]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.h
drm/i915: Count how many VMA are bound for an object
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hashtable.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/shmem_fs.h>
45
46 #include <drm/drmP.h>
47 #include <drm/intel-gtt.h>
48 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
49 #include <drm/drm_gem.h>
50 #include <drm/drm_auth.h>
51
52 #include "i915_params.h"
53 #include "i915_reg.h"
54
55 #include "intel_bios.h"
56 #include "intel_dpll_mgr.h"
57 #include "intel_guc.h"
58 #include "intel_lrc.h"
59 #include "intel_ringbuffer.h"
60
61 #include "i915_gem.h"
62 #include "i915_gem_gtt.h"
63 #include "i915_gem_render_state.h"
64 #include "i915_gem_request.h"
65
66 #include "intel_gvt.h"
67
68 /* General customization:
69 */
70
71 #define DRIVER_NAME "i915"
72 #define DRIVER_DESC "Intel Graphics"
73 #define DRIVER_DATE "20160725"
74
75 #undef WARN_ON
76 /* Many gcc seem to no see through this and fall over :( */
77 #if 0
78 #define WARN_ON(x) ({ \
79 bool __i915_warn_cond = (x); \
80 if (__builtin_constant_p(__i915_warn_cond)) \
81 BUILD_BUG_ON(__i915_warn_cond); \
82 WARN(__i915_warn_cond, "WARN_ON(" #x ")"); })
83 #else
84 #define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
85 #endif
86
87 #undef WARN_ON_ONCE
88 #define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")")
89
90 #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \
91 (long) (x), __func__);
92
93 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
94 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
95 * which may not necessarily be a user visible problem. This will either
96 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
97 * enable distros and users to tailor their preferred amount of i915 abrt
98 * spam.
99 */
100 #define I915_STATE_WARN(condition, format...) ({ \
101 int __ret_warn_on = !!(condition); \
102 if (unlikely(__ret_warn_on)) \
103 if (!WARN(i915.verbose_state_checks, format)) \
104 DRM_ERROR(format); \
105 unlikely(__ret_warn_on); \
106 })
107
108 #define I915_STATE_WARN_ON(x) \
109 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
110
111 bool __i915_inject_load_failure(const char *func, int line);
112 #define i915_inject_load_failure() \
113 __i915_inject_load_failure(__func__, __LINE__)
114
115 static inline const char *yesno(bool v)
116 {
117 return v ? "yes" : "no";
118 }
119
120 static inline const char *onoff(bool v)
121 {
122 return v ? "on" : "off";
123 }
124
125 enum pipe {
126 INVALID_PIPE = -1,
127 PIPE_A = 0,
128 PIPE_B,
129 PIPE_C,
130 _PIPE_EDP,
131 I915_MAX_PIPES = _PIPE_EDP
132 };
133 #define pipe_name(p) ((p) + 'A')
134
135 enum transcoder {
136 TRANSCODER_A = 0,
137 TRANSCODER_B,
138 TRANSCODER_C,
139 TRANSCODER_EDP,
140 TRANSCODER_DSI_A,
141 TRANSCODER_DSI_C,
142 I915_MAX_TRANSCODERS
143 };
144
145 static inline const char *transcoder_name(enum transcoder transcoder)
146 {
147 switch (transcoder) {
148 case TRANSCODER_A:
149 return "A";
150 case TRANSCODER_B:
151 return "B";
152 case TRANSCODER_C:
153 return "C";
154 case TRANSCODER_EDP:
155 return "EDP";
156 case TRANSCODER_DSI_A:
157 return "DSI A";
158 case TRANSCODER_DSI_C:
159 return "DSI C";
160 default:
161 return "<invalid>";
162 }
163 }
164
165 static inline bool transcoder_is_dsi(enum transcoder transcoder)
166 {
167 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
168 }
169
170 /*
171 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
172 * number of planes per CRTC. Not all platforms really have this many planes,
173 * which means some arrays of size I915_MAX_PLANES may have unused entries
174 * between the topmost sprite plane and the cursor plane.
175 */
176 enum plane {
177 PLANE_A = 0,
178 PLANE_B,
179 PLANE_C,
180 PLANE_CURSOR,
181 I915_MAX_PLANES,
182 };
183 #define plane_name(p) ((p) + 'A')
184
185 #define sprite_name(p, s) ((p) * INTEL_INFO(dev)->num_sprites[(p)] + (s) + 'A')
186
187 enum port {
188 PORT_A = 0,
189 PORT_B,
190 PORT_C,
191 PORT_D,
192 PORT_E,
193 I915_MAX_PORTS
194 };
195 #define port_name(p) ((p) + 'A')
196
197 #define I915_NUM_PHYS_VLV 2
198
199 enum dpio_channel {
200 DPIO_CH0,
201 DPIO_CH1
202 };
203
204 enum dpio_phy {
205 DPIO_PHY0,
206 DPIO_PHY1
207 };
208
209 enum intel_display_power_domain {
210 POWER_DOMAIN_PIPE_A,
211 POWER_DOMAIN_PIPE_B,
212 POWER_DOMAIN_PIPE_C,
213 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
214 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
215 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
216 POWER_DOMAIN_TRANSCODER_A,
217 POWER_DOMAIN_TRANSCODER_B,
218 POWER_DOMAIN_TRANSCODER_C,
219 POWER_DOMAIN_TRANSCODER_EDP,
220 POWER_DOMAIN_TRANSCODER_DSI_A,
221 POWER_DOMAIN_TRANSCODER_DSI_C,
222 POWER_DOMAIN_PORT_DDI_A_LANES,
223 POWER_DOMAIN_PORT_DDI_B_LANES,
224 POWER_DOMAIN_PORT_DDI_C_LANES,
225 POWER_DOMAIN_PORT_DDI_D_LANES,
226 POWER_DOMAIN_PORT_DDI_E_LANES,
227 POWER_DOMAIN_PORT_DSI,
228 POWER_DOMAIN_PORT_CRT,
229 POWER_DOMAIN_PORT_OTHER,
230 POWER_DOMAIN_VGA,
231 POWER_DOMAIN_AUDIO,
232 POWER_DOMAIN_PLLS,
233 POWER_DOMAIN_AUX_A,
234 POWER_DOMAIN_AUX_B,
235 POWER_DOMAIN_AUX_C,
236 POWER_DOMAIN_AUX_D,
237 POWER_DOMAIN_GMBUS,
238 POWER_DOMAIN_MODESET,
239 POWER_DOMAIN_INIT,
240
241 POWER_DOMAIN_NUM,
242 };
243
244 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
245 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
246 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
247 #define POWER_DOMAIN_TRANSCODER(tran) \
248 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
249 (tran) + POWER_DOMAIN_TRANSCODER_A)
250
251 enum hpd_pin {
252 HPD_NONE = 0,
253 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
254 HPD_CRT,
255 HPD_SDVO_B,
256 HPD_SDVO_C,
257 HPD_PORT_A,
258 HPD_PORT_B,
259 HPD_PORT_C,
260 HPD_PORT_D,
261 HPD_PORT_E,
262 HPD_NUM_PINS
263 };
264
265 #define for_each_hpd_pin(__pin) \
266 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
267
268 struct i915_hotplug {
269 struct work_struct hotplug_work;
270
271 struct {
272 unsigned long last_jiffies;
273 int count;
274 enum {
275 HPD_ENABLED = 0,
276 HPD_DISABLED = 1,
277 HPD_MARK_DISABLED = 2
278 } state;
279 } stats[HPD_NUM_PINS];
280 u32 event_bits;
281 struct delayed_work reenable_work;
282
283 struct intel_digital_port *irq_port[I915_MAX_PORTS];
284 u32 long_port_mask;
285 u32 short_port_mask;
286 struct work_struct dig_port_work;
287
288 struct work_struct poll_init_work;
289 bool poll_enabled;
290
291 /*
292 * if we get a HPD irq from DP and a HPD irq from non-DP
293 * the non-DP HPD could block the workqueue on a mode config
294 * mutex getting, that userspace may have taken. However
295 * userspace is waiting on the DP workqueue to run which is
296 * blocked behind the non-DP one.
297 */
298 struct workqueue_struct *dp_wq;
299 };
300
301 #define I915_GEM_GPU_DOMAINS \
302 (I915_GEM_DOMAIN_RENDER | \
303 I915_GEM_DOMAIN_SAMPLER | \
304 I915_GEM_DOMAIN_COMMAND | \
305 I915_GEM_DOMAIN_INSTRUCTION | \
306 I915_GEM_DOMAIN_VERTEX)
307
308 #define for_each_pipe(__dev_priv, __p) \
309 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
310 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
311 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
312 for_each_if ((__mask) & (1 << (__p)))
313 #define for_each_plane(__dev_priv, __pipe, __p) \
314 for ((__p) = 0; \
315 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
316 (__p)++)
317 #define for_each_sprite(__dev_priv, __p, __s) \
318 for ((__s) = 0; \
319 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
320 (__s)++)
321
322 #define for_each_port_masked(__port, __ports_mask) \
323 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
324 for_each_if ((__ports_mask) & (1 << (__port)))
325
326 #define for_each_crtc(dev, crtc) \
327 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
328
329 #define for_each_intel_plane(dev, intel_plane) \
330 list_for_each_entry(intel_plane, \
331 &(dev)->mode_config.plane_list, \
332 base.head)
333
334 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \
335 list_for_each_entry(intel_plane, \
336 &(dev)->mode_config.plane_list, \
337 base.head) \
338 for_each_if ((plane_mask) & \
339 (1 << drm_plane_index(&intel_plane->base)))
340
341 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
342 list_for_each_entry(intel_plane, \
343 &(dev)->mode_config.plane_list, \
344 base.head) \
345 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
346
347 #define for_each_intel_crtc(dev, intel_crtc) \
348 list_for_each_entry(intel_crtc, \
349 &(dev)->mode_config.crtc_list, \
350 base.head)
351
352 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \
353 list_for_each_entry(intel_crtc, \
354 &(dev)->mode_config.crtc_list, \
355 base.head) \
356 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
357
358 #define for_each_intel_encoder(dev, intel_encoder) \
359 list_for_each_entry(intel_encoder, \
360 &(dev)->mode_config.encoder_list, \
361 base.head)
362
363 #define for_each_intel_connector(dev, intel_connector) \
364 list_for_each_entry(intel_connector, \
365 &(dev)->mode_config.connector_list, \
366 base.head)
367
368 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
369 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
370 for_each_if ((intel_encoder)->base.crtc == (__crtc))
371
372 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
373 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
374 for_each_if ((intel_connector)->base.encoder == (__encoder))
375
376 #define for_each_power_domain(domain, mask) \
377 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
378 for_each_if ((1 << (domain)) & (mask))
379
380 struct drm_i915_private;
381 struct i915_mm_struct;
382 struct i915_mmu_object;
383
384 struct drm_i915_file_private {
385 struct drm_i915_private *dev_priv;
386 struct drm_file *file;
387
388 struct {
389 spinlock_t lock;
390 struct list_head request_list;
391 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
392 * chosen to prevent the CPU getting more than a frame ahead of the GPU
393 * (when using lax throttling for the frontbuffer). We also use it to
394 * offer free GPU waitboosts for severely congested workloads.
395 */
396 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
397 } mm;
398 struct idr context_idr;
399
400 struct intel_rps_client {
401 struct list_head link;
402 unsigned boosts;
403 } rps;
404
405 unsigned int bsd_engine;
406 };
407
408 /* Used by dp and fdi links */
409 struct intel_link_m_n {
410 uint32_t tu;
411 uint32_t gmch_m;
412 uint32_t gmch_n;
413 uint32_t link_m;
414 uint32_t link_n;
415 };
416
417 void intel_link_compute_m_n(int bpp, int nlanes,
418 int pixel_clock, int link_clock,
419 struct intel_link_m_n *m_n);
420
421 /* Interface history:
422 *
423 * 1.1: Original.
424 * 1.2: Add Power Management
425 * 1.3: Add vblank support
426 * 1.4: Fix cmdbuffer path, add heap destroy
427 * 1.5: Add vblank pipe configuration
428 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
429 * - Support vertical blank on secondary display pipe
430 */
431 #define DRIVER_MAJOR 1
432 #define DRIVER_MINOR 6
433 #define DRIVER_PATCHLEVEL 0
434
435 #define WATCH_LISTS 0
436
437 struct opregion_header;
438 struct opregion_acpi;
439 struct opregion_swsci;
440 struct opregion_asle;
441
442 struct intel_opregion {
443 struct opregion_header *header;
444 struct opregion_acpi *acpi;
445 struct opregion_swsci *swsci;
446 u32 swsci_gbda_sub_functions;
447 u32 swsci_sbcb_sub_functions;
448 struct opregion_asle *asle;
449 void *rvda;
450 const void *vbt;
451 u32 vbt_size;
452 u32 *lid_state;
453 struct work_struct asle_work;
454 };
455 #define OPREGION_SIZE (8*1024)
456
457 struct intel_overlay;
458 struct intel_overlay_error_state;
459
460 #define I915_FENCE_REG_NONE -1
461 #define I915_MAX_NUM_FENCES 32
462 /* 32 fences + sign bit for FENCE_REG_NONE */
463 #define I915_MAX_NUM_FENCE_BITS 6
464
465 struct drm_i915_fence_reg {
466 struct list_head lru_list;
467 struct drm_i915_gem_object *obj;
468 int pin_count;
469 };
470
471 struct sdvo_device_mapping {
472 u8 initialized;
473 u8 dvo_port;
474 u8 slave_addr;
475 u8 dvo_wiring;
476 u8 i2c_pin;
477 u8 ddc_pin;
478 };
479
480 struct intel_display_error_state;
481
482 struct drm_i915_error_state {
483 struct kref ref;
484 struct timeval time;
485
486 char error_msg[128];
487 bool simulated;
488 int iommu;
489 u32 reset_count;
490 u32 suspend_count;
491
492 /* Generic register state */
493 u32 eir;
494 u32 pgtbl_er;
495 u32 ier;
496 u32 gtier[4];
497 u32 ccid;
498 u32 derrmr;
499 u32 forcewake;
500 u32 error; /* gen6+ */
501 u32 err_int; /* gen7 */
502 u32 fault_data0; /* gen8, gen9 */
503 u32 fault_data1; /* gen8, gen9 */
504 u32 done_reg;
505 u32 gac_eco;
506 u32 gam_ecochk;
507 u32 gab_ctl;
508 u32 gfx_mode;
509 u32 extra_instdone[I915_NUM_INSTDONE_REG];
510 u64 fence[I915_MAX_NUM_FENCES];
511 struct intel_overlay_error_state *overlay;
512 struct intel_display_error_state *display;
513 struct drm_i915_error_object *semaphore_obj;
514
515 struct drm_i915_error_engine {
516 int engine_id;
517 /* Software tracked state */
518 bool waiting;
519 int num_waiters;
520 int hangcheck_score;
521 enum intel_engine_hangcheck_action hangcheck_action;
522 int num_requests;
523
524 /* our own tracking of ring head and tail */
525 u32 cpu_ring_head;
526 u32 cpu_ring_tail;
527
528 u32 last_seqno;
529 u32 semaphore_seqno[I915_NUM_ENGINES - 1];
530
531 /* Register state */
532 u32 start;
533 u32 tail;
534 u32 head;
535 u32 ctl;
536 u32 hws;
537 u32 ipeir;
538 u32 ipehr;
539 u32 instdone;
540 u32 bbstate;
541 u32 instpm;
542 u32 instps;
543 u32 seqno;
544 u64 bbaddr;
545 u64 acthd;
546 u32 fault_reg;
547 u64 faddr;
548 u32 rc_psmi; /* sleep state */
549 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
550
551 struct drm_i915_error_object {
552 int page_count;
553 u64 gtt_offset;
554 u32 *pages[0];
555 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
556
557 struct drm_i915_error_object *wa_ctx;
558
559 struct drm_i915_error_request {
560 long jiffies;
561 u32 seqno;
562 u32 tail;
563 } *requests;
564
565 struct drm_i915_error_waiter {
566 char comm[TASK_COMM_LEN];
567 pid_t pid;
568 u32 seqno;
569 } *waiters;
570
571 struct {
572 u32 gfx_mode;
573 union {
574 u64 pdp[4];
575 u32 pp_dir_base;
576 };
577 } vm_info;
578
579 pid_t pid;
580 char comm[TASK_COMM_LEN];
581 } engine[I915_NUM_ENGINES];
582
583 struct drm_i915_error_buffer {
584 u32 size;
585 u32 name;
586 u32 rseqno[I915_NUM_ENGINES], wseqno;
587 u64 gtt_offset;
588 u32 read_domains;
589 u32 write_domain;
590 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
591 s32 pinned:2;
592 u32 tiling:2;
593 u32 dirty:1;
594 u32 purgeable:1;
595 u32 userptr:1;
596 s32 engine:4;
597 u32 cache_level:3;
598 } **active_bo, **pinned_bo;
599
600 u32 *active_bo_count, *pinned_bo_count;
601 u32 vm_count;
602 };
603
604 struct intel_connector;
605 struct intel_encoder;
606 struct intel_crtc_state;
607 struct intel_initial_plane_config;
608 struct intel_crtc;
609 struct intel_limit;
610 struct dpll;
611
612 struct drm_i915_display_funcs {
613 int (*get_display_clock_speed)(struct drm_device *dev);
614 int (*get_fifo_size)(struct drm_device *dev, int plane);
615 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
616 int (*compute_intermediate_wm)(struct drm_device *dev,
617 struct intel_crtc *intel_crtc,
618 struct intel_crtc_state *newstate);
619 void (*initial_watermarks)(struct intel_crtc_state *cstate);
620 void (*optimize_watermarks)(struct intel_crtc_state *cstate);
621 int (*compute_global_watermarks)(struct drm_atomic_state *state);
622 void (*update_wm)(struct drm_crtc *crtc);
623 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
624 void (*modeset_commit_cdclk)(struct drm_atomic_state *state);
625 /* Returns the active state of the crtc, and if the crtc is active,
626 * fills out the pipe-config with the hw state. */
627 bool (*get_pipe_config)(struct intel_crtc *,
628 struct intel_crtc_state *);
629 void (*get_initial_plane_config)(struct intel_crtc *,
630 struct intel_initial_plane_config *);
631 int (*crtc_compute_clock)(struct intel_crtc *crtc,
632 struct intel_crtc_state *crtc_state);
633 void (*crtc_enable)(struct drm_crtc *crtc);
634 void (*crtc_disable)(struct drm_crtc *crtc);
635 void (*audio_codec_enable)(struct drm_connector *connector,
636 struct intel_encoder *encoder,
637 const struct drm_display_mode *adjusted_mode);
638 void (*audio_codec_disable)(struct intel_encoder *encoder);
639 void (*fdi_link_train)(struct drm_crtc *crtc);
640 void (*init_clock_gating)(struct drm_device *dev);
641 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc,
642 struct drm_framebuffer *fb,
643 struct drm_i915_gem_object *obj,
644 struct drm_i915_gem_request *req,
645 uint32_t flags);
646 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
647 /* clock updates for mode set */
648 /* cursor updates */
649 /* render clock increase/decrease */
650 /* display clock increase/decrease */
651 /* pll clock increase/decrease */
652
653 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
654 void (*load_luts)(struct drm_crtc_state *crtc_state);
655 };
656
657 enum forcewake_domain_id {
658 FW_DOMAIN_ID_RENDER = 0,
659 FW_DOMAIN_ID_BLITTER,
660 FW_DOMAIN_ID_MEDIA,
661
662 FW_DOMAIN_ID_COUNT
663 };
664
665 enum forcewake_domains {
666 FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER),
667 FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER),
668 FORCEWAKE_MEDIA = (1 << FW_DOMAIN_ID_MEDIA),
669 FORCEWAKE_ALL = (FORCEWAKE_RENDER |
670 FORCEWAKE_BLITTER |
671 FORCEWAKE_MEDIA)
672 };
673
674 #define FW_REG_READ (1)
675 #define FW_REG_WRITE (2)
676
677 enum forcewake_domains
678 intel_uncore_forcewake_for_reg(struct drm_i915_private *dev_priv,
679 i915_reg_t reg, unsigned int op);
680
681 struct intel_uncore_funcs {
682 void (*force_wake_get)(struct drm_i915_private *dev_priv,
683 enum forcewake_domains domains);
684 void (*force_wake_put)(struct drm_i915_private *dev_priv,
685 enum forcewake_domains domains);
686
687 uint8_t (*mmio_readb)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
688 uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
689 uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
690 uint64_t (*mmio_readq)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
691
692 void (*mmio_writeb)(struct drm_i915_private *dev_priv, i915_reg_t r,
693 uint8_t val, bool trace);
694 void (*mmio_writew)(struct drm_i915_private *dev_priv, i915_reg_t r,
695 uint16_t val, bool trace);
696 void (*mmio_writel)(struct drm_i915_private *dev_priv, i915_reg_t r,
697 uint32_t val, bool trace);
698 void (*mmio_writeq)(struct drm_i915_private *dev_priv, i915_reg_t r,
699 uint64_t val, bool trace);
700 };
701
702 struct intel_uncore {
703 spinlock_t lock; /** lock is also taken in irq contexts. */
704
705 struct intel_uncore_funcs funcs;
706
707 unsigned fifo_count;
708 enum forcewake_domains fw_domains;
709
710 struct intel_uncore_forcewake_domain {
711 struct drm_i915_private *i915;
712 enum forcewake_domain_id id;
713 enum forcewake_domains mask;
714 unsigned wake_count;
715 struct hrtimer timer;
716 i915_reg_t reg_set;
717 u32 val_set;
718 u32 val_clear;
719 i915_reg_t reg_ack;
720 i915_reg_t reg_post;
721 u32 val_reset;
722 } fw_domain[FW_DOMAIN_ID_COUNT];
723
724 int unclaimed_mmio_check;
725 };
726
727 /* Iterate over initialised fw domains */
728 #define for_each_fw_domain_masked(domain__, mask__, dev_priv__) \
729 for ((domain__) = &(dev_priv__)->uncore.fw_domain[0]; \
730 (domain__) < &(dev_priv__)->uncore.fw_domain[FW_DOMAIN_ID_COUNT]; \
731 (domain__)++) \
732 for_each_if ((mask__) & (domain__)->mask)
733
734 #define for_each_fw_domain(domain__, dev_priv__) \
735 for_each_fw_domain_masked(domain__, FORCEWAKE_ALL, dev_priv__)
736
737 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
738 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
739 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
740
741 struct intel_csr {
742 struct work_struct work;
743 const char *fw_path;
744 uint32_t *dmc_payload;
745 uint32_t dmc_fw_size;
746 uint32_t version;
747 uint32_t mmio_count;
748 i915_reg_t mmioaddr[8];
749 uint32_t mmiodata[8];
750 uint32_t dc_state;
751 uint32_t allowed_dc_mask;
752 };
753
754 #define DEV_INFO_FOR_EACH_FLAG(func, sep) \
755 func(is_mobile) sep \
756 func(is_i85x) sep \
757 func(is_i915g) sep \
758 func(is_i945gm) sep \
759 func(is_g33) sep \
760 func(need_gfx_hws) sep \
761 func(is_g4x) sep \
762 func(is_pineview) sep \
763 func(is_broadwater) sep \
764 func(is_crestline) sep \
765 func(is_ivybridge) sep \
766 func(is_valleyview) sep \
767 func(is_cherryview) sep \
768 func(is_haswell) sep \
769 func(is_broadwell) sep \
770 func(is_skylake) sep \
771 func(is_broxton) sep \
772 func(is_kabylake) sep \
773 func(is_preliminary) sep \
774 func(has_fbc) sep \
775 func(has_pipe_cxsr) sep \
776 func(has_hotplug) sep \
777 func(cursor_needs_physical) sep \
778 func(has_overlay) sep \
779 func(overlay_needs_physical) sep \
780 func(supports_tv) sep \
781 func(has_llc) sep \
782 func(has_snoop) sep \
783 func(has_ddi) sep \
784 func(has_fpga_dbg) sep \
785 func(has_pooled_eu)
786
787 #define DEFINE_FLAG(name) u8 name:1
788 #define SEP_SEMICOLON ;
789
790 struct intel_device_info {
791 u32 display_mmio_offset;
792 u16 device_id;
793 u8 num_pipes;
794 u8 num_sprites[I915_MAX_PIPES];
795 u8 gen;
796 u16 gen_mask;
797 u8 ring_mask; /* Rings supported by the HW */
798 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG, SEP_SEMICOLON);
799 /* Register offsets for the various display pipes and transcoders */
800 int pipe_offsets[I915_MAX_TRANSCODERS];
801 int trans_offsets[I915_MAX_TRANSCODERS];
802 int palette_offsets[I915_MAX_PIPES];
803 int cursor_offsets[I915_MAX_PIPES];
804
805 /* Slice/subslice/EU info */
806 u8 slice_total;
807 u8 subslice_total;
808 u8 subslice_per_slice;
809 u8 eu_total;
810 u8 eu_per_subslice;
811 u8 min_eu_in_pool;
812 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
813 u8 subslice_7eu[3];
814 u8 has_slice_pg:1;
815 u8 has_subslice_pg:1;
816 u8 has_eu_pg:1;
817
818 struct color_luts {
819 u16 degamma_lut_size;
820 u16 gamma_lut_size;
821 } color;
822 };
823
824 #undef DEFINE_FLAG
825 #undef SEP_SEMICOLON
826
827 enum i915_cache_level {
828 I915_CACHE_NONE = 0,
829 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
830 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
831 caches, eg sampler/render caches, and the
832 large Last-Level-Cache. LLC is coherent with
833 the CPU, but L3 is only visible to the GPU. */
834 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
835 };
836
837 struct i915_ctx_hang_stats {
838 /* This context had batch pending when hang was declared */
839 unsigned batch_pending;
840
841 /* This context had batch active when hang was declared */
842 unsigned batch_active;
843
844 /* Time when this context was last blamed for a GPU reset */
845 unsigned long guilty_ts;
846
847 /* If the contexts causes a second GPU hang within this time,
848 * it is permanently banned from submitting any more work.
849 */
850 unsigned long ban_period_seconds;
851
852 /* This context is banned to submit more work */
853 bool banned;
854 };
855
856 /* This must match up with the value previously used for execbuf2.rsvd1. */
857 #define DEFAULT_CONTEXT_HANDLE 0
858
859 /**
860 * struct i915_gem_context - as the name implies, represents a context.
861 * @ref: reference count.
862 * @user_handle: userspace tracking identity for this context.
863 * @remap_slice: l3 row remapping information.
864 * @flags: context specific flags:
865 * CONTEXT_NO_ZEROMAP: do not allow mapping things to page 0.
866 * @file_priv: filp associated with this context (NULL for global default
867 * context).
868 * @hang_stats: information about the role of this context in possible GPU
869 * hangs.
870 * @ppgtt: virtual memory space used by this context.
871 * @legacy_hw_ctx: render context backing object and whether it is correctly
872 * initialized (legacy ring submission mechanism only).
873 * @link: link in the global list of contexts.
874 *
875 * Contexts are memory images used by the hardware to store copies of their
876 * internal state.
877 */
878 struct i915_gem_context {
879 struct kref ref;
880 struct drm_i915_private *i915;
881 struct drm_i915_file_private *file_priv;
882 struct i915_hw_ppgtt *ppgtt;
883
884 struct i915_ctx_hang_stats hang_stats;
885
886 /* Unique identifier for this context, used by the hw for tracking */
887 unsigned long flags;
888 #define CONTEXT_NO_ZEROMAP BIT(0)
889 #define CONTEXT_NO_ERROR_CAPTURE BIT(1)
890 unsigned hw_id;
891 u32 user_handle;
892
893 u32 ggtt_alignment;
894
895 struct intel_context {
896 struct drm_i915_gem_object *state;
897 struct intel_ring *ring;
898 struct i915_vma *lrc_vma;
899 uint32_t *lrc_reg_state;
900 u64 lrc_desc;
901 int pin_count;
902 bool initialised;
903 } engine[I915_NUM_ENGINES];
904 u32 ring_size;
905 u32 desc_template;
906 struct atomic_notifier_head status_notifier;
907 bool execlists_force_single_submission;
908
909 struct list_head link;
910
911 u8 remap_slice;
912 };
913
914 enum fb_op_origin {
915 ORIGIN_GTT,
916 ORIGIN_CPU,
917 ORIGIN_CS,
918 ORIGIN_FLIP,
919 ORIGIN_DIRTYFB,
920 };
921
922 struct intel_fbc {
923 /* This is always the inner lock when overlapping with struct_mutex and
924 * it's the outer lock when overlapping with stolen_lock. */
925 struct mutex lock;
926 unsigned threshold;
927 unsigned int possible_framebuffer_bits;
928 unsigned int busy_bits;
929 unsigned int visible_pipes_mask;
930 struct intel_crtc *crtc;
931
932 struct drm_mm_node compressed_fb;
933 struct drm_mm_node *compressed_llb;
934
935 bool false_color;
936
937 bool enabled;
938 bool active;
939
940 struct intel_fbc_state_cache {
941 struct {
942 unsigned int mode_flags;
943 uint32_t hsw_bdw_pixel_rate;
944 } crtc;
945
946 struct {
947 unsigned int rotation;
948 int src_w;
949 int src_h;
950 bool visible;
951 } plane;
952
953 struct {
954 u64 ilk_ggtt_offset;
955 uint32_t pixel_format;
956 unsigned int stride;
957 int fence_reg;
958 unsigned int tiling_mode;
959 } fb;
960 } state_cache;
961
962 struct intel_fbc_reg_params {
963 struct {
964 enum pipe pipe;
965 enum plane plane;
966 unsigned int fence_y_offset;
967 } crtc;
968
969 struct {
970 u64 ggtt_offset;
971 uint32_t pixel_format;
972 unsigned int stride;
973 int fence_reg;
974 } fb;
975
976 int cfb_size;
977 } params;
978
979 struct intel_fbc_work {
980 bool scheduled;
981 u32 scheduled_vblank;
982 struct work_struct work;
983 } work;
984
985 const char *no_fbc_reason;
986 };
987
988 /**
989 * HIGH_RR is the highest eDP panel refresh rate read from EDID
990 * LOW_RR is the lowest eDP panel refresh rate found from EDID
991 * parsing for same resolution.
992 */
993 enum drrs_refresh_rate_type {
994 DRRS_HIGH_RR,
995 DRRS_LOW_RR,
996 DRRS_MAX_RR, /* RR count */
997 };
998
999 enum drrs_support_type {
1000 DRRS_NOT_SUPPORTED = 0,
1001 STATIC_DRRS_SUPPORT = 1,
1002 SEAMLESS_DRRS_SUPPORT = 2
1003 };
1004
1005 struct intel_dp;
1006 struct i915_drrs {
1007 struct mutex mutex;
1008 struct delayed_work work;
1009 struct intel_dp *dp;
1010 unsigned busy_frontbuffer_bits;
1011 enum drrs_refresh_rate_type refresh_rate_type;
1012 enum drrs_support_type type;
1013 };
1014
1015 struct i915_psr {
1016 struct mutex lock;
1017 bool sink_support;
1018 bool source_ok;
1019 struct intel_dp *enabled;
1020 bool active;
1021 struct delayed_work work;
1022 unsigned busy_frontbuffer_bits;
1023 bool psr2_support;
1024 bool aux_frame_sync;
1025 bool link_standby;
1026 };
1027
1028 enum intel_pch {
1029 PCH_NONE = 0, /* No PCH present */
1030 PCH_IBX, /* Ibexpeak PCH */
1031 PCH_CPT, /* Cougarpoint PCH */
1032 PCH_LPT, /* Lynxpoint PCH */
1033 PCH_SPT, /* Sunrisepoint PCH */
1034 PCH_KBP, /* Kabypoint PCH */
1035 PCH_NOP,
1036 };
1037
1038 enum intel_sbi_destination {
1039 SBI_ICLK,
1040 SBI_MPHY,
1041 };
1042
1043 #define QUIRK_PIPEA_FORCE (1<<0)
1044 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1045 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1046 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1047 #define QUIRK_PIPEB_FORCE (1<<4)
1048 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1049
1050 struct intel_fbdev;
1051 struct intel_fbc_work;
1052
1053 struct intel_gmbus {
1054 struct i2c_adapter adapter;
1055 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1056 u32 force_bit;
1057 u32 reg0;
1058 i915_reg_t gpio_reg;
1059 struct i2c_algo_bit_data bit_algo;
1060 struct drm_i915_private *dev_priv;
1061 };
1062
1063 struct i915_suspend_saved_registers {
1064 u32 saveDSPARB;
1065 u32 saveLVDS;
1066 u32 savePP_ON_DELAYS;
1067 u32 savePP_OFF_DELAYS;
1068 u32 savePP_ON;
1069 u32 savePP_OFF;
1070 u32 savePP_CONTROL;
1071 u32 savePP_DIVISOR;
1072 u32 saveFBC_CONTROL;
1073 u32 saveCACHE_MODE_0;
1074 u32 saveMI_ARB_STATE;
1075 u32 saveSWF0[16];
1076 u32 saveSWF1[16];
1077 u32 saveSWF3[3];
1078 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1079 u32 savePCH_PORT_HOTPLUG;
1080 u16 saveGCDGMBUS;
1081 };
1082
1083 struct vlv_s0ix_state {
1084 /* GAM */
1085 u32 wr_watermark;
1086 u32 gfx_prio_ctrl;
1087 u32 arb_mode;
1088 u32 gfx_pend_tlb0;
1089 u32 gfx_pend_tlb1;
1090 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1091 u32 media_max_req_count;
1092 u32 gfx_max_req_count;
1093 u32 render_hwsp;
1094 u32 ecochk;
1095 u32 bsd_hwsp;
1096 u32 blt_hwsp;
1097 u32 tlb_rd_addr;
1098
1099 /* MBC */
1100 u32 g3dctl;
1101 u32 gsckgctl;
1102 u32 mbctl;
1103
1104 /* GCP */
1105 u32 ucgctl1;
1106 u32 ucgctl3;
1107 u32 rcgctl1;
1108 u32 rcgctl2;
1109 u32 rstctl;
1110 u32 misccpctl;
1111
1112 /* GPM */
1113 u32 gfxpause;
1114 u32 rpdeuhwtc;
1115 u32 rpdeuc;
1116 u32 ecobus;
1117 u32 pwrdwnupctl;
1118 u32 rp_down_timeout;
1119 u32 rp_deucsw;
1120 u32 rcubmabdtmr;
1121 u32 rcedata;
1122 u32 spare2gh;
1123
1124 /* Display 1 CZ domain */
1125 u32 gt_imr;
1126 u32 gt_ier;
1127 u32 pm_imr;
1128 u32 pm_ier;
1129 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1130
1131 /* GT SA CZ domain */
1132 u32 tilectl;
1133 u32 gt_fifoctl;
1134 u32 gtlc_wake_ctrl;
1135 u32 gtlc_survive;
1136 u32 pmwgicz;
1137
1138 /* Display 2 CZ domain */
1139 u32 gu_ctl0;
1140 u32 gu_ctl1;
1141 u32 pcbr;
1142 u32 clock_gate_dis2;
1143 };
1144
1145 struct intel_rps_ei {
1146 u32 cz_clock;
1147 u32 render_c0;
1148 u32 media_c0;
1149 };
1150
1151 struct intel_gen6_power_mgmt {
1152 /*
1153 * work, interrupts_enabled and pm_iir are protected by
1154 * dev_priv->irq_lock
1155 */
1156 struct work_struct work;
1157 bool interrupts_enabled;
1158 u32 pm_iir;
1159
1160 u32 pm_intr_keep;
1161
1162 /* Frequencies are stored in potentially platform dependent multiples.
1163 * In other words, *_freq needs to be multiplied by X to be interesting.
1164 * Soft limits are those which are used for the dynamic reclocking done
1165 * by the driver (raise frequencies under heavy loads, and lower for
1166 * lighter loads). Hard limits are those imposed by the hardware.
1167 *
1168 * A distinction is made for overclocking, which is never enabled by
1169 * default, and is considered to be above the hard limit if it's
1170 * possible at all.
1171 */
1172 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1173 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1174 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1175 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1176 u8 min_freq; /* AKA RPn. Minimum frequency */
1177 u8 boost_freq; /* Frequency to request when wait boosting */
1178 u8 idle_freq; /* Frequency to request when we are idle */
1179 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1180 u8 rp1_freq; /* "less than" RP0 power/freqency */
1181 u8 rp0_freq; /* Non-overclocked max frequency. */
1182 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
1183
1184 u8 up_threshold; /* Current %busy required to uplock */
1185 u8 down_threshold; /* Current %busy required to downclock */
1186
1187 int last_adj;
1188 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1189
1190 spinlock_t client_lock;
1191 struct list_head clients;
1192 bool client_boost;
1193
1194 bool enabled;
1195 struct delayed_work autoenable_work;
1196 unsigned boosts;
1197
1198 /* manual wa residency calculations */
1199 struct intel_rps_ei up_ei, down_ei;
1200
1201 /*
1202 * Protects RPS/RC6 register access and PCU communication.
1203 * Must be taken after struct_mutex if nested. Note that
1204 * this lock may be held for long periods of time when
1205 * talking to hw - so only take it when talking to hw!
1206 */
1207 struct mutex hw_lock;
1208 };
1209
1210 /* defined intel_pm.c */
1211 extern spinlock_t mchdev_lock;
1212
1213 struct intel_ilk_power_mgmt {
1214 u8 cur_delay;
1215 u8 min_delay;
1216 u8 max_delay;
1217 u8 fmax;
1218 u8 fstart;
1219
1220 u64 last_count1;
1221 unsigned long last_time1;
1222 unsigned long chipset_power;
1223 u64 last_count2;
1224 u64 last_time2;
1225 unsigned long gfx_power;
1226 u8 corr;
1227
1228 int c_m;
1229 int r_t;
1230 };
1231
1232 struct drm_i915_private;
1233 struct i915_power_well;
1234
1235 struct i915_power_well_ops {
1236 /*
1237 * Synchronize the well's hw state to match the current sw state, for
1238 * example enable/disable it based on the current refcount. Called
1239 * during driver init and resume time, possibly after first calling
1240 * the enable/disable handlers.
1241 */
1242 void (*sync_hw)(struct drm_i915_private *dev_priv,
1243 struct i915_power_well *power_well);
1244 /*
1245 * Enable the well and resources that depend on it (for example
1246 * interrupts located on the well). Called after the 0->1 refcount
1247 * transition.
1248 */
1249 void (*enable)(struct drm_i915_private *dev_priv,
1250 struct i915_power_well *power_well);
1251 /*
1252 * Disable the well and resources that depend on it. Called after
1253 * the 1->0 refcount transition.
1254 */
1255 void (*disable)(struct drm_i915_private *dev_priv,
1256 struct i915_power_well *power_well);
1257 /* Returns the hw enabled state. */
1258 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1259 struct i915_power_well *power_well);
1260 };
1261
1262 /* Power well structure for haswell */
1263 struct i915_power_well {
1264 const char *name;
1265 bool always_on;
1266 /* power well enable/disable usage count */
1267 int count;
1268 /* cached hw enabled state */
1269 bool hw_enabled;
1270 unsigned long domains;
1271 unsigned long data;
1272 const struct i915_power_well_ops *ops;
1273 };
1274
1275 struct i915_power_domains {
1276 /*
1277 * Power wells needed for initialization at driver init and suspend
1278 * time are on. They are kept on until after the first modeset.
1279 */
1280 bool init_power_on;
1281 bool initializing;
1282 int power_well_count;
1283
1284 struct mutex lock;
1285 int domain_use_count[POWER_DOMAIN_NUM];
1286 struct i915_power_well *power_wells;
1287 };
1288
1289 #define MAX_L3_SLICES 2
1290 struct intel_l3_parity {
1291 u32 *remap_info[MAX_L3_SLICES];
1292 struct work_struct error_work;
1293 int which_slice;
1294 };
1295
1296 struct i915_gem_mm {
1297 /** Memory allocator for GTT stolen memory */
1298 struct drm_mm stolen;
1299 /** Protects the usage of the GTT stolen memory allocator. This is
1300 * always the inner lock when overlapping with struct_mutex. */
1301 struct mutex stolen_lock;
1302
1303 /** List of all objects in gtt_space. Used to restore gtt
1304 * mappings on resume */
1305 struct list_head bound_list;
1306 /**
1307 * List of objects which are not bound to the GTT (thus
1308 * are idle and not used by the GPU) but still have
1309 * (presumably uncached) pages still attached.
1310 */
1311 struct list_head unbound_list;
1312
1313 /** Usable portion of the GTT for GEM */
1314 unsigned long stolen_base; /* limited to low memory (32-bit) */
1315
1316 /** PPGTT used for aliasing the PPGTT with the GTT */
1317 struct i915_hw_ppgtt *aliasing_ppgtt;
1318
1319 struct notifier_block oom_notifier;
1320 struct notifier_block vmap_notifier;
1321 struct shrinker shrinker;
1322 bool shrinker_no_lock_stealing;
1323
1324 /** LRU list of objects with fence regs on them. */
1325 struct list_head fence_list;
1326
1327 /**
1328 * Are we in a non-interruptible section of code like
1329 * modesetting?
1330 */
1331 bool interruptible;
1332
1333 /* the indicator for dispatch video commands on two BSD rings */
1334 unsigned int bsd_engine_dispatch_index;
1335
1336 /** Bit 6 swizzling required for X tiling */
1337 uint32_t bit_6_swizzle_x;
1338 /** Bit 6 swizzling required for Y tiling */
1339 uint32_t bit_6_swizzle_y;
1340
1341 /* accounting, useful for userland debugging */
1342 spinlock_t object_stat_lock;
1343 size_t object_memory;
1344 u32 object_count;
1345 };
1346
1347 struct drm_i915_error_state_buf {
1348 struct drm_i915_private *i915;
1349 unsigned bytes;
1350 unsigned size;
1351 int err;
1352 u8 *buf;
1353 loff_t start;
1354 loff_t pos;
1355 };
1356
1357 struct i915_error_state_file_priv {
1358 struct drm_device *dev;
1359 struct drm_i915_error_state *error;
1360 };
1361
1362 struct i915_gpu_error {
1363 /* For hangcheck timer */
1364 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1365 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1366 /* Hang gpu twice in this window and your context gets banned */
1367 #define DRM_I915_CTX_BAN_PERIOD DIV_ROUND_UP(8*DRM_I915_HANGCHECK_PERIOD, 1000)
1368
1369 struct delayed_work hangcheck_work;
1370
1371 /* For reset and error_state handling. */
1372 spinlock_t lock;
1373 /* Protected by the above dev->gpu_error.lock. */
1374 struct drm_i915_error_state *first_error;
1375
1376 unsigned long missed_irq_rings;
1377
1378 /**
1379 * State variable controlling the reset flow and count
1380 *
1381 * This is a counter which gets incremented when reset is triggered,
1382 * and again when reset has been handled. So odd values (lowest bit set)
1383 * means that reset is in progress and even values that
1384 * (reset_counter >> 1):th reset was successfully completed.
1385 *
1386 * If reset is not completed succesfully, the I915_WEDGE bit is
1387 * set meaning that hardware is terminally sour and there is no
1388 * recovery. All waiters on the reset_queue will be woken when
1389 * that happens.
1390 *
1391 * This counter is used by the wait_seqno code to notice that reset
1392 * event happened and it needs to restart the entire ioctl (since most
1393 * likely the seqno it waited for won't ever signal anytime soon).
1394 *
1395 * This is important for lock-free wait paths, where no contended lock
1396 * naturally enforces the correct ordering between the bail-out of the
1397 * waiter and the gpu reset work code.
1398 */
1399 atomic_t reset_counter;
1400
1401 #define I915_RESET_IN_PROGRESS_FLAG 1
1402 #define I915_WEDGED (1 << 31)
1403
1404 /**
1405 * Waitqueue to signal when a hang is detected. Used to for waiters
1406 * to release the struct_mutex for the reset to procede.
1407 */
1408 wait_queue_head_t wait_queue;
1409
1410 /**
1411 * Waitqueue to signal when the reset has completed. Used by clients
1412 * that wait for dev_priv->mm.wedged to settle.
1413 */
1414 wait_queue_head_t reset_queue;
1415
1416 /* For missed irq/seqno simulation. */
1417 unsigned long test_irq_rings;
1418 };
1419
1420 enum modeset_restore {
1421 MODESET_ON_LID_OPEN,
1422 MODESET_DONE,
1423 MODESET_SUSPENDED,
1424 };
1425
1426 #define DP_AUX_A 0x40
1427 #define DP_AUX_B 0x10
1428 #define DP_AUX_C 0x20
1429 #define DP_AUX_D 0x30
1430
1431 #define DDC_PIN_B 0x05
1432 #define DDC_PIN_C 0x04
1433 #define DDC_PIN_D 0x06
1434
1435 struct ddi_vbt_port_info {
1436 /*
1437 * This is an index in the HDMI/DVI DDI buffer translation table.
1438 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1439 * populate this field.
1440 */
1441 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1442 uint8_t hdmi_level_shift;
1443
1444 uint8_t supports_dvi:1;
1445 uint8_t supports_hdmi:1;
1446 uint8_t supports_dp:1;
1447
1448 uint8_t alternate_aux_channel;
1449 uint8_t alternate_ddc_pin;
1450
1451 uint8_t dp_boost_level;
1452 uint8_t hdmi_boost_level;
1453 };
1454
1455 enum psr_lines_to_wait {
1456 PSR_0_LINES_TO_WAIT = 0,
1457 PSR_1_LINE_TO_WAIT,
1458 PSR_4_LINES_TO_WAIT,
1459 PSR_8_LINES_TO_WAIT
1460 };
1461
1462 struct intel_vbt_data {
1463 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1464 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1465
1466 /* Feature bits */
1467 unsigned int int_tv_support:1;
1468 unsigned int lvds_dither:1;
1469 unsigned int lvds_vbt:1;
1470 unsigned int int_crt_support:1;
1471 unsigned int lvds_use_ssc:1;
1472 unsigned int display_clock_mode:1;
1473 unsigned int fdi_rx_polarity_inverted:1;
1474 unsigned int panel_type:4;
1475 int lvds_ssc_freq;
1476 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1477
1478 enum drrs_support_type drrs_type;
1479
1480 struct {
1481 int rate;
1482 int lanes;
1483 int preemphasis;
1484 int vswing;
1485 bool low_vswing;
1486 bool initialized;
1487 bool support;
1488 int bpp;
1489 struct edp_power_seq pps;
1490 } edp;
1491
1492 struct {
1493 bool full_link;
1494 bool require_aux_wakeup;
1495 int idle_frames;
1496 enum psr_lines_to_wait lines_to_wait;
1497 int tp1_wakeup_time;
1498 int tp2_tp3_wakeup_time;
1499 } psr;
1500
1501 struct {
1502 u16 pwm_freq_hz;
1503 bool present;
1504 bool active_low_pwm;
1505 u8 min_brightness; /* min_brightness/255 of max */
1506 enum intel_backlight_type type;
1507 } backlight;
1508
1509 /* MIPI DSI */
1510 struct {
1511 u16 panel_id;
1512 struct mipi_config *config;
1513 struct mipi_pps_data *pps;
1514 u8 seq_version;
1515 u32 size;
1516 u8 *data;
1517 const u8 *sequence[MIPI_SEQ_MAX];
1518 } dsi;
1519
1520 int crt_ddc_pin;
1521
1522 int child_dev_num;
1523 union child_device_config *child_dev;
1524
1525 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1526 struct sdvo_device_mapping sdvo_mappings[2];
1527 };
1528
1529 enum intel_ddb_partitioning {
1530 INTEL_DDB_PART_1_2,
1531 INTEL_DDB_PART_5_6, /* IVB+ */
1532 };
1533
1534 struct intel_wm_level {
1535 bool enable;
1536 uint32_t pri_val;
1537 uint32_t spr_val;
1538 uint32_t cur_val;
1539 uint32_t fbc_val;
1540 };
1541
1542 struct ilk_wm_values {
1543 uint32_t wm_pipe[3];
1544 uint32_t wm_lp[3];
1545 uint32_t wm_lp_spr[3];
1546 uint32_t wm_linetime[3];
1547 bool enable_fbc_wm;
1548 enum intel_ddb_partitioning partitioning;
1549 };
1550
1551 struct vlv_pipe_wm {
1552 uint16_t primary;
1553 uint16_t sprite[2];
1554 uint8_t cursor;
1555 };
1556
1557 struct vlv_sr_wm {
1558 uint16_t plane;
1559 uint8_t cursor;
1560 };
1561
1562 struct vlv_wm_values {
1563 struct vlv_pipe_wm pipe[3];
1564 struct vlv_sr_wm sr;
1565 struct {
1566 uint8_t cursor;
1567 uint8_t sprite[2];
1568 uint8_t primary;
1569 } ddl[3];
1570 uint8_t level;
1571 bool cxsr;
1572 };
1573
1574 struct skl_ddb_entry {
1575 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1576 };
1577
1578 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1579 {
1580 return entry->end - entry->start;
1581 }
1582
1583 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1584 const struct skl_ddb_entry *e2)
1585 {
1586 if (e1->start == e2->start && e1->end == e2->end)
1587 return true;
1588
1589 return false;
1590 }
1591
1592 struct skl_ddb_allocation {
1593 struct skl_ddb_entry pipe[I915_MAX_PIPES];
1594 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1595 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1596 };
1597
1598 struct skl_wm_values {
1599 unsigned dirty_pipes;
1600 struct skl_ddb_allocation ddb;
1601 uint32_t wm_linetime[I915_MAX_PIPES];
1602 uint32_t plane[I915_MAX_PIPES][I915_MAX_PLANES][8];
1603 uint32_t plane_trans[I915_MAX_PIPES][I915_MAX_PLANES];
1604 };
1605
1606 struct skl_wm_level {
1607 bool plane_en[I915_MAX_PLANES];
1608 uint16_t plane_res_b[I915_MAX_PLANES];
1609 uint8_t plane_res_l[I915_MAX_PLANES];
1610 };
1611
1612 /*
1613 * This struct helps tracking the state needed for runtime PM, which puts the
1614 * device in PCI D3 state. Notice that when this happens, nothing on the
1615 * graphics device works, even register access, so we don't get interrupts nor
1616 * anything else.
1617 *
1618 * Every piece of our code that needs to actually touch the hardware needs to
1619 * either call intel_runtime_pm_get or call intel_display_power_get with the
1620 * appropriate power domain.
1621 *
1622 * Our driver uses the autosuspend delay feature, which means we'll only really
1623 * suspend if we stay with zero refcount for a certain amount of time. The
1624 * default value is currently very conservative (see intel_runtime_pm_enable), but
1625 * it can be changed with the standard runtime PM files from sysfs.
1626 *
1627 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1628 * goes back to false exactly before we reenable the IRQs. We use this variable
1629 * to check if someone is trying to enable/disable IRQs while they're supposed
1630 * to be disabled. This shouldn't happen and we'll print some error messages in
1631 * case it happens.
1632 *
1633 * For more, read the Documentation/power/runtime_pm.txt.
1634 */
1635 struct i915_runtime_pm {
1636 atomic_t wakeref_count;
1637 atomic_t atomic_seq;
1638 bool suspended;
1639 bool irqs_enabled;
1640 };
1641
1642 enum intel_pipe_crc_source {
1643 INTEL_PIPE_CRC_SOURCE_NONE,
1644 INTEL_PIPE_CRC_SOURCE_PLANE1,
1645 INTEL_PIPE_CRC_SOURCE_PLANE2,
1646 INTEL_PIPE_CRC_SOURCE_PF,
1647 INTEL_PIPE_CRC_SOURCE_PIPE,
1648 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1649 INTEL_PIPE_CRC_SOURCE_TV,
1650 INTEL_PIPE_CRC_SOURCE_DP_B,
1651 INTEL_PIPE_CRC_SOURCE_DP_C,
1652 INTEL_PIPE_CRC_SOURCE_DP_D,
1653 INTEL_PIPE_CRC_SOURCE_AUTO,
1654 INTEL_PIPE_CRC_SOURCE_MAX,
1655 };
1656
1657 struct intel_pipe_crc_entry {
1658 uint32_t frame;
1659 uint32_t crc[5];
1660 };
1661
1662 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1663 struct intel_pipe_crc {
1664 spinlock_t lock;
1665 bool opened; /* exclusive access to the result file */
1666 struct intel_pipe_crc_entry *entries;
1667 enum intel_pipe_crc_source source;
1668 int head, tail;
1669 wait_queue_head_t wq;
1670 };
1671
1672 struct i915_frontbuffer_tracking {
1673 struct mutex lock;
1674
1675 /*
1676 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1677 * scheduled flips.
1678 */
1679 unsigned busy_bits;
1680 unsigned flip_bits;
1681 };
1682
1683 struct i915_wa_reg {
1684 i915_reg_t addr;
1685 u32 value;
1686 /* bitmask representing WA bits */
1687 u32 mask;
1688 };
1689
1690 /*
1691 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1692 * allowing it for RCS as we don't foresee any requirement of having
1693 * a whitelist for other engines. When it is really required for
1694 * other engines then the limit need to be increased.
1695 */
1696 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1697
1698 struct i915_workarounds {
1699 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1700 u32 count;
1701 u32 hw_whitelist_count[I915_NUM_ENGINES];
1702 };
1703
1704 struct i915_virtual_gpu {
1705 bool active;
1706 };
1707
1708 /* used in computing the new watermarks state */
1709 struct intel_wm_config {
1710 unsigned int num_pipes_active;
1711 bool sprites_enabled;
1712 bool sprites_scaled;
1713 };
1714
1715 struct drm_i915_private {
1716 struct drm_device drm;
1717
1718 struct kmem_cache *objects;
1719 struct kmem_cache *vmas;
1720 struct kmem_cache *requests;
1721
1722 const struct intel_device_info info;
1723
1724 int relative_constants_mode;
1725
1726 void __iomem *regs;
1727
1728 struct intel_uncore uncore;
1729
1730 struct i915_virtual_gpu vgpu;
1731
1732 struct intel_gvt gvt;
1733
1734 struct intel_guc guc;
1735
1736 struct intel_csr csr;
1737
1738 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1739
1740 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
1741 * controller on different i2c buses. */
1742 struct mutex gmbus_mutex;
1743
1744 /**
1745 * Base address of the gmbus and gpio block.
1746 */
1747 uint32_t gpio_mmio_base;
1748
1749 /* MMIO base address for MIPI regs */
1750 uint32_t mipi_mmio_base;
1751
1752 uint32_t psr_mmio_base;
1753
1754 wait_queue_head_t gmbus_wait_queue;
1755
1756 struct pci_dev *bridge_dev;
1757 struct i915_gem_context *kernel_context;
1758 struct intel_engine_cs engine[I915_NUM_ENGINES];
1759 struct drm_i915_gem_object *semaphore_obj;
1760 u32 next_seqno;
1761
1762 struct drm_dma_handle *status_page_dmah;
1763 struct resource mch_res;
1764
1765 /* protects the irq masks */
1766 spinlock_t irq_lock;
1767
1768 /* protects the mmio flip data */
1769 spinlock_t mmio_flip_lock;
1770
1771 bool display_irqs_enabled;
1772
1773 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1774 struct pm_qos_request pm_qos;
1775
1776 /* Sideband mailbox protection */
1777 struct mutex sb_lock;
1778
1779 /** Cached value of IMR to avoid reads in updating the bitfield */
1780 union {
1781 u32 irq_mask;
1782 u32 de_irq_mask[I915_MAX_PIPES];
1783 };
1784 u32 gt_irq_mask;
1785 u32 pm_irq_mask;
1786 u32 pm_rps_events;
1787 u32 pipestat_irq_mask[I915_MAX_PIPES];
1788
1789 struct i915_hotplug hotplug;
1790 struct intel_fbc fbc;
1791 struct i915_drrs drrs;
1792 struct intel_opregion opregion;
1793 struct intel_vbt_data vbt;
1794
1795 bool preserve_bios_swizzle;
1796
1797 /* overlay */
1798 struct intel_overlay *overlay;
1799
1800 /* backlight registers and fields in struct intel_panel */
1801 struct mutex backlight_lock;
1802
1803 /* LVDS info */
1804 bool no_aux_handshake;
1805
1806 /* protects panel power sequencer state */
1807 struct mutex pps_mutex;
1808
1809 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1810 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1811
1812 unsigned int fsb_freq, mem_freq, is_ddr3;
1813 unsigned int skl_preferred_vco_freq;
1814 unsigned int cdclk_freq, max_cdclk_freq, atomic_cdclk_freq;
1815 unsigned int max_dotclk_freq;
1816 unsigned int rawclk_freq;
1817 unsigned int hpll_freq;
1818 unsigned int czclk_freq;
1819
1820 struct {
1821 unsigned int vco, ref;
1822 } cdclk_pll;
1823
1824 /**
1825 * wq - Driver workqueue for GEM.
1826 *
1827 * NOTE: Work items scheduled here are not allowed to grab any modeset
1828 * locks, for otherwise the flushing done in the pageflip code will
1829 * result in deadlocks.
1830 */
1831 struct workqueue_struct *wq;
1832
1833 /* Display functions */
1834 struct drm_i915_display_funcs display;
1835
1836 /* PCH chipset type */
1837 enum intel_pch pch_type;
1838 unsigned short pch_id;
1839
1840 unsigned long quirks;
1841
1842 enum modeset_restore modeset_restore;
1843 struct mutex modeset_restore_lock;
1844 struct drm_atomic_state *modeset_restore_state;
1845
1846 struct list_head vm_list; /* Global list of all address spaces */
1847 struct i915_ggtt ggtt; /* VM representing the global address space */
1848
1849 struct i915_gem_mm mm;
1850 DECLARE_HASHTABLE(mm_structs, 7);
1851 struct mutex mm_lock;
1852
1853 /* The hw wants to have a stable context identifier for the lifetime
1854 * of the context (for OA, PASID, faults, etc). This is limited
1855 * in execlists to 21 bits.
1856 */
1857 struct ida context_hw_ida;
1858 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1859
1860 /* Kernel Modesetting */
1861
1862 struct drm_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1863 struct drm_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1864 wait_queue_head_t pending_flip_queue;
1865
1866 #ifdef CONFIG_DEBUG_FS
1867 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1868 #endif
1869
1870 /* dpll and cdclk state is protected by connection_mutex */
1871 int num_shared_dpll;
1872 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1873 const struct intel_dpll_mgr *dpll_mgr;
1874
1875 /*
1876 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1877 * Must be global rather than per dpll, because on some platforms
1878 * plls share registers.
1879 */
1880 struct mutex dpll_lock;
1881
1882 unsigned int active_crtcs;
1883 unsigned int min_pixclk[I915_MAX_PIPES];
1884
1885 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1886
1887 struct i915_workarounds workarounds;
1888
1889 struct i915_frontbuffer_tracking fb_tracking;
1890
1891 u16 orig_clock;
1892
1893 bool mchbar_need_disable;
1894
1895 struct intel_l3_parity l3_parity;
1896
1897 /* Cannot be determined by PCIID. You must always read a register. */
1898 u32 edram_cap;
1899
1900 /* gen6+ rps state */
1901 struct intel_gen6_power_mgmt rps;
1902
1903 /* ilk-only ips/rps state. Everything in here is protected by the global
1904 * mchdev_lock in intel_pm.c */
1905 struct intel_ilk_power_mgmt ips;
1906
1907 struct i915_power_domains power_domains;
1908
1909 struct i915_psr psr;
1910
1911 struct i915_gpu_error gpu_error;
1912
1913 struct drm_i915_gem_object *vlv_pctx;
1914
1915 #ifdef CONFIG_DRM_FBDEV_EMULATION
1916 /* list of fbdev register on this device */
1917 struct intel_fbdev *fbdev;
1918 struct work_struct fbdev_suspend_work;
1919 #endif
1920
1921 struct drm_property *broadcast_rgb_property;
1922 struct drm_property *force_audio_property;
1923
1924 /* hda/i915 audio component */
1925 struct i915_audio_component *audio_component;
1926 bool audio_component_registered;
1927 /**
1928 * av_mutex - mutex for audio/video sync
1929 *
1930 */
1931 struct mutex av_mutex;
1932
1933 uint32_t hw_context_size;
1934 struct list_head context_list;
1935
1936 u32 fdi_rx_config;
1937
1938 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
1939 u32 chv_phy_control;
1940 /*
1941 * Shadows for CHV DPLL_MD regs to keep the state
1942 * checker somewhat working in the presence hardware
1943 * crappiness (can't read out DPLL_MD for pipes B & C).
1944 */
1945 u32 chv_dpll_md[I915_MAX_PIPES];
1946 u32 bxt_phy_grc;
1947
1948 u32 suspend_count;
1949 bool suspended_to_idle;
1950 struct i915_suspend_saved_registers regfile;
1951 struct vlv_s0ix_state vlv_s0ix_state;
1952
1953 struct {
1954 /*
1955 * Raw watermark latency values:
1956 * in 0.1us units for WM0,
1957 * in 0.5us units for WM1+.
1958 */
1959 /* primary */
1960 uint16_t pri_latency[5];
1961 /* sprite */
1962 uint16_t spr_latency[5];
1963 /* cursor */
1964 uint16_t cur_latency[5];
1965 /*
1966 * Raw watermark memory latency values
1967 * for SKL for all 8 levels
1968 * in 1us units.
1969 */
1970 uint16_t skl_latency[8];
1971
1972 /*
1973 * The skl_wm_values structure is a bit too big for stack
1974 * allocation, so we keep the staging struct where we store
1975 * intermediate results here instead.
1976 */
1977 struct skl_wm_values skl_results;
1978
1979 /* current hardware state */
1980 union {
1981 struct ilk_wm_values hw;
1982 struct skl_wm_values skl_hw;
1983 struct vlv_wm_values vlv;
1984 };
1985
1986 uint8_t max_level;
1987
1988 /*
1989 * Should be held around atomic WM register writing; also
1990 * protects * intel_crtc->wm.active and
1991 * cstate->wm.need_postvbl_update.
1992 */
1993 struct mutex wm_mutex;
1994
1995 /*
1996 * Set during HW readout of watermarks/DDB. Some platforms
1997 * need to know when we're still using BIOS-provided values
1998 * (which we don't fully trust).
1999 */
2000 bool distrust_bios_wm;
2001 } wm;
2002
2003 struct i915_runtime_pm pm;
2004
2005 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2006 struct {
2007 void (*cleanup_engine)(struct intel_engine_cs *engine);
2008 void (*stop_engine)(struct intel_engine_cs *engine);
2009
2010 /**
2011 * Is the GPU currently considered idle, or busy executing
2012 * userspace requests? Whilst idle, we allow runtime power
2013 * management to power down the hardware and display clocks.
2014 * In order to reduce the effect on performance, there
2015 * is a slight delay before we do so.
2016 */
2017 unsigned int active_engines;
2018 bool awake;
2019
2020 /**
2021 * We leave the user IRQ off as much as possible,
2022 * but this means that requests will finish and never
2023 * be retired once the system goes idle. Set a timer to
2024 * fire periodically while the ring is running. When it
2025 * fires, go retire requests.
2026 */
2027 struct delayed_work retire_work;
2028
2029 /**
2030 * When we detect an idle GPU, we want to turn on
2031 * powersaving features. So once we see that there
2032 * are no more requests outstanding and no more
2033 * arrive within a small period of time, we fire
2034 * off the idle_work.
2035 */
2036 struct delayed_work idle_work;
2037 } gt;
2038
2039 /* perform PHY state sanity checks? */
2040 bool chv_phy_assert[2];
2041
2042 struct intel_encoder *dig_port_map[I915_MAX_PORTS];
2043
2044 /*
2045 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2046 * will be rejected. Instead look for a better place.
2047 */
2048 };
2049
2050 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2051 {
2052 return container_of(dev, struct drm_i915_private, drm);
2053 }
2054
2055 static inline struct drm_i915_private *dev_to_i915(struct device *dev)
2056 {
2057 return to_i915(dev_get_drvdata(dev));
2058 }
2059
2060 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2061 {
2062 return container_of(guc, struct drm_i915_private, guc);
2063 }
2064
2065 /* Simple iterator over all initialised engines */
2066 #define for_each_engine(engine__, dev_priv__) \
2067 for ((engine__) = &(dev_priv__)->engine[0]; \
2068 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2069 (engine__)++) \
2070 for_each_if (intel_engine_initialized(engine__))
2071
2072 /* Iterator with engine_id */
2073 #define for_each_engine_id(engine__, dev_priv__, id__) \
2074 for ((engine__) = &(dev_priv__)->engine[0], (id__) = 0; \
2075 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2076 (engine__)++) \
2077 for_each_if (((id__) = (engine__)->id, \
2078 intel_engine_initialized(engine__)))
2079
2080 /* Iterator over subset of engines selected by mask */
2081 #define for_each_engine_masked(engine__, dev_priv__, mask__) \
2082 for ((engine__) = &(dev_priv__)->engine[0]; \
2083 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2084 (engine__)++) \
2085 for_each_if (((mask__) & intel_engine_flag(engine__)) && \
2086 intel_engine_initialized(engine__))
2087
2088 enum hdmi_force_audio {
2089 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2090 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2091 HDMI_AUDIO_AUTO, /* trust EDID */
2092 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2093 };
2094
2095 #define I915_GTT_OFFSET_NONE ((u32)-1)
2096
2097 struct drm_i915_gem_object_ops {
2098 unsigned int flags;
2099 #define I915_GEM_OBJECT_HAS_STRUCT_PAGE 0x1
2100
2101 /* Interface between the GEM object and its backing storage.
2102 * get_pages() is called once prior to the use of the associated set
2103 * of pages before to binding them into the GTT, and put_pages() is
2104 * called after we no longer need them. As we expect there to be
2105 * associated cost with migrating pages between the backing storage
2106 * and making them available for the GPU (e.g. clflush), we may hold
2107 * onto the pages after they are no longer referenced by the GPU
2108 * in case they may be used again shortly (for example migrating the
2109 * pages to a different memory domain within the GTT). put_pages()
2110 * will therefore most likely be called when the object itself is
2111 * being released or under memory pressure (where we attempt to
2112 * reap pages for the shrinker).
2113 */
2114 int (*get_pages)(struct drm_i915_gem_object *);
2115 void (*put_pages)(struct drm_i915_gem_object *);
2116
2117 int (*dmabuf_export)(struct drm_i915_gem_object *);
2118 void (*release)(struct drm_i915_gem_object *);
2119 };
2120
2121 /*
2122 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2123 * considered to be the frontbuffer for the given plane interface-wise. This
2124 * doesn't mean that the hw necessarily already scans it out, but that any
2125 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2126 *
2127 * We have one bit per pipe and per scanout plane type.
2128 */
2129 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2130 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2131 #define INTEL_FRONTBUFFER_BITS \
2132 (INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES)
2133 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2134 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2135 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2136 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2137 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2138 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2139 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2140 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2141 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2142 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2143
2144 struct drm_i915_gem_object {
2145 struct drm_gem_object base;
2146
2147 const struct drm_i915_gem_object_ops *ops;
2148
2149 /** List of VMAs backed by this object */
2150 struct list_head vma_list;
2151
2152 /** Stolen memory for this object, instead of being backed by shmem. */
2153 struct drm_mm_node *stolen;
2154 struct list_head global_list;
2155
2156 struct list_head engine_list[I915_NUM_ENGINES];
2157 /** Used in execbuf to temporarily hold a ref */
2158 struct list_head obj_exec_link;
2159
2160 struct list_head batch_pool_link;
2161
2162 /**
2163 * This is set if the object is on the active lists (has pending
2164 * rendering and so a non-zero seqno), and is not set if it i s on
2165 * inactive (ready to be unbound) list.
2166 */
2167 unsigned int active:I915_NUM_ENGINES;
2168
2169 /**
2170 * This is set if the object has been written to since last bound
2171 * to the GTT
2172 */
2173 unsigned int dirty:1;
2174
2175 /**
2176 * Fence register bits (if any) for this object. Will be set
2177 * as needed when mapped into the GTT.
2178 * Protected by dev->struct_mutex.
2179 */
2180 signed int fence_reg:I915_MAX_NUM_FENCE_BITS;
2181
2182 /**
2183 * Advice: are the backing pages purgeable?
2184 */
2185 unsigned int madv:2;
2186
2187 /**
2188 * Current tiling mode for the object.
2189 */
2190 unsigned int tiling_mode:2;
2191 /**
2192 * Whether the tiling parameters for the currently associated fence
2193 * register have changed. Note that for the purposes of tracking
2194 * tiling changes we also treat the unfenced register, the register
2195 * slot that the object occupies whilst it executes a fenced
2196 * command (such as BLT on gen2/3), as a "fence".
2197 */
2198 unsigned int fence_dirty:1;
2199
2200 /**
2201 * Is the object at the current location in the gtt mappable and
2202 * fenceable? Used to avoid costly recalculations.
2203 */
2204 unsigned int map_and_fenceable:1;
2205
2206 /**
2207 * Whether the current gtt mapping needs to be mappable (and isn't just
2208 * mappable by accident). Track pin and fault separate for a more
2209 * accurate mappable working set.
2210 */
2211 unsigned int fault_mappable:1;
2212
2213 /*
2214 * Is the object to be mapped as read-only to the GPU
2215 * Only honoured if hardware has relevant pte bit
2216 */
2217 unsigned long gt_ro:1;
2218 unsigned int cache_level:3;
2219 unsigned int cache_dirty:1;
2220
2221 unsigned int frontbuffer_bits:INTEL_FRONTBUFFER_BITS;
2222
2223 unsigned int has_wc_mmap;
2224 /** Count of VMA actually bound by this object */
2225 unsigned int bind_count;
2226 unsigned int pin_display;
2227
2228 struct sg_table *pages;
2229 int pages_pin_count;
2230 struct get_page {
2231 struct scatterlist *sg;
2232 int last;
2233 } get_page;
2234 void *mapping;
2235
2236 /** Breadcrumb of last rendering to the buffer.
2237 * There can only be one writer, but we allow for multiple readers.
2238 * If there is a writer that necessarily implies that all other
2239 * read requests are complete - but we may only be lazily clearing
2240 * the read requests. A read request is naturally the most recent
2241 * request on a ring, so we may have two different write and read
2242 * requests on one ring where the write request is older than the
2243 * read request. This allows for the CPU to read from an active
2244 * buffer by only waiting for the write to complete.
2245 * */
2246 struct drm_i915_gem_request *last_read_req[I915_NUM_ENGINES];
2247 struct drm_i915_gem_request *last_write_req;
2248 /** Breadcrumb of last fenced GPU access to the buffer. */
2249 struct drm_i915_gem_request *last_fenced_req;
2250
2251 /** Current tiling stride for the object, if it's tiled. */
2252 uint32_t stride;
2253
2254 /** References from framebuffers, locks out tiling changes. */
2255 unsigned long framebuffer_references;
2256
2257 /** Record of address bit 17 of each page at last unbind. */
2258 unsigned long *bit_17;
2259
2260 union {
2261 /** for phy allocated objects */
2262 struct drm_dma_handle *phys_handle;
2263
2264 struct i915_gem_userptr {
2265 uintptr_t ptr;
2266 unsigned read_only :1;
2267 unsigned workers :4;
2268 #define I915_GEM_USERPTR_MAX_WORKERS 15
2269
2270 struct i915_mm_struct *mm;
2271 struct i915_mmu_object *mmu_object;
2272 struct work_struct *work;
2273 } userptr;
2274 };
2275 };
2276
2277 static inline struct drm_i915_gem_object *
2278 to_intel_bo(struct drm_gem_object *gem)
2279 {
2280 /* Assert that to_intel_bo(NULL) == NULL */
2281 BUILD_BUG_ON(offsetof(struct drm_i915_gem_object, base));
2282
2283 return container_of(gem, struct drm_i915_gem_object, base);
2284 }
2285
2286 static inline struct drm_i915_gem_object *
2287 i915_gem_object_lookup(struct drm_file *file, u32 handle)
2288 {
2289 return to_intel_bo(drm_gem_object_lookup(file, handle));
2290 }
2291
2292 __deprecated
2293 extern struct drm_gem_object *
2294 drm_gem_object_lookup(struct drm_file *file, u32 handle);
2295
2296 __attribute__((nonnull))
2297 static inline struct drm_i915_gem_object *
2298 i915_gem_object_get(struct drm_i915_gem_object *obj)
2299 {
2300 drm_gem_object_reference(&obj->base);
2301 return obj;
2302 }
2303
2304 __deprecated
2305 extern void drm_gem_object_reference(struct drm_gem_object *);
2306
2307 __attribute__((nonnull))
2308 static inline void
2309 i915_gem_object_put(struct drm_i915_gem_object *obj)
2310 {
2311 drm_gem_object_unreference(&obj->base);
2312 }
2313
2314 __deprecated
2315 extern void drm_gem_object_unreference(struct drm_gem_object *);
2316
2317 __attribute__((nonnull))
2318 static inline void
2319 i915_gem_object_put_unlocked(struct drm_i915_gem_object *obj)
2320 {
2321 drm_gem_object_unreference_unlocked(&obj->base);
2322 }
2323
2324 __deprecated
2325 extern void drm_gem_object_unreference_unlocked(struct drm_gem_object *);
2326
2327 static inline bool
2328 i915_gem_object_has_struct_page(const struct drm_i915_gem_object *obj)
2329 {
2330 return obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE;
2331 }
2332
2333 /*
2334 * Optimised SGL iterator for GEM objects
2335 */
2336 static __always_inline struct sgt_iter {
2337 struct scatterlist *sgp;
2338 union {
2339 unsigned long pfn;
2340 dma_addr_t dma;
2341 };
2342 unsigned int curr;
2343 unsigned int max;
2344 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2345 struct sgt_iter s = { .sgp = sgl };
2346
2347 if (s.sgp) {
2348 s.max = s.curr = s.sgp->offset;
2349 s.max += s.sgp->length;
2350 if (dma)
2351 s.dma = sg_dma_address(s.sgp);
2352 else
2353 s.pfn = page_to_pfn(sg_page(s.sgp));
2354 }
2355
2356 return s;
2357 }
2358
2359 /**
2360 * __sg_next - return the next scatterlist entry in a list
2361 * @sg: The current sg entry
2362 *
2363 * Description:
2364 * If the entry is the last, return NULL; otherwise, step to the next
2365 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2366 * otherwise just return the pointer to the current element.
2367 **/
2368 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2369 {
2370 #ifdef CONFIG_DEBUG_SG
2371 BUG_ON(sg->sg_magic != SG_MAGIC);
2372 #endif
2373 return sg_is_last(sg) ? NULL :
2374 likely(!sg_is_chain(++sg)) ? sg :
2375 sg_chain_ptr(sg);
2376 }
2377
2378 /**
2379 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2380 * @__dmap: DMA address (output)
2381 * @__iter: 'struct sgt_iter' (iterator state, internal)
2382 * @__sgt: sg_table to iterate over (input)
2383 */
2384 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2385 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2386 ((__dmap) = (__iter).dma + (__iter).curr); \
2387 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2388 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2389
2390 /**
2391 * for_each_sgt_page - iterate over the pages of the given sg_table
2392 * @__pp: page pointer (output)
2393 * @__iter: 'struct sgt_iter' (iterator state, internal)
2394 * @__sgt: sg_table to iterate over (input)
2395 */
2396 #define for_each_sgt_page(__pp, __iter, __sgt) \
2397 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2398 ((__pp) = (__iter).pfn == 0 ? NULL : \
2399 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2400 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2401 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2402
2403 /*
2404 * A command that requires special handling by the command parser.
2405 */
2406 struct drm_i915_cmd_descriptor {
2407 /*
2408 * Flags describing how the command parser processes the command.
2409 *
2410 * CMD_DESC_FIXED: The command has a fixed length if this is set,
2411 * a length mask if not set
2412 * CMD_DESC_SKIP: The command is allowed but does not follow the
2413 * standard length encoding for the opcode range in
2414 * which it falls
2415 * CMD_DESC_REJECT: The command is never allowed
2416 * CMD_DESC_REGISTER: The command should be checked against the
2417 * register whitelist for the appropriate ring
2418 * CMD_DESC_MASTER: The command is allowed if the submitting process
2419 * is the DRM master
2420 */
2421 u32 flags;
2422 #define CMD_DESC_FIXED (1<<0)
2423 #define CMD_DESC_SKIP (1<<1)
2424 #define CMD_DESC_REJECT (1<<2)
2425 #define CMD_DESC_REGISTER (1<<3)
2426 #define CMD_DESC_BITMASK (1<<4)
2427 #define CMD_DESC_MASTER (1<<5)
2428
2429 /*
2430 * The command's unique identification bits and the bitmask to get them.
2431 * This isn't strictly the opcode field as defined in the spec and may
2432 * also include type, subtype, and/or subop fields.
2433 */
2434 struct {
2435 u32 value;
2436 u32 mask;
2437 } cmd;
2438
2439 /*
2440 * The command's length. The command is either fixed length (i.e. does
2441 * not include a length field) or has a length field mask. The flag
2442 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
2443 * a length mask. All command entries in a command table must include
2444 * length information.
2445 */
2446 union {
2447 u32 fixed;
2448 u32 mask;
2449 } length;
2450
2451 /*
2452 * Describes where to find a register address in the command to check
2453 * against the ring's register whitelist. Only valid if flags has the
2454 * CMD_DESC_REGISTER bit set.
2455 *
2456 * A non-zero step value implies that the command may access multiple
2457 * registers in sequence (e.g. LRI), in that case step gives the
2458 * distance in dwords between individual offset fields.
2459 */
2460 struct {
2461 u32 offset;
2462 u32 mask;
2463 u32 step;
2464 } reg;
2465
2466 #define MAX_CMD_DESC_BITMASKS 3
2467 /*
2468 * Describes command checks where a particular dword is masked and
2469 * compared against an expected value. If the command does not match
2470 * the expected value, the parser rejects it. Only valid if flags has
2471 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
2472 * are valid.
2473 *
2474 * If the check specifies a non-zero condition_mask then the parser
2475 * only performs the check when the bits specified by condition_mask
2476 * are non-zero.
2477 */
2478 struct {
2479 u32 offset;
2480 u32 mask;
2481 u32 expected;
2482 u32 condition_offset;
2483 u32 condition_mask;
2484 } bits[MAX_CMD_DESC_BITMASKS];
2485 };
2486
2487 /*
2488 * A table of commands requiring special handling by the command parser.
2489 *
2490 * Each engine has an array of tables. Each table consists of an array of
2491 * command descriptors, which must be sorted with command opcodes in
2492 * ascending order.
2493 */
2494 struct drm_i915_cmd_table {
2495 const struct drm_i915_cmd_descriptor *table;
2496 int count;
2497 };
2498
2499 /* Note that the (struct drm_i915_private *) cast is just to shut up gcc. */
2500 #define __I915__(p) ({ \
2501 struct drm_i915_private *__p; \
2502 if (__builtin_types_compatible_p(typeof(*p), struct drm_i915_private)) \
2503 __p = (struct drm_i915_private *)p; \
2504 else if (__builtin_types_compatible_p(typeof(*p), struct drm_device)) \
2505 __p = to_i915((struct drm_device *)p); \
2506 else \
2507 BUILD_BUG(); \
2508 __p; \
2509 })
2510 #define INTEL_INFO(p) (&__I915__(p)->info)
2511 #define INTEL_GEN(p) (INTEL_INFO(p)->gen)
2512 #define INTEL_DEVID(p) (INTEL_INFO(p)->device_id)
2513
2514 #define REVID_FOREVER 0xff
2515 #define INTEL_REVID(p) (__I915__(p)->drm.pdev->revision)
2516
2517 #define GEN_FOREVER (0)
2518 /*
2519 * Returns true if Gen is in inclusive range [Start, End].
2520 *
2521 * Use GEN_FOREVER for unbound start and or end.
2522 */
2523 #define IS_GEN(p, s, e) ({ \
2524 unsigned int __s = (s), __e = (e); \
2525 BUILD_BUG_ON(!__builtin_constant_p(s)); \
2526 BUILD_BUG_ON(!__builtin_constant_p(e)); \
2527 if ((__s) != GEN_FOREVER) \
2528 __s = (s) - 1; \
2529 if ((__e) == GEN_FOREVER) \
2530 __e = BITS_PER_LONG - 1; \
2531 else \
2532 __e = (e) - 1; \
2533 !!(INTEL_INFO(p)->gen_mask & GENMASK((__e), (__s))); \
2534 })
2535
2536 /*
2537 * Return true if revision is in range [since,until] inclusive.
2538 *
2539 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2540 */
2541 #define IS_REVID(p, since, until) \
2542 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2543
2544 #define IS_I830(dev) (INTEL_DEVID(dev) == 0x3577)
2545 #define IS_845G(dev) (INTEL_DEVID(dev) == 0x2562)
2546 #define IS_I85X(dev) (INTEL_INFO(dev)->is_i85x)
2547 #define IS_I865G(dev) (INTEL_DEVID(dev) == 0x2572)
2548 #define IS_I915G(dev) (INTEL_INFO(dev)->is_i915g)
2549 #define IS_I915GM(dev) (INTEL_DEVID(dev) == 0x2592)
2550 #define IS_I945G(dev) (INTEL_DEVID(dev) == 0x2772)
2551 #define IS_I945GM(dev) (INTEL_INFO(dev)->is_i945gm)
2552 #define IS_BROADWATER(dev) (INTEL_INFO(dev)->is_broadwater)
2553 #define IS_CRESTLINE(dev) (INTEL_INFO(dev)->is_crestline)
2554 #define IS_GM45(dev) (INTEL_DEVID(dev) == 0x2A42)
2555 #define IS_G4X(dev) (INTEL_INFO(dev)->is_g4x)
2556 #define IS_PINEVIEW_G(dev) (INTEL_DEVID(dev) == 0xa001)
2557 #define IS_PINEVIEW_M(dev) (INTEL_DEVID(dev) == 0xa011)
2558 #define IS_PINEVIEW(dev) (INTEL_INFO(dev)->is_pineview)
2559 #define IS_G33(dev) (INTEL_INFO(dev)->is_g33)
2560 #define IS_IRONLAKE_M(dev) (INTEL_DEVID(dev) == 0x0046)
2561 #define IS_IVYBRIDGE(dev) (INTEL_INFO(dev)->is_ivybridge)
2562 #define IS_IVB_GT1(dev) (INTEL_DEVID(dev) == 0x0156 || \
2563 INTEL_DEVID(dev) == 0x0152 || \
2564 INTEL_DEVID(dev) == 0x015a)
2565 #define IS_VALLEYVIEW(dev) (INTEL_INFO(dev)->is_valleyview)
2566 #define IS_CHERRYVIEW(dev) (INTEL_INFO(dev)->is_cherryview)
2567 #define IS_HASWELL(dev) (INTEL_INFO(dev)->is_haswell)
2568 #define IS_BROADWELL(dev) (INTEL_INFO(dev)->is_broadwell)
2569 #define IS_SKYLAKE(dev) (INTEL_INFO(dev)->is_skylake)
2570 #define IS_BROXTON(dev) (INTEL_INFO(dev)->is_broxton)
2571 #define IS_KABYLAKE(dev) (INTEL_INFO(dev)->is_kabylake)
2572 #define IS_MOBILE(dev) (INTEL_INFO(dev)->is_mobile)
2573 #define IS_HSW_EARLY_SDV(dev) (IS_HASWELL(dev) && \
2574 (INTEL_DEVID(dev) & 0xFF00) == 0x0C00)
2575 #define IS_BDW_ULT(dev) (IS_BROADWELL(dev) && \
2576 ((INTEL_DEVID(dev) & 0xf) == 0x6 || \
2577 (INTEL_DEVID(dev) & 0xf) == 0xb || \
2578 (INTEL_DEVID(dev) & 0xf) == 0xe))
2579 /* ULX machines are also considered ULT. */
2580 #define IS_BDW_ULX(dev) (IS_BROADWELL(dev) && \
2581 (INTEL_DEVID(dev) & 0xf) == 0xe)
2582 #define IS_BDW_GT3(dev) (IS_BROADWELL(dev) && \
2583 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2584 #define IS_HSW_ULT(dev) (IS_HASWELL(dev) && \
2585 (INTEL_DEVID(dev) & 0xFF00) == 0x0A00)
2586 #define IS_HSW_GT3(dev) (IS_HASWELL(dev) && \
2587 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2588 /* ULX machines are also considered ULT. */
2589 #define IS_HSW_ULX(dev) (INTEL_DEVID(dev) == 0x0A0E || \
2590 INTEL_DEVID(dev) == 0x0A1E)
2591 #define IS_SKL_ULT(dev) (INTEL_DEVID(dev) == 0x1906 || \
2592 INTEL_DEVID(dev) == 0x1913 || \
2593 INTEL_DEVID(dev) == 0x1916 || \
2594 INTEL_DEVID(dev) == 0x1921 || \
2595 INTEL_DEVID(dev) == 0x1926)
2596 #define IS_SKL_ULX(dev) (INTEL_DEVID(dev) == 0x190E || \
2597 INTEL_DEVID(dev) == 0x1915 || \
2598 INTEL_DEVID(dev) == 0x191E)
2599 #define IS_KBL_ULT(dev) (INTEL_DEVID(dev) == 0x5906 || \
2600 INTEL_DEVID(dev) == 0x5913 || \
2601 INTEL_DEVID(dev) == 0x5916 || \
2602 INTEL_DEVID(dev) == 0x5921 || \
2603 INTEL_DEVID(dev) == 0x5926)
2604 #define IS_KBL_ULX(dev) (INTEL_DEVID(dev) == 0x590E || \
2605 INTEL_DEVID(dev) == 0x5915 || \
2606 INTEL_DEVID(dev) == 0x591E)
2607 #define IS_SKL_GT3(dev) (IS_SKYLAKE(dev) && \
2608 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2609 #define IS_SKL_GT4(dev) (IS_SKYLAKE(dev) && \
2610 (INTEL_DEVID(dev) & 0x00F0) == 0x0030)
2611
2612 #define IS_PRELIMINARY_HW(intel_info) ((intel_info)->is_preliminary)
2613
2614 #define SKL_REVID_A0 0x0
2615 #define SKL_REVID_B0 0x1
2616 #define SKL_REVID_C0 0x2
2617 #define SKL_REVID_D0 0x3
2618 #define SKL_REVID_E0 0x4
2619 #define SKL_REVID_F0 0x5
2620 #define SKL_REVID_G0 0x6
2621 #define SKL_REVID_H0 0x7
2622
2623 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2624
2625 #define BXT_REVID_A0 0x0
2626 #define BXT_REVID_A1 0x1
2627 #define BXT_REVID_B0 0x3
2628 #define BXT_REVID_C0 0x9
2629
2630 #define IS_BXT_REVID(p, since, until) (IS_BROXTON(p) && IS_REVID(p, since, until))
2631
2632 #define KBL_REVID_A0 0x0
2633 #define KBL_REVID_B0 0x1
2634 #define KBL_REVID_C0 0x2
2635 #define KBL_REVID_D0 0x3
2636 #define KBL_REVID_E0 0x4
2637
2638 #define IS_KBL_REVID(p, since, until) \
2639 (IS_KABYLAKE(p) && IS_REVID(p, since, until))
2640
2641 /*
2642 * The genX designation typically refers to the render engine, so render
2643 * capability related checks should use IS_GEN, while display and other checks
2644 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2645 * chips, etc.).
2646 */
2647 #define IS_GEN2(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(1)))
2648 #define IS_GEN3(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(2)))
2649 #define IS_GEN4(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(3)))
2650 #define IS_GEN5(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(4)))
2651 #define IS_GEN6(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(5)))
2652 #define IS_GEN7(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(6)))
2653 #define IS_GEN8(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(7)))
2654 #define IS_GEN9(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(8)))
2655
2656 #define ENGINE_MASK(id) BIT(id)
2657 #define RENDER_RING ENGINE_MASK(RCS)
2658 #define BSD_RING ENGINE_MASK(VCS)
2659 #define BLT_RING ENGINE_MASK(BCS)
2660 #define VEBOX_RING ENGINE_MASK(VECS)
2661 #define BSD2_RING ENGINE_MASK(VCS2)
2662 #define ALL_ENGINES (~0)
2663
2664 #define HAS_ENGINE(dev_priv, id) \
2665 (!!(INTEL_INFO(dev_priv)->ring_mask & ENGINE_MASK(id)))
2666
2667 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
2668 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
2669 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
2670 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
2671
2672 #define HAS_LLC(dev) (INTEL_INFO(dev)->has_llc)
2673 #define HAS_SNOOP(dev) (INTEL_INFO(dev)->has_snoop)
2674 #define HAS_EDRAM(dev) (!!(__I915__(dev)->edram_cap & EDRAM_ENABLED))
2675 #define HAS_WT(dev) ((IS_HASWELL(dev) || IS_BROADWELL(dev)) && \
2676 HAS_EDRAM(dev))
2677 #define I915_NEED_GFX_HWS(dev) (INTEL_INFO(dev)->need_gfx_hws)
2678
2679 #define HAS_HW_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 6)
2680 #define HAS_LOGICAL_RING_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 8)
2681 #define USES_PPGTT(dev) (i915.enable_ppgtt)
2682 #define USES_FULL_PPGTT(dev) (i915.enable_ppgtt >= 2)
2683 #define USES_FULL_48BIT_PPGTT(dev) (i915.enable_ppgtt == 3)
2684
2685 #define HAS_OVERLAY(dev) (INTEL_INFO(dev)->has_overlay)
2686 #define OVERLAY_NEEDS_PHYSICAL(dev) (INTEL_INFO(dev)->overlay_needs_physical)
2687
2688 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2689 #define HAS_BROKEN_CS_TLB(dev) (IS_I830(dev) || IS_845G(dev))
2690
2691 /* WaRsDisableCoarsePowerGating:skl,bxt */
2692 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2693 (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) || \
2694 IS_SKL_GT3(dev_priv) || \
2695 IS_SKL_GT4(dev_priv))
2696
2697 /*
2698 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2699 * even when in MSI mode. This results in spurious interrupt warnings if the
2700 * legacy irq no. is shared with another device. The kernel then disables that
2701 * interrupt source and so prevents the other device from working properly.
2702 */
2703 #define HAS_AUX_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2704 #define HAS_GMBUS_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2705
2706 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2707 * rows, which changed the alignment requirements and fence programming.
2708 */
2709 #define HAS_128_BYTE_Y_TILING(dev) (!IS_GEN2(dev) && !(IS_I915G(dev) || \
2710 IS_I915GM(dev)))
2711 #define SUPPORTS_TV(dev) (INTEL_INFO(dev)->supports_tv)
2712 #define I915_HAS_HOTPLUG(dev) (INTEL_INFO(dev)->has_hotplug)
2713
2714 #define HAS_FW_BLC(dev) (INTEL_INFO(dev)->gen > 2)
2715 #define HAS_PIPE_CXSR(dev) (INTEL_INFO(dev)->has_pipe_cxsr)
2716 #define HAS_FBC(dev) (INTEL_INFO(dev)->has_fbc)
2717
2718 #define HAS_IPS(dev) (IS_HSW_ULT(dev) || IS_BROADWELL(dev))
2719
2720 #define HAS_DP_MST(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2721 INTEL_INFO(dev)->gen >= 9)
2722
2723 #define HAS_DDI(dev) (INTEL_INFO(dev)->has_ddi)
2724 #define HAS_FPGA_DBG_UNCLAIMED(dev) (INTEL_INFO(dev)->has_fpga_dbg)
2725 #define HAS_PSR(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2726 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || \
2727 IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
2728 #define HAS_RUNTIME_PM(dev) (IS_GEN6(dev) || IS_HASWELL(dev) || \
2729 IS_BROADWELL(dev) || IS_VALLEYVIEW(dev) || \
2730 IS_CHERRYVIEW(dev) || IS_SKYLAKE(dev) || \
2731 IS_KABYLAKE(dev) || IS_BROXTON(dev))
2732 #define HAS_RC6(dev) (INTEL_INFO(dev)->gen >= 6)
2733 #define HAS_RC6p(dev) (IS_GEN6(dev) || IS_IVYBRIDGE(dev))
2734
2735 #define HAS_CSR(dev) (IS_GEN9(dev))
2736
2737 /*
2738 * For now, anything with a GuC requires uCode loading, and then supports
2739 * command submission once loaded. But these are logically independent
2740 * properties, so we have separate macros to test them.
2741 */
2742 #define HAS_GUC(dev) (IS_GEN9(dev))
2743 #define HAS_GUC_UCODE(dev) (HAS_GUC(dev))
2744 #define HAS_GUC_SCHED(dev) (HAS_GUC(dev))
2745
2746 #define HAS_RESOURCE_STREAMER(dev) (IS_HASWELL(dev) || \
2747 INTEL_INFO(dev)->gen >= 8)
2748
2749 #define HAS_CORE_RING_FREQ(dev) (INTEL_INFO(dev)->gen >= 6 && \
2750 !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && \
2751 !IS_BROXTON(dev))
2752
2753 #define HAS_POOLED_EU(dev) (INTEL_INFO(dev)->has_pooled_eu)
2754
2755 #define INTEL_PCH_DEVICE_ID_MASK 0xff00
2756 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
2757 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
2758 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
2759 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
2760 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
2761 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
2762 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
2763 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA200
2764 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
2765 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
2766 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
2767
2768 #define INTEL_PCH_TYPE(dev) (__I915__(dev)->pch_type)
2769 #define HAS_PCH_KBP(dev) (INTEL_PCH_TYPE(dev) == PCH_KBP)
2770 #define HAS_PCH_SPT(dev) (INTEL_PCH_TYPE(dev) == PCH_SPT)
2771 #define HAS_PCH_LPT(dev) (INTEL_PCH_TYPE(dev) == PCH_LPT)
2772 #define HAS_PCH_LPT_LP(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
2773 #define HAS_PCH_LPT_H(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE)
2774 #define HAS_PCH_CPT(dev) (INTEL_PCH_TYPE(dev) == PCH_CPT)
2775 #define HAS_PCH_IBX(dev) (INTEL_PCH_TYPE(dev) == PCH_IBX)
2776 #define HAS_PCH_NOP(dev) (INTEL_PCH_TYPE(dev) == PCH_NOP)
2777 #define HAS_PCH_SPLIT(dev) (INTEL_PCH_TYPE(dev) != PCH_NONE)
2778
2779 #define HAS_GMCH_DISPLAY(dev) (INTEL_INFO(dev)->gen < 5 || \
2780 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
2781
2782 /* DPF == dynamic parity feature */
2783 #define HAS_L3_DPF(dev) (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
2784 #define NUM_L3_SLICES(dev) (IS_HSW_GT3(dev) ? 2 : HAS_L3_DPF(dev))
2785
2786 #define GT_FREQUENCY_MULTIPLIER 50
2787 #define GEN9_FREQ_SCALER 3
2788
2789 #include "i915_trace.h"
2790
2791 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2792 {
2793 #ifdef CONFIG_INTEL_IOMMU
2794 if (INTEL_GEN(dev_priv) >= 6 && intel_iommu_gfx_mapped)
2795 return true;
2796 #endif
2797 return false;
2798 }
2799
2800 extern int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
2801 extern int i915_resume_switcheroo(struct drm_device *dev);
2802
2803 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
2804 int enable_ppgtt);
2805
2806 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
2807
2808 /* i915_drv.c */
2809 void __printf(3, 4)
2810 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2811 const char *fmt, ...);
2812
2813 #define i915_report_error(dev_priv, fmt, ...) \
2814 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2815
2816 #ifdef CONFIG_COMPAT
2817 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2818 unsigned long arg);
2819 #endif
2820 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
2821 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
2822 extern int i915_reset(struct drm_i915_private *dev_priv);
2823 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
2824 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2825 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2826 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2827 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2828 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2829 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2830
2831 /* intel_hotplug.c */
2832 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2833 u32 pin_mask, u32 long_mask);
2834 void intel_hpd_init(struct drm_i915_private *dev_priv);
2835 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2836 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2837 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
2838 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2839 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2840
2841 /* i915_irq.c */
2842 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2843 {
2844 unsigned long delay;
2845
2846 if (unlikely(!i915.enable_hangcheck))
2847 return;
2848
2849 /* Don't continually defer the hangcheck so that it is always run at
2850 * least once after work has been scheduled on any ring. Otherwise,
2851 * we will ignore a hung ring if a second ring is kept busy.
2852 */
2853
2854 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2855 queue_delayed_work(system_long_wq,
2856 &dev_priv->gpu_error.hangcheck_work, delay);
2857 }
2858
2859 __printf(3, 4)
2860 void i915_handle_error(struct drm_i915_private *dev_priv,
2861 u32 engine_mask,
2862 const char *fmt, ...);
2863
2864 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2865 int intel_irq_install(struct drm_i915_private *dev_priv);
2866 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2867
2868 extern void intel_uncore_sanitize(struct drm_i915_private *dev_priv);
2869 extern void intel_uncore_early_sanitize(struct drm_i915_private *dev_priv,
2870 bool restore_forcewake);
2871 extern void intel_uncore_init(struct drm_i915_private *dev_priv);
2872 extern bool intel_uncore_unclaimed_mmio(struct drm_i915_private *dev_priv);
2873 extern bool intel_uncore_arm_unclaimed_mmio_detection(struct drm_i915_private *dev_priv);
2874 extern void intel_uncore_fini(struct drm_i915_private *dev_priv);
2875 extern void intel_uncore_forcewake_reset(struct drm_i915_private *dev_priv,
2876 bool restore);
2877 const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id);
2878 void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv,
2879 enum forcewake_domains domains);
2880 void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv,
2881 enum forcewake_domains domains);
2882 /* Like above but the caller must manage the uncore.lock itself.
2883 * Must be used with I915_READ_FW and friends.
2884 */
2885 void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv,
2886 enum forcewake_domains domains);
2887 void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv,
2888 enum forcewake_domains domains);
2889 u64 intel_uncore_edram_size(struct drm_i915_private *dev_priv);
2890
2891 void assert_forcewakes_inactive(struct drm_i915_private *dev_priv);
2892
2893 int intel_wait_for_register(struct drm_i915_private *dev_priv,
2894 i915_reg_t reg,
2895 const u32 mask,
2896 const u32 value,
2897 const unsigned long timeout_ms);
2898 int intel_wait_for_register_fw(struct drm_i915_private *dev_priv,
2899 i915_reg_t reg,
2900 const u32 mask,
2901 const u32 value,
2902 const unsigned long timeout_ms);
2903
2904 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
2905 {
2906 return dev_priv->gvt.initialized;
2907 }
2908
2909 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
2910 {
2911 return dev_priv->vgpu.active;
2912 }
2913
2914 void
2915 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2916 u32 status_mask);
2917
2918 void
2919 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2920 u32 status_mask);
2921
2922 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
2923 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
2924 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
2925 uint32_t mask,
2926 uint32_t bits);
2927 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
2928 uint32_t interrupt_mask,
2929 uint32_t enabled_irq_mask);
2930 static inline void
2931 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2932 {
2933 ilk_update_display_irq(dev_priv, bits, bits);
2934 }
2935 static inline void
2936 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2937 {
2938 ilk_update_display_irq(dev_priv, bits, 0);
2939 }
2940 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
2941 enum pipe pipe,
2942 uint32_t interrupt_mask,
2943 uint32_t enabled_irq_mask);
2944 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
2945 enum pipe pipe, uint32_t bits)
2946 {
2947 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
2948 }
2949 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
2950 enum pipe pipe, uint32_t bits)
2951 {
2952 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
2953 }
2954 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
2955 uint32_t interrupt_mask,
2956 uint32_t enabled_irq_mask);
2957 static inline void
2958 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2959 {
2960 ibx_display_interrupt_update(dev_priv, bits, bits);
2961 }
2962 static inline void
2963 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2964 {
2965 ibx_display_interrupt_update(dev_priv, bits, 0);
2966 }
2967
2968 /* i915_gem.c */
2969 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
2970 struct drm_file *file_priv);
2971 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
2972 struct drm_file *file_priv);
2973 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
2974 struct drm_file *file_priv);
2975 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
2976 struct drm_file *file_priv);
2977 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2978 struct drm_file *file_priv);
2979 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
2980 struct drm_file *file_priv);
2981 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
2982 struct drm_file *file_priv);
2983 int i915_gem_execbuffer(struct drm_device *dev, void *data,
2984 struct drm_file *file_priv);
2985 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
2986 struct drm_file *file_priv);
2987 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2988 struct drm_file *file_priv);
2989 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
2990 struct drm_file *file);
2991 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
2992 struct drm_file *file);
2993 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2994 struct drm_file *file_priv);
2995 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
2996 struct drm_file *file_priv);
2997 int i915_gem_set_tiling(struct drm_device *dev, void *data,
2998 struct drm_file *file_priv);
2999 int i915_gem_get_tiling(struct drm_device *dev, void *data,
3000 struct drm_file *file_priv);
3001 void i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3002 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3003 struct drm_file *file);
3004 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3005 struct drm_file *file_priv);
3006 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3007 struct drm_file *file_priv);
3008 void i915_gem_load_init(struct drm_device *dev);
3009 void i915_gem_load_cleanup(struct drm_device *dev);
3010 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3011 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3012
3013 void *i915_gem_object_alloc(struct drm_device *dev);
3014 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3015 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3016 const struct drm_i915_gem_object_ops *ops);
3017 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
3018 size_t size);
3019 struct drm_i915_gem_object *i915_gem_object_create_from_data(
3020 struct drm_device *dev, const void *data, size_t size);
3021 void i915_gem_free_object(struct drm_gem_object *obj);
3022 void i915_gem_vma_destroy(struct i915_vma *vma);
3023
3024 /* Flags used by pin/bind&friends. */
3025 #define PIN_MAPPABLE (1<<0)
3026 #define PIN_NONBLOCK (1<<1)
3027 #define PIN_GLOBAL (1<<2)
3028 #define PIN_OFFSET_BIAS (1<<3)
3029 #define PIN_USER (1<<4)
3030 #define PIN_UPDATE (1<<5)
3031 #define PIN_ZONE_4G (1<<6)
3032 #define PIN_HIGH (1<<7)
3033 #define PIN_OFFSET_FIXED (1<<8)
3034 #define PIN_OFFSET_MASK (~4095)
3035 int __must_check
3036 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3037 struct i915_address_space *vm,
3038 uint32_t alignment,
3039 uint64_t flags);
3040 int __must_check
3041 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3042 const struct i915_ggtt_view *view,
3043 uint32_t alignment,
3044 uint64_t flags);
3045
3046 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3047 u32 flags);
3048 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma);
3049 int __must_check i915_vma_unbind(struct i915_vma *vma);
3050 /*
3051 * BEWARE: Do not use the function below unless you can _absolutely_
3052 * _guarantee_ VMA in question is _not in use_ anywhere.
3053 */
3054 int __must_check __i915_vma_unbind_no_wait(struct i915_vma *vma);
3055 int i915_gem_object_put_pages(struct drm_i915_gem_object *obj);
3056 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv);
3057 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3058
3059 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3060 int *needs_clflush);
3061
3062 int __must_check i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3063
3064 static inline int __sg_page_count(struct scatterlist *sg)
3065 {
3066 return sg->length >> PAGE_SHIFT;
3067 }
3068
3069 struct page *
3070 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n);
3071
3072 static inline dma_addr_t
3073 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, int n)
3074 {
3075 if (n < obj->get_page.last) {
3076 obj->get_page.sg = obj->pages->sgl;
3077 obj->get_page.last = 0;
3078 }
3079
3080 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
3081 obj->get_page.last += __sg_page_count(obj->get_page.sg++);
3082 if (unlikely(sg_is_chain(obj->get_page.sg)))
3083 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
3084 }
3085
3086 return sg_dma_address(obj->get_page.sg) + ((n - obj->get_page.last) << PAGE_SHIFT);
3087 }
3088
3089 static inline struct page *
3090 i915_gem_object_get_page(struct drm_i915_gem_object *obj, int n)
3091 {
3092 if (WARN_ON(n >= obj->base.size >> PAGE_SHIFT))
3093 return NULL;
3094
3095 if (n < obj->get_page.last) {
3096 obj->get_page.sg = obj->pages->sgl;
3097 obj->get_page.last = 0;
3098 }
3099
3100 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
3101 obj->get_page.last += __sg_page_count(obj->get_page.sg++);
3102 if (unlikely(sg_is_chain(obj->get_page.sg)))
3103 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
3104 }
3105
3106 return nth_page(sg_page(obj->get_page.sg), n - obj->get_page.last);
3107 }
3108
3109 static inline void i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3110 {
3111 BUG_ON(obj->pages == NULL);
3112 obj->pages_pin_count++;
3113 }
3114
3115 static inline void i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3116 {
3117 BUG_ON(obj->pages_pin_count == 0);
3118 obj->pages_pin_count--;
3119 }
3120
3121 /**
3122 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3123 * @obj - the object to map into kernel address space
3124 *
3125 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3126 * pages and then returns a contiguous mapping of the backing storage into
3127 * the kernel address space.
3128 *
3129 * The caller must hold the struct_mutex, and is responsible for calling
3130 * i915_gem_object_unpin_map() when the mapping is no longer required.
3131 *
3132 * Returns the pointer through which to access the mapped object, or an
3133 * ERR_PTR() on error.
3134 */
3135 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj);
3136
3137 /**
3138 * i915_gem_object_unpin_map - releases an earlier mapping
3139 * @obj - the object to unmap
3140 *
3141 * After pinning the object and mapping its pages, once you are finished
3142 * with your access, call i915_gem_object_unpin_map() to release the pin
3143 * upon the mapping. Once the pin count reaches zero, that mapping may be
3144 * removed.
3145 *
3146 * The caller must hold the struct_mutex.
3147 */
3148 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3149 {
3150 lockdep_assert_held(&obj->base.dev->struct_mutex);
3151 i915_gem_object_unpin_pages(obj);
3152 }
3153
3154 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3155 int i915_gem_object_sync(struct drm_i915_gem_object *obj,
3156 struct drm_i915_gem_request *to);
3157 void i915_vma_move_to_active(struct i915_vma *vma,
3158 struct drm_i915_gem_request *req);
3159 int i915_gem_dumb_create(struct drm_file *file_priv,
3160 struct drm_device *dev,
3161 struct drm_mode_create_dumb *args);
3162 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3163 uint32_t handle, uint64_t *offset);
3164
3165 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3166 struct drm_i915_gem_object *new,
3167 unsigned frontbuffer_bits);
3168
3169 int __must_check i915_gem_set_seqno(struct drm_device *dev, u32 seqno);
3170
3171 struct drm_i915_gem_request *
3172 i915_gem_find_active_request(struct intel_engine_cs *engine);
3173
3174 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3175 void i915_gem_retire_requests_ring(struct intel_engine_cs *engine);
3176
3177 static inline u32 i915_reset_counter(struct i915_gpu_error *error)
3178 {
3179 return atomic_read(&error->reset_counter);
3180 }
3181
3182 static inline bool __i915_reset_in_progress(u32 reset)
3183 {
3184 return unlikely(reset & I915_RESET_IN_PROGRESS_FLAG);
3185 }
3186
3187 static inline bool __i915_reset_in_progress_or_wedged(u32 reset)
3188 {
3189 return unlikely(reset & (I915_RESET_IN_PROGRESS_FLAG | I915_WEDGED));
3190 }
3191
3192 static inline bool __i915_terminally_wedged(u32 reset)
3193 {
3194 return unlikely(reset & I915_WEDGED);
3195 }
3196
3197 static inline bool i915_reset_in_progress(struct i915_gpu_error *error)
3198 {
3199 return __i915_reset_in_progress(i915_reset_counter(error));
3200 }
3201
3202 static inline bool i915_reset_in_progress_or_wedged(struct i915_gpu_error *error)
3203 {
3204 return __i915_reset_in_progress_or_wedged(i915_reset_counter(error));
3205 }
3206
3207 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3208 {
3209 return __i915_terminally_wedged(i915_reset_counter(error));
3210 }
3211
3212 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3213 {
3214 return ((i915_reset_counter(error) & ~I915_WEDGED) + 1) / 2;
3215 }
3216
3217 void i915_gem_reset(struct drm_device *dev);
3218 bool i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force);
3219 int __must_check i915_gem_init(struct drm_device *dev);
3220 int __must_check i915_gem_init_hw(struct drm_device *dev);
3221 void i915_gem_init_swizzling(struct drm_device *dev);
3222 void i915_gem_cleanup_engines(struct drm_device *dev);
3223 int __must_check i915_gem_wait_for_idle(struct drm_i915_private *dev_priv);
3224 int __must_check i915_gem_suspend(struct drm_device *dev);
3225 void i915_gem_resume(struct drm_device *dev);
3226 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf);
3227 int __must_check
3228 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
3229 bool readonly);
3230 int __must_check
3231 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj,
3232 bool write);
3233 int __must_check
3234 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3235 int __must_check
3236 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3237 u32 alignment,
3238 const struct i915_ggtt_view *view);
3239 void i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3240 const struct i915_ggtt_view *view);
3241 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3242 int align);
3243 int i915_gem_open(struct drm_device *dev, struct drm_file *file);
3244 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3245
3246 uint32_t
3247 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode);
3248 uint32_t
3249 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
3250 int tiling_mode, bool fenced);
3251
3252 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3253 enum i915_cache_level cache_level);
3254
3255 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3256 struct dma_buf *dma_buf);
3257
3258 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3259 struct drm_gem_object *gem_obj, int flags);
3260
3261 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
3262 const struct i915_ggtt_view *view);
3263 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
3264 struct i915_address_space *vm);
3265 static inline u64
3266 i915_gem_obj_ggtt_offset(struct drm_i915_gem_object *o)
3267 {
3268 return i915_gem_obj_ggtt_offset_view(o, &i915_ggtt_view_normal);
3269 }
3270
3271 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
3272 const struct i915_ggtt_view *view);
3273 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
3274 struct i915_address_space *vm);
3275
3276 struct i915_vma *
3277 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
3278 struct i915_address_space *vm);
3279 struct i915_vma *
3280 i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
3281 const struct i915_ggtt_view *view);
3282
3283 struct i915_vma *
3284 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3285 struct i915_address_space *vm);
3286 struct i915_vma *
3287 i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3288 const struct i915_ggtt_view *view);
3289
3290 static inline struct i915_vma *
3291 i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
3292 {
3293 return i915_gem_obj_to_ggtt_view(obj, &i915_ggtt_view_normal);
3294 }
3295 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj);
3296
3297 /* Some GGTT VM helpers */
3298 static inline struct i915_hw_ppgtt *
3299 i915_vm_to_ppgtt(struct i915_address_space *vm)
3300 {
3301 return container_of(vm, struct i915_hw_ppgtt, base);
3302 }
3303
3304 static inline bool i915_gem_obj_ggtt_bound(struct drm_i915_gem_object *obj)
3305 {
3306 return i915_gem_obj_ggtt_bound_view(obj, &i915_ggtt_view_normal);
3307 }
3308
3309 unsigned long
3310 i915_gem_obj_ggtt_size(struct drm_i915_gem_object *obj);
3311
3312 static inline int __must_check
3313 i915_gem_obj_ggtt_pin(struct drm_i915_gem_object *obj,
3314 uint32_t alignment,
3315 unsigned flags)
3316 {
3317 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3318 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3319
3320 return i915_gem_object_pin(obj, &ggtt->base,
3321 alignment, flags | PIN_GLOBAL);
3322 }
3323
3324 void i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
3325 const struct i915_ggtt_view *view);
3326 static inline void
3327 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
3328 {
3329 i915_gem_object_ggtt_unpin_view(obj, &i915_ggtt_view_normal);
3330 }
3331
3332 /* i915_gem_fence.c */
3333 int __must_check i915_gem_object_get_fence(struct drm_i915_gem_object *obj);
3334 int __must_check i915_gem_object_put_fence(struct drm_i915_gem_object *obj);
3335
3336 bool i915_gem_object_pin_fence(struct drm_i915_gem_object *obj);
3337 void i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj);
3338
3339 void i915_gem_restore_fences(struct drm_device *dev);
3340
3341 void i915_gem_detect_bit_6_swizzle(struct drm_device *dev);
3342 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj);
3343 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj);
3344
3345 /* i915_gem_context.c */
3346 int __must_check i915_gem_context_init(struct drm_device *dev);
3347 void i915_gem_context_lost(struct drm_i915_private *dev_priv);
3348 void i915_gem_context_fini(struct drm_device *dev);
3349 void i915_gem_context_reset(struct drm_device *dev);
3350 int i915_gem_context_open(struct drm_device *dev, struct drm_file *file);
3351 void i915_gem_context_close(struct drm_device *dev, struct drm_file *file);
3352 int i915_switch_context(struct drm_i915_gem_request *req);
3353 int i915_gem_switch_to_kernel_context(struct drm_i915_private *dev_priv);
3354 void i915_gem_context_free(struct kref *ctx_ref);
3355 struct drm_i915_gem_object *
3356 i915_gem_alloc_context_obj(struct drm_device *dev, size_t size);
3357 struct i915_gem_context *
3358 i915_gem_context_create_gvt(struct drm_device *dev);
3359
3360 static inline struct i915_gem_context *
3361 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3362 {
3363 struct i915_gem_context *ctx;
3364
3365 lockdep_assert_held(&file_priv->dev_priv->drm.struct_mutex);
3366
3367 ctx = idr_find(&file_priv->context_idr, id);
3368 if (!ctx)
3369 return ERR_PTR(-ENOENT);
3370
3371 return ctx;
3372 }
3373
3374 static inline struct i915_gem_context *
3375 i915_gem_context_get(struct i915_gem_context *ctx)
3376 {
3377 kref_get(&ctx->ref);
3378 return ctx;
3379 }
3380
3381 static inline void i915_gem_context_put(struct i915_gem_context *ctx)
3382 {
3383 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
3384 kref_put(&ctx->ref, i915_gem_context_free);
3385 }
3386
3387 static inline bool i915_gem_context_is_default(const struct i915_gem_context *c)
3388 {
3389 return c->user_handle == DEFAULT_CONTEXT_HANDLE;
3390 }
3391
3392 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
3393 struct drm_file *file);
3394 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
3395 struct drm_file *file);
3396 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
3397 struct drm_file *file_priv);
3398 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
3399 struct drm_file *file_priv);
3400 int i915_gem_context_reset_stats_ioctl(struct drm_device *dev, void *data,
3401 struct drm_file *file);
3402
3403 /* i915_gem_evict.c */
3404 int __must_check i915_gem_evict_something(struct drm_device *dev,
3405 struct i915_address_space *vm,
3406 int min_size,
3407 unsigned alignment,
3408 unsigned cache_level,
3409 unsigned long start,
3410 unsigned long end,
3411 unsigned flags);
3412 int __must_check i915_gem_evict_for_vma(struct i915_vma *target);
3413 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle);
3414
3415 /* belongs in i915_gem_gtt.h */
3416 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3417 {
3418 if (INTEL_GEN(dev_priv) < 6)
3419 intel_gtt_chipset_flush();
3420 }
3421
3422 /* i915_gem_stolen.c */
3423 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3424 struct drm_mm_node *node, u64 size,
3425 unsigned alignment);
3426 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3427 struct drm_mm_node *node, u64 size,
3428 unsigned alignment, u64 start,
3429 u64 end);
3430 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3431 struct drm_mm_node *node);
3432 int i915_gem_init_stolen(struct drm_device *dev);
3433 void i915_gem_cleanup_stolen(struct drm_device *dev);
3434 struct drm_i915_gem_object *
3435 i915_gem_object_create_stolen(struct drm_device *dev, u32 size);
3436 struct drm_i915_gem_object *
3437 i915_gem_object_create_stolen_for_preallocated(struct drm_device *dev,
3438 u32 stolen_offset,
3439 u32 gtt_offset,
3440 u32 size);
3441
3442 /* i915_gem_shrinker.c */
3443 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3444 unsigned long target,
3445 unsigned flags);
3446 #define I915_SHRINK_PURGEABLE 0x1
3447 #define I915_SHRINK_UNBOUND 0x2
3448 #define I915_SHRINK_BOUND 0x4
3449 #define I915_SHRINK_ACTIVE 0x8
3450 #define I915_SHRINK_VMAPS 0x10
3451 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3452 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3453 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3454
3455
3456 /* i915_gem_tiling.c */
3457 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3458 {
3459 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3460
3461 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3462 obj->tiling_mode != I915_TILING_NONE;
3463 }
3464
3465 /* i915_gem_debug.c */
3466 #if WATCH_LISTS
3467 int i915_verify_lists(struct drm_device *dev);
3468 #else
3469 #define i915_verify_lists(dev) 0
3470 #endif
3471
3472 /* i915_debugfs.c */
3473 #ifdef CONFIG_DEBUG_FS
3474 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3475 void i915_debugfs_unregister(struct drm_i915_private *dev_priv);
3476 int i915_debugfs_connector_add(struct drm_connector *connector);
3477 void intel_display_crc_init(struct drm_device *dev);
3478 #else
3479 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3480 static inline void i915_debugfs_unregister(struct drm_i915_private *dev_priv) {}
3481 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3482 { return 0; }
3483 static inline void intel_display_crc_init(struct drm_device *dev) {}
3484 #endif
3485
3486 /* i915_gpu_error.c */
3487 __printf(2, 3)
3488 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3489 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3490 const struct i915_error_state_file_priv *error);
3491 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3492 struct drm_i915_private *i915,
3493 size_t count, loff_t pos);
3494 static inline void i915_error_state_buf_release(
3495 struct drm_i915_error_state_buf *eb)
3496 {
3497 kfree(eb->buf);
3498 }
3499 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3500 u32 engine_mask,
3501 const char *error_msg);
3502 void i915_error_state_get(struct drm_device *dev,
3503 struct i915_error_state_file_priv *error_priv);
3504 void i915_error_state_put(struct i915_error_state_file_priv *error_priv);
3505 void i915_destroy_error_state(struct drm_device *dev);
3506
3507 void i915_get_extra_instdone(struct drm_i915_private *dev_priv, uint32_t *instdone);
3508 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3509
3510 /* i915_cmd_parser.c */
3511 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3512 int intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3513 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3514 bool intel_engine_needs_cmd_parser(struct intel_engine_cs *engine);
3515 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3516 struct drm_i915_gem_object *batch_obj,
3517 struct drm_i915_gem_object *shadow_batch_obj,
3518 u32 batch_start_offset,
3519 u32 batch_len,
3520 bool is_master);
3521
3522 /* i915_suspend.c */
3523 extern int i915_save_state(struct drm_device *dev);
3524 extern int i915_restore_state(struct drm_device *dev);
3525
3526 /* i915_sysfs.c */
3527 void i915_setup_sysfs(struct drm_device *dev_priv);
3528 void i915_teardown_sysfs(struct drm_device *dev_priv);
3529
3530 /* intel_i2c.c */
3531 extern int intel_setup_gmbus(struct drm_device *dev);
3532 extern void intel_teardown_gmbus(struct drm_device *dev);
3533 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3534 unsigned int pin);
3535
3536 extern struct i2c_adapter *
3537 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3538 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3539 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3540 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3541 {
3542 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3543 }
3544 extern void intel_i2c_reset(struct drm_device *dev);
3545
3546 /* intel_bios.c */
3547 int intel_bios_init(struct drm_i915_private *dev_priv);
3548 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3549 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3550 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3551 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3552 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3553 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3554 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3555 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3556 enum port port);
3557
3558 /* intel_opregion.c */
3559 #ifdef CONFIG_ACPI
3560 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3561 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3562 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3563 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3564 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3565 bool enable);
3566 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3567 pci_power_t state);
3568 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3569 #else
3570 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3571 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3572 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3573 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3574 {
3575 }
3576 static inline int
3577 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3578 {
3579 return 0;
3580 }
3581 static inline int
3582 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3583 {
3584 return 0;
3585 }
3586 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3587 {
3588 return -ENODEV;
3589 }
3590 #endif
3591
3592 /* intel_acpi.c */
3593 #ifdef CONFIG_ACPI
3594 extern void intel_register_dsm_handler(void);
3595 extern void intel_unregister_dsm_handler(void);
3596 #else
3597 static inline void intel_register_dsm_handler(void) { return; }
3598 static inline void intel_unregister_dsm_handler(void) { return; }
3599 #endif /* CONFIG_ACPI */
3600
3601 /* intel_device_info.c */
3602 static inline struct intel_device_info *
3603 mkwrite_device_info(struct drm_i915_private *dev_priv)
3604 {
3605 return (struct intel_device_info *)&dev_priv->info;
3606 }
3607
3608 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
3609 void intel_device_info_dump(struct drm_i915_private *dev_priv);
3610
3611 /* modesetting */
3612 extern void intel_modeset_init_hw(struct drm_device *dev);
3613 extern void intel_modeset_init(struct drm_device *dev);
3614 extern void intel_modeset_gem_init(struct drm_device *dev);
3615 extern void intel_modeset_cleanup(struct drm_device *dev);
3616 extern int intel_connector_register(struct drm_connector *);
3617 extern void intel_connector_unregister(struct drm_connector *);
3618 extern int intel_modeset_vga_set_state(struct drm_device *dev, bool state);
3619 extern void intel_display_resume(struct drm_device *dev);
3620 extern void i915_redisable_vga(struct drm_device *dev);
3621 extern void i915_redisable_vga_power_on(struct drm_device *dev);
3622 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3623 extern void intel_init_pch_refclk(struct drm_device *dev);
3624 extern void intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3625 extern void intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3626 bool enable);
3627
3628 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3629 struct drm_file *file);
3630
3631 /* overlay */
3632 extern struct intel_overlay_error_state *
3633 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3634 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3635 struct intel_overlay_error_state *error);
3636
3637 extern struct intel_display_error_state *
3638 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3639 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3640 struct drm_device *dev,
3641 struct intel_display_error_state *error);
3642
3643 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3644 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3645
3646 /* intel_sideband.c */
3647 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3648 void vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3649 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3650 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3651 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3652 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3653 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3654 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3655 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3656 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3657 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3658 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3659 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3660 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3661 enum intel_sbi_destination destination);
3662 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3663 enum intel_sbi_destination destination);
3664 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3665 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3666
3667 /* intel_dpio_phy.c */
3668 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3669 u32 deemph_reg_value, u32 margin_reg_value,
3670 bool uniq_trans_scale);
3671 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3672 bool reset);
3673 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
3674 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3675 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3676 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
3677
3678 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3679 u32 demph_reg_value, u32 preemph_reg_value,
3680 u32 uniqtranscale_reg_value, u32 tx3_demph);
3681 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
3682 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3683 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
3684
3685 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3686 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3687
3688 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3689 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3690
3691 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3692 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3693 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3694 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3695
3696 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3697 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3698 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3699 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3700
3701 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3702 * will be implemented using 2 32-bit writes in an arbitrary order with
3703 * an arbitrary delay between them. This can cause the hardware to
3704 * act upon the intermediate value, possibly leading to corruption and
3705 * machine death. You have been warned.
3706 */
3707 #define I915_WRITE64(reg, val) dev_priv->uncore.funcs.mmio_writeq(dev_priv, (reg), (val), true)
3708 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3709
3710 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
3711 u32 upper, lower, old_upper, loop = 0; \
3712 upper = I915_READ(upper_reg); \
3713 do { \
3714 old_upper = upper; \
3715 lower = I915_READ(lower_reg); \
3716 upper = I915_READ(upper_reg); \
3717 } while (upper != old_upper && loop++ < 2); \
3718 (u64)upper << 32 | lower; })
3719
3720 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
3721 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
3722
3723 #define __raw_read(x, s) \
3724 static inline uint##x##_t __raw_i915_read##x(struct drm_i915_private *dev_priv, \
3725 i915_reg_t reg) \
3726 { \
3727 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3728 }
3729
3730 #define __raw_write(x, s) \
3731 static inline void __raw_i915_write##x(struct drm_i915_private *dev_priv, \
3732 i915_reg_t reg, uint##x##_t val) \
3733 { \
3734 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3735 }
3736 __raw_read(8, b)
3737 __raw_read(16, w)
3738 __raw_read(32, l)
3739 __raw_read(64, q)
3740
3741 __raw_write(8, b)
3742 __raw_write(16, w)
3743 __raw_write(32, l)
3744 __raw_write(64, q)
3745
3746 #undef __raw_read
3747 #undef __raw_write
3748
3749 /* These are untraced mmio-accessors that are only valid to be used inside
3750 * criticial sections inside IRQ handlers where forcewake is explicitly
3751 * controlled.
3752 * Think twice, and think again, before using these.
3753 * Note: Should only be used between intel_uncore_forcewake_irqlock() and
3754 * intel_uncore_forcewake_irqunlock().
3755 */
3756 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3757 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3758 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3759 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3760
3761 /* "Broadcast RGB" property */
3762 #define INTEL_BROADCAST_RGB_AUTO 0
3763 #define INTEL_BROADCAST_RGB_FULL 1
3764 #define INTEL_BROADCAST_RGB_LIMITED 2
3765
3766 static inline i915_reg_t i915_vgacntrl_reg(struct drm_device *dev)
3767 {
3768 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
3769 return VLV_VGACNTRL;
3770 else if (INTEL_INFO(dev)->gen >= 5)
3771 return CPU_VGACNTRL;
3772 else
3773 return VGACNTRL;
3774 }
3775
3776 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3777 {
3778 unsigned long j = msecs_to_jiffies(m);
3779
3780 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3781 }
3782
3783 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3784 {
3785 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3786 }
3787
3788 static inline unsigned long
3789 timespec_to_jiffies_timeout(const struct timespec *value)
3790 {
3791 unsigned long j = timespec_to_jiffies(value);
3792
3793 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3794 }
3795
3796 /*
3797 * If you need to wait X milliseconds between events A and B, but event B
3798 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3799 * when event A happened, then just before event B you call this function and
3800 * pass the timestamp as the first argument, and X as the second argument.
3801 */
3802 static inline void
3803 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3804 {
3805 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3806
3807 /*
3808 * Don't re-read the value of "jiffies" every time since it may change
3809 * behind our back and break the math.
3810 */
3811 tmp_jiffies = jiffies;
3812 target_jiffies = timestamp_jiffies +
3813 msecs_to_jiffies_timeout(to_wait_ms);
3814
3815 if (time_after(target_jiffies, tmp_jiffies)) {
3816 remaining_jiffies = target_jiffies - tmp_jiffies;
3817 while (remaining_jiffies)
3818 remaining_jiffies =
3819 schedule_timeout_uninterruptible(remaining_jiffies);
3820 }
3821 }
3822 static inline bool __i915_request_irq_complete(struct drm_i915_gem_request *req)
3823 {
3824 struct intel_engine_cs *engine = req->engine;
3825
3826 /* Before we do the heavier coherent read of the seqno,
3827 * check the value (hopefully) in the CPU cacheline.
3828 */
3829 if (i915_gem_request_completed(req))
3830 return true;
3831
3832 /* Ensure our read of the seqno is coherent so that we
3833 * do not "miss an interrupt" (i.e. if this is the last
3834 * request and the seqno write from the GPU is not visible
3835 * by the time the interrupt fires, we will see that the
3836 * request is incomplete and go back to sleep awaiting
3837 * another interrupt that will never come.)
3838 *
3839 * Strictly, we only need to do this once after an interrupt,
3840 * but it is easier and safer to do it every time the waiter
3841 * is woken.
3842 */
3843 if (engine->irq_seqno_barrier &&
3844 READ_ONCE(engine->breadcrumbs.irq_seqno_bh) == current &&
3845 cmpxchg_relaxed(&engine->breadcrumbs.irq_posted, 1, 0)) {
3846 struct task_struct *tsk;
3847
3848 /* The ordering of irq_posted versus applying the barrier
3849 * is crucial. The clearing of the current irq_posted must
3850 * be visible before we perform the barrier operation,
3851 * such that if a subsequent interrupt arrives, irq_posted
3852 * is reasserted and our task rewoken (which causes us to
3853 * do another __i915_request_irq_complete() immediately
3854 * and reapply the barrier). Conversely, if the clear
3855 * occurs after the barrier, then an interrupt that arrived
3856 * whilst we waited on the barrier would not trigger a
3857 * barrier on the next pass, and the read may not see the
3858 * seqno update.
3859 */
3860 engine->irq_seqno_barrier(engine);
3861
3862 /* If we consume the irq, but we are no longer the bottom-half,
3863 * the real bottom-half may not have serialised their own
3864 * seqno check with the irq-barrier (i.e. may have inspected
3865 * the seqno before we believe it coherent since they see
3866 * irq_posted == false but we are still running).
3867 */
3868 rcu_read_lock();
3869 tsk = READ_ONCE(engine->breadcrumbs.irq_seqno_bh);
3870 if (tsk && tsk != current)
3871 /* Note that if the bottom-half is changed as we
3872 * are sending the wake-up, the new bottom-half will
3873 * be woken by whomever made the change. We only have
3874 * to worry about when we steal the irq-posted for
3875 * ourself.
3876 */
3877 wake_up_process(tsk);
3878 rcu_read_unlock();
3879
3880 if (i915_gem_request_completed(req))
3881 return true;
3882 }
3883
3884 /* We need to check whether any gpu reset happened in between
3885 * the request being submitted and now. If a reset has occurred,
3886 * the seqno will have been advance past ours and our request
3887 * is complete. If we are in the process of handling a reset,
3888 * the request is effectively complete as the rendering will
3889 * be discarded, but we need to return in order to drop the
3890 * struct_mutex.
3891 */
3892 if (i915_reset_in_progress(&req->i915->gpu_error))
3893 return true;
3894
3895 return false;
3896 }
3897
3898 #endif