]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.h
drm/i915: Reinstate GMBUS and AUX interrupts on gen4/g4x
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/reservation.h>
45 #include <linux/shmem_fs.h>
46
47 #include <drm/drmP.h>
48 #include <drm/intel-gtt.h>
49 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
50 #include <drm/drm_gem.h>
51 #include <drm/drm_auth.h>
52 #include <drm/drm_cache.h>
53
54 #include "i915_params.h"
55 #include "i915_reg.h"
56 #include "i915_utils.h"
57
58 #include "intel_uncore.h"
59 #include "intel_bios.h"
60 #include "intel_dpll_mgr.h"
61 #include "intel_uc.h"
62 #include "intel_lrc.h"
63 #include "intel_ringbuffer.h"
64
65 #include "i915_gem.h"
66 #include "i915_gem_context.h"
67 #include "i915_gem_fence_reg.h"
68 #include "i915_gem_object.h"
69 #include "i915_gem_gtt.h"
70 #include "i915_gem_render_state.h"
71 #include "i915_gem_request.h"
72 #include "i915_gem_timeline.h"
73
74 #include "i915_vma.h"
75
76 #include "intel_gvt.h"
77
78 /* General customization:
79 */
80
81 #define DRIVER_NAME "i915"
82 #define DRIVER_DESC "Intel Graphics"
83 #define DRIVER_DATE "20170907"
84 #define DRIVER_TIMESTAMP 1504772900
85
86 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
87 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
88 * which may not necessarily be a user visible problem. This will either
89 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
90 * enable distros and users to tailor their preferred amount of i915 abrt
91 * spam.
92 */
93 #define I915_STATE_WARN(condition, format...) ({ \
94 int __ret_warn_on = !!(condition); \
95 if (unlikely(__ret_warn_on)) \
96 if (!WARN(i915.verbose_state_checks, format)) \
97 DRM_ERROR(format); \
98 unlikely(__ret_warn_on); \
99 })
100
101 #define I915_STATE_WARN_ON(x) \
102 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
103
104 bool __i915_inject_load_failure(const char *func, int line);
105 #define i915_inject_load_failure() \
106 __i915_inject_load_failure(__func__, __LINE__)
107
108 typedef struct {
109 uint32_t val;
110 } uint_fixed_16_16_t;
111
112 #define FP_16_16_MAX ({ \
113 uint_fixed_16_16_t fp; \
114 fp.val = UINT_MAX; \
115 fp; \
116 })
117
118 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
119 {
120 if (val.val == 0)
121 return true;
122 return false;
123 }
124
125 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val)
126 {
127 uint_fixed_16_16_t fp;
128
129 WARN_ON(val > U16_MAX);
130
131 fp.val = val << 16;
132 return fp;
133 }
134
135 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp)
136 {
137 return DIV_ROUND_UP(fp.val, 1 << 16);
138 }
139
140 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp)
141 {
142 return fp.val >> 16;
143 }
144
145 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1,
146 uint_fixed_16_16_t min2)
147 {
148 uint_fixed_16_16_t min;
149
150 min.val = min(min1.val, min2.val);
151 return min;
152 }
153
154 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1,
155 uint_fixed_16_16_t max2)
156 {
157 uint_fixed_16_16_t max;
158
159 max.val = max(max1.val, max2.val);
160 return max;
161 }
162
163 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val)
164 {
165 uint_fixed_16_16_t fp;
166 WARN_ON(val > U32_MAX);
167 fp.val = (uint32_t) val;
168 return fp;
169 }
170
171 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
172 uint_fixed_16_16_t d)
173 {
174 return DIV_ROUND_UP(val.val, d.val);
175 }
176
177 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
178 uint_fixed_16_16_t mul)
179 {
180 uint64_t intermediate_val;
181
182 intermediate_val = (uint64_t) val * mul.val;
183 intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
184 WARN_ON(intermediate_val > U32_MAX);
185 return (uint32_t) intermediate_val;
186 }
187
188 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
189 uint_fixed_16_16_t mul)
190 {
191 uint64_t intermediate_val;
192
193 intermediate_val = (uint64_t) val.val * mul.val;
194 intermediate_val = intermediate_val >> 16;
195 return clamp_u64_to_fixed16(intermediate_val);
196 }
197
198 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d)
199 {
200 uint64_t interm_val;
201
202 interm_val = (uint64_t)val << 16;
203 interm_val = DIV_ROUND_UP_ULL(interm_val, d);
204 return clamp_u64_to_fixed16(interm_val);
205 }
206
207 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
208 uint_fixed_16_16_t d)
209 {
210 uint64_t interm_val;
211
212 interm_val = (uint64_t)val << 16;
213 interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
214 WARN_ON(interm_val > U32_MAX);
215 return (uint32_t) interm_val;
216 }
217
218 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val,
219 uint_fixed_16_16_t mul)
220 {
221 uint64_t intermediate_val;
222
223 intermediate_val = (uint64_t) val * mul.val;
224 return clamp_u64_to_fixed16(intermediate_val);
225 }
226
227 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1,
228 uint_fixed_16_16_t add2)
229 {
230 uint64_t interm_sum;
231
232 interm_sum = (uint64_t) add1.val + add2.val;
233 return clamp_u64_to_fixed16(interm_sum);
234 }
235
236 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1,
237 uint32_t add2)
238 {
239 uint64_t interm_sum;
240 uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2);
241
242 interm_sum = (uint64_t) add1.val + interm_add2.val;
243 return clamp_u64_to_fixed16(interm_sum);
244 }
245
246 static inline const char *yesno(bool v)
247 {
248 return v ? "yes" : "no";
249 }
250
251 static inline const char *onoff(bool v)
252 {
253 return v ? "on" : "off";
254 }
255
256 static inline const char *enableddisabled(bool v)
257 {
258 return v ? "enabled" : "disabled";
259 }
260
261 enum pipe {
262 INVALID_PIPE = -1,
263 PIPE_A = 0,
264 PIPE_B,
265 PIPE_C,
266 _PIPE_EDP,
267 I915_MAX_PIPES = _PIPE_EDP
268 };
269 #define pipe_name(p) ((p) + 'A')
270
271 enum transcoder {
272 TRANSCODER_A = 0,
273 TRANSCODER_B,
274 TRANSCODER_C,
275 TRANSCODER_EDP,
276 TRANSCODER_DSI_A,
277 TRANSCODER_DSI_C,
278 I915_MAX_TRANSCODERS
279 };
280
281 static inline const char *transcoder_name(enum transcoder transcoder)
282 {
283 switch (transcoder) {
284 case TRANSCODER_A:
285 return "A";
286 case TRANSCODER_B:
287 return "B";
288 case TRANSCODER_C:
289 return "C";
290 case TRANSCODER_EDP:
291 return "EDP";
292 case TRANSCODER_DSI_A:
293 return "DSI A";
294 case TRANSCODER_DSI_C:
295 return "DSI C";
296 default:
297 return "<invalid>";
298 }
299 }
300
301 static inline bool transcoder_is_dsi(enum transcoder transcoder)
302 {
303 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
304 }
305
306 /*
307 * Global legacy plane identifier. Valid only for primary/sprite
308 * planes on pre-g4x, and only for primary planes on g4x+.
309 */
310 enum plane {
311 PLANE_A,
312 PLANE_B,
313 PLANE_C,
314 };
315 #define plane_name(p) ((p) + 'A')
316
317 #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A')
318
319 /*
320 * Per-pipe plane identifier.
321 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
322 * number of planes per CRTC. Not all platforms really have this many planes,
323 * which means some arrays of size I915_MAX_PLANES may have unused entries
324 * between the topmost sprite plane and the cursor plane.
325 *
326 * This is expected to be passed to various register macros
327 * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care.
328 */
329 enum plane_id {
330 PLANE_PRIMARY,
331 PLANE_SPRITE0,
332 PLANE_SPRITE1,
333 PLANE_SPRITE2,
334 PLANE_CURSOR,
335 I915_MAX_PLANES,
336 };
337
338 #define for_each_plane_id_on_crtc(__crtc, __p) \
339 for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \
340 for_each_if ((__crtc)->plane_ids_mask & BIT(__p))
341
342 enum port {
343 PORT_NONE = -1,
344 PORT_A = 0,
345 PORT_B,
346 PORT_C,
347 PORT_D,
348 PORT_E,
349 I915_MAX_PORTS
350 };
351 #define port_name(p) ((p) + 'A')
352
353 #define I915_NUM_PHYS_VLV 2
354
355 enum dpio_channel {
356 DPIO_CH0,
357 DPIO_CH1
358 };
359
360 enum dpio_phy {
361 DPIO_PHY0,
362 DPIO_PHY1,
363 DPIO_PHY2,
364 };
365
366 enum intel_display_power_domain {
367 POWER_DOMAIN_PIPE_A,
368 POWER_DOMAIN_PIPE_B,
369 POWER_DOMAIN_PIPE_C,
370 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
371 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
372 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
373 POWER_DOMAIN_TRANSCODER_A,
374 POWER_DOMAIN_TRANSCODER_B,
375 POWER_DOMAIN_TRANSCODER_C,
376 POWER_DOMAIN_TRANSCODER_EDP,
377 POWER_DOMAIN_TRANSCODER_DSI_A,
378 POWER_DOMAIN_TRANSCODER_DSI_C,
379 POWER_DOMAIN_PORT_DDI_A_LANES,
380 POWER_DOMAIN_PORT_DDI_B_LANES,
381 POWER_DOMAIN_PORT_DDI_C_LANES,
382 POWER_DOMAIN_PORT_DDI_D_LANES,
383 POWER_DOMAIN_PORT_DDI_E_LANES,
384 POWER_DOMAIN_PORT_DDI_A_IO,
385 POWER_DOMAIN_PORT_DDI_B_IO,
386 POWER_DOMAIN_PORT_DDI_C_IO,
387 POWER_DOMAIN_PORT_DDI_D_IO,
388 POWER_DOMAIN_PORT_DDI_E_IO,
389 POWER_DOMAIN_PORT_DSI,
390 POWER_DOMAIN_PORT_CRT,
391 POWER_DOMAIN_PORT_OTHER,
392 POWER_DOMAIN_VGA,
393 POWER_DOMAIN_AUDIO,
394 POWER_DOMAIN_PLLS,
395 POWER_DOMAIN_AUX_A,
396 POWER_DOMAIN_AUX_B,
397 POWER_DOMAIN_AUX_C,
398 POWER_DOMAIN_AUX_D,
399 POWER_DOMAIN_GMBUS,
400 POWER_DOMAIN_MODESET,
401 POWER_DOMAIN_INIT,
402
403 POWER_DOMAIN_NUM,
404 };
405
406 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
407 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
408 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
409 #define POWER_DOMAIN_TRANSCODER(tran) \
410 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
411 (tran) + POWER_DOMAIN_TRANSCODER_A)
412
413 enum hpd_pin {
414 HPD_NONE = 0,
415 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
416 HPD_CRT,
417 HPD_SDVO_B,
418 HPD_SDVO_C,
419 HPD_PORT_A,
420 HPD_PORT_B,
421 HPD_PORT_C,
422 HPD_PORT_D,
423 HPD_PORT_E,
424 HPD_NUM_PINS
425 };
426
427 #define for_each_hpd_pin(__pin) \
428 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
429
430 #define HPD_STORM_DEFAULT_THRESHOLD 5
431
432 struct i915_hotplug {
433 struct work_struct hotplug_work;
434
435 struct {
436 unsigned long last_jiffies;
437 int count;
438 enum {
439 HPD_ENABLED = 0,
440 HPD_DISABLED = 1,
441 HPD_MARK_DISABLED = 2
442 } state;
443 } stats[HPD_NUM_PINS];
444 u32 event_bits;
445 struct delayed_work reenable_work;
446
447 struct intel_digital_port *irq_port[I915_MAX_PORTS];
448 u32 long_port_mask;
449 u32 short_port_mask;
450 struct work_struct dig_port_work;
451
452 struct work_struct poll_init_work;
453 bool poll_enabled;
454
455 unsigned int hpd_storm_threshold;
456
457 /*
458 * if we get a HPD irq from DP and a HPD irq from non-DP
459 * the non-DP HPD could block the workqueue on a mode config
460 * mutex getting, that userspace may have taken. However
461 * userspace is waiting on the DP workqueue to run which is
462 * blocked behind the non-DP one.
463 */
464 struct workqueue_struct *dp_wq;
465 };
466
467 #define I915_GEM_GPU_DOMAINS \
468 (I915_GEM_DOMAIN_RENDER | \
469 I915_GEM_DOMAIN_SAMPLER | \
470 I915_GEM_DOMAIN_COMMAND | \
471 I915_GEM_DOMAIN_INSTRUCTION | \
472 I915_GEM_DOMAIN_VERTEX)
473
474 #define for_each_pipe(__dev_priv, __p) \
475 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
476 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
477 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
478 for_each_if ((__mask) & (1 << (__p)))
479 #define for_each_universal_plane(__dev_priv, __pipe, __p) \
480 for ((__p) = 0; \
481 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
482 (__p)++)
483 #define for_each_sprite(__dev_priv, __p, __s) \
484 for ((__s) = 0; \
485 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
486 (__s)++)
487
488 #define for_each_port_masked(__port, __ports_mask) \
489 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
490 for_each_if ((__ports_mask) & (1 << (__port)))
491
492 #define for_each_crtc(dev, crtc) \
493 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
494
495 #define for_each_intel_plane(dev, intel_plane) \
496 list_for_each_entry(intel_plane, \
497 &(dev)->mode_config.plane_list, \
498 base.head)
499
500 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \
501 list_for_each_entry(intel_plane, \
502 &(dev)->mode_config.plane_list, \
503 base.head) \
504 for_each_if ((plane_mask) & \
505 (1 << drm_plane_index(&intel_plane->base)))
506
507 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
508 list_for_each_entry(intel_plane, \
509 &(dev)->mode_config.plane_list, \
510 base.head) \
511 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
512
513 #define for_each_intel_crtc(dev, intel_crtc) \
514 list_for_each_entry(intel_crtc, \
515 &(dev)->mode_config.crtc_list, \
516 base.head)
517
518 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \
519 list_for_each_entry(intel_crtc, \
520 &(dev)->mode_config.crtc_list, \
521 base.head) \
522 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
523
524 #define for_each_intel_encoder(dev, intel_encoder) \
525 list_for_each_entry(intel_encoder, \
526 &(dev)->mode_config.encoder_list, \
527 base.head)
528
529 #define for_each_intel_connector_iter(intel_connector, iter) \
530 while ((intel_connector = to_intel_connector(drm_connector_list_iter_next(iter))))
531
532 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
533 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
534 for_each_if ((intel_encoder)->base.crtc == (__crtc))
535
536 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
537 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
538 for_each_if ((intel_connector)->base.encoder == (__encoder))
539
540 #define for_each_power_domain(domain, mask) \
541 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
542 for_each_if (BIT_ULL(domain) & (mask))
543
544 #define for_each_power_well(__dev_priv, __power_well) \
545 for ((__power_well) = (__dev_priv)->power_domains.power_wells; \
546 (__power_well) - (__dev_priv)->power_domains.power_wells < \
547 (__dev_priv)->power_domains.power_well_count; \
548 (__power_well)++)
549
550 #define for_each_power_well_rev(__dev_priv, __power_well) \
551 for ((__power_well) = (__dev_priv)->power_domains.power_wells + \
552 (__dev_priv)->power_domains.power_well_count - 1; \
553 (__power_well) - (__dev_priv)->power_domains.power_wells >= 0; \
554 (__power_well)--)
555
556 #define for_each_power_domain_well(__dev_priv, __power_well, __domain_mask) \
557 for_each_power_well(__dev_priv, __power_well) \
558 for_each_if ((__power_well)->domains & (__domain_mask))
559
560 #define for_each_power_domain_well_rev(__dev_priv, __power_well, __domain_mask) \
561 for_each_power_well_rev(__dev_priv, __power_well) \
562 for_each_if ((__power_well)->domains & (__domain_mask))
563
564 #define for_each_intel_plane_in_state(__state, plane, plane_state, __i) \
565 for ((__i) = 0; \
566 (__i) < (__state)->base.dev->mode_config.num_total_plane && \
567 ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
568 (plane_state) = to_intel_plane_state((__state)->base.planes[__i].state), 1); \
569 (__i)++) \
570 for_each_if (plane_state)
571
572 #define for_each_new_intel_crtc_in_state(__state, crtc, new_crtc_state, __i) \
573 for ((__i) = 0; \
574 (__i) < (__state)->base.dev->mode_config.num_crtc && \
575 ((crtc) = to_intel_crtc((__state)->base.crtcs[__i].ptr), \
576 (new_crtc_state) = to_intel_crtc_state((__state)->base.crtcs[__i].new_state), 1); \
577 (__i)++) \
578 for_each_if (crtc)
579
580
581 #define for_each_oldnew_intel_plane_in_state(__state, plane, old_plane_state, new_plane_state, __i) \
582 for ((__i) = 0; \
583 (__i) < (__state)->base.dev->mode_config.num_total_plane && \
584 ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
585 (old_plane_state) = to_intel_plane_state((__state)->base.planes[__i].old_state), \
586 (new_plane_state) = to_intel_plane_state((__state)->base.planes[__i].new_state), 1); \
587 (__i)++) \
588 for_each_if (plane)
589
590 struct drm_i915_private;
591 struct i915_mm_struct;
592 struct i915_mmu_object;
593
594 struct drm_i915_file_private {
595 struct drm_i915_private *dev_priv;
596 struct drm_file *file;
597
598 struct {
599 spinlock_t lock;
600 struct list_head request_list;
601 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
602 * chosen to prevent the CPU getting more than a frame ahead of the GPU
603 * (when using lax throttling for the frontbuffer). We also use it to
604 * offer free GPU waitboosts for severely congested workloads.
605 */
606 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
607 } mm;
608 struct idr context_idr;
609
610 struct intel_rps_client {
611 atomic_t boosts;
612 } rps;
613
614 unsigned int bsd_engine;
615
616 /* Client can have a maximum of 3 contexts banned before
617 * it is denied of creating new contexts. As one context
618 * ban needs 4 consecutive hangs, and more if there is
619 * progress in between, this is a last resort stop gap measure
620 * to limit the badly behaving clients access to gpu.
621 */
622 #define I915_MAX_CLIENT_CONTEXT_BANS 3
623 atomic_t context_bans;
624 };
625
626 /* Used by dp and fdi links */
627 struct intel_link_m_n {
628 uint32_t tu;
629 uint32_t gmch_m;
630 uint32_t gmch_n;
631 uint32_t link_m;
632 uint32_t link_n;
633 };
634
635 void intel_link_compute_m_n(int bpp, int nlanes,
636 int pixel_clock, int link_clock,
637 struct intel_link_m_n *m_n,
638 bool reduce_m_n);
639
640 /* Interface history:
641 *
642 * 1.1: Original.
643 * 1.2: Add Power Management
644 * 1.3: Add vblank support
645 * 1.4: Fix cmdbuffer path, add heap destroy
646 * 1.5: Add vblank pipe configuration
647 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
648 * - Support vertical blank on secondary display pipe
649 */
650 #define DRIVER_MAJOR 1
651 #define DRIVER_MINOR 6
652 #define DRIVER_PATCHLEVEL 0
653
654 struct opregion_header;
655 struct opregion_acpi;
656 struct opregion_swsci;
657 struct opregion_asle;
658
659 struct intel_opregion {
660 struct opregion_header *header;
661 struct opregion_acpi *acpi;
662 struct opregion_swsci *swsci;
663 u32 swsci_gbda_sub_functions;
664 u32 swsci_sbcb_sub_functions;
665 struct opregion_asle *asle;
666 void *rvda;
667 void *vbt_firmware;
668 const void *vbt;
669 u32 vbt_size;
670 u32 *lid_state;
671 struct work_struct asle_work;
672 };
673 #define OPREGION_SIZE (8*1024)
674
675 struct intel_overlay;
676 struct intel_overlay_error_state;
677
678 struct sdvo_device_mapping {
679 u8 initialized;
680 u8 dvo_port;
681 u8 slave_addr;
682 u8 dvo_wiring;
683 u8 i2c_pin;
684 u8 ddc_pin;
685 };
686
687 struct intel_connector;
688 struct intel_encoder;
689 struct intel_atomic_state;
690 struct intel_crtc_state;
691 struct intel_initial_plane_config;
692 struct intel_crtc;
693 struct intel_limit;
694 struct dpll;
695 struct intel_cdclk_state;
696
697 struct drm_i915_display_funcs {
698 void (*get_cdclk)(struct drm_i915_private *dev_priv,
699 struct intel_cdclk_state *cdclk_state);
700 void (*set_cdclk)(struct drm_i915_private *dev_priv,
701 const struct intel_cdclk_state *cdclk_state);
702 int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane);
703 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
704 int (*compute_intermediate_wm)(struct drm_device *dev,
705 struct intel_crtc *intel_crtc,
706 struct intel_crtc_state *newstate);
707 void (*initial_watermarks)(struct intel_atomic_state *state,
708 struct intel_crtc_state *cstate);
709 void (*atomic_update_watermarks)(struct intel_atomic_state *state,
710 struct intel_crtc_state *cstate);
711 void (*optimize_watermarks)(struct intel_atomic_state *state,
712 struct intel_crtc_state *cstate);
713 int (*compute_global_watermarks)(struct drm_atomic_state *state);
714 void (*update_wm)(struct intel_crtc *crtc);
715 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
716 /* Returns the active state of the crtc, and if the crtc is active,
717 * fills out the pipe-config with the hw state. */
718 bool (*get_pipe_config)(struct intel_crtc *,
719 struct intel_crtc_state *);
720 void (*get_initial_plane_config)(struct intel_crtc *,
721 struct intel_initial_plane_config *);
722 int (*crtc_compute_clock)(struct intel_crtc *crtc,
723 struct intel_crtc_state *crtc_state);
724 void (*crtc_enable)(struct intel_crtc_state *pipe_config,
725 struct drm_atomic_state *old_state);
726 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
727 struct drm_atomic_state *old_state);
728 void (*update_crtcs)(struct drm_atomic_state *state,
729 unsigned int *crtc_vblank_mask);
730 void (*audio_codec_enable)(struct drm_connector *connector,
731 struct intel_encoder *encoder,
732 const struct drm_display_mode *adjusted_mode);
733 void (*audio_codec_disable)(struct intel_encoder *encoder);
734 void (*fdi_link_train)(struct intel_crtc *crtc,
735 const struct intel_crtc_state *crtc_state);
736 void (*init_clock_gating)(struct drm_i915_private *dev_priv);
737 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
738 /* clock updates for mode set */
739 /* cursor updates */
740 /* render clock increase/decrease */
741 /* display clock increase/decrease */
742 /* pll clock increase/decrease */
743
744 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
745 void (*load_luts)(struct drm_crtc_state *crtc_state);
746 };
747
748 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
749 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
750 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
751
752 struct intel_csr {
753 struct work_struct work;
754 const char *fw_path;
755 uint32_t *dmc_payload;
756 uint32_t dmc_fw_size;
757 uint32_t version;
758 uint32_t mmio_count;
759 i915_reg_t mmioaddr[8];
760 uint32_t mmiodata[8];
761 uint32_t dc_state;
762 uint32_t allowed_dc_mask;
763 };
764
765 #define DEV_INFO_FOR_EACH_FLAG(func) \
766 func(is_mobile); \
767 func(is_lp); \
768 func(is_alpha_support); \
769 /* Keep has_* in alphabetical order */ \
770 func(has_64bit_reloc); \
771 func(has_aliasing_ppgtt); \
772 func(has_csr); \
773 func(has_ddi); \
774 func(has_dp_mst); \
775 func(has_reset_engine); \
776 func(has_fbc); \
777 func(has_fpga_dbg); \
778 func(has_full_ppgtt); \
779 func(has_full_48bit_ppgtt); \
780 func(has_gmch_display); \
781 func(has_guc); \
782 func(has_guc_ct); \
783 func(has_hotplug); \
784 func(has_l3_dpf); \
785 func(has_llc); \
786 func(has_logical_ring_contexts); \
787 func(has_overlay); \
788 func(has_pipe_cxsr); \
789 func(has_pooled_eu); \
790 func(has_psr); \
791 func(has_rc6); \
792 func(has_rc6p); \
793 func(has_resource_streamer); \
794 func(has_runtime_pm); \
795 func(has_snoop); \
796 func(unfenced_needs_alignment); \
797 func(cursor_needs_physical); \
798 func(hws_needs_physical); \
799 func(overlay_needs_physical); \
800 func(supports_tv); \
801 func(has_ipc);
802
803 struct sseu_dev_info {
804 u8 slice_mask;
805 u8 subslice_mask;
806 u8 eu_total;
807 u8 eu_per_subslice;
808 u8 min_eu_in_pool;
809 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
810 u8 subslice_7eu[3];
811 u8 has_slice_pg:1;
812 u8 has_subslice_pg:1;
813 u8 has_eu_pg:1;
814 };
815
816 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu)
817 {
818 return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask);
819 }
820
821 /* Keep in gen based order, and chronological order within a gen */
822 enum intel_platform {
823 INTEL_PLATFORM_UNINITIALIZED = 0,
824 INTEL_I830,
825 INTEL_I845G,
826 INTEL_I85X,
827 INTEL_I865G,
828 INTEL_I915G,
829 INTEL_I915GM,
830 INTEL_I945G,
831 INTEL_I945GM,
832 INTEL_G33,
833 INTEL_PINEVIEW,
834 INTEL_I965G,
835 INTEL_I965GM,
836 INTEL_G45,
837 INTEL_GM45,
838 INTEL_IRONLAKE,
839 INTEL_SANDYBRIDGE,
840 INTEL_IVYBRIDGE,
841 INTEL_VALLEYVIEW,
842 INTEL_HASWELL,
843 INTEL_BROADWELL,
844 INTEL_CHERRYVIEW,
845 INTEL_SKYLAKE,
846 INTEL_BROXTON,
847 INTEL_KABYLAKE,
848 INTEL_GEMINILAKE,
849 INTEL_COFFEELAKE,
850 INTEL_CANNONLAKE,
851 INTEL_MAX_PLATFORMS
852 };
853
854 struct intel_device_info {
855 u32 display_mmio_offset;
856 u16 device_id;
857 u8 num_pipes;
858 u8 num_sprites[I915_MAX_PIPES];
859 u8 num_scalers[I915_MAX_PIPES];
860 u8 gen;
861 u16 gen_mask;
862 enum intel_platform platform;
863 u8 gt; /* GT number, 0 if undefined */
864 u8 ring_mask; /* Rings supported by the HW */
865 u8 num_rings;
866 #define DEFINE_FLAG(name) u8 name:1
867 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG);
868 #undef DEFINE_FLAG
869 u16 ddb_size; /* in blocks */
870 /* Register offsets for the various display pipes and transcoders */
871 int pipe_offsets[I915_MAX_TRANSCODERS];
872 int trans_offsets[I915_MAX_TRANSCODERS];
873 int palette_offsets[I915_MAX_PIPES];
874 int cursor_offsets[I915_MAX_PIPES];
875
876 /* Slice/subslice/EU info */
877 struct sseu_dev_info sseu;
878
879 struct color_luts {
880 u16 degamma_lut_size;
881 u16 gamma_lut_size;
882 } color;
883 };
884
885 struct intel_display_error_state;
886
887 struct i915_gpu_state {
888 struct kref ref;
889 struct timeval time;
890 struct timeval boottime;
891 struct timeval uptime;
892
893 struct drm_i915_private *i915;
894
895 char error_msg[128];
896 bool simulated;
897 bool awake;
898 bool wakelock;
899 bool suspended;
900 int iommu;
901 u32 reset_count;
902 u32 suspend_count;
903 struct intel_device_info device_info;
904 struct i915_params params;
905
906 /* Generic register state */
907 u32 eir;
908 u32 pgtbl_er;
909 u32 ier;
910 u32 gtier[4], ngtier;
911 u32 ccid;
912 u32 derrmr;
913 u32 forcewake;
914 u32 error; /* gen6+ */
915 u32 err_int; /* gen7 */
916 u32 fault_data0; /* gen8, gen9 */
917 u32 fault_data1; /* gen8, gen9 */
918 u32 done_reg;
919 u32 gac_eco;
920 u32 gam_ecochk;
921 u32 gab_ctl;
922 u32 gfx_mode;
923
924 u32 nfence;
925 u64 fence[I915_MAX_NUM_FENCES];
926 struct intel_overlay_error_state *overlay;
927 struct intel_display_error_state *display;
928 struct drm_i915_error_object *semaphore;
929 struct drm_i915_error_object *guc_log;
930
931 struct drm_i915_error_engine {
932 int engine_id;
933 /* Software tracked state */
934 bool waiting;
935 int num_waiters;
936 unsigned long hangcheck_timestamp;
937 bool hangcheck_stalled;
938 enum intel_engine_hangcheck_action hangcheck_action;
939 struct i915_address_space *vm;
940 int num_requests;
941 u32 reset_count;
942
943 /* position of active request inside the ring */
944 u32 rq_head, rq_post, rq_tail;
945
946 /* our own tracking of ring head and tail */
947 u32 cpu_ring_head;
948 u32 cpu_ring_tail;
949
950 u32 last_seqno;
951
952 /* Register state */
953 u32 start;
954 u32 tail;
955 u32 head;
956 u32 ctl;
957 u32 mode;
958 u32 hws;
959 u32 ipeir;
960 u32 ipehr;
961 u32 bbstate;
962 u32 instpm;
963 u32 instps;
964 u32 seqno;
965 u64 bbaddr;
966 u64 acthd;
967 u32 fault_reg;
968 u64 faddr;
969 u32 rc_psmi; /* sleep state */
970 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
971 struct intel_instdone instdone;
972
973 struct drm_i915_error_context {
974 char comm[TASK_COMM_LEN];
975 pid_t pid;
976 u32 handle;
977 u32 hw_id;
978 int ban_score;
979 int active;
980 int guilty;
981 } context;
982
983 struct drm_i915_error_object {
984 u64 gtt_offset;
985 u64 gtt_size;
986 int page_count;
987 int unused;
988 u32 *pages[0];
989 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
990
991 struct drm_i915_error_object **user_bo;
992 long user_bo_count;
993
994 struct drm_i915_error_object *wa_ctx;
995
996 struct drm_i915_error_request {
997 long jiffies;
998 pid_t pid;
999 u32 context;
1000 int ban_score;
1001 u32 seqno;
1002 u32 head;
1003 u32 tail;
1004 } *requests, execlist[2];
1005
1006 struct drm_i915_error_waiter {
1007 char comm[TASK_COMM_LEN];
1008 pid_t pid;
1009 u32 seqno;
1010 } *waiters;
1011
1012 struct {
1013 u32 gfx_mode;
1014 union {
1015 u64 pdp[4];
1016 u32 pp_dir_base;
1017 };
1018 } vm_info;
1019 } engine[I915_NUM_ENGINES];
1020
1021 struct drm_i915_error_buffer {
1022 u32 size;
1023 u32 name;
1024 u32 rseqno[I915_NUM_ENGINES], wseqno;
1025 u64 gtt_offset;
1026 u32 read_domains;
1027 u32 write_domain;
1028 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
1029 u32 tiling:2;
1030 u32 dirty:1;
1031 u32 purgeable:1;
1032 u32 userptr:1;
1033 s32 engine:4;
1034 u32 cache_level:3;
1035 } *active_bo[I915_NUM_ENGINES], *pinned_bo;
1036 u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
1037 struct i915_address_space *active_vm[I915_NUM_ENGINES];
1038 };
1039
1040 enum i915_cache_level {
1041 I915_CACHE_NONE = 0,
1042 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
1043 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
1044 caches, eg sampler/render caches, and the
1045 large Last-Level-Cache. LLC is coherent with
1046 the CPU, but L3 is only visible to the GPU. */
1047 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
1048 };
1049
1050 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
1051
1052 enum fb_op_origin {
1053 ORIGIN_GTT,
1054 ORIGIN_CPU,
1055 ORIGIN_CS,
1056 ORIGIN_FLIP,
1057 ORIGIN_DIRTYFB,
1058 };
1059
1060 struct intel_fbc {
1061 /* This is always the inner lock when overlapping with struct_mutex and
1062 * it's the outer lock when overlapping with stolen_lock. */
1063 struct mutex lock;
1064 unsigned threshold;
1065 unsigned int possible_framebuffer_bits;
1066 unsigned int busy_bits;
1067 unsigned int visible_pipes_mask;
1068 struct intel_crtc *crtc;
1069
1070 struct drm_mm_node compressed_fb;
1071 struct drm_mm_node *compressed_llb;
1072
1073 bool false_color;
1074
1075 bool enabled;
1076 bool active;
1077
1078 bool underrun_detected;
1079 struct work_struct underrun_work;
1080
1081 /*
1082 * Due to the atomic rules we can't access some structures without the
1083 * appropriate locking, so we cache information here in order to avoid
1084 * these problems.
1085 */
1086 struct intel_fbc_state_cache {
1087 struct i915_vma *vma;
1088
1089 struct {
1090 unsigned int mode_flags;
1091 uint32_t hsw_bdw_pixel_rate;
1092 } crtc;
1093
1094 struct {
1095 unsigned int rotation;
1096 int src_w;
1097 int src_h;
1098 bool visible;
1099 } plane;
1100
1101 struct {
1102 const struct drm_format_info *format;
1103 unsigned int stride;
1104 } fb;
1105 } state_cache;
1106
1107 /*
1108 * This structure contains everything that's relevant to program the
1109 * hardware registers. When we want to figure out if we need to disable
1110 * and re-enable FBC for a new configuration we just check if there's
1111 * something different in the struct. The genx_fbc_activate functions
1112 * are supposed to read from it in order to program the registers.
1113 */
1114 struct intel_fbc_reg_params {
1115 struct i915_vma *vma;
1116
1117 struct {
1118 enum pipe pipe;
1119 enum plane plane;
1120 unsigned int fence_y_offset;
1121 } crtc;
1122
1123 struct {
1124 const struct drm_format_info *format;
1125 unsigned int stride;
1126 } fb;
1127
1128 int cfb_size;
1129 unsigned int gen9_wa_cfb_stride;
1130 } params;
1131
1132 struct intel_fbc_work {
1133 bool scheduled;
1134 u32 scheduled_vblank;
1135 struct work_struct work;
1136 } work;
1137
1138 const char *no_fbc_reason;
1139 };
1140
1141 /*
1142 * HIGH_RR is the highest eDP panel refresh rate read from EDID
1143 * LOW_RR is the lowest eDP panel refresh rate found from EDID
1144 * parsing for same resolution.
1145 */
1146 enum drrs_refresh_rate_type {
1147 DRRS_HIGH_RR,
1148 DRRS_LOW_RR,
1149 DRRS_MAX_RR, /* RR count */
1150 };
1151
1152 enum drrs_support_type {
1153 DRRS_NOT_SUPPORTED = 0,
1154 STATIC_DRRS_SUPPORT = 1,
1155 SEAMLESS_DRRS_SUPPORT = 2
1156 };
1157
1158 struct intel_dp;
1159 struct i915_drrs {
1160 struct mutex mutex;
1161 struct delayed_work work;
1162 struct intel_dp *dp;
1163 unsigned busy_frontbuffer_bits;
1164 enum drrs_refresh_rate_type refresh_rate_type;
1165 enum drrs_support_type type;
1166 };
1167
1168 struct i915_psr {
1169 struct mutex lock;
1170 bool sink_support;
1171 bool source_ok;
1172 struct intel_dp *enabled;
1173 bool active;
1174 struct delayed_work work;
1175 unsigned busy_frontbuffer_bits;
1176 bool psr2_support;
1177 bool aux_frame_sync;
1178 bool link_standby;
1179 bool y_cord_support;
1180 bool colorimetry_support;
1181 bool alpm;
1182
1183 void (*enable_source)(struct intel_dp *,
1184 const struct intel_crtc_state *);
1185 void (*disable_source)(struct intel_dp *,
1186 const struct intel_crtc_state *);
1187 void (*enable_sink)(struct intel_dp *);
1188 void (*activate)(struct intel_dp *);
1189 void (*setup_vsc)(struct intel_dp *, const struct intel_crtc_state *);
1190 };
1191
1192 enum intel_pch {
1193 PCH_NONE = 0, /* No PCH present */
1194 PCH_IBX, /* Ibexpeak PCH */
1195 PCH_CPT, /* Cougarpoint/Pantherpoint PCH */
1196 PCH_LPT, /* Lynxpoint/Wildcatpoint PCH */
1197 PCH_SPT, /* Sunrisepoint PCH */
1198 PCH_KBP, /* Kaby Lake PCH */
1199 PCH_CNP, /* Cannon Lake PCH */
1200 PCH_NOP,
1201 };
1202
1203 enum intel_sbi_destination {
1204 SBI_ICLK,
1205 SBI_MPHY,
1206 };
1207
1208 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1209 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1210 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1211 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1212 #define QUIRK_INCREASE_T12_DELAY (1<<6)
1213
1214 struct intel_fbdev;
1215 struct intel_fbc_work;
1216
1217 struct intel_gmbus {
1218 struct i2c_adapter adapter;
1219 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1220 u32 force_bit;
1221 u32 reg0;
1222 i915_reg_t gpio_reg;
1223 struct i2c_algo_bit_data bit_algo;
1224 struct drm_i915_private *dev_priv;
1225 };
1226
1227 struct i915_suspend_saved_registers {
1228 u32 saveDSPARB;
1229 u32 saveFBC_CONTROL;
1230 u32 saveCACHE_MODE_0;
1231 u32 saveMI_ARB_STATE;
1232 u32 saveSWF0[16];
1233 u32 saveSWF1[16];
1234 u32 saveSWF3[3];
1235 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1236 u32 savePCH_PORT_HOTPLUG;
1237 u16 saveGCDGMBUS;
1238 };
1239
1240 struct vlv_s0ix_state {
1241 /* GAM */
1242 u32 wr_watermark;
1243 u32 gfx_prio_ctrl;
1244 u32 arb_mode;
1245 u32 gfx_pend_tlb0;
1246 u32 gfx_pend_tlb1;
1247 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1248 u32 media_max_req_count;
1249 u32 gfx_max_req_count;
1250 u32 render_hwsp;
1251 u32 ecochk;
1252 u32 bsd_hwsp;
1253 u32 blt_hwsp;
1254 u32 tlb_rd_addr;
1255
1256 /* MBC */
1257 u32 g3dctl;
1258 u32 gsckgctl;
1259 u32 mbctl;
1260
1261 /* GCP */
1262 u32 ucgctl1;
1263 u32 ucgctl3;
1264 u32 rcgctl1;
1265 u32 rcgctl2;
1266 u32 rstctl;
1267 u32 misccpctl;
1268
1269 /* GPM */
1270 u32 gfxpause;
1271 u32 rpdeuhwtc;
1272 u32 rpdeuc;
1273 u32 ecobus;
1274 u32 pwrdwnupctl;
1275 u32 rp_down_timeout;
1276 u32 rp_deucsw;
1277 u32 rcubmabdtmr;
1278 u32 rcedata;
1279 u32 spare2gh;
1280
1281 /* Display 1 CZ domain */
1282 u32 gt_imr;
1283 u32 gt_ier;
1284 u32 pm_imr;
1285 u32 pm_ier;
1286 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1287
1288 /* GT SA CZ domain */
1289 u32 tilectl;
1290 u32 gt_fifoctl;
1291 u32 gtlc_wake_ctrl;
1292 u32 gtlc_survive;
1293 u32 pmwgicz;
1294
1295 /* Display 2 CZ domain */
1296 u32 gu_ctl0;
1297 u32 gu_ctl1;
1298 u32 pcbr;
1299 u32 clock_gate_dis2;
1300 };
1301
1302 struct intel_rps_ei {
1303 ktime_t ktime;
1304 u32 render_c0;
1305 u32 media_c0;
1306 };
1307
1308 struct intel_gen6_power_mgmt {
1309 /*
1310 * work, interrupts_enabled and pm_iir are protected by
1311 * dev_priv->irq_lock
1312 */
1313 struct work_struct work;
1314 bool interrupts_enabled;
1315 u32 pm_iir;
1316
1317 /* PM interrupt bits that should never be masked */
1318 u32 pm_intrmsk_mbz;
1319
1320 /* Frequencies are stored in potentially platform dependent multiples.
1321 * In other words, *_freq needs to be multiplied by X to be interesting.
1322 * Soft limits are those which are used for the dynamic reclocking done
1323 * by the driver (raise frequencies under heavy loads, and lower for
1324 * lighter loads). Hard limits are those imposed by the hardware.
1325 *
1326 * A distinction is made for overclocking, which is never enabled by
1327 * default, and is considered to be above the hard limit if it's
1328 * possible at all.
1329 */
1330 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1331 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1332 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1333 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1334 u8 min_freq; /* AKA RPn. Minimum frequency */
1335 u8 boost_freq; /* Frequency to request when wait boosting */
1336 u8 idle_freq; /* Frequency to request when we are idle */
1337 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1338 u8 rp1_freq; /* "less than" RP0 power/freqency */
1339 u8 rp0_freq; /* Non-overclocked max frequency. */
1340 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
1341
1342 u8 up_threshold; /* Current %busy required to uplock */
1343 u8 down_threshold; /* Current %busy required to downclock */
1344
1345 int last_adj;
1346 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1347
1348 bool enabled;
1349 struct delayed_work autoenable_work;
1350 atomic_t num_waiters;
1351 atomic_t boosts;
1352
1353 /* manual wa residency calculations */
1354 struct intel_rps_ei ei;
1355
1356 /*
1357 * Protects RPS/RC6 register access and PCU communication.
1358 * Must be taken after struct_mutex if nested. Note that
1359 * this lock may be held for long periods of time when
1360 * talking to hw - so only take it when talking to hw!
1361 */
1362 struct mutex hw_lock;
1363 };
1364
1365 /* defined intel_pm.c */
1366 extern spinlock_t mchdev_lock;
1367
1368 struct intel_ilk_power_mgmt {
1369 u8 cur_delay;
1370 u8 min_delay;
1371 u8 max_delay;
1372 u8 fmax;
1373 u8 fstart;
1374
1375 u64 last_count1;
1376 unsigned long last_time1;
1377 unsigned long chipset_power;
1378 u64 last_count2;
1379 u64 last_time2;
1380 unsigned long gfx_power;
1381 u8 corr;
1382
1383 int c_m;
1384 int r_t;
1385 };
1386
1387 struct drm_i915_private;
1388 struct i915_power_well;
1389
1390 struct i915_power_well_ops {
1391 /*
1392 * Synchronize the well's hw state to match the current sw state, for
1393 * example enable/disable it based on the current refcount. Called
1394 * during driver init and resume time, possibly after first calling
1395 * the enable/disable handlers.
1396 */
1397 void (*sync_hw)(struct drm_i915_private *dev_priv,
1398 struct i915_power_well *power_well);
1399 /*
1400 * Enable the well and resources that depend on it (for example
1401 * interrupts located on the well). Called after the 0->1 refcount
1402 * transition.
1403 */
1404 void (*enable)(struct drm_i915_private *dev_priv,
1405 struct i915_power_well *power_well);
1406 /*
1407 * Disable the well and resources that depend on it. Called after
1408 * the 1->0 refcount transition.
1409 */
1410 void (*disable)(struct drm_i915_private *dev_priv,
1411 struct i915_power_well *power_well);
1412 /* Returns the hw enabled state. */
1413 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1414 struct i915_power_well *power_well);
1415 };
1416
1417 /* Power well structure for haswell */
1418 struct i915_power_well {
1419 const char *name;
1420 bool always_on;
1421 /* power well enable/disable usage count */
1422 int count;
1423 /* cached hw enabled state */
1424 bool hw_enabled;
1425 u64 domains;
1426 /* unique identifier for this power well */
1427 enum i915_power_well_id id;
1428 /*
1429 * Arbitraty data associated with this power well. Platform and power
1430 * well specific.
1431 */
1432 union {
1433 struct {
1434 enum dpio_phy phy;
1435 } bxt;
1436 struct {
1437 /* Mask of pipes whose IRQ logic is backed by the pw */
1438 u8 irq_pipe_mask;
1439 /* The pw is backing the VGA functionality */
1440 bool has_vga:1;
1441 bool has_fuses:1;
1442 } hsw;
1443 };
1444 const struct i915_power_well_ops *ops;
1445 };
1446
1447 struct i915_power_domains {
1448 /*
1449 * Power wells needed for initialization at driver init and suspend
1450 * time are on. They are kept on until after the first modeset.
1451 */
1452 bool init_power_on;
1453 bool initializing;
1454 int power_well_count;
1455
1456 struct mutex lock;
1457 int domain_use_count[POWER_DOMAIN_NUM];
1458 struct i915_power_well *power_wells;
1459 };
1460
1461 #define MAX_L3_SLICES 2
1462 struct intel_l3_parity {
1463 u32 *remap_info[MAX_L3_SLICES];
1464 struct work_struct error_work;
1465 int which_slice;
1466 };
1467
1468 struct i915_gem_mm {
1469 /** Memory allocator for GTT stolen memory */
1470 struct drm_mm stolen;
1471 /** Protects the usage of the GTT stolen memory allocator. This is
1472 * always the inner lock when overlapping with struct_mutex. */
1473 struct mutex stolen_lock;
1474
1475 /** List of all objects in gtt_space. Used to restore gtt
1476 * mappings on resume */
1477 struct list_head bound_list;
1478 /**
1479 * List of objects which are not bound to the GTT (thus
1480 * are idle and not used by the GPU). These objects may or may
1481 * not actually have any pages attached.
1482 */
1483 struct list_head unbound_list;
1484
1485 /** List of all objects in gtt_space, currently mmaped by userspace.
1486 * All objects within this list must also be on bound_list.
1487 */
1488 struct list_head userfault_list;
1489
1490 /**
1491 * List of objects which are pending destruction.
1492 */
1493 struct llist_head free_list;
1494 struct work_struct free_work;
1495
1496 /**
1497 * Small stash of WC pages
1498 */
1499 struct pagevec wc_stash;
1500
1501 /** Usable portion of the GTT for GEM */
1502 dma_addr_t stolen_base; /* limited to low memory (32-bit) */
1503
1504 /** PPGTT used for aliasing the PPGTT with the GTT */
1505 struct i915_hw_ppgtt *aliasing_ppgtt;
1506
1507 struct notifier_block oom_notifier;
1508 struct notifier_block vmap_notifier;
1509 struct shrinker shrinker;
1510
1511 /** LRU list of objects with fence regs on them. */
1512 struct list_head fence_list;
1513
1514 /**
1515 * Workqueue to fault in userptr pages, flushed by the execbuf
1516 * when required but otherwise left to userspace to try again
1517 * on EAGAIN.
1518 */
1519 struct workqueue_struct *userptr_wq;
1520
1521 u64 unordered_timeline;
1522
1523 /* the indicator for dispatch video commands on two BSD rings */
1524 atomic_t bsd_engine_dispatch_index;
1525
1526 /** Bit 6 swizzling required for X tiling */
1527 uint32_t bit_6_swizzle_x;
1528 /** Bit 6 swizzling required for Y tiling */
1529 uint32_t bit_6_swizzle_y;
1530
1531 /* accounting, useful for userland debugging */
1532 spinlock_t object_stat_lock;
1533 u64 object_memory;
1534 u32 object_count;
1535 };
1536
1537 struct drm_i915_error_state_buf {
1538 struct drm_i915_private *i915;
1539 unsigned bytes;
1540 unsigned size;
1541 int err;
1542 u8 *buf;
1543 loff_t start;
1544 loff_t pos;
1545 };
1546
1547 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1548 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1549
1550 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */
1551 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */
1552
1553 struct i915_gpu_error {
1554 /* For hangcheck timer */
1555 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1556 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1557
1558 struct delayed_work hangcheck_work;
1559
1560 /* For reset and error_state handling. */
1561 spinlock_t lock;
1562 /* Protected by the above dev->gpu_error.lock. */
1563 struct i915_gpu_state *first_error;
1564
1565 atomic_t pending_fb_pin;
1566
1567 unsigned long missed_irq_rings;
1568
1569 /**
1570 * State variable controlling the reset flow and count
1571 *
1572 * This is a counter which gets incremented when reset is triggered,
1573 *
1574 * Before the reset commences, the I915_RESET_BACKOFF bit is set
1575 * meaning that any waiters holding onto the struct_mutex should
1576 * relinquish the lock immediately in order for the reset to start.
1577 *
1578 * If reset is not completed succesfully, the I915_WEDGE bit is
1579 * set meaning that hardware is terminally sour and there is no
1580 * recovery. All waiters on the reset_queue will be woken when
1581 * that happens.
1582 *
1583 * This counter is used by the wait_seqno code to notice that reset
1584 * event happened and it needs to restart the entire ioctl (since most
1585 * likely the seqno it waited for won't ever signal anytime soon).
1586 *
1587 * This is important for lock-free wait paths, where no contended lock
1588 * naturally enforces the correct ordering between the bail-out of the
1589 * waiter and the gpu reset work code.
1590 */
1591 unsigned long reset_count;
1592
1593 /**
1594 * flags: Control various stages of the GPU reset
1595 *
1596 * #I915_RESET_BACKOFF - When we start a reset, we want to stop any
1597 * other users acquiring the struct_mutex. To do this we set the
1598 * #I915_RESET_BACKOFF bit in the error flags when we detect a reset
1599 * and then check for that bit before acquiring the struct_mutex (in
1600 * i915_mutex_lock_interruptible()?). I915_RESET_BACKOFF serves a
1601 * secondary role in preventing two concurrent global reset attempts.
1602 *
1603 * #I915_RESET_HANDOFF - To perform the actual GPU reset, we need the
1604 * struct_mutex. We try to acquire the struct_mutex in the reset worker,
1605 * but it may be held by some long running waiter (that we cannot
1606 * interrupt without causing trouble). Once we are ready to do the GPU
1607 * reset, we set the I915_RESET_HANDOFF bit and wakeup any waiters. If
1608 * they already hold the struct_mutex and want to participate they can
1609 * inspect the bit and do the reset directly, otherwise the worker
1610 * waits for the struct_mutex.
1611 *
1612 * #I915_RESET_ENGINE[num_engines] - Since the driver doesn't need to
1613 * acquire the struct_mutex to reset an engine, we need an explicit
1614 * flag to prevent two concurrent reset attempts in the same engine.
1615 * As the number of engines continues to grow, allocate the flags from
1616 * the most significant bits.
1617 *
1618 * #I915_WEDGED - If reset fails and we can no longer use the GPU,
1619 * we set the #I915_WEDGED bit. Prior to command submission, e.g.
1620 * i915_gem_request_alloc(), this bit is checked and the sequence
1621 * aborted (with -EIO reported to userspace) if set.
1622 */
1623 unsigned long flags;
1624 #define I915_RESET_BACKOFF 0
1625 #define I915_RESET_HANDOFF 1
1626 #define I915_RESET_MODESET 2
1627 #define I915_WEDGED (BITS_PER_LONG - 1)
1628 #define I915_RESET_ENGINE (I915_WEDGED - I915_NUM_ENGINES)
1629
1630 /** Number of times an engine has been reset */
1631 u32 reset_engine_count[I915_NUM_ENGINES];
1632
1633 /**
1634 * Waitqueue to signal when a hang is detected. Used to for waiters
1635 * to release the struct_mutex for the reset to procede.
1636 */
1637 wait_queue_head_t wait_queue;
1638
1639 /**
1640 * Waitqueue to signal when the reset has completed. Used by clients
1641 * that wait for dev_priv->mm.wedged to settle.
1642 */
1643 wait_queue_head_t reset_queue;
1644
1645 /* For missed irq/seqno simulation. */
1646 unsigned long test_irq_rings;
1647 };
1648
1649 enum modeset_restore {
1650 MODESET_ON_LID_OPEN,
1651 MODESET_DONE,
1652 MODESET_SUSPENDED,
1653 };
1654
1655 #define DP_AUX_A 0x40
1656 #define DP_AUX_B 0x10
1657 #define DP_AUX_C 0x20
1658 #define DP_AUX_D 0x30
1659
1660 #define DDC_PIN_B 0x05
1661 #define DDC_PIN_C 0x04
1662 #define DDC_PIN_D 0x06
1663
1664 struct ddi_vbt_port_info {
1665 /*
1666 * This is an index in the HDMI/DVI DDI buffer translation table.
1667 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1668 * populate this field.
1669 */
1670 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1671 uint8_t hdmi_level_shift;
1672
1673 uint8_t supports_dvi:1;
1674 uint8_t supports_hdmi:1;
1675 uint8_t supports_dp:1;
1676 uint8_t supports_edp:1;
1677
1678 uint8_t alternate_aux_channel;
1679 uint8_t alternate_ddc_pin;
1680
1681 uint8_t dp_boost_level;
1682 uint8_t hdmi_boost_level;
1683 };
1684
1685 enum psr_lines_to_wait {
1686 PSR_0_LINES_TO_WAIT = 0,
1687 PSR_1_LINE_TO_WAIT,
1688 PSR_4_LINES_TO_WAIT,
1689 PSR_8_LINES_TO_WAIT
1690 };
1691
1692 struct intel_vbt_data {
1693 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1694 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1695
1696 /* Feature bits */
1697 unsigned int int_tv_support:1;
1698 unsigned int lvds_dither:1;
1699 unsigned int lvds_vbt:1;
1700 unsigned int int_crt_support:1;
1701 unsigned int lvds_use_ssc:1;
1702 unsigned int display_clock_mode:1;
1703 unsigned int fdi_rx_polarity_inverted:1;
1704 unsigned int panel_type:4;
1705 int lvds_ssc_freq;
1706 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1707
1708 enum drrs_support_type drrs_type;
1709
1710 struct {
1711 int rate;
1712 int lanes;
1713 int preemphasis;
1714 int vswing;
1715 bool low_vswing;
1716 bool initialized;
1717 bool support;
1718 int bpp;
1719 struct edp_power_seq pps;
1720 } edp;
1721
1722 struct {
1723 bool full_link;
1724 bool require_aux_wakeup;
1725 int idle_frames;
1726 enum psr_lines_to_wait lines_to_wait;
1727 int tp1_wakeup_time;
1728 int tp2_tp3_wakeup_time;
1729 } psr;
1730
1731 struct {
1732 u16 pwm_freq_hz;
1733 bool present;
1734 bool active_low_pwm;
1735 u8 min_brightness; /* min_brightness/255 of max */
1736 u8 controller; /* brightness controller number */
1737 enum intel_backlight_type type;
1738 } backlight;
1739
1740 /* MIPI DSI */
1741 struct {
1742 u16 panel_id;
1743 struct mipi_config *config;
1744 struct mipi_pps_data *pps;
1745 u8 seq_version;
1746 u32 size;
1747 u8 *data;
1748 const u8 *sequence[MIPI_SEQ_MAX];
1749 } dsi;
1750
1751 int crt_ddc_pin;
1752
1753 int child_dev_num;
1754 struct child_device_config *child_dev;
1755
1756 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1757 struct sdvo_device_mapping sdvo_mappings[2];
1758 };
1759
1760 enum intel_ddb_partitioning {
1761 INTEL_DDB_PART_1_2,
1762 INTEL_DDB_PART_5_6, /* IVB+ */
1763 };
1764
1765 struct intel_wm_level {
1766 bool enable;
1767 uint32_t pri_val;
1768 uint32_t spr_val;
1769 uint32_t cur_val;
1770 uint32_t fbc_val;
1771 };
1772
1773 struct ilk_wm_values {
1774 uint32_t wm_pipe[3];
1775 uint32_t wm_lp[3];
1776 uint32_t wm_lp_spr[3];
1777 uint32_t wm_linetime[3];
1778 bool enable_fbc_wm;
1779 enum intel_ddb_partitioning partitioning;
1780 };
1781
1782 struct g4x_pipe_wm {
1783 uint16_t plane[I915_MAX_PLANES];
1784 uint16_t fbc;
1785 };
1786
1787 struct g4x_sr_wm {
1788 uint16_t plane;
1789 uint16_t cursor;
1790 uint16_t fbc;
1791 };
1792
1793 struct vlv_wm_ddl_values {
1794 uint8_t plane[I915_MAX_PLANES];
1795 };
1796
1797 struct vlv_wm_values {
1798 struct g4x_pipe_wm pipe[3];
1799 struct g4x_sr_wm sr;
1800 struct vlv_wm_ddl_values ddl[3];
1801 uint8_t level;
1802 bool cxsr;
1803 };
1804
1805 struct g4x_wm_values {
1806 struct g4x_pipe_wm pipe[2];
1807 struct g4x_sr_wm sr;
1808 struct g4x_sr_wm hpll;
1809 bool cxsr;
1810 bool hpll_en;
1811 bool fbc_en;
1812 };
1813
1814 struct skl_ddb_entry {
1815 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1816 };
1817
1818 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1819 {
1820 return entry->end - entry->start;
1821 }
1822
1823 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1824 const struct skl_ddb_entry *e2)
1825 {
1826 if (e1->start == e2->start && e1->end == e2->end)
1827 return true;
1828
1829 return false;
1830 }
1831
1832 struct skl_ddb_allocation {
1833 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1834 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1835 };
1836
1837 struct skl_wm_values {
1838 unsigned dirty_pipes;
1839 struct skl_ddb_allocation ddb;
1840 };
1841
1842 struct skl_wm_level {
1843 bool plane_en;
1844 uint16_t plane_res_b;
1845 uint8_t plane_res_l;
1846 };
1847
1848 /* Stores plane specific WM parameters */
1849 struct skl_wm_params {
1850 bool x_tiled, y_tiled;
1851 bool rc_surface;
1852 uint32_t width;
1853 uint8_t cpp;
1854 uint32_t plane_pixel_rate;
1855 uint32_t y_min_scanlines;
1856 uint32_t plane_bytes_per_line;
1857 uint_fixed_16_16_t plane_blocks_per_line;
1858 uint_fixed_16_16_t y_tile_minimum;
1859 uint32_t linetime_us;
1860 };
1861
1862 /*
1863 * This struct helps tracking the state needed for runtime PM, which puts the
1864 * device in PCI D3 state. Notice that when this happens, nothing on the
1865 * graphics device works, even register access, so we don't get interrupts nor
1866 * anything else.
1867 *
1868 * Every piece of our code that needs to actually touch the hardware needs to
1869 * either call intel_runtime_pm_get or call intel_display_power_get with the
1870 * appropriate power domain.
1871 *
1872 * Our driver uses the autosuspend delay feature, which means we'll only really
1873 * suspend if we stay with zero refcount for a certain amount of time. The
1874 * default value is currently very conservative (see intel_runtime_pm_enable), but
1875 * it can be changed with the standard runtime PM files from sysfs.
1876 *
1877 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1878 * goes back to false exactly before we reenable the IRQs. We use this variable
1879 * to check if someone is trying to enable/disable IRQs while they're supposed
1880 * to be disabled. This shouldn't happen and we'll print some error messages in
1881 * case it happens.
1882 *
1883 * For more, read the Documentation/power/runtime_pm.txt.
1884 */
1885 struct i915_runtime_pm {
1886 atomic_t wakeref_count;
1887 bool suspended;
1888 bool irqs_enabled;
1889 };
1890
1891 enum intel_pipe_crc_source {
1892 INTEL_PIPE_CRC_SOURCE_NONE,
1893 INTEL_PIPE_CRC_SOURCE_PLANE1,
1894 INTEL_PIPE_CRC_SOURCE_PLANE2,
1895 INTEL_PIPE_CRC_SOURCE_PF,
1896 INTEL_PIPE_CRC_SOURCE_PIPE,
1897 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1898 INTEL_PIPE_CRC_SOURCE_TV,
1899 INTEL_PIPE_CRC_SOURCE_DP_B,
1900 INTEL_PIPE_CRC_SOURCE_DP_C,
1901 INTEL_PIPE_CRC_SOURCE_DP_D,
1902 INTEL_PIPE_CRC_SOURCE_AUTO,
1903 INTEL_PIPE_CRC_SOURCE_MAX,
1904 };
1905
1906 struct intel_pipe_crc_entry {
1907 uint32_t frame;
1908 uint32_t crc[5];
1909 };
1910
1911 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1912 struct intel_pipe_crc {
1913 spinlock_t lock;
1914 bool opened; /* exclusive access to the result file */
1915 struct intel_pipe_crc_entry *entries;
1916 enum intel_pipe_crc_source source;
1917 int head, tail;
1918 wait_queue_head_t wq;
1919 int skipped;
1920 };
1921
1922 struct i915_frontbuffer_tracking {
1923 spinlock_t lock;
1924
1925 /*
1926 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1927 * scheduled flips.
1928 */
1929 unsigned busy_bits;
1930 unsigned flip_bits;
1931 };
1932
1933 struct i915_wa_reg {
1934 i915_reg_t addr;
1935 u32 value;
1936 /* bitmask representing WA bits */
1937 u32 mask;
1938 };
1939
1940 /*
1941 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1942 * allowing it for RCS as we don't foresee any requirement of having
1943 * a whitelist for other engines. When it is really required for
1944 * other engines then the limit need to be increased.
1945 */
1946 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1947
1948 struct i915_workarounds {
1949 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1950 u32 count;
1951 u32 hw_whitelist_count[I915_NUM_ENGINES];
1952 };
1953
1954 struct i915_virtual_gpu {
1955 bool active;
1956 u32 caps;
1957 };
1958
1959 /* used in computing the new watermarks state */
1960 struct intel_wm_config {
1961 unsigned int num_pipes_active;
1962 bool sprites_enabled;
1963 bool sprites_scaled;
1964 };
1965
1966 struct i915_oa_format {
1967 u32 format;
1968 int size;
1969 };
1970
1971 struct i915_oa_reg {
1972 i915_reg_t addr;
1973 u32 value;
1974 };
1975
1976 struct i915_oa_config {
1977 char uuid[UUID_STRING_LEN + 1];
1978 int id;
1979
1980 const struct i915_oa_reg *mux_regs;
1981 u32 mux_regs_len;
1982 const struct i915_oa_reg *b_counter_regs;
1983 u32 b_counter_regs_len;
1984 const struct i915_oa_reg *flex_regs;
1985 u32 flex_regs_len;
1986
1987 struct attribute_group sysfs_metric;
1988 struct attribute *attrs[2];
1989 struct device_attribute sysfs_metric_id;
1990
1991 atomic_t ref_count;
1992 };
1993
1994 struct i915_perf_stream;
1995
1996 /**
1997 * struct i915_perf_stream_ops - the OPs to support a specific stream type
1998 */
1999 struct i915_perf_stream_ops {
2000 /**
2001 * @enable: Enables the collection of HW samples, either in response to
2002 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
2003 * without `I915_PERF_FLAG_DISABLED`.
2004 */
2005 void (*enable)(struct i915_perf_stream *stream);
2006
2007 /**
2008 * @disable: Disables the collection of HW samples, either in response
2009 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
2010 * the stream.
2011 */
2012 void (*disable)(struct i915_perf_stream *stream);
2013
2014 /**
2015 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
2016 * once there is something ready to read() for the stream
2017 */
2018 void (*poll_wait)(struct i915_perf_stream *stream,
2019 struct file *file,
2020 poll_table *wait);
2021
2022 /**
2023 * @wait_unlocked: For handling a blocking read, wait until there is
2024 * something to ready to read() for the stream. E.g. wait on the same
2025 * wait queue that would be passed to poll_wait().
2026 */
2027 int (*wait_unlocked)(struct i915_perf_stream *stream);
2028
2029 /**
2030 * @read: Copy buffered metrics as records to userspace
2031 * **buf**: the userspace, destination buffer
2032 * **count**: the number of bytes to copy, requested by userspace
2033 * **offset**: zero at the start of the read, updated as the read
2034 * proceeds, it represents how many bytes have been copied so far and
2035 * the buffer offset for copying the next record.
2036 *
2037 * Copy as many buffered i915 perf samples and records for this stream
2038 * to userspace as will fit in the given buffer.
2039 *
2040 * Only write complete records; returning -%ENOSPC if there isn't room
2041 * for a complete record.
2042 *
2043 * Return any error condition that results in a short read such as
2044 * -%ENOSPC or -%EFAULT, even though these may be squashed before
2045 * returning to userspace.
2046 */
2047 int (*read)(struct i915_perf_stream *stream,
2048 char __user *buf,
2049 size_t count,
2050 size_t *offset);
2051
2052 /**
2053 * @destroy: Cleanup any stream specific resources.
2054 *
2055 * The stream will always be disabled before this is called.
2056 */
2057 void (*destroy)(struct i915_perf_stream *stream);
2058 };
2059
2060 /**
2061 * struct i915_perf_stream - state for a single open stream FD
2062 */
2063 struct i915_perf_stream {
2064 /**
2065 * @dev_priv: i915 drm device
2066 */
2067 struct drm_i915_private *dev_priv;
2068
2069 /**
2070 * @link: Links the stream into ``&drm_i915_private->streams``
2071 */
2072 struct list_head link;
2073
2074 /**
2075 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
2076 * properties given when opening a stream, representing the contents
2077 * of a single sample as read() by userspace.
2078 */
2079 u32 sample_flags;
2080
2081 /**
2082 * @sample_size: Considering the configured contents of a sample
2083 * combined with the required header size, this is the total size
2084 * of a single sample record.
2085 */
2086 int sample_size;
2087
2088 /**
2089 * @ctx: %NULL if measuring system-wide across all contexts or a
2090 * specific context that is being monitored.
2091 */
2092 struct i915_gem_context *ctx;
2093
2094 /**
2095 * @enabled: Whether the stream is currently enabled, considering
2096 * whether the stream was opened in a disabled state and based
2097 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
2098 */
2099 bool enabled;
2100
2101 /**
2102 * @ops: The callbacks providing the implementation of this specific
2103 * type of configured stream.
2104 */
2105 const struct i915_perf_stream_ops *ops;
2106
2107 /**
2108 * @oa_config: The OA configuration used by the stream.
2109 */
2110 struct i915_oa_config *oa_config;
2111 };
2112
2113 /**
2114 * struct i915_oa_ops - Gen specific implementation of an OA unit stream
2115 */
2116 struct i915_oa_ops {
2117 /**
2118 * @is_valid_b_counter_reg: Validates register's address for
2119 * programming boolean counters for a particular platform.
2120 */
2121 bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
2122 u32 addr);
2123
2124 /**
2125 * @is_valid_mux_reg: Validates register's address for programming mux
2126 * for a particular platform.
2127 */
2128 bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
2129
2130 /**
2131 * @is_valid_flex_reg: Validates register's address for programming
2132 * flex EU filtering for a particular platform.
2133 */
2134 bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
2135
2136 /**
2137 * @init_oa_buffer: Resets the head and tail pointers of the
2138 * circular buffer for periodic OA reports.
2139 *
2140 * Called when first opening a stream for OA metrics, but also may be
2141 * called in response to an OA buffer overflow or other error
2142 * condition.
2143 *
2144 * Note it may be necessary to clear the full OA buffer here as part of
2145 * maintaining the invariable that new reports must be written to
2146 * zeroed memory for us to be able to reliable detect if an expected
2147 * report has not yet landed in memory. (At least on Haswell the OA
2148 * buffer tail pointer is not synchronized with reports being visible
2149 * to the CPU)
2150 */
2151 void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
2152
2153 /**
2154 * @enable_metric_set: Selects and applies any MUX configuration to set
2155 * up the Boolean and Custom (B/C) counters that are part of the
2156 * counter reports being sampled. May apply system constraints such as
2157 * disabling EU clock gating as required.
2158 */
2159 int (*enable_metric_set)(struct drm_i915_private *dev_priv,
2160 const struct i915_oa_config *oa_config);
2161
2162 /**
2163 * @disable_metric_set: Remove system constraints associated with using
2164 * the OA unit.
2165 */
2166 void (*disable_metric_set)(struct drm_i915_private *dev_priv);
2167
2168 /**
2169 * @oa_enable: Enable periodic sampling
2170 */
2171 void (*oa_enable)(struct drm_i915_private *dev_priv);
2172
2173 /**
2174 * @oa_disable: Disable periodic sampling
2175 */
2176 void (*oa_disable)(struct drm_i915_private *dev_priv);
2177
2178 /**
2179 * @read: Copy data from the circular OA buffer into a given userspace
2180 * buffer.
2181 */
2182 int (*read)(struct i915_perf_stream *stream,
2183 char __user *buf,
2184 size_t count,
2185 size_t *offset);
2186
2187 /**
2188 * @oa_hw_tail_read: read the OA tail pointer register
2189 *
2190 * In particular this enables us to share all the fiddly code for
2191 * handling the OA unit tail pointer race that affects multiple
2192 * generations.
2193 */
2194 u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
2195 };
2196
2197 struct intel_cdclk_state {
2198 unsigned int cdclk, vco, ref;
2199 };
2200
2201 struct drm_i915_private {
2202 struct drm_device drm;
2203
2204 struct kmem_cache *objects;
2205 struct kmem_cache *vmas;
2206 struct kmem_cache *luts;
2207 struct kmem_cache *requests;
2208 struct kmem_cache *dependencies;
2209 struct kmem_cache *priorities;
2210
2211 const struct intel_device_info info;
2212
2213 void __iomem *regs;
2214
2215 struct intel_uncore uncore;
2216
2217 struct i915_virtual_gpu vgpu;
2218
2219 struct intel_gvt *gvt;
2220
2221 struct intel_huc huc;
2222 struct intel_guc guc;
2223
2224 struct intel_csr csr;
2225
2226 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
2227
2228 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
2229 * controller on different i2c buses. */
2230 struct mutex gmbus_mutex;
2231
2232 /**
2233 * Base address of the gmbus and gpio block.
2234 */
2235 uint32_t gpio_mmio_base;
2236
2237 /* MMIO base address for MIPI regs */
2238 uint32_t mipi_mmio_base;
2239
2240 uint32_t psr_mmio_base;
2241
2242 uint32_t pps_mmio_base;
2243
2244 wait_queue_head_t gmbus_wait_queue;
2245
2246 struct pci_dev *bridge_dev;
2247 struct i915_gem_context *kernel_context;
2248 struct intel_engine_cs *engine[I915_NUM_ENGINES];
2249 struct i915_vma *semaphore;
2250
2251 struct drm_dma_handle *status_page_dmah;
2252 struct resource mch_res;
2253
2254 /* protects the irq masks */
2255 spinlock_t irq_lock;
2256
2257 bool display_irqs_enabled;
2258
2259 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
2260 struct pm_qos_request pm_qos;
2261
2262 /* Sideband mailbox protection */
2263 struct mutex sb_lock;
2264
2265 /** Cached value of IMR to avoid reads in updating the bitfield */
2266 union {
2267 u32 irq_mask;
2268 u32 de_irq_mask[I915_MAX_PIPES];
2269 };
2270 u32 gt_irq_mask;
2271 u32 pm_imr;
2272 u32 pm_ier;
2273 u32 pm_rps_events;
2274 u32 pm_guc_events;
2275 u32 pipestat_irq_mask[I915_MAX_PIPES];
2276
2277 struct i915_hotplug hotplug;
2278 struct intel_fbc fbc;
2279 struct i915_drrs drrs;
2280 struct intel_opregion opregion;
2281 struct intel_vbt_data vbt;
2282
2283 bool preserve_bios_swizzle;
2284
2285 /* overlay */
2286 struct intel_overlay *overlay;
2287
2288 /* backlight registers and fields in struct intel_panel */
2289 struct mutex backlight_lock;
2290
2291 /* LVDS info */
2292 bool no_aux_handshake;
2293
2294 /* protects panel power sequencer state */
2295 struct mutex pps_mutex;
2296
2297 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
2298 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
2299
2300 unsigned int fsb_freq, mem_freq, is_ddr3;
2301 unsigned int skl_preferred_vco_freq;
2302 unsigned int max_cdclk_freq;
2303
2304 unsigned int max_dotclk_freq;
2305 unsigned int rawclk_freq;
2306 unsigned int hpll_freq;
2307 unsigned int czclk_freq;
2308
2309 struct {
2310 /*
2311 * The current logical cdclk state.
2312 * See intel_atomic_state.cdclk.logical
2313 *
2314 * For reading holding any crtc lock is sufficient,
2315 * for writing must hold all of them.
2316 */
2317 struct intel_cdclk_state logical;
2318 /*
2319 * The current actual cdclk state.
2320 * See intel_atomic_state.cdclk.actual
2321 */
2322 struct intel_cdclk_state actual;
2323 /* The current hardware cdclk state */
2324 struct intel_cdclk_state hw;
2325 } cdclk;
2326
2327 /**
2328 * wq - Driver workqueue for GEM.
2329 *
2330 * NOTE: Work items scheduled here are not allowed to grab any modeset
2331 * locks, for otherwise the flushing done in the pageflip code will
2332 * result in deadlocks.
2333 */
2334 struct workqueue_struct *wq;
2335
2336 /* Display functions */
2337 struct drm_i915_display_funcs display;
2338
2339 /* PCH chipset type */
2340 enum intel_pch pch_type;
2341 unsigned short pch_id;
2342
2343 unsigned long quirks;
2344
2345 enum modeset_restore modeset_restore;
2346 struct mutex modeset_restore_lock;
2347 struct drm_atomic_state *modeset_restore_state;
2348 struct drm_modeset_acquire_ctx reset_ctx;
2349
2350 struct list_head vm_list; /* Global list of all address spaces */
2351 struct i915_ggtt ggtt; /* VM representing the global address space */
2352
2353 struct i915_gem_mm mm;
2354 DECLARE_HASHTABLE(mm_structs, 7);
2355 struct mutex mm_lock;
2356
2357 struct intel_ppat ppat;
2358
2359 /* Kernel Modesetting */
2360
2361 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
2362 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
2363
2364 #ifdef CONFIG_DEBUG_FS
2365 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
2366 #endif
2367
2368 /* dpll and cdclk state is protected by connection_mutex */
2369 int num_shared_dpll;
2370 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
2371 const struct intel_dpll_mgr *dpll_mgr;
2372
2373 /*
2374 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
2375 * Must be global rather than per dpll, because on some platforms
2376 * plls share registers.
2377 */
2378 struct mutex dpll_lock;
2379
2380 unsigned int active_crtcs;
2381 /* minimum acceptable cdclk for each pipe */
2382 int min_cdclk[I915_MAX_PIPES];
2383
2384 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
2385
2386 struct i915_workarounds workarounds;
2387
2388 struct i915_frontbuffer_tracking fb_tracking;
2389
2390 struct intel_atomic_helper {
2391 struct llist_head free_list;
2392 struct work_struct free_work;
2393 } atomic_helper;
2394
2395 u16 orig_clock;
2396
2397 bool mchbar_need_disable;
2398
2399 struct intel_l3_parity l3_parity;
2400
2401 /* Cannot be determined by PCIID. You must always read a register. */
2402 u32 edram_cap;
2403
2404 /* gen6+ rps state */
2405 struct intel_gen6_power_mgmt rps;
2406
2407 /* ilk-only ips/rps state. Everything in here is protected by the global
2408 * mchdev_lock in intel_pm.c */
2409 struct intel_ilk_power_mgmt ips;
2410
2411 struct i915_power_domains power_domains;
2412
2413 struct i915_psr psr;
2414
2415 struct i915_gpu_error gpu_error;
2416
2417 struct drm_i915_gem_object *vlv_pctx;
2418
2419 /* list of fbdev register on this device */
2420 struct intel_fbdev *fbdev;
2421 struct work_struct fbdev_suspend_work;
2422
2423 struct drm_property *broadcast_rgb_property;
2424 struct drm_property *force_audio_property;
2425
2426 /* hda/i915 audio component */
2427 struct i915_audio_component *audio_component;
2428 bool audio_component_registered;
2429 /**
2430 * av_mutex - mutex for audio/video sync
2431 *
2432 */
2433 struct mutex av_mutex;
2434
2435 struct {
2436 struct list_head list;
2437 struct llist_head free_list;
2438 struct work_struct free_work;
2439
2440 /* The hw wants to have a stable context identifier for the
2441 * lifetime of the context (for OA, PASID, faults, etc).
2442 * This is limited in execlists to 21 bits.
2443 */
2444 struct ida hw_ida;
2445 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
2446 } contexts;
2447
2448 u32 fdi_rx_config;
2449
2450 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
2451 u32 chv_phy_control;
2452 /*
2453 * Shadows for CHV DPLL_MD regs to keep the state
2454 * checker somewhat working in the presence hardware
2455 * crappiness (can't read out DPLL_MD for pipes B & C).
2456 */
2457 u32 chv_dpll_md[I915_MAX_PIPES];
2458 u32 bxt_phy_grc;
2459
2460 u32 suspend_count;
2461 bool suspended_to_idle;
2462 struct i915_suspend_saved_registers regfile;
2463 struct vlv_s0ix_state vlv_s0ix_state;
2464
2465 enum {
2466 I915_SAGV_UNKNOWN = 0,
2467 I915_SAGV_DISABLED,
2468 I915_SAGV_ENABLED,
2469 I915_SAGV_NOT_CONTROLLED
2470 } sagv_status;
2471
2472 struct {
2473 /*
2474 * Raw watermark latency values:
2475 * in 0.1us units for WM0,
2476 * in 0.5us units for WM1+.
2477 */
2478 /* primary */
2479 uint16_t pri_latency[5];
2480 /* sprite */
2481 uint16_t spr_latency[5];
2482 /* cursor */
2483 uint16_t cur_latency[5];
2484 /*
2485 * Raw watermark memory latency values
2486 * for SKL for all 8 levels
2487 * in 1us units.
2488 */
2489 uint16_t skl_latency[8];
2490
2491 /* current hardware state */
2492 union {
2493 struct ilk_wm_values hw;
2494 struct skl_wm_values skl_hw;
2495 struct vlv_wm_values vlv;
2496 struct g4x_wm_values g4x;
2497 };
2498
2499 uint8_t max_level;
2500
2501 /*
2502 * Should be held around atomic WM register writing; also
2503 * protects * intel_crtc->wm.active and
2504 * cstate->wm.need_postvbl_update.
2505 */
2506 struct mutex wm_mutex;
2507
2508 /*
2509 * Set during HW readout of watermarks/DDB. Some platforms
2510 * need to know when we're still using BIOS-provided values
2511 * (which we don't fully trust).
2512 */
2513 bool distrust_bios_wm;
2514 } wm;
2515
2516 struct i915_runtime_pm pm;
2517
2518 struct {
2519 bool initialized;
2520
2521 struct kobject *metrics_kobj;
2522 struct ctl_table_header *sysctl_header;
2523
2524 /*
2525 * Lock associated with adding/modifying/removing OA configs
2526 * in dev_priv->perf.metrics_idr.
2527 */
2528 struct mutex metrics_lock;
2529
2530 /*
2531 * List of dynamic configurations, you need to hold
2532 * dev_priv->perf.metrics_lock to access it.
2533 */
2534 struct idr metrics_idr;
2535
2536 /*
2537 * Lock associated with anything below within this structure
2538 * except exclusive_stream.
2539 */
2540 struct mutex lock;
2541 struct list_head streams;
2542
2543 struct {
2544 /*
2545 * The stream currently using the OA unit. If accessed
2546 * outside a syscall associated to its file
2547 * descriptor, you need to hold
2548 * dev_priv->drm.struct_mutex.
2549 */
2550 struct i915_perf_stream *exclusive_stream;
2551
2552 u32 specific_ctx_id;
2553
2554 struct hrtimer poll_check_timer;
2555 wait_queue_head_t poll_wq;
2556 bool pollin;
2557
2558 /**
2559 * For rate limiting any notifications of spurious
2560 * invalid OA reports
2561 */
2562 struct ratelimit_state spurious_report_rs;
2563
2564 bool periodic;
2565 int period_exponent;
2566 int timestamp_frequency;
2567
2568 struct i915_oa_config test_config;
2569
2570 struct {
2571 struct i915_vma *vma;
2572 u8 *vaddr;
2573 u32 last_ctx_id;
2574 int format;
2575 int format_size;
2576
2577 /**
2578 * Locks reads and writes to all head/tail state
2579 *
2580 * Consider: the head and tail pointer state
2581 * needs to be read consistently from a hrtimer
2582 * callback (atomic context) and read() fop
2583 * (user context) with tail pointer updates
2584 * happening in atomic context and head updates
2585 * in user context and the (unlikely)
2586 * possibility of read() errors needing to
2587 * reset all head/tail state.
2588 *
2589 * Note: Contention or performance aren't
2590 * currently a significant concern here
2591 * considering the relatively low frequency of
2592 * hrtimer callbacks (5ms period) and that
2593 * reads typically only happen in response to a
2594 * hrtimer event and likely complete before the
2595 * next callback.
2596 *
2597 * Note: This lock is not held *while* reading
2598 * and copying data to userspace so the value
2599 * of head observed in htrimer callbacks won't
2600 * represent any partial consumption of data.
2601 */
2602 spinlock_t ptr_lock;
2603
2604 /**
2605 * One 'aging' tail pointer and one 'aged'
2606 * tail pointer ready to used for reading.
2607 *
2608 * Initial values of 0xffffffff are invalid
2609 * and imply that an update is required
2610 * (and should be ignored by an attempted
2611 * read)
2612 */
2613 struct {
2614 u32 offset;
2615 } tails[2];
2616
2617 /**
2618 * Index for the aged tail ready to read()
2619 * data up to.
2620 */
2621 unsigned int aged_tail_idx;
2622
2623 /**
2624 * A monotonic timestamp for when the current
2625 * aging tail pointer was read; used to
2626 * determine when it is old enough to trust.
2627 */
2628 u64 aging_timestamp;
2629
2630 /**
2631 * Although we can always read back the head
2632 * pointer register, we prefer to avoid
2633 * trusting the HW state, just to avoid any
2634 * risk that some hardware condition could
2635 * somehow bump the head pointer unpredictably
2636 * and cause us to forward the wrong OA buffer
2637 * data to userspace.
2638 */
2639 u32 head;
2640 } oa_buffer;
2641
2642 u32 gen7_latched_oastatus1;
2643 u32 ctx_oactxctrl_offset;
2644 u32 ctx_flexeu0_offset;
2645
2646 /**
2647 * The RPT_ID/reason field for Gen8+ includes a bit
2648 * to determine if the CTX ID in the report is valid
2649 * but the specific bit differs between Gen 8 and 9
2650 */
2651 u32 gen8_valid_ctx_bit;
2652
2653 struct i915_oa_ops ops;
2654 const struct i915_oa_format *oa_formats;
2655 } oa;
2656 } perf;
2657
2658 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2659 struct {
2660 void (*resume)(struct drm_i915_private *);
2661 void (*cleanup_engine)(struct intel_engine_cs *engine);
2662
2663 struct list_head timelines;
2664 struct i915_gem_timeline global_timeline;
2665 u32 active_requests;
2666
2667 /**
2668 * Is the GPU currently considered idle, or busy executing
2669 * userspace requests? Whilst idle, we allow runtime power
2670 * management to power down the hardware and display clocks.
2671 * In order to reduce the effect on performance, there
2672 * is a slight delay before we do so.
2673 */
2674 bool awake;
2675
2676 /**
2677 * We leave the user IRQ off as much as possible,
2678 * but this means that requests will finish and never
2679 * be retired once the system goes idle. Set a timer to
2680 * fire periodically while the ring is running. When it
2681 * fires, go retire requests.
2682 */
2683 struct delayed_work retire_work;
2684
2685 /**
2686 * When we detect an idle GPU, we want to turn on
2687 * powersaving features. So once we see that there
2688 * are no more requests outstanding and no more
2689 * arrive within a small period of time, we fire
2690 * off the idle_work.
2691 */
2692 struct delayed_work idle_work;
2693
2694 ktime_t last_init_time;
2695 } gt;
2696
2697 /* perform PHY state sanity checks? */
2698 bool chv_phy_assert[2];
2699
2700 bool ipc_enabled;
2701
2702 /* Used to save the pipe-to-encoder mapping for audio */
2703 struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2704
2705 /* necessary resource sharing with HDMI LPE audio driver. */
2706 struct {
2707 struct platform_device *platdev;
2708 int irq;
2709 } lpe_audio;
2710
2711 /*
2712 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2713 * will be rejected. Instead look for a better place.
2714 */
2715 };
2716
2717 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2718 {
2719 return container_of(dev, struct drm_i915_private, drm);
2720 }
2721
2722 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2723 {
2724 return to_i915(dev_get_drvdata(kdev));
2725 }
2726
2727 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2728 {
2729 return container_of(guc, struct drm_i915_private, guc);
2730 }
2731
2732 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2733 {
2734 return container_of(huc, struct drm_i915_private, huc);
2735 }
2736
2737 /* Simple iterator over all initialised engines */
2738 #define for_each_engine(engine__, dev_priv__, id__) \
2739 for ((id__) = 0; \
2740 (id__) < I915_NUM_ENGINES; \
2741 (id__)++) \
2742 for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2743
2744 /* Iterator over subset of engines selected by mask */
2745 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2746 for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask; \
2747 tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2748
2749 enum hdmi_force_audio {
2750 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2751 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2752 HDMI_AUDIO_AUTO, /* trust EDID */
2753 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2754 };
2755
2756 #define I915_GTT_OFFSET_NONE ((u32)-1)
2757
2758 /*
2759 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2760 * considered to be the frontbuffer for the given plane interface-wise. This
2761 * doesn't mean that the hw necessarily already scans it out, but that any
2762 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2763 *
2764 * We have one bit per pipe and per scanout plane type.
2765 */
2766 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2767 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2768 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2769 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2770 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2771 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2772 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2773 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2774 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2775 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2776 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2777 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2778
2779 /*
2780 * Optimised SGL iterator for GEM objects
2781 */
2782 static __always_inline struct sgt_iter {
2783 struct scatterlist *sgp;
2784 union {
2785 unsigned long pfn;
2786 dma_addr_t dma;
2787 };
2788 unsigned int curr;
2789 unsigned int max;
2790 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2791 struct sgt_iter s = { .sgp = sgl };
2792
2793 if (s.sgp) {
2794 s.max = s.curr = s.sgp->offset;
2795 s.max += s.sgp->length;
2796 if (dma)
2797 s.dma = sg_dma_address(s.sgp);
2798 else
2799 s.pfn = page_to_pfn(sg_page(s.sgp));
2800 }
2801
2802 return s;
2803 }
2804
2805 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2806 {
2807 ++sg;
2808 if (unlikely(sg_is_chain(sg)))
2809 sg = sg_chain_ptr(sg);
2810 return sg;
2811 }
2812
2813 /**
2814 * __sg_next - return the next scatterlist entry in a list
2815 * @sg: The current sg entry
2816 *
2817 * Description:
2818 * If the entry is the last, return NULL; otherwise, step to the next
2819 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2820 * otherwise just return the pointer to the current element.
2821 **/
2822 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2823 {
2824 #ifdef CONFIG_DEBUG_SG
2825 BUG_ON(sg->sg_magic != SG_MAGIC);
2826 #endif
2827 return sg_is_last(sg) ? NULL : ____sg_next(sg);
2828 }
2829
2830 /**
2831 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2832 * @__dmap: DMA address (output)
2833 * @__iter: 'struct sgt_iter' (iterator state, internal)
2834 * @__sgt: sg_table to iterate over (input)
2835 */
2836 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2837 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2838 ((__dmap) = (__iter).dma + (__iter).curr); \
2839 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \
2840 (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0)
2841
2842 /**
2843 * for_each_sgt_page - iterate over the pages of the given sg_table
2844 * @__pp: page pointer (output)
2845 * @__iter: 'struct sgt_iter' (iterator state, internal)
2846 * @__sgt: sg_table to iterate over (input)
2847 */
2848 #define for_each_sgt_page(__pp, __iter, __sgt) \
2849 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2850 ((__pp) = (__iter).pfn == 0 ? NULL : \
2851 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2852 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \
2853 (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0)
2854
2855 static inline unsigned int i915_sg_segment_size(void)
2856 {
2857 unsigned int size = swiotlb_max_segment();
2858
2859 if (size == 0)
2860 return SCATTERLIST_MAX_SEGMENT;
2861
2862 size = rounddown(size, PAGE_SIZE);
2863 /* swiotlb_max_segment_size can return 1 byte when it means one page. */
2864 if (size < PAGE_SIZE)
2865 size = PAGE_SIZE;
2866
2867 return size;
2868 }
2869
2870 static inline const struct intel_device_info *
2871 intel_info(const struct drm_i915_private *dev_priv)
2872 {
2873 return &dev_priv->info;
2874 }
2875
2876 #define INTEL_INFO(dev_priv) intel_info((dev_priv))
2877
2878 #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen)
2879 #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id)
2880
2881 #define REVID_FOREVER 0xff
2882 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision)
2883
2884 #define GEN_FOREVER (0)
2885
2886 #define INTEL_GEN_MASK(s, e) ( \
2887 BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \
2888 BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \
2889 GENMASK((e) != GEN_FOREVER ? (e) - 1 : BITS_PER_LONG - 1, \
2890 (s) != GEN_FOREVER ? (s) - 1 : 0) \
2891 )
2892
2893 /*
2894 * Returns true if Gen is in inclusive range [Start, End].
2895 *
2896 * Use GEN_FOREVER for unbound start and or end.
2897 */
2898 #define IS_GEN(dev_priv, s, e) \
2899 (!!((dev_priv)->info.gen_mask & INTEL_GEN_MASK((s), (e))))
2900
2901 /*
2902 * Return true if revision is in range [since,until] inclusive.
2903 *
2904 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2905 */
2906 #define IS_REVID(p, since, until) \
2907 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2908
2909 #define IS_I830(dev_priv) ((dev_priv)->info.platform == INTEL_I830)
2910 #define IS_I845G(dev_priv) ((dev_priv)->info.platform == INTEL_I845G)
2911 #define IS_I85X(dev_priv) ((dev_priv)->info.platform == INTEL_I85X)
2912 #define IS_I865G(dev_priv) ((dev_priv)->info.platform == INTEL_I865G)
2913 #define IS_I915G(dev_priv) ((dev_priv)->info.platform == INTEL_I915G)
2914 #define IS_I915GM(dev_priv) ((dev_priv)->info.platform == INTEL_I915GM)
2915 #define IS_I945G(dev_priv) ((dev_priv)->info.platform == INTEL_I945G)
2916 #define IS_I945GM(dev_priv) ((dev_priv)->info.platform == INTEL_I945GM)
2917 #define IS_I965G(dev_priv) ((dev_priv)->info.platform == INTEL_I965G)
2918 #define IS_I965GM(dev_priv) ((dev_priv)->info.platform == INTEL_I965GM)
2919 #define IS_G45(dev_priv) ((dev_priv)->info.platform == INTEL_G45)
2920 #define IS_GM45(dev_priv) ((dev_priv)->info.platform == INTEL_GM45)
2921 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv))
2922 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001)
2923 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011)
2924 #define IS_PINEVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_PINEVIEW)
2925 #define IS_G33(dev_priv) ((dev_priv)->info.platform == INTEL_G33)
2926 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046)
2927 #define IS_IVYBRIDGE(dev_priv) ((dev_priv)->info.platform == INTEL_IVYBRIDGE)
2928 #define IS_IVB_GT1(dev_priv) (IS_IVYBRIDGE(dev_priv) && \
2929 (dev_priv)->info.gt == 1)
2930 #define IS_VALLEYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_VALLEYVIEW)
2931 #define IS_CHERRYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_CHERRYVIEW)
2932 #define IS_HASWELL(dev_priv) ((dev_priv)->info.platform == INTEL_HASWELL)
2933 #define IS_BROADWELL(dev_priv) ((dev_priv)->info.platform == INTEL_BROADWELL)
2934 #define IS_SKYLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_SKYLAKE)
2935 #define IS_BROXTON(dev_priv) ((dev_priv)->info.platform == INTEL_BROXTON)
2936 #define IS_KABYLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_KABYLAKE)
2937 #define IS_GEMINILAKE(dev_priv) ((dev_priv)->info.platform == INTEL_GEMINILAKE)
2938 #define IS_COFFEELAKE(dev_priv) ((dev_priv)->info.platform == INTEL_COFFEELAKE)
2939 #define IS_CANNONLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_CANNONLAKE)
2940 #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile)
2941 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2942 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2943 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \
2944 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \
2945 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \
2946 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2947 /* ULX machines are also considered ULT. */
2948 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \
2949 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2950 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \
2951 (dev_priv)->info.gt == 3)
2952 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \
2953 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2954 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \
2955 (dev_priv)->info.gt == 3)
2956 /* ULX machines are also considered ULT. */
2957 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \
2958 INTEL_DEVID(dev_priv) == 0x0A1E)
2959 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \
2960 INTEL_DEVID(dev_priv) == 0x1913 || \
2961 INTEL_DEVID(dev_priv) == 0x1916 || \
2962 INTEL_DEVID(dev_priv) == 0x1921 || \
2963 INTEL_DEVID(dev_priv) == 0x1926)
2964 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \
2965 INTEL_DEVID(dev_priv) == 0x1915 || \
2966 INTEL_DEVID(dev_priv) == 0x191E)
2967 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \
2968 INTEL_DEVID(dev_priv) == 0x5913 || \
2969 INTEL_DEVID(dev_priv) == 0x5916 || \
2970 INTEL_DEVID(dev_priv) == 0x5921 || \
2971 INTEL_DEVID(dev_priv) == 0x5926)
2972 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \
2973 INTEL_DEVID(dev_priv) == 0x5915 || \
2974 INTEL_DEVID(dev_priv) == 0x591E)
2975 #define IS_SKL_GT2(dev_priv) (IS_SKYLAKE(dev_priv) && \
2976 (dev_priv)->info.gt == 2)
2977 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \
2978 (dev_priv)->info.gt == 3)
2979 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \
2980 (dev_priv)->info.gt == 4)
2981 #define IS_KBL_GT2(dev_priv) (IS_KABYLAKE(dev_priv) && \
2982 (dev_priv)->info.gt == 2)
2983 #define IS_KBL_GT3(dev_priv) (IS_KABYLAKE(dev_priv) && \
2984 (dev_priv)->info.gt == 3)
2985 #define IS_CFL_ULT(dev_priv) (IS_COFFEELAKE(dev_priv) && \
2986 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2987
2988 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2989
2990 #define SKL_REVID_A0 0x0
2991 #define SKL_REVID_B0 0x1
2992 #define SKL_REVID_C0 0x2
2993 #define SKL_REVID_D0 0x3
2994 #define SKL_REVID_E0 0x4
2995 #define SKL_REVID_F0 0x5
2996 #define SKL_REVID_G0 0x6
2997 #define SKL_REVID_H0 0x7
2998
2999 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
3000
3001 #define BXT_REVID_A0 0x0
3002 #define BXT_REVID_A1 0x1
3003 #define BXT_REVID_B0 0x3
3004 #define BXT_REVID_B_LAST 0x8
3005 #define BXT_REVID_C0 0x9
3006
3007 #define IS_BXT_REVID(dev_priv, since, until) \
3008 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
3009
3010 #define KBL_REVID_A0 0x0
3011 #define KBL_REVID_B0 0x1
3012 #define KBL_REVID_C0 0x2
3013 #define KBL_REVID_D0 0x3
3014 #define KBL_REVID_E0 0x4
3015
3016 #define IS_KBL_REVID(dev_priv, since, until) \
3017 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
3018
3019 #define GLK_REVID_A0 0x0
3020 #define GLK_REVID_A1 0x1
3021
3022 #define IS_GLK_REVID(dev_priv, since, until) \
3023 (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
3024
3025 #define CNL_REVID_A0 0x0
3026 #define CNL_REVID_B0 0x1
3027
3028 #define IS_CNL_REVID(p, since, until) \
3029 (IS_CANNONLAKE(p) && IS_REVID(p, since, until))
3030
3031 /*
3032 * The genX designation typically refers to the render engine, so render
3033 * capability related checks should use IS_GEN, while display and other checks
3034 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
3035 * chips, etc.).
3036 */
3037 #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1)))
3038 #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2)))
3039 #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3)))
3040 #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4)))
3041 #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5)))
3042 #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6)))
3043 #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7)))
3044 #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8)))
3045 #define IS_GEN10(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(9)))
3046
3047 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp)
3048 #define IS_GEN9_LP(dev_priv) (IS_GEN9(dev_priv) && IS_LP(dev_priv))
3049 #define IS_GEN9_BC(dev_priv) (IS_GEN9(dev_priv) && !IS_LP(dev_priv))
3050
3051 #define ENGINE_MASK(id) BIT(id)
3052 #define RENDER_RING ENGINE_MASK(RCS)
3053 #define BSD_RING ENGINE_MASK(VCS)
3054 #define BLT_RING ENGINE_MASK(BCS)
3055 #define VEBOX_RING ENGINE_MASK(VECS)
3056 #define BSD2_RING ENGINE_MASK(VCS2)
3057 #define ALL_ENGINES (~0)
3058
3059 #define HAS_ENGINE(dev_priv, id) \
3060 (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
3061
3062 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
3063 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
3064 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
3065 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
3066
3067 #define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc)
3068 #define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop)
3069 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED))
3070 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \
3071 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
3072
3073 #define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical)
3074
3075 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
3076 ((dev_priv)->info.has_logical_ring_contexts)
3077 #define USES_PPGTT(dev_priv) (i915.enable_ppgtt)
3078 #define USES_FULL_PPGTT(dev_priv) (i915.enable_ppgtt >= 2)
3079 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915.enable_ppgtt == 3)
3080
3081 #define HAS_OVERLAY(dev_priv) ((dev_priv)->info.has_overlay)
3082 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
3083 ((dev_priv)->info.overlay_needs_physical)
3084
3085 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
3086 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv))
3087
3088 /* WaRsDisableCoarsePowerGating:skl,bxt */
3089 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
3090 (IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
3091
3092 /*
3093 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
3094 * even when in MSI mode. This results in spurious interrupt warnings if the
3095 * legacy irq no. is shared with another device. The kernel then disables that
3096 * interrupt source and so prevents the other device from working properly.
3097 *
3098 * Since we don't enable MSI anymore on gen4, we can always use GMBUS/AUX
3099 * interrupts.
3100 */
3101 #define HAS_AUX_IRQ(dev_priv) true
3102 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4)
3103
3104 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
3105 * rows, which changed the alignment requirements and fence programming.
3106 */
3107 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
3108 !(IS_I915G(dev_priv) || \
3109 IS_I915GM(dev_priv)))
3110 #define SUPPORTS_TV(dev_priv) ((dev_priv)->info.supports_tv)
3111 #define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.has_hotplug)
3112
3113 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2)
3114 #define HAS_PIPE_CXSR(dev_priv) ((dev_priv)->info.has_pipe_cxsr)
3115 #define HAS_FBC(dev_priv) ((dev_priv)->info.has_fbc)
3116 #define HAS_CUR_FBC(dev_priv) (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_INFO(dev_priv)->gen >= 7)
3117
3118 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
3119
3120 #define HAS_DP_MST(dev_priv) ((dev_priv)->info.has_dp_mst)
3121
3122 #define HAS_DDI(dev_priv) ((dev_priv)->info.has_ddi)
3123 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
3124 #define HAS_PSR(dev_priv) ((dev_priv)->info.has_psr)
3125 #define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6)
3126 #define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p)
3127
3128 #define HAS_CSR(dev_priv) ((dev_priv)->info.has_csr)
3129
3130 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
3131 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
3132
3133 #define HAS_IPC(dev_priv) ((dev_priv)->info.has_ipc)
3134
3135 /*
3136 * For now, anything with a GuC requires uCode loading, and then supports
3137 * command submission once loaded. But these are logically independent
3138 * properties, so we have separate macros to test them.
3139 */
3140 #define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc)
3141 #define HAS_GUC_CT(dev_priv) ((dev_priv)->info.has_guc_ct)
3142 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3143 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv))
3144 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3145
3146 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
3147
3148 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu)
3149
3150 #define INTEL_PCH_DEVICE_ID_MASK 0xff80
3151 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
3152 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
3153 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
3154 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
3155 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
3156 #define INTEL_PCH_WPT_DEVICE_ID_TYPE 0x8c80
3157 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE 0x9c80
3158 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
3159 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
3160 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA280
3161 #define INTEL_PCH_CNP_DEVICE_ID_TYPE 0xA300
3162 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE 0x9D80
3163 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
3164 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
3165 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
3166
3167 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
3168 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
3169 #define HAS_PCH_CNP_LP(dev_priv) \
3170 ((dev_priv)->pch_id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
3171 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
3172 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
3173 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
3174 #define HAS_PCH_LPT_LP(dev_priv) \
3175 ((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
3176 (dev_priv)->pch_id == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
3177 #define HAS_PCH_LPT_H(dev_priv) \
3178 ((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
3179 (dev_priv)->pch_id == INTEL_PCH_WPT_DEVICE_ID_TYPE)
3180 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
3181 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
3182 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
3183 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
3184
3185 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
3186
3187 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
3188
3189 /* DPF == dynamic parity feature */
3190 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
3191 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
3192 2 : HAS_L3_DPF(dev_priv))
3193
3194 #define GT_FREQUENCY_MULTIPLIER 50
3195 #define GEN9_FREQ_SCALER 3
3196
3197 #include "i915_trace.h"
3198
3199 static inline bool intel_vtd_active(void)
3200 {
3201 #ifdef CONFIG_INTEL_IOMMU
3202 if (intel_iommu_gfx_mapped)
3203 return true;
3204 #endif
3205 return false;
3206 }
3207
3208 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
3209 {
3210 return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
3211 }
3212
3213 static inline bool
3214 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
3215 {
3216 return IS_BROXTON(dev_priv) && intel_vtd_active();
3217 }
3218
3219 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
3220 int enable_ppgtt);
3221
3222 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
3223
3224 /* i915_drv.c */
3225 void __printf(3, 4)
3226 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
3227 const char *fmt, ...);
3228
3229 #define i915_report_error(dev_priv, fmt, ...) \
3230 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
3231
3232 #ifdef CONFIG_COMPAT
3233 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
3234 unsigned long arg);
3235 #else
3236 #define i915_compat_ioctl NULL
3237 #endif
3238 extern const struct dev_pm_ops i915_pm_ops;
3239
3240 extern int i915_driver_load(struct pci_dev *pdev,
3241 const struct pci_device_id *ent);
3242 extern void i915_driver_unload(struct drm_device *dev);
3243 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
3244 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
3245
3246 #define I915_RESET_QUIET BIT(0)
3247 extern void i915_reset(struct drm_i915_private *i915, unsigned int flags);
3248 extern int i915_reset_engine(struct intel_engine_cs *engine,
3249 unsigned int flags);
3250
3251 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
3252 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
3253 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
3254 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
3255 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
3256 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
3257 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
3258 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
3259 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
3260
3261 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
3262 int intel_engines_init(struct drm_i915_private *dev_priv);
3263
3264 /* intel_hotplug.c */
3265 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
3266 u32 pin_mask, u32 long_mask);
3267 void intel_hpd_init(struct drm_i915_private *dev_priv);
3268 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
3269 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
3270 enum port intel_hpd_pin_to_port(enum hpd_pin pin);
3271 enum hpd_pin intel_hpd_pin(enum port port);
3272 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3273 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3274
3275 /* i915_irq.c */
3276 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
3277 {
3278 unsigned long delay;
3279
3280 if (unlikely(!i915.enable_hangcheck))
3281 return;
3282
3283 /* Don't continually defer the hangcheck so that it is always run at
3284 * least once after work has been scheduled on any ring. Otherwise,
3285 * we will ignore a hung ring if a second ring is kept busy.
3286 */
3287
3288 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
3289 queue_delayed_work(system_long_wq,
3290 &dev_priv->gpu_error.hangcheck_work, delay);
3291 }
3292
3293 __printf(3, 4)
3294 void i915_handle_error(struct drm_i915_private *dev_priv,
3295 u32 engine_mask,
3296 const char *fmt, ...);
3297
3298 extern void intel_irq_init(struct drm_i915_private *dev_priv);
3299 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
3300 int intel_irq_install(struct drm_i915_private *dev_priv);
3301 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
3302
3303 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3304 {
3305 return dev_priv->gvt;
3306 }
3307
3308 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3309 {
3310 return dev_priv->vgpu.active;
3311 }
3312
3313 void
3314 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3315 u32 status_mask);
3316
3317 void
3318 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3319 u32 status_mask);
3320
3321 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3322 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3323 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3324 uint32_t mask,
3325 uint32_t bits);
3326 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3327 uint32_t interrupt_mask,
3328 uint32_t enabled_irq_mask);
3329 static inline void
3330 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3331 {
3332 ilk_update_display_irq(dev_priv, bits, bits);
3333 }
3334 static inline void
3335 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3336 {
3337 ilk_update_display_irq(dev_priv, bits, 0);
3338 }
3339 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3340 enum pipe pipe,
3341 uint32_t interrupt_mask,
3342 uint32_t enabled_irq_mask);
3343 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3344 enum pipe pipe, uint32_t bits)
3345 {
3346 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3347 }
3348 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3349 enum pipe pipe, uint32_t bits)
3350 {
3351 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3352 }
3353 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3354 uint32_t interrupt_mask,
3355 uint32_t enabled_irq_mask);
3356 static inline void
3357 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3358 {
3359 ibx_display_interrupt_update(dev_priv, bits, bits);
3360 }
3361 static inline void
3362 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3363 {
3364 ibx_display_interrupt_update(dev_priv, bits, 0);
3365 }
3366
3367 /* i915_gem.c */
3368 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3369 struct drm_file *file_priv);
3370 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3371 struct drm_file *file_priv);
3372 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3373 struct drm_file *file_priv);
3374 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3375 struct drm_file *file_priv);
3376 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3377 struct drm_file *file_priv);
3378 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3379 struct drm_file *file_priv);
3380 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3381 struct drm_file *file_priv);
3382 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3383 struct drm_file *file_priv);
3384 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3385 struct drm_file *file_priv);
3386 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3387 struct drm_file *file_priv);
3388 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3389 struct drm_file *file);
3390 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3391 struct drm_file *file);
3392 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3393 struct drm_file *file_priv);
3394 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3395 struct drm_file *file_priv);
3396 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
3397 struct drm_file *file_priv);
3398 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
3399 struct drm_file *file_priv);
3400 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3401 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
3402 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3403 struct drm_file *file);
3404 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3405 struct drm_file *file_priv);
3406 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3407 struct drm_file *file_priv);
3408 void i915_gem_sanitize(struct drm_i915_private *i915);
3409 int i915_gem_load_init(struct drm_i915_private *dev_priv);
3410 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv);
3411 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3412 int i915_gem_freeze(struct drm_i915_private *dev_priv);
3413 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3414
3415 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
3416 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3417 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3418 const struct drm_i915_gem_object_ops *ops);
3419 struct drm_i915_gem_object *
3420 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
3421 struct drm_i915_gem_object *
3422 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
3423 const void *data, size_t size);
3424 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3425 void i915_gem_free_object(struct drm_gem_object *obj);
3426
3427 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
3428 {
3429 /* A single pass should suffice to release all the freed objects (along
3430 * most call paths) , but be a little more paranoid in that freeing
3431 * the objects does take a little amount of time, during which the rcu
3432 * callbacks could have added new objects into the freed list, and
3433 * armed the work again.
3434 */
3435 do {
3436 rcu_barrier();
3437 } while (flush_work(&i915->mm.free_work));
3438 }
3439
3440 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
3441 {
3442 /*
3443 * Similar to objects above (see i915_gem_drain_freed-objects), in
3444 * general we have workers that are armed by RCU and then rearm
3445 * themselves in their callbacks. To be paranoid, we need to
3446 * drain the workqueue a second time after waiting for the RCU
3447 * grace period so that we catch work queued via RCU from the first
3448 * pass. As neither drain_workqueue() nor flush_workqueue() report
3449 * a result, we make an assumption that we only don't require more
3450 * than 2 passes to catch all recursive RCU delayed work.
3451 *
3452 */
3453 int pass = 2;
3454 do {
3455 rcu_barrier();
3456 drain_workqueue(i915->wq);
3457 } while (--pass);
3458 }
3459
3460 struct i915_vma * __must_check
3461 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3462 const struct i915_ggtt_view *view,
3463 u64 size,
3464 u64 alignment,
3465 u64 flags);
3466
3467 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3468 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3469
3470 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3471
3472 static inline int __sg_page_count(const struct scatterlist *sg)
3473 {
3474 return sg->length >> PAGE_SHIFT;
3475 }
3476
3477 struct scatterlist *
3478 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3479 unsigned int n, unsigned int *offset);
3480
3481 struct page *
3482 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3483 unsigned int n);
3484
3485 struct page *
3486 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3487 unsigned int n);
3488
3489 dma_addr_t
3490 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3491 unsigned long n);
3492
3493 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3494 struct sg_table *pages);
3495 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3496
3497 static inline int __must_check
3498 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3499 {
3500 might_lock(&obj->mm.lock);
3501
3502 if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3503 return 0;
3504
3505 return __i915_gem_object_get_pages(obj);
3506 }
3507
3508 static inline void
3509 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3510 {
3511 GEM_BUG_ON(!obj->mm.pages);
3512
3513 atomic_inc(&obj->mm.pages_pin_count);
3514 }
3515
3516 static inline bool
3517 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3518 {
3519 return atomic_read(&obj->mm.pages_pin_count);
3520 }
3521
3522 static inline void
3523 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3524 {
3525 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3526 GEM_BUG_ON(!obj->mm.pages);
3527
3528 atomic_dec(&obj->mm.pages_pin_count);
3529 }
3530
3531 static inline void
3532 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3533 {
3534 __i915_gem_object_unpin_pages(obj);
3535 }
3536
3537 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3538 I915_MM_NORMAL = 0,
3539 I915_MM_SHRINKER
3540 };
3541
3542 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3543 enum i915_mm_subclass subclass);
3544 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3545
3546 enum i915_map_type {
3547 I915_MAP_WB = 0,
3548 I915_MAP_WC,
3549 #define I915_MAP_OVERRIDE BIT(31)
3550 I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
3551 I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
3552 };
3553
3554 /**
3555 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3556 * @obj: the object to map into kernel address space
3557 * @type: the type of mapping, used to select pgprot_t
3558 *
3559 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3560 * pages and then returns a contiguous mapping of the backing storage into
3561 * the kernel address space. Based on the @type of mapping, the PTE will be
3562 * set to either WriteBack or WriteCombine (via pgprot_t).
3563 *
3564 * The caller is responsible for calling i915_gem_object_unpin_map() when the
3565 * mapping is no longer required.
3566 *
3567 * Returns the pointer through which to access the mapped object, or an
3568 * ERR_PTR() on error.
3569 */
3570 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3571 enum i915_map_type type);
3572
3573 /**
3574 * i915_gem_object_unpin_map - releases an earlier mapping
3575 * @obj: the object to unmap
3576 *
3577 * After pinning the object and mapping its pages, once you are finished
3578 * with your access, call i915_gem_object_unpin_map() to release the pin
3579 * upon the mapping. Once the pin count reaches zero, that mapping may be
3580 * removed.
3581 */
3582 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3583 {
3584 i915_gem_object_unpin_pages(obj);
3585 }
3586
3587 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3588 unsigned int *needs_clflush);
3589 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3590 unsigned int *needs_clflush);
3591 #define CLFLUSH_BEFORE BIT(0)
3592 #define CLFLUSH_AFTER BIT(1)
3593 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER)
3594
3595 static inline void
3596 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3597 {
3598 i915_gem_object_unpin_pages(obj);
3599 }
3600
3601 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3602 void i915_vma_move_to_active(struct i915_vma *vma,
3603 struct drm_i915_gem_request *req,
3604 unsigned int flags);
3605 int i915_gem_dumb_create(struct drm_file *file_priv,
3606 struct drm_device *dev,
3607 struct drm_mode_create_dumb *args);
3608 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3609 uint32_t handle, uint64_t *offset);
3610 int i915_gem_mmap_gtt_version(void);
3611
3612 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3613 struct drm_i915_gem_object *new,
3614 unsigned frontbuffer_bits);
3615
3616 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3617
3618 struct drm_i915_gem_request *
3619 i915_gem_find_active_request(struct intel_engine_cs *engine);
3620
3621 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3622
3623 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3624 {
3625 return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3626 }
3627
3628 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3629 {
3630 return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3631 }
3632
3633 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3634 {
3635 return unlikely(test_bit(I915_WEDGED, &error->flags));
3636 }
3637
3638 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3639 {
3640 return i915_reset_backoff(error) | i915_terminally_wedged(error);
3641 }
3642
3643 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3644 {
3645 return READ_ONCE(error->reset_count);
3646 }
3647
3648 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3649 struct intel_engine_cs *engine)
3650 {
3651 return READ_ONCE(error->reset_engine_count[engine->id]);
3652 }
3653
3654 struct drm_i915_gem_request *
3655 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3656 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3657 void i915_gem_reset(struct drm_i915_private *dev_priv);
3658 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3659 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3660 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3661 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3662 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3663 struct drm_i915_gem_request *request);
3664
3665 void i915_gem_init_mmio(struct drm_i915_private *i915);
3666 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3667 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3668 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3669 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3670 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3671 unsigned int flags);
3672 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3673 void i915_gem_resume(struct drm_i915_private *dev_priv);
3674 int i915_gem_fault(struct vm_fault *vmf);
3675 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3676 unsigned int flags,
3677 long timeout,
3678 struct intel_rps_client *rps);
3679 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3680 unsigned int flags,
3681 int priority);
3682 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3683
3684 int __must_check
3685 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3686 int __must_check
3687 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3688 int __must_check
3689 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3690 struct i915_vma * __must_check
3691 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3692 u32 alignment,
3693 const struct i915_ggtt_view *view);
3694 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3695 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3696 int align);
3697 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3698 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3699
3700 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3701 enum i915_cache_level cache_level);
3702
3703 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3704 struct dma_buf *dma_buf);
3705
3706 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3707 struct drm_gem_object *gem_obj, int flags);
3708
3709 static inline struct i915_hw_ppgtt *
3710 i915_vm_to_ppgtt(struct i915_address_space *vm)
3711 {
3712 return container_of(vm, struct i915_hw_ppgtt, base);
3713 }
3714
3715 /* i915_gem_fence_reg.c */
3716 int __must_check i915_vma_get_fence(struct i915_vma *vma);
3717 int __must_check i915_vma_put_fence(struct i915_vma *vma);
3718 struct drm_i915_fence_reg *
3719 i915_reserve_fence(struct drm_i915_private *dev_priv);
3720 void i915_unreserve_fence(struct drm_i915_fence_reg *fence);
3721
3722 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3723 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3724
3725 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3726 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3727 struct sg_table *pages);
3728 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3729 struct sg_table *pages);
3730
3731 static inline struct i915_gem_context *
3732 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3733 {
3734 return idr_find(&file_priv->context_idr, id);
3735 }
3736
3737 static inline struct i915_gem_context *
3738 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3739 {
3740 struct i915_gem_context *ctx;
3741
3742 rcu_read_lock();
3743 ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3744 if (ctx && !kref_get_unless_zero(&ctx->ref))
3745 ctx = NULL;
3746 rcu_read_unlock();
3747
3748 return ctx;
3749 }
3750
3751 static inline struct intel_timeline *
3752 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx,
3753 struct intel_engine_cs *engine)
3754 {
3755 struct i915_address_space *vm;
3756
3757 vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base;
3758 return &vm->timeline.engine[engine->id];
3759 }
3760
3761 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3762 struct drm_file *file);
3763 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3764 struct drm_file *file);
3765 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3766 struct drm_file *file);
3767 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3768 struct i915_gem_context *ctx,
3769 uint32_t *reg_state);
3770
3771 /* i915_gem_evict.c */
3772 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3773 u64 min_size, u64 alignment,
3774 unsigned cache_level,
3775 u64 start, u64 end,
3776 unsigned flags);
3777 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3778 struct drm_mm_node *node,
3779 unsigned int flags);
3780 int i915_gem_evict_vm(struct i915_address_space *vm);
3781
3782 /* belongs in i915_gem_gtt.h */
3783 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3784 {
3785 wmb();
3786 if (INTEL_GEN(dev_priv) < 6)
3787 intel_gtt_chipset_flush();
3788 }
3789
3790 /* i915_gem_stolen.c */
3791 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3792 struct drm_mm_node *node, u64 size,
3793 unsigned alignment);
3794 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3795 struct drm_mm_node *node, u64 size,
3796 unsigned alignment, u64 start,
3797 u64 end);
3798 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3799 struct drm_mm_node *node);
3800 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3801 void i915_gem_cleanup_stolen(struct drm_device *dev);
3802 struct drm_i915_gem_object *
3803 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size);
3804 struct drm_i915_gem_object *
3805 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3806 u32 stolen_offset,
3807 u32 gtt_offset,
3808 u32 size);
3809
3810 /* i915_gem_internal.c */
3811 struct drm_i915_gem_object *
3812 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3813 phys_addr_t size);
3814
3815 /* i915_gem_shrinker.c */
3816 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3817 unsigned long target,
3818 unsigned flags);
3819 #define I915_SHRINK_PURGEABLE 0x1
3820 #define I915_SHRINK_UNBOUND 0x2
3821 #define I915_SHRINK_BOUND 0x4
3822 #define I915_SHRINK_ACTIVE 0x8
3823 #define I915_SHRINK_VMAPS 0x10
3824 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3825 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3826 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3827
3828
3829 /* i915_gem_tiling.c */
3830 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3831 {
3832 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3833
3834 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3835 i915_gem_object_is_tiled(obj);
3836 }
3837
3838 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3839 unsigned int tiling, unsigned int stride);
3840 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3841 unsigned int tiling, unsigned int stride);
3842
3843 /* i915_debugfs.c */
3844 #ifdef CONFIG_DEBUG_FS
3845 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3846 int i915_debugfs_connector_add(struct drm_connector *connector);
3847 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3848 #else
3849 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3850 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3851 { return 0; }
3852 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3853 #endif
3854
3855 /* i915_gpu_error.c */
3856 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3857
3858 __printf(2, 3)
3859 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3860 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3861 const struct i915_gpu_state *gpu);
3862 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3863 struct drm_i915_private *i915,
3864 size_t count, loff_t pos);
3865 static inline void i915_error_state_buf_release(
3866 struct drm_i915_error_state_buf *eb)
3867 {
3868 kfree(eb->buf);
3869 }
3870
3871 struct i915_gpu_state *i915_capture_gpu_state(struct drm_i915_private *i915);
3872 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3873 u32 engine_mask,
3874 const char *error_msg);
3875
3876 static inline struct i915_gpu_state *
3877 i915_gpu_state_get(struct i915_gpu_state *gpu)
3878 {
3879 kref_get(&gpu->ref);
3880 return gpu;
3881 }
3882
3883 void __i915_gpu_state_free(struct kref *kref);
3884 static inline void i915_gpu_state_put(struct i915_gpu_state *gpu)
3885 {
3886 if (gpu)
3887 kref_put(&gpu->ref, __i915_gpu_state_free);
3888 }
3889
3890 struct i915_gpu_state *i915_first_error_state(struct drm_i915_private *i915);
3891 void i915_reset_error_state(struct drm_i915_private *i915);
3892
3893 #else
3894
3895 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3896 u32 engine_mask,
3897 const char *error_msg)
3898 {
3899 }
3900
3901 static inline struct i915_gpu_state *
3902 i915_first_error_state(struct drm_i915_private *i915)
3903 {
3904 return NULL;
3905 }
3906
3907 static inline void i915_reset_error_state(struct drm_i915_private *i915)
3908 {
3909 }
3910
3911 #endif
3912
3913 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3914
3915 /* i915_cmd_parser.c */
3916 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3917 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3918 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3919 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3920 struct drm_i915_gem_object *batch_obj,
3921 struct drm_i915_gem_object *shadow_batch_obj,
3922 u32 batch_start_offset,
3923 u32 batch_len,
3924 bool is_master);
3925
3926 /* i915_perf.c */
3927 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3928 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3929 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3930 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3931
3932 /* i915_suspend.c */
3933 extern int i915_save_state(struct drm_i915_private *dev_priv);
3934 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3935
3936 /* i915_sysfs.c */
3937 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3938 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3939
3940 /* intel_lpe_audio.c */
3941 int intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3942 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3943 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3944 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3945 enum pipe pipe, enum port port,
3946 const void *eld, int ls_clock, bool dp_output);
3947
3948 /* intel_i2c.c */
3949 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3950 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3951 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3952 unsigned int pin);
3953
3954 extern struct i2c_adapter *
3955 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3956 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3957 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3958 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3959 {
3960 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3961 }
3962 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3963
3964 /* intel_bios.c */
3965 void intel_bios_init(struct drm_i915_private *dev_priv);
3966 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3967 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3968 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3969 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3970 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3971 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3972 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3973 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3974 enum port port);
3975 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3976 enum port port);
3977
3978
3979 /* intel_opregion.c */
3980 #ifdef CONFIG_ACPI
3981 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3982 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3983 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3984 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3985 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3986 bool enable);
3987 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3988 pci_power_t state);
3989 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3990 #else
3991 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3992 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3993 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3994 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3995 {
3996 }
3997 static inline int
3998 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3999 {
4000 return 0;
4001 }
4002 static inline int
4003 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
4004 {
4005 return 0;
4006 }
4007 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
4008 {
4009 return -ENODEV;
4010 }
4011 #endif
4012
4013 /* intel_acpi.c */
4014 #ifdef CONFIG_ACPI
4015 extern void intel_register_dsm_handler(void);
4016 extern void intel_unregister_dsm_handler(void);
4017 #else
4018 static inline void intel_register_dsm_handler(void) { return; }
4019 static inline void intel_unregister_dsm_handler(void) { return; }
4020 #endif /* CONFIG_ACPI */
4021
4022 /* intel_device_info.c */
4023 static inline struct intel_device_info *
4024 mkwrite_device_info(struct drm_i915_private *dev_priv)
4025 {
4026 return (struct intel_device_info *)&dev_priv->info;
4027 }
4028
4029 const char *intel_platform_name(enum intel_platform platform);
4030 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
4031 void intel_device_info_dump(struct drm_i915_private *dev_priv);
4032
4033 /* modesetting */
4034 extern void intel_modeset_init_hw(struct drm_device *dev);
4035 extern int intel_modeset_init(struct drm_device *dev);
4036 extern void intel_modeset_gem_init(struct drm_device *dev);
4037 extern void intel_modeset_cleanup(struct drm_device *dev);
4038 extern int intel_connector_register(struct drm_connector *);
4039 extern void intel_connector_unregister(struct drm_connector *);
4040 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
4041 bool state);
4042 extern void intel_display_resume(struct drm_device *dev);
4043 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
4044 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
4045 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
4046 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
4047 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
4048 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
4049 bool enable);
4050
4051 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
4052 struct drm_file *file);
4053
4054 /* overlay */
4055 extern struct intel_overlay_error_state *
4056 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
4057 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
4058 struct intel_overlay_error_state *error);
4059
4060 extern struct intel_display_error_state *
4061 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
4062 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
4063 struct intel_display_error_state *error);
4064
4065 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
4066 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
4067 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
4068 u32 reply_mask, u32 reply, int timeout_base_ms);
4069
4070 /* intel_sideband.c */
4071 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
4072 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
4073 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
4074 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
4075 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
4076 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
4077 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4078 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
4079 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4080 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
4081 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4082 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
4083 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
4084 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
4085 enum intel_sbi_destination destination);
4086 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
4087 enum intel_sbi_destination destination);
4088 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
4089 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4090
4091 /* intel_dpio_phy.c */
4092 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
4093 enum dpio_phy *phy, enum dpio_channel *ch);
4094 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
4095 enum port port, u32 margin, u32 scale,
4096 u32 enable, u32 deemphasis);
4097 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4098 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4099 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
4100 enum dpio_phy phy);
4101 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
4102 enum dpio_phy phy);
4103 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
4104 uint8_t lane_count);
4105 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
4106 uint8_t lane_lat_optim_mask);
4107 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
4108
4109 void chv_set_phy_signal_level(struct intel_encoder *encoder,
4110 u32 deemph_reg_value, u32 margin_reg_value,
4111 bool uniq_trans_scale);
4112 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
4113 bool reset);
4114 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
4115 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4116 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
4117 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
4118
4119 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
4120 u32 demph_reg_value, u32 preemph_reg_value,
4121 u32 uniqtranscale_reg_value, u32 tx3_demph);
4122 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
4123 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4124 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
4125
4126 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
4127 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
4128 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
4129 const i915_reg_t reg);
4130
4131 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
4132 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
4133
4134 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
4135 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
4136 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
4137 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
4138
4139 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
4140 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
4141 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
4142 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
4143
4144 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
4145 * will be implemented using 2 32-bit writes in an arbitrary order with
4146 * an arbitrary delay between them. This can cause the hardware to
4147 * act upon the intermediate value, possibly leading to corruption and
4148 * machine death. For this reason we do not support I915_WRITE64, or
4149 * dev_priv->uncore.funcs.mmio_writeq.
4150 *
4151 * When reading a 64-bit value as two 32-bit values, the delay may cause
4152 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
4153 * occasionally a 64-bit register does not actualy support a full readq
4154 * and must be read using two 32-bit reads.
4155 *
4156 * You have been warned.
4157 */
4158 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
4159
4160 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
4161 u32 upper, lower, old_upper, loop = 0; \
4162 upper = I915_READ(upper_reg); \
4163 do { \
4164 old_upper = upper; \
4165 lower = I915_READ(lower_reg); \
4166 upper = I915_READ(upper_reg); \
4167 } while (upper != old_upper && loop++ < 2); \
4168 (u64)upper << 32 | lower; })
4169
4170 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
4171 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
4172
4173 #define __raw_read(x, s) \
4174 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
4175 i915_reg_t reg) \
4176 { \
4177 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
4178 }
4179
4180 #define __raw_write(x, s) \
4181 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
4182 i915_reg_t reg, uint##x##_t val) \
4183 { \
4184 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
4185 }
4186 __raw_read(8, b)
4187 __raw_read(16, w)
4188 __raw_read(32, l)
4189 __raw_read(64, q)
4190
4191 __raw_write(8, b)
4192 __raw_write(16, w)
4193 __raw_write(32, l)
4194 __raw_write(64, q)
4195
4196 #undef __raw_read
4197 #undef __raw_write
4198
4199 /* These are untraced mmio-accessors that are only valid to be used inside
4200 * critical sections, such as inside IRQ handlers, where forcewake is explicitly
4201 * controlled.
4202 *
4203 * Think twice, and think again, before using these.
4204 *
4205 * As an example, these accessors can possibly be used between:
4206 *
4207 * spin_lock_irq(&dev_priv->uncore.lock);
4208 * intel_uncore_forcewake_get__locked();
4209 *
4210 * and
4211 *
4212 * intel_uncore_forcewake_put__locked();
4213 * spin_unlock_irq(&dev_priv->uncore.lock);
4214 *
4215 *
4216 * Note: some registers may not need forcewake held, so
4217 * intel_uncore_forcewake_{get,put} can be omitted, see
4218 * intel_uncore_forcewake_for_reg().
4219 *
4220 * Certain architectures will die if the same cacheline is concurrently accessed
4221 * by different clients (e.g. on Ivybridge). Access to registers should
4222 * therefore generally be serialised, by either the dev_priv->uncore.lock or
4223 * a more localised lock guarding all access to that bank of registers.
4224 */
4225 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
4226 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
4227 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
4228 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
4229
4230 /* "Broadcast RGB" property */
4231 #define INTEL_BROADCAST_RGB_AUTO 0
4232 #define INTEL_BROADCAST_RGB_FULL 1
4233 #define INTEL_BROADCAST_RGB_LIMITED 2
4234
4235 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
4236 {
4237 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4238 return VLV_VGACNTRL;
4239 else if (INTEL_GEN(dev_priv) >= 5)
4240 return CPU_VGACNTRL;
4241 else
4242 return VGACNTRL;
4243 }
4244
4245 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
4246 {
4247 unsigned long j = msecs_to_jiffies(m);
4248
4249 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4250 }
4251
4252 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
4253 {
4254 /* nsecs_to_jiffies64() does not guard against overflow */
4255 if (NSEC_PER_SEC % HZ &&
4256 div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
4257 return MAX_JIFFY_OFFSET;
4258
4259 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
4260 }
4261
4262 static inline unsigned long
4263 timespec_to_jiffies_timeout(const struct timespec *value)
4264 {
4265 unsigned long j = timespec_to_jiffies(value);
4266
4267 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4268 }
4269
4270 /*
4271 * If you need to wait X milliseconds between events A and B, but event B
4272 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
4273 * when event A happened, then just before event B you call this function and
4274 * pass the timestamp as the first argument, and X as the second argument.
4275 */
4276 static inline void
4277 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
4278 {
4279 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
4280
4281 /*
4282 * Don't re-read the value of "jiffies" every time since it may change
4283 * behind our back and break the math.
4284 */
4285 tmp_jiffies = jiffies;
4286 target_jiffies = timestamp_jiffies +
4287 msecs_to_jiffies_timeout(to_wait_ms);
4288
4289 if (time_after(target_jiffies, tmp_jiffies)) {
4290 remaining_jiffies = target_jiffies - tmp_jiffies;
4291 while (remaining_jiffies)
4292 remaining_jiffies =
4293 schedule_timeout_uninterruptible(remaining_jiffies);
4294 }
4295 }
4296
4297 static inline bool
4298 __i915_request_irq_complete(const struct drm_i915_gem_request *req)
4299 {
4300 struct intel_engine_cs *engine = req->engine;
4301 u32 seqno;
4302
4303 /* Note that the engine may have wrapped around the seqno, and
4304 * so our request->global_seqno will be ahead of the hardware,
4305 * even though it completed the request before wrapping. We catch
4306 * this by kicking all the waiters before resetting the seqno
4307 * in hardware, and also signal the fence.
4308 */
4309 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &req->fence.flags))
4310 return true;
4311
4312 /* The request was dequeued before we were awoken. We check after
4313 * inspecting the hw to confirm that this was the same request
4314 * that generated the HWS update. The memory barriers within
4315 * the request execution are sufficient to ensure that a check
4316 * after reading the value from hw matches this request.
4317 */
4318 seqno = i915_gem_request_global_seqno(req);
4319 if (!seqno)
4320 return false;
4321
4322 /* Before we do the heavier coherent read of the seqno,
4323 * check the value (hopefully) in the CPU cacheline.
4324 */
4325 if (__i915_gem_request_completed(req, seqno))
4326 return true;
4327
4328 /* Ensure our read of the seqno is coherent so that we
4329 * do not "miss an interrupt" (i.e. if this is the last
4330 * request and the seqno write from the GPU is not visible
4331 * by the time the interrupt fires, we will see that the
4332 * request is incomplete and go back to sleep awaiting
4333 * another interrupt that will never come.)
4334 *
4335 * Strictly, we only need to do this once after an interrupt,
4336 * but it is easier and safer to do it every time the waiter
4337 * is woken.
4338 */
4339 if (engine->irq_seqno_barrier &&
4340 test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
4341 struct intel_breadcrumbs *b = &engine->breadcrumbs;
4342
4343 /* The ordering of irq_posted versus applying the barrier
4344 * is crucial. The clearing of the current irq_posted must
4345 * be visible before we perform the barrier operation,
4346 * such that if a subsequent interrupt arrives, irq_posted
4347 * is reasserted and our task rewoken (which causes us to
4348 * do another __i915_request_irq_complete() immediately
4349 * and reapply the barrier). Conversely, if the clear
4350 * occurs after the barrier, then an interrupt that arrived
4351 * whilst we waited on the barrier would not trigger a
4352 * barrier on the next pass, and the read may not see the
4353 * seqno update.
4354 */
4355 engine->irq_seqno_barrier(engine);
4356
4357 /* If we consume the irq, but we are no longer the bottom-half,
4358 * the real bottom-half may not have serialised their own
4359 * seqno check with the irq-barrier (i.e. may have inspected
4360 * the seqno before we believe it coherent since they see
4361 * irq_posted == false but we are still running).
4362 */
4363 spin_lock_irq(&b->irq_lock);
4364 if (b->irq_wait && b->irq_wait->tsk != current)
4365 /* Note that if the bottom-half is changed as we
4366 * are sending the wake-up, the new bottom-half will
4367 * be woken by whomever made the change. We only have
4368 * to worry about when we steal the irq-posted for
4369 * ourself.
4370 */
4371 wake_up_process(b->irq_wait->tsk);
4372 spin_unlock_irq(&b->irq_lock);
4373
4374 if (__i915_gem_request_completed(req, seqno))
4375 return true;
4376 }
4377
4378 return false;
4379 }
4380
4381 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
4382 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
4383
4384 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
4385 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
4386 * perform the operation. To check beforehand, pass in the parameters to
4387 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
4388 * you only need to pass in the minor offsets, page-aligned pointers are
4389 * always valid.
4390 *
4391 * For just checking for SSE4.1, in the foreknowledge that the future use
4392 * will be correctly aligned, just use i915_has_memcpy_from_wc().
4393 */
4394 #define i915_can_memcpy_from_wc(dst, src, len) \
4395 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
4396
4397 #define i915_has_memcpy_from_wc() \
4398 i915_memcpy_from_wc(NULL, NULL, 0)
4399
4400 /* i915_mm.c */
4401 int remap_io_mapping(struct vm_area_struct *vma,
4402 unsigned long addr, unsigned long pfn, unsigned long size,
4403 struct io_mapping *iomap);
4404
4405 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915)
4406 {
4407 if (INTEL_GEN(i915) >= 10)
4408 return CNL_HWS_CSB_WRITE_INDEX;
4409 else
4410 return I915_HWS_CSB_WRITE_INDEX;
4411 }
4412
4413 #endif