]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.h
Merge tag 'drm-fixes-for-v4.14-rc1' of git://people.freedesktop.org/~airlied/linux
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/reservation.h>
45 #include <linux/shmem_fs.h>
46
47 #include <drm/drmP.h>
48 #include <drm/intel-gtt.h>
49 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
50 #include <drm/drm_gem.h>
51 #include <drm/drm_auth.h>
52 #include <drm/drm_cache.h>
53
54 #include "i915_params.h"
55 #include "i915_reg.h"
56 #include "i915_utils.h"
57
58 #include "intel_uncore.h"
59 #include "intel_bios.h"
60 #include "intel_dpll_mgr.h"
61 #include "intel_uc.h"
62 #include "intel_lrc.h"
63 #include "intel_ringbuffer.h"
64
65 #include "i915_gem.h"
66 #include "i915_gem_context.h"
67 #include "i915_gem_fence_reg.h"
68 #include "i915_gem_object.h"
69 #include "i915_gem_gtt.h"
70 #include "i915_gem_render_state.h"
71 #include "i915_gem_request.h"
72 #include "i915_gem_timeline.h"
73
74 #include "i915_vma.h"
75
76 #include "intel_gvt.h"
77
78 /* General customization:
79 */
80
81 #define DRIVER_NAME "i915"
82 #define DRIVER_DESC "Intel Graphics"
83 #define DRIVER_DATE "20170818"
84 #define DRIVER_TIMESTAMP 1503088845
85
86 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
87 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
88 * which may not necessarily be a user visible problem. This will either
89 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
90 * enable distros and users to tailor their preferred amount of i915 abrt
91 * spam.
92 */
93 #define I915_STATE_WARN(condition, format...) ({ \
94 int __ret_warn_on = !!(condition); \
95 if (unlikely(__ret_warn_on)) \
96 if (!WARN(i915.verbose_state_checks, format)) \
97 DRM_ERROR(format); \
98 unlikely(__ret_warn_on); \
99 })
100
101 #define I915_STATE_WARN_ON(x) \
102 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
103
104 bool __i915_inject_load_failure(const char *func, int line);
105 #define i915_inject_load_failure() \
106 __i915_inject_load_failure(__func__, __LINE__)
107
108 typedef struct {
109 uint32_t val;
110 } uint_fixed_16_16_t;
111
112 #define FP_16_16_MAX ({ \
113 uint_fixed_16_16_t fp; \
114 fp.val = UINT_MAX; \
115 fp; \
116 })
117
118 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
119 {
120 if (val.val == 0)
121 return true;
122 return false;
123 }
124
125 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val)
126 {
127 uint_fixed_16_16_t fp;
128
129 WARN_ON(val >> 16);
130
131 fp.val = val << 16;
132 return fp;
133 }
134
135 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp)
136 {
137 return DIV_ROUND_UP(fp.val, 1 << 16);
138 }
139
140 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp)
141 {
142 return fp.val >> 16;
143 }
144
145 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1,
146 uint_fixed_16_16_t min2)
147 {
148 uint_fixed_16_16_t min;
149
150 min.val = min(min1.val, min2.val);
151 return min;
152 }
153
154 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1,
155 uint_fixed_16_16_t max2)
156 {
157 uint_fixed_16_16_t max;
158
159 max.val = max(max1.val, max2.val);
160 return max;
161 }
162
163 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val)
164 {
165 uint_fixed_16_16_t fp;
166 WARN_ON(val >> 32);
167 fp.val = clamp_t(uint32_t, val, 0, ~0);
168 return fp;
169 }
170
171 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
172 uint_fixed_16_16_t d)
173 {
174 return DIV_ROUND_UP(val.val, d.val);
175 }
176
177 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
178 uint_fixed_16_16_t mul)
179 {
180 uint64_t intermediate_val;
181
182 intermediate_val = (uint64_t) val * mul.val;
183 intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
184 WARN_ON(intermediate_val >> 32);
185 return clamp_t(uint32_t, intermediate_val, 0, ~0);
186 }
187
188 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
189 uint_fixed_16_16_t mul)
190 {
191 uint64_t intermediate_val;
192
193 intermediate_val = (uint64_t) val.val * mul.val;
194 intermediate_val = intermediate_val >> 16;
195 return clamp_u64_to_fixed16(intermediate_val);
196 }
197
198 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d)
199 {
200 uint64_t interm_val;
201
202 interm_val = (uint64_t)val << 16;
203 interm_val = DIV_ROUND_UP_ULL(interm_val, d);
204 return clamp_u64_to_fixed16(interm_val);
205 }
206
207 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
208 uint_fixed_16_16_t d)
209 {
210 uint64_t interm_val;
211
212 interm_val = (uint64_t)val << 16;
213 interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
214 WARN_ON(interm_val >> 32);
215 return clamp_t(uint32_t, interm_val, 0, ~0);
216 }
217
218 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val,
219 uint_fixed_16_16_t mul)
220 {
221 uint64_t intermediate_val;
222
223 intermediate_val = (uint64_t) val * mul.val;
224 return clamp_u64_to_fixed16(intermediate_val);
225 }
226
227 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1,
228 uint_fixed_16_16_t add2)
229 {
230 uint64_t interm_sum;
231
232 interm_sum = (uint64_t) add1.val + add2.val;
233 return clamp_u64_to_fixed16(interm_sum);
234 }
235
236 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1,
237 uint32_t add2)
238 {
239 uint64_t interm_sum;
240 uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2);
241
242 interm_sum = (uint64_t) add1.val + interm_add2.val;
243 return clamp_u64_to_fixed16(interm_sum);
244 }
245
246 static inline const char *yesno(bool v)
247 {
248 return v ? "yes" : "no";
249 }
250
251 static inline const char *onoff(bool v)
252 {
253 return v ? "on" : "off";
254 }
255
256 static inline const char *enableddisabled(bool v)
257 {
258 return v ? "enabled" : "disabled";
259 }
260
261 enum pipe {
262 INVALID_PIPE = -1,
263 PIPE_A = 0,
264 PIPE_B,
265 PIPE_C,
266 _PIPE_EDP,
267 I915_MAX_PIPES = _PIPE_EDP
268 };
269 #define pipe_name(p) ((p) + 'A')
270
271 enum transcoder {
272 TRANSCODER_A = 0,
273 TRANSCODER_B,
274 TRANSCODER_C,
275 TRANSCODER_EDP,
276 TRANSCODER_DSI_A,
277 TRANSCODER_DSI_C,
278 I915_MAX_TRANSCODERS
279 };
280
281 static inline const char *transcoder_name(enum transcoder transcoder)
282 {
283 switch (transcoder) {
284 case TRANSCODER_A:
285 return "A";
286 case TRANSCODER_B:
287 return "B";
288 case TRANSCODER_C:
289 return "C";
290 case TRANSCODER_EDP:
291 return "EDP";
292 case TRANSCODER_DSI_A:
293 return "DSI A";
294 case TRANSCODER_DSI_C:
295 return "DSI C";
296 default:
297 return "<invalid>";
298 }
299 }
300
301 static inline bool transcoder_is_dsi(enum transcoder transcoder)
302 {
303 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
304 }
305
306 /*
307 * Global legacy plane identifier. Valid only for primary/sprite
308 * planes on pre-g4x, and only for primary planes on g4x+.
309 */
310 enum plane {
311 PLANE_A,
312 PLANE_B,
313 PLANE_C,
314 };
315 #define plane_name(p) ((p) + 'A')
316
317 #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A')
318
319 /*
320 * Per-pipe plane identifier.
321 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
322 * number of planes per CRTC. Not all platforms really have this many planes,
323 * which means some arrays of size I915_MAX_PLANES may have unused entries
324 * between the topmost sprite plane and the cursor plane.
325 *
326 * This is expected to be passed to various register macros
327 * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care.
328 */
329 enum plane_id {
330 PLANE_PRIMARY,
331 PLANE_SPRITE0,
332 PLANE_SPRITE1,
333 PLANE_SPRITE2,
334 PLANE_CURSOR,
335 I915_MAX_PLANES,
336 };
337
338 #define for_each_plane_id_on_crtc(__crtc, __p) \
339 for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \
340 for_each_if ((__crtc)->plane_ids_mask & BIT(__p))
341
342 enum port {
343 PORT_NONE = -1,
344 PORT_A = 0,
345 PORT_B,
346 PORT_C,
347 PORT_D,
348 PORT_E,
349 I915_MAX_PORTS
350 };
351 #define port_name(p) ((p) + 'A')
352
353 #define I915_NUM_PHYS_VLV 2
354
355 enum dpio_channel {
356 DPIO_CH0,
357 DPIO_CH1
358 };
359
360 enum dpio_phy {
361 DPIO_PHY0,
362 DPIO_PHY1,
363 DPIO_PHY2,
364 };
365
366 enum intel_display_power_domain {
367 POWER_DOMAIN_PIPE_A,
368 POWER_DOMAIN_PIPE_B,
369 POWER_DOMAIN_PIPE_C,
370 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
371 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
372 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
373 POWER_DOMAIN_TRANSCODER_A,
374 POWER_DOMAIN_TRANSCODER_B,
375 POWER_DOMAIN_TRANSCODER_C,
376 POWER_DOMAIN_TRANSCODER_EDP,
377 POWER_DOMAIN_TRANSCODER_DSI_A,
378 POWER_DOMAIN_TRANSCODER_DSI_C,
379 POWER_DOMAIN_PORT_DDI_A_LANES,
380 POWER_DOMAIN_PORT_DDI_B_LANES,
381 POWER_DOMAIN_PORT_DDI_C_LANES,
382 POWER_DOMAIN_PORT_DDI_D_LANES,
383 POWER_DOMAIN_PORT_DDI_E_LANES,
384 POWER_DOMAIN_PORT_DDI_A_IO,
385 POWER_DOMAIN_PORT_DDI_B_IO,
386 POWER_DOMAIN_PORT_DDI_C_IO,
387 POWER_DOMAIN_PORT_DDI_D_IO,
388 POWER_DOMAIN_PORT_DDI_E_IO,
389 POWER_DOMAIN_PORT_DSI,
390 POWER_DOMAIN_PORT_CRT,
391 POWER_DOMAIN_PORT_OTHER,
392 POWER_DOMAIN_VGA,
393 POWER_DOMAIN_AUDIO,
394 POWER_DOMAIN_PLLS,
395 POWER_DOMAIN_AUX_A,
396 POWER_DOMAIN_AUX_B,
397 POWER_DOMAIN_AUX_C,
398 POWER_DOMAIN_AUX_D,
399 POWER_DOMAIN_GMBUS,
400 POWER_DOMAIN_MODESET,
401 POWER_DOMAIN_INIT,
402
403 POWER_DOMAIN_NUM,
404 };
405
406 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
407 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
408 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
409 #define POWER_DOMAIN_TRANSCODER(tran) \
410 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
411 (tran) + POWER_DOMAIN_TRANSCODER_A)
412
413 enum hpd_pin {
414 HPD_NONE = 0,
415 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
416 HPD_CRT,
417 HPD_SDVO_B,
418 HPD_SDVO_C,
419 HPD_PORT_A,
420 HPD_PORT_B,
421 HPD_PORT_C,
422 HPD_PORT_D,
423 HPD_PORT_E,
424 HPD_NUM_PINS
425 };
426
427 #define for_each_hpd_pin(__pin) \
428 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
429
430 #define HPD_STORM_DEFAULT_THRESHOLD 5
431
432 struct i915_hotplug {
433 struct work_struct hotplug_work;
434
435 struct {
436 unsigned long last_jiffies;
437 int count;
438 enum {
439 HPD_ENABLED = 0,
440 HPD_DISABLED = 1,
441 HPD_MARK_DISABLED = 2
442 } state;
443 } stats[HPD_NUM_PINS];
444 u32 event_bits;
445 struct delayed_work reenable_work;
446
447 struct intel_digital_port *irq_port[I915_MAX_PORTS];
448 u32 long_port_mask;
449 u32 short_port_mask;
450 struct work_struct dig_port_work;
451
452 struct work_struct poll_init_work;
453 bool poll_enabled;
454
455 unsigned int hpd_storm_threshold;
456
457 /*
458 * if we get a HPD irq from DP and a HPD irq from non-DP
459 * the non-DP HPD could block the workqueue on a mode config
460 * mutex getting, that userspace may have taken. However
461 * userspace is waiting on the DP workqueue to run which is
462 * blocked behind the non-DP one.
463 */
464 struct workqueue_struct *dp_wq;
465 };
466
467 #define I915_GEM_GPU_DOMAINS \
468 (I915_GEM_DOMAIN_RENDER | \
469 I915_GEM_DOMAIN_SAMPLER | \
470 I915_GEM_DOMAIN_COMMAND | \
471 I915_GEM_DOMAIN_INSTRUCTION | \
472 I915_GEM_DOMAIN_VERTEX)
473
474 #define for_each_pipe(__dev_priv, __p) \
475 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
476 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
477 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
478 for_each_if ((__mask) & (1 << (__p)))
479 #define for_each_universal_plane(__dev_priv, __pipe, __p) \
480 for ((__p) = 0; \
481 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
482 (__p)++)
483 #define for_each_sprite(__dev_priv, __p, __s) \
484 for ((__s) = 0; \
485 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
486 (__s)++)
487
488 #define for_each_port_masked(__port, __ports_mask) \
489 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
490 for_each_if ((__ports_mask) & (1 << (__port)))
491
492 #define for_each_crtc(dev, crtc) \
493 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
494
495 #define for_each_intel_plane(dev, intel_plane) \
496 list_for_each_entry(intel_plane, \
497 &(dev)->mode_config.plane_list, \
498 base.head)
499
500 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \
501 list_for_each_entry(intel_plane, \
502 &(dev)->mode_config.plane_list, \
503 base.head) \
504 for_each_if ((plane_mask) & \
505 (1 << drm_plane_index(&intel_plane->base)))
506
507 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
508 list_for_each_entry(intel_plane, \
509 &(dev)->mode_config.plane_list, \
510 base.head) \
511 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
512
513 #define for_each_intel_crtc(dev, intel_crtc) \
514 list_for_each_entry(intel_crtc, \
515 &(dev)->mode_config.crtc_list, \
516 base.head)
517
518 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \
519 list_for_each_entry(intel_crtc, \
520 &(dev)->mode_config.crtc_list, \
521 base.head) \
522 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
523
524 #define for_each_intel_encoder(dev, intel_encoder) \
525 list_for_each_entry(intel_encoder, \
526 &(dev)->mode_config.encoder_list, \
527 base.head)
528
529 #define for_each_intel_connector_iter(intel_connector, iter) \
530 while ((intel_connector = to_intel_connector(drm_connector_list_iter_next(iter))))
531
532 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
533 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
534 for_each_if ((intel_encoder)->base.crtc == (__crtc))
535
536 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
537 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
538 for_each_if ((intel_connector)->base.encoder == (__encoder))
539
540 #define for_each_power_domain(domain, mask) \
541 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
542 for_each_if (BIT_ULL(domain) & (mask))
543
544 #define for_each_power_well(__dev_priv, __power_well) \
545 for ((__power_well) = (__dev_priv)->power_domains.power_wells; \
546 (__power_well) - (__dev_priv)->power_domains.power_wells < \
547 (__dev_priv)->power_domains.power_well_count; \
548 (__power_well)++)
549
550 #define for_each_power_well_rev(__dev_priv, __power_well) \
551 for ((__power_well) = (__dev_priv)->power_domains.power_wells + \
552 (__dev_priv)->power_domains.power_well_count - 1; \
553 (__power_well) - (__dev_priv)->power_domains.power_wells >= 0; \
554 (__power_well)--)
555
556 #define for_each_power_domain_well(__dev_priv, __power_well, __domain_mask) \
557 for_each_power_well(__dev_priv, __power_well) \
558 for_each_if ((__power_well)->domains & (__domain_mask))
559
560 #define for_each_power_domain_well_rev(__dev_priv, __power_well, __domain_mask) \
561 for_each_power_well_rev(__dev_priv, __power_well) \
562 for_each_if ((__power_well)->domains & (__domain_mask))
563
564 #define for_each_intel_plane_in_state(__state, plane, plane_state, __i) \
565 for ((__i) = 0; \
566 (__i) < (__state)->base.dev->mode_config.num_total_plane && \
567 ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
568 (plane_state) = to_intel_plane_state((__state)->base.planes[__i].state), 1); \
569 (__i)++) \
570 for_each_if (plane_state)
571
572 struct drm_i915_private;
573 struct i915_mm_struct;
574 struct i915_mmu_object;
575
576 struct drm_i915_file_private {
577 struct drm_i915_private *dev_priv;
578 struct drm_file *file;
579
580 struct {
581 spinlock_t lock;
582 struct list_head request_list;
583 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
584 * chosen to prevent the CPU getting more than a frame ahead of the GPU
585 * (when using lax throttling for the frontbuffer). We also use it to
586 * offer free GPU waitboosts for severely congested workloads.
587 */
588 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
589 } mm;
590 struct idr context_idr;
591
592 struct intel_rps_client {
593 atomic_t boosts;
594 } rps;
595
596 unsigned int bsd_engine;
597
598 /* Client can have a maximum of 3 contexts banned before
599 * it is denied of creating new contexts. As one context
600 * ban needs 4 consecutive hangs, and more if there is
601 * progress in between, this is a last resort stop gap measure
602 * to limit the badly behaving clients access to gpu.
603 */
604 #define I915_MAX_CLIENT_CONTEXT_BANS 3
605 atomic_t context_bans;
606 };
607
608 /* Used by dp and fdi links */
609 struct intel_link_m_n {
610 uint32_t tu;
611 uint32_t gmch_m;
612 uint32_t gmch_n;
613 uint32_t link_m;
614 uint32_t link_n;
615 };
616
617 void intel_link_compute_m_n(int bpp, int nlanes,
618 int pixel_clock, int link_clock,
619 struct intel_link_m_n *m_n,
620 bool reduce_m_n);
621
622 /* Interface history:
623 *
624 * 1.1: Original.
625 * 1.2: Add Power Management
626 * 1.3: Add vblank support
627 * 1.4: Fix cmdbuffer path, add heap destroy
628 * 1.5: Add vblank pipe configuration
629 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
630 * - Support vertical blank on secondary display pipe
631 */
632 #define DRIVER_MAJOR 1
633 #define DRIVER_MINOR 6
634 #define DRIVER_PATCHLEVEL 0
635
636 struct opregion_header;
637 struct opregion_acpi;
638 struct opregion_swsci;
639 struct opregion_asle;
640
641 struct intel_opregion {
642 struct opregion_header *header;
643 struct opregion_acpi *acpi;
644 struct opregion_swsci *swsci;
645 u32 swsci_gbda_sub_functions;
646 u32 swsci_sbcb_sub_functions;
647 struct opregion_asle *asle;
648 void *rvda;
649 void *vbt_firmware;
650 const void *vbt;
651 u32 vbt_size;
652 u32 *lid_state;
653 struct work_struct asle_work;
654 };
655 #define OPREGION_SIZE (8*1024)
656
657 struct intel_overlay;
658 struct intel_overlay_error_state;
659
660 struct sdvo_device_mapping {
661 u8 initialized;
662 u8 dvo_port;
663 u8 slave_addr;
664 u8 dvo_wiring;
665 u8 i2c_pin;
666 u8 ddc_pin;
667 };
668
669 struct intel_connector;
670 struct intel_encoder;
671 struct intel_atomic_state;
672 struct intel_crtc_state;
673 struct intel_initial_plane_config;
674 struct intel_crtc;
675 struct intel_limit;
676 struct dpll;
677 struct intel_cdclk_state;
678
679 struct drm_i915_display_funcs {
680 void (*get_cdclk)(struct drm_i915_private *dev_priv,
681 struct intel_cdclk_state *cdclk_state);
682 void (*set_cdclk)(struct drm_i915_private *dev_priv,
683 const struct intel_cdclk_state *cdclk_state);
684 int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane);
685 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
686 int (*compute_intermediate_wm)(struct drm_device *dev,
687 struct intel_crtc *intel_crtc,
688 struct intel_crtc_state *newstate);
689 void (*initial_watermarks)(struct intel_atomic_state *state,
690 struct intel_crtc_state *cstate);
691 void (*atomic_update_watermarks)(struct intel_atomic_state *state,
692 struct intel_crtc_state *cstate);
693 void (*optimize_watermarks)(struct intel_atomic_state *state,
694 struct intel_crtc_state *cstate);
695 int (*compute_global_watermarks)(struct drm_atomic_state *state);
696 void (*update_wm)(struct intel_crtc *crtc);
697 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
698 /* Returns the active state of the crtc, and if the crtc is active,
699 * fills out the pipe-config with the hw state. */
700 bool (*get_pipe_config)(struct intel_crtc *,
701 struct intel_crtc_state *);
702 void (*get_initial_plane_config)(struct intel_crtc *,
703 struct intel_initial_plane_config *);
704 int (*crtc_compute_clock)(struct intel_crtc *crtc,
705 struct intel_crtc_state *crtc_state);
706 void (*crtc_enable)(struct intel_crtc_state *pipe_config,
707 struct drm_atomic_state *old_state);
708 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
709 struct drm_atomic_state *old_state);
710 void (*update_crtcs)(struct drm_atomic_state *state,
711 unsigned int *crtc_vblank_mask);
712 void (*audio_codec_enable)(struct drm_connector *connector,
713 struct intel_encoder *encoder,
714 const struct drm_display_mode *adjusted_mode);
715 void (*audio_codec_disable)(struct intel_encoder *encoder);
716 void (*fdi_link_train)(struct intel_crtc *crtc,
717 const struct intel_crtc_state *crtc_state);
718 void (*init_clock_gating)(struct drm_i915_private *dev_priv);
719 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
720 /* clock updates for mode set */
721 /* cursor updates */
722 /* render clock increase/decrease */
723 /* display clock increase/decrease */
724 /* pll clock increase/decrease */
725
726 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
727 void (*load_luts)(struct drm_crtc_state *crtc_state);
728 };
729
730 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
731 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
732 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
733
734 struct intel_csr {
735 struct work_struct work;
736 const char *fw_path;
737 uint32_t *dmc_payload;
738 uint32_t dmc_fw_size;
739 uint32_t version;
740 uint32_t mmio_count;
741 i915_reg_t mmioaddr[8];
742 uint32_t mmiodata[8];
743 uint32_t dc_state;
744 uint32_t allowed_dc_mask;
745 };
746
747 #define DEV_INFO_FOR_EACH_FLAG(func) \
748 func(is_mobile); \
749 func(is_lp); \
750 func(is_alpha_support); \
751 /* Keep has_* in alphabetical order */ \
752 func(has_64bit_reloc); \
753 func(has_aliasing_ppgtt); \
754 func(has_csr); \
755 func(has_ddi); \
756 func(has_dp_mst); \
757 func(has_reset_engine); \
758 func(has_fbc); \
759 func(has_fpga_dbg); \
760 func(has_full_ppgtt); \
761 func(has_full_48bit_ppgtt); \
762 func(has_gmbus_irq); \
763 func(has_gmch_display); \
764 func(has_guc); \
765 func(has_guc_ct); \
766 func(has_hotplug); \
767 func(has_l3_dpf); \
768 func(has_llc); \
769 func(has_logical_ring_contexts); \
770 func(has_overlay); \
771 func(has_pipe_cxsr); \
772 func(has_pooled_eu); \
773 func(has_psr); \
774 func(has_rc6); \
775 func(has_rc6p); \
776 func(has_resource_streamer); \
777 func(has_runtime_pm); \
778 func(has_snoop); \
779 func(unfenced_needs_alignment); \
780 func(cursor_needs_physical); \
781 func(hws_needs_physical); \
782 func(overlay_needs_physical); \
783 func(supports_tv);
784
785 struct sseu_dev_info {
786 u8 slice_mask;
787 u8 subslice_mask;
788 u8 eu_total;
789 u8 eu_per_subslice;
790 u8 min_eu_in_pool;
791 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
792 u8 subslice_7eu[3];
793 u8 has_slice_pg:1;
794 u8 has_subslice_pg:1;
795 u8 has_eu_pg:1;
796 };
797
798 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu)
799 {
800 return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask);
801 }
802
803 /* Keep in gen based order, and chronological order within a gen */
804 enum intel_platform {
805 INTEL_PLATFORM_UNINITIALIZED = 0,
806 INTEL_I830,
807 INTEL_I845G,
808 INTEL_I85X,
809 INTEL_I865G,
810 INTEL_I915G,
811 INTEL_I915GM,
812 INTEL_I945G,
813 INTEL_I945GM,
814 INTEL_G33,
815 INTEL_PINEVIEW,
816 INTEL_I965G,
817 INTEL_I965GM,
818 INTEL_G45,
819 INTEL_GM45,
820 INTEL_IRONLAKE,
821 INTEL_SANDYBRIDGE,
822 INTEL_IVYBRIDGE,
823 INTEL_VALLEYVIEW,
824 INTEL_HASWELL,
825 INTEL_BROADWELL,
826 INTEL_CHERRYVIEW,
827 INTEL_SKYLAKE,
828 INTEL_BROXTON,
829 INTEL_KABYLAKE,
830 INTEL_GEMINILAKE,
831 INTEL_COFFEELAKE,
832 INTEL_CANNONLAKE,
833 INTEL_MAX_PLATFORMS
834 };
835
836 struct intel_device_info {
837 u32 display_mmio_offset;
838 u16 device_id;
839 u8 num_pipes;
840 u8 num_sprites[I915_MAX_PIPES];
841 u8 num_scalers[I915_MAX_PIPES];
842 u8 gen;
843 u16 gen_mask;
844 enum intel_platform platform;
845 u8 ring_mask; /* Rings supported by the HW */
846 u8 num_rings;
847 #define DEFINE_FLAG(name) u8 name:1
848 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG);
849 #undef DEFINE_FLAG
850 u16 ddb_size; /* in blocks */
851 /* Register offsets for the various display pipes and transcoders */
852 int pipe_offsets[I915_MAX_TRANSCODERS];
853 int trans_offsets[I915_MAX_TRANSCODERS];
854 int palette_offsets[I915_MAX_PIPES];
855 int cursor_offsets[I915_MAX_PIPES];
856
857 /* Slice/subslice/EU info */
858 struct sseu_dev_info sseu;
859
860 struct color_luts {
861 u16 degamma_lut_size;
862 u16 gamma_lut_size;
863 } color;
864 };
865
866 struct intel_display_error_state;
867
868 struct i915_gpu_state {
869 struct kref ref;
870 struct timeval time;
871 struct timeval boottime;
872 struct timeval uptime;
873
874 struct drm_i915_private *i915;
875
876 char error_msg[128];
877 bool simulated;
878 bool awake;
879 bool wakelock;
880 bool suspended;
881 int iommu;
882 u32 reset_count;
883 u32 suspend_count;
884 struct intel_device_info device_info;
885 struct i915_params params;
886
887 /* Generic register state */
888 u32 eir;
889 u32 pgtbl_er;
890 u32 ier;
891 u32 gtier[4], ngtier;
892 u32 ccid;
893 u32 derrmr;
894 u32 forcewake;
895 u32 error; /* gen6+ */
896 u32 err_int; /* gen7 */
897 u32 fault_data0; /* gen8, gen9 */
898 u32 fault_data1; /* gen8, gen9 */
899 u32 done_reg;
900 u32 gac_eco;
901 u32 gam_ecochk;
902 u32 gab_ctl;
903 u32 gfx_mode;
904
905 u32 nfence;
906 u64 fence[I915_MAX_NUM_FENCES];
907 struct intel_overlay_error_state *overlay;
908 struct intel_display_error_state *display;
909 struct drm_i915_error_object *semaphore;
910 struct drm_i915_error_object *guc_log;
911
912 struct drm_i915_error_engine {
913 int engine_id;
914 /* Software tracked state */
915 bool waiting;
916 int num_waiters;
917 unsigned long hangcheck_timestamp;
918 bool hangcheck_stalled;
919 enum intel_engine_hangcheck_action hangcheck_action;
920 struct i915_address_space *vm;
921 int num_requests;
922 u32 reset_count;
923
924 /* position of active request inside the ring */
925 u32 rq_head, rq_post, rq_tail;
926
927 /* our own tracking of ring head and tail */
928 u32 cpu_ring_head;
929 u32 cpu_ring_tail;
930
931 u32 last_seqno;
932
933 /* Register state */
934 u32 start;
935 u32 tail;
936 u32 head;
937 u32 ctl;
938 u32 mode;
939 u32 hws;
940 u32 ipeir;
941 u32 ipehr;
942 u32 bbstate;
943 u32 instpm;
944 u32 instps;
945 u32 seqno;
946 u64 bbaddr;
947 u64 acthd;
948 u32 fault_reg;
949 u64 faddr;
950 u32 rc_psmi; /* sleep state */
951 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
952 struct intel_instdone instdone;
953
954 struct drm_i915_error_context {
955 char comm[TASK_COMM_LEN];
956 pid_t pid;
957 u32 handle;
958 u32 hw_id;
959 int ban_score;
960 int active;
961 int guilty;
962 } context;
963
964 struct drm_i915_error_object {
965 u64 gtt_offset;
966 u64 gtt_size;
967 int page_count;
968 int unused;
969 u32 *pages[0];
970 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
971
972 struct drm_i915_error_object **user_bo;
973 long user_bo_count;
974
975 struct drm_i915_error_object *wa_ctx;
976
977 struct drm_i915_error_request {
978 long jiffies;
979 pid_t pid;
980 u32 context;
981 int ban_score;
982 u32 seqno;
983 u32 head;
984 u32 tail;
985 } *requests, execlist[2];
986
987 struct drm_i915_error_waiter {
988 char comm[TASK_COMM_LEN];
989 pid_t pid;
990 u32 seqno;
991 } *waiters;
992
993 struct {
994 u32 gfx_mode;
995 union {
996 u64 pdp[4];
997 u32 pp_dir_base;
998 };
999 } vm_info;
1000 } engine[I915_NUM_ENGINES];
1001
1002 struct drm_i915_error_buffer {
1003 u32 size;
1004 u32 name;
1005 u32 rseqno[I915_NUM_ENGINES], wseqno;
1006 u64 gtt_offset;
1007 u32 read_domains;
1008 u32 write_domain;
1009 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
1010 u32 tiling:2;
1011 u32 dirty:1;
1012 u32 purgeable:1;
1013 u32 userptr:1;
1014 s32 engine:4;
1015 u32 cache_level:3;
1016 } *active_bo[I915_NUM_ENGINES], *pinned_bo;
1017 u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
1018 struct i915_address_space *active_vm[I915_NUM_ENGINES];
1019 };
1020
1021 enum i915_cache_level {
1022 I915_CACHE_NONE = 0,
1023 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
1024 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
1025 caches, eg sampler/render caches, and the
1026 large Last-Level-Cache. LLC is coherent with
1027 the CPU, but L3 is only visible to the GPU. */
1028 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
1029 };
1030
1031 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
1032
1033 enum fb_op_origin {
1034 ORIGIN_GTT,
1035 ORIGIN_CPU,
1036 ORIGIN_CS,
1037 ORIGIN_FLIP,
1038 ORIGIN_DIRTYFB,
1039 };
1040
1041 struct intel_fbc {
1042 /* This is always the inner lock when overlapping with struct_mutex and
1043 * it's the outer lock when overlapping with stolen_lock. */
1044 struct mutex lock;
1045 unsigned threshold;
1046 unsigned int possible_framebuffer_bits;
1047 unsigned int busy_bits;
1048 unsigned int visible_pipes_mask;
1049 struct intel_crtc *crtc;
1050
1051 struct drm_mm_node compressed_fb;
1052 struct drm_mm_node *compressed_llb;
1053
1054 bool false_color;
1055
1056 bool enabled;
1057 bool active;
1058
1059 bool underrun_detected;
1060 struct work_struct underrun_work;
1061
1062 /*
1063 * Due to the atomic rules we can't access some structures without the
1064 * appropriate locking, so we cache information here in order to avoid
1065 * these problems.
1066 */
1067 struct intel_fbc_state_cache {
1068 struct i915_vma *vma;
1069
1070 struct {
1071 unsigned int mode_flags;
1072 uint32_t hsw_bdw_pixel_rate;
1073 } crtc;
1074
1075 struct {
1076 unsigned int rotation;
1077 int src_w;
1078 int src_h;
1079 bool visible;
1080 } plane;
1081
1082 struct {
1083 const struct drm_format_info *format;
1084 unsigned int stride;
1085 } fb;
1086 } state_cache;
1087
1088 /*
1089 * This structure contains everything that's relevant to program the
1090 * hardware registers. When we want to figure out if we need to disable
1091 * and re-enable FBC for a new configuration we just check if there's
1092 * something different in the struct. The genx_fbc_activate functions
1093 * are supposed to read from it in order to program the registers.
1094 */
1095 struct intel_fbc_reg_params {
1096 struct i915_vma *vma;
1097
1098 struct {
1099 enum pipe pipe;
1100 enum plane plane;
1101 unsigned int fence_y_offset;
1102 } crtc;
1103
1104 struct {
1105 const struct drm_format_info *format;
1106 unsigned int stride;
1107 } fb;
1108
1109 int cfb_size;
1110 } params;
1111
1112 struct intel_fbc_work {
1113 bool scheduled;
1114 u32 scheduled_vblank;
1115 struct work_struct work;
1116 } work;
1117
1118 const char *no_fbc_reason;
1119 };
1120
1121 /*
1122 * HIGH_RR is the highest eDP panel refresh rate read from EDID
1123 * LOW_RR is the lowest eDP panel refresh rate found from EDID
1124 * parsing for same resolution.
1125 */
1126 enum drrs_refresh_rate_type {
1127 DRRS_HIGH_RR,
1128 DRRS_LOW_RR,
1129 DRRS_MAX_RR, /* RR count */
1130 };
1131
1132 enum drrs_support_type {
1133 DRRS_NOT_SUPPORTED = 0,
1134 STATIC_DRRS_SUPPORT = 1,
1135 SEAMLESS_DRRS_SUPPORT = 2
1136 };
1137
1138 struct intel_dp;
1139 struct i915_drrs {
1140 struct mutex mutex;
1141 struct delayed_work work;
1142 struct intel_dp *dp;
1143 unsigned busy_frontbuffer_bits;
1144 enum drrs_refresh_rate_type refresh_rate_type;
1145 enum drrs_support_type type;
1146 };
1147
1148 struct i915_psr {
1149 struct mutex lock;
1150 bool sink_support;
1151 bool source_ok;
1152 struct intel_dp *enabled;
1153 bool active;
1154 struct delayed_work work;
1155 unsigned busy_frontbuffer_bits;
1156 bool psr2_support;
1157 bool aux_frame_sync;
1158 bool link_standby;
1159 bool y_cord_support;
1160 bool colorimetry_support;
1161 bool alpm;
1162 };
1163
1164 enum intel_pch {
1165 PCH_NONE = 0, /* No PCH present */
1166 PCH_IBX, /* Ibexpeak PCH */
1167 PCH_CPT, /* Cougarpoint/Pantherpoint PCH */
1168 PCH_LPT, /* Lynxpoint/Wildcatpoint PCH */
1169 PCH_SPT, /* Sunrisepoint PCH */
1170 PCH_KBP, /* Kaby Lake PCH */
1171 PCH_CNP, /* Cannon Lake PCH */
1172 PCH_NOP,
1173 };
1174
1175 enum intel_sbi_destination {
1176 SBI_ICLK,
1177 SBI_MPHY,
1178 };
1179
1180 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1181 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1182 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1183 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1184 #define QUIRK_INCREASE_T12_DELAY (1<<6)
1185
1186 struct intel_fbdev;
1187 struct intel_fbc_work;
1188
1189 struct intel_gmbus {
1190 struct i2c_adapter adapter;
1191 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1192 u32 force_bit;
1193 u32 reg0;
1194 i915_reg_t gpio_reg;
1195 struct i2c_algo_bit_data bit_algo;
1196 struct drm_i915_private *dev_priv;
1197 };
1198
1199 struct i915_suspend_saved_registers {
1200 u32 saveDSPARB;
1201 u32 saveFBC_CONTROL;
1202 u32 saveCACHE_MODE_0;
1203 u32 saveMI_ARB_STATE;
1204 u32 saveSWF0[16];
1205 u32 saveSWF1[16];
1206 u32 saveSWF3[3];
1207 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1208 u32 savePCH_PORT_HOTPLUG;
1209 u16 saveGCDGMBUS;
1210 };
1211
1212 struct vlv_s0ix_state {
1213 /* GAM */
1214 u32 wr_watermark;
1215 u32 gfx_prio_ctrl;
1216 u32 arb_mode;
1217 u32 gfx_pend_tlb0;
1218 u32 gfx_pend_tlb1;
1219 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1220 u32 media_max_req_count;
1221 u32 gfx_max_req_count;
1222 u32 render_hwsp;
1223 u32 ecochk;
1224 u32 bsd_hwsp;
1225 u32 blt_hwsp;
1226 u32 tlb_rd_addr;
1227
1228 /* MBC */
1229 u32 g3dctl;
1230 u32 gsckgctl;
1231 u32 mbctl;
1232
1233 /* GCP */
1234 u32 ucgctl1;
1235 u32 ucgctl3;
1236 u32 rcgctl1;
1237 u32 rcgctl2;
1238 u32 rstctl;
1239 u32 misccpctl;
1240
1241 /* GPM */
1242 u32 gfxpause;
1243 u32 rpdeuhwtc;
1244 u32 rpdeuc;
1245 u32 ecobus;
1246 u32 pwrdwnupctl;
1247 u32 rp_down_timeout;
1248 u32 rp_deucsw;
1249 u32 rcubmabdtmr;
1250 u32 rcedata;
1251 u32 spare2gh;
1252
1253 /* Display 1 CZ domain */
1254 u32 gt_imr;
1255 u32 gt_ier;
1256 u32 pm_imr;
1257 u32 pm_ier;
1258 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1259
1260 /* GT SA CZ domain */
1261 u32 tilectl;
1262 u32 gt_fifoctl;
1263 u32 gtlc_wake_ctrl;
1264 u32 gtlc_survive;
1265 u32 pmwgicz;
1266
1267 /* Display 2 CZ domain */
1268 u32 gu_ctl0;
1269 u32 gu_ctl1;
1270 u32 pcbr;
1271 u32 clock_gate_dis2;
1272 };
1273
1274 struct intel_rps_ei {
1275 ktime_t ktime;
1276 u32 render_c0;
1277 u32 media_c0;
1278 };
1279
1280 struct intel_gen6_power_mgmt {
1281 /*
1282 * work, interrupts_enabled and pm_iir are protected by
1283 * dev_priv->irq_lock
1284 */
1285 struct work_struct work;
1286 bool interrupts_enabled;
1287 u32 pm_iir;
1288
1289 /* PM interrupt bits that should never be masked */
1290 u32 pm_intrmsk_mbz;
1291
1292 /* Frequencies are stored in potentially platform dependent multiples.
1293 * In other words, *_freq needs to be multiplied by X to be interesting.
1294 * Soft limits are those which are used for the dynamic reclocking done
1295 * by the driver (raise frequencies under heavy loads, and lower for
1296 * lighter loads). Hard limits are those imposed by the hardware.
1297 *
1298 * A distinction is made for overclocking, which is never enabled by
1299 * default, and is considered to be above the hard limit if it's
1300 * possible at all.
1301 */
1302 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1303 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1304 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1305 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1306 u8 min_freq; /* AKA RPn. Minimum frequency */
1307 u8 boost_freq; /* Frequency to request when wait boosting */
1308 u8 idle_freq; /* Frequency to request when we are idle */
1309 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1310 u8 rp1_freq; /* "less than" RP0 power/freqency */
1311 u8 rp0_freq; /* Non-overclocked max frequency. */
1312 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
1313
1314 u8 up_threshold; /* Current %busy required to uplock */
1315 u8 down_threshold; /* Current %busy required to downclock */
1316
1317 int last_adj;
1318 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1319
1320 bool enabled;
1321 struct delayed_work autoenable_work;
1322 atomic_t num_waiters;
1323 atomic_t boosts;
1324
1325 /* manual wa residency calculations */
1326 struct intel_rps_ei ei;
1327
1328 /*
1329 * Protects RPS/RC6 register access and PCU communication.
1330 * Must be taken after struct_mutex if nested. Note that
1331 * this lock may be held for long periods of time when
1332 * talking to hw - so only take it when talking to hw!
1333 */
1334 struct mutex hw_lock;
1335 };
1336
1337 /* defined intel_pm.c */
1338 extern spinlock_t mchdev_lock;
1339
1340 struct intel_ilk_power_mgmt {
1341 u8 cur_delay;
1342 u8 min_delay;
1343 u8 max_delay;
1344 u8 fmax;
1345 u8 fstart;
1346
1347 u64 last_count1;
1348 unsigned long last_time1;
1349 unsigned long chipset_power;
1350 u64 last_count2;
1351 u64 last_time2;
1352 unsigned long gfx_power;
1353 u8 corr;
1354
1355 int c_m;
1356 int r_t;
1357 };
1358
1359 struct drm_i915_private;
1360 struct i915_power_well;
1361
1362 struct i915_power_well_ops {
1363 /*
1364 * Synchronize the well's hw state to match the current sw state, for
1365 * example enable/disable it based on the current refcount. Called
1366 * during driver init and resume time, possibly after first calling
1367 * the enable/disable handlers.
1368 */
1369 void (*sync_hw)(struct drm_i915_private *dev_priv,
1370 struct i915_power_well *power_well);
1371 /*
1372 * Enable the well and resources that depend on it (for example
1373 * interrupts located on the well). Called after the 0->1 refcount
1374 * transition.
1375 */
1376 void (*enable)(struct drm_i915_private *dev_priv,
1377 struct i915_power_well *power_well);
1378 /*
1379 * Disable the well and resources that depend on it. Called after
1380 * the 1->0 refcount transition.
1381 */
1382 void (*disable)(struct drm_i915_private *dev_priv,
1383 struct i915_power_well *power_well);
1384 /* Returns the hw enabled state. */
1385 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1386 struct i915_power_well *power_well);
1387 };
1388
1389 /* Power well structure for haswell */
1390 struct i915_power_well {
1391 const char *name;
1392 bool always_on;
1393 /* power well enable/disable usage count */
1394 int count;
1395 /* cached hw enabled state */
1396 bool hw_enabled;
1397 u64 domains;
1398 /* unique identifier for this power well */
1399 enum i915_power_well_id id;
1400 /*
1401 * Arbitraty data associated with this power well. Platform and power
1402 * well specific.
1403 */
1404 union {
1405 struct {
1406 enum dpio_phy phy;
1407 } bxt;
1408 struct {
1409 /* Mask of pipes whose IRQ logic is backed by the pw */
1410 u8 irq_pipe_mask;
1411 /* The pw is backing the VGA functionality */
1412 bool has_vga:1;
1413 bool has_fuses:1;
1414 } hsw;
1415 };
1416 const struct i915_power_well_ops *ops;
1417 };
1418
1419 struct i915_power_domains {
1420 /*
1421 * Power wells needed for initialization at driver init and suspend
1422 * time are on. They are kept on until after the first modeset.
1423 */
1424 bool init_power_on;
1425 bool initializing;
1426 int power_well_count;
1427
1428 struct mutex lock;
1429 int domain_use_count[POWER_DOMAIN_NUM];
1430 struct i915_power_well *power_wells;
1431 };
1432
1433 #define MAX_L3_SLICES 2
1434 struct intel_l3_parity {
1435 u32 *remap_info[MAX_L3_SLICES];
1436 struct work_struct error_work;
1437 int which_slice;
1438 };
1439
1440 struct i915_gem_mm {
1441 /** Memory allocator for GTT stolen memory */
1442 struct drm_mm stolen;
1443 /** Protects the usage of the GTT stolen memory allocator. This is
1444 * always the inner lock when overlapping with struct_mutex. */
1445 struct mutex stolen_lock;
1446
1447 /** List of all objects in gtt_space. Used to restore gtt
1448 * mappings on resume */
1449 struct list_head bound_list;
1450 /**
1451 * List of objects which are not bound to the GTT (thus
1452 * are idle and not used by the GPU). These objects may or may
1453 * not actually have any pages attached.
1454 */
1455 struct list_head unbound_list;
1456
1457 /** List of all objects in gtt_space, currently mmaped by userspace.
1458 * All objects within this list must also be on bound_list.
1459 */
1460 struct list_head userfault_list;
1461
1462 /**
1463 * List of objects which are pending destruction.
1464 */
1465 struct llist_head free_list;
1466 struct work_struct free_work;
1467
1468 /** Usable portion of the GTT for GEM */
1469 dma_addr_t stolen_base; /* limited to low memory (32-bit) */
1470
1471 /** PPGTT used for aliasing the PPGTT with the GTT */
1472 struct i915_hw_ppgtt *aliasing_ppgtt;
1473
1474 struct notifier_block oom_notifier;
1475 struct notifier_block vmap_notifier;
1476 struct shrinker shrinker;
1477
1478 /** LRU list of objects with fence regs on them. */
1479 struct list_head fence_list;
1480
1481 /**
1482 * Workqueue to fault in userptr pages, flushed by the execbuf
1483 * when required but otherwise left to userspace to try again
1484 * on EAGAIN.
1485 */
1486 struct workqueue_struct *userptr_wq;
1487
1488 u64 unordered_timeline;
1489
1490 /* the indicator for dispatch video commands on two BSD rings */
1491 atomic_t bsd_engine_dispatch_index;
1492
1493 /** Bit 6 swizzling required for X tiling */
1494 uint32_t bit_6_swizzle_x;
1495 /** Bit 6 swizzling required for Y tiling */
1496 uint32_t bit_6_swizzle_y;
1497
1498 /* accounting, useful for userland debugging */
1499 spinlock_t object_stat_lock;
1500 u64 object_memory;
1501 u32 object_count;
1502 };
1503
1504 struct drm_i915_error_state_buf {
1505 struct drm_i915_private *i915;
1506 unsigned bytes;
1507 unsigned size;
1508 int err;
1509 u8 *buf;
1510 loff_t start;
1511 loff_t pos;
1512 };
1513
1514 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1515 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1516
1517 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */
1518 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */
1519
1520 struct i915_gpu_error {
1521 /* For hangcheck timer */
1522 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1523 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1524
1525 struct delayed_work hangcheck_work;
1526
1527 /* For reset and error_state handling. */
1528 spinlock_t lock;
1529 /* Protected by the above dev->gpu_error.lock. */
1530 struct i915_gpu_state *first_error;
1531
1532 atomic_t pending_fb_pin;
1533
1534 unsigned long missed_irq_rings;
1535
1536 /**
1537 * State variable controlling the reset flow and count
1538 *
1539 * This is a counter which gets incremented when reset is triggered,
1540 *
1541 * Before the reset commences, the I915_RESET_BACKOFF bit is set
1542 * meaning that any waiters holding onto the struct_mutex should
1543 * relinquish the lock immediately in order for the reset to start.
1544 *
1545 * If reset is not completed succesfully, the I915_WEDGE bit is
1546 * set meaning that hardware is terminally sour and there is no
1547 * recovery. All waiters on the reset_queue will be woken when
1548 * that happens.
1549 *
1550 * This counter is used by the wait_seqno code to notice that reset
1551 * event happened and it needs to restart the entire ioctl (since most
1552 * likely the seqno it waited for won't ever signal anytime soon).
1553 *
1554 * This is important for lock-free wait paths, where no contended lock
1555 * naturally enforces the correct ordering between the bail-out of the
1556 * waiter and the gpu reset work code.
1557 */
1558 unsigned long reset_count;
1559
1560 /**
1561 * flags: Control various stages of the GPU reset
1562 *
1563 * #I915_RESET_BACKOFF - When we start a reset, we want to stop any
1564 * other users acquiring the struct_mutex. To do this we set the
1565 * #I915_RESET_BACKOFF bit in the error flags when we detect a reset
1566 * and then check for that bit before acquiring the struct_mutex (in
1567 * i915_mutex_lock_interruptible()?). I915_RESET_BACKOFF serves a
1568 * secondary role in preventing two concurrent global reset attempts.
1569 *
1570 * #I915_RESET_HANDOFF - To perform the actual GPU reset, we need the
1571 * struct_mutex. We try to acquire the struct_mutex in the reset worker,
1572 * but it may be held by some long running waiter (that we cannot
1573 * interrupt without causing trouble). Once we are ready to do the GPU
1574 * reset, we set the I915_RESET_HANDOFF bit and wakeup any waiters. If
1575 * they already hold the struct_mutex and want to participate they can
1576 * inspect the bit and do the reset directly, otherwise the worker
1577 * waits for the struct_mutex.
1578 *
1579 * #I915_RESET_ENGINE[num_engines] - Since the driver doesn't need to
1580 * acquire the struct_mutex to reset an engine, we need an explicit
1581 * flag to prevent two concurrent reset attempts in the same engine.
1582 * As the number of engines continues to grow, allocate the flags from
1583 * the most significant bits.
1584 *
1585 * #I915_WEDGED - If reset fails and we can no longer use the GPU,
1586 * we set the #I915_WEDGED bit. Prior to command submission, e.g.
1587 * i915_gem_request_alloc(), this bit is checked and the sequence
1588 * aborted (with -EIO reported to userspace) if set.
1589 */
1590 unsigned long flags;
1591 #define I915_RESET_BACKOFF 0
1592 #define I915_RESET_HANDOFF 1
1593 #define I915_RESET_MODESET 2
1594 #define I915_WEDGED (BITS_PER_LONG - 1)
1595 #define I915_RESET_ENGINE (I915_WEDGED - I915_NUM_ENGINES)
1596
1597 /** Number of times an engine has been reset */
1598 u32 reset_engine_count[I915_NUM_ENGINES];
1599
1600 /**
1601 * Waitqueue to signal when a hang is detected. Used to for waiters
1602 * to release the struct_mutex for the reset to procede.
1603 */
1604 wait_queue_head_t wait_queue;
1605
1606 /**
1607 * Waitqueue to signal when the reset has completed. Used by clients
1608 * that wait for dev_priv->mm.wedged to settle.
1609 */
1610 wait_queue_head_t reset_queue;
1611
1612 /* For missed irq/seqno simulation. */
1613 unsigned long test_irq_rings;
1614 };
1615
1616 enum modeset_restore {
1617 MODESET_ON_LID_OPEN,
1618 MODESET_DONE,
1619 MODESET_SUSPENDED,
1620 };
1621
1622 #define DP_AUX_A 0x40
1623 #define DP_AUX_B 0x10
1624 #define DP_AUX_C 0x20
1625 #define DP_AUX_D 0x30
1626
1627 #define DDC_PIN_B 0x05
1628 #define DDC_PIN_C 0x04
1629 #define DDC_PIN_D 0x06
1630
1631 struct ddi_vbt_port_info {
1632 /*
1633 * This is an index in the HDMI/DVI DDI buffer translation table.
1634 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1635 * populate this field.
1636 */
1637 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1638 uint8_t hdmi_level_shift;
1639
1640 uint8_t supports_dvi:1;
1641 uint8_t supports_hdmi:1;
1642 uint8_t supports_dp:1;
1643 uint8_t supports_edp:1;
1644
1645 uint8_t alternate_aux_channel;
1646 uint8_t alternate_ddc_pin;
1647
1648 uint8_t dp_boost_level;
1649 uint8_t hdmi_boost_level;
1650 };
1651
1652 enum psr_lines_to_wait {
1653 PSR_0_LINES_TO_WAIT = 0,
1654 PSR_1_LINE_TO_WAIT,
1655 PSR_4_LINES_TO_WAIT,
1656 PSR_8_LINES_TO_WAIT
1657 };
1658
1659 struct intel_vbt_data {
1660 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1661 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1662
1663 /* Feature bits */
1664 unsigned int int_tv_support:1;
1665 unsigned int lvds_dither:1;
1666 unsigned int lvds_vbt:1;
1667 unsigned int int_crt_support:1;
1668 unsigned int lvds_use_ssc:1;
1669 unsigned int display_clock_mode:1;
1670 unsigned int fdi_rx_polarity_inverted:1;
1671 unsigned int panel_type:4;
1672 int lvds_ssc_freq;
1673 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1674
1675 enum drrs_support_type drrs_type;
1676
1677 struct {
1678 int rate;
1679 int lanes;
1680 int preemphasis;
1681 int vswing;
1682 bool low_vswing;
1683 bool initialized;
1684 bool support;
1685 int bpp;
1686 struct edp_power_seq pps;
1687 } edp;
1688
1689 struct {
1690 bool full_link;
1691 bool require_aux_wakeup;
1692 int idle_frames;
1693 enum psr_lines_to_wait lines_to_wait;
1694 int tp1_wakeup_time;
1695 int tp2_tp3_wakeup_time;
1696 } psr;
1697
1698 struct {
1699 u16 pwm_freq_hz;
1700 bool present;
1701 bool active_low_pwm;
1702 u8 min_brightness; /* min_brightness/255 of max */
1703 u8 controller; /* brightness controller number */
1704 enum intel_backlight_type type;
1705 } backlight;
1706
1707 /* MIPI DSI */
1708 struct {
1709 u16 panel_id;
1710 struct mipi_config *config;
1711 struct mipi_pps_data *pps;
1712 u8 seq_version;
1713 u32 size;
1714 u8 *data;
1715 const u8 *sequence[MIPI_SEQ_MAX];
1716 } dsi;
1717
1718 int crt_ddc_pin;
1719
1720 int child_dev_num;
1721 union child_device_config *child_dev;
1722
1723 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1724 struct sdvo_device_mapping sdvo_mappings[2];
1725 };
1726
1727 enum intel_ddb_partitioning {
1728 INTEL_DDB_PART_1_2,
1729 INTEL_DDB_PART_5_6, /* IVB+ */
1730 };
1731
1732 struct intel_wm_level {
1733 bool enable;
1734 uint32_t pri_val;
1735 uint32_t spr_val;
1736 uint32_t cur_val;
1737 uint32_t fbc_val;
1738 };
1739
1740 struct ilk_wm_values {
1741 uint32_t wm_pipe[3];
1742 uint32_t wm_lp[3];
1743 uint32_t wm_lp_spr[3];
1744 uint32_t wm_linetime[3];
1745 bool enable_fbc_wm;
1746 enum intel_ddb_partitioning partitioning;
1747 };
1748
1749 struct g4x_pipe_wm {
1750 uint16_t plane[I915_MAX_PLANES];
1751 uint16_t fbc;
1752 };
1753
1754 struct g4x_sr_wm {
1755 uint16_t plane;
1756 uint16_t cursor;
1757 uint16_t fbc;
1758 };
1759
1760 struct vlv_wm_ddl_values {
1761 uint8_t plane[I915_MAX_PLANES];
1762 };
1763
1764 struct vlv_wm_values {
1765 struct g4x_pipe_wm pipe[3];
1766 struct g4x_sr_wm sr;
1767 struct vlv_wm_ddl_values ddl[3];
1768 uint8_t level;
1769 bool cxsr;
1770 };
1771
1772 struct g4x_wm_values {
1773 struct g4x_pipe_wm pipe[2];
1774 struct g4x_sr_wm sr;
1775 struct g4x_sr_wm hpll;
1776 bool cxsr;
1777 bool hpll_en;
1778 bool fbc_en;
1779 };
1780
1781 struct skl_ddb_entry {
1782 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1783 };
1784
1785 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1786 {
1787 return entry->end - entry->start;
1788 }
1789
1790 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1791 const struct skl_ddb_entry *e2)
1792 {
1793 if (e1->start == e2->start && e1->end == e2->end)
1794 return true;
1795
1796 return false;
1797 }
1798
1799 struct skl_ddb_allocation {
1800 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1801 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1802 };
1803
1804 struct skl_wm_values {
1805 unsigned dirty_pipes;
1806 struct skl_ddb_allocation ddb;
1807 };
1808
1809 struct skl_wm_level {
1810 bool plane_en;
1811 uint16_t plane_res_b;
1812 uint8_t plane_res_l;
1813 };
1814
1815 /*
1816 * This struct helps tracking the state needed for runtime PM, which puts the
1817 * device in PCI D3 state. Notice that when this happens, nothing on the
1818 * graphics device works, even register access, so we don't get interrupts nor
1819 * anything else.
1820 *
1821 * Every piece of our code that needs to actually touch the hardware needs to
1822 * either call intel_runtime_pm_get or call intel_display_power_get with the
1823 * appropriate power domain.
1824 *
1825 * Our driver uses the autosuspend delay feature, which means we'll only really
1826 * suspend if we stay with zero refcount for a certain amount of time. The
1827 * default value is currently very conservative (see intel_runtime_pm_enable), but
1828 * it can be changed with the standard runtime PM files from sysfs.
1829 *
1830 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1831 * goes back to false exactly before we reenable the IRQs. We use this variable
1832 * to check if someone is trying to enable/disable IRQs while they're supposed
1833 * to be disabled. This shouldn't happen and we'll print some error messages in
1834 * case it happens.
1835 *
1836 * For more, read the Documentation/power/runtime_pm.txt.
1837 */
1838 struct i915_runtime_pm {
1839 atomic_t wakeref_count;
1840 bool suspended;
1841 bool irqs_enabled;
1842 };
1843
1844 enum intel_pipe_crc_source {
1845 INTEL_PIPE_CRC_SOURCE_NONE,
1846 INTEL_PIPE_CRC_SOURCE_PLANE1,
1847 INTEL_PIPE_CRC_SOURCE_PLANE2,
1848 INTEL_PIPE_CRC_SOURCE_PF,
1849 INTEL_PIPE_CRC_SOURCE_PIPE,
1850 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1851 INTEL_PIPE_CRC_SOURCE_TV,
1852 INTEL_PIPE_CRC_SOURCE_DP_B,
1853 INTEL_PIPE_CRC_SOURCE_DP_C,
1854 INTEL_PIPE_CRC_SOURCE_DP_D,
1855 INTEL_PIPE_CRC_SOURCE_AUTO,
1856 INTEL_PIPE_CRC_SOURCE_MAX,
1857 };
1858
1859 struct intel_pipe_crc_entry {
1860 uint32_t frame;
1861 uint32_t crc[5];
1862 };
1863
1864 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1865 struct intel_pipe_crc {
1866 spinlock_t lock;
1867 bool opened; /* exclusive access to the result file */
1868 struct intel_pipe_crc_entry *entries;
1869 enum intel_pipe_crc_source source;
1870 int head, tail;
1871 wait_queue_head_t wq;
1872 int skipped;
1873 };
1874
1875 struct i915_frontbuffer_tracking {
1876 spinlock_t lock;
1877
1878 /*
1879 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1880 * scheduled flips.
1881 */
1882 unsigned busy_bits;
1883 unsigned flip_bits;
1884 };
1885
1886 struct i915_wa_reg {
1887 i915_reg_t addr;
1888 u32 value;
1889 /* bitmask representing WA bits */
1890 u32 mask;
1891 };
1892
1893 /*
1894 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1895 * allowing it for RCS as we don't foresee any requirement of having
1896 * a whitelist for other engines. When it is really required for
1897 * other engines then the limit need to be increased.
1898 */
1899 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1900
1901 struct i915_workarounds {
1902 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1903 u32 count;
1904 u32 hw_whitelist_count[I915_NUM_ENGINES];
1905 };
1906
1907 struct i915_virtual_gpu {
1908 bool active;
1909 u32 caps;
1910 };
1911
1912 /* used in computing the new watermarks state */
1913 struct intel_wm_config {
1914 unsigned int num_pipes_active;
1915 bool sprites_enabled;
1916 bool sprites_scaled;
1917 };
1918
1919 struct i915_oa_format {
1920 u32 format;
1921 int size;
1922 };
1923
1924 struct i915_oa_reg {
1925 i915_reg_t addr;
1926 u32 value;
1927 };
1928
1929 struct i915_oa_config {
1930 char uuid[UUID_STRING_LEN + 1];
1931 int id;
1932
1933 const struct i915_oa_reg *mux_regs;
1934 u32 mux_regs_len;
1935 const struct i915_oa_reg *b_counter_regs;
1936 u32 b_counter_regs_len;
1937 const struct i915_oa_reg *flex_regs;
1938 u32 flex_regs_len;
1939
1940 struct attribute_group sysfs_metric;
1941 struct attribute *attrs[2];
1942 struct device_attribute sysfs_metric_id;
1943
1944 atomic_t ref_count;
1945 };
1946
1947 struct i915_perf_stream;
1948
1949 /**
1950 * struct i915_perf_stream_ops - the OPs to support a specific stream type
1951 */
1952 struct i915_perf_stream_ops {
1953 /**
1954 * @enable: Enables the collection of HW samples, either in response to
1955 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1956 * without `I915_PERF_FLAG_DISABLED`.
1957 */
1958 void (*enable)(struct i915_perf_stream *stream);
1959
1960 /**
1961 * @disable: Disables the collection of HW samples, either in response
1962 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1963 * the stream.
1964 */
1965 void (*disable)(struct i915_perf_stream *stream);
1966
1967 /**
1968 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1969 * once there is something ready to read() for the stream
1970 */
1971 void (*poll_wait)(struct i915_perf_stream *stream,
1972 struct file *file,
1973 poll_table *wait);
1974
1975 /**
1976 * @wait_unlocked: For handling a blocking read, wait until there is
1977 * something to ready to read() for the stream. E.g. wait on the same
1978 * wait queue that would be passed to poll_wait().
1979 */
1980 int (*wait_unlocked)(struct i915_perf_stream *stream);
1981
1982 /**
1983 * @read: Copy buffered metrics as records to userspace
1984 * **buf**: the userspace, destination buffer
1985 * **count**: the number of bytes to copy, requested by userspace
1986 * **offset**: zero at the start of the read, updated as the read
1987 * proceeds, it represents how many bytes have been copied so far and
1988 * the buffer offset for copying the next record.
1989 *
1990 * Copy as many buffered i915 perf samples and records for this stream
1991 * to userspace as will fit in the given buffer.
1992 *
1993 * Only write complete records; returning -%ENOSPC if there isn't room
1994 * for a complete record.
1995 *
1996 * Return any error condition that results in a short read such as
1997 * -%ENOSPC or -%EFAULT, even though these may be squashed before
1998 * returning to userspace.
1999 */
2000 int (*read)(struct i915_perf_stream *stream,
2001 char __user *buf,
2002 size_t count,
2003 size_t *offset);
2004
2005 /**
2006 * @destroy: Cleanup any stream specific resources.
2007 *
2008 * The stream will always be disabled before this is called.
2009 */
2010 void (*destroy)(struct i915_perf_stream *stream);
2011 };
2012
2013 /**
2014 * struct i915_perf_stream - state for a single open stream FD
2015 */
2016 struct i915_perf_stream {
2017 /**
2018 * @dev_priv: i915 drm device
2019 */
2020 struct drm_i915_private *dev_priv;
2021
2022 /**
2023 * @link: Links the stream into ``&drm_i915_private->streams``
2024 */
2025 struct list_head link;
2026
2027 /**
2028 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
2029 * properties given when opening a stream, representing the contents
2030 * of a single sample as read() by userspace.
2031 */
2032 u32 sample_flags;
2033
2034 /**
2035 * @sample_size: Considering the configured contents of a sample
2036 * combined with the required header size, this is the total size
2037 * of a single sample record.
2038 */
2039 int sample_size;
2040
2041 /**
2042 * @ctx: %NULL if measuring system-wide across all contexts or a
2043 * specific context that is being monitored.
2044 */
2045 struct i915_gem_context *ctx;
2046
2047 /**
2048 * @enabled: Whether the stream is currently enabled, considering
2049 * whether the stream was opened in a disabled state and based
2050 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
2051 */
2052 bool enabled;
2053
2054 /**
2055 * @ops: The callbacks providing the implementation of this specific
2056 * type of configured stream.
2057 */
2058 const struct i915_perf_stream_ops *ops;
2059
2060 /**
2061 * @oa_config: The OA configuration used by the stream.
2062 */
2063 struct i915_oa_config *oa_config;
2064 };
2065
2066 /**
2067 * struct i915_oa_ops - Gen specific implementation of an OA unit stream
2068 */
2069 struct i915_oa_ops {
2070 /**
2071 * @is_valid_b_counter_reg: Validates register's address for
2072 * programming boolean counters for a particular platform.
2073 */
2074 bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
2075 u32 addr);
2076
2077 /**
2078 * @is_valid_mux_reg: Validates register's address for programming mux
2079 * for a particular platform.
2080 */
2081 bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
2082
2083 /**
2084 * @is_valid_flex_reg: Validates register's address for programming
2085 * flex EU filtering for a particular platform.
2086 */
2087 bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
2088
2089 /**
2090 * @init_oa_buffer: Resets the head and tail pointers of the
2091 * circular buffer for periodic OA reports.
2092 *
2093 * Called when first opening a stream for OA metrics, but also may be
2094 * called in response to an OA buffer overflow or other error
2095 * condition.
2096 *
2097 * Note it may be necessary to clear the full OA buffer here as part of
2098 * maintaining the invariable that new reports must be written to
2099 * zeroed memory for us to be able to reliable detect if an expected
2100 * report has not yet landed in memory. (At least on Haswell the OA
2101 * buffer tail pointer is not synchronized with reports being visible
2102 * to the CPU)
2103 */
2104 void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
2105
2106 /**
2107 * @enable_metric_set: Selects and applies any MUX configuration to set
2108 * up the Boolean and Custom (B/C) counters that are part of the
2109 * counter reports being sampled. May apply system constraints such as
2110 * disabling EU clock gating as required.
2111 */
2112 int (*enable_metric_set)(struct drm_i915_private *dev_priv,
2113 const struct i915_oa_config *oa_config);
2114
2115 /**
2116 * @disable_metric_set: Remove system constraints associated with using
2117 * the OA unit.
2118 */
2119 void (*disable_metric_set)(struct drm_i915_private *dev_priv);
2120
2121 /**
2122 * @oa_enable: Enable periodic sampling
2123 */
2124 void (*oa_enable)(struct drm_i915_private *dev_priv);
2125
2126 /**
2127 * @oa_disable: Disable periodic sampling
2128 */
2129 void (*oa_disable)(struct drm_i915_private *dev_priv);
2130
2131 /**
2132 * @read: Copy data from the circular OA buffer into a given userspace
2133 * buffer.
2134 */
2135 int (*read)(struct i915_perf_stream *stream,
2136 char __user *buf,
2137 size_t count,
2138 size_t *offset);
2139
2140 /**
2141 * @oa_hw_tail_read: read the OA tail pointer register
2142 *
2143 * In particular this enables us to share all the fiddly code for
2144 * handling the OA unit tail pointer race that affects multiple
2145 * generations.
2146 */
2147 u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
2148 };
2149
2150 struct intel_cdclk_state {
2151 unsigned int cdclk, vco, ref;
2152 };
2153
2154 struct drm_i915_private {
2155 struct drm_device drm;
2156
2157 struct kmem_cache *objects;
2158 struct kmem_cache *vmas;
2159 struct kmem_cache *luts;
2160 struct kmem_cache *requests;
2161 struct kmem_cache *dependencies;
2162 struct kmem_cache *priorities;
2163
2164 const struct intel_device_info info;
2165
2166 void __iomem *regs;
2167
2168 struct intel_uncore uncore;
2169
2170 struct i915_virtual_gpu vgpu;
2171
2172 struct intel_gvt *gvt;
2173
2174 struct intel_huc huc;
2175 struct intel_guc guc;
2176
2177 struct intel_csr csr;
2178
2179 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
2180
2181 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
2182 * controller on different i2c buses. */
2183 struct mutex gmbus_mutex;
2184
2185 /**
2186 * Base address of the gmbus and gpio block.
2187 */
2188 uint32_t gpio_mmio_base;
2189
2190 /* MMIO base address for MIPI regs */
2191 uint32_t mipi_mmio_base;
2192
2193 uint32_t psr_mmio_base;
2194
2195 uint32_t pps_mmio_base;
2196
2197 wait_queue_head_t gmbus_wait_queue;
2198
2199 struct pci_dev *bridge_dev;
2200 struct i915_gem_context *kernel_context;
2201 struct intel_engine_cs *engine[I915_NUM_ENGINES];
2202 struct i915_vma *semaphore;
2203
2204 struct drm_dma_handle *status_page_dmah;
2205 struct resource mch_res;
2206
2207 /* protects the irq masks */
2208 spinlock_t irq_lock;
2209
2210 bool display_irqs_enabled;
2211
2212 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
2213 struct pm_qos_request pm_qos;
2214
2215 /* Sideband mailbox protection */
2216 struct mutex sb_lock;
2217
2218 /** Cached value of IMR to avoid reads in updating the bitfield */
2219 union {
2220 u32 irq_mask;
2221 u32 de_irq_mask[I915_MAX_PIPES];
2222 };
2223 u32 gt_irq_mask;
2224 u32 pm_imr;
2225 u32 pm_ier;
2226 u32 pm_rps_events;
2227 u32 pm_guc_events;
2228 u32 pipestat_irq_mask[I915_MAX_PIPES];
2229
2230 struct i915_hotplug hotplug;
2231 struct intel_fbc fbc;
2232 struct i915_drrs drrs;
2233 struct intel_opregion opregion;
2234 struct intel_vbt_data vbt;
2235
2236 bool preserve_bios_swizzle;
2237
2238 /* overlay */
2239 struct intel_overlay *overlay;
2240
2241 /* backlight registers and fields in struct intel_panel */
2242 struct mutex backlight_lock;
2243
2244 /* LVDS info */
2245 bool no_aux_handshake;
2246
2247 /* protects panel power sequencer state */
2248 struct mutex pps_mutex;
2249
2250 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
2251 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
2252
2253 unsigned int fsb_freq, mem_freq, is_ddr3;
2254 unsigned int skl_preferred_vco_freq;
2255 unsigned int max_cdclk_freq;
2256
2257 unsigned int max_dotclk_freq;
2258 unsigned int rawclk_freq;
2259 unsigned int hpll_freq;
2260 unsigned int czclk_freq;
2261
2262 struct {
2263 /*
2264 * The current logical cdclk state.
2265 * See intel_atomic_state.cdclk.logical
2266 *
2267 * For reading holding any crtc lock is sufficient,
2268 * for writing must hold all of them.
2269 */
2270 struct intel_cdclk_state logical;
2271 /*
2272 * The current actual cdclk state.
2273 * See intel_atomic_state.cdclk.actual
2274 */
2275 struct intel_cdclk_state actual;
2276 /* The current hardware cdclk state */
2277 struct intel_cdclk_state hw;
2278 } cdclk;
2279
2280 /**
2281 * wq - Driver workqueue for GEM.
2282 *
2283 * NOTE: Work items scheduled here are not allowed to grab any modeset
2284 * locks, for otherwise the flushing done in the pageflip code will
2285 * result in deadlocks.
2286 */
2287 struct workqueue_struct *wq;
2288
2289 /* Display functions */
2290 struct drm_i915_display_funcs display;
2291
2292 /* PCH chipset type */
2293 enum intel_pch pch_type;
2294 unsigned short pch_id;
2295
2296 unsigned long quirks;
2297
2298 enum modeset_restore modeset_restore;
2299 struct mutex modeset_restore_lock;
2300 struct drm_atomic_state *modeset_restore_state;
2301 struct drm_modeset_acquire_ctx reset_ctx;
2302
2303 struct list_head vm_list; /* Global list of all address spaces */
2304 struct i915_ggtt ggtt; /* VM representing the global address space */
2305
2306 struct i915_gem_mm mm;
2307 DECLARE_HASHTABLE(mm_structs, 7);
2308 struct mutex mm_lock;
2309
2310 /* Kernel Modesetting */
2311
2312 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
2313 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
2314
2315 #ifdef CONFIG_DEBUG_FS
2316 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
2317 #endif
2318
2319 /* dpll and cdclk state is protected by connection_mutex */
2320 int num_shared_dpll;
2321 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
2322 const struct intel_dpll_mgr *dpll_mgr;
2323
2324 /*
2325 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
2326 * Must be global rather than per dpll, because on some platforms
2327 * plls share registers.
2328 */
2329 struct mutex dpll_lock;
2330
2331 unsigned int active_crtcs;
2332 unsigned int min_pixclk[I915_MAX_PIPES];
2333
2334 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
2335
2336 struct i915_workarounds workarounds;
2337
2338 struct i915_frontbuffer_tracking fb_tracking;
2339
2340 struct intel_atomic_helper {
2341 struct llist_head free_list;
2342 struct work_struct free_work;
2343 } atomic_helper;
2344
2345 u16 orig_clock;
2346
2347 bool mchbar_need_disable;
2348
2349 struct intel_l3_parity l3_parity;
2350
2351 /* Cannot be determined by PCIID. You must always read a register. */
2352 u32 edram_cap;
2353
2354 /* gen6+ rps state */
2355 struct intel_gen6_power_mgmt rps;
2356
2357 /* ilk-only ips/rps state. Everything in here is protected by the global
2358 * mchdev_lock in intel_pm.c */
2359 struct intel_ilk_power_mgmt ips;
2360
2361 struct i915_power_domains power_domains;
2362
2363 struct i915_psr psr;
2364
2365 struct i915_gpu_error gpu_error;
2366
2367 struct drm_i915_gem_object *vlv_pctx;
2368
2369 /* list of fbdev register on this device */
2370 struct intel_fbdev *fbdev;
2371 struct work_struct fbdev_suspend_work;
2372
2373 struct drm_property *broadcast_rgb_property;
2374 struct drm_property *force_audio_property;
2375
2376 /* hda/i915 audio component */
2377 struct i915_audio_component *audio_component;
2378 bool audio_component_registered;
2379 /**
2380 * av_mutex - mutex for audio/video sync
2381 *
2382 */
2383 struct mutex av_mutex;
2384
2385 struct {
2386 struct list_head list;
2387 struct llist_head free_list;
2388 struct work_struct free_work;
2389
2390 /* The hw wants to have a stable context identifier for the
2391 * lifetime of the context (for OA, PASID, faults, etc).
2392 * This is limited in execlists to 21 bits.
2393 */
2394 struct ida hw_ida;
2395 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
2396 } contexts;
2397
2398 u32 fdi_rx_config;
2399
2400 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
2401 u32 chv_phy_control;
2402 /*
2403 * Shadows for CHV DPLL_MD regs to keep the state
2404 * checker somewhat working in the presence hardware
2405 * crappiness (can't read out DPLL_MD for pipes B & C).
2406 */
2407 u32 chv_dpll_md[I915_MAX_PIPES];
2408 u32 bxt_phy_grc;
2409
2410 u32 suspend_count;
2411 bool suspended_to_idle;
2412 struct i915_suspend_saved_registers regfile;
2413 struct vlv_s0ix_state vlv_s0ix_state;
2414
2415 enum {
2416 I915_SAGV_UNKNOWN = 0,
2417 I915_SAGV_DISABLED,
2418 I915_SAGV_ENABLED,
2419 I915_SAGV_NOT_CONTROLLED
2420 } sagv_status;
2421
2422 struct {
2423 /*
2424 * Raw watermark latency values:
2425 * in 0.1us units for WM0,
2426 * in 0.5us units for WM1+.
2427 */
2428 /* primary */
2429 uint16_t pri_latency[5];
2430 /* sprite */
2431 uint16_t spr_latency[5];
2432 /* cursor */
2433 uint16_t cur_latency[5];
2434 /*
2435 * Raw watermark memory latency values
2436 * for SKL for all 8 levels
2437 * in 1us units.
2438 */
2439 uint16_t skl_latency[8];
2440
2441 /* current hardware state */
2442 union {
2443 struct ilk_wm_values hw;
2444 struct skl_wm_values skl_hw;
2445 struct vlv_wm_values vlv;
2446 struct g4x_wm_values g4x;
2447 };
2448
2449 uint8_t max_level;
2450
2451 /*
2452 * Should be held around atomic WM register writing; also
2453 * protects * intel_crtc->wm.active and
2454 * cstate->wm.need_postvbl_update.
2455 */
2456 struct mutex wm_mutex;
2457
2458 /*
2459 * Set during HW readout of watermarks/DDB. Some platforms
2460 * need to know when we're still using BIOS-provided values
2461 * (which we don't fully trust).
2462 */
2463 bool distrust_bios_wm;
2464 } wm;
2465
2466 struct i915_runtime_pm pm;
2467
2468 struct {
2469 bool initialized;
2470
2471 struct kobject *metrics_kobj;
2472 struct ctl_table_header *sysctl_header;
2473
2474 /*
2475 * Lock associated with adding/modifying/removing OA configs
2476 * in dev_priv->perf.metrics_idr.
2477 */
2478 struct mutex metrics_lock;
2479
2480 /*
2481 * List of dynamic configurations, you need to hold
2482 * dev_priv->perf.metrics_lock to access it.
2483 */
2484 struct idr metrics_idr;
2485
2486 /*
2487 * Lock associated with anything below within this structure
2488 * except exclusive_stream.
2489 */
2490 struct mutex lock;
2491 struct list_head streams;
2492
2493 struct {
2494 /*
2495 * The stream currently using the OA unit. If accessed
2496 * outside a syscall associated to its file
2497 * descriptor, you need to hold
2498 * dev_priv->drm.struct_mutex.
2499 */
2500 struct i915_perf_stream *exclusive_stream;
2501
2502 u32 specific_ctx_id;
2503
2504 struct hrtimer poll_check_timer;
2505 wait_queue_head_t poll_wq;
2506 bool pollin;
2507
2508 /**
2509 * For rate limiting any notifications of spurious
2510 * invalid OA reports
2511 */
2512 struct ratelimit_state spurious_report_rs;
2513
2514 bool periodic;
2515 int period_exponent;
2516 int timestamp_frequency;
2517
2518 struct i915_oa_config test_config;
2519
2520 struct {
2521 struct i915_vma *vma;
2522 u8 *vaddr;
2523 u32 last_ctx_id;
2524 int format;
2525 int format_size;
2526
2527 /**
2528 * Locks reads and writes to all head/tail state
2529 *
2530 * Consider: the head and tail pointer state
2531 * needs to be read consistently from a hrtimer
2532 * callback (atomic context) and read() fop
2533 * (user context) with tail pointer updates
2534 * happening in atomic context and head updates
2535 * in user context and the (unlikely)
2536 * possibility of read() errors needing to
2537 * reset all head/tail state.
2538 *
2539 * Note: Contention or performance aren't
2540 * currently a significant concern here
2541 * considering the relatively low frequency of
2542 * hrtimer callbacks (5ms period) and that
2543 * reads typically only happen in response to a
2544 * hrtimer event and likely complete before the
2545 * next callback.
2546 *
2547 * Note: This lock is not held *while* reading
2548 * and copying data to userspace so the value
2549 * of head observed in htrimer callbacks won't
2550 * represent any partial consumption of data.
2551 */
2552 spinlock_t ptr_lock;
2553
2554 /**
2555 * One 'aging' tail pointer and one 'aged'
2556 * tail pointer ready to used for reading.
2557 *
2558 * Initial values of 0xffffffff are invalid
2559 * and imply that an update is required
2560 * (and should be ignored by an attempted
2561 * read)
2562 */
2563 struct {
2564 u32 offset;
2565 } tails[2];
2566
2567 /**
2568 * Index for the aged tail ready to read()
2569 * data up to.
2570 */
2571 unsigned int aged_tail_idx;
2572
2573 /**
2574 * A monotonic timestamp for when the current
2575 * aging tail pointer was read; used to
2576 * determine when it is old enough to trust.
2577 */
2578 u64 aging_timestamp;
2579
2580 /**
2581 * Although we can always read back the head
2582 * pointer register, we prefer to avoid
2583 * trusting the HW state, just to avoid any
2584 * risk that some hardware condition could
2585 * somehow bump the head pointer unpredictably
2586 * and cause us to forward the wrong OA buffer
2587 * data to userspace.
2588 */
2589 u32 head;
2590 } oa_buffer;
2591
2592 u32 gen7_latched_oastatus1;
2593 u32 ctx_oactxctrl_offset;
2594 u32 ctx_flexeu0_offset;
2595
2596 /**
2597 * The RPT_ID/reason field for Gen8+ includes a bit
2598 * to determine if the CTX ID in the report is valid
2599 * but the specific bit differs between Gen 8 and 9
2600 */
2601 u32 gen8_valid_ctx_bit;
2602
2603 struct i915_oa_ops ops;
2604 const struct i915_oa_format *oa_formats;
2605 } oa;
2606 } perf;
2607
2608 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2609 struct {
2610 void (*resume)(struct drm_i915_private *);
2611 void (*cleanup_engine)(struct intel_engine_cs *engine);
2612
2613 struct list_head timelines;
2614 struct i915_gem_timeline global_timeline;
2615 u32 active_requests;
2616
2617 /**
2618 * Is the GPU currently considered idle, or busy executing
2619 * userspace requests? Whilst idle, we allow runtime power
2620 * management to power down the hardware and display clocks.
2621 * In order to reduce the effect on performance, there
2622 * is a slight delay before we do so.
2623 */
2624 bool awake;
2625
2626 /**
2627 * We leave the user IRQ off as much as possible,
2628 * but this means that requests will finish and never
2629 * be retired once the system goes idle. Set a timer to
2630 * fire periodically while the ring is running. When it
2631 * fires, go retire requests.
2632 */
2633 struct delayed_work retire_work;
2634
2635 /**
2636 * When we detect an idle GPU, we want to turn on
2637 * powersaving features. So once we see that there
2638 * are no more requests outstanding and no more
2639 * arrive within a small period of time, we fire
2640 * off the idle_work.
2641 */
2642 struct delayed_work idle_work;
2643
2644 ktime_t last_init_time;
2645 } gt;
2646
2647 /* perform PHY state sanity checks? */
2648 bool chv_phy_assert[2];
2649
2650 bool ipc_enabled;
2651
2652 /* Used to save the pipe-to-encoder mapping for audio */
2653 struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2654
2655 /* necessary resource sharing with HDMI LPE audio driver. */
2656 struct {
2657 struct platform_device *platdev;
2658 int irq;
2659 } lpe_audio;
2660
2661 /*
2662 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2663 * will be rejected. Instead look for a better place.
2664 */
2665 };
2666
2667 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2668 {
2669 return container_of(dev, struct drm_i915_private, drm);
2670 }
2671
2672 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2673 {
2674 return to_i915(dev_get_drvdata(kdev));
2675 }
2676
2677 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2678 {
2679 return container_of(guc, struct drm_i915_private, guc);
2680 }
2681
2682 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2683 {
2684 return container_of(huc, struct drm_i915_private, huc);
2685 }
2686
2687 /* Simple iterator over all initialised engines */
2688 #define for_each_engine(engine__, dev_priv__, id__) \
2689 for ((id__) = 0; \
2690 (id__) < I915_NUM_ENGINES; \
2691 (id__)++) \
2692 for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2693
2694 /* Iterator over subset of engines selected by mask */
2695 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2696 for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask; \
2697 tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2698
2699 enum hdmi_force_audio {
2700 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2701 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2702 HDMI_AUDIO_AUTO, /* trust EDID */
2703 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2704 };
2705
2706 #define I915_GTT_OFFSET_NONE ((u32)-1)
2707
2708 /*
2709 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2710 * considered to be the frontbuffer for the given plane interface-wise. This
2711 * doesn't mean that the hw necessarily already scans it out, but that any
2712 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2713 *
2714 * We have one bit per pipe and per scanout plane type.
2715 */
2716 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2717 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2718 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2719 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2720 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2721 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2722 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2723 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2724 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2725 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2726 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2727 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2728
2729 /*
2730 * Optimised SGL iterator for GEM objects
2731 */
2732 static __always_inline struct sgt_iter {
2733 struct scatterlist *sgp;
2734 union {
2735 unsigned long pfn;
2736 dma_addr_t dma;
2737 };
2738 unsigned int curr;
2739 unsigned int max;
2740 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2741 struct sgt_iter s = { .sgp = sgl };
2742
2743 if (s.sgp) {
2744 s.max = s.curr = s.sgp->offset;
2745 s.max += s.sgp->length;
2746 if (dma)
2747 s.dma = sg_dma_address(s.sgp);
2748 else
2749 s.pfn = page_to_pfn(sg_page(s.sgp));
2750 }
2751
2752 return s;
2753 }
2754
2755 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2756 {
2757 ++sg;
2758 if (unlikely(sg_is_chain(sg)))
2759 sg = sg_chain_ptr(sg);
2760 return sg;
2761 }
2762
2763 /**
2764 * __sg_next - return the next scatterlist entry in a list
2765 * @sg: The current sg entry
2766 *
2767 * Description:
2768 * If the entry is the last, return NULL; otherwise, step to the next
2769 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2770 * otherwise just return the pointer to the current element.
2771 **/
2772 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2773 {
2774 #ifdef CONFIG_DEBUG_SG
2775 BUG_ON(sg->sg_magic != SG_MAGIC);
2776 #endif
2777 return sg_is_last(sg) ? NULL : ____sg_next(sg);
2778 }
2779
2780 /**
2781 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2782 * @__dmap: DMA address (output)
2783 * @__iter: 'struct sgt_iter' (iterator state, internal)
2784 * @__sgt: sg_table to iterate over (input)
2785 */
2786 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2787 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2788 ((__dmap) = (__iter).dma + (__iter).curr); \
2789 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2790 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2791
2792 /**
2793 * for_each_sgt_page - iterate over the pages of the given sg_table
2794 * @__pp: page pointer (output)
2795 * @__iter: 'struct sgt_iter' (iterator state, internal)
2796 * @__sgt: sg_table to iterate over (input)
2797 */
2798 #define for_each_sgt_page(__pp, __iter, __sgt) \
2799 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2800 ((__pp) = (__iter).pfn == 0 ? NULL : \
2801 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2802 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2803 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2804
2805 static inline const struct intel_device_info *
2806 intel_info(const struct drm_i915_private *dev_priv)
2807 {
2808 return &dev_priv->info;
2809 }
2810
2811 #define INTEL_INFO(dev_priv) intel_info((dev_priv))
2812
2813 #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen)
2814 #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id)
2815
2816 #define REVID_FOREVER 0xff
2817 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision)
2818
2819 #define GEN_FOREVER (0)
2820 /*
2821 * Returns true if Gen is in inclusive range [Start, End].
2822 *
2823 * Use GEN_FOREVER for unbound start and or end.
2824 */
2825 #define IS_GEN(dev_priv, s, e) ({ \
2826 unsigned int __s = (s), __e = (e); \
2827 BUILD_BUG_ON(!__builtin_constant_p(s)); \
2828 BUILD_BUG_ON(!__builtin_constant_p(e)); \
2829 if ((__s) != GEN_FOREVER) \
2830 __s = (s) - 1; \
2831 if ((__e) == GEN_FOREVER) \
2832 __e = BITS_PER_LONG - 1; \
2833 else \
2834 __e = (e) - 1; \
2835 !!((dev_priv)->info.gen_mask & GENMASK((__e), (__s))); \
2836 })
2837
2838 /*
2839 * Return true if revision is in range [since,until] inclusive.
2840 *
2841 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2842 */
2843 #define IS_REVID(p, since, until) \
2844 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2845
2846 #define IS_I830(dev_priv) ((dev_priv)->info.platform == INTEL_I830)
2847 #define IS_I845G(dev_priv) ((dev_priv)->info.platform == INTEL_I845G)
2848 #define IS_I85X(dev_priv) ((dev_priv)->info.platform == INTEL_I85X)
2849 #define IS_I865G(dev_priv) ((dev_priv)->info.platform == INTEL_I865G)
2850 #define IS_I915G(dev_priv) ((dev_priv)->info.platform == INTEL_I915G)
2851 #define IS_I915GM(dev_priv) ((dev_priv)->info.platform == INTEL_I915GM)
2852 #define IS_I945G(dev_priv) ((dev_priv)->info.platform == INTEL_I945G)
2853 #define IS_I945GM(dev_priv) ((dev_priv)->info.platform == INTEL_I945GM)
2854 #define IS_I965G(dev_priv) ((dev_priv)->info.platform == INTEL_I965G)
2855 #define IS_I965GM(dev_priv) ((dev_priv)->info.platform == INTEL_I965GM)
2856 #define IS_G45(dev_priv) ((dev_priv)->info.platform == INTEL_G45)
2857 #define IS_GM45(dev_priv) ((dev_priv)->info.platform == INTEL_GM45)
2858 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv))
2859 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001)
2860 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011)
2861 #define IS_PINEVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_PINEVIEW)
2862 #define IS_G33(dev_priv) ((dev_priv)->info.platform == INTEL_G33)
2863 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046)
2864 #define IS_IVYBRIDGE(dev_priv) ((dev_priv)->info.platform == INTEL_IVYBRIDGE)
2865 #define IS_IVB_GT1(dev_priv) (INTEL_DEVID(dev_priv) == 0x0156 || \
2866 INTEL_DEVID(dev_priv) == 0x0152 || \
2867 INTEL_DEVID(dev_priv) == 0x015a)
2868 #define IS_VALLEYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_VALLEYVIEW)
2869 #define IS_CHERRYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_CHERRYVIEW)
2870 #define IS_HASWELL(dev_priv) ((dev_priv)->info.platform == INTEL_HASWELL)
2871 #define IS_BROADWELL(dev_priv) ((dev_priv)->info.platform == INTEL_BROADWELL)
2872 #define IS_SKYLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_SKYLAKE)
2873 #define IS_BROXTON(dev_priv) ((dev_priv)->info.platform == INTEL_BROXTON)
2874 #define IS_KABYLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_KABYLAKE)
2875 #define IS_GEMINILAKE(dev_priv) ((dev_priv)->info.platform == INTEL_GEMINILAKE)
2876 #define IS_COFFEELAKE(dev_priv) ((dev_priv)->info.platform == INTEL_COFFEELAKE)
2877 #define IS_CANNONLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_CANNONLAKE)
2878 #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile)
2879 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2880 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2881 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \
2882 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \
2883 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \
2884 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2885 /* ULX machines are also considered ULT. */
2886 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \
2887 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2888 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \
2889 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2890 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \
2891 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2892 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \
2893 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2894 /* ULX machines are also considered ULT. */
2895 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \
2896 INTEL_DEVID(dev_priv) == 0x0A1E)
2897 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \
2898 INTEL_DEVID(dev_priv) == 0x1913 || \
2899 INTEL_DEVID(dev_priv) == 0x1916 || \
2900 INTEL_DEVID(dev_priv) == 0x1921 || \
2901 INTEL_DEVID(dev_priv) == 0x1926)
2902 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \
2903 INTEL_DEVID(dev_priv) == 0x1915 || \
2904 INTEL_DEVID(dev_priv) == 0x191E)
2905 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \
2906 INTEL_DEVID(dev_priv) == 0x5913 || \
2907 INTEL_DEVID(dev_priv) == 0x5916 || \
2908 INTEL_DEVID(dev_priv) == 0x5921 || \
2909 INTEL_DEVID(dev_priv) == 0x5926)
2910 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \
2911 INTEL_DEVID(dev_priv) == 0x5915 || \
2912 INTEL_DEVID(dev_priv) == 0x591E)
2913 #define IS_SKL_GT2(dev_priv) (IS_SKYLAKE(dev_priv) && \
2914 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0010)
2915 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \
2916 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2917 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \
2918 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0030)
2919 #define IS_KBL_GT2(dev_priv) (IS_KABYLAKE(dev_priv) && \
2920 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0010)
2921 #define IS_KBL_GT3(dev_priv) (IS_KABYLAKE(dev_priv) && \
2922 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2923 #define IS_CFL_ULT(dev_priv) (IS_COFFEELAKE(dev_priv) && \
2924 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2925
2926 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2927
2928 #define SKL_REVID_A0 0x0
2929 #define SKL_REVID_B0 0x1
2930 #define SKL_REVID_C0 0x2
2931 #define SKL_REVID_D0 0x3
2932 #define SKL_REVID_E0 0x4
2933 #define SKL_REVID_F0 0x5
2934 #define SKL_REVID_G0 0x6
2935 #define SKL_REVID_H0 0x7
2936
2937 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2938
2939 #define BXT_REVID_A0 0x0
2940 #define BXT_REVID_A1 0x1
2941 #define BXT_REVID_B0 0x3
2942 #define BXT_REVID_B_LAST 0x8
2943 #define BXT_REVID_C0 0x9
2944
2945 #define IS_BXT_REVID(dev_priv, since, until) \
2946 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2947
2948 #define KBL_REVID_A0 0x0
2949 #define KBL_REVID_B0 0x1
2950 #define KBL_REVID_C0 0x2
2951 #define KBL_REVID_D0 0x3
2952 #define KBL_REVID_E0 0x4
2953
2954 #define IS_KBL_REVID(dev_priv, since, until) \
2955 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2956
2957 #define GLK_REVID_A0 0x0
2958 #define GLK_REVID_A1 0x1
2959
2960 #define IS_GLK_REVID(dev_priv, since, until) \
2961 (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2962
2963 #define CNL_REVID_A0 0x0
2964 #define CNL_REVID_B0 0x1
2965
2966 #define IS_CNL_REVID(p, since, until) \
2967 (IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2968
2969 /*
2970 * The genX designation typically refers to the render engine, so render
2971 * capability related checks should use IS_GEN, while display and other checks
2972 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2973 * chips, etc.).
2974 */
2975 #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1)))
2976 #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2)))
2977 #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3)))
2978 #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4)))
2979 #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5)))
2980 #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6)))
2981 #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7)))
2982 #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8)))
2983 #define IS_GEN10(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(9)))
2984
2985 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp)
2986 #define IS_GEN9_LP(dev_priv) (IS_GEN9(dev_priv) && IS_LP(dev_priv))
2987 #define IS_GEN9_BC(dev_priv) (IS_GEN9(dev_priv) && !IS_LP(dev_priv))
2988
2989 #define ENGINE_MASK(id) BIT(id)
2990 #define RENDER_RING ENGINE_MASK(RCS)
2991 #define BSD_RING ENGINE_MASK(VCS)
2992 #define BLT_RING ENGINE_MASK(BCS)
2993 #define VEBOX_RING ENGINE_MASK(VECS)
2994 #define BSD2_RING ENGINE_MASK(VCS2)
2995 #define ALL_ENGINES (~0)
2996
2997 #define HAS_ENGINE(dev_priv, id) \
2998 (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
2999
3000 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
3001 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
3002 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
3003 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
3004
3005 #define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc)
3006 #define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop)
3007 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED))
3008 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \
3009 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
3010
3011 #define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical)
3012
3013 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
3014 ((dev_priv)->info.has_logical_ring_contexts)
3015 #define USES_PPGTT(dev_priv) (i915.enable_ppgtt)
3016 #define USES_FULL_PPGTT(dev_priv) (i915.enable_ppgtt >= 2)
3017 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915.enable_ppgtt == 3)
3018
3019 #define HAS_OVERLAY(dev_priv) ((dev_priv)->info.has_overlay)
3020 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
3021 ((dev_priv)->info.overlay_needs_physical)
3022
3023 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
3024 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv))
3025
3026 /* WaRsDisableCoarsePowerGating:skl,bxt */
3027 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
3028 (IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
3029
3030 /*
3031 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
3032 * even when in MSI mode. This results in spurious interrupt warnings if the
3033 * legacy irq no. is shared with another device. The kernel then disables that
3034 * interrupt source and so prevents the other device from working properly.
3035 */
3036 #define HAS_AUX_IRQ(dev_priv) ((dev_priv)->info.gen >= 5)
3037 #define HAS_GMBUS_IRQ(dev_priv) ((dev_priv)->info.has_gmbus_irq)
3038
3039 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
3040 * rows, which changed the alignment requirements and fence programming.
3041 */
3042 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
3043 !(IS_I915G(dev_priv) || \
3044 IS_I915GM(dev_priv)))
3045 #define SUPPORTS_TV(dev_priv) ((dev_priv)->info.supports_tv)
3046 #define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.has_hotplug)
3047
3048 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2)
3049 #define HAS_PIPE_CXSR(dev_priv) ((dev_priv)->info.has_pipe_cxsr)
3050 #define HAS_FBC(dev_priv) ((dev_priv)->info.has_fbc)
3051 #define HAS_CUR_FBC(dev_priv) (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_INFO(dev_priv)->gen >= 7)
3052
3053 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
3054
3055 #define HAS_DP_MST(dev_priv) ((dev_priv)->info.has_dp_mst)
3056
3057 #define HAS_DDI(dev_priv) ((dev_priv)->info.has_ddi)
3058 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
3059 #define HAS_PSR(dev_priv) ((dev_priv)->info.has_psr)
3060 #define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6)
3061 #define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p)
3062
3063 #define HAS_CSR(dev_priv) ((dev_priv)->info.has_csr)
3064
3065 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
3066 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
3067
3068 /*
3069 * For now, anything with a GuC requires uCode loading, and then supports
3070 * command submission once loaded. But these are logically independent
3071 * properties, so we have separate macros to test them.
3072 */
3073 #define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc)
3074 #define HAS_GUC_CT(dev_priv) ((dev_priv)->info.has_guc_ct)
3075 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3076 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv))
3077 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3078
3079 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
3080
3081 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu)
3082
3083 #define INTEL_PCH_DEVICE_ID_MASK 0xff80
3084 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
3085 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
3086 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
3087 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
3088 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
3089 #define INTEL_PCH_WPT_DEVICE_ID_TYPE 0x8c80
3090 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE 0x9c80
3091 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
3092 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
3093 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA280
3094 #define INTEL_PCH_CNP_DEVICE_ID_TYPE 0xA300
3095 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE 0x9D80
3096 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
3097 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
3098 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
3099
3100 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
3101 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
3102 #define HAS_PCH_CNP_LP(dev_priv) \
3103 ((dev_priv)->pch_id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
3104 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
3105 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
3106 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
3107 #define HAS_PCH_LPT_LP(dev_priv) \
3108 ((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
3109 (dev_priv)->pch_id == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
3110 #define HAS_PCH_LPT_H(dev_priv) \
3111 ((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
3112 (dev_priv)->pch_id == INTEL_PCH_WPT_DEVICE_ID_TYPE)
3113 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
3114 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
3115 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
3116 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
3117
3118 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
3119
3120 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
3121
3122 /* DPF == dynamic parity feature */
3123 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
3124 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
3125 2 : HAS_L3_DPF(dev_priv))
3126
3127 #define GT_FREQUENCY_MULTIPLIER 50
3128 #define GEN9_FREQ_SCALER 3
3129
3130 #include "i915_trace.h"
3131
3132 static inline bool intel_vtd_active(void)
3133 {
3134 #ifdef CONFIG_INTEL_IOMMU
3135 if (intel_iommu_gfx_mapped)
3136 return true;
3137 #endif
3138 return false;
3139 }
3140
3141 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
3142 {
3143 return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
3144 }
3145
3146 static inline bool
3147 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
3148 {
3149 return IS_BROXTON(dev_priv) && intel_vtd_active();
3150 }
3151
3152 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
3153 int enable_ppgtt);
3154
3155 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
3156
3157 /* i915_drv.c */
3158 void __printf(3, 4)
3159 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
3160 const char *fmt, ...);
3161
3162 #define i915_report_error(dev_priv, fmt, ...) \
3163 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
3164
3165 #ifdef CONFIG_COMPAT
3166 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
3167 unsigned long arg);
3168 #else
3169 #define i915_compat_ioctl NULL
3170 #endif
3171 extern const struct dev_pm_ops i915_pm_ops;
3172
3173 extern int i915_driver_load(struct pci_dev *pdev,
3174 const struct pci_device_id *ent);
3175 extern void i915_driver_unload(struct drm_device *dev);
3176 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
3177 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
3178
3179 #define I915_RESET_QUIET BIT(0)
3180 extern void i915_reset(struct drm_i915_private *i915, unsigned int flags);
3181 extern int i915_reset_engine(struct intel_engine_cs *engine,
3182 unsigned int flags);
3183
3184 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
3185 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
3186 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
3187 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
3188 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
3189 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
3190 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
3191 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
3192 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
3193
3194 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
3195 int intel_engines_init(struct drm_i915_private *dev_priv);
3196
3197 /* intel_hotplug.c */
3198 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
3199 u32 pin_mask, u32 long_mask);
3200 void intel_hpd_init(struct drm_i915_private *dev_priv);
3201 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
3202 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
3203 enum port intel_hpd_pin_to_port(enum hpd_pin pin);
3204 enum hpd_pin intel_hpd_pin(enum port port);
3205 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3206 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3207
3208 /* i915_irq.c */
3209 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
3210 {
3211 unsigned long delay;
3212
3213 if (unlikely(!i915.enable_hangcheck))
3214 return;
3215
3216 /* Don't continually defer the hangcheck so that it is always run at
3217 * least once after work has been scheduled on any ring. Otherwise,
3218 * we will ignore a hung ring if a second ring is kept busy.
3219 */
3220
3221 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
3222 queue_delayed_work(system_long_wq,
3223 &dev_priv->gpu_error.hangcheck_work, delay);
3224 }
3225
3226 __printf(3, 4)
3227 void i915_handle_error(struct drm_i915_private *dev_priv,
3228 u32 engine_mask,
3229 const char *fmt, ...);
3230
3231 extern void intel_irq_init(struct drm_i915_private *dev_priv);
3232 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
3233 int intel_irq_install(struct drm_i915_private *dev_priv);
3234 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
3235
3236 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3237 {
3238 return dev_priv->gvt;
3239 }
3240
3241 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3242 {
3243 return dev_priv->vgpu.active;
3244 }
3245
3246 void
3247 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3248 u32 status_mask);
3249
3250 void
3251 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3252 u32 status_mask);
3253
3254 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3255 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3256 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3257 uint32_t mask,
3258 uint32_t bits);
3259 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3260 uint32_t interrupt_mask,
3261 uint32_t enabled_irq_mask);
3262 static inline void
3263 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3264 {
3265 ilk_update_display_irq(dev_priv, bits, bits);
3266 }
3267 static inline void
3268 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3269 {
3270 ilk_update_display_irq(dev_priv, bits, 0);
3271 }
3272 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3273 enum pipe pipe,
3274 uint32_t interrupt_mask,
3275 uint32_t enabled_irq_mask);
3276 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3277 enum pipe pipe, uint32_t bits)
3278 {
3279 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3280 }
3281 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3282 enum pipe pipe, uint32_t bits)
3283 {
3284 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3285 }
3286 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3287 uint32_t interrupt_mask,
3288 uint32_t enabled_irq_mask);
3289 static inline void
3290 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3291 {
3292 ibx_display_interrupt_update(dev_priv, bits, bits);
3293 }
3294 static inline void
3295 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3296 {
3297 ibx_display_interrupt_update(dev_priv, bits, 0);
3298 }
3299
3300 /* i915_gem.c */
3301 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3302 struct drm_file *file_priv);
3303 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3304 struct drm_file *file_priv);
3305 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3306 struct drm_file *file_priv);
3307 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3308 struct drm_file *file_priv);
3309 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3310 struct drm_file *file_priv);
3311 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3312 struct drm_file *file_priv);
3313 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3314 struct drm_file *file_priv);
3315 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3316 struct drm_file *file_priv);
3317 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3318 struct drm_file *file_priv);
3319 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3320 struct drm_file *file_priv);
3321 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3322 struct drm_file *file);
3323 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3324 struct drm_file *file);
3325 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3326 struct drm_file *file_priv);
3327 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3328 struct drm_file *file_priv);
3329 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
3330 struct drm_file *file_priv);
3331 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
3332 struct drm_file *file_priv);
3333 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3334 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
3335 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3336 struct drm_file *file);
3337 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3338 struct drm_file *file_priv);
3339 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3340 struct drm_file *file_priv);
3341 void i915_gem_sanitize(struct drm_i915_private *i915);
3342 int i915_gem_load_init(struct drm_i915_private *dev_priv);
3343 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv);
3344 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3345 int i915_gem_freeze(struct drm_i915_private *dev_priv);
3346 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3347
3348 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
3349 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3350 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3351 const struct drm_i915_gem_object_ops *ops);
3352 struct drm_i915_gem_object *
3353 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
3354 struct drm_i915_gem_object *
3355 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
3356 const void *data, size_t size);
3357 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3358 void i915_gem_free_object(struct drm_gem_object *obj);
3359
3360 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
3361 {
3362 /* A single pass should suffice to release all the freed objects (along
3363 * most call paths) , but be a little more paranoid in that freeing
3364 * the objects does take a little amount of time, during which the rcu
3365 * callbacks could have added new objects into the freed list, and
3366 * armed the work again.
3367 */
3368 do {
3369 rcu_barrier();
3370 } while (flush_work(&i915->mm.free_work));
3371 }
3372
3373 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
3374 {
3375 /*
3376 * Similar to objects above (see i915_gem_drain_freed-objects), in
3377 * general we have workers that are armed by RCU and then rearm
3378 * themselves in their callbacks. To be paranoid, we need to
3379 * drain the workqueue a second time after waiting for the RCU
3380 * grace period so that we catch work queued via RCU from the first
3381 * pass. As neither drain_workqueue() nor flush_workqueue() report
3382 * a result, we make an assumption that we only don't require more
3383 * than 2 passes to catch all recursive RCU delayed work.
3384 *
3385 */
3386 int pass = 2;
3387 do {
3388 rcu_barrier();
3389 drain_workqueue(i915->wq);
3390 } while (--pass);
3391 }
3392
3393 struct i915_vma * __must_check
3394 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3395 const struct i915_ggtt_view *view,
3396 u64 size,
3397 u64 alignment,
3398 u64 flags);
3399
3400 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3401 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3402
3403 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3404
3405 static inline int __sg_page_count(const struct scatterlist *sg)
3406 {
3407 return sg->length >> PAGE_SHIFT;
3408 }
3409
3410 struct scatterlist *
3411 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3412 unsigned int n, unsigned int *offset);
3413
3414 struct page *
3415 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3416 unsigned int n);
3417
3418 struct page *
3419 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3420 unsigned int n);
3421
3422 dma_addr_t
3423 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3424 unsigned long n);
3425
3426 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3427 struct sg_table *pages);
3428 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3429
3430 static inline int __must_check
3431 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3432 {
3433 might_lock(&obj->mm.lock);
3434
3435 if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3436 return 0;
3437
3438 return __i915_gem_object_get_pages(obj);
3439 }
3440
3441 static inline void
3442 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3443 {
3444 GEM_BUG_ON(!obj->mm.pages);
3445
3446 atomic_inc(&obj->mm.pages_pin_count);
3447 }
3448
3449 static inline bool
3450 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3451 {
3452 return atomic_read(&obj->mm.pages_pin_count);
3453 }
3454
3455 static inline void
3456 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3457 {
3458 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3459 GEM_BUG_ON(!obj->mm.pages);
3460
3461 atomic_dec(&obj->mm.pages_pin_count);
3462 }
3463
3464 static inline void
3465 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3466 {
3467 __i915_gem_object_unpin_pages(obj);
3468 }
3469
3470 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3471 I915_MM_NORMAL = 0,
3472 I915_MM_SHRINKER
3473 };
3474
3475 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3476 enum i915_mm_subclass subclass);
3477 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3478
3479 enum i915_map_type {
3480 I915_MAP_WB = 0,
3481 I915_MAP_WC,
3482 #define I915_MAP_OVERRIDE BIT(31)
3483 I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
3484 I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
3485 };
3486
3487 /**
3488 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3489 * @obj: the object to map into kernel address space
3490 * @type: the type of mapping, used to select pgprot_t
3491 *
3492 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3493 * pages and then returns a contiguous mapping of the backing storage into
3494 * the kernel address space. Based on the @type of mapping, the PTE will be
3495 * set to either WriteBack or WriteCombine (via pgprot_t).
3496 *
3497 * The caller is responsible for calling i915_gem_object_unpin_map() when the
3498 * mapping is no longer required.
3499 *
3500 * Returns the pointer through which to access the mapped object, or an
3501 * ERR_PTR() on error.
3502 */
3503 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3504 enum i915_map_type type);
3505
3506 /**
3507 * i915_gem_object_unpin_map - releases an earlier mapping
3508 * @obj: the object to unmap
3509 *
3510 * After pinning the object and mapping its pages, once you are finished
3511 * with your access, call i915_gem_object_unpin_map() to release the pin
3512 * upon the mapping. Once the pin count reaches zero, that mapping may be
3513 * removed.
3514 */
3515 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3516 {
3517 i915_gem_object_unpin_pages(obj);
3518 }
3519
3520 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3521 unsigned int *needs_clflush);
3522 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3523 unsigned int *needs_clflush);
3524 #define CLFLUSH_BEFORE BIT(0)
3525 #define CLFLUSH_AFTER BIT(1)
3526 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER)
3527
3528 static inline void
3529 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3530 {
3531 i915_gem_object_unpin_pages(obj);
3532 }
3533
3534 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3535 void i915_vma_move_to_active(struct i915_vma *vma,
3536 struct drm_i915_gem_request *req,
3537 unsigned int flags);
3538 int i915_gem_dumb_create(struct drm_file *file_priv,
3539 struct drm_device *dev,
3540 struct drm_mode_create_dumb *args);
3541 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3542 uint32_t handle, uint64_t *offset);
3543 int i915_gem_mmap_gtt_version(void);
3544
3545 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3546 struct drm_i915_gem_object *new,
3547 unsigned frontbuffer_bits);
3548
3549 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3550
3551 struct drm_i915_gem_request *
3552 i915_gem_find_active_request(struct intel_engine_cs *engine);
3553
3554 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3555
3556 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3557 {
3558 return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3559 }
3560
3561 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3562 {
3563 return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3564 }
3565
3566 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3567 {
3568 return unlikely(test_bit(I915_WEDGED, &error->flags));
3569 }
3570
3571 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3572 {
3573 return i915_reset_backoff(error) | i915_terminally_wedged(error);
3574 }
3575
3576 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3577 {
3578 return READ_ONCE(error->reset_count);
3579 }
3580
3581 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3582 struct intel_engine_cs *engine)
3583 {
3584 return READ_ONCE(error->reset_engine_count[engine->id]);
3585 }
3586
3587 struct drm_i915_gem_request *
3588 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3589 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3590 void i915_gem_reset(struct drm_i915_private *dev_priv);
3591 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3592 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3593 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3594 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3595 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3596 struct drm_i915_gem_request *request);
3597
3598 void i915_gem_init_mmio(struct drm_i915_private *i915);
3599 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3600 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3601 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3602 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3603 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3604 unsigned int flags);
3605 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3606 void i915_gem_resume(struct drm_i915_private *dev_priv);
3607 int i915_gem_fault(struct vm_fault *vmf);
3608 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3609 unsigned int flags,
3610 long timeout,
3611 struct intel_rps_client *rps);
3612 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3613 unsigned int flags,
3614 int priority);
3615 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3616
3617 int __must_check
3618 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3619 int __must_check
3620 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3621 int __must_check
3622 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3623 struct i915_vma * __must_check
3624 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3625 u32 alignment,
3626 const struct i915_ggtt_view *view);
3627 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3628 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3629 int align);
3630 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3631 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3632
3633 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3634 enum i915_cache_level cache_level);
3635
3636 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3637 struct dma_buf *dma_buf);
3638
3639 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3640 struct drm_gem_object *gem_obj, int flags);
3641
3642 static inline struct i915_hw_ppgtt *
3643 i915_vm_to_ppgtt(struct i915_address_space *vm)
3644 {
3645 return container_of(vm, struct i915_hw_ppgtt, base);
3646 }
3647
3648 /* i915_gem_fence_reg.c */
3649 int __must_check i915_vma_get_fence(struct i915_vma *vma);
3650 int __must_check i915_vma_put_fence(struct i915_vma *vma);
3651
3652 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3653 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3654
3655 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3656 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3657 struct sg_table *pages);
3658 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3659 struct sg_table *pages);
3660
3661 static inline struct i915_gem_context *
3662 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3663 {
3664 return idr_find(&file_priv->context_idr, id);
3665 }
3666
3667 static inline struct i915_gem_context *
3668 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3669 {
3670 struct i915_gem_context *ctx;
3671
3672 rcu_read_lock();
3673 ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3674 if (ctx && !kref_get_unless_zero(&ctx->ref))
3675 ctx = NULL;
3676 rcu_read_unlock();
3677
3678 return ctx;
3679 }
3680
3681 static inline struct intel_timeline *
3682 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx,
3683 struct intel_engine_cs *engine)
3684 {
3685 struct i915_address_space *vm;
3686
3687 vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base;
3688 return &vm->timeline.engine[engine->id];
3689 }
3690
3691 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3692 struct drm_file *file);
3693 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3694 struct drm_file *file);
3695 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3696 struct drm_file *file);
3697 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3698 struct i915_gem_context *ctx,
3699 uint32_t *reg_state);
3700
3701 /* i915_gem_evict.c */
3702 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3703 u64 min_size, u64 alignment,
3704 unsigned cache_level,
3705 u64 start, u64 end,
3706 unsigned flags);
3707 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3708 struct drm_mm_node *node,
3709 unsigned int flags);
3710 int i915_gem_evict_vm(struct i915_address_space *vm);
3711
3712 /* belongs in i915_gem_gtt.h */
3713 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3714 {
3715 wmb();
3716 if (INTEL_GEN(dev_priv) < 6)
3717 intel_gtt_chipset_flush();
3718 }
3719
3720 /* i915_gem_stolen.c */
3721 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3722 struct drm_mm_node *node, u64 size,
3723 unsigned alignment);
3724 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3725 struct drm_mm_node *node, u64 size,
3726 unsigned alignment, u64 start,
3727 u64 end);
3728 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3729 struct drm_mm_node *node);
3730 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3731 void i915_gem_cleanup_stolen(struct drm_device *dev);
3732 struct drm_i915_gem_object *
3733 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size);
3734 struct drm_i915_gem_object *
3735 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3736 u32 stolen_offset,
3737 u32 gtt_offset,
3738 u32 size);
3739
3740 /* i915_gem_internal.c */
3741 struct drm_i915_gem_object *
3742 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3743 phys_addr_t size);
3744
3745 /* i915_gem_shrinker.c */
3746 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3747 unsigned long target,
3748 unsigned long *nr_scanned,
3749 unsigned flags);
3750 #define I915_SHRINK_PURGEABLE 0x1
3751 #define I915_SHRINK_UNBOUND 0x2
3752 #define I915_SHRINK_BOUND 0x4
3753 #define I915_SHRINK_ACTIVE 0x8
3754 #define I915_SHRINK_VMAPS 0x10
3755 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3756 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3757 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3758
3759
3760 /* i915_gem_tiling.c */
3761 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3762 {
3763 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3764
3765 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3766 i915_gem_object_is_tiled(obj);
3767 }
3768
3769 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3770 unsigned int tiling, unsigned int stride);
3771 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3772 unsigned int tiling, unsigned int stride);
3773
3774 /* i915_debugfs.c */
3775 #ifdef CONFIG_DEBUG_FS
3776 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3777 int i915_debugfs_connector_add(struct drm_connector *connector);
3778 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3779 #else
3780 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3781 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3782 { return 0; }
3783 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3784 #endif
3785
3786 /* i915_gpu_error.c */
3787 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3788
3789 __printf(2, 3)
3790 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3791 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3792 const struct i915_gpu_state *gpu);
3793 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3794 struct drm_i915_private *i915,
3795 size_t count, loff_t pos);
3796 static inline void i915_error_state_buf_release(
3797 struct drm_i915_error_state_buf *eb)
3798 {
3799 kfree(eb->buf);
3800 }
3801
3802 struct i915_gpu_state *i915_capture_gpu_state(struct drm_i915_private *i915);
3803 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3804 u32 engine_mask,
3805 const char *error_msg);
3806
3807 static inline struct i915_gpu_state *
3808 i915_gpu_state_get(struct i915_gpu_state *gpu)
3809 {
3810 kref_get(&gpu->ref);
3811 return gpu;
3812 }
3813
3814 void __i915_gpu_state_free(struct kref *kref);
3815 static inline void i915_gpu_state_put(struct i915_gpu_state *gpu)
3816 {
3817 if (gpu)
3818 kref_put(&gpu->ref, __i915_gpu_state_free);
3819 }
3820
3821 struct i915_gpu_state *i915_first_error_state(struct drm_i915_private *i915);
3822 void i915_reset_error_state(struct drm_i915_private *i915);
3823
3824 #else
3825
3826 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3827 u32 engine_mask,
3828 const char *error_msg)
3829 {
3830 }
3831
3832 static inline struct i915_gpu_state *
3833 i915_first_error_state(struct drm_i915_private *i915)
3834 {
3835 return NULL;
3836 }
3837
3838 static inline void i915_reset_error_state(struct drm_i915_private *i915)
3839 {
3840 }
3841
3842 #endif
3843
3844 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3845
3846 /* i915_cmd_parser.c */
3847 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3848 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3849 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3850 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3851 struct drm_i915_gem_object *batch_obj,
3852 struct drm_i915_gem_object *shadow_batch_obj,
3853 u32 batch_start_offset,
3854 u32 batch_len,
3855 bool is_master);
3856
3857 /* i915_perf.c */
3858 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3859 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3860 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3861 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3862
3863 /* i915_suspend.c */
3864 extern int i915_save_state(struct drm_i915_private *dev_priv);
3865 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3866
3867 /* i915_sysfs.c */
3868 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3869 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3870
3871 /* intel_lpe_audio.c */
3872 int intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3873 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3874 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3875 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3876 enum pipe pipe, enum port port,
3877 const void *eld, int ls_clock, bool dp_output);
3878
3879 /* intel_i2c.c */
3880 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3881 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3882 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3883 unsigned int pin);
3884
3885 extern struct i2c_adapter *
3886 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3887 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3888 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3889 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3890 {
3891 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3892 }
3893 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3894
3895 /* intel_bios.c */
3896 void intel_bios_init(struct drm_i915_private *dev_priv);
3897 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3898 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3899 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3900 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3901 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3902 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3903 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3904 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3905 enum port port);
3906 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3907 enum port port);
3908
3909
3910 /* intel_opregion.c */
3911 #ifdef CONFIG_ACPI
3912 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3913 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3914 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3915 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3916 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3917 bool enable);
3918 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3919 pci_power_t state);
3920 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3921 #else
3922 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3923 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3924 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3925 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3926 {
3927 }
3928 static inline int
3929 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3930 {
3931 return 0;
3932 }
3933 static inline int
3934 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3935 {
3936 return 0;
3937 }
3938 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3939 {
3940 return -ENODEV;
3941 }
3942 #endif
3943
3944 /* intel_acpi.c */
3945 #ifdef CONFIG_ACPI
3946 extern void intel_register_dsm_handler(void);
3947 extern void intel_unregister_dsm_handler(void);
3948 #else
3949 static inline void intel_register_dsm_handler(void) { return; }
3950 static inline void intel_unregister_dsm_handler(void) { return; }
3951 #endif /* CONFIG_ACPI */
3952
3953 /* intel_device_info.c */
3954 static inline struct intel_device_info *
3955 mkwrite_device_info(struct drm_i915_private *dev_priv)
3956 {
3957 return (struct intel_device_info *)&dev_priv->info;
3958 }
3959
3960 const char *intel_platform_name(enum intel_platform platform);
3961 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
3962 void intel_device_info_dump(struct drm_i915_private *dev_priv);
3963
3964 /* modesetting */
3965 extern void intel_modeset_init_hw(struct drm_device *dev);
3966 extern int intel_modeset_init(struct drm_device *dev);
3967 extern void intel_modeset_gem_init(struct drm_device *dev);
3968 extern void intel_modeset_cleanup(struct drm_device *dev);
3969 extern int intel_connector_register(struct drm_connector *);
3970 extern void intel_connector_unregister(struct drm_connector *);
3971 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3972 bool state);
3973 extern void intel_display_resume(struct drm_device *dev);
3974 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3975 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3976 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3977 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3978 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3979 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3980 bool enable);
3981
3982 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3983 struct drm_file *file);
3984
3985 /* overlay */
3986 extern struct intel_overlay_error_state *
3987 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3988 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3989 struct intel_overlay_error_state *error);
3990
3991 extern struct intel_display_error_state *
3992 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3993 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3994 struct intel_display_error_state *error);
3995
3996 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3997 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3998 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3999 u32 reply_mask, u32 reply, int timeout_base_ms);
4000
4001 /* intel_sideband.c */
4002 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
4003 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
4004 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
4005 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
4006 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
4007 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
4008 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4009 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
4010 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4011 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
4012 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4013 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
4014 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
4015 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
4016 enum intel_sbi_destination destination);
4017 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
4018 enum intel_sbi_destination destination);
4019 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
4020 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4021
4022 /* intel_dpio_phy.c */
4023 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
4024 enum dpio_phy *phy, enum dpio_channel *ch);
4025 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
4026 enum port port, u32 margin, u32 scale,
4027 u32 enable, u32 deemphasis);
4028 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4029 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4030 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
4031 enum dpio_phy phy);
4032 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
4033 enum dpio_phy phy);
4034 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
4035 uint8_t lane_count);
4036 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
4037 uint8_t lane_lat_optim_mask);
4038 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
4039
4040 void chv_set_phy_signal_level(struct intel_encoder *encoder,
4041 u32 deemph_reg_value, u32 margin_reg_value,
4042 bool uniq_trans_scale);
4043 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
4044 bool reset);
4045 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
4046 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4047 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
4048 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
4049
4050 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
4051 u32 demph_reg_value, u32 preemph_reg_value,
4052 u32 uniqtranscale_reg_value, u32 tx3_demph);
4053 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
4054 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4055 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
4056
4057 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
4058 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
4059 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
4060 const i915_reg_t reg);
4061
4062 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
4063 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
4064
4065 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
4066 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
4067 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
4068 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
4069
4070 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
4071 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
4072 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
4073 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
4074
4075 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
4076 * will be implemented using 2 32-bit writes in an arbitrary order with
4077 * an arbitrary delay between them. This can cause the hardware to
4078 * act upon the intermediate value, possibly leading to corruption and
4079 * machine death. For this reason we do not support I915_WRITE64, or
4080 * dev_priv->uncore.funcs.mmio_writeq.
4081 *
4082 * When reading a 64-bit value as two 32-bit values, the delay may cause
4083 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
4084 * occasionally a 64-bit register does not actualy support a full readq
4085 * and must be read using two 32-bit reads.
4086 *
4087 * You have been warned.
4088 */
4089 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
4090
4091 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
4092 u32 upper, lower, old_upper, loop = 0; \
4093 upper = I915_READ(upper_reg); \
4094 do { \
4095 old_upper = upper; \
4096 lower = I915_READ(lower_reg); \
4097 upper = I915_READ(upper_reg); \
4098 } while (upper != old_upper && loop++ < 2); \
4099 (u64)upper << 32 | lower; })
4100
4101 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
4102 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
4103
4104 #define __raw_read(x, s) \
4105 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
4106 i915_reg_t reg) \
4107 { \
4108 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
4109 }
4110
4111 #define __raw_write(x, s) \
4112 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
4113 i915_reg_t reg, uint##x##_t val) \
4114 { \
4115 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
4116 }
4117 __raw_read(8, b)
4118 __raw_read(16, w)
4119 __raw_read(32, l)
4120 __raw_read(64, q)
4121
4122 __raw_write(8, b)
4123 __raw_write(16, w)
4124 __raw_write(32, l)
4125 __raw_write(64, q)
4126
4127 #undef __raw_read
4128 #undef __raw_write
4129
4130 /* These are untraced mmio-accessors that are only valid to be used inside
4131 * critical sections, such as inside IRQ handlers, where forcewake is explicitly
4132 * controlled.
4133 *
4134 * Think twice, and think again, before using these.
4135 *
4136 * As an example, these accessors can possibly be used between:
4137 *
4138 * spin_lock_irq(&dev_priv->uncore.lock);
4139 * intel_uncore_forcewake_get__locked();
4140 *
4141 * and
4142 *
4143 * intel_uncore_forcewake_put__locked();
4144 * spin_unlock_irq(&dev_priv->uncore.lock);
4145 *
4146 *
4147 * Note: some registers may not need forcewake held, so
4148 * intel_uncore_forcewake_{get,put} can be omitted, see
4149 * intel_uncore_forcewake_for_reg().
4150 *
4151 * Certain architectures will die if the same cacheline is concurrently accessed
4152 * by different clients (e.g. on Ivybridge). Access to registers should
4153 * therefore generally be serialised, by either the dev_priv->uncore.lock or
4154 * a more localised lock guarding all access to that bank of registers.
4155 */
4156 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
4157 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
4158 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
4159 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
4160
4161 /* "Broadcast RGB" property */
4162 #define INTEL_BROADCAST_RGB_AUTO 0
4163 #define INTEL_BROADCAST_RGB_FULL 1
4164 #define INTEL_BROADCAST_RGB_LIMITED 2
4165
4166 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
4167 {
4168 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4169 return VLV_VGACNTRL;
4170 else if (INTEL_GEN(dev_priv) >= 5)
4171 return CPU_VGACNTRL;
4172 else
4173 return VGACNTRL;
4174 }
4175
4176 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
4177 {
4178 unsigned long j = msecs_to_jiffies(m);
4179
4180 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4181 }
4182
4183 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
4184 {
4185 /* nsecs_to_jiffies64() does not guard against overflow */
4186 if (NSEC_PER_SEC % HZ &&
4187 div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
4188 return MAX_JIFFY_OFFSET;
4189
4190 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
4191 }
4192
4193 static inline unsigned long
4194 timespec_to_jiffies_timeout(const struct timespec *value)
4195 {
4196 unsigned long j = timespec_to_jiffies(value);
4197
4198 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4199 }
4200
4201 /*
4202 * If you need to wait X milliseconds between events A and B, but event B
4203 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
4204 * when event A happened, then just before event B you call this function and
4205 * pass the timestamp as the first argument, and X as the second argument.
4206 */
4207 static inline void
4208 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
4209 {
4210 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
4211
4212 /*
4213 * Don't re-read the value of "jiffies" every time since it may change
4214 * behind our back and break the math.
4215 */
4216 tmp_jiffies = jiffies;
4217 target_jiffies = timestamp_jiffies +
4218 msecs_to_jiffies_timeout(to_wait_ms);
4219
4220 if (time_after(target_jiffies, tmp_jiffies)) {
4221 remaining_jiffies = target_jiffies - tmp_jiffies;
4222 while (remaining_jiffies)
4223 remaining_jiffies =
4224 schedule_timeout_uninterruptible(remaining_jiffies);
4225 }
4226 }
4227
4228 static inline bool
4229 __i915_request_irq_complete(const struct drm_i915_gem_request *req)
4230 {
4231 struct intel_engine_cs *engine = req->engine;
4232 u32 seqno;
4233
4234 /* Note that the engine may have wrapped around the seqno, and
4235 * so our request->global_seqno will be ahead of the hardware,
4236 * even though it completed the request before wrapping. We catch
4237 * this by kicking all the waiters before resetting the seqno
4238 * in hardware, and also signal the fence.
4239 */
4240 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &req->fence.flags))
4241 return true;
4242
4243 /* The request was dequeued before we were awoken. We check after
4244 * inspecting the hw to confirm that this was the same request
4245 * that generated the HWS update. The memory barriers within
4246 * the request execution are sufficient to ensure that a check
4247 * after reading the value from hw matches this request.
4248 */
4249 seqno = i915_gem_request_global_seqno(req);
4250 if (!seqno)
4251 return false;
4252
4253 /* Before we do the heavier coherent read of the seqno,
4254 * check the value (hopefully) in the CPU cacheline.
4255 */
4256 if (__i915_gem_request_completed(req, seqno))
4257 return true;
4258
4259 /* Ensure our read of the seqno is coherent so that we
4260 * do not "miss an interrupt" (i.e. if this is the last
4261 * request and the seqno write from the GPU is not visible
4262 * by the time the interrupt fires, we will see that the
4263 * request is incomplete and go back to sleep awaiting
4264 * another interrupt that will never come.)
4265 *
4266 * Strictly, we only need to do this once after an interrupt,
4267 * but it is easier and safer to do it every time the waiter
4268 * is woken.
4269 */
4270 if (engine->irq_seqno_barrier &&
4271 test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
4272 struct intel_breadcrumbs *b = &engine->breadcrumbs;
4273
4274 /* The ordering of irq_posted versus applying the barrier
4275 * is crucial. The clearing of the current irq_posted must
4276 * be visible before we perform the barrier operation,
4277 * such that if a subsequent interrupt arrives, irq_posted
4278 * is reasserted and our task rewoken (which causes us to
4279 * do another __i915_request_irq_complete() immediately
4280 * and reapply the barrier). Conversely, if the clear
4281 * occurs after the barrier, then an interrupt that arrived
4282 * whilst we waited on the barrier would not trigger a
4283 * barrier on the next pass, and the read may not see the
4284 * seqno update.
4285 */
4286 engine->irq_seqno_barrier(engine);
4287
4288 /* If we consume the irq, but we are no longer the bottom-half,
4289 * the real bottom-half may not have serialised their own
4290 * seqno check with the irq-barrier (i.e. may have inspected
4291 * the seqno before we believe it coherent since they see
4292 * irq_posted == false but we are still running).
4293 */
4294 spin_lock_irq(&b->irq_lock);
4295 if (b->irq_wait && b->irq_wait->tsk != current)
4296 /* Note that if the bottom-half is changed as we
4297 * are sending the wake-up, the new bottom-half will
4298 * be woken by whomever made the change. We only have
4299 * to worry about when we steal the irq-posted for
4300 * ourself.
4301 */
4302 wake_up_process(b->irq_wait->tsk);
4303 spin_unlock_irq(&b->irq_lock);
4304
4305 if (__i915_gem_request_completed(req, seqno))
4306 return true;
4307 }
4308
4309 return false;
4310 }
4311
4312 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
4313 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
4314
4315 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
4316 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
4317 * perform the operation. To check beforehand, pass in the parameters to
4318 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
4319 * you only need to pass in the minor offsets, page-aligned pointers are
4320 * always valid.
4321 *
4322 * For just checking for SSE4.1, in the foreknowledge that the future use
4323 * will be correctly aligned, just use i915_has_memcpy_from_wc().
4324 */
4325 #define i915_can_memcpy_from_wc(dst, src, len) \
4326 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
4327
4328 #define i915_has_memcpy_from_wc() \
4329 i915_memcpy_from_wc(NULL, NULL, 0)
4330
4331 /* i915_mm.c */
4332 int remap_io_mapping(struct vm_area_struct *vma,
4333 unsigned long addr, unsigned long pfn, unsigned long size,
4334 struct io_mapping *iomap);
4335
4336 static inline bool
4337 intel_engine_can_store_dword(struct intel_engine_cs *engine)
4338 {
4339 return __intel_engine_can_store_dword(INTEL_GEN(engine->i915),
4340 engine->class);
4341 }
4342
4343 #endif