]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.h
drm/i915: Name structure in dev_priv that contains RPS/RC6 state as "gt_pm"
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/reservation.h>
45 #include <linux/shmem_fs.h>
46
47 #include <drm/drmP.h>
48 #include <drm/intel-gtt.h>
49 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
50 #include <drm/drm_gem.h>
51 #include <drm/drm_auth.h>
52 #include <drm/drm_cache.h>
53
54 #include "i915_params.h"
55 #include "i915_reg.h"
56 #include "i915_utils.h"
57
58 #include "intel_uncore.h"
59 #include "intel_bios.h"
60 #include "intel_dpll_mgr.h"
61 #include "intel_uc.h"
62 #include "intel_lrc.h"
63 #include "intel_ringbuffer.h"
64
65 #include "i915_gem.h"
66 #include "i915_gem_context.h"
67 #include "i915_gem_fence_reg.h"
68 #include "i915_gem_object.h"
69 #include "i915_gem_gtt.h"
70 #include "i915_gem_render_state.h"
71 #include "i915_gem_request.h"
72 #include "i915_gem_timeline.h"
73
74 #include "i915_vma.h"
75
76 #include "intel_gvt.h"
77
78 /* General customization:
79 */
80
81 #define DRIVER_NAME "i915"
82 #define DRIVER_DESC "Intel Graphics"
83 #define DRIVER_DATE "20170929"
84 #define DRIVER_TIMESTAMP 1506682238
85
86 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
87 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
88 * which may not necessarily be a user visible problem. This will either
89 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
90 * enable distros and users to tailor their preferred amount of i915 abrt
91 * spam.
92 */
93 #define I915_STATE_WARN(condition, format...) ({ \
94 int __ret_warn_on = !!(condition); \
95 if (unlikely(__ret_warn_on)) \
96 if (!WARN(i915_modparams.verbose_state_checks, format)) \
97 DRM_ERROR(format); \
98 unlikely(__ret_warn_on); \
99 })
100
101 #define I915_STATE_WARN_ON(x) \
102 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
103
104 bool __i915_inject_load_failure(const char *func, int line);
105 #define i915_inject_load_failure() \
106 __i915_inject_load_failure(__func__, __LINE__)
107
108 typedef struct {
109 uint32_t val;
110 } uint_fixed_16_16_t;
111
112 #define FP_16_16_MAX ({ \
113 uint_fixed_16_16_t fp; \
114 fp.val = UINT_MAX; \
115 fp; \
116 })
117
118 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
119 {
120 if (val.val == 0)
121 return true;
122 return false;
123 }
124
125 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val)
126 {
127 uint_fixed_16_16_t fp;
128
129 WARN_ON(val > U16_MAX);
130
131 fp.val = val << 16;
132 return fp;
133 }
134
135 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp)
136 {
137 return DIV_ROUND_UP(fp.val, 1 << 16);
138 }
139
140 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp)
141 {
142 return fp.val >> 16;
143 }
144
145 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1,
146 uint_fixed_16_16_t min2)
147 {
148 uint_fixed_16_16_t min;
149
150 min.val = min(min1.val, min2.val);
151 return min;
152 }
153
154 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1,
155 uint_fixed_16_16_t max2)
156 {
157 uint_fixed_16_16_t max;
158
159 max.val = max(max1.val, max2.val);
160 return max;
161 }
162
163 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val)
164 {
165 uint_fixed_16_16_t fp;
166 WARN_ON(val > U32_MAX);
167 fp.val = (uint32_t) val;
168 return fp;
169 }
170
171 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
172 uint_fixed_16_16_t d)
173 {
174 return DIV_ROUND_UP(val.val, d.val);
175 }
176
177 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
178 uint_fixed_16_16_t mul)
179 {
180 uint64_t intermediate_val;
181
182 intermediate_val = (uint64_t) val * mul.val;
183 intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
184 WARN_ON(intermediate_val > U32_MAX);
185 return (uint32_t) intermediate_val;
186 }
187
188 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
189 uint_fixed_16_16_t mul)
190 {
191 uint64_t intermediate_val;
192
193 intermediate_val = (uint64_t) val.val * mul.val;
194 intermediate_val = intermediate_val >> 16;
195 return clamp_u64_to_fixed16(intermediate_val);
196 }
197
198 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d)
199 {
200 uint64_t interm_val;
201
202 interm_val = (uint64_t)val << 16;
203 interm_val = DIV_ROUND_UP_ULL(interm_val, d);
204 return clamp_u64_to_fixed16(interm_val);
205 }
206
207 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
208 uint_fixed_16_16_t d)
209 {
210 uint64_t interm_val;
211
212 interm_val = (uint64_t)val << 16;
213 interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
214 WARN_ON(interm_val > U32_MAX);
215 return (uint32_t) interm_val;
216 }
217
218 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val,
219 uint_fixed_16_16_t mul)
220 {
221 uint64_t intermediate_val;
222
223 intermediate_val = (uint64_t) val * mul.val;
224 return clamp_u64_to_fixed16(intermediate_val);
225 }
226
227 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1,
228 uint_fixed_16_16_t add2)
229 {
230 uint64_t interm_sum;
231
232 interm_sum = (uint64_t) add1.val + add2.val;
233 return clamp_u64_to_fixed16(interm_sum);
234 }
235
236 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1,
237 uint32_t add2)
238 {
239 uint64_t interm_sum;
240 uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2);
241
242 interm_sum = (uint64_t) add1.val + interm_add2.val;
243 return clamp_u64_to_fixed16(interm_sum);
244 }
245
246 static inline const char *yesno(bool v)
247 {
248 return v ? "yes" : "no";
249 }
250
251 static inline const char *onoff(bool v)
252 {
253 return v ? "on" : "off";
254 }
255
256 static inline const char *enableddisabled(bool v)
257 {
258 return v ? "enabled" : "disabled";
259 }
260
261 enum pipe {
262 INVALID_PIPE = -1,
263 PIPE_A = 0,
264 PIPE_B,
265 PIPE_C,
266 _PIPE_EDP,
267 I915_MAX_PIPES = _PIPE_EDP
268 };
269 #define pipe_name(p) ((p) + 'A')
270
271 enum transcoder {
272 TRANSCODER_A = 0,
273 TRANSCODER_B,
274 TRANSCODER_C,
275 TRANSCODER_EDP,
276 TRANSCODER_DSI_A,
277 TRANSCODER_DSI_C,
278 I915_MAX_TRANSCODERS
279 };
280
281 static inline const char *transcoder_name(enum transcoder transcoder)
282 {
283 switch (transcoder) {
284 case TRANSCODER_A:
285 return "A";
286 case TRANSCODER_B:
287 return "B";
288 case TRANSCODER_C:
289 return "C";
290 case TRANSCODER_EDP:
291 return "EDP";
292 case TRANSCODER_DSI_A:
293 return "DSI A";
294 case TRANSCODER_DSI_C:
295 return "DSI C";
296 default:
297 return "<invalid>";
298 }
299 }
300
301 static inline bool transcoder_is_dsi(enum transcoder transcoder)
302 {
303 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
304 }
305
306 /*
307 * Global legacy plane identifier. Valid only for primary/sprite
308 * planes on pre-g4x, and only for primary planes on g4x+.
309 */
310 enum plane {
311 PLANE_A,
312 PLANE_B,
313 PLANE_C,
314 };
315 #define plane_name(p) ((p) + 'A')
316
317 #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A')
318
319 /*
320 * Per-pipe plane identifier.
321 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
322 * number of planes per CRTC. Not all platforms really have this many planes,
323 * which means some arrays of size I915_MAX_PLANES may have unused entries
324 * between the topmost sprite plane and the cursor plane.
325 *
326 * This is expected to be passed to various register macros
327 * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care.
328 */
329 enum plane_id {
330 PLANE_PRIMARY,
331 PLANE_SPRITE0,
332 PLANE_SPRITE1,
333 PLANE_SPRITE2,
334 PLANE_CURSOR,
335 I915_MAX_PLANES,
336 };
337
338 #define for_each_plane_id_on_crtc(__crtc, __p) \
339 for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \
340 for_each_if ((__crtc)->plane_ids_mask & BIT(__p))
341
342 enum port {
343 PORT_NONE = -1,
344 PORT_A = 0,
345 PORT_B,
346 PORT_C,
347 PORT_D,
348 PORT_E,
349 I915_MAX_PORTS
350 };
351 #define port_name(p) ((p) + 'A')
352
353 #define I915_NUM_PHYS_VLV 2
354
355 enum dpio_channel {
356 DPIO_CH0,
357 DPIO_CH1
358 };
359
360 enum dpio_phy {
361 DPIO_PHY0,
362 DPIO_PHY1,
363 DPIO_PHY2,
364 };
365
366 enum intel_display_power_domain {
367 POWER_DOMAIN_PIPE_A,
368 POWER_DOMAIN_PIPE_B,
369 POWER_DOMAIN_PIPE_C,
370 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
371 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
372 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
373 POWER_DOMAIN_TRANSCODER_A,
374 POWER_DOMAIN_TRANSCODER_B,
375 POWER_DOMAIN_TRANSCODER_C,
376 POWER_DOMAIN_TRANSCODER_EDP,
377 POWER_DOMAIN_TRANSCODER_DSI_A,
378 POWER_DOMAIN_TRANSCODER_DSI_C,
379 POWER_DOMAIN_PORT_DDI_A_LANES,
380 POWER_DOMAIN_PORT_DDI_B_LANES,
381 POWER_DOMAIN_PORT_DDI_C_LANES,
382 POWER_DOMAIN_PORT_DDI_D_LANES,
383 POWER_DOMAIN_PORT_DDI_E_LANES,
384 POWER_DOMAIN_PORT_DDI_A_IO,
385 POWER_DOMAIN_PORT_DDI_B_IO,
386 POWER_DOMAIN_PORT_DDI_C_IO,
387 POWER_DOMAIN_PORT_DDI_D_IO,
388 POWER_DOMAIN_PORT_DDI_E_IO,
389 POWER_DOMAIN_PORT_DSI,
390 POWER_DOMAIN_PORT_CRT,
391 POWER_DOMAIN_PORT_OTHER,
392 POWER_DOMAIN_VGA,
393 POWER_DOMAIN_AUDIO,
394 POWER_DOMAIN_PLLS,
395 POWER_DOMAIN_AUX_A,
396 POWER_DOMAIN_AUX_B,
397 POWER_DOMAIN_AUX_C,
398 POWER_DOMAIN_AUX_D,
399 POWER_DOMAIN_GMBUS,
400 POWER_DOMAIN_MODESET,
401 POWER_DOMAIN_INIT,
402
403 POWER_DOMAIN_NUM,
404 };
405
406 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
407 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
408 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
409 #define POWER_DOMAIN_TRANSCODER(tran) \
410 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
411 (tran) + POWER_DOMAIN_TRANSCODER_A)
412
413 enum hpd_pin {
414 HPD_NONE = 0,
415 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
416 HPD_CRT,
417 HPD_SDVO_B,
418 HPD_SDVO_C,
419 HPD_PORT_A,
420 HPD_PORT_B,
421 HPD_PORT_C,
422 HPD_PORT_D,
423 HPD_PORT_E,
424 HPD_NUM_PINS
425 };
426
427 #define for_each_hpd_pin(__pin) \
428 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
429
430 #define HPD_STORM_DEFAULT_THRESHOLD 5
431
432 struct i915_hotplug {
433 struct work_struct hotplug_work;
434
435 struct {
436 unsigned long last_jiffies;
437 int count;
438 enum {
439 HPD_ENABLED = 0,
440 HPD_DISABLED = 1,
441 HPD_MARK_DISABLED = 2
442 } state;
443 } stats[HPD_NUM_PINS];
444 u32 event_bits;
445 struct delayed_work reenable_work;
446
447 struct intel_digital_port *irq_port[I915_MAX_PORTS];
448 u32 long_port_mask;
449 u32 short_port_mask;
450 struct work_struct dig_port_work;
451
452 struct work_struct poll_init_work;
453 bool poll_enabled;
454
455 unsigned int hpd_storm_threshold;
456
457 /*
458 * if we get a HPD irq from DP and a HPD irq from non-DP
459 * the non-DP HPD could block the workqueue on a mode config
460 * mutex getting, that userspace may have taken. However
461 * userspace is waiting on the DP workqueue to run which is
462 * blocked behind the non-DP one.
463 */
464 struct workqueue_struct *dp_wq;
465 };
466
467 #define I915_GEM_GPU_DOMAINS \
468 (I915_GEM_DOMAIN_RENDER | \
469 I915_GEM_DOMAIN_SAMPLER | \
470 I915_GEM_DOMAIN_COMMAND | \
471 I915_GEM_DOMAIN_INSTRUCTION | \
472 I915_GEM_DOMAIN_VERTEX)
473
474 #define for_each_pipe(__dev_priv, __p) \
475 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
476 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
477 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
478 for_each_if ((__mask) & (1 << (__p)))
479 #define for_each_universal_plane(__dev_priv, __pipe, __p) \
480 for ((__p) = 0; \
481 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
482 (__p)++)
483 #define for_each_sprite(__dev_priv, __p, __s) \
484 for ((__s) = 0; \
485 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
486 (__s)++)
487
488 #define for_each_port_masked(__port, __ports_mask) \
489 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
490 for_each_if ((__ports_mask) & (1 << (__port)))
491
492 #define for_each_crtc(dev, crtc) \
493 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
494
495 #define for_each_intel_plane(dev, intel_plane) \
496 list_for_each_entry(intel_plane, \
497 &(dev)->mode_config.plane_list, \
498 base.head)
499
500 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \
501 list_for_each_entry(intel_plane, \
502 &(dev)->mode_config.plane_list, \
503 base.head) \
504 for_each_if ((plane_mask) & \
505 (1 << drm_plane_index(&intel_plane->base)))
506
507 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
508 list_for_each_entry(intel_plane, \
509 &(dev)->mode_config.plane_list, \
510 base.head) \
511 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
512
513 #define for_each_intel_crtc(dev, intel_crtc) \
514 list_for_each_entry(intel_crtc, \
515 &(dev)->mode_config.crtc_list, \
516 base.head)
517
518 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \
519 list_for_each_entry(intel_crtc, \
520 &(dev)->mode_config.crtc_list, \
521 base.head) \
522 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
523
524 #define for_each_intel_encoder(dev, intel_encoder) \
525 list_for_each_entry(intel_encoder, \
526 &(dev)->mode_config.encoder_list, \
527 base.head)
528
529 #define for_each_intel_connector_iter(intel_connector, iter) \
530 while ((intel_connector = to_intel_connector(drm_connector_list_iter_next(iter))))
531
532 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
533 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
534 for_each_if ((intel_encoder)->base.crtc == (__crtc))
535
536 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
537 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
538 for_each_if ((intel_connector)->base.encoder == (__encoder))
539
540 #define for_each_power_domain(domain, mask) \
541 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
542 for_each_if (BIT_ULL(domain) & (mask))
543
544 #define for_each_power_well(__dev_priv, __power_well) \
545 for ((__power_well) = (__dev_priv)->power_domains.power_wells; \
546 (__power_well) - (__dev_priv)->power_domains.power_wells < \
547 (__dev_priv)->power_domains.power_well_count; \
548 (__power_well)++)
549
550 #define for_each_power_well_rev(__dev_priv, __power_well) \
551 for ((__power_well) = (__dev_priv)->power_domains.power_wells + \
552 (__dev_priv)->power_domains.power_well_count - 1; \
553 (__power_well) - (__dev_priv)->power_domains.power_wells >= 0; \
554 (__power_well)--)
555
556 #define for_each_power_domain_well(__dev_priv, __power_well, __domain_mask) \
557 for_each_power_well(__dev_priv, __power_well) \
558 for_each_if ((__power_well)->domains & (__domain_mask))
559
560 #define for_each_power_domain_well_rev(__dev_priv, __power_well, __domain_mask) \
561 for_each_power_well_rev(__dev_priv, __power_well) \
562 for_each_if ((__power_well)->domains & (__domain_mask))
563
564 #define for_each_intel_plane_in_state(__state, plane, plane_state, __i) \
565 for ((__i) = 0; \
566 (__i) < (__state)->base.dev->mode_config.num_total_plane && \
567 ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
568 (plane_state) = to_intel_plane_state((__state)->base.planes[__i].state), 1); \
569 (__i)++) \
570 for_each_if (plane_state)
571
572 #define for_each_new_intel_crtc_in_state(__state, crtc, new_crtc_state, __i) \
573 for ((__i) = 0; \
574 (__i) < (__state)->base.dev->mode_config.num_crtc && \
575 ((crtc) = to_intel_crtc((__state)->base.crtcs[__i].ptr), \
576 (new_crtc_state) = to_intel_crtc_state((__state)->base.crtcs[__i].new_state), 1); \
577 (__i)++) \
578 for_each_if (crtc)
579
580
581 #define for_each_oldnew_intel_plane_in_state(__state, plane, old_plane_state, new_plane_state, __i) \
582 for ((__i) = 0; \
583 (__i) < (__state)->base.dev->mode_config.num_total_plane && \
584 ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
585 (old_plane_state) = to_intel_plane_state((__state)->base.planes[__i].old_state), \
586 (new_plane_state) = to_intel_plane_state((__state)->base.planes[__i].new_state), 1); \
587 (__i)++) \
588 for_each_if (plane)
589
590 struct drm_i915_private;
591 struct i915_mm_struct;
592 struct i915_mmu_object;
593
594 struct drm_i915_file_private {
595 struct drm_i915_private *dev_priv;
596 struct drm_file *file;
597
598 struct {
599 spinlock_t lock;
600 struct list_head request_list;
601 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
602 * chosen to prevent the CPU getting more than a frame ahead of the GPU
603 * (when using lax throttling for the frontbuffer). We also use it to
604 * offer free GPU waitboosts for severely congested workloads.
605 */
606 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
607 } mm;
608 struct idr context_idr;
609
610 struct intel_rps_client {
611 atomic_t boosts;
612 } rps_client;
613
614 unsigned int bsd_engine;
615
616 /* Client can have a maximum of 3 contexts banned before
617 * it is denied of creating new contexts. As one context
618 * ban needs 4 consecutive hangs, and more if there is
619 * progress in between, this is a last resort stop gap measure
620 * to limit the badly behaving clients access to gpu.
621 */
622 #define I915_MAX_CLIENT_CONTEXT_BANS 3
623 atomic_t context_bans;
624 };
625
626 /* Used by dp and fdi links */
627 struct intel_link_m_n {
628 uint32_t tu;
629 uint32_t gmch_m;
630 uint32_t gmch_n;
631 uint32_t link_m;
632 uint32_t link_n;
633 };
634
635 void intel_link_compute_m_n(int bpp, int nlanes,
636 int pixel_clock, int link_clock,
637 struct intel_link_m_n *m_n,
638 bool reduce_m_n);
639
640 /* Interface history:
641 *
642 * 1.1: Original.
643 * 1.2: Add Power Management
644 * 1.3: Add vblank support
645 * 1.4: Fix cmdbuffer path, add heap destroy
646 * 1.5: Add vblank pipe configuration
647 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
648 * - Support vertical blank on secondary display pipe
649 */
650 #define DRIVER_MAJOR 1
651 #define DRIVER_MINOR 6
652 #define DRIVER_PATCHLEVEL 0
653
654 struct opregion_header;
655 struct opregion_acpi;
656 struct opregion_swsci;
657 struct opregion_asle;
658
659 struct intel_opregion {
660 struct opregion_header *header;
661 struct opregion_acpi *acpi;
662 struct opregion_swsci *swsci;
663 u32 swsci_gbda_sub_functions;
664 u32 swsci_sbcb_sub_functions;
665 struct opregion_asle *asle;
666 void *rvda;
667 void *vbt_firmware;
668 const void *vbt;
669 u32 vbt_size;
670 u32 *lid_state;
671 struct work_struct asle_work;
672 };
673 #define OPREGION_SIZE (8*1024)
674
675 struct intel_overlay;
676 struct intel_overlay_error_state;
677
678 struct sdvo_device_mapping {
679 u8 initialized;
680 u8 dvo_port;
681 u8 slave_addr;
682 u8 dvo_wiring;
683 u8 i2c_pin;
684 u8 ddc_pin;
685 };
686
687 struct intel_connector;
688 struct intel_encoder;
689 struct intel_atomic_state;
690 struct intel_crtc_state;
691 struct intel_initial_plane_config;
692 struct intel_crtc;
693 struct intel_limit;
694 struct dpll;
695 struct intel_cdclk_state;
696
697 struct drm_i915_display_funcs {
698 void (*get_cdclk)(struct drm_i915_private *dev_priv,
699 struct intel_cdclk_state *cdclk_state);
700 void (*set_cdclk)(struct drm_i915_private *dev_priv,
701 const struct intel_cdclk_state *cdclk_state);
702 int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane);
703 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
704 int (*compute_intermediate_wm)(struct drm_device *dev,
705 struct intel_crtc *intel_crtc,
706 struct intel_crtc_state *newstate);
707 void (*initial_watermarks)(struct intel_atomic_state *state,
708 struct intel_crtc_state *cstate);
709 void (*atomic_update_watermarks)(struct intel_atomic_state *state,
710 struct intel_crtc_state *cstate);
711 void (*optimize_watermarks)(struct intel_atomic_state *state,
712 struct intel_crtc_state *cstate);
713 int (*compute_global_watermarks)(struct drm_atomic_state *state);
714 void (*update_wm)(struct intel_crtc *crtc);
715 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
716 /* Returns the active state of the crtc, and if the crtc is active,
717 * fills out the pipe-config with the hw state. */
718 bool (*get_pipe_config)(struct intel_crtc *,
719 struct intel_crtc_state *);
720 void (*get_initial_plane_config)(struct intel_crtc *,
721 struct intel_initial_plane_config *);
722 int (*crtc_compute_clock)(struct intel_crtc *crtc,
723 struct intel_crtc_state *crtc_state);
724 void (*crtc_enable)(struct intel_crtc_state *pipe_config,
725 struct drm_atomic_state *old_state);
726 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
727 struct drm_atomic_state *old_state);
728 void (*update_crtcs)(struct drm_atomic_state *state);
729 void (*audio_codec_enable)(struct drm_connector *connector,
730 struct intel_encoder *encoder,
731 const struct drm_display_mode *adjusted_mode);
732 void (*audio_codec_disable)(struct intel_encoder *encoder);
733 void (*fdi_link_train)(struct intel_crtc *crtc,
734 const struct intel_crtc_state *crtc_state);
735 void (*init_clock_gating)(struct drm_i915_private *dev_priv);
736 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
737 /* clock updates for mode set */
738 /* cursor updates */
739 /* render clock increase/decrease */
740 /* display clock increase/decrease */
741 /* pll clock increase/decrease */
742
743 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
744 void (*load_luts)(struct drm_crtc_state *crtc_state);
745 };
746
747 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
748 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
749 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
750
751 struct intel_csr {
752 struct work_struct work;
753 const char *fw_path;
754 uint32_t *dmc_payload;
755 uint32_t dmc_fw_size;
756 uint32_t version;
757 uint32_t mmio_count;
758 i915_reg_t mmioaddr[8];
759 uint32_t mmiodata[8];
760 uint32_t dc_state;
761 uint32_t allowed_dc_mask;
762 };
763
764 #define DEV_INFO_FOR_EACH_FLAG(func) \
765 func(is_mobile); \
766 func(is_lp); \
767 func(is_alpha_support); \
768 /* Keep has_* in alphabetical order */ \
769 func(has_64bit_reloc); \
770 func(has_aliasing_ppgtt); \
771 func(has_csr); \
772 func(has_ddi); \
773 func(has_dp_mst); \
774 func(has_reset_engine); \
775 func(has_fbc); \
776 func(has_fpga_dbg); \
777 func(has_full_ppgtt); \
778 func(has_full_48bit_ppgtt); \
779 func(has_gmch_display); \
780 func(has_guc); \
781 func(has_guc_ct); \
782 func(has_hotplug); \
783 func(has_l3_dpf); \
784 func(has_llc); \
785 func(has_logical_ring_contexts); \
786 func(has_logical_ring_preemption); \
787 func(has_overlay); \
788 func(has_pipe_cxsr); \
789 func(has_pooled_eu); \
790 func(has_psr); \
791 func(has_rc6); \
792 func(has_rc6p); \
793 func(has_resource_streamer); \
794 func(has_runtime_pm); \
795 func(has_snoop); \
796 func(unfenced_needs_alignment); \
797 func(cursor_needs_physical); \
798 func(hws_needs_physical); \
799 func(overlay_needs_physical); \
800 func(supports_tv); \
801 func(has_ipc);
802
803 struct sseu_dev_info {
804 u8 slice_mask;
805 u8 subslice_mask;
806 u8 eu_total;
807 u8 eu_per_subslice;
808 u8 min_eu_in_pool;
809 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
810 u8 subslice_7eu[3];
811 u8 has_slice_pg:1;
812 u8 has_subslice_pg:1;
813 u8 has_eu_pg:1;
814 };
815
816 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu)
817 {
818 return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask);
819 }
820
821 /* Keep in gen based order, and chronological order within a gen */
822 enum intel_platform {
823 INTEL_PLATFORM_UNINITIALIZED = 0,
824 INTEL_I830,
825 INTEL_I845G,
826 INTEL_I85X,
827 INTEL_I865G,
828 INTEL_I915G,
829 INTEL_I915GM,
830 INTEL_I945G,
831 INTEL_I945GM,
832 INTEL_G33,
833 INTEL_PINEVIEW,
834 INTEL_I965G,
835 INTEL_I965GM,
836 INTEL_G45,
837 INTEL_GM45,
838 INTEL_IRONLAKE,
839 INTEL_SANDYBRIDGE,
840 INTEL_IVYBRIDGE,
841 INTEL_VALLEYVIEW,
842 INTEL_HASWELL,
843 INTEL_BROADWELL,
844 INTEL_CHERRYVIEW,
845 INTEL_SKYLAKE,
846 INTEL_BROXTON,
847 INTEL_KABYLAKE,
848 INTEL_GEMINILAKE,
849 INTEL_COFFEELAKE,
850 INTEL_CANNONLAKE,
851 INTEL_MAX_PLATFORMS
852 };
853
854 struct intel_device_info {
855 u16 device_id;
856 u16 gen_mask;
857
858 u8 gen;
859 u8 gt; /* GT number, 0 if undefined */
860 u8 num_rings;
861 u8 ring_mask; /* Rings supported by the HW */
862
863 enum intel_platform platform;
864 u32 platform_mask;
865
866 u32 display_mmio_offset;
867
868 u8 num_pipes;
869 u8 num_sprites[I915_MAX_PIPES];
870 u8 num_scalers[I915_MAX_PIPES];
871
872 unsigned int page_sizes; /* page sizes supported by the HW */
873
874 #define DEFINE_FLAG(name) u8 name:1
875 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG);
876 #undef DEFINE_FLAG
877 u16 ddb_size; /* in blocks */
878
879 /* Register offsets for the various display pipes and transcoders */
880 int pipe_offsets[I915_MAX_TRANSCODERS];
881 int trans_offsets[I915_MAX_TRANSCODERS];
882 int palette_offsets[I915_MAX_PIPES];
883 int cursor_offsets[I915_MAX_PIPES];
884
885 /* Slice/subslice/EU info */
886 struct sseu_dev_info sseu;
887
888 struct color_luts {
889 u16 degamma_lut_size;
890 u16 gamma_lut_size;
891 } color;
892 };
893
894 struct intel_display_error_state;
895
896 struct i915_gpu_state {
897 struct kref ref;
898 struct timeval time;
899 struct timeval boottime;
900 struct timeval uptime;
901
902 struct drm_i915_private *i915;
903
904 char error_msg[128];
905 bool simulated;
906 bool awake;
907 bool wakelock;
908 bool suspended;
909 int iommu;
910 u32 reset_count;
911 u32 suspend_count;
912 struct intel_device_info device_info;
913 struct i915_params params;
914
915 /* Generic register state */
916 u32 eir;
917 u32 pgtbl_er;
918 u32 ier;
919 u32 gtier[4], ngtier;
920 u32 ccid;
921 u32 derrmr;
922 u32 forcewake;
923 u32 error; /* gen6+ */
924 u32 err_int; /* gen7 */
925 u32 fault_data0; /* gen8, gen9 */
926 u32 fault_data1; /* gen8, gen9 */
927 u32 done_reg;
928 u32 gac_eco;
929 u32 gam_ecochk;
930 u32 gab_ctl;
931 u32 gfx_mode;
932
933 u32 nfence;
934 u64 fence[I915_MAX_NUM_FENCES];
935 struct intel_overlay_error_state *overlay;
936 struct intel_display_error_state *display;
937 struct drm_i915_error_object *semaphore;
938 struct drm_i915_error_object *guc_log;
939
940 struct drm_i915_error_engine {
941 int engine_id;
942 /* Software tracked state */
943 bool waiting;
944 int num_waiters;
945 unsigned long hangcheck_timestamp;
946 bool hangcheck_stalled;
947 enum intel_engine_hangcheck_action hangcheck_action;
948 struct i915_address_space *vm;
949 int num_requests;
950 u32 reset_count;
951
952 /* position of active request inside the ring */
953 u32 rq_head, rq_post, rq_tail;
954
955 /* our own tracking of ring head and tail */
956 u32 cpu_ring_head;
957 u32 cpu_ring_tail;
958
959 u32 last_seqno;
960
961 /* Register state */
962 u32 start;
963 u32 tail;
964 u32 head;
965 u32 ctl;
966 u32 mode;
967 u32 hws;
968 u32 ipeir;
969 u32 ipehr;
970 u32 bbstate;
971 u32 instpm;
972 u32 instps;
973 u32 seqno;
974 u64 bbaddr;
975 u64 acthd;
976 u32 fault_reg;
977 u64 faddr;
978 u32 rc_psmi; /* sleep state */
979 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
980 struct intel_instdone instdone;
981
982 struct drm_i915_error_context {
983 char comm[TASK_COMM_LEN];
984 pid_t pid;
985 u32 handle;
986 u32 hw_id;
987 int priority;
988 int ban_score;
989 int active;
990 int guilty;
991 } context;
992
993 struct drm_i915_error_object {
994 u64 gtt_offset;
995 u64 gtt_size;
996 int page_count;
997 int unused;
998 u32 *pages[0];
999 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
1000
1001 struct drm_i915_error_object **user_bo;
1002 long user_bo_count;
1003
1004 struct drm_i915_error_object *wa_ctx;
1005
1006 struct drm_i915_error_request {
1007 long jiffies;
1008 pid_t pid;
1009 u32 context;
1010 int priority;
1011 int ban_score;
1012 u32 seqno;
1013 u32 head;
1014 u32 tail;
1015 } *requests, execlist[EXECLIST_MAX_PORTS];
1016 unsigned int num_ports;
1017
1018 struct drm_i915_error_waiter {
1019 char comm[TASK_COMM_LEN];
1020 pid_t pid;
1021 u32 seqno;
1022 } *waiters;
1023
1024 struct {
1025 u32 gfx_mode;
1026 union {
1027 u64 pdp[4];
1028 u32 pp_dir_base;
1029 };
1030 } vm_info;
1031 } engine[I915_NUM_ENGINES];
1032
1033 struct drm_i915_error_buffer {
1034 u32 size;
1035 u32 name;
1036 u32 rseqno[I915_NUM_ENGINES], wseqno;
1037 u64 gtt_offset;
1038 u32 read_domains;
1039 u32 write_domain;
1040 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
1041 u32 tiling:2;
1042 u32 dirty:1;
1043 u32 purgeable:1;
1044 u32 userptr:1;
1045 s32 engine:4;
1046 u32 cache_level:3;
1047 } *active_bo[I915_NUM_ENGINES], *pinned_bo;
1048 u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
1049 struct i915_address_space *active_vm[I915_NUM_ENGINES];
1050 };
1051
1052 enum i915_cache_level {
1053 I915_CACHE_NONE = 0,
1054 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
1055 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
1056 caches, eg sampler/render caches, and the
1057 large Last-Level-Cache. LLC is coherent with
1058 the CPU, but L3 is only visible to the GPU. */
1059 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
1060 };
1061
1062 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
1063
1064 enum fb_op_origin {
1065 ORIGIN_GTT,
1066 ORIGIN_CPU,
1067 ORIGIN_CS,
1068 ORIGIN_FLIP,
1069 ORIGIN_DIRTYFB,
1070 };
1071
1072 struct intel_fbc {
1073 /* This is always the inner lock when overlapping with struct_mutex and
1074 * it's the outer lock when overlapping with stolen_lock. */
1075 struct mutex lock;
1076 unsigned threshold;
1077 unsigned int possible_framebuffer_bits;
1078 unsigned int busy_bits;
1079 unsigned int visible_pipes_mask;
1080 struct intel_crtc *crtc;
1081
1082 struct drm_mm_node compressed_fb;
1083 struct drm_mm_node *compressed_llb;
1084
1085 bool false_color;
1086
1087 bool enabled;
1088 bool active;
1089
1090 bool underrun_detected;
1091 struct work_struct underrun_work;
1092
1093 /*
1094 * Due to the atomic rules we can't access some structures without the
1095 * appropriate locking, so we cache information here in order to avoid
1096 * these problems.
1097 */
1098 struct intel_fbc_state_cache {
1099 struct i915_vma *vma;
1100
1101 struct {
1102 unsigned int mode_flags;
1103 uint32_t hsw_bdw_pixel_rate;
1104 } crtc;
1105
1106 struct {
1107 unsigned int rotation;
1108 int src_w;
1109 int src_h;
1110 bool visible;
1111 } plane;
1112
1113 struct {
1114 const struct drm_format_info *format;
1115 unsigned int stride;
1116 } fb;
1117 } state_cache;
1118
1119 /*
1120 * This structure contains everything that's relevant to program the
1121 * hardware registers. When we want to figure out if we need to disable
1122 * and re-enable FBC for a new configuration we just check if there's
1123 * something different in the struct. The genx_fbc_activate functions
1124 * are supposed to read from it in order to program the registers.
1125 */
1126 struct intel_fbc_reg_params {
1127 struct i915_vma *vma;
1128
1129 struct {
1130 enum pipe pipe;
1131 enum plane plane;
1132 unsigned int fence_y_offset;
1133 } crtc;
1134
1135 struct {
1136 const struct drm_format_info *format;
1137 unsigned int stride;
1138 } fb;
1139
1140 int cfb_size;
1141 unsigned int gen9_wa_cfb_stride;
1142 } params;
1143
1144 struct intel_fbc_work {
1145 bool scheduled;
1146 u32 scheduled_vblank;
1147 struct work_struct work;
1148 } work;
1149
1150 const char *no_fbc_reason;
1151 };
1152
1153 /*
1154 * HIGH_RR is the highest eDP panel refresh rate read from EDID
1155 * LOW_RR is the lowest eDP panel refresh rate found from EDID
1156 * parsing for same resolution.
1157 */
1158 enum drrs_refresh_rate_type {
1159 DRRS_HIGH_RR,
1160 DRRS_LOW_RR,
1161 DRRS_MAX_RR, /* RR count */
1162 };
1163
1164 enum drrs_support_type {
1165 DRRS_NOT_SUPPORTED = 0,
1166 STATIC_DRRS_SUPPORT = 1,
1167 SEAMLESS_DRRS_SUPPORT = 2
1168 };
1169
1170 struct intel_dp;
1171 struct i915_drrs {
1172 struct mutex mutex;
1173 struct delayed_work work;
1174 struct intel_dp *dp;
1175 unsigned busy_frontbuffer_bits;
1176 enum drrs_refresh_rate_type refresh_rate_type;
1177 enum drrs_support_type type;
1178 };
1179
1180 struct i915_psr {
1181 struct mutex lock;
1182 bool sink_support;
1183 bool source_ok;
1184 struct intel_dp *enabled;
1185 bool active;
1186 struct delayed_work work;
1187 unsigned busy_frontbuffer_bits;
1188 bool psr2_support;
1189 bool aux_frame_sync;
1190 bool link_standby;
1191 bool y_cord_support;
1192 bool colorimetry_support;
1193 bool alpm;
1194
1195 void (*enable_source)(struct intel_dp *,
1196 const struct intel_crtc_state *);
1197 void (*disable_source)(struct intel_dp *,
1198 const struct intel_crtc_state *);
1199 void (*enable_sink)(struct intel_dp *);
1200 void (*activate)(struct intel_dp *);
1201 void (*setup_vsc)(struct intel_dp *, const struct intel_crtc_state *);
1202 };
1203
1204 enum intel_pch {
1205 PCH_NONE = 0, /* No PCH present */
1206 PCH_IBX, /* Ibexpeak PCH */
1207 PCH_CPT, /* Cougarpoint/Pantherpoint PCH */
1208 PCH_LPT, /* Lynxpoint/Wildcatpoint PCH */
1209 PCH_SPT, /* Sunrisepoint PCH */
1210 PCH_KBP, /* Kaby Lake PCH */
1211 PCH_CNP, /* Cannon Lake PCH */
1212 PCH_NOP,
1213 };
1214
1215 enum intel_sbi_destination {
1216 SBI_ICLK,
1217 SBI_MPHY,
1218 };
1219
1220 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1221 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1222 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1223 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1224 #define QUIRK_INCREASE_T12_DELAY (1<<6)
1225
1226 struct intel_fbdev;
1227 struct intel_fbc_work;
1228
1229 struct intel_gmbus {
1230 struct i2c_adapter adapter;
1231 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1232 u32 force_bit;
1233 u32 reg0;
1234 i915_reg_t gpio_reg;
1235 struct i2c_algo_bit_data bit_algo;
1236 struct drm_i915_private *dev_priv;
1237 };
1238
1239 struct i915_suspend_saved_registers {
1240 u32 saveDSPARB;
1241 u32 saveFBC_CONTROL;
1242 u32 saveCACHE_MODE_0;
1243 u32 saveMI_ARB_STATE;
1244 u32 saveSWF0[16];
1245 u32 saveSWF1[16];
1246 u32 saveSWF3[3];
1247 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1248 u32 savePCH_PORT_HOTPLUG;
1249 u16 saveGCDGMBUS;
1250 };
1251
1252 struct vlv_s0ix_state {
1253 /* GAM */
1254 u32 wr_watermark;
1255 u32 gfx_prio_ctrl;
1256 u32 arb_mode;
1257 u32 gfx_pend_tlb0;
1258 u32 gfx_pend_tlb1;
1259 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1260 u32 media_max_req_count;
1261 u32 gfx_max_req_count;
1262 u32 render_hwsp;
1263 u32 ecochk;
1264 u32 bsd_hwsp;
1265 u32 blt_hwsp;
1266 u32 tlb_rd_addr;
1267
1268 /* MBC */
1269 u32 g3dctl;
1270 u32 gsckgctl;
1271 u32 mbctl;
1272
1273 /* GCP */
1274 u32 ucgctl1;
1275 u32 ucgctl3;
1276 u32 rcgctl1;
1277 u32 rcgctl2;
1278 u32 rstctl;
1279 u32 misccpctl;
1280
1281 /* GPM */
1282 u32 gfxpause;
1283 u32 rpdeuhwtc;
1284 u32 rpdeuc;
1285 u32 ecobus;
1286 u32 pwrdwnupctl;
1287 u32 rp_down_timeout;
1288 u32 rp_deucsw;
1289 u32 rcubmabdtmr;
1290 u32 rcedata;
1291 u32 spare2gh;
1292
1293 /* Display 1 CZ domain */
1294 u32 gt_imr;
1295 u32 gt_ier;
1296 u32 pm_imr;
1297 u32 pm_ier;
1298 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1299
1300 /* GT SA CZ domain */
1301 u32 tilectl;
1302 u32 gt_fifoctl;
1303 u32 gtlc_wake_ctrl;
1304 u32 gtlc_survive;
1305 u32 pmwgicz;
1306
1307 /* Display 2 CZ domain */
1308 u32 gu_ctl0;
1309 u32 gu_ctl1;
1310 u32 pcbr;
1311 u32 clock_gate_dis2;
1312 };
1313
1314 struct intel_rps_ei {
1315 ktime_t ktime;
1316 u32 render_c0;
1317 u32 media_c0;
1318 };
1319
1320 struct intel_rps {
1321 /*
1322 * work, interrupts_enabled and pm_iir are protected by
1323 * dev_priv->irq_lock
1324 */
1325 struct work_struct work;
1326 bool interrupts_enabled;
1327 u32 pm_iir;
1328
1329 /* PM interrupt bits that should never be masked */
1330 u32 pm_intrmsk_mbz;
1331
1332 /* Frequencies are stored in potentially platform dependent multiples.
1333 * In other words, *_freq needs to be multiplied by X to be interesting.
1334 * Soft limits are those which are used for the dynamic reclocking done
1335 * by the driver (raise frequencies under heavy loads, and lower for
1336 * lighter loads). Hard limits are those imposed by the hardware.
1337 *
1338 * A distinction is made for overclocking, which is never enabled by
1339 * default, and is considered to be above the hard limit if it's
1340 * possible at all.
1341 */
1342 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1343 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1344 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1345 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1346 u8 min_freq; /* AKA RPn. Minimum frequency */
1347 u8 boost_freq; /* Frequency to request when wait boosting */
1348 u8 idle_freq; /* Frequency to request when we are idle */
1349 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1350 u8 rp1_freq; /* "less than" RP0 power/freqency */
1351 u8 rp0_freq; /* Non-overclocked max frequency. */
1352 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
1353
1354 u8 up_threshold; /* Current %busy required to uplock */
1355 u8 down_threshold; /* Current %busy required to downclock */
1356
1357 int last_adj;
1358 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1359
1360 bool enabled;
1361 atomic_t num_waiters;
1362 atomic_t boosts;
1363
1364 /* manual wa residency calculations */
1365 struct intel_rps_ei ei;
1366 };
1367
1368 struct intel_gen6_power_mgmt {
1369 struct intel_rps rps;
1370 struct delayed_work autoenable_work;
1371 };
1372
1373 /* defined intel_pm.c */
1374 extern spinlock_t mchdev_lock;
1375
1376 struct intel_ilk_power_mgmt {
1377 u8 cur_delay;
1378 u8 min_delay;
1379 u8 max_delay;
1380 u8 fmax;
1381 u8 fstart;
1382
1383 u64 last_count1;
1384 unsigned long last_time1;
1385 unsigned long chipset_power;
1386 u64 last_count2;
1387 u64 last_time2;
1388 unsigned long gfx_power;
1389 u8 corr;
1390
1391 int c_m;
1392 int r_t;
1393 };
1394
1395 struct drm_i915_private;
1396 struct i915_power_well;
1397
1398 struct i915_power_well_ops {
1399 /*
1400 * Synchronize the well's hw state to match the current sw state, for
1401 * example enable/disable it based on the current refcount. Called
1402 * during driver init and resume time, possibly after first calling
1403 * the enable/disable handlers.
1404 */
1405 void (*sync_hw)(struct drm_i915_private *dev_priv,
1406 struct i915_power_well *power_well);
1407 /*
1408 * Enable the well and resources that depend on it (for example
1409 * interrupts located on the well). Called after the 0->1 refcount
1410 * transition.
1411 */
1412 void (*enable)(struct drm_i915_private *dev_priv,
1413 struct i915_power_well *power_well);
1414 /*
1415 * Disable the well and resources that depend on it. Called after
1416 * the 1->0 refcount transition.
1417 */
1418 void (*disable)(struct drm_i915_private *dev_priv,
1419 struct i915_power_well *power_well);
1420 /* Returns the hw enabled state. */
1421 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1422 struct i915_power_well *power_well);
1423 };
1424
1425 /* Power well structure for haswell */
1426 struct i915_power_well {
1427 const char *name;
1428 bool always_on;
1429 /* power well enable/disable usage count */
1430 int count;
1431 /* cached hw enabled state */
1432 bool hw_enabled;
1433 u64 domains;
1434 /* unique identifier for this power well */
1435 enum i915_power_well_id id;
1436 /*
1437 * Arbitraty data associated with this power well. Platform and power
1438 * well specific.
1439 */
1440 union {
1441 struct {
1442 enum dpio_phy phy;
1443 } bxt;
1444 struct {
1445 /* Mask of pipes whose IRQ logic is backed by the pw */
1446 u8 irq_pipe_mask;
1447 /* The pw is backing the VGA functionality */
1448 bool has_vga:1;
1449 bool has_fuses:1;
1450 } hsw;
1451 };
1452 const struct i915_power_well_ops *ops;
1453 };
1454
1455 struct i915_power_domains {
1456 /*
1457 * Power wells needed for initialization at driver init and suspend
1458 * time are on. They are kept on until after the first modeset.
1459 */
1460 bool init_power_on;
1461 bool initializing;
1462 int power_well_count;
1463
1464 struct mutex lock;
1465 int domain_use_count[POWER_DOMAIN_NUM];
1466 struct i915_power_well *power_wells;
1467 };
1468
1469 #define MAX_L3_SLICES 2
1470 struct intel_l3_parity {
1471 u32 *remap_info[MAX_L3_SLICES];
1472 struct work_struct error_work;
1473 int which_slice;
1474 };
1475
1476 struct i915_gem_mm {
1477 /** Memory allocator for GTT stolen memory */
1478 struct drm_mm stolen;
1479 /** Protects the usage of the GTT stolen memory allocator. This is
1480 * always the inner lock when overlapping with struct_mutex. */
1481 struct mutex stolen_lock;
1482
1483 /** List of all objects in gtt_space. Used to restore gtt
1484 * mappings on resume */
1485 struct list_head bound_list;
1486 /**
1487 * List of objects which are not bound to the GTT (thus
1488 * are idle and not used by the GPU). These objects may or may
1489 * not actually have any pages attached.
1490 */
1491 struct list_head unbound_list;
1492
1493 /** List of all objects in gtt_space, currently mmaped by userspace.
1494 * All objects within this list must also be on bound_list.
1495 */
1496 struct list_head userfault_list;
1497
1498 /**
1499 * List of objects which are pending destruction.
1500 */
1501 struct llist_head free_list;
1502 struct work_struct free_work;
1503
1504 /**
1505 * Small stash of WC pages
1506 */
1507 struct pagevec wc_stash;
1508
1509 /** Usable portion of the GTT for GEM */
1510 dma_addr_t stolen_base; /* limited to low memory (32-bit) */
1511
1512 /**
1513 * tmpfs instance used for shmem backed objects
1514 */
1515 struct vfsmount *gemfs;
1516
1517 /** PPGTT used for aliasing the PPGTT with the GTT */
1518 struct i915_hw_ppgtt *aliasing_ppgtt;
1519
1520 struct notifier_block oom_notifier;
1521 struct notifier_block vmap_notifier;
1522 struct shrinker shrinker;
1523
1524 /** LRU list of objects with fence regs on them. */
1525 struct list_head fence_list;
1526
1527 /**
1528 * Workqueue to fault in userptr pages, flushed by the execbuf
1529 * when required but otherwise left to userspace to try again
1530 * on EAGAIN.
1531 */
1532 struct workqueue_struct *userptr_wq;
1533
1534 u64 unordered_timeline;
1535
1536 /* the indicator for dispatch video commands on two BSD rings */
1537 atomic_t bsd_engine_dispatch_index;
1538
1539 /** Bit 6 swizzling required for X tiling */
1540 uint32_t bit_6_swizzle_x;
1541 /** Bit 6 swizzling required for Y tiling */
1542 uint32_t bit_6_swizzle_y;
1543
1544 /* accounting, useful for userland debugging */
1545 spinlock_t object_stat_lock;
1546 u64 object_memory;
1547 u32 object_count;
1548 };
1549
1550 struct drm_i915_error_state_buf {
1551 struct drm_i915_private *i915;
1552 unsigned bytes;
1553 unsigned size;
1554 int err;
1555 u8 *buf;
1556 loff_t start;
1557 loff_t pos;
1558 };
1559
1560 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1561 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1562
1563 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */
1564 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */
1565
1566 struct i915_gpu_error {
1567 /* For hangcheck timer */
1568 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1569 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1570
1571 struct delayed_work hangcheck_work;
1572
1573 /* For reset and error_state handling. */
1574 spinlock_t lock;
1575 /* Protected by the above dev->gpu_error.lock. */
1576 struct i915_gpu_state *first_error;
1577
1578 atomic_t pending_fb_pin;
1579
1580 unsigned long missed_irq_rings;
1581
1582 /**
1583 * State variable controlling the reset flow and count
1584 *
1585 * This is a counter which gets incremented when reset is triggered,
1586 *
1587 * Before the reset commences, the I915_RESET_BACKOFF bit is set
1588 * meaning that any waiters holding onto the struct_mutex should
1589 * relinquish the lock immediately in order for the reset to start.
1590 *
1591 * If reset is not completed succesfully, the I915_WEDGE bit is
1592 * set meaning that hardware is terminally sour and there is no
1593 * recovery. All waiters on the reset_queue will be woken when
1594 * that happens.
1595 *
1596 * This counter is used by the wait_seqno code to notice that reset
1597 * event happened and it needs to restart the entire ioctl (since most
1598 * likely the seqno it waited for won't ever signal anytime soon).
1599 *
1600 * This is important for lock-free wait paths, where no contended lock
1601 * naturally enforces the correct ordering between the bail-out of the
1602 * waiter and the gpu reset work code.
1603 */
1604 unsigned long reset_count;
1605
1606 /**
1607 * flags: Control various stages of the GPU reset
1608 *
1609 * #I915_RESET_BACKOFF - When we start a reset, we want to stop any
1610 * other users acquiring the struct_mutex. To do this we set the
1611 * #I915_RESET_BACKOFF bit in the error flags when we detect a reset
1612 * and then check for that bit before acquiring the struct_mutex (in
1613 * i915_mutex_lock_interruptible()?). I915_RESET_BACKOFF serves a
1614 * secondary role in preventing two concurrent global reset attempts.
1615 *
1616 * #I915_RESET_HANDOFF - To perform the actual GPU reset, we need the
1617 * struct_mutex. We try to acquire the struct_mutex in the reset worker,
1618 * but it may be held by some long running waiter (that we cannot
1619 * interrupt without causing trouble). Once we are ready to do the GPU
1620 * reset, we set the I915_RESET_HANDOFF bit and wakeup any waiters. If
1621 * they already hold the struct_mutex and want to participate they can
1622 * inspect the bit and do the reset directly, otherwise the worker
1623 * waits for the struct_mutex.
1624 *
1625 * #I915_RESET_ENGINE[num_engines] - Since the driver doesn't need to
1626 * acquire the struct_mutex to reset an engine, we need an explicit
1627 * flag to prevent two concurrent reset attempts in the same engine.
1628 * As the number of engines continues to grow, allocate the flags from
1629 * the most significant bits.
1630 *
1631 * #I915_WEDGED - If reset fails and we can no longer use the GPU,
1632 * we set the #I915_WEDGED bit. Prior to command submission, e.g.
1633 * i915_gem_request_alloc(), this bit is checked and the sequence
1634 * aborted (with -EIO reported to userspace) if set.
1635 */
1636 unsigned long flags;
1637 #define I915_RESET_BACKOFF 0
1638 #define I915_RESET_HANDOFF 1
1639 #define I915_RESET_MODESET 2
1640 #define I915_WEDGED (BITS_PER_LONG - 1)
1641 #define I915_RESET_ENGINE (I915_WEDGED - I915_NUM_ENGINES)
1642
1643 /** Number of times an engine has been reset */
1644 u32 reset_engine_count[I915_NUM_ENGINES];
1645
1646 /**
1647 * Waitqueue to signal when a hang is detected. Used to for waiters
1648 * to release the struct_mutex for the reset to procede.
1649 */
1650 wait_queue_head_t wait_queue;
1651
1652 /**
1653 * Waitqueue to signal when the reset has completed. Used by clients
1654 * that wait for dev_priv->mm.wedged to settle.
1655 */
1656 wait_queue_head_t reset_queue;
1657
1658 /* For missed irq/seqno simulation. */
1659 unsigned long test_irq_rings;
1660 };
1661
1662 enum modeset_restore {
1663 MODESET_ON_LID_OPEN,
1664 MODESET_DONE,
1665 MODESET_SUSPENDED,
1666 };
1667
1668 #define DP_AUX_A 0x40
1669 #define DP_AUX_B 0x10
1670 #define DP_AUX_C 0x20
1671 #define DP_AUX_D 0x30
1672
1673 #define DDC_PIN_B 0x05
1674 #define DDC_PIN_C 0x04
1675 #define DDC_PIN_D 0x06
1676
1677 struct ddi_vbt_port_info {
1678 /*
1679 * This is an index in the HDMI/DVI DDI buffer translation table.
1680 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1681 * populate this field.
1682 */
1683 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1684 uint8_t hdmi_level_shift;
1685
1686 uint8_t supports_dvi:1;
1687 uint8_t supports_hdmi:1;
1688 uint8_t supports_dp:1;
1689 uint8_t supports_edp:1;
1690
1691 uint8_t alternate_aux_channel;
1692 uint8_t alternate_ddc_pin;
1693
1694 uint8_t dp_boost_level;
1695 uint8_t hdmi_boost_level;
1696 };
1697
1698 enum psr_lines_to_wait {
1699 PSR_0_LINES_TO_WAIT = 0,
1700 PSR_1_LINE_TO_WAIT,
1701 PSR_4_LINES_TO_WAIT,
1702 PSR_8_LINES_TO_WAIT
1703 };
1704
1705 struct intel_vbt_data {
1706 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1707 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1708
1709 /* Feature bits */
1710 unsigned int int_tv_support:1;
1711 unsigned int lvds_dither:1;
1712 unsigned int lvds_vbt:1;
1713 unsigned int int_crt_support:1;
1714 unsigned int lvds_use_ssc:1;
1715 unsigned int display_clock_mode:1;
1716 unsigned int fdi_rx_polarity_inverted:1;
1717 unsigned int panel_type:4;
1718 int lvds_ssc_freq;
1719 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1720
1721 enum drrs_support_type drrs_type;
1722
1723 struct {
1724 int rate;
1725 int lanes;
1726 int preemphasis;
1727 int vswing;
1728 bool low_vswing;
1729 bool initialized;
1730 bool support;
1731 int bpp;
1732 struct edp_power_seq pps;
1733 } edp;
1734
1735 struct {
1736 bool full_link;
1737 bool require_aux_wakeup;
1738 int idle_frames;
1739 enum psr_lines_to_wait lines_to_wait;
1740 int tp1_wakeup_time;
1741 int tp2_tp3_wakeup_time;
1742 } psr;
1743
1744 struct {
1745 u16 pwm_freq_hz;
1746 bool present;
1747 bool active_low_pwm;
1748 u8 min_brightness; /* min_brightness/255 of max */
1749 u8 controller; /* brightness controller number */
1750 enum intel_backlight_type type;
1751 } backlight;
1752
1753 /* MIPI DSI */
1754 struct {
1755 u16 panel_id;
1756 struct mipi_config *config;
1757 struct mipi_pps_data *pps;
1758 u8 seq_version;
1759 u32 size;
1760 u8 *data;
1761 const u8 *sequence[MIPI_SEQ_MAX];
1762 } dsi;
1763
1764 int crt_ddc_pin;
1765
1766 int child_dev_num;
1767 struct child_device_config *child_dev;
1768
1769 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1770 struct sdvo_device_mapping sdvo_mappings[2];
1771 };
1772
1773 enum intel_ddb_partitioning {
1774 INTEL_DDB_PART_1_2,
1775 INTEL_DDB_PART_5_6, /* IVB+ */
1776 };
1777
1778 struct intel_wm_level {
1779 bool enable;
1780 uint32_t pri_val;
1781 uint32_t spr_val;
1782 uint32_t cur_val;
1783 uint32_t fbc_val;
1784 };
1785
1786 struct ilk_wm_values {
1787 uint32_t wm_pipe[3];
1788 uint32_t wm_lp[3];
1789 uint32_t wm_lp_spr[3];
1790 uint32_t wm_linetime[3];
1791 bool enable_fbc_wm;
1792 enum intel_ddb_partitioning partitioning;
1793 };
1794
1795 struct g4x_pipe_wm {
1796 uint16_t plane[I915_MAX_PLANES];
1797 uint16_t fbc;
1798 };
1799
1800 struct g4x_sr_wm {
1801 uint16_t plane;
1802 uint16_t cursor;
1803 uint16_t fbc;
1804 };
1805
1806 struct vlv_wm_ddl_values {
1807 uint8_t plane[I915_MAX_PLANES];
1808 };
1809
1810 struct vlv_wm_values {
1811 struct g4x_pipe_wm pipe[3];
1812 struct g4x_sr_wm sr;
1813 struct vlv_wm_ddl_values ddl[3];
1814 uint8_t level;
1815 bool cxsr;
1816 };
1817
1818 struct g4x_wm_values {
1819 struct g4x_pipe_wm pipe[2];
1820 struct g4x_sr_wm sr;
1821 struct g4x_sr_wm hpll;
1822 bool cxsr;
1823 bool hpll_en;
1824 bool fbc_en;
1825 };
1826
1827 struct skl_ddb_entry {
1828 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1829 };
1830
1831 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1832 {
1833 return entry->end - entry->start;
1834 }
1835
1836 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1837 const struct skl_ddb_entry *e2)
1838 {
1839 if (e1->start == e2->start && e1->end == e2->end)
1840 return true;
1841
1842 return false;
1843 }
1844
1845 struct skl_ddb_allocation {
1846 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1847 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1848 };
1849
1850 struct skl_wm_values {
1851 unsigned dirty_pipes;
1852 struct skl_ddb_allocation ddb;
1853 };
1854
1855 struct skl_wm_level {
1856 bool plane_en;
1857 uint16_t plane_res_b;
1858 uint8_t plane_res_l;
1859 };
1860
1861 /* Stores plane specific WM parameters */
1862 struct skl_wm_params {
1863 bool x_tiled, y_tiled;
1864 bool rc_surface;
1865 uint32_t width;
1866 uint8_t cpp;
1867 uint32_t plane_pixel_rate;
1868 uint32_t y_min_scanlines;
1869 uint32_t plane_bytes_per_line;
1870 uint_fixed_16_16_t plane_blocks_per_line;
1871 uint_fixed_16_16_t y_tile_minimum;
1872 uint32_t linetime_us;
1873 };
1874
1875 /*
1876 * This struct helps tracking the state needed for runtime PM, which puts the
1877 * device in PCI D3 state. Notice that when this happens, nothing on the
1878 * graphics device works, even register access, so we don't get interrupts nor
1879 * anything else.
1880 *
1881 * Every piece of our code that needs to actually touch the hardware needs to
1882 * either call intel_runtime_pm_get or call intel_display_power_get with the
1883 * appropriate power domain.
1884 *
1885 * Our driver uses the autosuspend delay feature, which means we'll only really
1886 * suspend if we stay with zero refcount for a certain amount of time. The
1887 * default value is currently very conservative (see intel_runtime_pm_enable), but
1888 * it can be changed with the standard runtime PM files from sysfs.
1889 *
1890 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1891 * goes back to false exactly before we reenable the IRQs. We use this variable
1892 * to check if someone is trying to enable/disable IRQs while they're supposed
1893 * to be disabled. This shouldn't happen and we'll print some error messages in
1894 * case it happens.
1895 *
1896 * For more, read the Documentation/power/runtime_pm.txt.
1897 */
1898 struct i915_runtime_pm {
1899 atomic_t wakeref_count;
1900 bool suspended;
1901 bool irqs_enabled;
1902 };
1903
1904 enum intel_pipe_crc_source {
1905 INTEL_PIPE_CRC_SOURCE_NONE,
1906 INTEL_PIPE_CRC_SOURCE_PLANE1,
1907 INTEL_PIPE_CRC_SOURCE_PLANE2,
1908 INTEL_PIPE_CRC_SOURCE_PF,
1909 INTEL_PIPE_CRC_SOURCE_PIPE,
1910 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1911 INTEL_PIPE_CRC_SOURCE_TV,
1912 INTEL_PIPE_CRC_SOURCE_DP_B,
1913 INTEL_PIPE_CRC_SOURCE_DP_C,
1914 INTEL_PIPE_CRC_SOURCE_DP_D,
1915 INTEL_PIPE_CRC_SOURCE_AUTO,
1916 INTEL_PIPE_CRC_SOURCE_MAX,
1917 };
1918
1919 struct intel_pipe_crc_entry {
1920 uint32_t frame;
1921 uint32_t crc[5];
1922 };
1923
1924 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1925 struct intel_pipe_crc {
1926 spinlock_t lock;
1927 bool opened; /* exclusive access to the result file */
1928 struct intel_pipe_crc_entry *entries;
1929 enum intel_pipe_crc_source source;
1930 int head, tail;
1931 wait_queue_head_t wq;
1932 int skipped;
1933 };
1934
1935 struct i915_frontbuffer_tracking {
1936 spinlock_t lock;
1937
1938 /*
1939 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1940 * scheduled flips.
1941 */
1942 unsigned busy_bits;
1943 unsigned flip_bits;
1944 };
1945
1946 struct i915_wa_reg {
1947 i915_reg_t addr;
1948 u32 value;
1949 /* bitmask representing WA bits */
1950 u32 mask;
1951 };
1952
1953 /*
1954 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1955 * allowing it for RCS as we don't foresee any requirement of having
1956 * a whitelist for other engines. When it is really required for
1957 * other engines then the limit need to be increased.
1958 */
1959 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1960
1961 struct i915_workarounds {
1962 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1963 u32 count;
1964 u32 hw_whitelist_count[I915_NUM_ENGINES];
1965 };
1966
1967 struct i915_virtual_gpu {
1968 bool active;
1969 u32 caps;
1970 };
1971
1972 /* used in computing the new watermarks state */
1973 struct intel_wm_config {
1974 unsigned int num_pipes_active;
1975 bool sprites_enabled;
1976 bool sprites_scaled;
1977 };
1978
1979 struct i915_oa_format {
1980 u32 format;
1981 int size;
1982 };
1983
1984 struct i915_oa_reg {
1985 i915_reg_t addr;
1986 u32 value;
1987 };
1988
1989 struct i915_oa_config {
1990 char uuid[UUID_STRING_LEN + 1];
1991 int id;
1992
1993 const struct i915_oa_reg *mux_regs;
1994 u32 mux_regs_len;
1995 const struct i915_oa_reg *b_counter_regs;
1996 u32 b_counter_regs_len;
1997 const struct i915_oa_reg *flex_regs;
1998 u32 flex_regs_len;
1999
2000 struct attribute_group sysfs_metric;
2001 struct attribute *attrs[2];
2002 struct device_attribute sysfs_metric_id;
2003
2004 atomic_t ref_count;
2005 };
2006
2007 struct i915_perf_stream;
2008
2009 /**
2010 * struct i915_perf_stream_ops - the OPs to support a specific stream type
2011 */
2012 struct i915_perf_stream_ops {
2013 /**
2014 * @enable: Enables the collection of HW samples, either in response to
2015 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
2016 * without `I915_PERF_FLAG_DISABLED`.
2017 */
2018 void (*enable)(struct i915_perf_stream *stream);
2019
2020 /**
2021 * @disable: Disables the collection of HW samples, either in response
2022 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
2023 * the stream.
2024 */
2025 void (*disable)(struct i915_perf_stream *stream);
2026
2027 /**
2028 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
2029 * once there is something ready to read() for the stream
2030 */
2031 void (*poll_wait)(struct i915_perf_stream *stream,
2032 struct file *file,
2033 poll_table *wait);
2034
2035 /**
2036 * @wait_unlocked: For handling a blocking read, wait until there is
2037 * something to ready to read() for the stream. E.g. wait on the same
2038 * wait queue that would be passed to poll_wait().
2039 */
2040 int (*wait_unlocked)(struct i915_perf_stream *stream);
2041
2042 /**
2043 * @read: Copy buffered metrics as records to userspace
2044 * **buf**: the userspace, destination buffer
2045 * **count**: the number of bytes to copy, requested by userspace
2046 * **offset**: zero at the start of the read, updated as the read
2047 * proceeds, it represents how many bytes have been copied so far and
2048 * the buffer offset for copying the next record.
2049 *
2050 * Copy as many buffered i915 perf samples and records for this stream
2051 * to userspace as will fit in the given buffer.
2052 *
2053 * Only write complete records; returning -%ENOSPC if there isn't room
2054 * for a complete record.
2055 *
2056 * Return any error condition that results in a short read such as
2057 * -%ENOSPC or -%EFAULT, even though these may be squashed before
2058 * returning to userspace.
2059 */
2060 int (*read)(struct i915_perf_stream *stream,
2061 char __user *buf,
2062 size_t count,
2063 size_t *offset);
2064
2065 /**
2066 * @destroy: Cleanup any stream specific resources.
2067 *
2068 * The stream will always be disabled before this is called.
2069 */
2070 void (*destroy)(struct i915_perf_stream *stream);
2071 };
2072
2073 /**
2074 * struct i915_perf_stream - state for a single open stream FD
2075 */
2076 struct i915_perf_stream {
2077 /**
2078 * @dev_priv: i915 drm device
2079 */
2080 struct drm_i915_private *dev_priv;
2081
2082 /**
2083 * @link: Links the stream into ``&drm_i915_private->streams``
2084 */
2085 struct list_head link;
2086
2087 /**
2088 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
2089 * properties given when opening a stream, representing the contents
2090 * of a single sample as read() by userspace.
2091 */
2092 u32 sample_flags;
2093
2094 /**
2095 * @sample_size: Considering the configured contents of a sample
2096 * combined with the required header size, this is the total size
2097 * of a single sample record.
2098 */
2099 int sample_size;
2100
2101 /**
2102 * @ctx: %NULL if measuring system-wide across all contexts or a
2103 * specific context that is being monitored.
2104 */
2105 struct i915_gem_context *ctx;
2106
2107 /**
2108 * @enabled: Whether the stream is currently enabled, considering
2109 * whether the stream was opened in a disabled state and based
2110 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
2111 */
2112 bool enabled;
2113
2114 /**
2115 * @ops: The callbacks providing the implementation of this specific
2116 * type of configured stream.
2117 */
2118 const struct i915_perf_stream_ops *ops;
2119
2120 /**
2121 * @oa_config: The OA configuration used by the stream.
2122 */
2123 struct i915_oa_config *oa_config;
2124 };
2125
2126 /**
2127 * struct i915_oa_ops - Gen specific implementation of an OA unit stream
2128 */
2129 struct i915_oa_ops {
2130 /**
2131 * @is_valid_b_counter_reg: Validates register's address for
2132 * programming boolean counters for a particular platform.
2133 */
2134 bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
2135 u32 addr);
2136
2137 /**
2138 * @is_valid_mux_reg: Validates register's address for programming mux
2139 * for a particular platform.
2140 */
2141 bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
2142
2143 /**
2144 * @is_valid_flex_reg: Validates register's address for programming
2145 * flex EU filtering for a particular platform.
2146 */
2147 bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
2148
2149 /**
2150 * @init_oa_buffer: Resets the head and tail pointers of the
2151 * circular buffer for periodic OA reports.
2152 *
2153 * Called when first opening a stream for OA metrics, but also may be
2154 * called in response to an OA buffer overflow or other error
2155 * condition.
2156 *
2157 * Note it may be necessary to clear the full OA buffer here as part of
2158 * maintaining the invariable that new reports must be written to
2159 * zeroed memory for us to be able to reliable detect if an expected
2160 * report has not yet landed in memory. (At least on Haswell the OA
2161 * buffer tail pointer is not synchronized with reports being visible
2162 * to the CPU)
2163 */
2164 void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
2165
2166 /**
2167 * @enable_metric_set: Selects and applies any MUX configuration to set
2168 * up the Boolean and Custom (B/C) counters that are part of the
2169 * counter reports being sampled. May apply system constraints such as
2170 * disabling EU clock gating as required.
2171 */
2172 int (*enable_metric_set)(struct drm_i915_private *dev_priv,
2173 const struct i915_oa_config *oa_config);
2174
2175 /**
2176 * @disable_metric_set: Remove system constraints associated with using
2177 * the OA unit.
2178 */
2179 void (*disable_metric_set)(struct drm_i915_private *dev_priv);
2180
2181 /**
2182 * @oa_enable: Enable periodic sampling
2183 */
2184 void (*oa_enable)(struct drm_i915_private *dev_priv);
2185
2186 /**
2187 * @oa_disable: Disable periodic sampling
2188 */
2189 void (*oa_disable)(struct drm_i915_private *dev_priv);
2190
2191 /**
2192 * @read: Copy data from the circular OA buffer into a given userspace
2193 * buffer.
2194 */
2195 int (*read)(struct i915_perf_stream *stream,
2196 char __user *buf,
2197 size_t count,
2198 size_t *offset);
2199
2200 /**
2201 * @oa_hw_tail_read: read the OA tail pointer register
2202 *
2203 * In particular this enables us to share all the fiddly code for
2204 * handling the OA unit tail pointer race that affects multiple
2205 * generations.
2206 */
2207 u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
2208 };
2209
2210 struct intel_cdclk_state {
2211 unsigned int cdclk, vco, ref;
2212 };
2213
2214 struct drm_i915_private {
2215 struct drm_device drm;
2216
2217 struct kmem_cache *objects;
2218 struct kmem_cache *vmas;
2219 struct kmem_cache *luts;
2220 struct kmem_cache *requests;
2221 struct kmem_cache *dependencies;
2222 struct kmem_cache *priorities;
2223
2224 const struct intel_device_info info;
2225
2226 void __iomem *regs;
2227
2228 struct intel_uncore uncore;
2229
2230 struct i915_virtual_gpu vgpu;
2231
2232 struct intel_gvt *gvt;
2233
2234 struct intel_huc huc;
2235 struct intel_guc guc;
2236
2237 struct intel_csr csr;
2238
2239 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
2240
2241 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
2242 * controller on different i2c buses. */
2243 struct mutex gmbus_mutex;
2244
2245 /**
2246 * Base address of the gmbus and gpio block.
2247 */
2248 uint32_t gpio_mmio_base;
2249
2250 /* MMIO base address for MIPI regs */
2251 uint32_t mipi_mmio_base;
2252
2253 uint32_t psr_mmio_base;
2254
2255 uint32_t pps_mmio_base;
2256
2257 wait_queue_head_t gmbus_wait_queue;
2258
2259 struct pci_dev *bridge_dev;
2260 struct intel_engine_cs *engine[I915_NUM_ENGINES];
2261 /* Context used internally to idle the GPU and setup initial state */
2262 struct i915_gem_context *kernel_context;
2263 /* Context only to be used for injecting preemption commands */
2264 struct i915_gem_context *preempt_context;
2265 struct i915_vma *semaphore;
2266
2267 struct drm_dma_handle *status_page_dmah;
2268 struct resource mch_res;
2269
2270 /* protects the irq masks */
2271 spinlock_t irq_lock;
2272
2273 bool display_irqs_enabled;
2274
2275 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
2276 struct pm_qos_request pm_qos;
2277
2278 /* Sideband mailbox protection */
2279 struct mutex sb_lock;
2280
2281 /** Cached value of IMR to avoid reads in updating the bitfield */
2282 union {
2283 u32 irq_mask;
2284 u32 de_irq_mask[I915_MAX_PIPES];
2285 };
2286 u32 gt_irq_mask;
2287 u32 pm_imr;
2288 u32 pm_ier;
2289 u32 pm_rps_events;
2290 u32 pm_guc_events;
2291 u32 pipestat_irq_mask[I915_MAX_PIPES];
2292
2293 struct i915_hotplug hotplug;
2294 struct intel_fbc fbc;
2295 struct i915_drrs drrs;
2296 struct intel_opregion opregion;
2297 struct intel_vbt_data vbt;
2298
2299 bool preserve_bios_swizzle;
2300
2301 /* overlay */
2302 struct intel_overlay *overlay;
2303
2304 /* backlight registers and fields in struct intel_panel */
2305 struct mutex backlight_lock;
2306
2307 /* LVDS info */
2308 bool no_aux_handshake;
2309
2310 /* protects panel power sequencer state */
2311 struct mutex pps_mutex;
2312
2313 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
2314 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
2315
2316 unsigned int fsb_freq, mem_freq, is_ddr3;
2317 unsigned int skl_preferred_vco_freq;
2318 unsigned int max_cdclk_freq;
2319
2320 unsigned int max_dotclk_freq;
2321 unsigned int rawclk_freq;
2322 unsigned int hpll_freq;
2323 unsigned int czclk_freq;
2324
2325 struct {
2326 /*
2327 * The current logical cdclk state.
2328 * See intel_atomic_state.cdclk.logical
2329 *
2330 * For reading holding any crtc lock is sufficient,
2331 * for writing must hold all of them.
2332 */
2333 struct intel_cdclk_state logical;
2334 /*
2335 * The current actual cdclk state.
2336 * See intel_atomic_state.cdclk.actual
2337 */
2338 struct intel_cdclk_state actual;
2339 /* The current hardware cdclk state */
2340 struct intel_cdclk_state hw;
2341 } cdclk;
2342
2343 /**
2344 * wq - Driver workqueue for GEM.
2345 *
2346 * NOTE: Work items scheduled here are not allowed to grab any modeset
2347 * locks, for otherwise the flushing done in the pageflip code will
2348 * result in deadlocks.
2349 */
2350 struct workqueue_struct *wq;
2351
2352 /* Display functions */
2353 struct drm_i915_display_funcs display;
2354
2355 /* PCH chipset type */
2356 enum intel_pch pch_type;
2357 unsigned short pch_id;
2358
2359 unsigned long quirks;
2360
2361 enum modeset_restore modeset_restore;
2362 struct mutex modeset_restore_lock;
2363 struct drm_atomic_state *modeset_restore_state;
2364 struct drm_modeset_acquire_ctx reset_ctx;
2365
2366 struct list_head vm_list; /* Global list of all address spaces */
2367 struct i915_ggtt ggtt; /* VM representing the global address space */
2368
2369 struct i915_gem_mm mm;
2370 DECLARE_HASHTABLE(mm_structs, 7);
2371 struct mutex mm_lock;
2372
2373 struct intel_ppat ppat;
2374
2375 /* Kernel Modesetting */
2376
2377 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
2378 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
2379
2380 #ifdef CONFIG_DEBUG_FS
2381 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
2382 #endif
2383
2384 /* dpll and cdclk state is protected by connection_mutex */
2385 int num_shared_dpll;
2386 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
2387 const struct intel_dpll_mgr *dpll_mgr;
2388
2389 /*
2390 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
2391 * Must be global rather than per dpll, because on some platforms
2392 * plls share registers.
2393 */
2394 struct mutex dpll_lock;
2395
2396 unsigned int active_crtcs;
2397 /* minimum acceptable cdclk for each pipe */
2398 int min_cdclk[I915_MAX_PIPES];
2399
2400 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
2401
2402 struct i915_workarounds workarounds;
2403
2404 struct i915_frontbuffer_tracking fb_tracking;
2405
2406 struct intel_atomic_helper {
2407 struct llist_head free_list;
2408 struct work_struct free_work;
2409 } atomic_helper;
2410
2411 u16 orig_clock;
2412
2413 bool mchbar_need_disable;
2414
2415 struct intel_l3_parity l3_parity;
2416
2417 /* Cannot be determined by PCIID. You must always read a register. */
2418 u32 edram_cap;
2419
2420 /*
2421 * Protects RPS/RC6 register access and PCU communication.
2422 * Must be taken after struct_mutex if nested. Note that
2423 * this lock may be held for long periods of time when
2424 * talking to hw - so only take it when talking to hw!
2425 */
2426 struct mutex pcu_lock;
2427
2428 /* gen6+ GT PM state */
2429 struct intel_gen6_power_mgmt gt_pm;
2430
2431 /* ilk-only ips/rps state. Everything in here is protected by the global
2432 * mchdev_lock in intel_pm.c */
2433 struct intel_ilk_power_mgmt ips;
2434
2435 struct i915_power_domains power_domains;
2436
2437 struct i915_psr psr;
2438
2439 struct i915_gpu_error gpu_error;
2440
2441 struct drm_i915_gem_object *vlv_pctx;
2442
2443 /* list of fbdev register on this device */
2444 struct intel_fbdev *fbdev;
2445 struct work_struct fbdev_suspend_work;
2446
2447 struct drm_property *broadcast_rgb_property;
2448 struct drm_property *force_audio_property;
2449
2450 /* hda/i915 audio component */
2451 struct i915_audio_component *audio_component;
2452 bool audio_component_registered;
2453 /**
2454 * av_mutex - mutex for audio/video sync
2455 *
2456 */
2457 struct mutex av_mutex;
2458
2459 struct {
2460 struct list_head list;
2461 struct llist_head free_list;
2462 struct work_struct free_work;
2463
2464 /* The hw wants to have a stable context identifier for the
2465 * lifetime of the context (for OA, PASID, faults, etc).
2466 * This is limited in execlists to 21 bits.
2467 */
2468 struct ida hw_ida;
2469 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
2470 } contexts;
2471
2472 u32 fdi_rx_config;
2473
2474 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
2475 u32 chv_phy_control;
2476 /*
2477 * Shadows for CHV DPLL_MD regs to keep the state
2478 * checker somewhat working in the presence hardware
2479 * crappiness (can't read out DPLL_MD for pipes B & C).
2480 */
2481 u32 chv_dpll_md[I915_MAX_PIPES];
2482 u32 bxt_phy_grc;
2483
2484 u32 suspend_count;
2485 bool suspended_to_idle;
2486 struct i915_suspend_saved_registers regfile;
2487 struct vlv_s0ix_state vlv_s0ix_state;
2488
2489 enum {
2490 I915_SAGV_UNKNOWN = 0,
2491 I915_SAGV_DISABLED,
2492 I915_SAGV_ENABLED,
2493 I915_SAGV_NOT_CONTROLLED
2494 } sagv_status;
2495
2496 struct {
2497 /*
2498 * Raw watermark latency values:
2499 * in 0.1us units for WM0,
2500 * in 0.5us units for WM1+.
2501 */
2502 /* primary */
2503 uint16_t pri_latency[5];
2504 /* sprite */
2505 uint16_t spr_latency[5];
2506 /* cursor */
2507 uint16_t cur_latency[5];
2508 /*
2509 * Raw watermark memory latency values
2510 * for SKL for all 8 levels
2511 * in 1us units.
2512 */
2513 uint16_t skl_latency[8];
2514
2515 /* current hardware state */
2516 union {
2517 struct ilk_wm_values hw;
2518 struct skl_wm_values skl_hw;
2519 struct vlv_wm_values vlv;
2520 struct g4x_wm_values g4x;
2521 };
2522
2523 uint8_t max_level;
2524
2525 /*
2526 * Should be held around atomic WM register writing; also
2527 * protects * intel_crtc->wm.active and
2528 * cstate->wm.need_postvbl_update.
2529 */
2530 struct mutex wm_mutex;
2531
2532 /*
2533 * Set during HW readout of watermarks/DDB. Some platforms
2534 * need to know when we're still using BIOS-provided values
2535 * (which we don't fully trust).
2536 */
2537 bool distrust_bios_wm;
2538 } wm;
2539
2540 struct i915_runtime_pm runtime_pm;
2541
2542 struct {
2543 bool initialized;
2544
2545 struct kobject *metrics_kobj;
2546 struct ctl_table_header *sysctl_header;
2547
2548 /*
2549 * Lock associated with adding/modifying/removing OA configs
2550 * in dev_priv->perf.metrics_idr.
2551 */
2552 struct mutex metrics_lock;
2553
2554 /*
2555 * List of dynamic configurations, you need to hold
2556 * dev_priv->perf.metrics_lock to access it.
2557 */
2558 struct idr metrics_idr;
2559
2560 /*
2561 * Lock associated with anything below within this structure
2562 * except exclusive_stream.
2563 */
2564 struct mutex lock;
2565 struct list_head streams;
2566
2567 struct {
2568 /*
2569 * The stream currently using the OA unit. If accessed
2570 * outside a syscall associated to its file
2571 * descriptor, you need to hold
2572 * dev_priv->drm.struct_mutex.
2573 */
2574 struct i915_perf_stream *exclusive_stream;
2575
2576 u32 specific_ctx_id;
2577
2578 struct hrtimer poll_check_timer;
2579 wait_queue_head_t poll_wq;
2580 bool pollin;
2581
2582 /**
2583 * For rate limiting any notifications of spurious
2584 * invalid OA reports
2585 */
2586 struct ratelimit_state spurious_report_rs;
2587
2588 bool periodic;
2589 int period_exponent;
2590 int timestamp_frequency;
2591
2592 struct i915_oa_config test_config;
2593
2594 struct {
2595 struct i915_vma *vma;
2596 u8 *vaddr;
2597 u32 last_ctx_id;
2598 int format;
2599 int format_size;
2600
2601 /**
2602 * Locks reads and writes to all head/tail state
2603 *
2604 * Consider: the head and tail pointer state
2605 * needs to be read consistently from a hrtimer
2606 * callback (atomic context) and read() fop
2607 * (user context) with tail pointer updates
2608 * happening in atomic context and head updates
2609 * in user context and the (unlikely)
2610 * possibility of read() errors needing to
2611 * reset all head/tail state.
2612 *
2613 * Note: Contention or performance aren't
2614 * currently a significant concern here
2615 * considering the relatively low frequency of
2616 * hrtimer callbacks (5ms period) and that
2617 * reads typically only happen in response to a
2618 * hrtimer event and likely complete before the
2619 * next callback.
2620 *
2621 * Note: This lock is not held *while* reading
2622 * and copying data to userspace so the value
2623 * of head observed in htrimer callbacks won't
2624 * represent any partial consumption of data.
2625 */
2626 spinlock_t ptr_lock;
2627
2628 /**
2629 * One 'aging' tail pointer and one 'aged'
2630 * tail pointer ready to used for reading.
2631 *
2632 * Initial values of 0xffffffff are invalid
2633 * and imply that an update is required
2634 * (and should be ignored by an attempted
2635 * read)
2636 */
2637 struct {
2638 u32 offset;
2639 } tails[2];
2640
2641 /**
2642 * Index for the aged tail ready to read()
2643 * data up to.
2644 */
2645 unsigned int aged_tail_idx;
2646
2647 /**
2648 * A monotonic timestamp for when the current
2649 * aging tail pointer was read; used to
2650 * determine when it is old enough to trust.
2651 */
2652 u64 aging_timestamp;
2653
2654 /**
2655 * Although we can always read back the head
2656 * pointer register, we prefer to avoid
2657 * trusting the HW state, just to avoid any
2658 * risk that some hardware condition could
2659 * somehow bump the head pointer unpredictably
2660 * and cause us to forward the wrong OA buffer
2661 * data to userspace.
2662 */
2663 u32 head;
2664 } oa_buffer;
2665
2666 u32 gen7_latched_oastatus1;
2667 u32 ctx_oactxctrl_offset;
2668 u32 ctx_flexeu0_offset;
2669
2670 /**
2671 * The RPT_ID/reason field for Gen8+ includes a bit
2672 * to determine if the CTX ID in the report is valid
2673 * but the specific bit differs between Gen 8 and 9
2674 */
2675 u32 gen8_valid_ctx_bit;
2676
2677 struct i915_oa_ops ops;
2678 const struct i915_oa_format *oa_formats;
2679 } oa;
2680 } perf;
2681
2682 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2683 struct {
2684 void (*resume)(struct drm_i915_private *);
2685 void (*cleanup_engine)(struct intel_engine_cs *engine);
2686
2687 struct list_head timelines;
2688 struct i915_gem_timeline global_timeline;
2689 u32 active_requests;
2690
2691 /**
2692 * Is the GPU currently considered idle, or busy executing
2693 * userspace requests? Whilst idle, we allow runtime power
2694 * management to power down the hardware and display clocks.
2695 * In order to reduce the effect on performance, there
2696 * is a slight delay before we do so.
2697 */
2698 bool awake;
2699
2700 /**
2701 * We leave the user IRQ off as much as possible,
2702 * but this means that requests will finish and never
2703 * be retired once the system goes idle. Set a timer to
2704 * fire periodically while the ring is running. When it
2705 * fires, go retire requests.
2706 */
2707 struct delayed_work retire_work;
2708
2709 /**
2710 * When we detect an idle GPU, we want to turn on
2711 * powersaving features. So once we see that there
2712 * are no more requests outstanding and no more
2713 * arrive within a small period of time, we fire
2714 * off the idle_work.
2715 */
2716 struct delayed_work idle_work;
2717
2718 ktime_t last_init_time;
2719 } gt;
2720
2721 /* perform PHY state sanity checks? */
2722 bool chv_phy_assert[2];
2723
2724 bool ipc_enabled;
2725
2726 /* Used to save the pipe-to-encoder mapping for audio */
2727 struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2728
2729 /* necessary resource sharing with HDMI LPE audio driver. */
2730 struct {
2731 struct platform_device *platdev;
2732 int irq;
2733 } lpe_audio;
2734
2735 /*
2736 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2737 * will be rejected. Instead look for a better place.
2738 */
2739 };
2740
2741 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2742 {
2743 return container_of(dev, struct drm_i915_private, drm);
2744 }
2745
2746 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2747 {
2748 return to_i915(dev_get_drvdata(kdev));
2749 }
2750
2751 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2752 {
2753 return container_of(guc, struct drm_i915_private, guc);
2754 }
2755
2756 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2757 {
2758 return container_of(huc, struct drm_i915_private, huc);
2759 }
2760
2761 /* Simple iterator over all initialised engines */
2762 #define for_each_engine(engine__, dev_priv__, id__) \
2763 for ((id__) = 0; \
2764 (id__) < I915_NUM_ENGINES; \
2765 (id__)++) \
2766 for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2767
2768 /* Iterator over subset of engines selected by mask */
2769 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2770 for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask; \
2771 tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2772
2773 enum hdmi_force_audio {
2774 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2775 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2776 HDMI_AUDIO_AUTO, /* trust EDID */
2777 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2778 };
2779
2780 #define I915_GTT_OFFSET_NONE ((u32)-1)
2781
2782 /*
2783 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2784 * considered to be the frontbuffer for the given plane interface-wise. This
2785 * doesn't mean that the hw necessarily already scans it out, but that any
2786 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2787 *
2788 * We have one bit per pipe and per scanout plane type.
2789 */
2790 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2791 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2792 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2793 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2794 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2795 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2796 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2797 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2798 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2799 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2800 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2801 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2802
2803 /*
2804 * Optimised SGL iterator for GEM objects
2805 */
2806 static __always_inline struct sgt_iter {
2807 struct scatterlist *sgp;
2808 union {
2809 unsigned long pfn;
2810 dma_addr_t dma;
2811 };
2812 unsigned int curr;
2813 unsigned int max;
2814 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2815 struct sgt_iter s = { .sgp = sgl };
2816
2817 if (s.sgp) {
2818 s.max = s.curr = s.sgp->offset;
2819 s.max += s.sgp->length;
2820 if (dma)
2821 s.dma = sg_dma_address(s.sgp);
2822 else
2823 s.pfn = page_to_pfn(sg_page(s.sgp));
2824 }
2825
2826 return s;
2827 }
2828
2829 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2830 {
2831 ++sg;
2832 if (unlikely(sg_is_chain(sg)))
2833 sg = sg_chain_ptr(sg);
2834 return sg;
2835 }
2836
2837 /**
2838 * __sg_next - return the next scatterlist entry in a list
2839 * @sg: The current sg entry
2840 *
2841 * Description:
2842 * If the entry is the last, return NULL; otherwise, step to the next
2843 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2844 * otherwise just return the pointer to the current element.
2845 **/
2846 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2847 {
2848 #ifdef CONFIG_DEBUG_SG
2849 BUG_ON(sg->sg_magic != SG_MAGIC);
2850 #endif
2851 return sg_is_last(sg) ? NULL : ____sg_next(sg);
2852 }
2853
2854 /**
2855 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2856 * @__dmap: DMA address (output)
2857 * @__iter: 'struct sgt_iter' (iterator state, internal)
2858 * @__sgt: sg_table to iterate over (input)
2859 */
2860 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2861 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2862 ((__dmap) = (__iter).dma + (__iter).curr); \
2863 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \
2864 (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0)
2865
2866 /**
2867 * for_each_sgt_page - iterate over the pages of the given sg_table
2868 * @__pp: page pointer (output)
2869 * @__iter: 'struct sgt_iter' (iterator state, internal)
2870 * @__sgt: sg_table to iterate over (input)
2871 */
2872 #define for_each_sgt_page(__pp, __iter, __sgt) \
2873 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2874 ((__pp) = (__iter).pfn == 0 ? NULL : \
2875 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2876 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \
2877 (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0)
2878
2879 static inline unsigned int i915_sg_page_sizes(struct scatterlist *sg)
2880 {
2881 unsigned int page_sizes;
2882
2883 page_sizes = 0;
2884 while (sg) {
2885 GEM_BUG_ON(sg->offset);
2886 GEM_BUG_ON(!IS_ALIGNED(sg->length, PAGE_SIZE));
2887 page_sizes |= sg->length;
2888 sg = __sg_next(sg);
2889 }
2890
2891 return page_sizes;
2892 }
2893
2894 static inline unsigned int i915_sg_segment_size(void)
2895 {
2896 unsigned int size = swiotlb_max_segment();
2897
2898 if (size == 0)
2899 return SCATTERLIST_MAX_SEGMENT;
2900
2901 size = rounddown(size, PAGE_SIZE);
2902 /* swiotlb_max_segment_size can return 1 byte when it means one page. */
2903 if (size < PAGE_SIZE)
2904 size = PAGE_SIZE;
2905
2906 return size;
2907 }
2908
2909 static inline const struct intel_device_info *
2910 intel_info(const struct drm_i915_private *dev_priv)
2911 {
2912 return &dev_priv->info;
2913 }
2914
2915 #define INTEL_INFO(dev_priv) intel_info((dev_priv))
2916
2917 #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen)
2918 #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id)
2919
2920 #define REVID_FOREVER 0xff
2921 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision)
2922
2923 #define GEN_FOREVER (0)
2924
2925 #define INTEL_GEN_MASK(s, e) ( \
2926 BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \
2927 BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \
2928 GENMASK((e) != GEN_FOREVER ? (e) - 1 : BITS_PER_LONG - 1, \
2929 (s) != GEN_FOREVER ? (s) - 1 : 0) \
2930 )
2931
2932 /*
2933 * Returns true if Gen is in inclusive range [Start, End].
2934 *
2935 * Use GEN_FOREVER for unbound start and or end.
2936 */
2937 #define IS_GEN(dev_priv, s, e) \
2938 (!!((dev_priv)->info.gen_mask & INTEL_GEN_MASK((s), (e))))
2939
2940 /*
2941 * Return true if revision is in range [since,until] inclusive.
2942 *
2943 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2944 */
2945 #define IS_REVID(p, since, until) \
2946 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2947
2948 #define IS_PLATFORM(dev_priv, p) ((dev_priv)->info.platform_mask & BIT(p))
2949
2950 #define IS_I830(dev_priv) IS_PLATFORM(dev_priv, INTEL_I830)
2951 #define IS_I845G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I845G)
2952 #define IS_I85X(dev_priv) IS_PLATFORM(dev_priv, INTEL_I85X)
2953 #define IS_I865G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I865G)
2954 #define IS_I915G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915G)
2955 #define IS_I915GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915GM)
2956 #define IS_I945G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945G)
2957 #define IS_I945GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945GM)
2958 #define IS_I965G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965G)
2959 #define IS_I965GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965GM)
2960 #define IS_G45(dev_priv) IS_PLATFORM(dev_priv, INTEL_G45)
2961 #define IS_GM45(dev_priv) IS_PLATFORM(dev_priv, INTEL_GM45)
2962 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv))
2963 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001)
2964 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011)
2965 #define IS_PINEVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_PINEVIEW)
2966 #define IS_G33(dev_priv) IS_PLATFORM(dev_priv, INTEL_G33)
2967 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046)
2968 #define IS_IVYBRIDGE(dev_priv) IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE)
2969 #define IS_IVB_GT1(dev_priv) (IS_IVYBRIDGE(dev_priv) && \
2970 (dev_priv)->info.gt == 1)
2971 #define IS_VALLEYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW)
2972 #define IS_CHERRYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW)
2973 #define IS_HASWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_HASWELL)
2974 #define IS_BROADWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROADWELL)
2975 #define IS_SKYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_SKYLAKE)
2976 #define IS_BROXTON(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROXTON)
2977 #define IS_KABYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_KABYLAKE)
2978 #define IS_GEMINILAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_GEMINILAKE)
2979 #define IS_COFFEELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_COFFEELAKE)
2980 #define IS_CANNONLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_CANNONLAKE)
2981 #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile)
2982 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2983 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2984 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \
2985 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \
2986 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \
2987 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2988 /* ULX machines are also considered ULT. */
2989 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \
2990 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2991 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \
2992 (dev_priv)->info.gt == 3)
2993 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \
2994 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2995 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \
2996 (dev_priv)->info.gt == 3)
2997 /* ULX machines are also considered ULT. */
2998 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \
2999 INTEL_DEVID(dev_priv) == 0x0A1E)
3000 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \
3001 INTEL_DEVID(dev_priv) == 0x1913 || \
3002 INTEL_DEVID(dev_priv) == 0x1916 || \
3003 INTEL_DEVID(dev_priv) == 0x1921 || \
3004 INTEL_DEVID(dev_priv) == 0x1926)
3005 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \
3006 INTEL_DEVID(dev_priv) == 0x1915 || \
3007 INTEL_DEVID(dev_priv) == 0x191E)
3008 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \
3009 INTEL_DEVID(dev_priv) == 0x5913 || \
3010 INTEL_DEVID(dev_priv) == 0x5916 || \
3011 INTEL_DEVID(dev_priv) == 0x5921 || \
3012 INTEL_DEVID(dev_priv) == 0x5926)
3013 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \
3014 INTEL_DEVID(dev_priv) == 0x5915 || \
3015 INTEL_DEVID(dev_priv) == 0x591E)
3016 #define IS_SKL_GT2(dev_priv) (IS_SKYLAKE(dev_priv) && \
3017 (dev_priv)->info.gt == 2)
3018 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \
3019 (dev_priv)->info.gt == 3)
3020 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \
3021 (dev_priv)->info.gt == 4)
3022 #define IS_KBL_GT2(dev_priv) (IS_KABYLAKE(dev_priv) && \
3023 (dev_priv)->info.gt == 2)
3024 #define IS_KBL_GT3(dev_priv) (IS_KABYLAKE(dev_priv) && \
3025 (dev_priv)->info.gt == 3)
3026 #define IS_CFL_ULT(dev_priv) (IS_COFFEELAKE(dev_priv) && \
3027 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
3028 #define IS_CFL_GT2(dev_priv) (IS_COFFEELAKE(dev_priv) && \
3029 (dev_priv)->info.gt == 2)
3030
3031 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
3032
3033 #define SKL_REVID_A0 0x0
3034 #define SKL_REVID_B0 0x1
3035 #define SKL_REVID_C0 0x2
3036 #define SKL_REVID_D0 0x3
3037 #define SKL_REVID_E0 0x4
3038 #define SKL_REVID_F0 0x5
3039 #define SKL_REVID_G0 0x6
3040 #define SKL_REVID_H0 0x7
3041
3042 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
3043
3044 #define BXT_REVID_A0 0x0
3045 #define BXT_REVID_A1 0x1
3046 #define BXT_REVID_B0 0x3
3047 #define BXT_REVID_B_LAST 0x8
3048 #define BXT_REVID_C0 0x9
3049
3050 #define IS_BXT_REVID(dev_priv, since, until) \
3051 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
3052
3053 #define KBL_REVID_A0 0x0
3054 #define KBL_REVID_B0 0x1
3055 #define KBL_REVID_C0 0x2
3056 #define KBL_REVID_D0 0x3
3057 #define KBL_REVID_E0 0x4
3058
3059 #define IS_KBL_REVID(dev_priv, since, until) \
3060 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
3061
3062 #define GLK_REVID_A0 0x0
3063 #define GLK_REVID_A1 0x1
3064
3065 #define IS_GLK_REVID(dev_priv, since, until) \
3066 (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
3067
3068 #define CNL_REVID_A0 0x0
3069 #define CNL_REVID_B0 0x1
3070
3071 #define IS_CNL_REVID(p, since, until) \
3072 (IS_CANNONLAKE(p) && IS_REVID(p, since, until))
3073
3074 /*
3075 * The genX designation typically refers to the render engine, so render
3076 * capability related checks should use IS_GEN, while display and other checks
3077 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
3078 * chips, etc.).
3079 */
3080 #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1)))
3081 #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2)))
3082 #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3)))
3083 #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4)))
3084 #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5)))
3085 #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6)))
3086 #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7)))
3087 #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8)))
3088 #define IS_GEN10(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(9)))
3089
3090 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp)
3091 #define IS_GEN9_LP(dev_priv) (IS_GEN9(dev_priv) && IS_LP(dev_priv))
3092 #define IS_GEN9_BC(dev_priv) (IS_GEN9(dev_priv) && !IS_LP(dev_priv))
3093
3094 #define ENGINE_MASK(id) BIT(id)
3095 #define RENDER_RING ENGINE_MASK(RCS)
3096 #define BSD_RING ENGINE_MASK(VCS)
3097 #define BLT_RING ENGINE_MASK(BCS)
3098 #define VEBOX_RING ENGINE_MASK(VECS)
3099 #define BSD2_RING ENGINE_MASK(VCS2)
3100 #define ALL_ENGINES (~0)
3101
3102 #define HAS_ENGINE(dev_priv, id) \
3103 (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
3104
3105 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
3106 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
3107 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
3108 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
3109
3110 #define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc)
3111 #define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop)
3112 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED))
3113 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \
3114 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
3115
3116 #define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical)
3117
3118 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
3119 ((dev_priv)->info.has_logical_ring_contexts)
3120 #define USES_PPGTT(dev_priv) (i915_modparams.enable_ppgtt)
3121 #define USES_FULL_PPGTT(dev_priv) (i915_modparams.enable_ppgtt >= 2)
3122 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915_modparams.enable_ppgtt == 3)
3123 #define HAS_PAGE_SIZES(dev_priv, sizes) ({ \
3124 GEM_BUG_ON((sizes) == 0); \
3125 ((sizes) & ~(dev_priv)->info.page_sizes) == 0; \
3126 })
3127
3128 #define HAS_OVERLAY(dev_priv) ((dev_priv)->info.has_overlay)
3129 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
3130 ((dev_priv)->info.overlay_needs_physical)
3131
3132 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
3133 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv))
3134
3135 /* WaRsDisableCoarsePowerGating:skl,bxt */
3136 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
3137 (IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
3138
3139 /*
3140 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
3141 * even when in MSI mode. This results in spurious interrupt warnings if the
3142 * legacy irq no. is shared with another device. The kernel then disables that
3143 * interrupt source and so prevents the other device from working properly.
3144 *
3145 * Since we don't enable MSI anymore on gen4, we can always use GMBUS/AUX
3146 * interrupts.
3147 */
3148 #define HAS_AUX_IRQ(dev_priv) true
3149 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4)
3150
3151 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
3152 * rows, which changed the alignment requirements and fence programming.
3153 */
3154 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
3155 !(IS_I915G(dev_priv) || \
3156 IS_I915GM(dev_priv)))
3157 #define SUPPORTS_TV(dev_priv) ((dev_priv)->info.supports_tv)
3158 #define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.has_hotplug)
3159
3160 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2)
3161 #define HAS_PIPE_CXSR(dev_priv) ((dev_priv)->info.has_pipe_cxsr)
3162 #define HAS_FBC(dev_priv) ((dev_priv)->info.has_fbc)
3163 #define HAS_CUR_FBC(dev_priv) (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_INFO(dev_priv)->gen >= 7)
3164
3165 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
3166
3167 #define HAS_DP_MST(dev_priv) ((dev_priv)->info.has_dp_mst)
3168
3169 #define HAS_DDI(dev_priv) ((dev_priv)->info.has_ddi)
3170 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
3171 #define HAS_PSR(dev_priv) ((dev_priv)->info.has_psr)
3172 #define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6)
3173 #define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p)
3174
3175 #define HAS_CSR(dev_priv) ((dev_priv)->info.has_csr)
3176
3177 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
3178 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
3179
3180 #define HAS_IPC(dev_priv) ((dev_priv)->info.has_ipc)
3181
3182 /*
3183 * For now, anything with a GuC requires uCode loading, and then supports
3184 * command submission once loaded. But these are logically independent
3185 * properties, so we have separate macros to test them.
3186 */
3187 #define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc)
3188 #define HAS_GUC_CT(dev_priv) ((dev_priv)->info.has_guc_ct)
3189 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3190 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv))
3191 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3192
3193 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
3194
3195 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu)
3196
3197 #define INTEL_PCH_DEVICE_ID_MASK 0xff80
3198 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
3199 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
3200 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
3201 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
3202 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
3203 #define INTEL_PCH_WPT_DEVICE_ID_TYPE 0x8c80
3204 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE 0x9c80
3205 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
3206 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
3207 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA280
3208 #define INTEL_PCH_CNP_DEVICE_ID_TYPE 0xA300
3209 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE 0x9D80
3210 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
3211 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
3212 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
3213
3214 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
3215 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
3216 #define HAS_PCH_CNP_LP(dev_priv) \
3217 ((dev_priv)->pch_id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
3218 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
3219 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
3220 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
3221 #define HAS_PCH_LPT_LP(dev_priv) \
3222 ((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
3223 (dev_priv)->pch_id == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
3224 #define HAS_PCH_LPT_H(dev_priv) \
3225 ((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
3226 (dev_priv)->pch_id == INTEL_PCH_WPT_DEVICE_ID_TYPE)
3227 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
3228 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
3229 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
3230 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
3231
3232 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
3233
3234 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
3235
3236 /* DPF == dynamic parity feature */
3237 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
3238 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
3239 2 : HAS_L3_DPF(dev_priv))
3240
3241 #define GT_FREQUENCY_MULTIPLIER 50
3242 #define GEN9_FREQ_SCALER 3
3243
3244 #include "i915_trace.h"
3245
3246 static inline bool intel_vtd_active(void)
3247 {
3248 #ifdef CONFIG_INTEL_IOMMU
3249 if (intel_iommu_gfx_mapped)
3250 return true;
3251 #endif
3252 return false;
3253 }
3254
3255 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
3256 {
3257 return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
3258 }
3259
3260 static inline bool
3261 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
3262 {
3263 return IS_BROXTON(dev_priv) && intel_vtd_active();
3264 }
3265
3266 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
3267 int enable_ppgtt);
3268
3269 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
3270
3271 /* i915_drv.c */
3272 void __printf(3, 4)
3273 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
3274 const char *fmt, ...);
3275
3276 #define i915_report_error(dev_priv, fmt, ...) \
3277 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
3278
3279 #ifdef CONFIG_COMPAT
3280 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
3281 unsigned long arg);
3282 #else
3283 #define i915_compat_ioctl NULL
3284 #endif
3285 extern const struct dev_pm_ops i915_pm_ops;
3286
3287 extern int i915_driver_load(struct pci_dev *pdev,
3288 const struct pci_device_id *ent);
3289 extern void i915_driver_unload(struct drm_device *dev);
3290 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
3291 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
3292
3293 #define I915_RESET_QUIET BIT(0)
3294 extern void i915_reset(struct drm_i915_private *i915, unsigned int flags);
3295 extern int i915_reset_engine(struct intel_engine_cs *engine,
3296 unsigned int flags);
3297
3298 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
3299 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
3300 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
3301 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
3302 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
3303 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
3304 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
3305 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
3306 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
3307
3308 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
3309 int intel_engines_init(struct drm_i915_private *dev_priv);
3310
3311 /* intel_hotplug.c */
3312 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
3313 u32 pin_mask, u32 long_mask);
3314 void intel_hpd_init(struct drm_i915_private *dev_priv);
3315 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
3316 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
3317 enum port intel_hpd_pin_to_port(enum hpd_pin pin);
3318 enum hpd_pin intel_hpd_pin(enum port port);
3319 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3320 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3321
3322 /* i915_irq.c */
3323 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
3324 {
3325 unsigned long delay;
3326
3327 if (unlikely(!i915_modparams.enable_hangcheck))
3328 return;
3329
3330 /* Don't continually defer the hangcheck so that it is always run at
3331 * least once after work has been scheduled on any ring. Otherwise,
3332 * we will ignore a hung ring if a second ring is kept busy.
3333 */
3334
3335 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
3336 queue_delayed_work(system_long_wq,
3337 &dev_priv->gpu_error.hangcheck_work, delay);
3338 }
3339
3340 __printf(3, 4)
3341 void i915_handle_error(struct drm_i915_private *dev_priv,
3342 u32 engine_mask,
3343 const char *fmt, ...);
3344
3345 extern void intel_irq_init(struct drm_i915_private *dev_priv);
3346 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
3347 int intel_irq_install(struct drm_i915_private *dev_priv);
3348 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
3349
3350 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3351 {
3352 return dev_priv->gvt;
3353 }
3354
3355 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3356 {
3357 return dev_priv->vgpu.active;
3358 }
3359
3360 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
3361 enum pipe pipe);
3362 void
3363 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3364 u32 status_mask);
3365
3366 void
3367 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3368 u32 status_mask);
3369
3370 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3371 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3372 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3373 uint32_t mask,
3374 uint32_t bits);
3375 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3376 uint32_t interrupt_mask,
3377 uint32_t enabled_irq_mask);
3378 static inline void
3379 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3380 {
3381 ilk_update_display_irq(dev_priv, bits, bits);
3382 }
3383 static inline void
3384 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3385 {
3386 ilk_update_display_irq(dev_priv, bits, 0);
3387 }
3388 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3389 enum pipe pipe,
3390 uint32_t interrupt_mask,
3391 uint32_t enabled_irq_mask);
3392 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3393 enum pipe pipe, uint32_t bits)
3394 {
3395 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3396 }
3397 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3398 enum pipe pipe, uint32_t bits)
3399 {
3400 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3401 }
3402 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3403 uint32_t interrupt_mask,
3404 uint32_t enabled_irq_mask);
3405 static inline void
3406 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3407 {
3408 ibx_display_interrupt_update(dev_priv, bits, bits);
3409 }
3410 static inline void
3411 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3412 {
3413 ibx_display_interrupt_update(dev_priv, bits, 0);
3414 }
3415
3416 /* i915_gem.c */
3417 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3418 struct drm_file *file_priv);
3419 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3420 struct drm_file *file_priv);
3421 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3422 struct drm_file *file_priv);
3423 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3424 struct drm_file *file_priv);
3425 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3426 struct drm_file *file_priv);
3427 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3428 struct drm_file *file_priv);
3429 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3430 struct drm_file *file_priv);
3431 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3432 struct drm_file *file_priv);
3433 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3434 struct drm_file *file_priv);
3435 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3436 struct drm_file *file_priv);
3437 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3438 struct drm_file *file);
3439 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3440 struct drm_file *file);
3441 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3442 struct drm_file *file_priv);
3443 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3444 struct drm_file *file_priv);
3445 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
3446 struct drm_file *file_priv);
3447 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
3448 struct drm_file *file_priv);
3449 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3450 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
3451 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3452 struct drm_file *file);
3453 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3454 struct drm_file *file_priv);
3455 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3456 struct drm_file *file_priv);
3457 void i915_gem_sanitize(struct drm_i915_private *i915);
3458 int i915_gem_load_init(struct drm_i915_private *dev_priv);
3459 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv);
3460 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3461 int i915_gem_freeze(struct drm_i915_private *dev_priv);
3462 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3463
3464 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
3465 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3466 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3467 const struct drm_i915_gem_object_ops *ops);
3468 struct drm_i915_gem_object *
3469 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
3470 struct drm_i915_gem_object *
3471 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
3472 const void *data, size_t size);
3473 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3474 void i915_gem_free_object(struct drm_gem_object *obj);
3475
3476 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
3477 {
3478 /* A single pass should suffice to release all the freed objects (along
3479 * most call paths) , but be a little more paranoid in that freeing
3480 * the objects does take a little amount of time, during which the rcu
3481 * callbacks could have added new objects into the freed list, and
3482 * armed the work again.
3483 */
3484 do {
3485 rcu_barrier();
3486 } while (flush_work(&i915->mm.free_work));
3487 }
3488
3489 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
3490 {
3491 /*
3492 * Similar to objects above (see i915_gem_drain_freed-objects), in
3493 * general we have workers that are armed by RCU and then rearm
3494 * themselves in their callbacks. To be paranoid, we need to
3495 * drain the workqueue a second time after waiting for the RCU
3496 * grace period so that we catch work queued via RCU from the first
3497 * pass. As neither drain_workqueue() nor flush_workqueue() report
3498 * a result, we make an assumption that we only don't require more
3499 * than 2 passes to catch all recursive RCU delayed work.
3500 *
3501 */
3502 int pass = 2;
3503 do {
3504 rcu_barrier();
3505 drain_workqueue(i915->wq);
3506 } while (--pass);
3507 }
3508
3509 struct i915_vma * __must_check
3510 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3511 const struct i915_ggtt_view *view,
3512 u64 size,
3513 u64 alignment,
3514 u64 flags);
3515
3516 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3517 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3518
3519 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3520
3521 static inline int __sg_page_count(const struct scatterlist *sg)
3522 {
3523 return sg->length >> PAGE_SHIFT;
3524 }
3525
3526 struct scatterlist *
3527 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3528 unsigned int n, unsigned int *offset);
3529
3530 struct page *
3531 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3532 unsigned int n);
3533
3534 struct page *
3535 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3536 unsigned int n);
3537
3538 dma_addr_t
3539 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3540 unsigned long n);
3541
3542 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3543 struct sg_table *pages,
3544 unsigned int sg_page_sizes);
3545 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3546
3547 static inline int __must_check
3548 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3549 {
3550 might_lock(&obj->mm.lock);
3551
3552 if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3553 return 0;
3554
3555 return __i915_gem_object_get_pages(obj);
3556 }
3557
3558 static inline void
3559 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3560 {
3561 GEM_BUG_ON(!obj->mm.pages);
3562
3563 atomic_inc(&obj->mm.pages_pin_count);
3564 }
3565
3566 static inline bool
3567 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3568 {
3569 return atomic_read(&obj->mm.pages_pin_count);
3570 }
3571
3572 static inline void
3573 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3574 {
3575 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3576 GEM_BUG_ON(!obj->mm.pages);
3577
3578 atomic_dec(&obj->mm.pages_pin_count);
3579 }
3580
3581 static inline void
3582 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3583 {
3584 __i915_gem_object_unpin_pages(obj);
3585 }
3586
3587 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3588 I915_MM_NORMAL = 0,
3589 I915_MM_SHRINKER
3590 };
3591
3592 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3593 enum i915_mm_subclass subclass);
3594 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3595
3596 enum i915_map_type {
3597 I915_MAP_WB = 0,
3598 I915_MAP_WC,
3599 #define I915_MAP_OVERRIDE BIT(31)
3600 I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
3601 I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
3602 };
3603
3604 /**
3605 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3606 * @obj: the object to map into kernel address space
3607 * @type: the type of mapping, used to select pgprot_t
3608 *
3609 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3610 * pages and then returns a contiguous mapping of the backing storage into
3611 * the kernel address space. Based on the @type of mapping, the PTE will be
3612 * set to either WriteBack or WriteCombine (via pgprot_t).
3613 *
3614 * The caller is responsible for calling i915_gem_object_unpin_map() when the
3615 * mapping is no longer required.
3616 *
3617 * Returns the pointer through which to access the mapped object, or an
3618 * ERR_PTR() on error.
3619 */
3620 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3621 enum i915_map_type type);
3622
3623 /**
3624 * i915_gem_object_unpin_map - releases an earlier mapping
3625 * @obj: the object to unmap
3626 *
3627 * After pinning the object and mapping its pages, once you are finished
3628 * with your access, call i915_gem_object_unpin_map() to release the pin
3629 * upon the mapping. Once the pin count reaches zero, that mapping may be
3630 * removed.
3631 */
3632 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3633 {
3634 i915_gem_object_unpin_pages(obj);
3635 }
3636
3637 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3638 unsigned int *needs_clflush);
3639 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3640 unsigned int *needs_clflush);
3641 #define CLFLUSH_BEFORE BIT(0)
3642 #define CLFLUSH_AFTER BIT(1)
3643 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER)
3644
3645 static inline void
3646 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3647 {
3648 i915_gem_object_unpin_pages(obj);
3649 }
3650
3651 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3652 void i915_vma_move_to_active(struct i915_vma *vma,
3653 struct drm_i915_gem_request *req,
3654 unsigned int flags);
3655 int i915_gem_dumb_create(struct drm_file *file_priv,
3656 struct drm_device *dev,
3657 struct drm_mode_create_dumb *args);
3658 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3659 uint32_t handle, uint64_t *offset);
3660 int i915_gem_mmap_gtt_version(void);
3661
3662 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3663 struct drm_i915_gem_object *new,
3664 unsigned frontbuffer_bits);
3665
3666 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3667
3668 struct drm_i915_gem_request *
3669 i915_gem_find_active_request(struct intel_engine_cs *engine);
3670
3671 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3672
3673 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3674 {
3675 return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3676 }
3677
3678 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3679 {
3680 return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3681 }
3682
3683 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3684 {
3685 return unlikely(test_bit(I915_WEDGED, &error->flags));
3686 }
3687
3688 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3689 {
3690 return i915_reset_backoff(error) | i915_terminally_wedged(error);
3691 }
3692
3693 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3694 {
3695 return READ_ONCE(error->reset_count);
3696 }
3697
3698 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3699 struct intel_engine_cs *engine)
3700 {
3701 return READ_ONCE(error->reset_engine_count[engine->id]);
3702 }
3703
3704 struct drm_i915_gem_request *
3705 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3706 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3707 void i915_gem_reset(struct drm_i915_private *dev_priv);
3708 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3709 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3710 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3711 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3712 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3713 struct drm_i915_gem_request *request);
3714
3715 void i915_gem_init_mmio(struct drm_i915_private *i915);
3716 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3717 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3718 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3719 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3720 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3721 unsigned int flags);
3722 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3723 void i915_gem_resume(struct drm_i915_private *dev_priv);
3724 int i915_gem_fault(struct vm_fault *vmf);
3725 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3726 unsigned int flags,
3727 long timeout,
3728 struct intel_rps_client *rps);
3729 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3730 unsigned int flags,
3731 int priority);
3732 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3733
3734 int __must_check
3735 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3736 int __must_check
3737 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3738 int __must_check
3739 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3740 struct i915_vma * __must_check
3741 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3742 u32 alignment,
3743 const struct i915_ggtt_view *view);
3744 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3745 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3746 int align);
3747 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3748 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3749
3750 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3751 enum i915_cache_level cache_level);
3752
3753 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3754 struct dma_buf *dma_buf);
3755
3756 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3757 struct drm_gem_object *gem_obj, int flags);
3758
3759 static inline struct i915_hw_ppgtt *
3760 i915_vm_to_ppgtt(struct i915_address_space *vm)
3761 {
3762 return container_of(vm, struct i915_hw_ppgtt, base);
3763 }
3764
3765 /* i915_gem_fence_reg.c */
3766 struct drm_i915_fence_reg *
3767 i915_reserve_fence(struct drm_i915_private *dev_priv);
3768 void i915_unreserve_fence(struct drm_i915_fence_reg *fence);
3769
3770 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3771 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3772
3773 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3774 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3775 struct sg_table *pages);
3776 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3777 struct sg_table *pages);
3778
3779 static inline struct i915_gem_context *
3780 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3781 {
3782 return idr_find(&file_priv->context_idr, id);
3783 }
3784
3785 static inline struct i915_gem_context *
3786 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3787 {
3788 struct i915_gem_context *ctx;
3789
3790 rcu_read_lock();
3791 ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3792 if (ctx && !kref_get_unless_zero(&ctx->ref))
3793 ctx = NULL;
3794 rcu_read_unlock();
3795
3796 return ctx;
3797 }
3798
3799 static inline struct intel_timeline *
3800 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx,
3801 struct intel_engine_cs *engine)
3802 {
3803 struct i915_address_space *vm;
3804
3805 vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base;
3806 return &vm->timeline.engine[engine->id];
3807 }
3808
3809 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3810 struct drm_file *file);
3811 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3812 struct drm_file *file);
3813 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3814 struct drm_file *file);
3815 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3816 struct i915_gem_context *ctx,
3817 uint32_t *reg_state);
3818
3819 /* i915_gem_evict.c */
3820 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3821 u64 min_size, u64 alignment,
3822 unsigned cache_level,
3823 u64 start, u64 end,
3824 unsigned flags);
3825 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3826 struct drm_mm_node *node,
3827 unsigned int flags);
3828 int i915_gem_evict_vm(struct i915_address_space *vm);
3829
3830 /* belongs in i915_gem_gtt.h */
3831 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3832 {
3833 wmb();
3834 if (INTEL_GEN(dev_priv) < 6)
3835 intel_gtt_chipset_flush();
3836 }
3837
3838 /* i915_gem_stolen.c */
3839 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3840 struct drm_mm_node *node, u64 size,
3841 unsigned alignment);
3842 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3843 struct drm_mm_node *node, u64 size,
3844 unsigned alignment, u64 start,
3845 u64 end);
3846 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3847 struct drm_mm_node *node);
3848 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3849 void i915_gem_cleanup_stolen(struct drm_device *dev);
3850 struct drm_i915_gem_object *
3851 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size);
3852 struct drm_i915_gem_object *
3853 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3854 u32 stolen_offset,
3855 u32 gtt_offset,
3856 u32 size);
3857
3858 /* i915_gem_internal.c */
3859 struct drm_i915_gem_object *
3860 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3861 phys_addr_t size);
3862
3863 /* i915_gem_shrinker.c */
3864 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3865 unsigned long target,
3866 unsigned long *nr_scanned,
3867 unsigned flags);
3868 #define I915_SHRINK_PURGEABLE 0x1
3869 #define I915_SHRINK_UNBOUND 0x2
3870 #define I915_SHRINK_BOUND 0x4
3871 #define I915_SHRINK_ACTIVE 0x8
3872 #define I915_SHRINK_VMAPS 0x10
3873 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3874 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3875 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3876
3877
3878 /* i915_gem_tiling.c */
3879 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3880 {
3881 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3882
3883 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3884 i915_gem_object_is_tiled(obj);
3885 }
3886
3887 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3888 unsigned int tiling, unsigned int stride);
3889 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3890 unsigned int tiling, unsigned int stride);
3891
3892 /* i915_debugfs.c */
3893 #ifdef CONFIG_DEBUG_FS
3894 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3895 int i915_debugfs_connector_add(struct drm_connector *connector);
3896 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3897 #else
3898 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3899 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3900 { return 0; }
3901 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3902 #endif
3903
3904 /* i915_gpu_error.c */
3905 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3906
3907 __printf(2, 3)
3908 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3909 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3910 const struct i915_gpu_state *gpu);
3911 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3912 struct drm_i915_private *i915,
3913 size_t count, loff_t pos);
3914 static inline void i915_error_state_buf_release(
3915 struct drm_i915_error_state_buf *eb)
3916 {
3917 kfree(eb->buf);
3918 }
3919
3920 struct i915_gpu_state *i915_capture_gpu_state(struct drm_i915_private *i915);
3921 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3922 u32 engine_mask,
3923 const char *error_msg);
3924
3925 static inline struct i915_gpu_state *
3926 i915_gpu_state_get(struct i915_gpu_state *gpu)
3927 {
3928 kref_get(&gpu->ref);
3929 return gpu;
3930 }
3931
3932 void __i915_gpu_state_free(struct kref *kref);
3933 static inline void i915_gpu_state_put(struct i915_gpu_state *gpu)
3934 {
3935 if (gpu)
3936 kref_put(&gpu->ref, __i915_gpu_state_free);
3937 }
3938
3939 struct i915_gpu_state *i915_first_error_state(struct drm_i915_private *i915);
3940 void i915_reset_error_state(struct drm_i915_private *i915);
3941
3942 #else
3943
3944 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3945 u32 engine_mask,
3946 const char *error_msg)
3947 {
3948 }
3949
3950 static inline struct i915_gpu_state *
3951 i915_first_error_state(struct drm_i915_private *i915)
3952 {
3953 return NULL;
3954 }
3955
3956 static inline void i915_reset_error_state(struct drm_i915_private *i915)
3957 {
3958 }
3959
3960 #endif
3961
3962 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3963
3964 /* i915_cmd_parser.c */
3965 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3966 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3967 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3968 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3969 struct drm_i915_gem_object *batch_obj,
3970 struct drm_i915_gem_object *shadow_batch_obj,
3971 u32 batch_start_offset,
3972 u32 batch_len,
3973 bool is_master);
3974
3975 /* i915_perf.c */
3976 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3977 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3978 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3979 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3980
3981 /* i915_suspend.c */
3982 extern int i915_save_state(struct drm_i915_private *dev_priv);
3983 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3984
3985 /* i915_sysfs.c */
3986 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3987 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3988
3989 /* intel_lpe_audio.c */
3990 int intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3991 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3992 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3993 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3994 enum pipe pipe, enum port port,
3995 const void *eld, int ls_clock, bool dp_output);
3996
3997 /* intel_i2c.c */
3998 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3999 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
4000 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
4001 unsigned int pin);
4002
4003 extern struct i2c_adapter *
4004 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
4005 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
4006 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
4007 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
4008 {
4009 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
4010 }
4011 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
4012
4013 /* intel_bios.c */
4014 void intel_bios_init(struct drm_i915_private *dev_priv);
4015 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
4016 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
4017 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
4018 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
4019 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
4020 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
4021 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
4022 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
4023 enum port port);
4024 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
4025 enum port port);
4026
4027
4028 /* intel_opregion.c */
4029 #ifdef CONFIG_ACPI
4030 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
4031 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
4032 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
4033 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
4034 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
4035 bool enable);
4036 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
4037 pci_power_t state);
4038 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
4039 #else
4040 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
4041 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
4042 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
4043 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
4044 {
4045 }
4046 static inline int
4047 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
4048 {
4049 return 0;
4050 }
4051 static inline int
4052 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
4053 {
4054 return 0;
4055 }
4056 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
4057 {
4058 return -ENODEV;
4059 }
4060 #endif
4061
4062 /* intel_acpi.c */
4063 #ifdef CONFIG_ACPI
4064 extern void intel_register_dsm_handler(void);
4065 extern void intel_unregister_dsm_handler(void);
4066 #else
4067 static inline void intel_register_dsm_handler(void) { return; }
4068 static inline void intel_unregister_dsm_handler(void) { return; }
4069 #endif /* CONFIG_ACPI */
4070
4071 /* intel_device_info.c */
4072 static inline struct intel_device_info *
4073 mkwrite_device_info(struct drm_i915_private *dev_priv)
4074 {
4075 return (struct intel_device_info *)&dev_priv->info;
4076 }
4077
4078 const char *intel_platform_name(enum intel_platform platform);
4079 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
4080 void intel_device_info_dump(struct drm_i915_private *dev_priv);
4081
4082 /* modesetting */
4083 extern void intel_modeset_init_hw(struct drm_device *dev);
4084 extern int intel_modeset_init(struct drm_device *dev);
4085 extern void intel_modeset_gem_init(struct drm_device *dev);
4086 extern void intel_modeset_cleanup(struct drm_device *dev);
4087 extern int intel_connector_register(struct drm_connector *);
4088 extern void intel_connector_unregister(struct drm_connector *);
4089 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
4090 bool state);
4091 extern void intel_display_resume(struct drm_device *dev);
4092 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
4093 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
4094 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
4095 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
4096 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
4097 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
4098 bool enable);
4099
4100 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
4101 struct drm_file *file);
4102
4103 /* overlay */
4104 extern struct intel_overlay_error_state *
4105 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
4106 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
4107 struct intel_overlay_error_state *error);
4108
4109 extern struct intel_display_error_state *
4110 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
4111 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
4112 struct intel_display_error_state *error);
4113
4114 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
4115 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
4116 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
4117 u32 reply_mask, u32 reply, int timeout_base_ms);
4118
4119 /* intel_sideband.c */
4120 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
4121 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
4122 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
4123 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
4124 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
4125 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
4126 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4127 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
4128 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4129 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
4130 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4131 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
4132 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
4133 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
4134 enum intel_sbi_destination destination);
4135 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
4136 enum intel_sbi_destination destination);
4137 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
4138 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4139
4140 /* intel_dpio_phy.c */
4141 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
4142 enum dpio_phy *phy, enum dpio_channel *ch);
4143 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
4144 enum port port, u32 margin, u32 scale,
4145 u32 enable, u32 deemphasis);
4146 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4147 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4148 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
4149 enum dpio_phy phy);
4150 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
4151 enum dpio_phy phy);
4152 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
4153 uint8_t lane_count);
4154 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
4155 uint8_t lane_lat_optim_mask);
4156 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
4157
4158 void chv_set_phy_signal_level(struct intel_encoder *encoder,
4159 u32 deemph_reg_value, u32 margin_reg_value,
4160 bool uniq_trans_scale);
4161 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
4162 bool reset);
4163 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
4164 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4165 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
4166 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
4167
4168 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
4169 u32 demph_reg_value, u32 preemph_reg_value,
4170 u32 uniqtranscale_reg_value, u32 tx3_demph);
4171 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
4172 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4173 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
4174
4175 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
4176 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
4177 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
4178 const i915_reg_t reg);
4179
4180 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
4181 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
4182
4183 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
4184 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
4185 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
4186 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
4187
4188 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
4189 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
4190 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
4191 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
4192
4193 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
4194 * will be implemented using 2 32-bit writes in an arbitrary order with
4195 * an arbitrary delay between them. This can cause the hardware to
4196 * act upon the intermediate value, possibly leading to corruption and
4197 * machine death. For this reason we do not support I915_WRITE64, or
4198 * dev_priv->uncore.funcs.mmio_writeq.
4199 *
4200 * When reading a 64-bit value as two 32-bit values, the delay may cause
4201 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
4202 * occasionally a 64-bit register does not actualy support a full readq
4203 * and must be read using two 32-bit reads.
4204 *
4205 * You have been warned.
4206 */
4207 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
4208
4209 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
4210 u32 upper, lower, old_upper, loop = 0; \
4211 upper = I915_READ(upper_reg); \
4212 do { \
4213 old_upper = upper; \
4214 lower = I915_READ(lower_reg); \
4215 upper = I915_READ(upper_reg); \
4216 } while (upper != old_upper && loop++ < 2); \
4217 (u64)upper << 32 | lower; })
4218
4219 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
4220 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
4221
4222 #define __raw_read(x, s) \
4223 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
4224 i915_reg_t reg) \
4225 { \
4226 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
4227 }
4228
4229 #define __raw_write(x, s) \
4230 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
4231 i915_reg_t reg, uint##x##_t val) \
4232 { \
4233 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
4234 }
4235 __raw_read(8, b)
4236 __raw_read(16, w)
4237 __raw_read(32, l)
4238 __raw_read(64, q)
4239
4240 __raw_write(8, b)
4241 __raw_write(16, w)
4242 __raw_write(32, l)
4243 __raw_write(64, q)
4244
4245 #undef __raw_read
4246 #undef __raw_write
4247
4248 /* These are untraced mmio-accessors that are only valid to be used inside
4249 * critical sections, such as inside IRQ handlers, where forcewake is explicitly
4250 * controlled.
4251 *
4252 * Think twice, and think again, before using these.
4253 *
4254 * As an example, these accessors can possibly be used between:
4255 *
4256 * spin_lock_irq(&dev_priv->uncore.lock);
4257 * intel_uncore_forcewake_get__locked();
4258 *
4259 * and
4260 *
4261 * intel_uncore_forcewake_put__locked();
4262 * spin_unlock_irq(&dev_priv->uncore.lock);
4263 *
4264 *
4265 * Note: some registers may not need forcewake held, so
4266 * intel_uncore_forcewake_{get,put} can be omitted, see
4267 * intel_uncore_forcewake_for_reg().
4268 *
4269 * Certain architectures will die if the same cacheline is concurrently accessed
4270 * by different clients (e.g. on Ivybridge). Access to registers should
4271 * therefore generally be serialised, by either the dev_priv->uncore.lock or
4272 * a more localised lock guarding all access to that bank of registers.
4273 */
4274 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
4275 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
4276 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
4277 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
4278
4279 /* "Broadcast RGB" property */
4280 #define INTEL_BROADCAST_RGB_AUTO 0
4281 #define INTEL_BROADCAST_RGB_FULL 1
4282 #define INTEL_BROADCAST_RGB_LIMITED 2
4283
4284 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
4285 {
4286 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4287 return VLV_VGACNTRL;
4288 else if (INTEL_GEN(dev_priv) >= 5)
4289 return CPU_VGACNTRL;
4290 else
4291 return VGACNTRL;
4292 }
4293
4294 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
4295 {
4296 unsigned long j = msecs_to_jiffies(m);
4297
4298 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4299 }
4300
4301 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
4302 {
4303 /* nsecs_to_jiffies64() does not guard against overflow */
4304 if (NSEC_PER_SEC % HZ &&
4305 div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
4306 return MAX_JIFFY_OFFSET;
4307
4308 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
4309 }
4310
4311 static inline unsigned long
4312 timespec_to_jiffies_timeout(const struct timespec *value)
4313 {
4314 unsigned long j = timespec_to_jiffies(value);
4315
4316 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4317 }
4318
4319 /*
4320 * If you need to wait X milliseconds between events A and B, but event B
4321 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
4322 * when event A happened, then just before event B you call this function and
4323 * pass the timestamp as the first argument, and X as the second argument.
4324 */
4325 static inline void
4326 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
4327 {
4328 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
4329
4330 /*
4331 * Don't re-read the value of "jiffies" every time since it may change
4332 * behind our back and break the math.
4333 */
4334 tmp_jiffies = jiffies;
4335 target_jiffies = timestamp_jiffies +
4336 msecs_to_jiffies_timeout(to_wait_ms);
4337
4338 if (time_after(target_jiffies, tmp_jiffies)) {
4339 remaining_jiffies = target_jiffies - tmp_jiffies;
4340 while (remaining_jiffies)
4341 remaining_jiffies =
4342 schedule_timeout_uninterruptible(remaining_jiffies);
4343 }
4344 }
4345
4346 static inline bool
4347 __i915_request_irq_complete(const struct drm_i915_gem_request *req)
4348 {
4349 struct intel_engine_cs *engine = req->engine;
4350 u32 seqno;
4351
4352 /* Note that the engine may have wrapped around the seqno, and
4353 * so our request->global_seqno will be ahead of the hardware,
4354 * even though it completed the request before wrapping. We catch
4355 * this by kicking all the waiters before resetting the seqno
4356 * in hardware, and also signal the fence.
4357 */
4358 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &req->fence.flags))
4359 return true;
4360
4361 /* The request was dequeued before we were awoken. We check after
4362 * inspecting the hw to confirm that this was the same request
4363 * that generated the HWS update. The memory barriers within
4364 * the request execution are sufficient to ensure that a check
4365 * after reading the value from hw matches this request.
4366 */
4367 seqno = i915_gem_request_global_seqno(req);
4368 if (!seqno)
4369 return false;
4370
4371 /* Before we do the heavier coherent read of the seqno,
4372 * check the value (hopefully) in the CPU cacheline.
4373 */
4374 if (__i915_gem_request_completed(req, seqno))
4375 return true;
4376
4377 /* Ensure our read of the seqno is coherent so that we
4378 * do not "miss an interrupt" (i.e. if this is the last
4379 * request and the seqno write from the GPU is not visible
4380 * by the time the interrupt fires, we will see that the
4381 * request is incomplete and go back to sleep awaiting
4382 * another interrupt that will never come.)
4383 *
4384 * Strictly, we only need to do this once after an interrupt,
4385 * but it is easier and safer to do it every time the waiter
4386 * is woken.
4387 */
4388 if (engine->irq_seqno_barrier &&
4389 test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
4390 struct intel_breadcrumbs *b = &engine->breadcrumbs;
4391
4392 /* The ordering of irq_posted versus applying the barrier
4393 * is crucial. The clearing of the current irq_posted must
4394 * be visible before we perform the barrier operation,
4395 * such that if a subsequent interrupt arrives, irq_posted
4396 * is reasserted and our task rewoken (which causes us to
4397 * do another __i915_request_irq_complete() immediately
4398 * and reapply the barrier). Conversely, if the clear
4399 * occurs after the barrier, then an interrupt that arrived
4400 * whilst we waited on the barrier would not trigger a
4401 * barrier on the next pass, and the read may not see the
4402 * seqno update.
4403 */
4404 engine->irq_seqno_barrier(engine);
4405
4406 /* If we consume the irq, but we are no longer the bottom-half,
4407 * the real bottom-half may not have serialised their own
4408 * seqno check with the irq-barrier (i.e. may have inspected
4409 * the seqno before we believe it coherent since they see
4410 * irq_posted == false but we are still running).
4411 */
4412 spin_lock_irq(&b->irq_lock);
4413 if (b->irq_wait && b->irq_wait->tsk != current)
4414 /* Note that if the bottom-half is changed as we
4415 * are sending the wake-up, the new bottom-half will
4416 * be woken by whomever made the change. We only have
4417 * to worry about when we steal the irq-posted for
4418 * ourself.
4419 */
4420 wake_up_process(b->irq_wait->tsk);
4421 spin_unlock_irq(&b->irq_lock);
4422
4423 if (__i915_gem_request_completed(req, seqno))
4424 return true;
4425 }
4426
4427 return false;
4428 }
4429
4430 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
4431 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
4432
4433 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
4434 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
4435 * perform the operation. To check beforehand, pass in the parameters to
4436 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
4437 * you only need to pass in the minor offsets, page-aligned pointers are
4438 * always valid.
4439 *
4440 * For just checking for SSE4.1, in the foreknowledge that the future use
4441 * will be correctly aligned, just use i915_has_memcpy_from_wc().
4442 */
4443 #define i915_can_memcpy_from_wc(dst, src, len) \
4444 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
4445
4446 #define i915_has_memcpy_from_wc() \
4447 i915_memcpy_from_wc(NULL, NULL, 0)
4448
4449 /* i915_mm.c */
4450 int remap_io_mapping(struct vm_area_struct *vma,
4451 unsigned long addr, unsigned long pfn, unsigned long size,
4452 struct io_mapping *iomap);
4453
4454 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915)
4455 {
4456 if (INTEL_GEN(i915) >= 10)
4457 return CNL_HWS_CSB_WRITE_INDEX;
4458 else
4459 return I915_HWS_CSB_WRITE_INDEX;
4460 }
4461
4462 #endif