || \
2828 INTEL_DEVID(dev_priv) == 0x1926)
2829 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \
2830 INTEL_DEVID(dev_priv) == 0x1915 || \
2831 INTEL_DEVID(dev_priv) == 0x191E)
2832 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \
2833 INTEL_DEVID(dev_priv) == 0x5913 || \
2834 INTEL_DEVID(dev_priv) == 0x5916 || \
2835 INTEL_DEVID(dev_priv) == 0x5921 || \
2836 INTEL_DEVID(dev_priv) == 0x5926)
2837 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \
2838 INTEL_DEVID(dev_priv) == 0x5915 || \
2839 INTEL_DEVID(dev_priv) == 0x591E)
2840 #define IS_SKL_GT2(dev_priv) (IS_SKYLAKE(dev_priv) && \
2841 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0010)
2842 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \
2843 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2844 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \
2845 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0030)
2846 #define IS_KBL_GT2(dev_priv) (IS_KABYLAKE(dev_priv) && \
2847 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0010)
2848 #define IS_KBL_GT3(dev_priv) (IS_KABYLAKE(dev_priv) && \
2849 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2850 #define IS_CFL_ULT(dev_priv) (IS_COFFEELAKE(dev_priv) && \
2851 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2852
2853 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2854
2855 #define SKL_REVID_A0 0x0
2856 #define SKL_REVID_B0 0x1
2857 #define SKL_REVID_C0 0x2
2858 #define SKL_REVID_D0 0x3
2859 #define SKL_REVID_E0 0x4
2860 #define SKL_REVID_F0 0x5
2861 #define SKL_REVID_G0 0x6
2862 #define SKL_REVID_H0 0x7
2863
2864 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2865
2866 #define BXT_REVID_A0 0x0
2867 #define BXT_REVID_A1 0x1
2868 #define BXT_REVID_B0 0x3
2869 #define BXT_REVID_B_LAST 0x8
2870 #define BXT_REVID_C0 0x9
2871
2872 #define IS_BXT_REVID(dev_priv, since, until) \
2873 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2874
2875 #define KBL_REVID_A0 0x0
2876 #define KBL_REVID_B0 0x1
2877 #define KBL_REVID_C0 0x2
2878 #define KBL_REVID_D0 0x3
2879 #define KBL_REVID_E0 0x4
2880
2881 #define IS_KBL_REVID(dev_priv, since, until) \
2882 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2883
2884 #define GLK_REVID_A0 0x0
2885 #define GLK_REVID_A1 0x1
2886
2887 #define IS_GLK_REVID(dev_priv, since, until) \
2888 (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2889
2890 #define CNL_REVID_A0 0x0
2891 #define CNL_REVID_B0 0x1
2892
2893 #define IS_CNL_REVID(p, since, until) \
2894 (IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2895
2896 /*
2897 * The genX designation typically refers to the render engine, so render
2898 * capability related checks should use IS_GEN, while display and other checks
2899 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2900 * chips, etc.).
2901 */
2902 #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1)))
2903 #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2)))
2904 #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3)))
2905 #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4)))
2906 #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5)))
2907 #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6)))
2908 #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7)))
2909 #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8)))
2910 #define IS_GEN10(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(9)))
2911
2912 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp)
2913 #define IS_GEN9_LP(dev_priv) (IS_GEN9(dev_priv) && IS_LP(dev_priv))
2914 #define IS_GEN9_BC(dev_priv) (IS_GEN9(dev_priv) && !IS_LP(dev_priv))
2915
2916 #define ENGINE_MASK(id) BIT(id)
2917 #define RENDER_RING ENGINE_MASK(RCS)
2918 #define BSD_RING ENGINE_MASK(VCS)
2919 #define BLT_RING ENGINE_MASK(BCS)
2920 #define VEBOX_RING ENGINE_MASK(VECS)
2921 #define BSD2_RING ENGINE_MASK(VCS2)
2922 #define ALL_ENGINES (~0)
2923
2924 #define HAS_ENGINE(dev_priv, id) \
2925 (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
2926
2927 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
2928 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
2929 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
2930 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
2931
2932 #define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc)
2933 #define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop)
2934 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED))
2935 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \
2936 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
2937
2938 #define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical)
2939
2940 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
2941 ((dev_priv)->info.has_logical_ring_contexts)
2942 #define USES_PPGTT(dev_priv) (i915.enable_ppgtt)
2943 #define USES_FULL_PPGTT(dev_priv) (i915.enable_ppgtt >= 2)
2944 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915.enable_ppgtt == 3)
2945
2946 #define HAS_OVERLAY(dev_priv) ((dev_priv)->info.has_overlay)
2947 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
2948 ((dev_priv)->info.overlay_needs_physical)
2949
2950 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2951 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv))
2952
2953 /* WaRsDisableCoarsePowerGating:skl,bxt */
2954 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2955 (IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
2956
2957 /*
2958 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2959 * even when in MSI mode. This results in spurious interrupt warnings if the
2960 * legacy irq no. is shared with another device. The kernel then disables that
2961 * interrupt source and so prevents the other device from working properly.
2962 */
2963 #define HAS_AUX_IRQ(dev_priv) ((dev_priv)->info.gen >= 5)
2964 #define HAS_GMBUS_IRQ(dev_priv) ((dev_priv)->info.has_gmbus_irq)
2965
2966 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2967 * rows, which changed the alignment requirements and fence programming.
2968 */
2969 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
2970 !(IS_I915G(dev_priv) || \
2971 IS_I915GM(dev_priv)))
2972 #define SUPPORTS_TV(dev_priv) ((dev_priv)->info.supports_tv)
2973 #define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.has_hotplug)
2974
2975 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2)
2976 #define HAS_PIPE_CXSR(dev_priv) ((dev_priv)->info.has_pipe_cxsr)
2977 #define HAS_FBC(dev_priv) ((dev_priv)->info.has_fbc)
2978 #define HAS_CUR_FBC(dev_priv) (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_INFO(dev_priv)->gen >= 7)
2979
2980 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
2981
2982 #define HAS_DP_MST(dev_priv) ((dev_priv)->info.has_dp_mst)
2983
2984 #define HAS_DDI(dev_priv) ((dev_priv)->info.has_ddi)
2985 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
2986 #define HAS_PSR(dev_priv) ((dev_priv)->info.has_psr)
2987 #define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6)
2988 #define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p)
2989
2990 #define HAS_CSR(dev_priv) ((dev_priv)->info.has_csr)
2991
2992 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
2993 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
2994
2995 /*
2996 * For now, anything with a GuC requires uCode loading, and then supports
2997 * command submission once loaded. But these are logically independent
2998 * properties, so we have separate macros to test them.
2999 */
3000 #define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc)
3001 #define HAS_GUC_CT(dev_priv) ((dev_priv)->info.has_guc_ct)
3002 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3003 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv))
3004 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3005
3006 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
3007
3008 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu)
3009
3010 #define INTEL_PCH_DEVICE_ID_MASK 0xff80
3011 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
3012 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
3013 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
3014 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
3015 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
3016 #define INTEL_PCH_WPT_DEVICE_ID_TYPE 0x8c80
3017 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE 0x9c80
3018 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
3019 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
3020 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA280
3021 #define INTEL_PCH_CNP_DEVICE_ID_TYPE 0xA300
3022 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE 0x9D80
3023 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
3024 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
3025 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
3026
3027 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
3028 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
3029 #define HAS_PCH_CNP_LP(dev_priv) \
3030 ((dev_priv)->pch_id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
3031 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
3032 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
3033 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
3034 #define HAS_PCH_LPT_LP(dev_priv) \
3035 ((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
3036 (dev_priv)->pch_id == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
3037 #define HAS_PCH_LPT_H(dev_priv) \
3038 ((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
3039 (dev_priv)->pch_id == INTEL_PCH_WPT_DEVICE_ID_TYPE)
3040 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
3041 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
3042 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
3043 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
3044
3045 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
3046
3047 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
3048
3049 /* DPF == dynamic parity feature */
3050 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
3051 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
3052 2 : HAS_L3_DPF(dev_priv))
3053
3054 #define GT_FREQUENCY_MULTIPLIER 50
3055 #define GEN9_FREQ_SCALER 3
3056
3057 #include "i915_trace.h"
3058
3059 static inline bool intel_vtd_active(void)
3060 {
3061 #ifdef CONFIG_INTEL_IOMMU
3062 if (intel_iommu_gfx_mapped)
3063 return true;
3064 #endif
3065 return false;
3066 }
3067
3068 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
3069 {
3070 return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
3071 }
3072
3073 static inline bool
3074 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
3075 {
3076 return IS_BROXTON(dev_priv) && intel_vtd_active();
3077 }
3078
3079 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
3080 int enable_ppgtt);
3081
3082 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
3083
3084 /* i915_drv.c */
3085 void __printf(3, 4)
3086 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
3087 const char *fmt, ...);
3088
3089 #define i915_report_error(dev_priv, fmt, ...) \
3090 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
3091
3092 #ifdef CONFIG_COMPAT
3093 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
3094 unsigned long arg);
3095 #else
3096 #define i915_compat_ioctl NULL
3097 #endif
3098 extern const struct dev_pm_ops i915_pm_ops;
3099
3100 extern int i915_driver_load(struct pci_dev *pdev,
3101 const struct pci_device_id *ent);
3102 extern void i915_driver_unload(struct drm_device *dev);
3103 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
3104 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
3105 extern void i915_reset(struct drm_i915_private *dev_priv);
3106 extern int i915_reset_engine(struct intel_engine_cs *engine);
3107 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
3108 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
3109 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
3110 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
3111 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
3112 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
3113 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
3114 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
3115 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
3116
3117 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
3118 int intel_engines_init(struct drm_i915_private *dev_priv);
3119
3120 /* intel_hotplug.c */
3121 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
3122 u32 pin_mask, u32 long_mask);
3123 void intel_hpd_init(struct drm_i915_private *dev_priv);
3124 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
3125 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
3126 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
3127 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3128 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3129
3130 /* i915_irq.c */
3131 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
3132 {
3133 unsigned long delay;
3134
3135 if (unlikely(!i915.enable_hangcheck))
3136 return;
3137
3138 /* Don't continually defer the hangcheck so that it is always run at
3139 * least once after work has been scheduled on any ring. Otherwise,
3140 * we will ignore a hung ring if a second ring is kept busy.
3141 */
3142
3143 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
3144 queue_delayed_work(system_long_wq,
3145 &dev_priv->gpu_error.hangcheck_work, delay);
3146 }
3147
3148 __printf(3, 4)
3149 void i915_handle_error(struct drm_i915_private *dev_priv,
3150 u32 engine_mask,
3151 const char *fmt, ...);
3152
3153 extern void intel_irq_init(struct drm_i915_private *dev_priv);
3154 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
3155 int intel_irq_install(struct drm_i915_private *dev_priv);
3156 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
3157
3158 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3159 {
3160 return dev_priv->gvt;
3161 }
3162
3163 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3164 {
3165 return dev_priv->vgpu.active;
3166 }
3167
3168 void
3169 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3170 u32 status_mask);
3171
3172 void
3173 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3174 u32 status_mask);
3175
3176 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3177 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3178 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3179 uint32_t mask,
3180 uint32_t bits);
3181 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3182 uint32_t interrupt_mask,
3183 uint32_t enabled_irq_mask);
3184 static inline void
3185 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3186 {
3187 ilk_update_display_irq(dev_priv, bits, bits);
3188 }
3189 static inline void
3190 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3191 {
3192 ilk_update_display_irq(dev_priv, bits, 0);
3193 }
3194 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3195 enum pipe pipe,
3196 uint32_t interrupt_mask,
3197 uint32_t enabled_irq_mask);
3198 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3199 enum pipe pipe, uint32_t bits)
3200 {
3201 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3202 }
3203 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3204 enum pipe pipe, uint32_t bits)
3205 {
3206 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3207 }
3208 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3209 uint32_t interrupt_mask,
3210 uint32_t enabled_irq_mask);
3211 static inline void
3212 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3213 {
3214 ibx_display_interrupt_update(dev_priv, bits, bits);
3215 }
3216 static inline void
3217 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3218 {
3219 ibx_display_interrupt_update(dev_priv, bits, 0);
3220 }
3221
3222 /* i915_gem.c */
3223 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3224 struct drm_file *file_priv);
3225 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3226 struct drm_file *file_priv);
3227 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3228 struct drm_file *file_priv);
3229 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3230 struct drm_file *file_priv);
3231 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3232 struct drm_file *file_priv);
3233 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3234 struct drm_file *file_priv);
3235 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3236 struct drm_file *file_priv);
3237 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3238 struct drm_file *file_priv);
3239 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3240 struct drm_file *file_priv);
3241 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3242 struct drm_file *file_priv);
3243 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3244 struct drm_file *file);
3245 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3246 struct drm_file *file);
3247 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3248 struct drm_file *file_priv);
3249 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3250 struct drm_file *file_priv);
3251 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
3252 struct drm_file *file_priv);
3253 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
3254 struct drm_file *file_priv);
3255 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3256 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
3257 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3258 struct drm_file *file);
3259 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3260 struct drm_file *file_priv);
3261 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3262 struct drm_file *file_priv);
3263 void i915_gem_sanitize(struct drm_i915_private *i915);
3264 int i915_gem_load_init(struct drm_i915_private *dev_priv);
3265 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv);
3266 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3267 int i915_gem_freeze(struct drm_i915_private *dev_priv);
3268 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3269
3270 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
3271 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3272 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3273 const struct drm_i915_gem_object_ops *ops);
3274 struct drm_i915_gem_object *
3275 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
3276 struct drm_i915_gem_object *
3277 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
3278 const void *data, size_t size);
3279 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3280 void i915_gem_free_object(struct drm_gem_object *obj);
3281
3282 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
3283 {
3284 /* A single pass should suffice to release all the freed objects (along
3285 * most call paths) , but be a little more paranoid in that freeing
3286 * the objects does take a little amount of time, during which the rcu
3287 * callbacks could have added new objects into the freed list, and
3288 * armed the work again.
3289 */
3290 do {
3291 rcu_barrier();
3292 } while (flush_work(&i915->mm.free_work));
3293 }
3294
3295 struct i915_vma * __must_check
3296 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3297 const struct i915_ggtt_view *view,
3298 u64 size,
3299 u64 alignment,
3300 u64 flags);
3301
3302 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3303 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3304
3305 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3306
3307 static inline int __sg_page_count(const struct scatterlist *sg)
3308 {
3309 return sg->length >> PAGE_SHIFT;
3310 }
3311
3312 struct scatterlist *
3313 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3314 unsigned int n, unsigned int *offset);
3315
3316 struct page *
3317 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3318 unsigned int n);
3319
3320 struct page *
3321 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3322 unsigned int n);
3323
3324 dma_addr_t
3325 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3326 unsigned long n);
3327
3328 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3329 struct sg_table *pages);
3330 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3331
3332 static inline int __must_check
3333 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3334 {
3335 might_lock(&obj->mm.lock);
3336
3337 if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3338 return 0;
3339
3340 return __i915_gem_object_get_pages(obj);
3341 }
3342
3343 static inline void
3344 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3345 {
3346 GEM_BUG_ON(!obj->mm.pages);
3347
3348 atomic_inc(&obj->mm.pages_pin_count);
3349 }
3350
3351 static inline bool
3352 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3353 {
3354 return atomic_read(&obj->mm.pages_pin_count);
3355 }
3356
3357 static inline void
3358 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3359 {
3360 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3361 GEM_BUG_ON(!obj->mm.pages);
3362
3363 atomic_dec(&obj->mm.pages_pin_count);
3364 }
3365
3366 static inline void
3367 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3368 {
3369 __i915_gem_object_unpin_pages(obj);
3370 }
3371
3372 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3373 I915_MM_NORMAL = 0,
3374 I915_MM_SHRINKER
3375 };
3376
3377 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3378 enum i915_mm_subclass subclass);
3379 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3380
3381 enum i915_map_type {
3382 I915_MAP_WB = 0,
3383 I915_MAP_WC,
3384 };
3385
3386 /**
3387 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3388 * @obj: the object to map into kernel address space
3389 * @type: the type of mapping, used to select pgprot_t
3390 *
3391 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3392 * pages and then returns a contiguous mapping of the backing storage into
3393 * the kernel address space. Based on the @type of mapping, the PTE will be
3394 * set to either WriteBack or WriteCombine (via pgprot_t).
3395 *
3396 * The caller is responsible for calling i915_gem_object_unpin_map() when the
3397 * mapping is no longer required.
3398 *
3399 * Returns the pointer through which to access the mapped object, or an
3400 * ERR_PTR() on error.
3401 */
3402 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3403 enum i915_map_type type);
3404
3405 /**
3406 * i915_gem_object_unpin_map - releases an earlier mapping
3407 * @obj: the object to unmap
3408 *
3409 * After pinning the object and mapping its pages, once you are finished
3410 * with your access, call i915_gem_object_unpin_map() to release the pin
3411 * upon the mapping. Once the pin count reaches zero, that mapping may be
3412 * removed.
3413 */
3414 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3415 {
3416 i915_gem_object_unpin_pages(obj);
3417 }
3418
3419 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3420 unsigned int *needs_clflush);
3421 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3422 unsigned int *needs_clflush);
3423 #define CLFLUSH_BEFORE BIT(0)
3424 #define CLFLUSH_AFTER BIT(1)
3425 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER)
3426
3427 static inline void
3428 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3429 {
3430 i915_gem_object_unpin_pages(obj);
3431 }
3432
3433 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3434 void i915_vma_move_to_active(struct i915_vma *vma,
3435 struct drm_i915_gem_request *req,
3436 unsigned int flags);
3437 int i915_gem_dumb_create(struct drm_file *file_priv,
3438 struct drm_device *dev,
3439 struct drm_mode_create_dumb *args);
3440 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3441 uint32_t handle, uint64_t *offset);
3442 int i915_gem_mmap_gtt_version(void);
3443
3444 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3445 struct drm_i915_gem_object *new,
3446 unsigned frontbuffer_bits);
3447
3448 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3449
3450 struct drm_i915_gem_request *
3451 i915_gem_find_active_request(struct intel_engine_cs *engine);
3452
3453 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3454
3455 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3456 {
3457 return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3458 }
3459
3460 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3461 {
3462 return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3463 }
3464
3465 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3466 {
3467 return unlikely(test_bit(I915_WEDGED, &error->flags));
3468 }
3469
3470 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3471 {
3472 return i915_reset_backoff(error) | i915_terminally_wedged(error);
3473 }
3474
3475 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3476 {
3477 return READ_ONCE(error->reset_count);
3478 }
3479
3480 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3481 struct intel_engine_cs *engine)
3482 {
3483 return READ_ONCE(error->reset_engine_count[engine->id]);
3484 }
3485
3486 struct drm_i915_gem_request *
3487 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3488 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3489 void i915_gem_reset(struct drm_i915_private *dev_priv);
3490 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3491 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3492 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3493 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3494 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3495 struct drm_i915_gem_request *request);
3496
3497 void i915_gem_init_mmio(struct drm_i915_private *i915);
3498 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3499 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3500 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3501 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3502 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3503 unsigned int flags);
3504 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3505 void i915_gem_resume(struct drm_i915_private *dev_priv);
3506 int i915_gem_fault(struct vm_fault *vmf);
3507 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3508 unsigned int flags,
3509 long timeout,
3510 struct intel_rps_client *rps);
3511 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3512 unsigned int flags,
3513 int priority);
3514 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3515
3516 int __must_check
3517 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3518 int __must_check
3519 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3520 int __must_check
3521 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3522 struct i915_vma * __must_check
3523 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3524 u32 alignment,
3525 const struct i915_ggtt_view *view);
3526 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3527 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3528 int align);
3529 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3530 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3531
3532 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3533 enum i915_cache_level cache_level);
3534
3535 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3536 struct dma_buf *dma_buf);
3537
3538 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3539 struct drm_gem_object *gem_obj, int flags);
3540
3541 static inline struct i915_hw_ppgtt *
3542 i915_vm_to_ppgtt(struct i915_address_space *vm)
3543 {
3544 return container_of(vm, struct i915_hw_ppgtt, base);
3545 }
3546
3547 /* i915_gem_fence_reg.c */
3548 int __must_check i915_vma_get_fence(struct i915_vma *vma);
3549 int __must_check i915_vma_put_fence(struct i915_vma *vma);
3550
3551 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3552 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3553
3554 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3555 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3556 struct sg_table *pages);
3557 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3558 struct sg_table *pages);
3559
3560 static inline struct i915_gem_context *
3561 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3562 {
3563 return idr_find(&file_priv->context_idr, id);
3564 }
3565
3566 static inline struct i915_gem_context *
3567 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3568 {
3569 struct i915_gem_context *ctx;
3570
3571 rcu_read_lock();
3572 ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3573 if (ctx && !kref_get_unless_zero(&ctx->ref))
3574 ctx = NULL;
3575 rcu_read_unlock();
3576
3577 return ctx;
3578 }
3579
3580 static inline struct intel_timeline *
3581 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx,
3582 struct intel_engine_cs *engine)
3583 {
3584 struct i915_address_space *vm;
3585
3586 vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base;
3587 return &vm->timeline.engine[engine->id];
3588 }
3589
3590 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3591 struct drm_file *file);
3592 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3593 struct i915_gem_context *ctx,
3594 uint32_t *reg_state);
3595
3596 /* i915_gem_evict.c */
3597 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3598 u64 min_size, u64 alignment,
3599 unsigned cache_level,
3600 u64 start, u64 end,
3601 unsigned flags);
3602 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3603 struct drm_mm_node *node,
3604 unsigned int flags);
3605 int i915_gem_evict_vm(struct i915_address_space *vm);
3606
3607 /* belongs in i915_gem_gtt.h */
3608 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3609 {
3610 wmb();
3611 if (INTEL_GEN(dev_priv) < 6)
3612 intel_gtt_chipset_flush();
3613 }
3614
3615 /* i915_gem_stolen.c */
3616 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3617 struct drm_mm_node *node, u64 size,
3618 unsigned alignment);
3619 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3620 struct drm_mm_node *node, u64 size,
3621 unsigned alignment, u64 start,
3622 u64 end);
3623 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3624 struct drm_mm_node *node);
3625 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3626 void i915_gem_cleanup_stolen(struct drm_device *dev);
3627 struct drm_i915_gem_object *
3628 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size);
3629 struct drm_i915_gem_object *
3630 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3631 u32 stolen_offset,
3632 u32 gtt_offset,
3633 u32 size);
3634
3635 /* i915_gem_internal.c */
3636 struct drm_i915_gem_object *
3637 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3638 phys_addr_t size);
3639
3640 /* i915_gem_shrinker.c */
3641 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3642 unsigned long target,
3643 unsigned flags);
3644 #define I915_SHRINK_PURGEABLE 0x1
3645 #define I915_SHRINK_UNBOUND 0x2
3646 #define I915_SHRINK_BOUND 0x4
3647 #define I915_SHRINK_ACTIVE 0x8
3648 #define I915_SHRINK_VMAPS 0x10
3649 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3650 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3651 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3652
3653
3654 /* i915_gem_tiling.c */
3655 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3656 {
3657 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3658
3659 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3660 i915_gem_object_is_tiled(obj);
3661 }
3662
3663 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3664 unsigned int tiling, unsigned int stride);
3665 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3666 unsigned int tiling, unsigned int stride);
3667
3668 /* i915_debugfs.c */
3669 #ifdef CONFIG_DEBUG_FS
3670 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3671 int i915_debugfs_connector_add(struct drm_connector *connector);
3672 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3673 #else
3674 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3675 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3676 { return 0; }
3677 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3678 #endif
3679
3680 /* i915_gpu_error.c */
3681 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3682
3683 __printf(2, 3)
3684 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3685 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3686 const struct i915_gpu_state *gpu);
3687 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3688 struct drm_i915_private *i915,
3689 size_t count, loff_t pos);
3690 static inline void i915_error_state_buf_release(
3691 struct drm_i915_error_state_buf *eb)
3692 {
3693 kfree(eb->buf);
3694 }
3695
3696 struct i915_gpu_state *i915_capture_gpu_state(struct drm_i915_private *i915);
3697 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3698 u32 engine_mask,
3699 const char *error_msg);
3700
3701 static inline struct i915_gpu_state *
3702 i915_gpu_state_get(struct i915_gpu_state *gpu)
3703 {
3704 kref_get(&gpu->ref);
3705 return gpu;
3706 }
3707
3708 void __i915_gpu_state_free(struct kref *kref);
3709 static inline void i915_gpu_state_put(struct i915_gpu_state *gpu)
3710 {
3711 if (gpu)
3712 kref_put(&gpu->ref, __i915_gpu_state_free);
3713 }
3714
3715 struct i915_gpu_state *i915_first_error_state(struct drm_i915_private *i915);
3716 void i915_reset_error_state(struct drm_i915_private *i915);
3717
3718 #else
3719
3720 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3721 u32 engine_mask,
3722 const char *error_msg)
3723 {
3724 }
3725
3726 static inline struct i915_gpu_state *
3727 i915_first_error_state(struct drm_i915_private *i915)
3728 {
3729 return NULL;
3730 }
3731
3732 static inline void i915_reset_error_state(struct drm_i915_private *i915)
3733 {
3734 }
3735
3736 #endif
3737
3738 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3739
3740 /* i915_cmd_parser.c */
3741 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3742 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3743 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3744 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3745 struct drm_i915_gem_object *batch_obj,
3746 struct drm_i915_gem_object *shadow_batch_obj,
3747 u32 batch_start_offset,
3748 u32 batch_len,
3749 bool is_master);
3750
3751 /* i915_perf.c */
3752 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3753 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3754 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3755 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3756
3757 /* i915_suspend.c */
3758 extern int i915_save_state(struct drm_i915_private *dev_priv);
3759 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3760
3761 /* i915_sysfs.c */
3762 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3763 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3764
3765 /* intel_lpe_audio.c */
3766 int intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3767 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3768 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3769 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3770 enum pipe pipe, enum port port,
3771 const void *eld, int ls_clock, bool dp_output);
3772
3773 /* intel_i2c.c */
3774 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3775 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3776 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3777 unsigned int pin);
3778
3779 extern struct i2c_adapter *
3780 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3781 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3782 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3783 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3784 {
3785 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3786 }
3787 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3788
3789 /* intel_bios.c */
3790 void intel_bios_init(struct drm_i915_private *dev_priv);
3791 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3792 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3793 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3794 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3795 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3796 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3797 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3798 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3799 enum port port);
3800 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3801 enum port port);
3802
3803
3804 /* intel_opregion.c */
3805 #ifdef CONFIG_ACPI
3806 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3807 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3808 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3809 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3810 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3811 bool enable);
3812 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3813 pci_power_t state);
3814 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3815 #else
3816 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3817 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3818 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3819 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3820 {
3821 }
3822 static inline int
3823 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3824 {
3825 return 0;
3826 }
3827 static inline int
3828 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3829 {
3830 return 0;
3831 }
3832 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3833 {
3834 return -ENODEV;
3835 }
3836 #endif
3837
3838 /* intel_acpi.c */
3839 #ifdef CONFIG_ACPI
3840 extern void intel_register_dsm_handler(void);
3841 extern void intel_unregister_dsm_handler(void);
3842 #else
3843 static inline void intel_register_dsm_handler(void) { return; }
3844 static inline void intel_unregister_dsm_handler(void) { return; }
3845 #endif /* CONFIG_ACPI */
3846
3847 /* intel_device_info.c */
3848 static inline struct intel_device_info *
3849 mkwrite_device_info(struct drm_i915_private *dev_priv)
3850 {
3851 return (struct intel_device_info *)&dev_priv->info;
3852 }
3853
3854 const char *intel_platform_name(enum intel_platform platform);
3855 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
3856 void intel_device_info_dump(struct drm_i915_private *dev_priv);
3857
3858 /* modesetting */
3859 extern void intel_modeset_init_hw(struct drm_device *dev);
3860 extern int intel_modeset_init(struct drm_device *dev);
3861 extern void intel_modeset_gem_init(struct drm_device *dev);
3862 extern void intel_modeset_cleanup(struct drm_device *dev);
3863 extern int intel_connector_register(struct drm_connector *);
3864 extern void intel_connector_unregister(struct drm_connector *);
3865 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3866 bool state);
3867 extern void intel_display_resume(struct drm_device *dev);
3868 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3869 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3870 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3871 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3872 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3873 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3874 bool enable);
3875
3876 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3877 struct drm_file *file);
3878
3879 /* overlay */
3880 extern struct intel_overlay_error_state *
3881 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3882 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3883 struct intel_overlay_error_state *error);
3884
3885 extern struct intel_display_error_state *
3886 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3887 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3888 struct intel_display_error_state *error);
3889
3890 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3891 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3892 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3893 u32 reply_mask, u32 reply, int timeout_base_ms);
3894
3895 /* intel_sideband.c */
3896 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3897 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3898 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3899 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3900 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3901 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3902 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3903 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3904 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3905 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3906 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3907 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3908 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3909 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3910 enum intel_sbi_destination destination);
3911 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3912 enum intel_sbi_destination destination);
3913 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3914 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3915
3916 /* intel_dpio_phy.c */
3917 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
3918 enum dpio_phy *phy, enum dpio_channel *ch);
3919 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
3920 enum port port, u32 margin, u32 scale,
3921 u32 enable, u32 deemphasis);
3922 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3923 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3924 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
3925 enum dpio_phy phy);
3926 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
3927 enum dpio_phy phy);
3928 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
3929 uint8_t lane_count);
3930 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
3931 uint8_t lane_lat_optim_mask);
3932 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
3933
3934 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3935 u32 deemph_reg_value, u32 margin_reg_value,
3936 bool uniq_trans_scale);
3937 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3938 bool reset);
3939 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
3940 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3941 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3942 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
3943
3944 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3945 u32 demph_reg_value, u32 preemph_reg_value,
3946 u32 uniqtranscale_reg_value, u32 tx3_demph);
3947 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
3948 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3949 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
3950
3951 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3952 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3953 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
3954 const i915_reg_t reg);
3955
3956 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3957 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3958
3959 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3960 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3961 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3962 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3963
3964 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3965 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3966 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3967 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3968
3969 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3970 * will be implemented using 2 32-bit writes in an arbitrary order with
3971 * an arbitrary delay between them. This can cause the hardware to
3972 * act upon the intermediate value, possibly leading to corruption and
3973 * machine death. For this reason we do not support I915_WRITE64, or
3974 * dev_priv->uncore.funcs.mmio_writeq.
3975 *
3976 * When reading a 64-bit value as two 32-bit values, the delay may cause
3977 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
3978 * occasionally a 64-bit register does not actualy support a full readq
3979 * and must be read using two 32-bit reads.
3980 *
3981 * You have been warned.
3982 */
3983 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3984
3985 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
3986 u32 upper, lower, old_upper, loop = 0; \
3987 upper = I915_READ(upper_reg); \
3988 do { \
3989 old_upper = upper; \
3990 lower = I915_READ(lower_reg); \
3991 upper = I915_READ(upper_reg); \
3992 } while (upper != old_upper && loop++ < 2); \
3993 (u64)upper << 32 | lower; })
3994
3995 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
3996 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
3997
3998 #define __raw_read(x, s) \
3999 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
4000 i915_reg_t reg) \
4001 { \
4002 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
4003 }
4004
4005 #define __raw_write(x, s) \
4006 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
4007 i915_reg_t reg, uint##x##_t val) \
4008 { \
4009 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
4010 }
4011 __raw_read(8, b)
4012 __raw_read(16, w)
4013 __raw_read(32, l)
4014 __raw_read(64, q)
4015
4016 __raw_write(8, b)
4017 __raw_write(16, w)
4018 __raw_write(32, l)
4019 __raw_write(64, q)
4020
4021 #undef __raw_read
4022 #undef __raw_write
4023
4024 /* These are untraced mmio-accessors that are only valid to be used inside
4025 * critical sections, such as inside IRQ handlers, where forcewake is explicitly
4026 * controlled.
4027 *
4028 * Think twice, and think again, before using these.
4029 *
4030 * As an example, these accessors can possibly be used between:
4031 *
4032 * spin_lock_irq(&dev_priv->uncore.lock);
4033 * intel_uncore_forcewake_get__locked();
4034 *
4035 * and
4036 *
4037 * intel_uncore_forcewake_put__locked();
4038 * spin_unlock_irq(&dev_priv->uncore.lock);
4039 *
4040 *
4041 * Note: some registers may not need forcewake held, so
4042 * intel_uncore_forcewake_{get,put} can be omitted, see
4043 * intel_uncore_forcewake_for_reg().
4044 *
4045 * Certain architectures will die if the same cacheline is concurrently accessed
4046 * by different clients (e.g. on Ivybridge). Access to registers should
4047 * therefore generally be serialised, by either the dev_priv->uncore.lock or
4048 * a more localised lock guarding all access to that bank of registers.
4049 */
4050 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
4051 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
4052 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
4053 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
4054
4055 /* "Broadcast RGB" property */
4056 #define INTEL_BROADCAST_RGB_AUTO 0
4057 #define INTEL_BROADCAST_RGB_FULL 1
4058 #define INTEL_BROADCAST_RGB_LIMITED 2
4059
4060 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
4061 {
4062 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4063 return VLV_VGACNTRL;
4064 else if (INTEL_GEN(dev_priv) >= 5)
4065 return CPU_VGACNTRL;
4066 else
4067 return VGACNTRL;
4068 }
4069
4070 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
4071 {
4072 unsigned long j = msecs_to_jiffies(m);
4073
4074 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4075 }
4076
4077 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
4078 {
4079 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
4080 }
4081
4082 static inline unsigned long
4083 timespec_to_jiffies_timeout(const struct timespec *value)
4084 {
4085 unsigned long j = timespec_to_jiffies(value);
4086
4087 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4088 }
4089
4090 /*
4091 * If you need to wait X milliseconds between events A and B, but event B
4092 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
4093 * when event A happened, then just before event B you call this function and
4094 * pass the timestamp as the first argument, and X as the second argument.
4095 */
4096 static inline void
4097 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
4098 {
4099 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
4100
4101 /*
4102 * Don't re-read the value of "jiffies" every time since it may change
4103 * behind our back and break the math.
4104 */
4105 tmp_jiffies = jiffies;
4106 target_jiffies = timestamp_jiffies +
4107 msecs_to_jiffies_timeout(to_wait_ms);
4108
4109 if (time_after(target_jiffies, tmp_jiffies)) {
4110 remaining_jiffies = target_jiffies - tmp_jiffies;
4111 while (remaining_jiffies)
4112 remaining_jiffies =
4113 schedule_timeout_uninterruptible(remaining_jiffies);
4114 }
4115 }
4116
4117 static inline bool
4118 __i915_request_irq_complete(const struct drm_i915_gem_request *req)
4119 {
4120 struct intel_engine_cs *engine = req->engine;
4121 u32 seqno;
4122
4123 /* Note that the engine may have wrapped around the seqno, and
4124 * so our request->global_seqno will be ahead of the hardware,
4125 * even though it completed the request before wrapping. We catch
4126 * this by kicking all the waiters before resetting the seqno
4127 * in hardware, and also signal the fence.
4128 */
4129 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &req->fence.flags))
4130 return true;
4131
4132 /* The request was dequeued before we were awoken. We check after
4133 * inspecting the hw to confirm that this was the same request
4134 * that generated the HWS update. The memory barriers within
4135 * the request execution are sufficient to ensure that a check
4136 * after reading the value from hw matches this request.
4137 */
4138 seqno = i915_gem_request_global_seqno(req);
4139 if (!seqno)
4140 return false;
4141
4142 /* Before we do the heavier coherent read of the seqno,
4143 * check the value (hopefully) in the CPU cacheline.
4144 */
4145 if (__i915_gem_request_completed(req, seqno))
4146 return true;
4147
4148 /* Ensure our read of the seqno is coherent so that we
4149 * do not "miss an interrupt" (i.e. if this is the last
4150 * request and the seqno write from the GPU is not visible
4151 * by the time the interrupt fires, we will see that the
4152 * request is incomplete and go back to sleep awaiting
4153 * another interrupt that will never come.)
4154 *
4155 * Strictly, we only need to do this once after an interrupt,
4156 * but it is easier and safer to do it every time the waiter
4157 * is woken.
4158 */
4159 if (engine->irq_seqno_barrier &&
4160 test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
4161 struct intel_breadcrumbs *b = &engine->breadcrumbs;
4162
4163 /* The ordering of irq_posted versus applying the barrier
4164 * is crucial. The clearing of the current irq_posted must
4165 * be visible before we perform the barrier operation,
4166 * such that if a subsequent interrupt arrives, irq_posted
4167 * is reasserted and our task rewoken (which causes us to
4168 * do another __i915_request_irq_complete() immediately
4169 * and reapply the barrier). Conversely, if the clear
4170 * occurs after the barrier, then an interrupt that arrived
4171 * whilst we waited on the barrier would not trigger a
4172 * barrier on the next pass, and the read may not see the
4173 * seqno update.
4174 */
4175 engine->irq_seqno_barrier(engine);
4176
4177 /* If we consume the irq, but we are no longer the bottom-half,
4178 * the real bottom-half may not have serialised their own
4179 * seqno check with the irq-barrier (i.e. may have inspected
4180 * the seqno before we believe it coherent since they see
4181 * irq_posted == false but we are still running).
4182 */
4183 spin_lock_irq(&b->irq_lock);
4184 if (b->irq_wait && b->irq_wait->tsk != current)
4185 /* Note that if the bottom-half is changed as we
4186 * are sending the wake-up, the new bottom-half will
4187 * be woken by whomever made the change. We only have
4188 * to worry about when we steal the irq-posted for
4189 * ourself.
4190 */
4191 wake_up_process(b->irq_wait->tsk);
4192 spin_unlock_irq(&b->irq_lock);
4193
4194 if (__i915_gem_request_completed(req, seqno))
4195 return true;
4196 }
4197
4198 return false;
4199 }
4200
4201 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
4202 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
4203
4204 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
4205 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
4206 * perform the operation. To check beforehand, pass in the parameters to
4207 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
4208 * you only need to pass in the minor offsets, page-aligned pointers are
4209 * always valid.
4210 *
4211 * For just checking for SSE4.1, in the foreknowledge that the future use
4212 * will be correctly aligned, just use i915_has_memcpy_from_wc().
4213 */
4214 #define i915_can_memcpy_from_wc(dst, src, len) \
4215 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
4216
4217 #define i915_has_memcpy_from_wc() \
4218 i915_memcpy_from_wc(NULL, NULL, 0)
4219
4220 /* i915_mm.c */
4221 int remap_io_mapping(struct vm_area_struct *vma,
4222 unsigned long addr, unsigned long pfn, unsigned long size,
4223 struct io_mapping *iomap);
4224
4225 static inline bool i915_gem_object_is_coherent(struct drm_i915_gem_object *obj)
4226 {
4227 return (obj->cache_level != I915_CACHE_NONE ||
4228 HAS_LLC(to_i915(obj->base.dev)));
4229 }
4230
4231 #endif