]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.h
drm/i915: Add a for_each_intel_connector macro
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include "i915_reg.h"
37 #include "intel_bios.h"
38 #include "intel_ringbuffer.h"
39 #include "intel_lrc.h"
40 #include "i915_gem_gtt.h"
41 #include "i915_gem_render_state.h"
42 #include <linux/io-mapping.h>
43 #include <linux/i2c.h>
44 #include <linux/i2c-algo-bit.h>
45 #include <drm/intel-gtt.h>
46 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
47 #include <drm/drm_gem.h>
48 #include <linux/backlight.h>
49 #include <linux/hashtable.h>
50 #include <linux/intel-iommu.h>
51 #include <linux/kref.h>
52 #include <linux/pm_qos.h>
53
54 /* General customization:
55 */
56
57 #define DRIVER_NAME "i915"
58 #define DRIVER_DESC "Intel Graphics"
59 #define DRIVER_DATE "20150227"
60
61 #undef WARN_ON
62 /* Many gcc seem to no see through this and fall over :( */
63 #if 0
64 #define WARN_ON(x) ({ \
65 bool __i915_warn_cond = (x); \
66 if (__builtin_constant_p(__i915_warn_cond)) \
67 BUILD_BUG_ON(__i915_warn_cond); \
68 WARN(__i915_warn_cond, "WARN_ON(" #x ")"); })
69 #else
70 #define WARN_ON(x) WARN((x), "WARN_ON(" #x ")")
71 #endif
72
73 #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \
74 (long) (x), __func__);
75
76 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
77 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
78 * which may not necessarily be a user visible problem. This will either
79 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
80 * enable distros and users to tailor their preferred amount of i915 abrt
81 * spam.
82 */
83 #define I915_STATE_WARN(condition, format...) ({ \
84 int __ret_warn_on = !!(condition); \
85 if (unlikely(__ret_warn_on)) { \
86 if (i915.verbose_state_checks) \
87 WARN(1, format); \
88 else \
89 DRM_ERROR(format); \
90 } \
91 unlikely(__ret_warn_on); \
92 })
93
94 #define I915_STATE_WARN_ON(condition) ({ \
95 int __ret_warn_on = !!(condition); \
96 if (unlikely(__ret_warn_on)) { \
97 if (i915.verbose_state_checks) \
98 WARN(1, "WARN_ON(" #condition ")\n"); \
99 else \
100 DRM_ERROR("WARN_ON(" #condition ")\n"); \
101 } \
102 unlikely(__ret_warn_on); \
103 })
104
105 enum pipe {
106 INVALID_PIPE = -1,
107 PIPE_A = 0,
108 PIPE_B,
109 PIPE_C,
110 _PIPE_EDP,
111 I915_MAX_PIPES = _PIPE_EDP
112 };
113 #define pipe_name(p) ((p) + 'A')
114
115 enum transcoder {
116 TRANSCODER_A = 0,
117 TRANSCODER_B,
118 TRANSCODER_C,
119 TRANSCODER_EDP,
120 I915_MAX_TRANSCODERS
121 };
122 #define transcoder_name(t) ((t) + 'A')
123
124 /*
125 * This is the maximum (across all platforms) number of planes (primary +
126 * sprites) that can be active at the same time on one pipe.
127 *
128 * This value doesn't count the cursor plane.
129 */
130 #define I915_MAX_PLANES 3
131
132 enum plane {
133 PLANE_A = 0,
134 PLANE_B,
135 PLANE_C,
136 };
137 #define plane_name(p) ((p) + 'A')
138
139 #define sprite_name(p, s) ((p) * INTEL_INFO(dev)->num_sprites[(p)] + (s) + 'A')
140
141 enum port {
142 PORT_A = 0,
143 PORT_B,
144 PORT_C,
145 PORT_D,
146 PORT_E,
147 I915_MAX_PORTS
148 };
149 #define port_name(p) ((p) + 'A')
150
151 #define I915_NUM_PHYS_VLV 2
152
153 enum dpio_channel {
154 DPIO_CH0,
155 DPIO_CH1
156 };
157
158 enum dpio_phy {
159 DPIO_PHY0,
160 DPIO_PHY1
161 };
162
163 enum intel_display_power_domain {
164 POWER_DOMAIN_PIPE_A,
165 POWER_DOMAIN_PIPE_B,
166 POWER_DOMAIN_PIPE_C,
167 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
168 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
169 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
170 POWER_DOMAIN_TRANSCODER_A,
171 POWER_DOMAIN_TRANSCODER_B,
172 POWER_DOMAIN_TRANSCODER_C,
173 POWER_DOMAIN_TRANSCODER_EDP,
174 POWER_DOMAIN_PORT_DDI_A_2_LANES,
175 POWER_DOMAIN_PORT_DDI_A_4_LANES,
176 POWER_DOMAIN_PORT_DDI_B_2_LANES,
177 POWER_DOMAIN_PORT_DDI_B_4_LANES,
178 POWER_DOMAIN_PORT_DDI_C_2_LANES,
179 POWER_DOMAIN_PORT_DDI_C_4_LANES,
180 POWER_DOMAIN_PORT_DDI_D_2_LANES,
181 POWER_DOMAIN_PORT_DDI_D_4_LANES,
182 POWER_DOMAIN_PORT_DSI,
183 POWER_DOMAIN_PORT_CRT,
184 POWER_DOMAIN_PORT_OTHER,
185 POWER_DOMAIN_VGA,
186 POWER_DOMAIN_AUDIO,
187 POWER_DOMAIN_PLLS,
188 POWER_DOMAIN_AUX_A,
189 POWER_DOMAIN_AUX_B,
190 POWER_DOMAIN_AUX_C,
191 POWER_DOMAIN_AUX_D,
192 POWER_DOMAIN_INIT,
193
194 POWER_DOMAIN_NUM,
195 };
196
197 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
198 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
199 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
200 #define POWER_DOMAIN_TRANSCODER(tran) \
201 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
202 (tran) + POWER_DOMAIN_TRANSCODER_A)
203
204 enum hpd_pin {
205 HPD_NONE = 0,
206 HPD_PORT_A = HPD_NONE, /* PORT_A is internal */
207 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
208 HPD_CRT,
209 HPD_SDVO_B,
210 HPD_SDVO_C,
211 HPD_PORT_B,
212 HPD_PORT_C,
213 HPD_PORT_D,
214 HPD_NUM_PINS
215 };
216
217 #define I915_GEM_GPU_DOMAINS \
218 (I915_GEM_DOMAIN_RENDER | \
219 I915_GEM_DOMAIN_SAMPLER | \
220 I915_GEM_DOMAIN_COMMAND | \
221 I915_GEM_DOMAIN_INSTRUCTION | \
222 I915_GEM_DOMAIN_VERTEX)
223
224 #define for_each_pipe(__dev_priv, __p) \
225 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
226 #define for_each_plane(__dev_priv, __pipe, __p) \
227 for ((__p) = 0; \
228 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
229 (__p)++)
230 #define for_each_sprite(__dev_priv, __p, __s) \
231 for ((__s) = 0; \
232 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
233 (__s)++)
234
235 #define for_each_crtc(dev, crtc) \
236 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
237
238 #define for_each_intel_crtc(dev, intel_crtc) \
239 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head)
240
241 #define for_each_intel_encoder(dev, intel_encoder) \
242 list_for_each_entry(intel_encoder, \
243 &(dev)->mode_config.encoder_list, \
244 base.head)
245
246 #define for_each_intel_connector(dev, intel_connector) \
247 list_for_each_entry(intel_connector, \
248 &dev->mode_config.connector_list, \
249 base.head)
250
251
252 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
253 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
254 if ((intel_encoder)->base.crtc == (__crtc))
255
256 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
257 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
258 if ((intel_connector)->base.encoder == (__encoder))
259
260 #define for_each_power_domain(domain, mask) \
261 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
262 if ((1 << (domain)) & (mask))
263
264 struct drm_i915_private;
265 struct i915_mm_struct;
266 struct i915_mmu_object;
267
268 enum intel_dpll_id {
269 DPLL_ID_PRIVATE = -1, /* non-shared dpll in use */
270 /* real shared dpll ids must be >= 0 */
271 DPLL_ID_PCH_PLL_A = 0,
272 DPLL_ID_PCH_PLL_B = 1,
273 /* hsw/bdw */
274 DPLL_ID_WRPLL1 = 0,
275 DPLL_ID_WRPLL2 = 1,
276 /* skl */
277 DPLL_ID_SKL_DPLL1 = 0,
278 DPLL_ID_SKL_DPLL2 = 1,
279 DPLL_ID_SKL_DPLL3 = 2,
280 };
281 #define I915_NUM_PLLS 3
282
283 struct intel_dpll_hw_state {
284 /* i9xx, pch plls */
285 uint32_t dpll;
286 uint32_t dpll_md;
287 uint32_t fp0;
288 uint32_t fp1;
289
290 /* hsw, bdw */
291 uint32_t wrpll;
292
293 /* skl */
294 /*
295 * DPLL_CTRL1 has 6 bits for each each this DPLL. We store those in
296 * lower part of crtl1 and they get shifted into position when writing
297 * the register. This allows us to easily compare the state to share
298 * the DPLL.
299 */
300 uint32_t ctrl1;
301 /* HDMI only, 0 when used for DP */
302 uint32_t cfgcr1, cfgcr2;
303 };
304
305 struct intel_shared_dpll_config {
306 unsigned crtc_mask; /* mask of CRTCs sharing this PLL */
307 struct intel_dpll_hw_state hw_state;
308 };
309
310 struct intel_shared_dpll {
311 struct intel_shared_dpll_config config;
312 struct intel_shared_dpll_config *new_config;
313
314 int active; /* count of number of active CRTCs (i.e. DPMS on) */
315 bool on; /* is the PLL actually active? Disabled during modeset */
316 const char *name;
317 /* should match the index in the dev_priv->shared_dplls array */
318 enum intel_dpll_id id;
319 /* The mode_set hook is optional and should be used together with the
320 * intel_prepare_shared_dpll function. */
321 void (*mode_set)(struct drm_i915_private *dev_priv,
322 struct intel_shared_dpll *pll);
323 void (*enable)(struct drm_i915_private *dev_priv,
324 struct intel_shared_dpll *pll);
325 void (*disable)(struct drm_i915_private *dev_priv,
326 struct intel_shared_dpll *pll);
327 bool (*get_hw_state)(struct drm_i915_private *dev_priv,
328 struct intel_shared_dpll *pll,
329 struct intel_dpll_hw_state *hw_state);
330 };
331
332 #define SKL_DPLL0 0
333 #define SKL_DPLL1 1
334 #define SKL_DPLL2 2
335 #define SKL_DPLL3 3
336
337 /* Used by dp and fdi links */
338 struct intel_link_m_n {
339 uint32_t tu;
340 uint32_t gmch_m;
341 uint32_t gmch_n;
342 uint32_t link_m;
343 uint32_t link_n;
344 };
345
346 void intel_link_compute_m_n(int bpp, int nlanes,
347 int pixel_clock, int link_clock,
348 struct intel_link_m_n *m_n);
349
350 /* Interface history:
351 *
352 * 1.1: Original.
353 * 1.2: Add Power Management
354 * 1.3: Add vblank support
355 * 1.4: Fix cmdbuffer path, add heap destroy
356 * 1.5: Add vblank pipe configuration
357 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
358 * - Support vertical blank on secondary display pipe
359 */
360 #define DRIVER_MAJOR 1
361 #define DRIVER_MINOR 6
362 #define DRIVER_PATCHLEVEL 0
363
364 #define WATCH_LISTS 0
365
366 struct opregion_header;
367 struct opregion_acpi;
368 struct opregion_swsci;
369 struct opregion_asle;
370
371 struct intel_opregion {
372 struct opregion_header __iomem *header;
373 struct opregion_acpi __iomem *acpi;
374 struct opregion_swsci __iomem *swsci;
375 u32 swsci_gbda_sub_functions;
376 u32 swsci_sbcb_sub_functions;
377 struct opregion_asle __iomem *asle;
378 void __iomem *vbt;
379 u32 __iomem *lid_state;
380 struct work_struct asle_work;
381 };
382 #define OPREGION_SIZE (8*1024)
383
384 struct intel_overlay;
385 struct intel_overlay_error_state;
386
387 #define I915_FENCE_REG_NONE -1
388 #define I915_MAX_NUM_FENCES 32
389 /* 32 fences + sign bit for FENCE_REG_NONE */
390 #define I915_MAX_NUM_FENCE_BITS 6
391
392 struct drm_i915_fence_reg {
393 struct list_head lru_list;
394 struct drm_i915_gem_object *obj;
395 int pin_count;
396 };
397
398 struct sdvo_device_mapping {
399 u8 initialized;
400 u8 dvo_port;
401 u8 slave_addr;
402 u8 dvo_wiring;
403 u8 i2c_pin;
404 u8 ddc_pin;
405 };
406
407 struct intel_display_error_state;
408
409 struct drm_i915_error_state {
410 struct kref ref;
411 struct timeval time;
412
413 char error_msg[128];
414 u32 reset_count;
415 u32 suspend_count;
416
417 /* Generic register state */
418 u32 eir;
419 u32 pgtbl_er;
420 u32 ier;
421 u32 gtier[4];
422 u32 ccid;
423 u32 derrmr;
424 u32 forcewake;
425 u32 error; /* gen6+ */
426 u32 err_int; /* gen7 */
427 u32 done_reg;
428 u32 gac_eco;
429 u32 gam_ecochk;
430 u32 gab_ctl;
431 u32 gfx_mode;
432 u32 extra_instdone[I915_NUM_INSTDONE_REG];
433 u64 fence[I915_MAX_NUM_FENCES];
434 struct intel_overlay_error_state *overlay;
435 struct intel_display_error_state *display;
436 struct drm_i915_error_object *semaphore_obj;
437
438 struct drm_i915_error_ring {
439 bool valid;
440 /* Software tracked state */
441 bool waiting;
442 int hangcheck_score;
443 enum intel_ring_hangcheck_action hangcheck_action;
444 int num_requests;
445
446 /* our own tracking of ring head and tail */
447 u32 cpu_ring_head;
448 u32 cpu_ring_tail;
449
450 u32 semaphore_seqno[I915_NUM_RINGS - 1];
451
452 /* Register state */
453 u32 tail;
454 u32 head;
455 u32 ctl;
456 u32 hws;
457 u32 ipeir;
458 u32 ipehr;
459 u32 instdone;
460 u32 bbstate;
461 u32 instpm;
462 u32 instps;
463 u32 seqno;
464 u64 bbaddr;
465 u64 acthd;
466 u32 fault_reg;
467 u64 faddr;
468 u32 rc_psmi; /* sleep state */
469 u32 semaphore_mboxes[I915_NUM_RINGS - 1];
470
471 struct drm_i915_error_object {
472 int page_count;
473 u32 gtt_offset;
474 u32 *pages[0];
475 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
476
477 struct drm_i915_error_request {
478 long jiffies;
479 u32 seqno;
480 u32 tail;
481 } *requests;
482
483 struct {
484 u32 gfx_mode;
485 union {
486 u64 pdp[4];
487 u32 pp_dir_base;
488 };
489 } vm_info;
490
491 pid_t pid;
492 char comm[TASK_COMM_LEN];
493 } ring[I915_NUM_RINGS];
494
495 struct drm_i915_error_buffer {
496 u32 size;
497 u32 name;
498 u32 rseqno, wseqno;
499 u32 gtt_offset;
500 u32 read_domains;
501 u32 write_domain;
502 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
503 s32 pinned:2;
504 u32 tiling:2;
505 u32 dirty:1;
506 u32 purgeable:1;
507 u32 userptr:1;
508 s32 ring:4;
509 u32 cache_level:3;
510 } **active_bo, **pinned_bo;
511
512 u32 *active_bo_count, *pinned_bo_count;
513 u32 vm_count;
514 };
515
516 struct intel_connector;
517 struct intel_encoder;
518 struct intel_crtc_state;
519 struct intel_initial_plane_config;
520 struct intel_crtc;
521 struct intel_limit;
522 struct dpll;
523
524 struct drm_i915_display_funcs {
525 bool (*fbc_enabled)(struct drm_device *dev);
526 void (*enable_fbc)(struct drm_crtc *crtc);
527 void (*disable_fbc)(struct drm_device *dev);
528 int (*get_display_clock_speed)(struct drm_device *dev);
529 int (*get_fifo_size)(struct drm_device *dev, int plane);
530 /**
531 * find_dpll() - Find the best values for the PLL
532 * @limit: limits for the PLL
533 * @crtc: current CRTC
534 * @target: target frequency in kHz
535 * @refclk: reference clock frequency in kHz
536 * @match_clock: if provided, @best_clock P divider must
537 * match the P divider from @match_clock
538 * used for LVDS downclocking
539 * @best_clock: best PLL values found
540 *
541 * Returns true on success, false on failure.
542 */
543 bool (*find_dpll)(const struct intel_limit *limit,
544 struct intel_crtc *crtc,
545 int target, int refclk,
546 struct dpll *match_clock,
547 struct dpll *best_clock);
548 void (*update_wm)(struct drm_crtc *crtc);
549 void (*update_sprite_wm)(struct drm_plane *plane,
550 struct drm_crtc *crtc,
551 uint32_t sprite_width, uint32_t sprite_height,
552 int pixel_size, bool enable, bool scaled);
553 void (*modeset_global_resources)(struct drm_device *dev);
554 /* Returns the active state of the crtc, and if the crtc is active,
555 * fills out the pipe-config with the hw state. */
556 bool (*get_pipe_config)(struct intel_crtc *,
557 struct intel_crtc_state *);
558 void (*get_initial_plane_config)(struct intel_crtc *,
559 struct intel_initial_plane_config *);
560 int (*crtc_compute_clock)(struct intel_crtc *crtc,
561 struct intel_crtc_state *crtc_state);
562 void (*crtc_enable)(struct drm_crtc *crtc);
563 void (*crtc_disable)(struct drm_crtc *crtc);
564 void (*off)(struct drm_crtc *crtc);
565 void (*audio_codec_enable)(struct drm_connector *connector,
566 struct intel_encoder *encoder,
567 struct drm_display_mode *mode);
568 void (*audio_codec_disable)(struct intel_encoder *encoder);
569 void (*fdi_link_train)(struct drm_crtc *crtc);
570 void (*init_clock_gating)(struct drm_device *dev);
571 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc,
572 struct drm_framebuffer *fb,
573 struct drm_i915_gem_object *obj,
574 struct intel_engine_cs *ring,
575 uint32_t flags);
576 void (*update_primary_plane)(struct drm_crtc *crtc,
577 struct drm_framebuffer *fb,
578 int x, int y);
579 void (*hpd_irq_setup)(struct drm_device *dev);
580 /* clock updates for mode set */
581 /* cursor updates */
582 /* render clock increase/decrease */
583 /* display clock increase/decrease */
584 /* pll clock increase/decrease */
585
586 int (*setup_backlight)(struct intel_connector *connector, enum pipe pipe);
587 uint32_t (*get_backlight)(struct intel_connector *connector);
588 void (*set_backlight)(struct intel_connector *connector,
589 uint32_t level);
590 void (*disable_backlight)(struct intel_connector *connector);
591 void (*enable_backlight)(struct intel_connector *connector);
592 };
593
594 enum forcewake_domain_id {
595 FW_DOMAIN_ID_RENDER = 0,
596 FW_DOMAIN_ID_BLITTER,
597 FW_DOMAIN_ID_MEDIA,
598
599 FW_DOMAIN_ID_COUNT
600 };
601
602 enum forcewake_domains {
603 FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER),
604 FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER),
605 FORCEWAKE_MEDIA = (1 << FW_DOMAIN_ID_MEDIA),
606 FORCEWAKE_ALL = (FORCEWAKE_RENDER |
607 FORCEWAKE_BLITTER |
608 FORCEWAKE_MEDIA)
609 };
610
611 struct intel_uncore_funcs {
612 void (*force_wake_get)(struct drm_i915_private *dev_priv,
613 enum forcewake_domains domains);
614 void (*force_wake_put)(struct drm_i915_private *dev_priv,
615 enum forcewake_domains domains);
616
617 uint8_t (*mmio_readb)(struct drm_i915_private *dev_priv, off_t offset, bool trace);
618 uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, off_t offset, bool trace);
619 uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, off_t offset, bool trace);
620 uint64_t (*mmio_readq)(struct drm_i915_private *dev_priv, off_t offset, bool trace);
621
622 void (*mmio_writeb)(struct drm_i915_private *dev_priv, off_t offset,
623 uint8_t val, bool trace);
624 void (*mmio_writew)(struct drm_i915_private *dev_priv, off_t offset,
625 uint16_t val, bool trace);
626 void (*mmio_writel)(struct drm_i915_private *dev_priv, off_t offset,
627 uint32_t val, bool trace);
628 void (*mmio_writeq)(struct drm_i915_private *dev_priv, off_t offset,
629 uint64_t val, bool trace);
630 };
631
632 struct intel_uncore {
633 spinlock_t lock; /** lock is also taken in irq contexts. */
634
635 struct intel_uncore_funcs funcs;
636
637 unsigned fifo_count;
638 enum forcewake_domains fw_domains;
639
640 struct intel_uncore_forcewake_domain {
641 struct drm_i915_private *i915;
642 enum forcewake_domain_id id;
643 unsigned wake_count;
644 struct timer_list timer;
645 u32 reg_set;
646 u32 val_set;
647 u32 val_clear;
648 u32 reg_ack;
649 u32 reg_post;
650 u32 val_reset;
651 } fw_domain[FW_DOMAIN_ID_COUNT];
652 };
653
654 /* Iterate over initialised fw domains */
655 #define for_each_fw_domain_mask(domain__, mask__, dev_priv__, i__) \
656 for ((i__) = 0, (domain__) = &(dev_priv__)->uncore.fw_domain[0]; \
657 (i__) < FW_DOMAIN_ID_COUNT; \
658 (i__)++, (domain__) = &(dev_priv__)->uncore.fw_domain[i__]) \
659 if (((mask__) & (dev_priv__)->uncore.fw_domains) & (1 << (i__)))
660
661 #define for_each_fw_domain(domain__, dev_priv__, i__) \
662 for_each_fw_domain_mask(domain__, FORCEWAKE_ALL, dev_priv__, i__)
663
664 #define DEV_INFO_FOR_EACH_FLAG(func, sep) \
665 func(is_mobile) sep \
666 func(is_i85x) sep \
667 func(is_i915g) sep \
668 func(is_i945gm) sep \
669 func(is_g33) sep \
670 func(need_gfx_hws) sep \
671 func(is_g4x) sep \
672 func(is_pineview) sep \
673 func(is_broadwater) sep \
674 func(is_crestline) sep \
675 func(is_ivybridge) sep \
676 func(is_valleyview) sep \
677 func(is_haswell) sep \
678 func(is_skylake) sep \
679 func(is_preliminary) sep \
680 func(has_fbc) sep \
681 func(has_pipe_cxsr) sep \
682 func(has_hotplug) sep \
683 func(cursor_needs_physical) sep \
684 func(has_overlay) sep \
685 func(overlay_needs_physical) sep \
686 func(supports_tv) sep \
687 func(has_llc) sep \
688 func(has_ddi) sep \
689 func(has_fpga_dbg)
690
691 #define DEFINE_FLAG(name) u8 name:1
692 #define SEP_SEMICOLON ;
693
694 struct intel_device_info {
695 u32 display_mmio_offset;
696 u16 device_id;
697 u8 num_pipes:3;
698 u8 num_sprites[I915_MAX_PIPES];
699 u8 gen;
700 u8 ring_mask; /* Rings supported by the HW */
701 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG, SEP_SEMICOLON);
702 /* Register offsets for the various display pipes and transcoders */
703 int pipe_offsets[I915_MAX_TRANSCODERS];
704 int trans_offsets[I915_MAX_TRANSCODERS];
705 int palette_offsets[I915_MAX_PIPES];
706 int cursor_offsets[I915_MAX_PIPES];
707
708 /* Slice/subslice/EU info */
709 u8 slice_total;
710 u8 subslice_total;
711 u8 subslice_per_slice;
712 u8 eu_total;
713 u8 eu_per_subslice;
714 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
715 u8 subslice_7eu[3];
716 u8 has_slice_pg:1;
717 u8 has_subslice_pg:1;
718 u8 has_eu_pg:1;
719 };
720
721 #undef DEFINE_FLAG
722 #undef SEP_SEMICOLON
723
724 enum i915_cache_level {
725 I915_CACHE_NONE = 0,
726 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
727 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
728 caches, eg sampler/render caches, and the
729 large Last-Level-Cache. LLC is coherent with
730 the CPU, but L3 is only visible to the GPU. */
731 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
732 };
733
734 struct i915_ctx_hang_stats {
735 /* This context had batch pending when hang was declared */
736 unsigned batch_pending;
737
738 /* This context had batch active when hang was declared */
739 unsigned batch_active;
740
741 /* Time when this context was last blamed for a GPU reset */
742 unsigned long guilty_ts;
743
744 /* If the contexts causes a second GPU hang within this time,
745 * it is permanently banned from submitting any more work.
746 */
747 unsigned long ban_period_seconds;
748
749 /* This context is banned to submit more work */
750 bool banned;
751 };
752
753 /* This must match up with the value previously used for execbuf2.rsvd1. */
754 #define DEFAULT_CONTEXT_HANDLE 0
755 /**
756 * struct intel_context - as the name implies, represents a context.
757 * @ref: reference count.
758 * @user_handle: userspace tracking identity for this context.
759 * @remap_slice: l3 row remapping information.
760 * @file_priv: filp associated with this context (NULL for global default
761 * context).
762 * @hang_stats: information about the role of this context in possible GPU
763 * hangs.
764 * @vm: virtual memory space used by this context.
765 * @legacy_hw_ctx: render context backing object and whether it is correctly
766 * initialized (legacy ring submission mechanism only).
767 * @link: link in the global list of contexts.
768 *
769 * Contexts are memory images used by the hardware to store copies of their
770 * internal state.
771 */
772 struct intel_context {
773 struct kref ref;
774 int user_handle;
775 uint8_t remap_slice;
776 struct drm_i915_file_private *file_priv;
777 struct i915_ctx_hang_stats hang_stats;
778 struct i915_hw_ppgtt *ppgtt;
779
780 /* Legacy ring buffer submission */
781 struct {
782 struct drm_i915_gem_object *rcs_state;
783 bool initialized;
784 } legacy_hw_ctx;
785
786 /* Execlists */
787 bool rcs_initialized;
788 struct {
789 struct drm_i915_gem_object *state;
790 struct intel_ringbuffer *ringbuf;
791 int pin_count;
792 } engine[I915_NUM_RINGS];
793
794 struct list_head link;
795 };
796
797 enum fb_op_origin {
798 ORIGIN_GTT,
799 ORIGIN_CPU,
800 ORIGIN_CS,
801 ORIGIN_FLIP,
802 };
803
804 struct i915_fbc {
805 unsigned long uncompressed_size;
806 unsigned threshold;
807 unsigned int fb_id;
808 struct intel_crtc *crtc;
809 int y;
810
811 struct drm_mm_node compressed_fb;
812 struct drm_mm_node *compressed_llb;
813
814 bool false_color;
815
816 /* Tracks whether the HW is actually enabled, not whether the feature is
817 * possible. */
818 bool enabled;
819
820 /* On gen8 some rings cannont perform fbc clean operation so for now
821 * we are doing this on SW with mmio.
822 * This variable works in the opposite information direction
823 * of ring->fbc_dirty telling software on frontbuffer tracking
824 * to perform the cache clean on sw side.
825 */
826 bool need_sw_cache_clean;
827
828 struct intel_fbc_work {
829 struct delayed_work work;
830 struct drm_crtc *crtc;
831 struct drm_framebuffer *fb;
832 } *fbc_work;
833
834 enum no_fbc_reason {
835 FBC_OK, /* FBC is enabled */
836 FBC_UNSUPPORTED, /* FBC is not supported by this chipset */
837 FBC_NO_OUTPUT, /* no outputs enabled to compress */
838 FBC_STOLEN_TOO_SMALL, /* not enough space for buffers */
839 FBC_UNSUPPORTED_MODE, /* interlace or doublescanned mode */
840 FBC_MODE_TOO_LARGE, /* mode too large for compression */
841 FBC_BAD_PLANE, /* fbc not supported on plane */
842 FBC_NOT_TILED, /* buffer not tiled */
843 FBC_MULTIPLE_PIPES, /* more than one pipe active */
844 FBC_MODULE_PARAM,
845 FBC_CHIP_DEFAULT, /* disabled by default on this chip */
846 } no_fbc_reason;
847 };
848
849 /**
850 * HIGH_RR is the highest eDP panel refresh rate read from EDID
851 * LOW_RR is the lowest eDP panel refresh rate found from EDID
852 * parsing for same resolution.
853 */
854 enum drrs_refresh_rate_type {
855 DRRS_HIGH_RR,
856 DRRS_LOW_RR,
857 DRRS_MAX_RR, /* RR count */
858 };
859
860 enum drrs_support_type {
861 DRRS_NOT_SUPPORTED = 0,
862 STATIC_DRRS_SUPPORT = 1,
863 SEAMLESS_DRRS_SUPPORT = 2
864 };
865
866 struct intel_dp;
867 struct i915_drrs {
868 struct mutex mutex;
869 struct delayed_work work;
870 struct intel_dp *dp;
871 unsigned busy_frontbuffer_bits;
872 enum drrs_refresh_rate_type refresh_rate_type;
873 enum drrs_support_type type;
874 };
875
876 struct i915_psr {
877 struct mutex lock;
878 bool sink_support;
879 bool source_ok;
880 struct intel_dp *enabled;
881 bool active;
882 struct delayed_work work;
883 unsigned busy_frontbuffer_bits;
884 bool link_standby;
885 };
886
887 enum intel_pch {
888 PCH_NONE = 0, /* No PCH present */
889 PCH_IBX, /* Ibexpeak PCH */
890 PCH_CPT, /* Cougarpoint PCH */
891 PCH_LPT, /* Lynxpoint PCH */
892 PCH_SPT, /* Sunrisepoint PCH */
893 PCH_NOP,
894 };
895
896 enum intel_sbi_destination {
897 SBI_ICLK,
898 SBI_MPHY,
899 };
900
901 #define QUIRK_PIPEA_FORCE (1<<0)
902 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
903 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
904 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
905 #define QUIRK_PIPEB_FORCE (1<<4)
906 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
907
908 struct intel_fbdev;
909 struct intel_fbc_work;
910
911 struct intel_gmbus {
912 struct i2c_adapter adapter;
913 u32 force_bit;
914 u32 reg0;
915 u32 gpio_reg;
916 struct i2c_algo_bit_data bit_algo;
917 struct drm_i915_private *dev_priv;
918 };
919
920 struct i915_suspend_saved_registers {
921 u32 saveDSPARB;
922 u32 saveLVDS;
923 u32 savePP_ON_DELAYS;
924 u32 savePP_OFF_DELAYS;
925 u32 savePP_ON;
926 u32 savePP_OFF;
927 u32 savePP_CONTROL;
928 u32 savePP_DIVISOR;
929 u32 saveFBC_CONTROL;
930 u32 saveCACHE_MODE_0;
931 u32 saveMI_ARB_STATE;
932 u32 saveSWF0[16];
933 u32 saveSWF1[16];
934 u32 saveSWF2[3];
935 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
936 u32 savePCH_PORT_HOTPLUG;
937 u16 saveGCDGMBUS;
938 };
939
940 struct vlv_s0ix_state {
941 /* GAM */
942 u32 wr_watermark;
943 u32 gfx_prio_ctrl;
944 u32 arb_mode;
945 u32 gfx_pend_tlb0;
946 u32 gfx_pend_tlb1;
947 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
948 u32 media_max_req_count;
949 u32 gfx_max_req_count;
950 u32 render_hwsp;
951 u32 ecochk;
952 u32 bsd_hwsp;
953 u32 blt_hwsp;
954 u32 tlb_rd_addr;
955
956 /* MBC */
957 u32 g3dctl;
958 u32 gsckgctl;
959 u32 mbctl;
960
961 /* GCP */
962 u32 ucgctl1;
963 u32 ucgctl3;
964 u32 rcgctl1;
965 u32 rcgctl2;
966 u32 rstctl;
967 u32 misccpctl;
968
969 /* GPM */
970 u32 gfxpause;
971 u32 rpdeuhwtc;
972 u32 rpdeuc;
973 u32 ecobus;
974 u32 pwrdwnupctl;
975 u32 rp_down_timeout;
976 u32 rp_deucsw;
977 u32 rcubmabdtmr;
978 u32 rcedata;
979 u32 spare2gh;
980
981 /* Display 1 CZ domain */
982 u32 gt_imr;
983 u32 gt_ier;
984 u32 pm_imr;
985 u32 pm_ier;
986 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
987
988 /* GT SA CZ domain */
989 u32 tilectl;
990 u32 gt_fifoctl;
991 u32 gtlc_wake_ctrl;
992 u32 gtlc_survive;
993 u32 pmwgicz;
994
995 /* Display 2 CZ domain */
996 u32 gu_ctl0;
997 u32 gu_ctl1;
998 u32 clock_gate_dis2;
999 };
1000
1001 struct intel_rps_ei {
1002 u32 cz_clock;
1003 u32 render_c0;
1004 u32 media_c0;
1005 };
1006
1007 struct intel_gen6_power_mgmt {
1008 /*
1009 * work, interrupts_enabled and pm_iir are protected by
1010 * dev_priv->irq_lock
1011 */
1012 struct work_struct work;
1013 bool interrupts_enabled;
1014 u32 pm_iir;
1015
1016 /* Frequencies are stored in potentially platform dependent multiples.
1017 * In other words, *_freq needs to be multiplied by X to be interesting.
1018 * Soft limits are those which are used for the dynamic reclocking done
1019 * by the driver (raise frequencies under heavy loads, and lower for
1020 * lighter loads). Hard limits are those imposed by the hardware.
1021 *
1022 * A distinction is made for overclocking, which is never enabled by
1023 * default, and is considered to be above the hard limit if it's
1024 * possible at all.
1025 */
1026 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1027 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1028 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1029 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1030 u8 min_freq; /* AKA RPn. Minimum frequency */
1031 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1032 u8 rp1_freq; /* "less than" RP0 power/freqency */
1033 u8 rp0_freq; /* Non-overclocked max frequency. */
1034 u32 cz_freq;
1035
1036 u32 ei_interrupt_count;
1037
1038 int last_adj;
1039 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1040
1041 bool enabled;
1042 struct delayed_work delayed_resume_work;
1043
1044 /* manual wa residency calculations */
1045 struct intel_rps_ei up_ei, down_ei;
1046
1047 /*
1048 * Protects RPS/RC6 register access and PCU communication.
1049 * Must be taken after struct_mutex if nested.
1050 */
1051 struct mutex hw_lock;
1052 };
1053
1054 /* defined intel_pm.c */
1055 extern spinlock_t mchdev_lock;
1056
1057 struct intel_ilk_power_mgmt {
1058 u8 cur_delay;
1059 u8 min_delay;
1060 u8 max_delay;
1061 u8 fmax;
1062 u8 fstart;
1063
1064 u64 last_count1;
1065 unsigned long last_time1;
1066 unsigned long chipset_power;
1067 u64 last_count2;
1068 u64 last_time2;
1069 unsigned long gfx_power;
1070 u8 corr;
1071
1072 int c_m;
1073 int r_t;
1074
1075 struct drm_i915_gem_object *pwrctx;
1076 struct drm_i915_gem_object *renderctx;
1077 };
1078
1079 struct drm_i915_private;
1080 struct i915_power_well;
1081
1082 struct i915_power_well_ops {
1083 /*
1084 * Synchronize the well's hw state to match the current sw state, for
1085 * example enable/disable it based on the current refcount. Called
1086 * during driver init and resume time, possibly after first calling
1087 * the enable/disable handlers.
1088 */
1089 void (*sync_hw)(struct drm_i915_private *dev_priv,
1090 struct i915_power_well *power_well);
1091 /*
1092 * Enable the well and resources that depend on it (for example
1093 * interrupts located on the well). Called after the 0->1 refcount
1094 * transition.
1095 */
1096 void (*enable)(struct drm_i915_private *dev_priv,
1097 struct i915_power_well *power_well);
1098 /*
1099 * Disable the well and resources that depend on it. Called after
1100 * the 1->0 refcount transition.
1101 */
1102 void (*disable)(struct drm_i915_private *dev_priv,
1103 struct i915_power_well *power_well);
1104 /* Returns the hw enabled state. */
1105 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1106 struct i915_power_well *power_well);
1107 };
1108
1109 /* Power well structure for haswell */
1110 struct i915_power_well {
1111 const char *name;
1112 bool always_on;
1113 /* power well enable/disable usage count */
1114 int count;
1115 /* cached hw enabled state */
1116 bool hw_enabled;
1117 unsigned long domains;
1118 unsigned long data;
1119 const struct i915_power_well_ops *ops;
1120 };
1121
1122 struct i915_power_domains {
1123 /*
1124 * Power wells needed for initialization at driver init and suspend
1125 * time are on. They are kept on until after the first modeset.
1126 */
1127 bool init_power_on;
1128 bool initializing;
1129 int power_well_count;
1130
1131 struct mutex lock;
1132 int domain_use_count[POWER_DOMAIN_NUM];
1133 struct i915_power_well *power_wells;
1134 };
1135
1136 #define MAX_L3_SLICES 2
1137 struct intel_l3_parity {
1138 u32 *remap_info[MAX_L3_SLICES];
1139 struct work_struct error_work;
1140 int which_slice;
1141 };
1142
1143 struct i915_gem_batch_pool {
1144 struct drm_device *dev;
1145 struct list_head cache_list;
1146 };
1147
1148 struct i915_gem_mm {
1149 /** Memory allocator for GTT stolen memory */
1150 struct drm_mm stolen;
1151 /** List of all objects in gtt_space. Used to restore gtt
1152 * mappings on resume */
1153 struct list_head bound_list;
1154 /**
1155 * List of objects which are not bound to the GTT (thus
1156 * are idle and not used by the GPU) but still have
1157 * (presumably uncached) pages still attached.
1158 */
1159 struct list_head unbound_list;
1160
1161 /*
1162 * A pool of objects to use as shadow copies of client batch buffers
1163 * when the command parser is enabled. Prevents the client from
1164 * modifying the batch contents after software parsing.
1165 */
1166 struct i915_gem_batch_pool batch_pool;
1167
1168 /** Usable portion of the GTT for GEM */
1169 unsigned long stolen_base; /* limited to low memory (32-bit) */
1170
1171 /** PPGTT used for aliasing the PPGTT with the GTT */
1172 struct i915_hw_ppgtt *aliasing_ppgtt;
1173
1174 struct notifier_block oom_notifier;
1175 struct shrinker shrinker;
1176 bool shrinker_no_lock_stealing;
1177
1178 /** LRU list of objects with fence regs on them. */
1179 struct list_head fence_list;
1180
1181 /**
1182 * We leave the user IRQ off as much as possible,
1183 * but this means that requests will finish and never
1184 * be retired once the system goes idle. Set a timer to
1185 * fire periodically while the ring is running. When it
1186 * fires, go retire requests.
1187 */
1188 struct delayed_work retire_work;
1189
1190 /**
1191 * When we detect an idle GPU, we want to turn on
1192 * powersaving features. So once we see that there
1193 * are no more requests outstanding and no more
1194 * arrive within a small period of time, we fire
1195 * off the idle_work.
1196 */
1197 struct delayed_work idle_work;
1198
1199 /**
1200 * Are we in a non-interruptible section of code like
1201 * modesetting?
1202 */
1203 bool interruptible;
1204
1205 /**
1206 * Is the GPU currently considered idle, or busy executing userspace
1207 * requests? Whilst idle, we attempt to power down the hardware and
1208 * display clocks. In order to reduce the effect on performance, there
1209 * is a slight delay before we do so.
1210 */
1211 bool busy;
1212
1213 /* the indicator for dispatch video commands on two BSD rings */
1214 int bsd_ring_dispatch_index;
1215
1216 /** Bit 6 swizzling required for X tiling */
1217 uint32_t bit_6_swizzle_x;
1218 /** Bit 6 swizzling required for Y tiling */
1219 uint32_t bit_6_swizzle_y;
1220
1221 /* accounting, useful for userland debugging */
1222 spinlock_t object_stat_lock;
1223 size_t object_memory;
1224 u32 object_count;
1225 };
1226
1227 struct drm_i915_error_state_buf {
1228 struct drm_i915_private *i915;
1229 unsigned bytes;
1230 unsigned size;
1231 int err;
1232 u8 *buf;
1233 loff_t start;
1234 loff_t pos;
1235 };
1236
1237 struct i915_error_state_file_priv {
1238 struct drm_device *dev;
1239 struct drm_i915_error_state *error;
1240 };
1241
1242 struct i915_gpu_error {
1243 /* For hangcheck timer */
1244 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1245 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1246 /* Hang gpu twice in this window and your context gets banned */
1247 #define DRM_I915_CTX_BAN_PERIOD DIV_ROUND_UP(8*DRM_I915_HANGCHECK_PERIOD, 1000)
1248
1249 struct workqueue_struct *hangcheck_wq;
1250 struct delayed_work hangcheck_work;
1251
1252 /* For reset and error_state handling. */
1253 spinlock_t lock;
1254 /* Protected by the above dev->gpu_error.lock. */
1255 struct drm_i915_error_state *first_error;
1256
1257 unsigned long missed_irq_rings;
1258
1259 /**
1260 * State variable controlling the reset flow and count
1261 *
1262 * This is a counter which gets incremented when reset is triggered,
1263 * and again when reset has been handled. So odd values (lowest bit set)
1264 * means that reset is in progress and even values that
1265 * (reset_counter >> 1):th reset was successfully completed.
1266 *
1267 * If reset is not completed succesfully, the I915_WEDGE bit is
1268 * set meaning that hardware is terminally sour and there is no
1269 * recovery. All waiters on the reset_queue will be woken when
1270 * that happens.
1271 *
1272 * This counter is used by the wait_seqno code to notice that reset
1273 * event happened and it needs to restart the entire ioctl (since most
1274 * likely the seqno it waited for won't ever signal anytime soon).
1275 *
1276 * This is important for lock-free wait paths, where no contended lock
1277 * naturally enforces the correct ordering between the bail-out of the
1278 * waiter and the gpu reset work code.
1279 */
1280 atomic_t reset_counter;
1281
1282 #define I915_RESET_IN_PROGRESS_FLAG 1
1283 #define I915_WEDGED (1 << 31)
1284
1285 /**
1286 * Waitqueue to signal when the reset has completed. Used by clients
1287 * that wait for dev_priv->mm.wedged to settle.
1288 */
1289 wait_queue_head_t reset_queue;
1290
1291 /* Userspace knobs for gpu hang simulation;
1292 * combines both a ring mask, and extra flags
1293 */
1294 u32 stop_rings;
1295 #define I915_STOP_RING_ALLOW_BAN (1 << 31)
1296 #define I915_STOP_RING_ALLOW_WARN (1 << 30)
1297
1298 /* For missed irq/seqno simulation. */
1299 unsigned int test_irq_rings;
1300
1301 /* Used to prevent gem_check_wedged returning -EAGAIN during gpu reset */
1302 bool reload_in_reset;
1303 };
1304
1305 enum modeset_restore {
1306 MODESET_ON_LID_OPEN,
1307 MODESET_DONE,
1308 MODESET_SUSPENDED,
1309 };
1310
1311 struct ddi_vbt_port_info {
1312 /*
1313 * This is an index in the HDMI/DVI DDI buffer translation table.
1314 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1315 * populate this field.
1316 */
1317 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1318 uint8_t hdmi_level_shift;
1319
1320 uint8_t supports_dvi:1;
1321 uint8_t supports_hdmi:1;
1322 uint8_t supports_dp:1;
1323 };
1324
1325 enum psr_lines_to_wait {
1326 PSR_0_LINES_TO_WAIT = 0,
1327 PSR_1_LINE_TO_WAIT,
1328 PSR_4_LINES_TO_WAIT,
1329 PSR_8_LINES_TO_WAIT
1330 };
1331
1332 struct intel_vbt_data {
1333 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1334 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1335
1336 /* Feature bits */
1337 unsigned int int_tv_support:1;
1338 unsigned int lvds_dither:1;
1339 unsigned int lvds_vbt:1;
1340 unsigned int int_crt_support:1;
1341 unsigned int lvds_use_ssc:1;
1342 unsigned int display_clock_mode:1;
1343 unsigned int fdi_rx_polarity_inverted:1;
1344 unsigned int has_mipi:1;
1345 int lvds_ssc_freq;
1346 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1347
1348 enum drrs_support_type drrs_type;
1349
1350 /* eDP */
1351 int edp_rate;
1352 int edp_lanes;
1353 int edp_preemphasis;
1354 int edp_vswing;
1355 bool edp_initialized;
1356 bool edp_support;
1357 int edp_bpp;
1358 bool edp_low_vswing;
1359 struct edp_power_seq edp_pps;
1360
1361 struct {
1362 bool full_link;
1363 bool require_aux_wakeup;
1364 int idle_frames;
1365 enum psr_lines_to_wait lines_to_wait;
1366 int tp1_wakeup_time;
1367 int tp2_tp3_wakeup_time;
1368 } psr;
1369
1370 struct {
1371 u16 pwm_freq_hz;
1372 bool present;
1373 bool active_low_pwm;
1374 u8 min_brightness; /* min_brightness/255 of max */
1375 } backlight;
1376
1377 /* MIPI DSI */
1378 struct {
1379 u16 port;
1380 u16 panel_id;
1381 struct mipi_config *config;
1382 struct mipi_pps_data *pps;
1383 u8 seq_version;
1384 u32 size;
1385 u8 *data;
1386 u8 *sequence[MIPI_SEQ_MAX];
1387 } dsi;
1388
1389 int crt_ddc_pin;
1390
1391 int child_dev_num;
1392 union child_device_config *child_dev;
1393
1394 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1395 };
1396
1397 enum intel_ddb_partitioning {
1398 INTEL_DDB_PART_1_2,
1399 INTEL_DDB_PART_5_6, /* IVB+ */
1400 };
1401
1402 struct intel_wm_level {
1403 bool enable;
1404 uint32_t pri_val;
1405 uint32_t spr_val;
1406 uint32_t cur_val;
1407 uint32_t fbc_val;
1408 };
1409
1410 struct ilk_wm_values {
1411 uint32_t wm_pipe[3];
1412 uint32_t wm_lp[3];
1413 uint32_t wm_lp_spr[3];
1414 uint32_t wm_linetime[3];
1415 bool enable_fbc_wm;
1416 enum intel_ddb_partitioning partitioning;
1417 };
1418
1419 struct skl_ddb_entry {
1420 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1421 };
1422
1423 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1424 {
1425 return entry->end - entry->start;
1426 }
1427
1428 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1429 const struct skl_ddb_entry *e2)
1430 {
1431 if (e1->start == e2->start && e1->end == e2->end)
1432 return true;
1433
1434 return false;
1435 }
1436
1437 struct skl_ddb_allocation {
1438 struct skl_ddb_entry pipe[I915_MAX_PIPES];
1439 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES];
1440 struct skl_ddb_entry cursor[I915_MAX_PIPES];
1441 };
1442
1443 struct skl_wm_values {
1444 bool dirty[I915_MAX_PIPES];
1445 struct skl_ddb_allocation ddb;
1446 uint32_t wm_linetime[I915_MAX_PIPES];
1447 uint32_t plane[I915_MAX_PIPES][I915_MAX_PLANES][8];
1448 uint32_t cursor[I915_MAX_PIPES][8];
1449 uint32_t plane_trans[I915_MAX_PIPES][I915_MAX_PLANES];
1450 uint32_t cursor_trans[I915_MAX_PIPES];
1451 };
1452
1453 struct skl_wm_level {
1454 bool plane_en[I915_MAX_PLANES];
1455 bool cursor_en;
1456 uint16_t plane_res_b[I915_MAX_PLANES];
1457 uint8_t plane_res_l[I915_MAX_PLANES];
1458 uint16_t cursor_res_b;
1459 uint8_t cursor_res_l;
1460 };
1461
1462 /*
1463 * This struct helps tracking the state needed for runtime PM, which puts the
1464 * device in PCI D3 state. Notice that when this happens, nothing on the
1465 * graphics device works, even register access, so we don't get interrupts nor
1466 * anything else.
1467 *
1468 * Every piece of our code that needs to actually touch the hardware needs to
1469 * either call intel_runtime_pm_get or call intel_display_power_get with the
1470 * appropriate power domain.
1471 *
1472 * Our driver uses the autosuspend delay feature, which means we'll only really
1473 * suspend if we stay with zero refcount for a certain amount of time. The
1474 * default value is currently very conservative (see intel_runtime_pm_enable), but
1475 * it can be changed with the standard runtime PM files from sysfs.
1476 *
1477 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1478 * goes back to false exactly before we reenable the IRQs. We use this variable
1479 * to check if someone is trying to enable/disable IRQs while they're supposed
1480 * to be disabled. This shouldn't happen and we'll print some error messages in
1481 * case it happens.
1482 *
1483 * For more, read the Documentation/power/runtime_pm.txt.
1484 */
1485 struct i915_runtime_pm {
1486 bool suspended;
1487 bool irqs_enabled;
1488 };
1489
1490 enum intel_pipe_crc_source {
1491 INTEL_PIPE_CRC_SOURCE_NONE,
1492 INTEL_PIPE_CRC_SOURCE_PLANE1,
1493 INTEL_PIPE_CRC_SOURCE_PLANE2,
1494 INTEL_PIPE_CRC_SOURCE_PF,
1495 INTEL_PIPE_CRC_SOURCE_PIPE,
1496 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1497 INTEL_PIPE_CRC_SOURCE_TV,
1498 INTEL_PIPE_CRC_SOURCE_DP_B,
1499 INTEL_PIPE_CRC_SOURCE_DP_C,
1500 INTEL_PIPE_CRC_SOURCE_DP_D,
1501 INTEL_PIPE_CRC_SOURCE_AUTO,
1502 INTEL_PIPE_CRC_SOURCE_MAX,
1503 };
1504
1505 struct intel_pipe_crc_entry {
1506 uint32_t frame;
1507 uint32_t crc[5];
1508 };
1509
1510 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1511 struct intel_pipe_crc {
1512 spinlock_t lock;
1513 bool opened; /* exclusive access to the result file */
1514 struct intel_pipe_crc_entry *entries;
1515 enum intel_pipe_crc_source source;
1516 int head, tail;
1517 wait_queue_head_t wq;
1518 };
1519
1520 struct i915_frontbuffer_tracking {
1521 struct mutex lock;
1522
1523 /*
1524 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1525 * scheduled flips.
1526 */
1527 unsigned busy_bits;
1528 unsigned flip_bits;
1529 };
1530
1531 struct i915_wa_reg {
1532 u32 addr;
1533 u32 value;
1534 /* bitmask representing WA bits */
1535 u32 mask;
1536 };
1537
1538 #define I915_MAX_WA_REGS 16
1539
1540 struct i915_workarounds {
1541 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1542 u32 count;
1543 };
1544
1545 struct i915_virtual_gpu {
1546 bool active;
1547 };
1548
1549 struct drm_i915_private {
1550 struct drm_device *dev;
1551 struct kmem_cache *slab;
1552
1553 const struct intel_device_info info;
1554
1555 int relative_constants_mode;
1556
1557 void __iomem *regs;
1558
1559 struct intel_uncore uncore;
1560
1561 struct i915_virtual_gpu vgpu;
1562
1563 struct intel_gmbus gmbus[GMBUS_NUM_PORTS];
1564
1565
1566 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
1567 * controller on different i2c buses. */
1568 struct mutex gmbus_mutex;
1569
1570 /**
1571 * Base address of the gmbus and gpio block.
1572 */
1573 uint32_t gpio_mmio_base;
1574
1575 /* MMIO base address for MIPI regs */
1576 uint32_t mipi_mmio_base;
1577
1578 wait_queue_head_t gmbus_wait_queue;
1579
1580 struct pci_dev *bridge_dev;
1581 struct intel_engine_cs ring[I915_NUM_RINGS];
1582 struct drm_i915_gem_object *semaphore_obj;
1583 uint32_t last_seqno, next_seqno;
1584
1585 struct drm_dma_handle *status_page_dmah;
1586 struct resource mch_res;
1587
1588 /* protects the irq masks */
1589 spinlock_t irq_lock;
1590
1591 /* protects the mmio flip data */
1592 spinlock_t mmio_flip_lock;
1593
1594 bool display_irqs_enabled;
1595
1596 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1597 struct pm_qos_request pm_qos;
1598
1599 /* DPIO indirect register protection */
1600 struct mutex dpio_lock;
1601
1602 /** Cached value of IMR to avoid reads in updating the bitfield */
1603 union {
1604 u32 irq_mask;
1605 u32 de_irq_mask[I915_MAX_PIPES];
1606 };
1607 u32 gt_irq_mask;
1608 u32 pm_irq_mask;
1609 u32 pm_rps_events;
1610 u32 pipestat_irq_mask[I915_MAX_PIPES];
1611
1612 struct work_struct hotplug_work;
1613 struct {
1614 unsigned long hpd_last_jiffies;
1615 int hpd_cnt;
1616 enum {
1617 HPD_ENABLED = 0,
1618 HPD_DISABLED = 1,
1619 HPD_MARK_DISABLED = 2
1620 } hpd_mark;
1621 } hpd_stats[HPD_NUM_PINS];
1622 u32 hpd_event_bits;
1623 struct delayed_work hotplug_reenable_work;
1624
1625 struct i915_fbc fbc;
1626 struct i915_drrs drrs;
1627 struct intel_opregion opregion;
1628 struct intel_vbt_data vbt;
1629
1630 bool preserve_bios_swizzle;
1631
1632 /* overlay */
1633 struct intel_overlay *overlay;
1634
1635 /* backlight registers and fields in struct intel_panel */
1636 struct mutex backlight_lock;
1637
1638 /* LVDS info */
1639 bool no_aux_handshake;
1640
1641 /* protects panel power sequencer state */
1642 struct mutex pps_mutex;
1643
1644 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1645 int fence_reg_start; /* 4 if userland hasn't ioctl'd us yet */
1646 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1647
1648 unsigned int fsb_freq, mem_freq, is_ddr3;
1649 unsigned int vlv_cdclk_freq;
1650 unsigned int hpll_freq;
1651
1652 /**
1653 * wq - Driver workqueue for GEM.
1654 *
1655 * NOTE: Work items scheduled here are not allowed to grab any modeset
1656 * locks, for otherwise the flushing done in the pageflip code will
1657 * result in deadlocks.
1658 */
1659 struct workqueue_struct *wq;
1660
1661 /* Display functions */
1662 struct drm_i915_display_funcs display;
1663
1664 /* PCH chipset type */
1665 enum intel_pch pch_type;
1666 unsigned short pch_id;
1667
1668 unsigned long quirks;
1669
1670 enum modeset_restore modeset_restore;
1671 struct mutex modeset_restore_lock;
1672
1673 struct list_head vm_list; /* Global list of all address spaces */
1674 struct i915_gtt gtt; /* VM representing the global address space */
1675
1676 struct i915_gem_mm mm;
1677 DECLARE_HASHTABLE(mm_structs, 7);
1678 struct mutex mm_lock;
1679
1680 /* Kernel Modesetting */
1681
1682 struct sdvo_device_mapping sdvo_mappings[2];
1683
1684 struct drm_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1685 struct drm_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1686 wait_queue_head_t pending_flip_queue;
1687
1688 #ifdef CONFIG_DEBUG_FS
1689 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1690 #endif
1691
1692 int num_shared_dpll;
1693 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1694 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1695
1696 struct i915_workarounds workarounds;
1697
1698 /* Reclocking support */
1699 bool render_reclock_avail;
1700 bool lvds_downclock_avail;
1701 /* indicates the reduced downclock for LVDS*/
1702 int lvds_downclock;
1703
1704 struct i915_frontbuffer_tracking fb_tracking;
1705
1706 u16 orig_clock;
1707
1708 bool mchbar_need_disable;
1709
1710 struct intel_l3_parity l3_parity;
1711
1712 /* Cannot be determined by PCIID. You must always read a register. */
1713 size_t ellc_size;
1714
1715 /* gen6+ rps state */
1716 struct intel_gen6_power_mgmt rps;
1717
1718 /* ilk-only ips/rps state. Everything in here is protected by the global
1719 * mchdev_lock in intel_pm.c */
1720 struct intel_ilk_power_mgmt ips;
1721
1722 struct i915_power_domains power_domains;
1723
1724 struct i915_psr psr;
1725
1726 struct i915_gpu_error gpu_error;
1727
1728 struct drm_i915_gem_object *vlv_pctx;
1729
1730 #ifdef CONFIG_DRM_I915_FBDEV
1731 /* list of fbdev register on this device */
1732 struct intel_fbdev *fbdev;
1733 struct work_struct fbdev_suspend_work;
1734 #endif
1735
1736 struct drm_property *broadcast_rgb_property;
1737 struct drm_property *force_audio_property;
1738
1739 /* hda/i915 audio component */
1740 bool audio_component_registered;
1741
1742 uint32_t hw_context_size;
1743 struct list_head context_list;
1744
1745 u32 fdi_rx_config;
1746
1747 u32 suspend_count;
1748 struct i915_suspend_saved_registers regfile;
1749 struct vlv_s0ix_state vlv_s0ix_state;
1750
1751 struct {
1752 /*
1753 * Raw watermark latency values:
1754 * in 0.1us units for WM0,
1755 * in 0.5us units for WM1+.
1756 */
1757 /* primary */
1758 uint16_t pri_latency[5];
1759 /* sprite */
1760 uint16_t spr_latency[5];
1761 /* cursor */
1762 uint16_t cur_latency[5];
1763 /*
1764 * Raw watermark memory latency values
1765 * for SKL for all 8 levels
1766 * in 1us units.
1767 */
1768 uint16_t skl_latency[8];
1769
1770 /*
1771 * The skl_wm_values structure is a bit too big for stack
1772 * allocation, so we keep the staging struct where we store
1773 * intermediate results here instead.
1774 */
1775 struct skl_wm_values skl_results;
1776
1777 /* current hardware state */
1778 union {
1779 struct ilk_wm_values hw;
1780 struct skl_wm_values skl_hw;
1781 };
1782 } wm;
1783
1784 struct i915_runtime_pm pm;
1785
1786 struct intel_digital_port *hpd_irq_port[I915_MAX_PORTS];
1787 u32 long_hpd_port_mask;
1788 u32 short_hpd_port_mask;
1789 struct work_struct dig_port_work;
1790
1791 /*
1792 * if we get a HPD irq from DP and a HPD irq from non-DP
1793 * the non-DP HPD could block the workqueue on a mode config
1794 * mutex getting, that userspace may have taken. However
1795 * userspace is waiting on the DP workqueue to run which is
1796 * blocked behind the non-DP one.
1797 */
1798 struct workqueue_struct *dp_wq;
1799
1800 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
1801 struct {
1802 int (*do_execbuf)(struct drm_device *dev, struct drm_file *file,
1803 struct intel_engine_cs *ring,
1804 struct intel_context *ctx,
1805 struct drm_i915_gem_execbuffer2 *args,
1806 struct list_head *vmas,
1807 struct drm_i915_gem_object *batch_obj,
1808 u64 exec_start, u32 flags);
1809 int (*init_rings)(struct drm_device *dev);
1810 void (*cleanup_ring)(struct intel_engine_cs *ring);
1811 void (*stop_ring)(struct intel_engine_cs *ring);
1812 } gt;
1813
1814 uint32_t request_uniq;
1815
1816 /*
1817 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
1818 * will be rejected. Instead look for a better place.
1819 */
1820 };
1821
1822 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
1823 {
1824 return dev->dev_private;
1825 }
1826
1827 static inline struct drm_i915_private *dev_to_i915(struct device *dev)
1828 {
1829 return to_i915(dev_get_drvdata(dev));
1830 }
1831
1832 /* Iterate over initialised rings */
1833 #define for_each_ring(ring__, dev_priv__, i__) \
1834 for ((i__) = 0; (i__) < I915_NUM_RINGS; (i__)++) \
1835 if (((ring__) = &(dev_priv__)->ring[(i__)]), intel_ring_initialized((ring__)))
1836
1837 enum hdmi_force_audio {
1838 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
1839 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
1840 HDMI_AUDIO_AUTO, /* trust EDID */
1841 HDMI_AUDIO_ON, /* force turn on HDMI audio */
1842 };
1843
1844 #define I915_GTT_OFFSET_NONE ((u32)-1)
1845
1846 struct drm_i915_gem_object_ops {
1847 /* Interface between the GEM object and its backing storage.
1848 * get_pages() is called once prior to the use of the associated set
1849 * of pages before to binding them into the GTT, and put_pages() is
1850 * called after we no longer need them. As we expect there to be
1851 * associated cost with migrating pages between the backing storage
1852 * and making them available for the GPU (e.g. clflush), we may hold
1853 * onto the pages after they are no longer referenced by the GPU
1854 * in case they may be used again shortly (for example migrating the
1855 * pages to a different memory domain within the GTT). put_pages()
1856 * will therefore most likely be called when the object itself is
1857 * being released or under memory pressure (where we attempt to
1858 * reap pages for the shrinker).
1859 */
1860 int (*get_pages)(struct drm_i915_gem_object *);
1861 void (*put_pages)(struct drm_i915_gem_object *);
1862 int (*dmabuf_export)(struct drm_i915_gem_object *);
1863 void (*release)(struct drm_i915_gem_object *);
1864 };
1865
1866 /*
1867 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
1868 * considered to be the frontbuffer for the given plane interface-vise. This
1869 * doesn't mean that the hw necessarily already scans it out, but that any
1870 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
1871 *
1872 * We have one bit per pipe and per scanout plane type.
1873 */
1874 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 4
1875 #define INTEL_FRONTBUFFER_BITS \
1876 (INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES)
1877 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
1878 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
1879 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
1880 (1 << (1 +(INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
1881 #define INTEL_FRONTBUFFER_SPRITE(pipe) \
1882 (1 << (2 +(INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
1883 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
1884 (1 << (3 +(INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
1885 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
1886 (0xf << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
1887
1888 struct drm_i915_gem_object {
1889 struct drm_gem_object base;
1890
1891 const struct drm_i915_gem_object_ops *ops;
1892
1893 /** List of VMAs backed by this object */
1894 struct list_head vma_list;
1895
1896 /** Stolen memory for this object, instead of being backed by shmem. */
1897 struct drm_mm_node *stolen;
1898 struct list_head global_list;
1899
1900 struct list_head ring_list;
1901 /** Used in execbuf to temporarily hold a ref */
1902 struct list_head obj_exec_link;
1903
1904 struct list_head batch_pool_list;
1905
1906 /**
1907 * This is set if the object is on the active lists (has pending
1908 * rendering and so a non-zero seqno), and is not set if it i s on
1909 * inactive (ready to be unbound) list.
1910 */
1911 unsigned int active:1;
1912
1913 /**
1914 * This is set if the object has been written to since last bound
1915 * to the GTT
1916 */
1917 unsigned int dirty:1;
1918
1919 /**
1920 * Fence register bits (if any) for this object. Will be set
1921 * as needed when mapped into the GTT.
1922 * Protected by dev->struct_mutex.
1923 */
1924 signed int fence_reg:I915_MAX_NUM_FENCE_BITS;
1925
1926 /**
1927 * Advice: are the backing pages purgeable?
1928 */
1929 unsigned int madv:2;
1930
1931 /**
1932 * Current tiling mode for the object.
1933 */
1934 unsigned int tiling_mode:2;
1935 /**
1936 * Whether the tiling parameters for the currently associated fence
1937 * register have changed. Note that for the purposes of tracking
1938 * tiling changes we also treat the unfenced register, the register
1939 * slot that the object occupies whilst it executes a fenced
1940 * command (such as BLT on gen2/3), as a "fence".
1941 */
1942 unsigned int fence_dirty:1;
1943
1944 /**
1945 * Is the object at the current location in the gtt mappable and
1946 * fenceable? Used to avoid costly recalculations.
1947 */
1948 unsigned int map_and_fenceable:1;
1949
1950 /**
1951 * Whether the current gtt mapping needs to be mappable (and isn't just
1952 * mappable by accident). Track pin and fault separate for a more
1953 * accurate mappable working set.
1954 */
1955 unsigned int fault_mappable:1;
1956 unsigned int pin_mappable:1;
1957 unsigned int pin_display:1;
1958
1959 /*
1960 * Is the object to be mapped as read-only to the GPU
1961 * Only honoured if hardware has relevant pte bit
1962 */
1963 unsigned long gt_ro:1;
1964 unsigned int cache_level:3;
1965 unsigned int cache_dirty:1;
1966
1967 unsigned int has_dma_mapping:1;
1968
1969 unsigned int frontbuffer_bits:INTEL_FRONTBUFFER_BITS;
1970
1971 struct sg_table *pages;
1972 int pages_pin_count;
1973
1974 /* prime dma-buf support */
1975 void *dma_buf_vmapping;
1976 int vmapping_count;
1977
1978 /** Breadcrumb of last rendering to the buffer. */
1979 struct drm_i915_gem_request *last_read_req;
1980 struct drm_i915_gem_request *last_write_req;
1981 /** Breadcrumb of last fenced GPU access to the buffer. */
1982 struct drm_i915_gem_request *last_fenced_req;
1983
1984 /** Current tiling stride for the object, if it's tiled. */
1985 uint32_t stride;
1986
1987 /** References from framebuffers, locks out tiling changes. */
1988 unsigned long framebuffer_references;
1989
1990 /** Record of address bit 17 of each page at last unbind. */
1991 unsigned long *bit_17;
1992
1993 union {
1994 /** for phy allocated objects */
1995 struct drm_dma_handle *phys_handle;
1996
1997 struct i915_gem_userptr {
1998 uintptr_t ptr;
1999 unsigned read_only :1;
2000 unsigned workers :4;
2001 #define I915_GEM_USERPTR_MAX_WORKERS 15
2002
2003 struct i915_mm_struct *mm;
2004 struct i915_mmu_object *mmu_object;
2005 struct work_struct *work;
2006 } userptr;
2007 };
2008 };
2009 #define to_intel_bo(x) container_of(x, struct drm_i915_gem_object, base)
2010
2011 void i915_gem_track_fb(struct drm_i915_gem_object *old,
2012 struct drm_i915_gem_object *new,
2013 unsigned frontbuffer_bits);
2014
2015 /**
2016 * Request queue structure.
2017 *
2018 * The request queue allows us to note sequence numbers that have been emitted
2019 * and may be associated with active buffers to be retired.
2020 *
2021 * By keeping this list, we can avoid having to do questionable sequence
2022 * number comparisons on buffer last_read|write_seqno. It also allows an
2023 * emission time to be associated with the request for tracking how far ahead
2024 * of the GPU the submission is.
2025 *
2026 * The requests are reference counted, so upon creation they should have an
2027 * initial reference taken using kref_init
2028 */
2029 struct drm_i915_gem_request {
2030 struct kref ref;
2031
2032 /** On Which ring this request was generated */
2033 struct intel_engine_cs *ring;
2034
2035 /** GEM sequence number associated with this request. */
2036 uint32_t seqno;
2037
2038 /** Position in the ringbuffer of the start of the request */
2039 u32 head;
2040
2041 /**
2042 * Position in the ringbuffer of the start of the postfix.
2043 * This is required to calculate the maximum available ringbuffer
2044 * space without overwriting the postfix.
2045 */
2046 u32 postfix;
2047
2048 /** Position in the ringbuffer of the end of the whole request */
2049 u32 tail;
2050
2051 /**
2052 * Context and ring buffer related to this request
2053 * Contexts are refcounted, so when this request is associated with a
2054 * context, we must increment the context's refcount, to guarantee that
2055 * it persists while any request is linked to it. Requests themselves
2056 * are also refcounted, so the request will only be freed when the last
2057 * reference to it is dismissed, and the code in
2058 * i915_gem_request_free() will then decrement the refcount on the
2059 * context.
2060 */
2061 struct intel_context *ctx;
2062 struct intel_ringbuffer *ringbuf;
2063
2064 /** Batch buffer related to this request if any */
2065 struct drm_i915_gem_object *batch_obj;
2066
2067 /** Time at which this request was emitted, in jiffies. */
2068 unsigned long emitted_jiffies;
2069
2070 /** global list entry for this request */
2071 struct list_head list;
2072
2073 struct drm_i915_file_private *file_priv;
2074 /** file_priv list entry for this request */
2075 struct list_head client_list;
2076
2077 /** process identifier submitting this request */
2078 struct pid *pid;
2079
2080 uint32_t uniq;
2081
2082 /**
2083 * The ELSP only accepts two elements at a time, so we queue
2084 * context/tail pairs on a given queue (ring->execlist_queue) until the
2085 * hardware is available. The queue serves a double purpose: we also use
2086 * it to keep track of the up to 2 contexts currently in the hardware
2087 * (usually one in execution and the other queued up by the GPU): We
2088 * only remove elements from the head of the queue when the hardware
2089 * informs us that an element has been completed.
2090 *
2091 * All accesses to the queue are mediated by a spinlock
2092 * (ring->execlist_lock).
2093 */
2094
2095 /** Execlist link in the submission queue.*/
2096 struct list_head execlist_link;
2097
2098 /** Execlists no. of times this request has been sent to the ELSP */
2099 int elsp_submitted;
2100
2101 };
2102
2103 void i915_gem_request_free(struct kref *req_ref);
2104
2105 static inline uint32_t
2106 i915_gem_request_get_seqno(struct drm_i915_gem_request *req)
2107 {
2108 return req ? req->seqno : 0;
2109 }
2110
2111 static inline struct intel_engine_cs *
2112 i915_gem_request_get_ring(struct drm_i915_gem_request *req)
2113 {
2114 return req ? req->ring : NULL;
2115 }
2116
2117 static inline void
2118 i915_gem_request_reference(struct drm_i915_gem_request *req)
2119 {
2120 kref_get(&req->ref);
2121 }
2122
2123 static inline void
2124 i915_gem_request_unreference(struct drm_i915_gem_request *req)
2125 {
2126 WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
2127 kref_put(&req->ref, i915_gem_request_free);
2128 }
2129
2130 static inline void i915_gem_request_assign(struct drm_i915_gem_request **pdst,
2131 struct drm_i915_gem_request *src)
2132 {
2133 if (src)
2134 i915_gem_request_reference(src);
2135
2136 if (*pdst)
2137 i915_gem_request_unreference(*pdst);
2138
2139 *pdst = src;
2140 }
2141
2142 /*
2143 * XXX: i915_gem_request_completed should be here but currently needs the
2144 * definition of i915_seqno_passed() which is below. It will be moved in
2145 * a later patch when the call to i915_seqno_passed() is obsoleted...
2146 */
2147
2148 struct drm_i915_file_private {
2149 struct drm_i915_private *dev_priv;
2150 struct drm_file *file;
2151
2152 struct {
2153 spinlock_t lock;
2154 struct list_head request_list;
2155 struct delayed_work idle_work;
2156 } mm;
2157 struct idr context_idr;
2158
2159 atomic_t rps_wait_boost;
2160 struct intel_engine_cs *bsd_ring;
2161 };
2162
2163 /*
2164 * A command that requires special handling by the command parser.
2165 */
2166 struct drm_i915_cmd_descriptor {
2167 /*
2168 * Flags describing how the command parser processes the command.
2169 *
2170 * CMD_DESC_FIXED: The command has a fixed length if this is set,
2171 * a length mask if not set
2172 * CMD_DESC_SKIP: The command is allowed but does not follow the
2173 * standard length encoding for the opcode range in
2174 * which it falls
2175 * CMD_DESC_REJECT: The command is never allowed
2176 * CMD_DESC_REGISTER: The command should be checked against the
2177 * register whitelist for the appropriate ring
2178 * CMD_DESC_MASTER: The command is allowed if the submitting process
2179 * is the DRM master
2180 */
2181 u32 flags;
2182 #define CMD_DESC_FIXED (1<<0)
2183 #define CMD_DESC_SKIP (1<<1)
2184 #define CMD_DESC_REJECT (1<<2)
2185 #define CMD_DESC_REGISTER (1<<3)
2186 #define CMD_DESC_BITMASK (1<<4)
2187 #define CMD_DESC_MASTER (1<<5)
2188
2189 /*
2190 * The command's unique identification bits and the bitmask to get them.
2191 * This isn't strictly the opcode field as defined in the spec and may
2192 * also include type, subtype, and/or subop fields.
2193 */
2194 struct {
2195 u32 value;
2196 u32 mask;
2197 } cmd;
2198
2199 /*
2200 * The command's length. The command is either fixed length (i.e. does
2201 * not include a length field) or has a length field mask. The flag
2202 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
2203 * a length mask. All command entries in a command table must include
2204 * length information.
2205 */
2206 union {
2207 u32 fixed;
2208 u32 mask;
2209 } length;
2210
2211 /*
2212 * Describes where to find a register address in the command to check
2213 * against the ring's register whitelist. Only valid if flags has the
2214 * CMD_DESC_REGISTER bit set.
2215 */
2216 struct {
2217 u32 offset;
2218 u32 mask;
2219 } reg;
2220
2221 #define MAX_CMD_DESC_BITMASKS 3
2222 /*
2223 * Describes command checks where a particular dword is masked and
2224 * compared against an expected value. If the command does not match
2225 * the expected value, the parser rejects it. Only valid if flags has
2226 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
2227 * are valid.
2228 *
2229 * If the check specifies a non-zero condition_mask then the parser
2230 * only performs the check when the bits specified by condition_mask
2231 * are non-zero.
2232 */
2233 struct {
2234 u32 offset;
2235 u32 mask;
2236 u32 expected;
2237 u32 condition_offset;
2238 u32 condition_mask;
2239 } bits[MAX_CMD_DESC_BITMASKS];
2240 };
2241
2242 /*
2243 * A table of commands requiring special handling by the command parser.
2244 *
2245 * Each ring has an array of tables. Each table consists of an array of command
2246 * descriptors, which must be sorted with command opcodes in ascending order.
2247 */
2248 struct drm_i915_cmd_table {
2249 const struct drm_i915_cmd_descriptor *table;
2250 int count;
2251 };
2252
2253 /* Note that the (struct drm_i915_private *) cast is just to shut up gcc. */
2254 #define __I915__(p) ({ \
2255 struct drm_i915_private *__p; \
2256 if (__builtin_types_compatible_p(typeof(*p), struct drm_i915_private)) \
2257 __p = (struct drm_i915_private *)p; \
2258 else if (__builtin_types_compatible_p(typeof(*p), struct drm_device)) \
2259 __p = to_i915((struct drm_device *)p); \
2260 else \
2261 BUILD_BUG(); \
2262 __p; \
2263 })
2264 #define INTEL_INFO(p) (&__I915__(p)->info)
2265 #define INTEL_DEVID(p) (INTEL_INFO(p)->device_id)
2266 #define INTEL_REVID(p) (__I915__(p)->dev->pdev->revision)
2267
2268 #define IS_I830(dev) (INTEL_DEVID(dev) == 0x3577)
2269 #define IS_845G(dev) (INTEL_DEVID(dev) == 0x2562)
2270 #define IS_I85X(dev) (INTEL_INFO(dev)->is_i85x)
2271 #define IS_I865G(dev) (INTEL_DEVID(dev) == 0x2572)
2272 #define IS_I915G(dev) (INTEL_INFO(dev)->is_i915g)
2273 #define IS_I915GM(dev) (INTEL_DEVID(dev) == 0x2592)
2274 #define IS_I945G(dev) (INTEL_DEVID(dev) == 0x2772)
2275 #define IS_I945GM(dev) (INTEL_INFO(dev)->is_i945gm)
2276 #define IS_BROADWATER(dev) (INTEL_INFO(dev)->is_broadwater)
2277 #define IS_CRESTLINE(dev) (INTEL_INFO(dev)->is_crestline)
2278 #define IS_GM45(dev) (INTEL_DEVID(dev) == 0x2A42)
2279 #define IS_G4X(dev) (INTEL_INFO(dev)->is_g4x)
2280 #define IS_PINEVIEW_G(dev) (INTEL_DEVID(dev) == 0xa001)
2281 #define IS_PINEVIEW_M(dev) (INTEL_DEVID(dev) == 0xa011)
2282 #define IS_PINEVIEW(dev) (INTEL_INFO(dev)->is_pineview)
2283 #define IS_G33(dev) (INTEL_INFO(dev)->is_g33)
2284 #define IS_IRONLAKE_M(dev) (INTEL_DEVID(dev) == 0x0046)
2285 #define IS_IVYBRIDGE(dev) (INTEL_INFO(dev)->is_ivybridge)
2286 #define IS_IVB_GT1(dev) (INTEL_DEVID(dev) == 0x0156 || \
2287 INTEL_DEVID(dev) == 0x0152 || \
2288 INTEL_DEVID(dev) == 0x015a)
2289 #define IS_VALLEYVIEW(dev) (INTEL_INFO(dev)->is_valleyview)
2290 #define IS_CHERRYVIEW(dev) (INTEL_INFO(dev)->is_valleyview && IS_GEN8(dev))
2291 #define IS_HASWELL(dev) (INTEL_INFO(dev)->is_haswell)
2292 #define IS_BROADWELL(dev) (!INTEL_INFO(dev)->is_valleyview && IS_GEN8(dev))
2293 #define IS_SKYLAKE(dev) (INTEL_INFO(dev)->is_skylake)
2294 #define IS_MOBILE(dev) (INTEL_INFO(dev)->is_mobile)
2295 #define IS_HSW_EARLY_SDV(dev) (IS_HASWELL(dev) && \
2296 (INTEL_DEVID(dev) & 0xFF00) == 0x0C00)
2297 #define IS_BDW_ULT(dev) (IS_BROADWELL(dev) && \
2298 ((INTEL_DEVID(dev) & 0xf) == 0x6 || \
2299 (INTEL_DEVID(dev) & 0xf) == 0xb || \
2300 (INTEL_DEVID(dev) & 0xf) == 0xe))
2301 #define IS_BDW_GT3(dev) (IS_BROADWELL(dev) && \
2302 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2303 #define IS_HSW_ULT(dev) (IS_HASWELL(dev) && \
2304 (INTEL_DEVID(dev) & 0xFF00) == 0x0A00)
2305 #define IS_HSW_GT3(dev) (IS_HASWELL(dev) && \
2306 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2307 /* ULX machines are also considered ULT. */
2308 #define IS_HSW_ULX(dev) (INTEL_DEVID(dev) == 0x0A0E || \
2309 INTEL_DEVID(dev) == 0x0A1E)
2310 #define IS_PRELIMINARY_HW(intel_info) ((intel_info)->is_preliminary)
2311
2312 #define SKL_REVID_A0 (0x0)
2313 #define SKL_REVID_B0 (0x1)
2314 #define SKL_REVID_C0 (0x2)
2315 #define SKL_REVID_D0 (0x3)
2316 #define SKL_REVID_E0 (0x4)
2317
2318 /*
2319 * The genX designation typically refers to the render engine, so render
2320 * capability related checks should use IS_GEN, while display and other checks
2321 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2322 * chips, etc.).
2323 */
2324 #define IS_GEN2(dev) (INTEL_INFO(dev)->gen == 2)
2325 #define IS_GEN3(dev) (INTEL_INFO(dev)->gen == 3)
2326 #define IS_GEN4(dev) (INTEL_INFO(dev)->gen == 4)
2327 #define IS_GEN5(dev) (INTEL_INFO(dev)->gen == 5)
2328 #define IS_GEN6(dev) (INTEL_INFO(dev)->gen == 6)
2329 #define IS_GEN7(dev) (INTEL_INFO(dev)->gen == 7)
2330 #define IS_GEN8(dev) (INTEL_INFO(dev)->gen == 8)
2331 #define IS_GEN9(dev) (INTEL_INFO(dev)->gen == 9)
2332
2333 #define RENDER_RING (1<<RCS)
2334 #define BSD_RING (1<<VCS)
2335 #define BLT_RING (1<<BCS)
2336 #define VEBOX_RING (1<<VECS)
2337 #define BSD2_RING (1<<VCS2)
2338 #define HAS_BSD(dev) (INTEL_INFO(dev)->ring_mask & BSD_RING)
2339 #define HAS_BSD2(dev) (INTEL_INFO(dev)->ring_mask & BSD2_RING)
2340 #define HAS_BLT(dev) (INTEL_INFO(dev)->ring_mask & BLT_RING)
2341 #define HAS_VEBOX(dev) (INTEL_INFO(dev)->ring_mask & VEBOX_RING)
2342 #define HAS_LLC(dev) (INTEL_INFO(dev)->has_llc)
2343 #define HAS_WT(dev) ((IS_HASWELL(dev) || IS_BROADWELL(dev)) && \
2344 __I915__(dev)->ellc_size)
2345 #define I915_NEED_GFX_HWS(dev) (INTEL_INFO(dev)->need_gfx_hws)
2346
2347 #define HAS_HW_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 6)
2348 #define HAS_LOGICAL_RING_CONTEXTS(dev) (INTEL_INFO(dev)->gen >= 8)
2349 #define USES_PPGTT(dev) (i915.enable_ppgtt)
2350 #define USES_FULL_PPGTT(dev) (i915.enable_ppgtt == 2)
2351
2352 #define HAS_OVERLAY(dev) (INTEL_INFO(dev)->has_overlay)
2353 #define OVERLAY_NEEDS_PHYSICAL(dev) (INTEL_INFO(dev)->overlay_needs_physical)
2354
2355 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2356 #define HAS_BROKEN_CS_TLB(dev) (IS_I830(dev) || IS_845G(dev))
2357 /*
2358 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2359 * even when in MSI mode. This results in spurious interrupt warnings if the
2360 * legacy irq no. is shared with another device. The kernel then disables that
2361 * interrupt source and so prevents the other device from working properly.
2362 */
2363 #define HAS_AUX_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2364 #define HAS_GMBUS_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2365
2366 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2367 * rows, which changed the alignment requirements and fence programming.
2368 */
2369 #define HAS_128_BYTE_Y_TILING(dev) (!IS_GEN2(dev) && !(IS_I915G(dev) || \
2370 IS_I915GM(dev)))
2371 #define SUPPORTS_DIGITAL_OUTPUTS(dev) (!IS_GEN2(dev) && !IS_PINEVIEW(dev))
2372 #define SUPPORTS_INTEGRATED_HDMI(dev) (IS_G4X(dev) || IS_GEN5(dev))
2373 #define SUPPORTS_INTEGRATED_DP(dev) (IS_G4X(dev) || IS_GEN5(dev))
2374 #define SUPPORTS_TV(dev) (INTEL_INFO(dev)->supports_tv)
2375 #define I915_HAS_HOTPLUG(dev) (INTEL_INFO(dev)->has_hotplug)
2376
2377 #define HAS_FW_BLC(dev) (INTEL_INFO(dev)->gen > 2)
2378 #define HAS_PIPE_CXSR(dev) (INTEL_INFO(dev)->has_pipe_cxsr)
2379 #define HAS_FBC(dev) (INTEL_INFO(dev)->has_fbc)
2380
2381 #define HAS_IPS(dev) (IS_HSW_ULT(dev) || IS_BROADWELL(dev))
2382
2383 #define HAS_DDI(dev) (INTEL_INFO(dev)->has_ddi)
2384 #define HAS_FPGA_DBG_UNCLAIMED(dev) (INTEL_INFO(dev)->has_fpga_dbg)
2385 #define HAS_PSR(dev) (IS_HASWELL(dev) || IS_BROADWELL(dev) || \
2386 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev) || \
2387 IS_SKYLAKE(dev))
2388 #define HAS_RUNTIME_PM(dev) (IS_GEN6(dev) || IS_HASWELL(dev) || \
2389 IS_BROADWELL(dev) || IS_VALLEYVIEW(dev))
2390 #define HAS_RC6(dev) (INTEL_INFO(dev)->gen >= 6)
2391 #define HAS_RC6p(dev) (INTEL_INFO(dev)->gen == 6 || IS_IVYBRIDGE(dev))
2392
2393 #define INTEL_PCH_DEVICE_ID_MASK 0xff00
2394 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
2395 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
2396 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
2397 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
2398 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
2399 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
2400 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
2401
2402 #define INTEL_PCH_TYPE(dev) (__I915__(dev)->pch_type)
2403 #define HAS_PCH_SPT(dev) (INTEL_PCH_TYPE(dev) == PCH_SPT)
2404 #define HAS_PCH_LPT(dev) (INTEL_PCH_TYPE(dev) == PCH_LPT)
2405 #define HAS_PCH_CPT(dev) (INTEL_PCH_TYPE(dev) == PCH_CPT)
2406 #define HAS_PCH_IBX(dev) (INTEL_PCH_TYPE(dev) == PCH_IBX)
2407 #define HAS_PCH_NOP(dev) (INTEL_PCH_TYPE(dev) == PCH_NOP)
2408 #define HAS_PCH_SPLIT(dev) (INTEL_PCH_TYPE(dev) != PCH_NONE)
2409
2410 #define HAS_GMCH_DISPLAY(dev) (INTEL_INFO(dev)->gen < 5 || IS_VALLEYVIEW(dev))
2411
2412 /* DPF == dynamic parity feature */
2413 #define HAS_L3_DPF(dev) (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
2414 #define NUM_L3_SLICES(dev) (IS_HSW_GT3(dev) ? 2 : HAS_L3_DPF(dev))
2415
2416 #define GT_FREQUENCY_MULTIPLIER 50
2417
2418 #include "i915_trace.h"
2419
2420 extern const struct drm_ioctl_desc i915_ioctls[];
2421 extern int i915_max_ioctl;
2422
2423 extern int i915_suspend_legacy(struct drm_device *dev, pm_message_t state);
2424 extern int i915_resume_legacy(struct drm_device *dev);
2425
2426 /* i915_params.c */
2427 struct i915_params {
2428 int modeset;
2429 int panel_ignore_lid;
2430 unsigned int powersave;
2431 int semaphores;
2432 unsigned int lvds_downclock;
2433 int lvds_channel_mode;
2434 int panel_use_ssc;
2435 int vbt_sdvo_panel_type;
2436 int enable_rc6;
2437 int enable_fbc;
2438 int enable_ppgtt;
2439 int enable_execlists;
2440 int enable_psr;
2441 unsigned int preliminary_hw_support;
2442 int disable_power_well;
2443 int enable_ips;
2444 int invert_brightness;
2445 int enable_cmd_parser;
2446 /* leave bools at the end to not create holes */
2447 bool enable_hangcheck;
2448 bool fastboot;
2449 bool prefault_disable;
2450 bool reset;
2451 bool disable_display;
2452 bool disable_vtd_wa;
2453 int use_mmio_flip;
2454 bool mmio_debug;
2455 bool verbose_state_checks;
2456 bool nuclear_pageflip;
2457 };
2458 extern struct i915_params i915 __read_mostly;
2459
2460 /* i915_dma.c */
2461 extern int i915_driver_load(struct drm_device *, unsigned long flags);
2462 extern int i915_driver_unload(struct drm_device *);
2463 extern int i915_driver_open(struct drm_device *dev, struct drm_file *file);
2464 extern void i915_driver_lastclose(struct drm_device * dev);
2465 extern void i915_driver_preclose(struct drm_device *dev,
2466 struct drm_file *file);
2467 extern void i915_driver_postclose(struct drm_device *dev,
2468 struct drm_file *file);
2469 extern int i915_driver_device_is_agp(struct drm_device * dev);
2470 #ifdef CONFIG_COMPAT
2471 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2472 unsigned long arg);
2473 #endif
2474 extern int intel_gpu_reset(struct drm_device *dev);
2475 extern int i915_reset(struct drm_device *dev);
2476 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2477 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2478 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2479 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2480 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2481 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2482
2483 /* i915_irq.c */
2484 void i915_queue_hangcheck(struct drm_device *dev);
2485 __printf(3, 4)
2486 void i915_handle_error(struct drm_device *dev, bool wedged,
2487 const char *fmt, ...);
2488
2489 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2490 extern void intel_hpd_init(struct drm_i915_private *dev_priv);
2491 int intel_irq_install(struct drm_i915_private *dev_priv);
2492 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2493
2494 extern void intel_uncore_sanitize(struct drm_device *dev);
2495 extern void intel_uncore_early_sanitize(struct drm_device *dev,
2496 bool restore_forcewake);
2497 extern void intel_uncore_init(struct drm_device *dev);
2498 extern void intel_uncore_check_errors(struct drm_device *dev);
2499 extern void intel_uncore_fini(struct drm_device *dev);
2500 extern void intel_uncore_forcewake_reset(struct drm_device *dev, bool restore);
2501 const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id);
2502 void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv,
2503 enum forcewake_domains domains);
2504 void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv,
2505 enum forcewake_domains domains);
2506 void assert_forcewakes_inactive(struct drm_i915_private *dev_priv);
2507 static inline bool intel_vgpu_active(struct drm_device *dev)
2508 {
2509 return to_i915(dev)->vgpu.active;
2510 }
2511
2512 void
2513 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2514 u32 status_mask);
2515
2516 void
2517 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2518 u32 status_mask);
2519
2520 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
2521 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
2522 void
2523 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask);
2524 void
2525 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask);
2526 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
2527 uint32_t interrupt_mask,
2528 uint32_t enabled_irq_mask);
2529 #define ibx_enable_display_interrupt(dev_priv, bits) \
2530 ibx_display_interrupt_update((dev_priv), (bits), (bits))
2531 #define ibx_disable_display_interrupt(dev_priv, bits) \
2532 ibx_display_interrupt_update((dev_priv), (bits), 0)
2533
2534 /* i915_gem.c */
2535 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
2536 struct drm_file *file_priv);
2537 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
2538 struct drm_file *file_priv);
2539 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
2540 struct drm_file *file_priv);
2541 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
2542 struct drm_file *file_priv);
2543 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2544 struct drm_file *file_priv);
2545 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
2546 struct drm_file *file_priv);
2547 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
2548 struct drm_file *file_priv);
2549 void i915_gem_execbuffer_move_to_active(struct list_head *vmas,
2550 struct intel_engine_cs *ring);
2551 void i915_gem_execbuffer_retire_commands(struct drm_device *dev,
2552 struct drm_file *file,
2553 struct intel_engine_cs *ring,
2554 struct drm_i915_gem_object *obj);
2555 int i915_gem_ringbuffer_submission(struct drm_device *dev,
2556 struct drm_file *file,
2557 struct intel_engine_cs *ring,
2558 struct intel_context *ctx,
2559 struct drm_i915_gem_execbuffer2 *args,
2560 struct list_head *vmas,
2561 struct drm_i915_gem_object *batch_obj,
2562 u64 exec_start, u32 flags);
2563 int i915_gem_execbuffer(struct drm_device *dev, void *data,
2564 struct drm_file *file_priv);
2565 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
2566 struct drm_file *file_priv);
2567 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2568 struct drm_file *file_priv);
2569 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
2570 struct drm_file *file);
2571 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
2572 struct drm_file *file);
2573 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2574 struct drm_file *file_priv);
2575 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
2576 struct drm_file *file_priv);
2577 int i915_gem_set_tiling(struct drm_device *dev, void *data,
2578 struct drm_file *file_priv);
2579 int i915_gem_get_tiling(struct drm_device *dev, void *data,
2580 struct drm_file *file_priv);
2581 int i915_gem_init_userptr(struct drm_device *dev);
2582 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
2583 struct drm_file *file);
2584 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
2585 struct drm_file *file_priv);
2586 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
2587 struct drm_file *file_priv);
2588 void i915_gem_load(struct drm_device *dev);
2589 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
2590 long target,
2591 unsigned flags);
2592 #define I915_SHRINK_PURGEABLE 0x1
2593 #define I915_SHRINK_UNBOUND 0x2
2594 #define I915_SHRINK_BOUND 0x4
2595 void *i915_gem_object_alloc(struct drm_device *dev);
2596 void i915_gem_object_free(struct drm_i915_gem_object *obj);
2597 void i915_gem_object_init(struct drm_i915_gem_object *obj,
2598 const struct drm_i915_gem_object_ops *ops);
2599 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
2600 size_t size);
2601 void i915_init_vm(struct drm_i915_private *dev_priv,
2602 struct i915_address_space *vm);
2603 void i915_gem_free_object(struct drm_gem_object *obj);
2604 void i915_gem_vma_destroy(struct i915_vma *vma);
2605
2606 #define PIN_MAPPABLE 0x1
2607 #define PIN_NONBLOCK 0x2
2608 #define PIN_GLOBAL 0x4
2609 #define PIN_OFFSET_BIAS 0x8
2610 #define PIN_OFFSET_MASK (~4095)
2611 int __must_check i915_gem_object_pin_view(struct drm_i915_gem_object *obj,
2612 struct i915_address_space *vm,
2613 uint32_t alignment,
2614 uint64_t flags,
2615 const struct i915_ggtt_view *view);
2616 static inline
2617 int __must_check i915_gem_object_pin(struct drm_i915_gem_object *obj,
2618 struct i915_address_space *vm,
2619 uint32_t alignment,
2620 uint64_t flags)
2621 {
2622 return i915_gem_object_pin_view(obj, vm, alignment, flags,
2623 &i915_ggtt_view_normal);
2624 }
2625
2626 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
2627 u32 flags);
2628 int __must_check i915_vma_unbind(struct i915_vma *vma);
2629 int i915_gem_object_put_pages(struct drm_i915_gem_object *obj);
2630 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv);
2631 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
2632
2633 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
2634 int *needs_clflush);
2635
2636 int __must_check i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
2637 static inline struct page *i915_gem_object_get_page(struct drm_i915_gem_object *obj, int n)
2638 {
2639 struct sg_page_iter sg_iter;
2640
2641 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, n)
2642 return sg_page_iter_page(&sg_iter);
2643
2644 return NULL;
2645 }
2646 static inline void i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
2647 {
2648 BUG_ON(obj->pages == NULL);
2649 obj->pages_pin_count++;
2650 }
2651 static inline void i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
2652 {
2653 BUG_ON(obj->pages_pin_count == 0);
2654 obj->pages_pin_count--;
2655 }
2656
2657 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
2658 int i915_gem_object_sync(struct drm_i915_gem_object *obj,
2659 struct intel_engine_cs *to);
2660 void i915_vma_move_to_active(struct i915_vma *vma,
2661 struct intel_engine_cs *ring);
2662 int i915_gem_dumb_create(struct drm_file *file_priv,
2663 struct drm_device *dev,
2664 struct drm_mode_create_dumb *args);
2665 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
2666 uint32_t handle, uint64_t *offset);
2667 /**
2668 * Returns true if seq1 is later than seq2.
2669 */
2670 static inline bool
2671 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
2672 {
2673 return (int32_t)(seq1 - seq2) >= 0;
2674 }
2675
2676 static inline bool i915_gem_request_completed(struct drm_i915_gem_request *req,
2677 bool lazy_coherency)
2678 {
2679 u32 seqno;
2680
2681 BUG_ON(req == NULL);
2682
2683 seqno = req->ring->get_seqno(req->ring, lazy_coherency);
2684
2685 return i915_seqno_passed(seqno, req->seqno);
2686 }
2687
2688 int __must_check i915_gem_get_seqno(struct drm_device *dev, u32 *seqno);
2689 int __must_check i915_gem_set_seqno(struct drm_device *dev, u32 seqno);
2690 int __must_check i915_gem_object_get_fence(struct drm_i915_gem_object *obj);
2691 int __must_check i915_gem_object_put_fence(struct drm_i915_gem_object *obj);
2692
2693 bool i915_gem_object_pin_fence(struct drm_i915_gem_object *obj);
2694 void i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj);
2695
2696 struct drm_i915_gem_request *
2697 i915_gem_find_active_request(struct intel_engine_cs *ring);
2698
2699 bool i915_gem_retire_requests(struct drm_device *dev);
2700 void i915_gem_retire_requests_ring(struct intel_engine_cs *ring);
2701 int __must_check i915_gem_check_wedge(struct i915_gpu_error *error,
2702 bool interruptible);
2703 int __must_check i915_gem_check_olr(struct drm_i915_gem_request *req);
2704
2705 static inline bool i915_reset_in_progress(struct i915_gpu_error *error)
2706 {
2707 return unlikely(atomic_read(&error->reset_counter)
2708 & (I915_RESET_IN_PROGRESS_FLAG | I915_WEDGED));
2709 }
2710
2711 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
2712 {
2713 return atomic_read(&error->reset_counter) & I915_WEDGED;
2714 }
2715
2716 static inline u32 i915_reset_count(struct i915_gpu_error *error)
2717 {
2718 return ((atomic_read(&error->reset_counter) & ~I915_WEDGED) + 1) / 2;
2719 }
2720
2721 static inline bool i915_stop_ring_allow_ban(struct drm_i915_private *dev_priv)
2722 {
2723 return dev_priv->gpu_error.stop_rings == 0 ||
2724 dev_priv->gpu_error.stop_rings & I915_STOP_RING_ALLOW_BAN;
2725 }
2726
2727 static inline bool i915_stop_ring_allow_warn(struct drm_i915_private *dev_priv)
2728 {
2729 return dev_priv->gpu_error.stop_rings == 0 ||
2730 dev_priv->gpu_error.stop_rings & I915_STOP_RING_ALLOW_WARN;
2731 }
2732
2733 void i915_gem_reset(struct drm_device *dev);
2734 bool i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force);
2735 int __must_check i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj);
2736 int __must_check i915_gem_init(struct drm_device *dev);
2737 int i915_gem_init_rings(struct drm_device *dev);
2738 int __must_check i915_gem_init_hw(struct drm_device *dev);
2739 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice);
2740 void i915_gem_init_swizzling(struct drm_device *dev);
2741 void i915_gem_cleanup_ringbuffer(struct drm_device *dev);
2742 int __must_check i915_gpu_idle(struct drm_device *dev);
2743 int __must_check i915_gem_suspend(struct drm_device *dev);
2744 int __i915_add_request(struct intel_engine_cs *ring,
2745 struct drm_file *file,
2746 struct drm_i915_gem_object *batch_obj);
2747 #define i915_add_request(ring) \
2748 __i915_add_request(ring, NULL, NULL)
2749 int __i915_wait_request(struct drm_i915_gem_request *req,
2750 unsigned reset_counter,
2751 bool interruptible,
2752 s64 *timeout,
2753 struct drm_i915_file_private *file_priv);
2754 int __must_check i915_wait_request(struct drm_i915_gem_request *req);
2755 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf);
2756 int __must_check
2757 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj,
2758 bool write);
2759 int __must_check
2760 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
2761 int __must_check
2762 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
2763 u32 alignment,
2764 struct intel_engine_cs *pipelined);
2765 void i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj);
2766 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
2767 int align);
2768 int i915_gem_open(struct drm_device *dev, struct drm_file *file);
2769 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
2770
2771 uint32_t
2772 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode);
2773 uint32_t
2774 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2775 int tiling_mode, bool fenced);
2776
2777 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
2778 enum i915_cache_level cache_level);
2779
2780 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
2781 struct dma_buf *dma_buf);
2782
2783 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
2784 struct drm_gem_object *gem_obj, int flags);
2785
2786 void i915_gem_restore_fences(struct drm_device *dev);
2787
2788 unsigned long i915_gem_obj_offset_view(struct drm_i915_gem_object *o,
2789 struct i915_address_space *vm,
2790 enum i915_ggtt_view_type view);
2791 static inline
2792 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
2793 struct i915_address_space *vm)
2794 {
2795 return i915_gem_obj_offset_view(o, vm, I915_GGTT_VIEW_NORMAL);
2796 }
2797 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o);
2798 bool i915_gem_obj_bound_view(struct drm_i915_gem_object *o,
2799 struct i915_address_space *vm,
2800 enum i915_ggtt_view_type view);
2801 static inline
2802 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
2803 struct i915_address_space *vm)
2804 {
2805 return i915_gem_obj_bound_view(o, vm, I915_GGTT_VIEW_NORMAL);
2806 }
2807
2808 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
2809 struct i915_address_space *vm);
2810 struct i915_vma *i915_gem_obj_to_vma_view(struct drm_i915_gem_object *obj,
2811 struct i915_address_space *vm,
2812 const struct i915_ggtt_view *view);
2813 static inline
2814 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
2815 struct i915_address_space *vm)
2816 {
2817 return i915_gem_obj_to_vma_view(obj, vm, &i915_ggtt_view_normal);
2818 }
2819
2820 struct i915_vma *
2821 i915_gem_obj_lookup_or_create_vma_view(struct drm_i915_gem_object *obj,
2822 struct i915_address_space *vm,
2823 const struct i915_ggtt_view *view);
2824
2825 static inline
2826 struct i915_vma *
2827 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
2828 struct i915_address_space *vm)
2829 {
2830 return i915_gem_obj_lookup_or_create_vma_view(obj, vm,
2831 &i915_ggtt_view_normal);
2832 }
2833
2834 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj);
2835 static inline bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj) {
2836 struct i915_vma *vma;
2837 list_for_each_entry(vma, &obj->vma_list, vma_link)
2838 if (vma->pin_count > 0)
2839 return true;
2840 return false;
2841 }
2842
2843 /* Some GGTT VM helpers */
2844 #define i915_obj_to_ggtt(obj) \
2845 (&((struct drm_i915_private *)(obj)->base.dev->dev_private)->gtt.base)
2846 static inline bool i915_is_ggtt(struct i915_address_space *vm)
2847 {
2848 struct i915_address_space *ggtt =
2849 &((struct drm_i915_private *)(vm)->dev->dev_private)->gtt.base;
2850 return vm == ggtt;
2851 }
2852
2853 static inline struct i915_hw_ppgtt *
2854 i915_vm_to_ppgtt(struct i915_address_space *vm)
2855 {
2856 WARN_ON(i915_is_ggtt(vm));
2857
2858 return container_of(vm, struct i915_hw_ppgtt, base);
2859 }
2860
2861
2862 static inline bool i915_gem_obj_ggtt_bound(struct drm_i915_gem_object *obj)
2863 {
2864 return i915_gem_obj_bound(obj, i915_obj_to_ggtt(obj));
2865 }
2866
2867 static inline unsigned long
2868 i915_gem_obj_ggtt_offset(struct drm_i915_gem_object *obj)
2869 {
2870 return i915_gem_obj_offset(obj, i915_obj_to_ggtt(obj));
2871 }
2872
2873 static inline unsigned long
2874 i915_gem_obj_ggtt_size(struct drm_i915_gem_object *obj)
2875 {
2876 return i915_gem_obj_size(obj, i915_obj_to_ggtt(obj));
2877 }
2878
2879 static inline int __must_check
2880 i915_gem_obj_ggtt_pin(struct drm_i915_gem_object *obj,
2881 uint32_t alignment,
2882 unsigned flags)
2883 {
2884 return i915_gem_object_pin(obj, i915_obj_to_ggtt(obj),
2885 alignment, flags | PIN_GLOBAL);
2886 }
2887
2888 static inline int
2889 i915_gem_object_ggtt_unbind(struct drm_i915_gem_object *obj)
2890 {
2891 return i915_vma_unbind(i915_gem_obj_to_ggtt(obj));
2892 }
2893
2894 void i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj);
2895
2896 /* i915_gem_context.c */
2897 int __must_check i915_gem_context_init(struct drm_device *dev);
2898 void i915_gem_context_fini(struct drm_device *dev);
2899 void i915_gem_context_reset(struct drm_device *dev);
2900 int i915_gem_context_open(struct drm_device *dev, struct drm_file *file);
2901 int i915_gem_context_enable(struct drm_i915_private *dev_priv);
2902 void i915_gem_context_close(struct drm_device *dev, struct drm_file *file);
2903 int i915_switch_context(struct intel_engine_cs *ring,
2904 struct intel_context *to);
2905 struct intel_context *
2906 i915_gem_context_get(struct drm_i915_file_private *file_priv, u32 id);
2907 void i915_gem_context_free(struct kref *ctx_ref);
2908 struct drm_i915_gem_object *
2909 i915_gem_alloc_context_obj(struct drm_device *dev, size_t size);
2910 static inline void i915_gem_context_reference(struct intel_context *ctx)
2911 {
2912 kref_get(&ctx->ref);
2913 }
2914
2915 static inline void i915_gem_context_unreference(struct intel_context *ctx)
2916 {
2917 kref_put(&ctx->ref, i915_gem_context_free);
2918 }
2919
2920 static inline bool i915_gem_context_is_default(const struct intel_context *c)
2921 {
2922 return c->user_handle == DEFAULT_CONTEXT_HANDLE;
2923 }
2924
2925 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
2926 struct drm_file *file);
2927 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
2928 struct drm_file *file);
2929 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
2930 struct drm_file *file_priv);
2931 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
2932 struct drm_file *file_priv);
2933
2934 /* i915_gem_evict.c */
2935 int __must_check i915_gem_evict_something(struct drm_device *dev,
2936 struct i915_address_space *vm,
2937 int min_size,
2938 unsigned alignment,
2939 unsigned cache_level,
2940 unsigned long start,
2941 unsigned long end,
2942 unsigned flags);
2943 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle);
2944 int i915_gem_evict_everything(struct drm_device *dev);
2945
2946 /* belongs in i915_gem_gtt.h */
2947 static inline void i915_gem_chipset_flush(struct drm_device *dev)
2948 {
2949 if (INTEL_INFO(dev)->gen < 6)
2950 intel_gtt_chipset_flush();
2951 }
2952
2953 /* i915_gem_stolen.c */
2954 int i915_gem_init_stolen(struct drm_device *dev);
2955 int i915_gem_stolen_setup_compression(struct drm_device *dev, int size, int fb_cpp);
2956 void i915_gem_stolen_cleanup_compression(struct drm_device *dev);
2957 void i915_gem_cleanup_stolen(struct drm_device *dev);
2958 struct drm_i915_gem_object *
2959 i915_gem_object_create_stolen(struct drm_device *dev, u32 size);
2960 struct drm_i915_gem_object *
2961 i915_gem_object_create_stolen_for_preallocated(struct drm_device *dev,
2962 u32 stolen_offset,
2963 u32 gtt_offset,
2964 u32 size);
2965
2966 /* i915_gem_tiling.c */
2967 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
2968 {
2969 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2970
2971 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
2972 obj->tiling_mode != I915_TILING_NONE;
2973 }
2974
2975 void i915_gem_detect_bit_6_swizzle(struct drm_device *dev);
2976 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj);
2977 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj);
2978
2979 /* i915_gem_debug.c */
2980 #if WATCH_LISTS
2981 int i915_verify_lists(struct drm_device *dev);
2982 #else
2983 #define i915_verify_lists(dev) 0
2984 #endif
2985
2986 /* i915_debugfs.c */
2987 int i915_debugfs_init(struct drm_minor *minor);
2988 void i915_debugfs_cleanup(struct drm_minor *minor);
2989 #ifdef CONFIG_DEBUG_FS
2990 void intel_display_crc_init(struct drm_device *dev);
2991 #else
2992 static inline void intel_display_crc_init(struct drm_device *dev) {}
2993 #endif
2994
2995 /* i915_gpu_error.c */
2996 __printf(2, 3)
2997 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
2998 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
2999 const struct i915_error_state_file_priv *error);
3000 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3001 struct drm_i915_private *i915,
3002 size_t count, loff_t pos);
3003 static inline void i915_error_state_buf_release(
3004 struct drm_i915_error_state_buf *eb)
3005 {
3006 kfree(eb->buf);
3007 }
3008 void i915_capture_error_state(struct drm_device *dev, bool wedge,
3009 const char *error_msg);
3010 void i915_error_state_get(struct drm_device *dev,
3011 struct i915_error_state_file_priv *error_priv);
3012 void i915_error_state_put(struct i915_error_state_file_priv *error_priv);
3013 void i915_destroy_error_state(struct drm_device *dev);
3014
3015 void i915_get_extra_instdone(struct drm_device *dev, uint32_t *instdone);
3016 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3017
3018 /* i915_gem_batch_pool.c */
3019 void i915_gem_batch_pool_init(struct drm_device *dev,
3020 struct i915_gem_batch_pool *pool);
3021 void i915_gem_batch_pool_fini(struct i915_gem_batch_pool *pool);
3022 struct drm_i915_gem_object*
3023 i915_gem_batch_pool_get(struct i915_gem_batch_pool *pool, size_t size);
3024
3025 /* i915_cmd_parser.c */
3026 int i915_cmd_parser_get_version(void);
3027 int i915_cmd_parser_init_ring(struct intel_engine_cs *ring);
3028 void i915_cmd_parser_fini_ring(struct intel_engine_cs *ring);
3029 bool i915_needs_cmd_parser(struct intel_engine_cs *ring);
3030 int i915_parse_cmds(struct intel_engine_cs *ring,
3031 struct drm_i915_gem_object *batch_obj,
3032 struct drm_i915_gem_object *shadow_batch_obj,
3033 u32 batch_start_offset,
3034 u32 batch_len,
3035 bool is_master);
3036
3037 /* i915_suspend.c */
3038 extern int i915_save_state(struct drm_device *dev);
3039 extern int i915_restore_state(struct drm_device *dev);
3040
3041 /* i915_sysfs.c */
3042 void i915_setup_sysfs(struct drm_device *dev_priv);
3043 void i915_teardown_sysfs(struct drm_device *dev_priv);
3044
3045 /* intel_i2c.c */
3046 extern int intel_setup_gmbus(struct drm_device *dev);
3047 extern void intel_teardown_gmbus(struct drm_device *dev);
3048 static inline bool intel_gmbus_is_port_valid(unsigned port)
3049 {
3050 return (port >= GMBUS_PORT_SSC && port <= GMBUS_PORT_DPD);
3051 }
3052
3053 extern struct i2c_adapter *intel_gmbus_get_adapter(
3054 struct drm_i915_private *dev_priv, unsigned port);
3055 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3056 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3057 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3058 {
3059 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3060 }
3061 extern void intel_i2c_reset(struct drm_device *dev);
3062
3063 /* intel_opregion.c */
3064 #ifdef CONFIG_ACPI
3065 extern int intel_opregion_setup(struct drm_device *dev);
3066 extern void intel_opregion_init(struct drm_device *dev);
3067 extern void intel_opregion_fini(struct drm_device *dev);
3068 extern void intel_opregion_asle_intr(struct drm_device *dev);
3069 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3070 bool enable);
3071 extern int intel_opregion_notify_adapter(struct drm_device *dev,
3072 pci_power_t state);
3073 #else
3074 static inline int intel_opregion_setup(struct drm_device *dev) { return 0; }
3075 static inline void intel_opregion_init(struct drm_device *dev) { return; }
3076 static inline void intel_opregion_fini(struct drm_device *dev) { return; }
3077 static inline void intel_opregion_asle_intr(struct drm_device *dev) { return; }
3078 static inline int
3079 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3080 {
3081 return 0;
3082 }
3083 static inline int
3084 intel_opregion_notify_adapter(struct drm_device *dev, pci_power_t state)
3085 {
3086 return 0;
3087 }
3088 #endif
3089
3090 /* intel_acpi.c */
3091 #ifdef CONFIG_ACPI
3092 extern void intel_register_dsm_handler(void);
3093 extern void intel_unregister_dsm_handler(void);
3094 #else
3095 static inline void intel_register_dsm_handler(void) { return; }
3096 static inline void intel_unregister_dsm_handler(void) { return; }
3097 #endif /* CONFIG_ACPI */
3098
3099 /* modesetting */
3100 extern void intel_modeset_init_hw(struct drm_device *dev);
3101 extern void intel_modeset_init(struct drm_device *dev);
3102 extern void intel_modeset_gem_init(struct drm_device *dev);
3103 extern void intel_modeset_cleanup(struct drm_device *dev);
3104 extern void intel_connector_unregister(struct intel_connector *);
3105 extern int intel_modeset_vga_set_state(struct drm_device *dev, bool state);
3106 extern void intel_modeset_setup_hw_state(struct drm_device *dev,
3107 bool force_restore);
3108 extern void i915_redisable_vga(struct drm_device *dev);
3109 extern void i915_redisable_vga_power_on(struct drm_device *dev);
3110 extern bool ironlake_set_drps(struct drm_device *dev, u8 val);
3111 extern void intel_init_pch_refclk(struct drm_device *dev);
3112 extern void intel_set_rps(struct drm_device *dev, u8 val);
3113 extern void intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3114 bool enable);
3115 extern void intel_detect_pch(struct drm_device *dev);
3116 extern int intel_trans_dp_port_sel(struct drm_crtc *crtc);
3117 extern int intel_enable_rc6(const struct drm_device *dev);
3118
3119 extern bool i915_semaphore_is_enabled(struct drm_device *dev);
3120 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3121 struct drm_file *file);
3122 int i915_get_reset_stats_ioctl(struct drm_device *dev, void *data,
3123 struct drm_file *file);
3124
3125 /* overlay */
3126 extern struct intel_overlay_error_state *intel_overlay_capture_error_state(struct drm_device *dev);
3127 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3128 struct intel_overlay_error_state *error);
3129
3130 extern struct intel_display_error_state *intel_display_capture_error_state(struct drm_device *dev);
3131 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3132 struct drm_device *dev,
3133 struct intel_display_error_state *error);
3134
3135 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3136 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3137
3138 /* intel_sideband.c */
3139 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3140 void vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3141 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3142 u32 vlv_gpio_nc_read(struct drm_i915_private *dev_priv, u32 reg);
3143 void vlv_gpio_nc_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3144 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3145 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3146 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3147 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3148 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3149 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3150 u32 vlv_gps_core_read(struct drm_i915_private *dev_priv, u32 reg);
3151 void vlv_gps_core_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3152 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3153 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3154 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3155 enum intel_sbi_destination destination);
3156 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3157 enum intel_sbi_destination destination);
3158 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3159 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3160
3161 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3162 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3163
3164 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3165 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3166
3167 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3168 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3169 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3170 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3171
3172 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3173 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3174 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3175 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3176
3177 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3178 * will be implemented using 2 32-bit writes in an arbitrary order with
3179 * an arbitrary delay between them. This can cause the hardware to
3180 * act upon the intermediate value, possibly leading to corruption and
3181 * machine death. You have been warned.
3182 */
3183 #define I915_WRITE64(reg, val) dev_priv->uncore.funcs.mmio_writeq(dev_priv, (reg), (val), true)
3184 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3185
3186 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
3187 u32 upper = I915_READ(upper_reg); \
3188 u32 lower = I915_READ(lower_reg); \
3189 u32 tmp = I915_READ(upper_reg); \
3190 if (upper != tmp) { \
3191 upper = tmp; \
3192 lower = I915_READ(lower_reg); \
3193 WARN_ON(I915_READ(upper_reg) != upper); \
3194 } \
3195 (u64)upper << 32 | lower; })
3196
3197 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
3198 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
3199
3200 /* "Broadcast RGB" property */
3201 #define INTEL_BROADCAST_RGB_AUTO 0
3202 #define INTEL_BROADCAST_RGB_FULL 1
3203 #define INTEL_BROADCAST_RGB_LIMITED 2
3204
3205 static inline uint32_t i915_vgacntrl_reg(struct drm_device *dev)
3206 {
3207 if (IS_VALLEYVIEW(dev))
3208 return VLV_VGACNTRL;
3209 else if (INTEL_INFO(dev)->gen >= 5)
3210 return CPU_VGACNTRL;
3211 else
3212 return VGACNTRL;
3213 }
3214
3215 static inline void __user *to_user_ptr(u64 address)
3216 {
3217 return (void __user *)(uintptr_t)address;
3218 }
3219
3220 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3221 {
3222 unsigned long j = msecs_to_jiffies(m);
3223
3224 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3225 }
3226
3227 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3228 {
3229 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3230 }
3231
3232 static inline unsigned long
3233 timespec_to_jiffies_timeout(const struct timespec *value)
3234 {
3235 unsigned long j = timespec_to_jiffies(value);
3236
3237 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3238 }
3239
3240 /*
3241 * If you need to wait X milliseconds between events A and B, but event B
3242 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3243 * when event A happened, then just before event B you call this function and
3244 * pass the timestamp as the first argument, and X as the second argument.
3245 */
3246 static inline void
3247 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3248 {
3249 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3250
3251 /*
3252 * Don't re-read the value of "jiffies" every time since it may change
3253 * behind our back and break the math.
3254 */
3255 tmp_jiffies = jiffies;
3256 target_jiffies = timestamp_jiffies +
3257 msecs_to_jiffies_timeout(to_wait_ms);
3258
3259 if (time_after(target_jiffies, tmp_jiffies)) {
3260 remaining_jiffies = target_jiffies - tmp_jiffies;
3261 while (remaining_jiffies)
3262 remaining_jiffies =
3263 schedule_timeout_uninterruptible(remaining_jiffies);
3264 }
3265 }
3266
3267 static inline void i915_trace_irq_get(struct intel_engine_cs *ring,
3268 struct drm_i915_gem_request *req)
3269 {
3270 if (ring->trace_irq_req == NULL && ring->irq_get(ring))
3271 i915_gem_request_assign(&ring->trace_irq_req, req);
3272 }
3273
3274 #endif