]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.h
drm/i915: Add IS_PLATFORM macro
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/reservation.h>
45 #include <linux/shmem_fs.h>
46
47 #include <drm/drmP.h>
48 #include <drm/intel-gtt.h>
49 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
50 #include <drm/drm_gem.h>
51 #include <drm/drm_auth.h>
52 #include <drm/drm_cache.h>
53
54 #include "i915_params.h"
55 #include "i915_reg.h"
56 #include "i915_utils.h"
57
58 #include "intel_uncore.h"
59 #include "intel_bios.h"
60 #include "intel_dpll_mgr.h"
61 #include "intel_uc.h"
62 #include "intel_lrc.h"
63 #include "intel_ringbuffer.h"
64
65 #include "i915_gem.h"
66 #include "i915_gem_context.h"
67 #include "i915_gem_fence_reg.h"
68 #include "i915_gem_object.h"
69 #include "i915_gem_gtt.h"
70 #include "i915_gem_render_state.h"
71 #include "i915_gem_request.h"
72 #include "i915_gem_timeline.h"
73
74 #include "i915_vma.h"
75
76 #include "intel_gvt.h"
77
78 /* General customization:
79 */
80
81 #define DRIVER_NAME "i915"
82 #define DRIVER_DESC "Intel Graphics"
83 #define DRIVER_DATE "20170907"
84 #define DRIVER_TIMESTAMP 1504772900
85
86 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
87 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
88 * which may not necessarily be a user visible problem. This will either
89 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
90 * enable distros and users to tailor their preferred amount of i915 abrt
91 * spam.
92 */
93 #define I915_STATE_WARN(condition, format...) ({ \
94 int __ret_warn_on = !!(condition); \
95 if (unlikely(__ret_warn_on)) \
96 if (!WARN(i915_modparams.verbose_state_checks, format)) \
97 DRM_ERROR(format); \
98 unlikely(__ret_warn_on); \
99 })
100
101 #define I915_STATE_WARN_ON(x) \
102 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
103
104 bool __i915_inject_load_failure(const char *func, int line);
105 #define i915_inject_load_failure() \
106 __i915_inject_load_failure(__func__, __LINE__)
107
108 typedef struct {
109 uint32_t val;
110 } uint_fixed_16_16_t;
111
112 #define FP_16_16_MAX ({ \
113 uint_fixed_16_16_t fp; \
114 fp.val = UINT_MAX; \
115 fp; \
116 })
117
118 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
119 {
120 if (val.val == 0)
121 return true;
122 return false;
123 }
124
125 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val)
126 {
127 uint_fixed_16_16_t fp;
128
129 WARN_ON(val > U16_MAX);
130
131 fp.val = val << 16;
132 return fp;
133 }
134
135 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp)
136 {
137 return DIV_ROUND_UP(fp.val, 1 << 16);
138 }
139
140 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp)
141 {
142 return fp.val >> 16;
143 }
144
145 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1,
146 uint_fixed_16_16_t min2)
147 {
148 uint_fixed_16_16_t min;
149
150 min.val = min(min1.val, min2.val);
151 return min;
152 }
153
154 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1,
155 uint_fixed_16_16_t max2)
156 {
157 uint_fixed_16_16_t max;
158
159 max.val = max(max1.val, max2.val);
160 return max;
161 }
162
163 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val)
164 {
165 uint_fixed_16_16_t fp;
166 WARN_ON(val > U32_MAX);
167 fp.val = (uint32_t) val;
168 return fp;
169 }
170
171 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
172 uint_fixed_16_16_t d)
173 {
174 return DIV_ROUND_UP(val.val, d.val);
175 }
176
177 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
178 uint_fixed_16_16_t mul)
179 {
180 uint64_t intermediate_val;
181
182 intermediate_val = (uint64_t) val * mul.val;
183 intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
184 WARN_ON(intermediate_val > U32_MAX);
185 return (uint32_t) intermediate_val;
186 }
187
188 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
189 uint_fixed_16_16_t mul)
190 {
191 uint64_t intermediate_val;
192
193 intermediate_val = (uint64_t) val.val * mul.val;
194 intermediate_val = intermediate_val >> 16;
195 return clamp_u64_to_fixed16(intermediate_val);
196 }
197
198 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d)
199 {
200 uint64_t interm_val;
201
202 interm_val = (uint64_t)val << 16;
203 interm_val = DIV_ROUND_UP_ULL(interm_val, d);
204 return clamp_u64_to_fixed16(interm_val);
205 }
206
207 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
208 uint_fixed_16_16_t d)
209 {
210 uint64_t interm_val;
211
212 interm_val = (uint64_t)val << 16;
213 interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
214 WARN_ON(interm_val > U32_MAX);
215 return (uint32_t) interm_val;
216 }
217
218 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val,
219 uint_fixed_16_16_t mul)
220 {
221 uint64_t intermediate_val;
222
223 intermediate_val = (uint64_t) val * mul.val;
224 return clamp_u64_to_fixed16(intermediate_val);
225 }
226
227 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1,
228 uint_fixed_16_16_t add2)
229 {
230 uint64_t interm_sum;
231
232 interm_sum = (uint64_t) add1.val + add2.val;
233 return clamp_u64_to_fixed16(interm_sum);
234 }
235
236 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1,
237 uint32_t add2)
238 {
239 uint64_t interm_sum;
240 uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2);
241
242 interm_sum = (uint64_t) add1.val + interm_add2.val;
243 return clamp_u64_to_fixed16(interm_sum);
244 }
245
246 static inline const char *yesno(bool v)
247 {
248 return v ? "yes" : "no";
249 }
250
251 static inline const char *onoff(bool v)
252 {
253 return v ? "on" : "off";
254 }
255
256 static inline const char *enableddisabled(bool v)
257 {
258 return v ? "enabled" : "disabled";
259 }
260
261 enum pipe {
262 INVALID_PIPE = -1,
263 PIPE_A = 0,
264 PIPE_B,
265 PIPE_C,
266 _PIPE_EDP,
267 I915_MAX_PIPES = _PIPE_EDP
268 };
269 #define pipe_name(p) ((p) + 'A')
270
271 enum transcoder {
272 TRANSCODER_A = 0,
273 TRANSCODER_B,
274 TRANSCODER_C,
275 TRANSCODER_EDP,
276 TRANSCODER_DSI_A,
277 TRANSCODER_DSI_C,
278 I915_MAX_TRANSCODERS
279 };
280
281 static inline const char *transcoder_name(enum transcoder transcoder)
282 {
283 switch (transcoder) {
284 case TRANSCODER_A:
285 return "A";
286 case TRANSCODER_B:
287 return "B";
288 case TRANSCODER_C:
289 return "C";
290 case TRANSCODER_EDP:
291 return "EDP";
292 case TRANSCODER_DSI_A:
293 return "DSI A";
294 case TRANSCODER_DSI_C:
295 return "DSI C";
296 default:
297 return "<invalid>";
298 }
299 }
300
301 static inline bool transcoder_is_dsi(enum transcoder transcoder)
302 {
303 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
304 }
305
306 /*
307 * Global legacy plane identifier. Valid only for primary/sprite
308 * planes on pre-g4x, and only for primary planes on g4x+.
309 */
310 enum plane {
311 PLANE_A,
312 PLANE_B,
313 PLANE_C,
314 };
315 #define plane_name(p) ((p) + 'A')
316
317 #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A')
318
319 /*
320 * Per-pipe plane identifier.
321 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
322 * number of planes per CRTC. Not all platforms really have this many planes,
323 * which means some arrays of size I915_MAX_PLANES may have unused entries
324 * between the topmost sprite plane and the cursor plane.
325 *
326 * This is expected to be passed to various register macros
327 * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care.
328 */
329 enum plane_id {
330 PLANE_PRIMARY,
331 PLANE_SPRITE0,
332 PLANE_SPRITE1,
333 PLANE_SPRITE2,
334 PLANE_CURSOR,
335 I915_MAX_PLANES,
336 };
337
338 #define for_each_plane_id_on_crtc(__crtc, __p) \
339 for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \
340 for_each_if ((__crtc)->plane_ids_mask & BIT(__p))
341
342 enum port {
343 PORT_NONE = -1,
344 PORT_A = 0,
345 PORT_B,
346 PORT_C,
347 PORT_D,
348 PORT_E,
349 I915_MAX_PORTS
350 };
351 #define port_name(p) ((p) + 'A')
352
353 #define I915_NUM_PHYS_VLV 2
354
355 enum dpio_channel {
356 DPIO_CH0,
357 DPIO_CH1
358 };
359
360 enum dpio_phy {
361 DPIO_PHY0,
362 DPIO_PHY1,
363 DPIO_PHY2,
364 };
365
366 enum intel_display_power_domain {
367 POWER_DOMAIN_PIPE_A,
368 POWER_DOMAIN_PIPE_B,
369 POWER_DOMAIN_PIPE_C,
370 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
371 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
372 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
373 POWER_DOMAIN_TRANSCODER_A,
374 POWER_DOMAIN_TRANSCODER_B,
375 POWER_DOMAIN_TRANSCODER_C,
376 POWER_DOMAIN_TRANSCODER_EDP,
377 POWER_DOMAIN_TRANSCODER_DSI_A,
378 POWER_DOMAIN_TRANSCODER_DSI_C,
379 POWER_DOMAIN_PORT_DDI_A_LANES,
380 POWER_DOMAIN_PORT_DDI_B_LANES,
381 POWER_DOMAIN_PORT_DDI_C_LANES,
382 POWER_DOMAIN_PORT_DDI_D_LANES,
383 POWER_DOMAIN_PORT_DDI_E_LANES,
384 POWER_DOMAIN_PORT_DDI_A_IO,
385 POWER_DOMAIN_PORT_DDI_B_IO,
386 POWER_DOMAIN_PORT_DDI_C_IO,
387 POWER_DOMAIN_PORT_DDI_D_IO,
388 POWER_DOMAIN_PORT_DDI_E_IO,
389 POWER_DOMAIN_PORT_DSI,
390 POWER_DOMAIN_PORT_CRT,
391 POWER_DOMAIN_PORT_OTHER,
392 POWER_DOMAIN_VGA,
393 POWER_DOMAIN_AUDIO,
394 POWER_DOMAIN_PLLS,
395 POWER_DOMAIN_AUX_A,
396 POWER_DOMAIN_AUX_B,
397 POWER_DOMAIN_AUX_C,
398 POWER_DOMAIN_AUX_D,
399 POWER_DOMAIN_GMBUS,
400 POWER_DOMAIN_MODESET,
401 POWER_DOMAIN_INIT,
402
403 POWER_DOMAIN_NUM,
404 };
405
406 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
407 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
408 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
409 #define POWER_DOMAIN_TRANSCODER(tran) \
410 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
411 (tran) + POWER_DOMAIN_TRANSCODER_A)
412
413 enum hpd_pin {
414 HPD_NONE = 0,
415 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
416 HPD_CRT,
417 HPD_SDVO_B,
418 HPD_SDVO_C,
419 HPD_PORT_A,
420 HPD_PORT_B,
421 HPD_PORT_C,
422 HPD_PORT_D,
423 HPD_PORT_E,
424 HPD_NUM_PINS
425 };
426
427 #define for_each_hpd_pin(__pin) \
428 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
429
430 #define HPD_STORM_DEFAULT_THRESHOLD 5
431
432 struct i915_hotplug {
433 struct work_struct hotplug_work;
434
435 struct {
436 unsigned long last_jiffies;
437 int count;
438 enum {
439 HPD_ENABLED = 0,
440 HPD_DISABLED = 1,
441 HPD_MARK_DISABLED = 2
442 } state;
443 } stats[HPD_NUM_PINS];
444 u32 event_bits;
445 struct delayed_work reenable_work;
446
447 struct intel_digital_port *irq_port[I915_MAX_PORTS];
448 u32 long_port_mask;
449 u32 short_port_mask;
450 struct work_struct dig_port_work;
451
452 struct work_struct poll_init_work;
453 bool poll_enabled;
454
455 unsigned int hpd_storm_threshold;
456
457 /*
458 * if we get a HPD irq from DP and a HPD irq from non-DP
459 * the non-DP HPD could block the workqueue on a mode config
460 * mutex getting, that userspace may have taken. However
461 * userspace is waiting on the DP workqueue to run which is
462 * blocked behind the non-DP one.
463 */
464 struct workqueue_struct *dp_wq;
465 };
466
467 #define I915_GEM_GPU_DOMAINS \
468 (I915_GEM_DOMAIN_RENDER | \
469 I915_GEM_DOMAIN_SAMPLER | \
470 I915_GEM_DOMAIN_COMMAND | \
471 I915_GEM_DOMAIN_INSTRUCTION | \
472 I915_GEM_DOMAIN_VERTEX)
473
474 #define for_each_pipe(__dev_priv, __p) \
475 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
476 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
477 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
478 for_each_if ((__mask) & (1 << (__p)))
479 #define for_each_universal_plane(__dev_priv, __pipe, __p) \
480 for ((__p) = 0; \
481 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
482 (__p)++)
483 #define for_each_sprite(__dev_priv, __p, __s) \
484 for ((__s) = 0; \
485 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
486 (__s)++)
487
488 #define for_each_port_masked(__port, __ports_mask) \
489 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
490 for_each_if ((__ports_mask) & (1 << (__port)))
491
492 #define for_each_crtc(dev, crtc) \
493 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
494
495 #define for_each_intel_plane(dev, intel_plane) \
496 list_for_each_entry(intel_plane, \
497 &(dev)->mode_config.plane_list, \
498 base.head)
499
500 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \
501 list_for_each_entry(intel_plane, \
502 &(dev)->mode_config.plane_list, \
503 base.head) \
504 for_each_if ((plane_mask) & \
505 (1 << drm_plane_index(&intel_plane->base)))
506
507 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
508 list_for_each_entry(intel_plane, \
509 &(dev)->mode_config.plane_list, \
510 base.head) \
511 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
512
513 #define for_each_intel_crtc(dev, intel_crtc) \
514 list_for_each_entry(intel_crtc, \
515 &(dev)->mode_config.crtc_list, \
516 base.head)
517
518 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \
519 list_for_each_entry(intel_crtc, \
520 &(dev)->mode_config.crtc_list, \
521 base.head) \
522 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
523
524 #define for_each_intel_encoder(dev, intel_encoder) \
525 list_for_each_entry(intel_encoder, \
526 &(dev)->mode_config.encoder_list, \
527 base.head)
528
529 #define for_each_intel_connector_iter(intel_connector, iter) \
530 while ((intel_connector = to_intel_connector(drm_connector_list_iter_next(iter))))
531
532 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
533 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
534 for_each_if ((intel_encoder)->base.crtc == (__crtc))
535
536 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
537 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
538 for_each_if ((intel_connector)->base.encoder == (__encoder))
539
540 #define for_each_power_domain(domain, mask) \
541 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
542 for_each_if (BIT_ULL(domain) & (mask))
543
544 #define for_each_power_well(__dev_priv, __power_well) \
545 for ((__power_well) = (__dev_priv)->power_domains.power_wells; \
546 (__power_well) - (__dev_priv)->power_domains.power_wells < \
547 (__dev_priv)->power_domains.power_well_count; \
548 (__power_well)++)
549
550 #define for_each_power_well_rev(__dev_priv, __power_well) \
551 for ((__power_well) = (__dev_priv)->power_domains.power_wells + \
552 (__dev_priv)->power_domains.power_well_count - 1; \
553 (__power_well) - (__dev_priv)->power_domains.power_wells >= 0; \
554 (__power_well)--)
555
556 #define for_each_power_domain_well(__dev_priv, __power_well, __domain_mask) \
557 for_each_power_well(__dev_priv, __power_well) \
558 for_each_if ((__power_well)->domains & (__domain_mask))
559
560 #define for_each_power_domain_well_rev(__dev_priv, __power_well, __domain_mask) \
561 for_each_power_well_rev(__dev_priv, __power_well) \
562 for_each_if ((__power_well)->domains & (__domain_mask))
563
564 #define for_each_intel_plane_in_state(__state, plane, plane_state, __i) \
565 for ((__i) = 0; \
566 (__i) < (__state)->base.dev->mode_config.num_total_plane && \
567 ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
568 (plane_state) = to_intel_plane_state((__state)->base.planes[__i].state), 1); \
569 (__i)++) \
570 for_each_if (plane_state)
571
572 #define for_each_new_intel_crtc_in_state(__state, crtc, new_crtc_state, __i) \
573 for ((__i) = 0; \
574 (__i) < (__state)->base.dev->mode_config.num_crtc && \
575 ((crtc) = to_intel_crtc((__state)->base.crtcs[__i].ptr), \
576 (new_crtc_state) = to_intel_crtc_state((__state)->base.crtcs[__i].new_state), 1); \
577 (__i)++) \
578 for_each_if (crtc)
579
580
581 #define for_each_oldnew_intel_plane_in_state(__state, plane, old_plane_state, new_plane_state, __i) \
582 for ((__i) = 0; \
583 (__i) < (__state)->base.dev->mode_config.num_total_plane && \
584 ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
585 (old_plane_state) = to_intel_plane_state((__state)->base.planes[__i].old_state), \
586 (new_plane_state) = to_intel_plane_state((__state)->base.planes[__i].new_state), 1); \
587 (__i)++) \
588 for_each_if (plane)
589
590 struct drm_i915_private;
591 struct i915_mm_struct;
592 struct i915_mmu_object;
593
594 struct drm_i915_file_private {
595 struct drm_i915_private *dev_priv;
596 struct drm_file *file;
597
598 struct {
599 spinlock_t lock;
600 struct list_head request_list;
601 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
602 * chosen to prevent the CPU getting more than a frame ahead of the GPU
603 * (when using lax throttling for the frontbuffer). We also use it to
604 * offer free GPU waitboosts for severely congested workloads.
605 */
606 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
607 } mm;
608 struct idr context_idr;
609
610 struct intel_rps_client {
611 atomic_t boosts;
612 } rps;
613
614 unsigned int bsd_engine;
615
616 /* Client can have a maximum of 3 contexts banned before
617 * it is denied of creating new contexts. As one context
618 * ban needs 4 consecutive hangs, and more if there is
619 * progress in between, this is a last resort stop gap measure
620 * to limit the badly behaving clients access to gpu.
621 */
622 #define I915_MAX_CLIENT_CONTEXT_BANS 3
623 atomic_t context_bans;
624 };
625
626 /* Used by dp and fdi links */
627 struct intel_link_m_n {
628 uint32_t tu;
629 uint32_t gmch_m;
630 uint32_t gmch_n;
631 uint32_t link_m;
632 uint32_t link_n;
633 };
634
635 void intel_link_compute_m_n(int bpp, int nlanes,
636 int pixel_clock, int link_clock,
637 struct intel_link_m_n *m_n,
638 bool reduce_m_n);
639
640 /* Interface history:
641 *
642 * 1.1: Original.
643 * 1.2: Add Power Management
644 * 1.3: Add vblank support
645 * 1.4: Fix cmdbuffer path, add heap destroy
646 * 1.5: Add vblank pipe configuration
647 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
648 * - Support vertical blank on secondary display pipe
649 */
650 #define DRIVER_MAJOR 1
651 #define DRIVER_MINOR 6
652 #define DRIVER_PATCHLEVEL 0
653
654 struct opregion_header;
655 struct opregion_acpi;
656 struct opregion_swsci;
657 struct opregion_asle;
658
659 struct intel_opregion {
660 struct opregion_header *header;
661 struct opregion_acpi *acpi;
662 struct opregion_swsci *swsci;
663 u32 swsci_gbda_sub_functions;
664 u32 swsci_sbcb_sub_functions;
665 struct opregion_asle *asle;
666 void *rvda;
667 void *vbt_firmware;
668 const void *vbt;
669 u32 vbt_size;
670 u32 *lid_state;
671 struct work_struct asle_work;
672 };
673 #define OPREGION_SIZE (8*1024)
674
675 struct intel_overlay;
676 struct intel_overlay_error_state;
677
678 struct sdvo_device_mapping {
679 u8 initialized;
680 u8 dvo_port;
681 u8 slave_addr;
682 u8 dvo_wiring;
683 u8 i2c_pin;
684 u8 ddc_pin;
685 };
686
687 struct intel_connector;
688 struct intel_encoder;
689 struct intel_atomic_state;
690 struct intel_crtc_state;
691 struct intel_initial_plane_config;
692 struct intel_crtc;
693 struct intel_limit;
694 struct dpll;
695 struct intel_cdclk_state;
696
697 struct drm_i915_display_funcs {
698 void (*get_cdclk)(struct drm_i915_private *dev_priv,
699 struct intel_cdclk_state *cdclk_state);
700 void (*set_cdclk)(struct drm_i915_private *dev_priv,
701 const struct intel_cdclk_state *cdclk_state);
702 int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane);
703 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
704 int (*compute_intermediate_wm)(struct drm_device *dev,
705 struct intel_crtc *intel_crtc,
706 struct intel_crtc_state *newstate);
707 void (*initial_watermarks)(struct intel_atomic_state *state,
708 struct intel_crtc_state *cstate);
709 void (*atomic_update_watermarks)(struct intel_atomic_state *state,
710 struct intel_crtc_state *cstate);
711 void (*optimize_watermarks)(struct intel_atomic_state *state,
712 struct intel_crtc_state *cstate);
713 int (*compute_global_watermarks)(struct drm_atomic_state *state);
714 void (*update_wm)(struct intel_crtc *crtc);
715 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
716 /* Returns the active state of the crtc, and if the crtc is active,
717 * fills out the pipe-config with the hw state. */
718 bool (*get_pipe_config)(struct intel_crtc *,
719 struct intel_crtc_state *);
720 void (*get_initial_plane_config)(struct intel_crtc *,
721 struct intel_initial_plane_config *);
722 int (*crtc_compute_clock)(struct intel_crtc *crtc,
723 struct intel_crtc_state *crtc_state);
724 void (*crtc_enable)(struct intel_crtc_state *pipe_config,
725 struct drm_atomic_state *old_state);
726 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
727 struct drm_atomic_state *old_state);
728 void (*update_crtcs)(struct drm_atomic_state *state,
729 unsigned int *crtc_vblank_mask);
730 void (*audio_codec_enable)(struct drm_connector *connector,
731 struct intel_encoder *encoder,
732 const struct drm_display_mode *adjusted_mode);
733 void (*audio_codec_disable)(struct intel_encoder *encoder);
734 void (*fdi_link_train)(struct intel_crtc *crtc,
735 const struct intel_crtc_state *crtc_state);
736 void (*init_clock_gating)(struct drm_i915_private *dev_priv);
737 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
738 /* clock updates for mode set */
739 /* cursor updates */
740 /* render clock increase/decrease */
741 /* display clock increase/decrease */
742 /* pll clock increase/decrease */
743
744 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
745 void (*load_luts)(struct drm_crtc_state *crtc_state);
746 };
747
748 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
749 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
750 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
751
752 struct intel_csr {
753 struct work_struct work;
754 const char *fw_path;
755 uint32_t *dmc_payload;
756 uint32_t dmc_fw_size;
757 uint32_t version;
758 uint32_t mmio_count;
759 i915_reg_t mmioaddr[8];
760 uint32_t mmiodata[8];
761 uint32_t dc_state;
762 uint32_t allowed_dc_mask;
763 };
764
765 #define DEV_INFO_FOR_EACH_FLAG(func) \
766 func(is_mobile); \
767 func(is_lp); \
768 func(is_alpha_support); \
769 /* Keep has_* in alphabetical order */ \
770 func(has_64bit_reloc); \
771 func(has_aliasing_ppgtt); \
772 func(has_csr); \
773 func(has_ddi); \
774 func(has_dp_mst); \
775 func(has_reset_engine); \
776 func(has_fbc); \
777 func(has_fpga_dbg); \
778 func(has_full_ppgtt); \
779 func(has_full_48bit_ppgtt); \
780 func(has_gmch_display); \
781 func(has_guc); \
782 func(has_guc_ct); \
783 func(has_hotplug); \
784 func(has_l3_dpf); \
785 func(has_llc); \
786 func(has_logical_ring_contexts); \
787 func(has_overlay); \
788 func(has_pipe_cxsr); \
789 func(has_pooled_eu); \
790 func(has_psr); \
791 func(has_rc6); \
792 func(has_rc6p); \
793 func(has_resource_streamer); \
794 func(has_runtime_pm); \
795 func(has_snoop); \
796 func(unfenced_needs_alignment); \
797 func(cursor_needs_physical); \
798 func(hws_needs_physical); \
799 func(overlay_needs_physical); \
800 func(supports_tv); \
801 func(has_ipc);
802
803 struct sseu_dev_info {
804 u8 slice_mask;
805 u8 subslice_mask;
806 u8 eu_total;
807 u8 eu_per_subslice;
808 u8 min_eu_in_pool;
809 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
810 u8 subslice_7eu[3];
811 u8 has_slice_pg:1;
812 u8 has_subslice_pg:1;
813 u8 has_eu_pg:1;
814 };
815
816 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu)
817 {
818 return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask);
819 }
820
821 /* Keep in gen based order, and chronological order within a gen */
822 enum intel_platform {
823 INTEL_PLATFORM_UNINITIALIZED = 0,
824 INTEL_I830,
825 INTEL_I845G,
826 INTEL_I85X,
827 INTEL_I865G,
828 INTEL_I915G,
829 INTEL_I915GM,
830 INTEL_I945G,
831 INTEL_I945GM,
832 INTEL_G33,
833 INTEL_PINEVIEW,
834 INTEL_I965G,
835 INTEL_I965GM,
836 INTEL_G45,
837 INTEL_GM45,
838 INTEL_IRONLAKE,
839 INTEL_SANDYBRIDGE,
840 INTEL_IVYBRIDGE,
841 INTEL_VALLEYVIEW,
842 INTEL_HASWELL,
843 INTEL_BROADWELL,
844 INTEL_CHERRYVIEW,
845 INTEL_SKYLAKE,
846 INTEL_BROXTON,
847 INTEL_KABYLAKE,
848 INTEL_GEMINILAKE,
849 INTEL_COFFEELAKE,
850 INTEL_CANNONLAKE,
851 INTEL_MAX_PLATFORMS
852 };
853
854 struct intel_device_info {
855 u32 display_mmio_offset;
856 u16 device_id;
857 u8 num_pipes;
858 u8 num_sprites[I915_MAX_PIPES];
859 u8 num_scalers[I915_MAX_PIPES];
860 u8 gen;
861 u16 gen_mask;
862 enum intel_platform platform;
863 u8 gt; /* GT number, 0 if undefined */
864 u8 ring_mask; /* Rings supported by the HW */
865 u8 num_rings;
866 #define DEFINE_FLAG(name) u8 name:1
867 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG);
868 #undef DEFINE_FLAG
869 u16 ddb_size; /* in blocks */
870 /* Register offsets for the various display pipes and transcoders */
871 int pipe_offsets[I915_MAX_TRANSCODERS];
872 int trans_offsets[I915_MAX_TRANSCODERS];
873 int palette_offsets[I915_MAX_PIPES];
874 int cursor_offsets[I915_MAX_PIPES];
875
876 /* Slice/subslice/EU info */
877 struct sseu_dev_info sseu;
878
879 struct color_luts {
880 u16 degamma_lut_size;
881 u16 gamma_lut_size;
882 } color;
883 };
884
885 struct intel_display_error_state;
886
887 struct i915_gpu_state {
888 struct kref ref;
889 struct timeval time;
890 struct timeval boottime;
891 struct timeval uptime;
892
893 struct drm_i915_private *i915;
894
895 char error_msg[128];
896 bool simulated;
897 bool awake;
898 bool wakelock;
899 bool suspended;
900 int iommu;
901 u32 reset_count;
902 u32 suspend_count;
903 struct intel_device_info device_info;
904 struct i915_params params;
905
906 /* Generic register state */
907 u32 eir;
908 u32 pgtbl_er;
909 u32 ier;
910 u32 gtier[4], ngtier;
911 u32 ccid;
912 u32 derrmr;
913 u32 forcewake;
914 u32 error; /* gen6+ */
915 u32 err_int; /* gen7 */
916 u32 fault_data0; /* gen8, gen9 */
917 u32 fault_data1; /* gen8, gen9 */
918 u32 done_reg;
919 u32 gac_eco;
920 u32 gam_ecochk;
921 u32 gab_ctl;
922 u32 gfx_mode;
923
924 u32 nfence;
925 u64 fence[I915_MAX_NUM_FENCES];
926 struct intel_overlay_error_state *overlay;
927 struct intel_display_error_state *display;
928 struct drm_i915_error_object *semaphore;
929 struct drm_i915_error_object *guc_log;
930
931 struct drm_i915_error_engine {
932 int engine_id;
933 /* Software tracked state */
934 bool waiting;
935 int num_waiters;
936 unsigned long hangcheck_timestamp;
937 bool hangcheck_stalled;
938 enum intel_engine_hangcheck_action hangcheck_action;
939 struct i915_address_space *vm;
940 int num_requests;
941 u32 reset_count;
942
943 /* position of active request inside the ring */
944 u32 rq_head, rq_post, rq_tail;
945
946 /* our own tracking of ring head and tail */
947 u32 cpu_ring_head;
948 u32 cpu_ring_tail;
949
950 u32 last_seqno;
951
952 /* Register state */
953 u32 start;
954 u32 tail;
955 u32 head;
956 u32 ctl;
957 u32 mode;
958 u32 hws;
959 u32 ipeir;
960 u32 ipehr;
961 u32 bbstate;
962 u32 instpm;
963 u32 instps;
964 u32 seqno;
965 u64 bbaddr;
966 u64 acthd;
967 u32 fault_reg;
968 u64 faddr;
969 u32 rc_psmi; /* sleep state */
970 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
971 struct intel_instdone instdone;
972
973 struct drm_i915_error_context {
974 char comm[TASK_COMM_LEN];
975 pid_t pid;
976 u32 handle;
977 u32 hw_id;
978 int ban_score;
979 int active;
980 int guilty;
981 } context;
982
983 struct drm_i915_error_object {
984 u64 gtt_offset;
985 u64 gtt_size;
986 int page_count;
987 int unused;
988 u32 *pages[0];
989 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
990
991 struct drm_i915_error_object **user_bo;
992 long user_bo_count;
993
994 struct drm_i915_error_object *wa_ctx;
995
996 struct drm_i915_error_request {
997 long jiffies;
998 pid_t pid;
999 u32 context;
1000 int ban_score;
1001 u32 seqno;
1002 u32 head;
1003 u32 tail;
1004 } *requests, execlist[EXECLIST_MAX_PORTS];
1005 unsigned int num_ports;
1006
1007 struct drm_i915_error_waiter {
1008 char comm[TASK_COMM_LEN];
1009 pid_t pid;
1010 u32 seqno;
1011 } *waiters;
1012
1013 struct {
1014 u32 gfx_mode;
1015 union {
1016 u64 pdp[4];
1017 u32 pp_dir_base;
1018 };
1019 } vm_info;
1020 } engine[I915_NUM_ENGINES];
1021
1022 struct drm_i915_error_buffer {
1023 u32 size;
1024 u32 name;
1025 u32 rseqno[I915_NUM_ENGINES], wseqno;
1026 u64 gtt_offset;
1027 u32 read_domains;
1028 u32 write_domain;
1029 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
1030 u32 tiling:2;
1031 u32 dirty:1;
1032 u32 purgeable:1;
1033 u32 userptr:1;
1034 s32 engine:4;
1035 u32 cache_level:3;
1036 } *active_bo[I915_NUM_ENGINES], *pinned_bo;
1037 u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
1038 struct i915_address_space *active_vm[I915_NUM_ENGINES];
1039 };
1040
1041 enum i915_cache_level {
1042 I915_CACHE_NONE = 0,
1043 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
1044 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
1045 caches, eg sampler/render caches, and the
1046 large Last-Level-Cache. LLC is coherent with
1047 the CPU, but L3 is only visible to the GPU. */
1048 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
1049 };
1050
1051 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
1052
1053 enum fb_op_origin {
1054 ORIGIN_GTT,
1055 ORIGIN_CPU,
1056 ORIGIN_CS,
1057 ORIGIN_FLIP,
1058 ORIGIN_DIRTYFB,
1059 };
1060
1061 struct intel_fbc {
1062 /* This is always the inner lock when overlapping with struct_mutex and
1063 * it's the outer lock when overlapping with stolen_lock. */
1064 struct mutex lock;
1065 unsigned threshold;
1066 unsigned int possible_framebuffer_bits;
1067 unsigned int busy_bits;
1068 unsigned int visible_pipes_mask;
1069 struct intel_crtc *crtc;
1070
1071 struct drm_mm_node compressed_fb;
1072 struct drm_mm_node *compressed_llb;
1073
1074 bool false_color;
1075
1076 bool enabled;
1077 bool active;
1078
1079 bool underrun_detected;
1080 struct work_struct underrun_work;
1081
1082 /*
1083 * Due to the atomic rules we can't access some structures without the
1084 * appropriate locking, so we cache information here in order to avoid
1085 * these problems.
1086 */
1087 struct intel_fbc_state_cache {
1088 struct i915_vma *vma;
1089
1090 struct {
1091 unsigned int mode_flags;
1092 uint32_t hsw_bdw_pixel_rate;
1093 } crtc;
1094
1095 struct {
1096 unsigned int rotation;
1097 int src_w;
1098 int src_h;
1099 bool visible;
1100 } plane;
1101
1102 struct {
1103 const struct drm_format_info *format;
1104 unsigned int stride;
1105 } fb;
1106 } state_cache;
1107
1108 /*
1109 * This structure contains everything that's relevant to program the
1110 * hardware registers. When we want to figure out if we need to disable
1111 * and re-enable FBC for a new configuration we just check if there's
1112 * something different in the struct. The genx_fbc_activate functions
1113 * are supposed to read from it in order to program the registers.
1114 */
1115 struct intel_fbc_reg_params {
1116 struct i915_vma *vma;
1117
1118 struct {
1119 enum pipe pipe;
1120 enum plane plane;
1121 unsigned int fence_y_offset;
1122 } crtc;
1123
1124 struct {
1125 const struct drm_format_info *format;
1126 unsigned int stride;
1127 } fb;
1128
1129 int cfb_size;
1130 unsigned int gen9_wa_cfb_stride;
1131 } params;
1132
1133 struct intel_fbc_work {
1134 bool scheduled;
1135 u32 scheduled_vblank;
1136 struct work_struct work;
1137 } work;
1138
1139 const char *no_fbc_reason;
1140 };
1141
1142 /*
1143 * HIGH_RR is the highest eDP panel refresh rate read from EDID
1144 * LOW_RR is the lowest eDP panel refresh rate found from EDID
1145 * parsing for same resolution.
1146 */
1147 enum drrs_refresh_rate_type {
1148 DRRS_HIGH_RR,
1149 DRRS_LOW_RR,
1150 DRRS_MAX_RR, /* RR count */
1151 };
1152
1153 enum drrs_support_type {
1154 DRRS_NOT_SUPPORTED = 0,
1155 STATIC_DRRS_SUPPORT = 1,
1156 SEAMLESS_DRRS_SUPPORT = 2
1157 };
1158
1159 struct intel_dp;
1160 struct i915_drrs {
1161 struct mutex mutex;
1162 struct delayed_work work;
1163 struct intel_dp *dp;
1164 unsigned busy_frontbuffer_bits;
1165 enum drrs_refresh_rate_type refresh_rate_type;
1166 enum drrs_support_type type;
1167 };
1168
1169 struct i915_psr {
1170 struct mutex lock;
1171 bool sink_support;
1172 bool source_ok;
1173 struct intel_dp *enabled;
1174 bool active;
1175 struct delayed_work work;
1176 unsigned busy_frontbuffer_bits;
1177 bool psr2_support;
1178 bool aux_frame_sync;
1179 bool link_standby;
1180 bool y_cord_support;
1181 bool colorimetry_support;
1182 bool alpm;
1183
1184 void (*enable_source)(struct intel_dp *,
1185 const struct intel_crtc_state *);
1186 void (*disable_source)(struct intel_dp *,
1187 const struct intel_crtc_state *);
1188 void (*enable_sink)(struct intel_dp *);
1189 void (*activate)(struct intel_dp *);
1190 void (*setup_vsc)(struct intel_dp *, const struct intel_crtc_state *);
1191 };
1192
1193 enum intel_pch {
1194 PCH_NONE = 0, /* No PCH present */
1195 PCH_IBX, /* Ibexpeak PCH */
1196 PCH_CPT, /* Cougarpoint/Pantherpoint PCH */
1197 PCH_LPT, /* Lynxpoint/Wildcatpoint PCH */
1198 PCH_SPT, /* Sunrisepoint PCH */
1199 PCH_KBP, /* Kaby Lake PCH */
1200 PCH_CNP, /* Cannon Lake PCH */
1201 PCH_NOP,
1202 };
1203
1204 enum intel_sbi_destination {
1205 SBI_ICLK,
1206 SBI_MPHY,
1207 };
1208
1209 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1210 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1211 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1212 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1213 #define QUIRK_INCREASE_T12_DELAY (1<<6)
1214
1215 struct intel_fbdev;
1216 struct intel_fbc_work;
1217
1218 struct intel_gmbus {
1219 struct i2c_adapter adapter;
1220 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1221 u32 force_bit;
1222 u32 reg0;
1223 i915_reg_t gpio_reg;
1224 struct i2c_algo_bit_data bit_algo;
1225 struct drm_i915_private *dev_priv;
1226 };
1227
1228 struct i915_suspend_saved_registers {
1229 u32 saveDSPARB;
1230 u32 saveFBC_CONTROL;
1231 u32 saveCACHE_MODE_0;
1232 u32 saveMI_ARB_STATE;
1233 u32 saveSWF0[16];
1234 u32 saveSWF1[16];
1235 u32 saveSWF3[3];
1236 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1237 u32 savePCH_PORT_HOTPLUG;
1238 u16 saveGCDGMBUS;
1239 };
1240
1241 struct vlv_s0ix_state {
1242 /* GAM */
1243 u32 wr_watermark;
1244 u32 gfx_prio_ctrl;
1245 u32 arb_mode;
1246 u32 gfx_pend_tlb0;
1247 u32 gfx_pend_tlb1;
1248 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1249 u32 media_max_req_count;
1250 u32 gfx_max_req_count;
1251 u32 render_hwsp;
1252 u32 ecochk;
1253 u32 bsd_hwsp;
1254 u32 blt_hwsp;
1255 u32 tlb_rd_addr;
1256
1257 /* MBC */
1258 u32 g3dctl;
1259 u32 gsckgctl;
1260 u32 mbctl;
1261
1262 /* GCP */
1263 u32 ucgctl1;
1264 u32 ucgctl3;
1265 u32 rcgctl1;
1266 u32 rcgctl2;
1267 u32 rstctl;
1268 u32 misccpctl;
1269
1270 /* GPM */
1271 u32 gfxpause;
1272 u32 rpdeuhwtc;
1273 u32 rpdeuc;
1274 u32 ecobus;
1275 u32 pwrdwnupctl;
1276 u32 rp_down_timeout;
1277 u32 rp_deucsw;
1278 u32 rcubmabdtmr;
1279 u32 rcedata;
1280 u32 spare2gh;
1281
1282 /* Display 1 CZ domain */
1283 u32 gt_imr;
1284 u32 gt_ier;
1285 u32 pm_imr;
1286 u32 pm_ier;
1287 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1288
1289 /* GT SA CZ domain */
1290 u32 tilectl;
1291 u32 gt_fifoctl;
1292 u32 gtlc_wake_ctrl;
1293 u32 gtlc_survive;
1294 u32 pmwgicz;
1295
1296 /* Display 2 CZ domain */
1297 u32 gu_ctl0;
1298 u32 gu_ctl1;
1299 u32 pcbr;
1300 u32 clock_gate_dis2;
1301 };
1302
1303 struct intel_rps_ei {
1304 ktime_t ktime;
1305 u32 render_c0;
1306 u32 media_c0;
1307 };
1308
1309 struct intel_gen6_power_mgmt {
1310 /*
1311 * work, interrupts_enabled and pm_iir are protected by
1312 * dev_priv->irq_lock
1313 */
1314 struct work_struct work;
1315 bool interrupts_enabled;
1316 u32 pm_iir;
1317
1318 /* PM interrupt bits that should never be masked */
1319 u32 pm_intrmsk_mbz;
1320
1321 /* Frequencies are stored in potentially platform dependent multiples.
1322 * In other words, *_freq needs to be multiplied by X to be interesting.
1323 * Soft limits are those which are used for the dynamic reclocking done
1324 * by the driver (raise frequencies under heavy loads, and lower for
1325 * lighter loads). Hard limits are those imposed by the hardware.
1326 *
1327 * A distinction is made for overclocking, which is never enabled by
1328 * default, and is considered to be above the hard limit if it's
1329 * possible at all.
1330 */
1331 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1332 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1333 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1334 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1335 u8 min_freq; /* AKA RPn. Minimum frequency */
1336 u8 boost_freq; /* Frequency to request when wait boosting */
1337 u8 idle_freq; /* Frequency to request when we are idle */
1338 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1339 u8 rp1_freq; /* "less than" RP0 power/freqency */
1340 u8 rp0_freq; /* Non-overclocked max frequency. */
1341 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
1342
1343 u8 up_threshold; /* Current %busy required to uplock */
1344 u8 down_threshold; /* Current %busy required to downclock */
1345
1346 int last_adj;
1347 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1348
1349 bool enabled;
1350 struct delayed_work autoenable_work;
1351 atomic_t num_waiters;
1352 atomic_t boosts;
1353
1354 /* manual wa residency calculations */
1355 struct intel_rps_ei ei;
1356
1357 /*
1358 * Protects RPS/RC6 register access and PCU communication.
1359 * Must be taken after struct_mutex if nested. Note that
1360 * this lock may be held for long periods of time when
1361 * talking to hw - so only take it when talking to hw!
1362 */
1363 struct mutex hw_lock;
1364 };
1365
1366 /* defined intel_pm.c */
1367 extern spinlock_t mchdev_lock;
1368
1369 struct intel_ilk_power_mgmt {
1370 u8 cur_delay;
1371 u8 min_delay;
1372 u8 max_delay;
1373 u8 fmax;
1374 u8 fstart;
1375
1376 u64 last_count1;
1377 unsigned long last_time1;
1378 unsigned long chipset_power;
1379 u64 last_count2;
1380 u64 last_time2;
1381 unsigned long gfx_power;
1382 u8 corr;
1383
1384 int c_m;
1385 int r_t;
1386 };
1387
1388 struct drm_i915_private;
1389 struct i915_power_well;
1390
1391 struct i915_power_well_ops {
1392 /*
1393 * Synchronize the well's hw state to match the current sw state, for
1394 * example enable/disable it based on the current refcount. Called
1395 * during driver init and resume time, possibly after first calling
1396 * the enable/disable handlers.
1397 */
1398 void (*sync_hw)(struct drm_i915_private *dev_priv,
1399 struct i915_power_well *power_well);
1400 /*
1401 * Enable the well and resources that depend on it (for example
1402 * interrupts located on the well). Called after the 0->1 refcount
1403 * transition.
1404 */
1405 void (*enable)(struct drm_i915_private *dev_priv,
1406 struct i915_power_well *power_well);
1407 /*
1408 * Disable the well and resources that depend on it. Called after
1409 * the 1->0 refcount transition.
1410 */
1411 void (*disable)(struct drm_i915_private *dev_priv,
1412 struct i915_power_well *power_well);
1413 /* Returns the hw enabled state. */
1414 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1415 struct i915_power_well *power_well);
1416 };
1417
1418 /* Power well structure for haswell */
1419 struct i915_power_well {
1420 const char *name;
1421 bool always_on;
1422 /* power well enable/disable usage count */
1423 int count;
1424 /* cached hw enabled state */
1425 bool hw_enabled;
1426 u64 domains;
1427 /* unique identifier for this power well */
1428 enum i915_power_well_id id;
1429 /*
1430 * Arbitraty data associated with this power well. Platform and power
1431 * well specific.
1432 */
1433 union {
1434 struct {
1435 enum dpio_phy phy;
1436 } bxt;
1437 struct {
1438 /* Mask of pipes whose IRQ logic is backed by the pw */
1439 u8 irq_pipe_mask;
1440 /* The pw is backing the VGA functionality */
1441 bool has_vga:1;
1442 bool has_fuses:1;
1443 } hsw;
1444 };
1445 const struct i915_power_well_ops *ops;
1446 };
1447
1448 struct i915_power_domains {
1449 /*
1450 * Power wells needed for initialization at driver init and suspend
1451 * time are on. They are kept on until after the first modeset.
1452 */
1453 bool init_power_on;
1454 bool initializing;
1455 int power_well_count;
1456
1457 struct mutex lock;
1458 int domain_use_count[POWER_DOMAIN_NUM];
1459 struct i915_power_well *power_wells;
1460 };
1461
1462 #define MAX_L3_SLICES 2
1463 struct intel_l3_parity {
1464 u32 *remap_info[MAX_L3_SLICES];
1465 struct work_struct error_work;
1466 int which_slice;
1467 };
1468
1469 struct i915_gem_mm {
1470 /** Memory allocator for GTT stolen memory */
1471 struct drm_mm stolen;
1472 /** Protects the usage of the GTT stolen memory allocator. This is
1473 * always the inner lock when overlapping with struct_mutex. */
1474 struct mutex stolen_lock;
1475
1476 /** List of all objects in gtt_space. Used to restore gtt
1477 * mappings on resume */
1478 struct list_head bound_list;
1479 /**
1480 * List of objects which are not bound to the GTT (thus
1481 * are idle and not used by the GPU). These objects may or may
1482 * not actually have any pages attached.
1483 */
1484 struct list_head unbound_list;
1485
1486 /** List of all objects in gtt_space, currently mmaped by userspace.
1487 * All objects within this list must also be on bound_list.
1488 */
1489 struct list_head userfault_list;
1490
1491 /**
1492 * List of objects which are pending destruction.
1493 */
1494 struct llist_head free_list;
1495 struct work_struct free_work;
1496
1497 /**
1498 * Small stash of WC pages
1499 */
1500 struct pagevec wc_stash;
1501
1502 /** Usable portion of the GTT for GEM */
1503 dma_addr_t stolen_base; /* limited to low memory (32-bit) */
1504
1505 /** PPGTT used for aliasing the PPGTT with the GTT */
1506 struct i915_hw_ppgtt *aliasing_ppgtt;
1507
1508 struct notifier_block oom_notifier;
1509 struct notifier_block vmap_notifier;
1510 struct shrinker shrinker;
1511
1512 /** LRU list of objects with fence regs on them. */
1513 struct list_head fence_list;
1514
1515 /**
1516 * Workqueue to fault in userptr pages, flushed by the execbuf
1517 * when required but otherwise left to userspace to try again
1518 * on EAGAIN.
1519 */
1520 struct workqueue_struct *userptr_wq;
1521
1522 u64 unordered_timeline;
1523
1524 /* the indicator for dispatch video commands on two BSD rings */
1525 atomic_t bsd_engine_dispatch_index;
1526
1527 /** Bit 6 swizzling required for X tiling */
1528 uint32_t bit_6_swizzle_x;
1529 /** Bit 6 swizzling required for Y tiling */
1530 uint32_t bit_6_swizzle_y;
1531
1532 /* accounting, useful for userland debugging */
1533 spinlock_t object_stat_lock;
1534 u64 object_memory;
1535 u32 object_count;
1536 };
1537
1538 struct drm_i915_error_state_buf {
1539 struct drm_i915_private *i915;
1540 unsigned bytes;
1541 unsigned size;
1542 int err;
1543 u8 *buf;
1544 loff_t start;
1545 loff_t pos;
1546 };
1547
1548 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1549 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1550
1551 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */
1552 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */
1553
1554 struct i915_gpu_error {
1555 /* For hangcheck timer */
1556 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1557 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1558
1559 struct delayed_work hangcheck_work;
1560
1561 /* For reset and error_state handling. */
1562 spinlock_t lock;
1563 /* Protected by the above dev->gpu_error.lock. */
1564 struct i915_gpu_state *first_error;
1565
1566 atomic_t pending_fb_pin;
1567
1568 unsigned long missed_irq_rings;
1569
1570 /**
1571 * State variable controlling the reset flow and count
1572 *
1573 * This is a counter which gets incremented when reset is triggered,
1574 *
1575 * Before the reset commences, the I915_RESET_BACKOFF bit is set
1576 * meaning that any waiters holding onto the struct_mutex should
1577 * relinquish the lock immediately in order for the reset to start.
1578 *
1579 * If reset is not completed succesfully, the I915_WEDGE bit is
1580 * set meaning that hardware is terminally sour and there is no
1581 * recovery. All waiters on the reset_queue will be woken when
1582 * that happens.
1583 *
1584 * This counter is used by the wait_seqno code to notice that reset
1585 * event happened and it needs to restart the entire ioctl (since most
1586 * likely the seqno it waited for won't ever signal anytime soon).
1587 *
1588 * This is important for lock-free wait paths, where no contended lock
1589 * naturally enforces the correct ordering between the bail-out of the
1590 * waiter and the gpu reset work code.
1591 */
1592 unsigned long reset_count;
1593
1594 /**
1595 * flags: Control various stages of the GPU reset
1596 *
1597 * #I915_RESET_BACKOFF - When we start a reset, we want to stop any
1598 * other users acquiring the struct_mutex. To do this we set the
1599 * #I915_RESET_BACKOFF bit in the error flags when we detect a reset
1600 * and then check for that bit before acquiring the struct_mutex (in
1601 * i915_mutex_lock_interruptible()?). I915_RESET_BACKOFF serves a
1602 * secondary role in preventing two concurrent global reset attempts.
1603 *
1604 * #I915_RESET_HANDOFF - To perform the actual GPU reset, we need the
1605 * struct_mutex. We try to acquire the struct_mutex in the reset worker,
1606 * but it may be held by some long running waiter (that we cannot
1607 * interrupt without causing trouble). Once we are ready to do the GPU
1608 * reset, we set the I915_RESET_HANDOFF bit and wakeup any waiters. If
1609 * they already hold the struct_mutex and want to participate they can
1610 * inspect the bit and do the reset directly, otherwise the worker
1611 * waits for the struct_mutex.
1612 *
1613 * #I915_RESET_ENGINE[num_engines] - Since the driver doesn't need to
1614 * acquire the struct_mutex to reset an engine, we need an explicit
1615 * flag to prevent two concurrent reset attempts in the same engine.
1616 * As the number of engines continues to grow, allocate the flags from
1617 * the most significant bits.
1618 *
1619 * #I915_WEDGED - If reset fails and we can no longer use the GPU,
1620 * we set the #I915_WEDGED bit. Prior to command submission, e.g.
1621 * i915_gem_request_alloc(), this bit is checked and the sequence
1622 * aborted (with -EIO reported to userspace) if set.
1623 */
1624 unsigned long flags;
1625 #define I915_RESET_BACKOFF 0
1626 #define I915_RESET_HANDOFF 1
1627 #define I915_RESET_MODESET 2
1628 #define I915_WEDGED (BITS_PER_LONG - 1)
1629 #define I915_RESET_ENGINE (I915_WEDGED - I915_NUM_ENGINES)
1630
1631 /** Number of times an engine has been reset */
1632 u32 reset_engine_count[I915_NUM_ENGINES];
1633
1634 /**
1635 * Waitqueue to signal when a hang is detected. Used to for waiters
1636 * to release the struct_mutex for the reset to procede.
1637 */
1638 wait_queue_head_t wait_queue;
1639
1640 /**
1641 * Waitqueue to signal when the reset has completed. Used by clients
1642 * that wait for dev_priv->mm.wedged to settle.
1643 */
1644 wait_queue_head_t reset_queue;
1645
1646 /* For missed irq/seqno simulation. */
1647 unsigned long test_irq_rings;
1648 };
1649
1650 enum modeset_restore {
1651 MODESET_ON_LID_OPEN,
1652 MODESET_DONE,
1653 MODESET_SUSPENDED,
1654 };
1655
1656 #define DP_AUX_A 0x40
1657 #define DP_AUX_B 0x10
1658 #define DP_AUX_C 0x20
1659 #define DP_AUX_D 0x30
1660
1661 #define DDC_PIN_B 0x05
1662 #define DDC_PIN_C 0x04
1663 #define DDC_PIN_D 0x06
1664
1665 struct ddi_vbt_port_info {
1666 /*
1667 * This is an index in the HDMI/DVI DDI buffer translation table.
1668 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1669 * populate this field.
1670 */
1671 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1672 uint8_t hdmi_level_shift;
1673
1674 uint8_t supports_dvi:1;
1675 uint8_t supports_hdmi:1;
1676 uint8_t supports_dp:1;
1677 uint8_t supports_edp:1;
1678
1679 uint8_t alternate_aux_channel;
1680 uint8_t alternate_ddc_pin;
1681
1682 uint8_t dp_boost_level;
1683 uint8_t hdmi_boost_level;
1684 };
1685
1686 enum psr_lines_to_wait {
1687 PSR_0_LINES_TO_WAIT = 0,
1688 PSR_1_LINE_TO_WAIT,
1689 PSR_4_LINES_TO_WAIT,
1690 PSR_8_LINES_TO_WAIT
1691 };
1692
1693 struct intel_vbt_data {
1694 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1695 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1696
1697 /* Feature bits */
1698 unsigned int int_tv_support:1;
1699 unsigned int lvds_dither:1;
1700 unsigned int lvds_vbt:1;
1701 unsigned int int_crt_support:1;
1702 unsigned int lvds_use_ssc:1;
1703 unsigned int display_clock_mode:1;
1704 unsigned int fdi_rx_polarity_inverted:1;
1705 unsigned int panel_type:4;
1706 int lvds_ssc_freq;
1707 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1708
1709 enum drrs_support_type drrs_type;
1710
1711 struct {
1712 int rate;
1713 int lanes;
1714 int preemphasis;
1715 int vswing;
1716 bool low_vswing;
1717 bool initialized;
1718 bool support;
1719 int bpp;
1720 struct edp_power_seq pps;
1721 } edp;
1722
1723 struct {
1724 bool full_link;
1725 bool require_aux_wakeup;
1726 int idle_frames;
1727 enum psr_lines_to_wait lines_to_wait;
1728 int tp1_wakeup_time;
1729 int tp2_tp3_wakeup_time;
1730 } psr;
1731
1732 struct {
1733 u16 pwm_freq_hz;
1734 bool present;
1735 bool active_low_pwm;
1736 u8 min_brightness; /* min_brightness/255 of max */
1737 u8 controller; /* brightness controller number */
1738 enum intel_backlight_type type;
1739 } backlight;
1740
1741 /* MIPI DSI */
1742 struct {
1743 u16 panel_id;
1744 struct mipi_config *config;
1745 struct mipi_pps_data *pps;
1746 u8 seq_version;
1747 u32 size;
1748 u8 *data;
1749 const u8 *sequence[MIPI_SEQ_MAX];
1750 } dsi;
1751
1752 int crt_ddc_pin;
1753
1754 int child_dev_num;
1755 struct child_device_config *child_dev;
1756
1757 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1758 struct sdvo_device_mapping sdvo_mappings[2];
1759 };
1760
1761 enum intel_ddb_partitioning {
1762 INTEL_DDB_PART_1_2,
1763 INTEL_DDB_PART_5_6, /* IVB+ */
1764 };
1765
1766 struct intel_wm_level {
1767 bool enable;
1768 uint32_t pri_val;
1769 uint32_t spr_val;
1770 uint32_t cur_val;
1771 uint32_t fbc_val;
1772 };
1773
1774 struct ilk_wm_values {
1775 uint32_t wm_pipe[3];
1776 uint32_t wm_lp[3];
1777 uint32_t wm_lp_spr[3];
1778 uint32_t wm_linetime[3];
1779 bool enable_fbc_wm;
1780 enum intel_ddb_partitioning partitioning;
1781 };
1782
1783 struct g4x_pipe_wm {
1784 uint16_t plane[I915_MAX_PLANES];
1785 uint16_t fbc;
1786 };
1787
1788 struct g4x_sr_wm {
1789 uint16_t plane;
1790 uint16_t cursor;
1791 uint16_t fbc;
1792 };
1793
1794 struct vlv_wm_ddl_values {
1795 uint8_t plane[I915_MAX_PLANES];
1796 };
1797
1798 struct vlv_wm_values {
1799 struct g4x_pipe_wm pipe[3];
1800 struct g4x_sr_wm sr;
1801 struct vlv_wm_ddl_values ddl[3];
1802 uint8_t level;
1803 bool cxsr;
1804 };
1805
1806 struct g4x_wm_values {
1807 struct g4x_pipe_wm pipe[2];
1808 struct g4x_sr_wm sr;
1809 struct g4x_sr_wm hpll;
1810 bool cxsr;
1811 bool hpll_en;
1812 bool fbc_en;
1813 };
1814
1815 struct skl_ddb_entry {
1816 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1817 };
1818
1819 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1820 {
1821 return entry->end - entry->start;
1822 }
1823
1824 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1825 const struct skl_ddb_entry *e2)
1826 {
1827 if (e1->start == e2->start && e1->end == e2->end)
1828 return true;
1829
1830 return false;
1831 }
1832
1833 struct skl_ddb_allocation {
1834 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1835 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1836 };
1837
1838 struct skl_wm_values {
1839 unsigned dirty_pipes;
1840 struct skl_ddb_allocation ddb;
1841 };
1842
1843 struct skl_wm_level {
1844 bool plane_en;
1845 uint16_t plane_res_b;
1846 uint8_t plane_res_l;
1847 };
1848
1849 /* Stores plane specific WM parameters */
1850 struct skl_wm_params {
1851 bool x_tiled, y_tiled;
1852 bool rc_surface;
1853 uint32_t width;
1854 uint8_t cpp;
1855 uint32_t plane_pixel_rate;
1856 uint32_t y_min_scanlines;
1857 uint32_t plane_bytes_per_line;
1858 uint_fixed_16_16_t plane_blocks_per_line;
1859 uint_fixed_16_16_t y_tile_minimum;
1860 uint32_t linetime_us;
1861 };
1862
1863 /*
1864 * This struct helps tracking the state needed for runtime PM, which puts the
1865 * device in PCI D3 state. Notice that when this happens, nothing on the
1866 * graphics device works, even register access, so we don't get interrupts nor
1867 * anything else.
1868 *
1869 * Every piece of our code that needs to actually touch the hardware needs to
1870 * either call intel_runtime_pm_get or call intel_display_power_get with the
1871 * appropriate power domain.
1872 *
1873 * Our driver uses the autosuspend delay feature, which means we'll only really
1874 * suspend if we stay with zero refcount for a certain amount of time. The
1875 * default value is currently very conservative (see intel_runtime_pm_enable), but
1876 * it can be changed with the standard runtime PM files from sysfs.
1877 *
1878 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1879 * goes back to false exactly before we reenable the IRQs. We use this variable
1880 * to check if someone is trying to enable/disable IRQs while they're supposed
1881 * to be disabled. This shouldn't happen and we'll print some error messages in
1882 * case it happens.
1883 *
1884 * For more, read the Documentation/power/runtime_pm.txt.
1885 */
1886 struct i915_runtime_pm {
1887 atomic_t wakeref_count;
1888 bool suspended;
1889 bool irqs_enabled;
1890 };
1891
1892 enum intel_pipe_crc_source {
1893 INTEL_PIPE_CRC_SOURCE_NONE,
1894 INTEL_PIPE_CRC_SOURCE_PLANE1,
1895 INTEL_PIPE_CRC_SOURCE_PLANE2,
1896 INTEL_PIPE_CRC_SOURCE_PF,
1897 INTEL_PIPE_CRC_SOURCE_PIPE,
1898 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1899 INTEL_PIPE_CRC_SOURCE_TV,
1900 INTEL_PIPE_CRC_SOURCE_DP_B,
1901 INTEL_PIPE_CRC_SOURCE_DP_C,
1902 INTEL_PIPE_CRC_SOURCE_DP_D,
1903 INTEL_PIPE_CRC_SOURCE_AUTO,
1904 INTEL_PIPE_CRC_SOURCE_MAX,
1905 };
1906
1907 struct intel_pipe_crc_entry {
1908 uint32_t frame;
1909 uint32_t crc[5];
1910 };
1911
1912 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1913 struct intel_pipe_crc {
1914 spinlock_t lock;
1915 bool opened; /* exclusive access to the result file */
1916 struct intel_pipe_crc_entry *entries;
1917 enum intel_pipe_crc_source source;
1918 int head, tail;
1919 wait_queue_head_t wq;
1920 int skipped;
1921 };
1922
1923 struct i915_frontbuffer_tracking {
1924 spinlock_t lock;
1925
1926 /*
1927 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1928 * scheduled flips.
1929 */
1930 unsigned busy_bits;
1931 unsigned flip_bits;
1932 };
1933
1934 struct i915_wa_reg {
1935 i915_reg_t addr;
1936 u32 value;
1937 /* bitmask representing WA bits */
1938 u32 mask;
1939 };
1940
1941 /*
1942 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1943 * allowing it for RCS as we don't foresee any requirement of having
1944 * a whitelist for other engines. When it is really required for
1945 * other engines then the limit need to be increased.
1946 */
1947 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1948
1949 struct i915_workarounds {
1950 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1951 u32 count;
1952 u32 hw_whitelist_count[I915_NUM_ENGINES];
1953 };
1954
1955 struct i915_virtual_gpu {
1956 bool active;
1957 u32 caps;
1958 };
1959
1960 /* used in computing the new watermarks state */
1961 struct intel_wm_config {
1962 unsigned int num_pipes_active;
1963 bool sprites_enabled;
1964 bool sprites_scaled;
1965 };
1966
1967 struct i915_oa_format {
1968 u32 format;
1969 int size;
1970 };
1971
1972 struct i915_oa_reg {
1973 i915_reg_t addr;
1974 u32 value;
1975 };
1976
1977 struct i915_oa_config {
1978 char uuid[UUID_STRING_LEN + 1];
1979 int id;
1980
1981 const struct i915_oa_reg *mux_regs;
1982 u32 mux_regs_len;
1983 const struct i915_oa_reg *b_counter_regs;
1984 u32 b_counter_regs_len;
1985 const struct i915_oa_reg *flex_regs;
1986 u32 flex_regs_len;
1987
1988 struct attribute_group sysfs_metric;
1989 struct attribute *attrs[2];
1990 struct device_attribute sysfs_metric_id;
1991
1992 atomic_t ref_count;
1993 };
1994
1995 struct i915_perf_stream;
1996
1997 /**
1998 * struct i915_perf_stream_ops - the OPs to support a specific stream type
1999 */
2000 struct i915_perf_stream_ops {
2001 /**
2002 * @enable: Enables the collection of HW samples, either in response to
2003 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
2004 * without `I915_PERF_FLAG_DISABLED`.
2005 */
2006 void (*enable)(struct i915_perf_stream *stream);
2007
2008 /**
2009 * @disable: Disables the collection of HW samples, either in response
2010 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
2011 * the stream.
2012 */
2013 void (*disable)(struct i915_perf_stream *stream);
2014
2015 /**
2016 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
2017 * once there is something ready to read() for the stream
2018 */
2019 void (*poll_wait)(struct i915_perf_stream *stream,
2020 struct file *file,
2021 poll_table *wait);
2022
2023 /**
2024 * @wait_unlocked: For handling a blocking read, wait until there is
2025 * something to ready to read() for the stream. E.g. wait on the same
2026 * wait queue that would be passed to poll_wait().
2027 */
2028 int (*wait_unlocked)(struct i915_perf_stream *stream);
2029
2030 /**
2031 * @read: Copy buffered metrics as records to userspace
2032 * **buf**: the userspace, destination buffer
2033 * **count**: the number of bytes to copy, requested by userspace
2034 * **offset**: zero at the start of the read, updated as the read
2035 * proceeds, it represents how many bytes have been copied so far and
2036 * the buffer offset for copying the next record.
2037 *
2038 * Copy as many buffered i915 perf samples and records for this stream
2039 * to userspace as will fit in the given buffer.
2040 *
2041 * Only write complete records; returning -%ENOSPC if there isn't room
2042 * for a complete record.
2043 *
2044 * Return any error condition that results in a short read such as
2045 * -%ENOSPC or -%EFAULT, even though these may be squashed before
2046 * returning to userspace.
2047 */
2048 int (*read)(struct i915_perf_stream *stream,
2049 char __user *buf,
2050 size_t count,
2051 size_t *offset);
2052
2053 /**
2054 * @destroy: Cleanup any stream specific resources.
2055 *
2056 * The stream will always be disabled before this is called.
2057 */
2058 void (*destroy)(struct i915_perf_stream *stream);
2059 };
2060
2061 /**
2062 * struct i915_perf_stream - state for a single open stream FD
2063 */
2064 struct i915_perf_stream {
2065 /**
2066 * @dev_priv: i915 drm device
2067 */
2068 struct drm_i915_private *dev_priv;
2069
2070 /**
2071 * @link: Links the stream into ``&drm_i915_private->streams``
2072 */
2073 struct list_head link;
2074
2075 /**
2076 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
2077 * properties given when opening a stream, representing the contents
2078 * of a single sample as read() by userspace.
2079 */
2080 u32 sample_flags;
2081
2082 /**
2083 * @sample_size: Considering the configured contents of a sample
2084 * combined with the required header size, this is the total size
2085 * of a single sample record.
2086 */
2087 int sample_size;
2088
2089 /**
2090 * @ctx: %NULL if measuring system-wide across all contexts or a
2091 * specific context that is being monitored.
2092 */
2093 struct i915_gem_context *ctx;
2094
2095 /**
2096 * @enabled: Whether the stream is currently enabled, considering
2097 * whether the stream was opened in a disabled state and based
2098 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
2099 */
2100 bool enabled;
2101
2102 /**
2103 * @ops: The callbacks providing the implementation of this specific
2104 * type of configured stream.
2105 */
2106 const struct i915_perf_stream_ops *ops;
2107
2108 /**
2109 * @oa_config: The OA configuration used by the stream.
2110 */
2111 struct i915_oa_config *oa_config;
2112 };
2113
2114 /**
2115 * struct i915_oa_ops - Gen specific implementation of an OA unit stream
2116 */
2117 struct i915_oa_ops {
2118 /**
2119 * @is_valid_b_counter_reg: Validates register's address for
2120 * programming boolean counters for a particular platform.
2121 */
2122 bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
2123 u32 addr);
2124
2125 /**
2126 * @is_valid_mux_reg: Validates register's address for programming mux
2127 * for a particular platform.
2128 */
2129 bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
2130
2131 /**
2132 * @is_valid_flex_reg: Validates register's address for programming
2133 * flex EU filtering for a particular platform.
2134 */
2135 bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
2136
2137 /**
2138 * @init_oa_buffer: Resets the head and tail pointers of the
2139 * circular buffer for periodic OA reports.
2140 *
2141 * Called when first opening a stream for OA metrics, but also may be
2142 * called in response to an OA buffer overflow or other error
2143 * condition.
2144 *
2145 * Note it may be necessary to clear the full OA buffer here as part of
2146 * maintaining the invariable that new reports must be written to
2147 * zeroed memory for us to be able to reliable detect if an expected
2148 * report has not yet landed in memory. (At least on Haswell the OA
2149 * buffer tail pointer is not synchronized with reports being visible
2150 * to the CPU)
2151 */
2152 void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
2153
2154 /**
2155 * @enable_metric_set: Selects and applies any MUX configuration to set
2156 * up the Boolean and Custom (B/C) counters that are part of the
2157 * counter reports being sampled. May apply system constraints such as
2158 * disabling EU clock gating as required.
2159 */
2160 int (*enable_metric_set)(struct drm_i915_private *dev_priv,
2161 const struct i915_oa_config *oa_config);
2162
2163 /**
2164 * @disable_metric_set: Remove system constraints associated with using
2165 * the OA unit.
2166 */
2167 void (*disable_metric_set)(struct drm_i915_private *dev_priv);
2168
2169 /**
2170 * @oa_enable: Enable periodic sampling
2171 */
2172 void (*oa_enable)(struct drm_i915_private *dev_priv);
2173
2174 /**
2175 * @oa_disable: Disable periodic sampling
2176 */
2177 void (*oa_disable)(struct drm_i915_private *dev_priv);
2178
2179 /**
2180 * @read: Copy data from the circular OA buffer into a given userspace
2181 * buffer.
2182 */
2183 int (*read)(struct i915_perf_stream *stream,
2184 char __user *buf,
2185 size_t count,
2186 size_t *offset);
2187
2188 /**
2189 * @oa_hw_tail_read: read the OA tail pointer register
2190 *
2191 * In particular this enables us to share all the fiddly code for
2192 * handling the OA unit tail pointer race that affects multiple
2193 * generations.
2194 */
2195 u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
2196 };
2197
2198 struct intel_cdclk_state {
2199 unsigned int cdclk, vco, ref;
2200 };
2201
2202 struct drm_i915_private {
2203 struct drm_device drm;
2204
2205 struct kmem_cache *objects;
2206 struct kmem_cache *vmas;
2207 struct kmem_cache *luts;
2208 struct kmem_cache *requests;
2209 struct kmem_cache *dependencies;
2210 struct kmem_cache *priorities;
2211
2212 const struct intel_device_info info;
2213
2214 void __iomem *regs;
2215
2216 struct intel_uncore uncore;
2217
2218 struct i915_virtual_gpu vgpu;
2219
2220 struct intel_gvt *gvt;
2221
2222 struct intel_huc huc;
2223 struct intel_guc guc;
2224
2225 struct intel_csr csr;
2226
2227 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
2228
2229 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
2230 * controller on different i2c buses. */
2231 struct mutex gmbus_mutex;
2232
2233 /**
2234 * Base address of the gmbus and gpio block.
2235 */
2236 uint32_t gpio_mmio_base;
2237
2238 /* MMIO base address for MIPI regs */
2239 uint32_t mipi_mmio_base;
2240
2241 uint32_t psr_mmio_base;
2242
2243 uint32_t pps_mmio_base;
2244
2245 wait_queue_head_t gmbus_wait_queue;
2246
2247 struct pci_dev *bridge_dev;
2248 struct i915_gem_context *kernel_context;
2249 struct intel_engine_cs *engine[I915_NUM_ENGINES];
2250 struct i915_vma *semaphore;
2251
2252 struct drm_dma_handle *status_page_dmah;
2253 struct resource mch_res;
2254
2255 /* protects the irq masks */
2256 spinlock_t irq_lock;
2257
2258 bool display_irqs_enabled;
2259
2260 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
2261 struct pm_qos_request pm_qos;
2262
2263 /* Sideband mailbox protection */
2264 struct mutex sb_lock;
2265
2266 /** Cached value of IMR to avoid reads in updating the bitfield */
2267 union {
2268 u32 irq_mask;
2269 u32 de_irq_mask[I915_MAX_PIPES];
2270 };
2271 u32 gt_irq_mask;
2272 u32 pm_imr;
2273 u32 pm_ier;
2274 u32 pm_rps_events;
2275 u32 pm_guc_events;
2276 u32 pipestat_irq_mask[I915_MAX_PIPES];
2277
2278 struct i915_hotplug hotplug;
2279 struct intel_fbc fbc;
2280 struct i915_drrs drrs;
2281 struct intel_opregion opregion;
2282 struct intel_vbt_data vbt;
2283
2284 bool preserve_bios_swizzle;
2285
2286 /* overlay */
2287 struct intel_overlay *overlay;
2288
2289 /* backlight registers and fields in struct intel_panel */
2290 struct mutex backlight_lock;
2291
2292 /* LVDS info */
2293 bool no_aux_handshake;
2294
2295 /* protects panel power sequencer state */
2296 struct mutex pps_mutex;
2297
2298 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
2299 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
2300
2301 unsigned int fsb_freq, mem_freq, is_ddr3;
2302 unsigned int skl_preferred_vco_freq;
2303 unsigned int max_cdclk_freq;
2304
2305 unsigned int max_dotclk_freq;
2306 unsigned int rawclk_freq;
2307 unsigned int hpll_freq;
2308 unsigned int czclk_freq;
2309
2310 struct {
2311 /*
2312 * The current logical cdclk state.
2313 * See intel_atomic_state.cdclk.logical
2314 *
2315 * For reading holding any crtc lock is sufficient,
2316 * for writing must hold all of them.
2317 */
2318 struct intel_cdclk_state logical;
2319 /*
2320 * The current actual cdclk state.
2321 * See intel_atomic_state.cdclk.actual
2322 */
2323 struct intel_cdclk_state actual;
2324 /* The current hardware cdclk state */
2325 struct intel_cdclk_state hw;
2326 } cdclk;
2327
2328 /**
2329 * wq - Driver workqueue for GEM.
2330 *
2331 * NOTE: Work items scheduled here are not allowed to grab any modeset
2332 * locks, for otherwise the flushing done in the pageflip code will
2333 * result in deadlocks.
2334 */
2335 struct workqueue_struct *wq;
2336
2337 /* Display functions */
2338 struct drm_i915_display_funcs display;
2339
2340 /* PCH chipset type */
2341 enum intel_pch pch_type;
2342 unsigned short pch_id;
2343
2344 unsigned long quirks;
2345
2346 enum modeset_restore modeset_restore;
2347 struct mutex modeset_restore_lock;
2348 struct drm_atomic_state *modeset_restore_state;
2349 struct drm_modeset_acquire_ctx reset_ctx;
2350
2351 struct list_head vm_list; /* Global list of all address spaces */
2352 struct i915_ggtt ggtt; /* VM representing the global address space */
2353
2354 struct i915_gem_mm mm;
2355 DECLARE_HASHTABLE(mm_structs, 7);
2356 struct mutex mm_lock;
2357
2358 struct intel_ppat ppat;
2359
2360 /* Kernel Modesetting */
2361
2362 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
2363 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
2364
2365 #ifdef CONFIG_DEBUG_FS
2366 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
2367 #endif
2368
2369 /* dpll and cdclk state is protected by connection_mutex */
2370 int num_shared_dpll;
2371 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
2372 const struct intel_dpll_mgr *dpll_mgr;
2373
2374 /*
2375 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
2376 * Must be global rather than per dpll, because on some platforms
2377 * plls share registers.
2378 */
2379 struct mutex dpll_lock;
2380
2381 unsigned int active_crtcs;
2382 /* minimum acceptable cdclk for each pipe */
2383 int min_cdclk[I915_MAX_PIPES];
2384
2385 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
2386
2387 struct i915_workarounds workarounds;
2388
2389 struct i915_frontbuffer_tracking fb_tracking;
2390
2391 struct intel_atomic_helper {
2392 struct llist_head free_list;
2393 struct work_struct free_work;
2394 } atomic_helper;
2395
2396 u16 orig_clock;
2397
2398 bool mchbar_need_disable;
2399
2400 struct intel_l3_parity l3_parity;
2401
2402 /* Cannot be determined by PCIID. You must always read a register. */
2403 u32 edram_cap;
2404
2405 /* gen6+ rps state */
2406 struct intel_gen6_power_mgmt rps;
2407
2408 /* ilk-only ips/rps state. Everything in here is protected by the global
2409 * mchdev_lock in intel_pm.c */
2410 struct intel_ilk_power_mgmt ips;
2411
2412 struct i915_power_domains power_domains;
2413
2414 struct i915_psr psr;
2415
2416 struct i915_gpu_error gpu_error;
2417
2418 struct drm_i915_gem_object *vlv_pctx;
2419
2420 /* list of fbdev register on this device */
2421 struct intel_fbdev *fbdev;
2422 struct work_struct fbdev_suspend_work;
2423
2424 struct drm_property *broadcast_rgb_property;
2425 struct drm_property *force_audio_property;
2426
2427 /* hda/i915 audio component */
2428 struct i915_audio_component *audio_component;
2429 bool audio_component_registered;
2430 /**
2431 * av_mutex - mutex for audio/video sync
2432 *
2433 */
2434 struct mutex av_mutex;
2435
2436 struct {
2437 struct list_head list;
2438 struct llist_head free_list;
2439 struct work_struct free_work;
2440
2441 /* The hw wants to have a stable context identifier for the
2442 * lifetime of the context (for OA, PASID, faults, etc).
2443 * This is limited in execlists to 21 bits.
2444 */
2445 struct ida hw_ida;
2446 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
2447 } contexts;
2448
2449 u32 fdi_rx_config;
2450
2451 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
2452 u32 chv_phy_control;
2453 /*
2454 * Shadows for CHV DPLL_MD regs to keep the state
2455 * checker somewhat working in the presence hardware
2456 * crappiness (can't read out DPLL_MD for pipes B & C).
2457 */
2458 u32 chv_dpll_md[I915_MAX_PIPES];
2459 u32 bxt_phy_grc;
2460
2461 u32 suspend_count;
2462 bool suspended_to_idle;
2463 struct i915_suspend_saved_registers regfile;
2464 struct vlv_s0ix_state vlv_s0ix_state;
2465
2466 enum {
2467 I915_SAGV_UNKNOWN = 0,
2468 I915_SAGV_DISABLED,
2469 I915_SAGV_ENABLED,
2470 I915_SAGV_NOT_CONTROLLED
2471 } sagv_status;
2472
2473 struct {
2474 /*
2475 * Raw watermark latency values:
2476 * in 0.1us units for WM0,
2477 * in 0.5us units for WM1+.
2478 */
2479 /* primary */
2480 uint16_t pri_latency[5];
2481 /* sprite */
2482 uint16_t spr_latency[5];
2483 /* cursor */
2484 uint16_t cur_latency[5];
2485 /*
2486 * Raw watermark memory latency values
2487 * for SKL for all 8 levels
2488 * in 1us units.
2489 */
2490 uint16_t skl_latency[8];
2491
2492 /* current hardware state */
2493 union {
2494 struct ilk_wm_values hw;
2495 struct skl_wm_values skl_hw;
2496 struct vlv_wm_values vlv;
2497 struct g4x_wm_values g4x;
2498 };
2499
2500 uint8_t max_level;
2501
2502 /*
2503 * Should be held around atomic WM register writing; also
2504 * protects * intel_crtc->wm.active and
2505 * cstate->wm.need_postvbl_update.
2506 */
2507 struct mutex wm_mutex;
2508
2509 /*
2510 * Set during HW readout of watermarks/DDB. Some platforms
2511 * need to know when we're still using BIOS-provided values
2512 * (which we don't fully trust).
2513 */
2514 bool distrust_bios_wm;
2515 } wm;
2516
2517 struct i915_runtime_pm pm;
2518
2519 struct {
2520 bool initialized;
2521
2522 struct kobject *metrics_kobj;
2523 struct ctl_table_header *sysctl_header;
2524
2525 /*
2526 * Lock associated with adding/modifying/removing OA configs
2527 * in dev_priv->perf.metrics_idr.
2528 */
2529 struct mutex metrics_lock;
2530
2531 /*
2532 * List of dynamic configurations, you need to hold
2533 * dev_priv->perf.metrics_lock to access it.
2534 */
2535 struct idr metrics_idr;
2536
2537 /*
2538 * Lock associated with anything below within this structure
2539 * except exclusive_stream.
2540 */
2541 struct mutex lock;
2542 struct list_head streams;
2543
2544 struct {
2545 /*
2546 * The stream currently using the OA unit. If accessed
2547 * outside a syscall associated to its file
2548 * descriptor, you need to hold
2549 * dev_priv->drm.struct_mutex.
2550 */
2551 struct i915_perf_stream *exclusive_stream;
2552
2553 u32 specific_ctx_id;
2554
2555 struct hrtimer poll_check_timer;
2556 wait_queue_head_t poll_wq;
2557 bool pollin;
2558
2559 /**
2560 * For rate limiting any notifications of spurious
2561 * invalid OA reports
2562 */
2563 struct ratelimit_state spurious_report_rs;
2564
2565 bool periodic;
2566 int period_exponent;
2567 int timestamp_frequency;
2568
2569 struct i915_oa_config test_config;
2570
2571 struct {
2572 struct i915_vma *vma;
2573 u8 *vaddr;
2574 u32 last_ctx_id;
2575 int format;
2576 int format_size;
2577
2578 /**
2579 * Locks reads and writes to all head/tail state
2580 *
2581 * Consider: the head and tail pointer state
2582 * needs to be read consistently from a hrtimer
2583 * callback (atomic context) and read() fop
2584 * (user context) with tail pointer updates
2585 * happening in atomic context and head updates
2586 * in user context and the (unlikely)
2587 * possibility of read() errors needing to
2588 * reset all head/tail state.
2589 *
2590 * Note: Contention or performance aren't
2591 * currently a significant concern here
2592 * considering the relatively low frequency of
2593 * hrtimer callbacks (5ms period) and that
2594 * reads typically only happen in response to a
2595 * hrtimer event and likely complete before the
2596 * next callback.
2597 *
2598 * Note: This lock is not held *while* reading
2599 * and copying data to userspace so the value
2600 * of head observed in htrimer callbacks won't
2601 * represent any partial consumption of data.
2602 */
2603 spinlock_t ptr_lock;
2604
2605 /**
2606 * One 'aging' tail pointer and one 'aged'
2607 * tail pointer ready to used for reading.
2608 *
2609 * Initial values of 0xffffffff are invalid
2610 * and imply that an update is required
2611 * (and should be ignored by an attempted
2612 * read)
2613 */
2614 struct {
2615 u32 offset;
2616 } tails[2];
2617
2618 /**
2619 * Index for the aged tail ready to read()
2620 * data up to.
2621 */
2622 unsigned int aged_tail_idx;
2623
2624 /**
2625 * A monotonic timestamp for when the current
2626 * aging tail pointer was read; used to
2627 * determine when it is old enough to trust.
2628 */
2629 u64 aging_timestamp;
2630
2631 /**
2632 * Although we can always read back the head
2633 * pointer register, we prefer to avoid
2634 * trusting the HW state, just to avoid any
2635 * risk that some hardware condition could
2636 * somehow bump the head pointer unpredictably
2637 * and cause us to forward the wrong OA buffer
2638 * data to userspace.
2639 */
2640 u32 head;
2641 } oa_buffer;
2642
2643 u32 gen7_latched_oastatus1;
2644 u32 ctx_oactxctrl_offset;
2645 u32 ctx_flexeu0_offset;
2646
2647 /**
2648 * The RPT_ID/reason field for Gen8+ includes a bit
2649 * to determine if the CTX ID in the report is valid
2650 * but the specific bit differs between Gen 8 and 9
2651 */
2652 u32 gen8_valid_ctx_bit;
2653
2654 struct i915_oa_ops ops;
2655 const struct i915_oa_format *oa_formats;
2656 } oa;
2657 } perf;
2658
2659 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2660 struct {
2661 void (*resume)(struct drm_i915_private *);
2662 void (*cleanup_engine)(struct intel_engine_cs *engine);
2663
2664 struct list_head timelines;
2665 struct i915_gem_timeline global_timeline;
2666 u32 active_requests;
2667
2668 /**
2669 * Is the GPU currently considered idle, or busy executing
2670 * userspace requests? Whilst idle, we allow runtime power
2671 * management to power down the hardware and display clocks.
2672 * In order to reduce the effect on performance, there
2673 * is a slight delay before we do so.
2674 */
2675 bool awake;
2676
2677 /**
2678 * We leave the user IRQ off as much as possible,
2679 * but this means that requests will finish and never
2680 * be retired once the system goes idle. Set a timer to
2681 * fire periodically while the ring is running. When it
2682 * fires, go retire requests.
2683 */
2684 struct delayed_work retire_work;
2685
2686 /**
2687 * When we detect an idle GPU, we want to turn on
2688 * powersaving features. So once we see that there
2689 * are no more requests outstanding and no more
2690 * arrive within a small period of time, we fire
2691 * off the idle_work.
2692 */
2693 struct delayed_work idle_work;
2694
2695 ktime_t last_init_time;
2696 } gt;
2697
2698 /* perform PHY state sanity checks? */
2699 bool chv_phy_assert[2];
2700
2701 bool ipc_enabled;
2702
2703 /* Used to save the pipe-to-encoder mapping for audio */
2704 struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2705
2706 /* necessary resource sharing with HDMI LPE audio driver. */
2707 struct {
2708 struct platform_device *platdev;
2709 int irq;
2710 } lpe_audio;
2711
2712 /*
2713 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2714 * will be rejected. Instead look for a better place.
2715 */
2716 };
2717
2718 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2719 {
2720 return container_of(dev, struct drm_i915_private, drm);
2721 }
2722
2723 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2724 {
2725 return to_i915(dev_get_drvdata(kdev));
2726 }
2727
2728 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2729 {
2730 return container_of(guc, struct drm_i915_private, guc);
2731 }
2732
2733 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2734 {
2735 return container_of(huc, struct drm_i915_private, huc);
2736 }
2737
2738 /* Simple iterator over all initialised engines */
2739 #define for_each_engine(engine__, dev_priv__, id__) \
2740 for ((id__) = 0; \
2741 (id__) < I915_NUM_ENGINES; \
2742 (id__)++) \
2743 for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2744
2745 /* Iterator over subset of engines selected by mask */
2746 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2747 for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask; \
2748 tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2749
2750 enum hdmi_force_audio {
2751 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2752 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2753 HDMI_AUDIO_AUTO, /* trust EDID */
2754 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2755 };
2756
2757 #define I915_GTT_OFFSET_NONE ((u32)-1)
2758
2759 /*
2760 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2761 * considered to be the frontbuffer for the given plane interface-wise. This
2762 * doesn't mean that the hw necessarily already scans it out, but that any
2763 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2764 *
2765 * We have one bit per pipe and per scanout plane type.
2766 */
2767 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2768 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2769 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2770 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2771 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2772 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2773 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2774 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2775 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2776 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2777 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2778 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2779
2780 /*
2781 * Optimised SGL iterator for GEM objects
2782 */
2783 static __always_inline struct sgt_iter {
2784 struct scatterlist *sgp;
2785 union {
2786 unsigned long pfn;
2787 dma_addr_t dma;
2788 };
2789 unsigned int curr;
2790 unsigned int max;
2791 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2792 struct sgt_iter s = { .sgp = sgl };
2793
2794 if (s.sgp) {
2795 s.max = s.curr = s.sgp->offset;
2796 s.max += s.sgp->length;
2797 if (dma)
2798 s.dma = sg_dma_address(s.sgp);
2799 else
2800 s.pfn = page_to_pfn(sg_page(s.sgp));
2801 }
2802
2803 return s;
2804 }
2805
2806 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2807 {
2808 ++sg;
2809 if (unlikely(sg_is_chain(sg)))
2810 sg = sg_chain_ptr(sg);
2811 return sg;
2812 }
2813
2814 /**
2815 * __sg_next - return the next scatterlist entry in a list
2816 * @sg: The current sg entry
2817 *
2818 * Description:
2819 * If the entry is the last, return NULL; otherwise, step to the next
2820 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2821 * otherwise just return the pointer to the current element.
2822 **/
2823 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2824 {
2825 #ifdef CONFIG_DEBUG_SG
2826 BUG_ON(sg->sg_magic != SG_MAGIC);
2827 #endif
2828 return sg_is_last(sg) ? NULL : ____sg_next(sg);
2829 }
2830
2831 /**
2832 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2833 * @__dmap: DMA address (output)
2834 * @__iter: 'struct sgt_iter' (iterator state, internal)
2835 * @__sgt: sg_table to iterate over (input)
2836 */
2837 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2838 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2839 ((__dmap) = (__iter).dma + (__iter).curr); \
2840 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \
2841 (__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0 : 0)
2842
2843 /**
2844 * for_each_sgt_page - iterate over the pages of the given sg_table
2845 * @__pp: page pointer (output)
2846 * @__iter: 'struct sgt_iter' (iterator state, internal)
2847 * @__sgt: sg_table to iterate over (input)
2848 */
2849 #define for_each_sgt_page(__pp, __iter, __sgt) \
2850 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2851 ((__pp) = (__iter).pfn == 0 ? NULL : \
2852 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2853 (((__iter).curr += PAGE_SIZE) >= (__iter).max) ? \
2854 (__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0 : 0)
2855
2856 static inline unsigned int i915_sg_segment_size(void)
2857 {
2858 unsigned int size = swiotlb_max_segment();
2859
2860 if (size == 0)
2861 return SCATTERLIST_MAX_SEGMENT;
2862
2863 size = rounddown(size, PAGE_SIZE);
2864 /* swiotlb_max_segment_size can return 1 byte when it means one page. */
2865 if (size < PAGE_SIZE)
2866 size = PAGE_SIZE;
2867
2868 return size;
2869 }
2870
2871 static inline const struct intel_device_info *
2872 intel_info(const struct drm_i915_private *dev_priv)
2873 {
2874 return &dev_priv->info;
2875 }
2876
2877 #define INTEL_INFO(dev_priv) intel_info((dev_priv))
2878
2879 #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen)
2880 #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id)
2881
2882 #define REVID_FOREVER 0xff
2883 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision)
2884
2885 #define GEN_FOREVER (0)
2886
2887 #define INTEL_GEN_MASK(s, e) ( \
2888 BUILD_BUG_ON_ZERO(!__builtin_constant_p(s)) + \
2889 BUILD_BUG_ON_ZERO(!__builtin_constant_p(e)) + \
2890 GENMASK((e) != GEN_FOREVER ? (e) - 1 : BITS_PER_LONG - 1, \
2891 (s) != GEN_FOREVER ? (s) - 1 : 0) \
2892 )
2893
2894 /*
2895 * Returns true if Gen is in inclusive range [Start, End].
2896 *
2897 * Use GEN_FOREVER for unbound start and or end.
2898 */
2899 #define IS_GEN(dev_priv, s, e) \
2900 (!!((dev_priv)->info.gen_mask & INTEL_GEN_MASK((s), (e))))
2901
2902 /*
2903 * Return true if revision is in range [since,until] inclusive.
2904 *
2905 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2906 */
2907 #define IS_REVID(p, since, until) \
2908 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2909
2910 #define IS_PLATFORM(dev_priv, p) ((dev_priv)->info.platform == (p))
2911
2912 #define IS_I830(dev_priv) IS_PLATFORM(dev_priv, INTEL_I830)
2913 #define IS_I845G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I845G)
2914 #define IS_I85X(dev_priv) IS_PLATFORM(dev_priv, INTEL_I85X)
2915 #define IS_I865G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I865G)
2916 #define IS_I915G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915G)
2917 #define IS_I915GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I915GM)
2918 #define IS_I945G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945G)
2919 #define IS_I945GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I945GM)
2920 #define IS_I965G(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965G)
2921 #define IS_I965GM(dev_priv) IS_PLATFORM(dev_priv, INTEL_I965GM)
2922 #define IS_G45(dev_priv) IS_PLATFORM(dev_priv, INTEL_G45)
2923 #define IS_GM45(dev_priv) IS_PLATFORM(dev_priv, INTEL_GM45)
2924 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv))
2925 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001)
2926 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011)
2927 #define IS_PINEVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_PINEVIEW)
2928 #define IS_G33(dev_priv) IS_PLATFORM(dev_priv, INTEL_G33)
2929 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046)
2930 #define IS_IVYBRIDGE(dev_priv) IS_PLATFORM(dev_priv, INTEL_IVYBRIDGE)
2931 #define IS_IVB_GT1(dev_priv) (IS_IVYBRIDGE(dev_priv) && \
2932 (dev_priv)->info.gt == 1)
2933 #define IS_VALLEYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_VALLEYVIEW)
2934 #define IS_CHERRYVIEW(dev_priv) IS_PLATFORM(dev_priv, INTEL_CHERRYVIEW)
2935 #define IS_HASWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_HASWELL)
2936 #define IS_BROADWELL(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROADWELL)
2937 #define IS_SKYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_SKYLAKE)
2938 #define IS_BROXTON(dev_priv) IS_PLATFORM(dev_priv, INTEL_BROXTON)
2939 #define IS_KABYLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_KABYLAKE)
2940 #define IS_GEMINILAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_GEMINILAKE)
2941 #define IS_COFFEELAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_COFFEELAKE)
2942 #define IS_CANNONLAKE(dev_priv) IS_PLATFORM(dev_priv, INTEL_CANNONLAKE)
2943 #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile)
2944 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2945 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2946 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \
2947 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \
2948 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \
2949 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2950 /* ULX machines are also considered ULT. */
2951 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \
2952 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2953 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \
2954 (dev_priv)->info.gt == 3)
2955 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \
2956 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2957 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \
2958 (dev_priv)->info.gt == 3)
2959 /* ULX machines are also considered ULT. */
2960 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \
2961 INTEL_DEVID(dev_priv) == 0x0A1E)
2962 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \
2963 INTEL_DEVID(dev_priv) == 0x1913 || \
2964 INTEL_DEVID(dev_priv) == 0x1916 || \
2965 INTEL_DEVID(dev_priv) == 0x1921 || \
2966 INTEL_DEVID(dev_priv) == 0x1926)
2967 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \
2968 INTEL_DEVID(dev_priv) == 0x1915 || \
2969 INTEL_DEVID(dev_priv) == 0x191E)
2970 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \
2971 INTEL_DEVID(dev_priv) == 0x5913 || \
2972 INTEL_DEVID(dev_priv) == 0x5916 || \
2973 INTEL_DEVID(dev_priv) == 0x5921 || \
2974 INTEL_DEVID(dev_priv) == 0x5926)
2975 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \
2976 INTEL_DEVID(dev_priv) == 0x5915 || \
2977 INTEL_DEVID(dev_priv) == 0x591E)
2978 #define IS_SKL_GT2(dev_priv) (IS_SKYLAKE(dev_priv) && \
2979 (dev_priv)->info.gt == 2)
2980 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \
2981 (dev_priv)->info.gt == 3)
2982 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \
2983 (dev_priv)->info.gt == 4)
2984 #define IS_KBL_GT2(dev_priv) (IS_KABYLAKE(dev_priv) && \
2985 (dev_priv)->info.gt == 2)
2986 #define IS_KBL_GT3(dev_priv) (IS_KABYLAKE(dev_priv) && \
2987 (dev_priv)->info.gt == 3)
2988 #define IS_CFL_ULT(dev_priv) (IS_COFFEELAKE(dev_priv) && \
2989 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2990 #define IS_CFL_GT2(dev_priv) (IS_COFFEELAKE(dev_priv) && \
2991 (dev_priv)->info.gt == 2)
2992
2993 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2994
2995 #define SKL_REVID_A0 0x0
2996 #define SKL_REVID_B0 0x1
2997 #define SKL_REVID_C0 0x2
2998 #define SKL_REVID_D0 0x3
2999 #define SKL_REVID_E0 0x4
3000 #define SKL_REVID_F0 0x5
3001 #define SKL_REVID_G0 0x6
3002 #define SKL_REVID_H0 0x7
3003
3004 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
3005
3006 #define BXT_REVID_A0 0x0
3007 #define BXT_REVID_A1 0x1
3008 #define BXT_REVID_B0 0x3
3009 #define BXT_REVID_B_LAST 0x8
3010 #define BXT_REVID_C0 0x9
3011
3012 #define IS_BXT_REVID(dev_priv, since, until) \
3013 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
3014
3015 #define KBL_REVID_A0 0x0
3016 #define KBL_REVID_B0 0x1
3017 #define KBL_REVID_C0 0x2
3018 #define KBL_REVID_D0 0x3
3019 #define KBL_REVID_E0 0x4
3020
3021 #define IS_KBL_REVID(dev_priv, since, until) \
3022 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
3023
3024 #define GLK_REVID_A0 0x0
3025 #define GLK_REVID_A1 0x1
3026
3027 #define IS_GLK_REVID(dev_priv, since, until) \
3028 (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
3029
3030 #define CNL_REVID_A0 0x0
3031 #define CNL_REVID_B0 0x1
3032
3033 #define IS_CNL_REVID(p, since, until) \
3034 (IS_CANNONLAKE(p) && IS_REVID(p, since, until))
3035
3036 /*
3037 * The genX designation typically refers to the render engine, so render
3038 * capability related checks should use IS_GEN, while display and other checks
3039 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
3040 * chips, etc.).
3041 */
3042 #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1)))
3043 #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2)))
3044 #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3)))
3045 #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4)))
3046 #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5)))
3047 #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6)))
3048 #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7)))
3049 #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8)))
3050 #define IS_GEN10(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(9)))
3051
3052 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp)
3053 #define IS_GEN9_LP(dev_priv) (IS_GEN9(dev_priv) && IS_LP(dev_priv))
3054 #define IS_GEN9_BC(dev_priv) (IS_GEN9(dev_priv) && !IS_LP(dev_priv))
3055
3056 #define ENGINE_MASK(id) BIT(id)
3057 #define RENDER_RING ENGINE_MASK(RCS)
3058 #define BSD_RING ENGINE_MASK(VCS)
3059 #define BLT_RING ENGINE_MASK(BCS)
3060 #define VEBOX_RING ENGINE_MASK(VECS)
3061 #define BSD2_RING ENGINE_MASK(VCS2)
3062 #define ALL_ENGINES (~0)
3063
3064 #define HAS_ENGINE(dev_priv, id) \
3065 (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
3066
3067 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
3068 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
3069 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
3070 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
3071
3072 #define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc)
3073 #define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop)
3074 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED))
3075 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \
3076 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
3077
3078 #define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical)
3079
3080 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
3081 ((dev_priv)->info.has_logical_ring_contexts)
3082 #define USES_PPGTT(dev_priv) (i915_modparams.enable_ppgtt)
3083 #define USES_FULL_PPGTT(dev_priv) (i915_modparams.enable_ppgtt >= 2)
3084 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915_modparams.enable_ppgtt == 3)
3085
3086 #define HAS_OVERLAY(dev_priv) ((dev_priv)->info.has_overlay)
3087 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
3088 ((dev_priv)->info.overlay_needs_physical)
3089
3090 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
3091 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv))
3092
3093 /* WaRsDisableCoarsePowerGating:skl,bxt */
3094 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
3095 (IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
3096
3097 /*
3098 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
3099 * even when in MSI mode. This results in spurious interrupt warnings if the
3100 * legacy irq no. is shared with another device. The kernel then disables that
3101 * interrupt source and so prevents the other device from working properly.
3102 *
3103 * Since we don't enable MSI anymore on gen4, we can always use GMBUS/AUX
3104 * interrupts.
3105 */
3106 #define HAS_AUX_IRQ(dev_priv) true
3107 #define HAS_GMBUS_IRQ(dev_priv) (INTEL_GEN(dev_priv) >= 4)
3108
3109 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
3110 * rows, which changed the alignment requirements and fence programming.
3111 */
3112 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
3113 !(IS_I915G(dev_priv) || \
3114 IS_I915GM(dev_priv)))
3115 #define SUPPORTS_TV(dev_priv) ((dev_priv)->info.supports_tv)
3116 #define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.has_hotplug)
3117
3118 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2)
3119 #define HAS_PIPE_CXSR(dev_priv) ((dev_priv)->info.has_pipe_cxsr)
3120 #define HAS_FBC(dev_priv) ((dev_priv)->info.has_fbc)
3121 #define HAS_CUR_FBC(dev_priv) (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_INFO(dev_priv)->gen >= 7)
3122
3123 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
3124
3125 #define HAS_DP_MST(dev_priv) ((dev_priv)->info.has_dp_mst)
3126
3127 #define HAS_DDI(dev_priv) ((dev_priv)->info.has_ddi)
3128 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
3129 #define HAS_PSR(dev_priv) ((dev_priv)->info.has_psr)
3130 #define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6)
3131 #define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p)
3132
3133 #define HAS_CSR(dev_priv) ((dev_priv)->info.has_csr)
3134
3135 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
3136 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
3137
3138 #define HAS_IPC(dev_priv) ((dev_priv)->info.has_ipc)
3139
3140 /*
3141 * For now, anything with a GuC requires uCode loading, and then supports
3142 * command submission once loaded. But these are logically independent
3143 * properties, so we have separate macros to test them.
3144 */
3145 #define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc)
3146 #define HAS_GUC_CT(dev_priv) ((dev_priv)->info.has_guc_ct)
3147 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3148 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv))
3149 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3150
3151 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
3152
3153 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu)
3154
3155 #define INTEL_PCH_DEVICE_ID_MASK 0xff80
3156 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
3157 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
3158 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
3159 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
3160 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
3161 #define INTEL_PCH_WPT_DEVICE_ID_TYPE 0x8c80
3162 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE 0x9c80
3163 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
3164 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
3165 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA280
3166 #define INTEL_PCH_CNP_DEVICE_ID_TYPE 0xA300
3167 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE 0x9D80
3168 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
3169 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
3170 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
3171
3172 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
3173 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
3174 #define HAS_PCH_CNP_LP(dev_priv) \
3175 ((dev_priv)->pch_id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
3176 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
3177 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
3178 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
3179 #define HAS_PCH_LPT_LP(dev_priv) \
3180 ((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
3181 (dev_priv)->pch_id == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
3182 #define HAS_PCH_LPT_H(dev_priv) \
3183 ((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
3184 (dev_priv)->pch_id == INTEL_PCH_WPT_DEVICE_ID_TYPE)
3185 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
3186 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
3187 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
3188 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
3189
3190 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
3191
3192 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
3193
3194 /* DPF == dynamic parity feature */
3195 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
3196 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
3197 2 : HAS_L3_DPF(dev_priv))
3198
3199 #define GT_FREQUENCY_MULTIPLIER 50
3200 #define GEN9_FREQ_SCALER 3
3201
3202 #include "i915_trace.h"
3203
3204 static inline bool intel_vtd_active(void)
3205 {
3206 #ifdef CONFIG_INTEL_IOMMU
3207 if (intel_iommu_gfx_mapped)
3208 return true;
3209 #endif
3210 return false;
3211 }
3212
3213 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
3214 {
3215 return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
3216 }
3217
3218 static inline bool
3219 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
3220 {
3221 return IS_BROXTON(dev_priv) && intel_vtd_active();
3222 }
3223
3224 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
3225 int enable_ppgtt);
3226
3227 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
3228
3229 /* i915_drv.c */
3230 void __printf(3, 4)
3231 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
3232 const char *fmt, ...);
3233
3234 #define i915_report_error(dev_priv, fmt, ...) \
3235 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
3236
3237 #ifdef CONFIG_COMPAT
3238 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
3239 unsigned long arg);
3240 #else
3241 #define i915_compat_ioctl NULL
3242 #endif
3243 extern const struct dev_pm_ops i915_pm_ops;
3244
3245 extern int i915_driver_load(struct pci_dev *pdev,
3246 const struct pci_device_id *ent);
3247 extern void i915_driver_unload(struct drm_device *dev);
3248 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
3249 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
3250
3251 #define I915_RESET_QUIET BIT(0)
3252 extern void i915_reset(struct drm_i915_private *i915, unsigned int flags);
3253 extern int i915_reset_engine(struct intel_engine_cs *engine,
3254 unsigned int flags);
3255
3256 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
3257 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
3258 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
3259 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
3260 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
3261 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
3262 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
3263 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
3264 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
3265
3266 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
3267 int intel_engines_init(struct drm_i915_private *dev_priv);
3268
3269 /* intel_hotplug.c */
3270 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
3271 u32 pin_mask, u32 long_mask);
3272 void intel_hpd_init(struct drm_i915_private *dev_priv);
3273 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
3274 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
3275 enum port intel_hpd_pin_to_port(enum hpd_pin pin);
3276 enum hpd_pin intel_hpd_pin(enum port port);
3277 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3278 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3279
3280 /* i915_irq.c */
3281 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
3282 {
3283 unsigned long delay;
3284
3285 if (unlikely(!i915_modparams.enable_hangcheck))
3286 return;
3287
3288 /* Don't continually defer the hangcheck so that it is always run at
3289 * least once after work has been scheduled on any ring. Otherwise,
3290 * we will ignore a hung ring if a second ring is kept busy.
3291 */
3292
3293 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
3294 queue_delayed_work(system_long_wq,
3295 &dev_priv->gpu_error.hangcheck_work, delay);
3296 }
3297
3298 __printf(3, 4)
3299 void i915_handle_error(struct drm_i915_private *dev_priv,
3300 u32 engine_mask,
3301 const char *fmt, ...);
3302
3303 extern void intel_irq_init(struct drm_i915_private *dev_priv);
3304 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
3305 int intel_irq_install(struct drm_i915_private *dev_priv);
3306 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
3307
3308 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3309 {
3310 return dev_priv->gvt;
3311 }
3312
3313 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3314 {
3315 return dev_priv->vgpu.active;
3316 }
3317
3318 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
3319 enum pipe pipe);
3320 void
3321 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3322 u32 status_mask);
3323
3324 void
3325 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3326 u32 status_mask);
3327
3328 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3329 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3330 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3331 uint32_t mask,
3332 uint32_t bits);
3333 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3334 uint32_t interrupt_mask,
3335 uint32_t enabled_irq_mask);
3336 static inline void
3337 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3338 {
3339 ilk_update_display_irq(dev_priv, bits, bits);
3340 }
3341 static inline void
3342 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3343 {
3344 ilk_update_display_irq(dev_priv, bits, 0);
3345 }
3346 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3347 enum pipe pipe,
3348 uint32_t interrupt_mask,
3349 uint32_t enabled_irq_mask);
3350 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3351 enum pipe pipe, uint32_t bits)
3352 {
3353 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3354 }
3355 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3356 enum pipe pipe, uint32_t bits)
3357 {
3358 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3359 }
3360 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3361 uint32_t interrupt_mask,
3362 uint32_t enabled_irq_mask);
3363 static inline void
3364 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3365 {
3366 ibx_display_interrupt_update(dev_priv, bits, bits);
3367 }
3368 static inline void
3369 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3370 {
3371 ibx_display_interrupt_update(dev_priv, bits, 0);
3372 }
3373
3374 /* i915_gem.c */
3375 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3376 struct drm_file *file_priv);
3377 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3378 struct drm_file *file_priv);
3379 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3380 struct drm_file *file_priv);
3381 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3382 struct drm_file *file_priv);
3383 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3384 struct drm_file *file_priv);
3385 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3386 struct drm_file *file_priv);
3387 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3388 struct drm_file *file_priv);
3389 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3390 struct drm_file *file_priv);
3391 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3392 struct drm_file *file_priv);
3393 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3394 struct drm_file *file_priv);
3395 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3396 struct drm_file *file);
3397 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3398 struct drm_file *file);
3399 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3400 struct drm_file *file_priv);
3401 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3402 struct drm_file *file_priv);
3403 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
3404 struct drm_file *file_priv);
3405 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
3406 struct drm_file *file_priv);
3407 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3408 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
3409 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3410 struct drm_file *file);
3411 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3412 struct drm_file *file_priv);
3413 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3414 struct drm_file *file_priv);
3415 void i915_gem_sanitize(struct drm_i915_private *i915);
3416 int i915_gem_load_init(struct drm_i915_private *dev_priv);
3417 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv);
3418 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3419 int i915_gem_freeze(struct drm_i915_private *dev_priv);
3420 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3421
3422 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
3423 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3424 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3425 const struct drm_i915_gem_object_ops *ops);
3426 struct drm_i915_gem_object *
3427 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
3428 struct drm_i915_gem_object *
3429 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
3430 const void *data, size_t size);
3431 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3432 void i915_gem_free_object(struct drm_gem_object *obj);
3433
3434 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
3435 {
3436 /* A single pass should suffice to release all the freed objects (along
3437 * most call paths) , but be a little more paranoid in that freeing
3438 * the objects does take a little amount of time, during which the rcu
3439 * callbacks could have added new objects into the freed list, and
3440 * armed the work again.
3441 */
3442 do {
3443 rcu_barrier();
3444 } while (flush_work(&i915->mm.free_work));
3445 }
3446
3447 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
3448 {
3449 /*
3450 * Similar to objects above (see i915_gem_drain_freed-objects), in
3451 * general we have workers that are armed by RCU and then rearm
3452 * themselves in their callbacks. To be paranoid, we need to
3453 * drain the workqueue a second time after waiting for the RCU
3454 * grace period so that we catch work queued via RCU from the first
3455 * pass. As neither drain_workqueue() nor flush_workqueue() report
3456 * a result, we make an assumption that we only don't require more
3457 * than 2 passes to catch all recursive RCU delayed work.
3458 *
3459 */
3460 int pass = 2;
3461 do {
3462 rcu_barrier();
3463 drain_workqueue(i915->wq);
3464 } while (--pass);
3465 }
3466
3467 struct i915_vma * __must_check
3468 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3469 const struct i915_ggtt_view *view,
3470 u64 size,
3471 u64 alignment,
3472 u64 flags);
3473
3474 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3475 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3476
3477 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3478
3479 static inline int __sg_page_count(const struct scatterlist *sg)
3480 {
3481 return sg->length >> PAGE_SHIFT;
3482 }
3483
3484 struct scatterlist *
3485 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3486 unsigned int n, unsigned int *offset);
3487
3488 struct page *
3489 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3490 unsigned int n);
3491
3492 struct page *
3493 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3494 unsigned int n);
3495
3496 dma_addr_t
3497 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3498 unsigned long n);
3499
3500 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3501 struct sg_table *pages);
3502 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3503
3504 static inline int __must_check
3505 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3506 {
3507 might_lock(&obj->mm.lock);
3508
3509 if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3510 return 0;
3511
3512 return __i915_gem_object_get_pages(obj);
3513 }
3514
3515 static inline void
3516 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3517 {
3518 GEM_BUG_ON(!obj->mm.pages);
3519
3520 atomic_inc(&obj->mm.pages_pin_count);
3521 }
3522
3523 static inline bool
3524 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3525 {
3526 return atomic_read(&obj->mm.pages_pin_count);
3527 }
3528
3529 static inline void
3530 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3531 {
3532 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3533 GEM_BUG_ON(!obj->mm.pages);
3534
3535 atomic_dec(&obj->mm.pages_pin_count);
3536 }
3537
3538 static inline void
3539 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3540 {
3541 __i915_gem_object_unpin_pages(obj);
3542 }
3543
3544 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3545 I915_MM_NORMAL = 0,
3546 I915_MM_SHRINKER
3547 };
3548
3549 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3550 enum i915_mm_subclass subclass);
3551 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3552
3553 enum i915_map_type {
3554 I915_MAP_WB = 0,
3555 I915_MAP_WC,
3556 #define I915_MAP_OVERRIDE BIT(31)
3557 I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
3558 I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
3559 };
3560
3561 /**
3562 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3563 * @obj: the object to map into kernel address space
3564 * @type: the type of mapping, used to select pgprot_t
3565 *
3566 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3567 * pages and then returns a contiguous mapping of the backing storage into
3568 * the kernel address space. Based on the @type of mapping, the PTE will be
3569 * set to either WriteBack or WriteCombine (via pgprot_t).
3570 *
3571 * The caller is responsible for calling i915_gem_object_unpin_map() when the
3572 * mapping is no longer required.
3573 *
3574 * Returns the pointer through which to access the mapped object, or an
3575 * ERR_PTR() on error.
3576 */
3577 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3578 enum i915_map_type type);
3579
3580 /**
3581 * i915_gem_object_unpin_map - releases an earlier mapping
3582 * @obj: the object to unmap
3583 *
3584 * After pinning the object and mapping its pages, once you are finished
3585 * with your access, call i915_gem_object_unpin_map() to release the pin
3586 * upon the mapping. Once the pin count reaches zero, that mapping may be
3587 * removed.
3588 */
3589 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3590 {
3591 i915_gem_object_unpin_pages(obj);
3592 }
3593
3594 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3595 unsigned int *needs_clflush);
3596 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3597 unsigned int *needs_clflush);
3598 #define CLFLUSH_BEFORE BIT(0)
3599 #define CLFLUSH_AFTER BIT(1)
3600 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER)
3601
3602 static inline void
3603 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3604 {
3605 i915_gem_object_unpin_pages(obj);
3606 }
3607
3608 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3609 void i915_vma_move_to_active(struct i915_vma *vma,
3610 struct drm_i915_gem_request *req,
3611 unsigned int flags);
3612 int i915_gem_dumb_create(struct drm_file *file_priv,
3613 struct drm_device *dev,
3614 struct drm_mode_create_dumb *args);
3615 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3616 uint32_t handle, uint64_t *offset);
3617 int i915_gem_mmap_gtt_version(void);
3618
3619 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3620 struct drm_i915_gem_object *new,
3621 unsigned frontbuffer_bits);
3622
3623 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3624
3625 struct drm_i915_gem_request *
3626 i915_gem_find_active_request(struct intel_engine_cs *engine);
3627
3628 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3629
3630 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3631 {
3632 return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3633 }
3634
3635 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3636 {
3637 return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3638 }
3639
3640 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3641 {
3642 return unlikely(test_bit(I915_WEDGED, &error->flags));
3643 }
3644
3645 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3646 {
3647 return i915_reset_backoff(error) | i915_terminally_wedged(error);
3648 }
3649
3650 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3651 {
3652 return READ_ONCE(error->reset_count);
3653 }
3654
3655 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3656 struct intel_engine_cs *engine)
3657 {
3658 return READ_ONCE(error->reset_engine_count[engine->id]);
3659 }
3660
3661 struct drm_i915_gem_request *
3662 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3663 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3664 void i915_gem_reset(struct drm_i915_private *dev_priv);
3665 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3666 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3667 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3668 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3669 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3670 struct drm_i915_gem_request *request);
3671
3672 void i915_gem_init_mmio(struct drm_i915_private *i915);
3673 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3674 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3675 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3676 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3677 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3678 unsigned int flags);
3679 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3680 void i915_gem_resume(struct drm_i915_private *dev_priv);
3681 int i915_gem_fault(struct vm_fault *vmf);
3682 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3683 unsigned int flags,
3684 long timeout,
3685 struct intel_rps_client *rps);
3686 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3687 unsigned int flags,
3688 int priority);
3689 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3690
3691 int __must_check
3692 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3693 int __must_check
3694 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3695 int __must_check
3696 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3697 struct i915_vma * __must_check
3698 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3699 u32 alignment,
3700 const struct i915_ggtt_view *view);
3701 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3702 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3703 int align);
3704 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3705 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3706
3707 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3708 enum i915_cache_level cache_level);
3709
3710 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3711 struct dma_buf *dma_buf);
3712
3713 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3714 struct drm_gem_object *gem_obj, int flags);
3715
3716 static inline struct i915_hw_ppgtt *
3717 i915_vm_to_ppgtt(struct i915_address_space *vm)
3718 {
3719 return container_of(vm, struct i915_hw_ppgtt, base);
3720 }
3721
3722 /* i915_gem_fence_reg.c */
3723 int __must_check i915_vma_get_fence(struct i915_vma *vma);
3724 int __must_check i915_vma_put_fence(struct i915_vma *vma);
3725 struct drm_i915_fence_reg *
3726 i915_reserve_fence(struct drm_i915_private *dev_priv);
3727 void i915_unreserve_fence(struct drm_i915_fence_reg *fence);
3728
3729 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3730 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3731
3732 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3733 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3734 struct sg_table *pages);
3735 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3736 struct sg_table *pages);
3737
3738 static inline struct i915_gem_context *
3739 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3740 {
3741 return idr_find(&file_priv->context_idr, id);
3742 }
3743
3744 static inline struct i915_gem_context *
3745 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3746 {
3747 struct i915_gem_context *ctx;
3748
3749 rcu_read_lock();
3750 ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3751 if (ctx && !kref_get_unless_zero(&ctx->ref))
3752 ctx = NULL;
3753 rcu_read_unlock();
3754
3755 return ctx;
3756 }
3757
3758 static inline struct intel_timeline *
3759 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx,
3760 struct intel_engine_cs *engine)
3761 {
3762 struct i915_address_space *vm;
3763
3764 vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base;
3765 return &vm->timeline.engine[engine->id];
3766 }
3767
3768 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3769 struct drm_file *file);
3770 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3771 struct drm_file *file);
3772 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3773 struct drm_file *file);
3774 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3775 struct i915_gem_context *ctx,
3776 uint32_t *reg_state);
3777
3778 /* i915_gem_evict.c */
3779 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3780 u64 min_size, u64 alignment,
3781 unsigned cache_level,
3782 u64 start, u64 end,
3783 unsigned flags);
3784 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3785 struct drm_mm_node *node,
3786 unsigned int flags);
3787 int i915_gem_evict_vm(struct i915_address_space *vm);
3788
3789 /* belongs in i915_gem_gtt.h */
3790 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3791 {
3792 wmb();
3793 if (INTEL_GEN(dev_priv) < 6)
3794 intel_gtt_chipset_flush();
3795 }
3796
3797 /* i915_gem_stolen.c */
3798 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3799 struct drm_mm_node *node, u64 size,
3800 unsigned alignment);
3801 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3802 struct drm_mm_node *node, u64 size,
3803 unsigned alignment, u64 start,
3804 u64 end);
3805 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3806 struct drm_mm_node *node);
3807 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3808 void i915_gem_cleanup_stolen(struct drm_device *dev);
3809 struct drm_i915_gem_object *
3810 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size);
3811 struct drm_i915_gem_object *
3812 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3813 u32 stolen_offset,
3814 u32 gtt_offset,
3815 u32 size);
3816
3817 /* i915_gem_internal.c */
3818 struct drm_i915_gem_object *
3819 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3820 phys_addr_t size);
3821
3822 /* i915_gem_shrinker.c */
3823 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3824 unsigned long target,
3825 unsigned flags);
3826 #define I915_SHRINK_PURGEABLE 0x1
3827 #define I915_SHRINK_UNBOUND 0x2
3828 #define I915_SHRINK_BOUND 0x4
3829 #define I915_SHRINK_ACTIVE 0x8
3830 #define I915_SHRINK_VMAPS 0x10
3831 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3832 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3833 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3834
3835
3836 /* i915_gem_tiling.c */
3837 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3838 {
3839 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3840
3841 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3842 i915_gem_object_is_tiled(obj);
3843 }
3844
3845 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3846 unsigned int tiling, unsigned int stride);
3847 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3848 unsigned int tiling, unsigned int stride);
3849
3850 /* i915_debugfs.c */
3851 #ifdef CONFIG_DEBUG_FS
3852 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3853 int i915_debugfs_connector_add(struct drm_connector *connector);
3854 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3855 #else
3856 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3857 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3858 { return 0; }
3859 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3860 #endif
3861
3862 /* i915_gpu_error.c */
3863 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3864
3865 __printf(2, 3)
3866 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3867 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3868 const struct i915_gpu_state *gpu);
3869 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3870 struct drm_i915_private *i915,
3871 size_t count, loff_t pos);
3872 static inline void i915_error_state_buf_release(
3873 struct drm_i915_error_state_buf *eb)
3874 {
3875 kfree(eb->buf);
3876 }
3877
3878 struct i915_gpu_state *i915_capture_gpu_state(struct drm_i915_private *i915);
3879 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3880 u32 engine_mask,
3881 const char *error_msg);
3882
3883 static inline struct i915_gpu_state *
3884 i915_gpu_state_get(struct i915_gpu_state *gpu)
3885 {
3886 kref_get(&gpu->ref);
3887 return gpu;
3888 }
3889
3890 void __i915_gpu_state_free(struct kref *kref);
3891 static inline void i915_gpu_state_put(struct i915_gpu_state *gpu)
3892 {
3893 if (gpu)
3894 kref_put(&gpu->ref, __i915_gpu_state_free);
3895 }
3896
3897 struct i915_gpu_state *i915_first_error_state(struct drm_i915_private *i915);
3898 void i915_reset_error_state(struct drm_i915_private *i915);
3899
3900 #else
3901
3902 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3903 u32 engine_mask,
3904 const char *error_msg)
3905 {
3906 }
3907
3908 static inline struct i915_gpu_state *
3909 i915_first_error_state(struct drm_i915_private *i915)
3910 {
3911 return NULL;
3912 }
3913
3914 static inline void i915_reset_error_state(struct drm_i915_private *i915)
3915 {
3916 }
3917
3918 #endif
3919
3920 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3921
3922 /* i915_cmd_parser.c */
3923 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3924 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3925 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3926 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3927 struct drm_i915_gem_object *batch_obj,
3928 struct drm_i915_gem_object *shadow_batch_obj,
3929 u32 batch_start_offset,
3930 u32 batch_len,
3931 bool is_master);
3932
3933 /* i915_perf.c */
3934 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3935 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3936 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3937 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3938
3939 /* i915_suspend.c */
3940 extern int i915_save_state(struct drm_i915_private *dev_priv);
3941 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3942
3943 /* i915_sysfs.c */
3944 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3945 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3946
3947 /* intel_lpe_audio.c */
3948 int intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3949 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3950 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3951 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3952 enum pipe pipe, enum port port,
3953 const void *eld, int ls_clock, bool dp_output);
3954
3955 /* intel_i2c.c */
3956 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3957 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3958 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3959 unsigned int pin);
3960
3961 extern struct i2c_adapter *
3962 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3963 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3964 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3965 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3966 {
3967 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3968 }
3969 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3970
3971 /* intel_bios.c */
3972 void intel_bios_init(struct drm_i915_private *dev_priv);
3973 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3974 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3975 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3976 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3977 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3978 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3979 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3980 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3981 enum port port);
3982 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3983 enum port port);
3984
3985
3986 /* intel_opregion.c */
3987 #ifdef CONFIG_ACPI
3988 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3989 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3990 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3991 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3992 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3993 bool enable);
3994 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3995 pci_power_t state);
3996 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3997 #else
3998 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3999 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
4000 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
4001 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
4002 {
4003 }
4004 static inline int
4005 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
4006 {
4007 return 0;
4008 }
4009 static inline int
4010 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
4011 {
4012 return 0;
4013 }
4014 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
4015 {
4016 return -ENODEV;
4017 }
4018 #endif
4019
4020 /* intel_acpi.c */
4021 #ifdef CONFIG_ACPI
4022 extern void intel_register_dsm_handler(void);
4023 extern void intel_unregister_dsm_handler(void);
4024 #else
4025 static inline void intel_register_dsm_handler(void) { return; }
4026 static inline void intel_unregister_dsm_handler(void) { return; }
4027 #endif /* CONFIG_ACPI */
4028
4029 /* intel_device_info.c */
4030 static inline struct intel_device_info *
4031 mkwrite_device_info(struct drm_i915_private *dev_priv)
4032 {
4033 return (struct intel_device_info *)&dev_priv->info;
4034 }
4035
4036 const char *intel_platform_name(enum intel_platform platform);
4037 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
4038 void intel_device_info_dump(struct drm_i915_private *dev_priv);
4039
4040 /* modesetting */
4041 extern void intel_modeset_init_hw(struct drm_device *dev);
4042 extern int intel_modeset_init(struct drm_device *dev);
4043 extern void intel_modeset_gem_init(struct drm_device *dev);
4044 extern void intel_modeset_cleanup(struct drm_device *dev);
4045 extern int intel_connector_register(struct drm_connector *);
4046 extern void intel_connector_unregister(struct drm_connector *);
4047 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
4048 bool state);
4049 extern void intel_display_resume(struct drm_device *dev);
4050 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
4051 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
4052 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
4053 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
4054 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
4055 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
4056 bool enable);
4057
4058 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
4059 struct drm_file *file);
4060
4061 /* overlay */
4062 extern struct intel_overlay_error_state *
4063 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
4064 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
4065 struct intel_overlay_error_state *error);
4066
4067 extern struct intel_display_error_state *
4068 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
4069 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
4070 struct intel_display_error_state *error);
4071
4072 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
4073 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
4074 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
4075 u32 reply_mask, u32 reply, int timeout_base_ms);
4076
4077 /* intel_sideband.c */
4078 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
4079 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
4080 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
4081 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
4082 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
4083 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
4084 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4085 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
4086 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4087 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
4088 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4089 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
4090 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
4091 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
4092 enum intel_sbi_destination destination);
4093 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
4094 enum intel_sbi_destination destination);
4095 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
4096 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4097
4098 /* intel_dpio_phy.c */
4099 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
4100 enum dpio_phy *phy, enum dpio_channel *ch);
4101 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
4102 enum port port, u32 margin, u32 scale,
4103 u32 enable, u32 deemphasis);
4104 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4105 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4106 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
4107 enum dpio_phy phy);
4108 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
4109 enum dpio_phy phy);
4110 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
4111 uint8_t lane_count);
4112 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
4113 uint8_t lane_lat_optim_mask);
4114 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
4115
4116 void chv_set_phy_signal_level(struct intel_encoder *encoder,
4117 u32 deemph_reg_value, u32 margin_reg_value,
4118 bool uniq_trans_scale);
4119 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
4120 bool reset);
4121 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
4122 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4123 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
4124 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
4125
4126 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
4127 u32 demph_reg_value, u32 preemph_reg_value,
4128 u32 uniqtranscale_reg_value, u32 tx3_demph);
4129 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
4130 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4131 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
4132
4133 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
4134 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
4135 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
4136 const i915_reg_t reg);
4137
4138 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
4139 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
4140
4141 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
4142 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
4143 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
4144 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
4145
4146 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
4147 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
4148 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
4149 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
4150
4151 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
4152 * will be implemented using 2 32-bit writes in an arbitrary order with
4153 * an arbitrary delay between them. This can cause the hardware to
4154 * act upon the intermediate value, possibly leading to corruption and
4155 * machine death. For this reason we do not support I915_WRITE64, or
4156 * dev_priv->uncore.funcs.mmio_writeq.
4157 *
4158 * When reading a 64-bit value as two 32-bit values, the delay may cause
4159 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
4160 * occasionally a 64-bit register does not actualy support a full readq
4161 * and must be read using two 32-bit reads.
4162 *
4163 * You have been warned.
4164 */
4165 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
4166
4167 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
4168 u32 upper, lower, old_upper, loop = 0; \
4169 upper = I915_READ(upper_reg); \
4170 do { \
4171 old_upper = upper; \
4172 lower = I915_READ(lower_reg); \
4173 upper = I915_READ(upper_reg); \
4174 } while (upper != old_upper && loop++ < 2); \
4175 (u64)upper << 32 | lower; })
4176
4177 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
4178 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
4179
4180 #define __raw_read(x, s) \
4181 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
4182 i915_reg_t reg) \
4183 { \
4184 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
4185 }
4186
4187 #define __raw_write(x, s) \
4188 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
4189 i915_reg_t reg, uint##x##_t val) \
4190 { \
4191 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
4192 }
4193 __raw_read(8, b)
4194 __raw_read(16, w)
4195 __raw_read(32, l)
4196 __raw_read(64, q)
4197
4198 __raw_write(8, b)
4199 __raw_write(16, w)
4200 __raw_write(32, l)
4201 __raw_write(64, q)
4202
4203 #undef __raw_read
4204 #undef __raw_write
4205
4206 /* These are untraced mmio-accessors that are only valid to be used inside
4207 * critical sections, such as inside IRQ handlers, where forcewake is explicitly
4208 * controlled.
4209 *
4210 * Think twice, and think again, before using these.
4211 *
4212 * As an example, these accessors can possibly be used between:
4213 *
4214 * spin_lock_irq(&dev_priv->uncore.lock);
4215 * intel_uncore_forcewake_get__locked();
4216 *
4217 * and
4218 *
4219 * intel_uncore_forcewake_put__locked();
4220 * spin_unlock_irq(&dev_priv->uncore.lock);
4221 *
4222 *
4223 * Note: some registers may not need forcewake held, so
4224 * intel_uncore_forcewake_{get,put} can be omitted, see
4225 * intel_uncore_forcewake_for_reg().
4226 *
4227 * Certain architectures will die if the same cacheline is concurrently accessed
4228 * by different clients (e.g. on Ivybridge). Access to registers should
4229 * therefore generally be serialised, by either the dev_priv->uncore.lock or
4230 * a more localised lock guarding all access to that bank of registers.
4231 */
4232 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
4233 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
4234 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
4235 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
4236
4237 /* "Broadcast RGB" property */
4238 #define INTEL_BROADCAST_RGB_AUTO 0
4239 #define INTEL_BROADCAST_RGB_FULL 1
4240 #define INTEL_BROADCAST_RGB_LIMITED 2
4241
4242 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
4243 {
4244 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4245 return VLV_VGACNTRL;
4246 else if (INTEL_GEN(dev_priv) >= 5)
4247 return CPU_VGACNTRL;
4248 else
4249 return VGACNTRL;
4250 }
4251
4252 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
4253 {
4254 unsigned long j = msecs_to_jiffies(m);
4255
4256 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4257 }
4258
4259 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
4260 {
4261 /* nsecs_to_jiffies64() does not guard against overflow */
4262 if (NSEC_PER_SEC % HZ &&
4263 div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
4264 return MAX_JIFFY_OFFSET;
4265
4266 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
4267 }
4268
4269 static inline unsigned long
4270 timespec_to_jiffies_timeout(const struct timespec *value)
4271 {
4272 unsigned long j = timespec_to_jiffies(value);
4273
4274 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4275 }
4276
4277 /*
4278 * If you need to wait X milliseconds between events A and B, but event B
4279 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
4280 * when event A happened, then just before event B you call this function and
4281 * pass the timestamp as the first argument, and X as the second argument.
4282 */
4283 static inline void
4284 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
4285 {
4286 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
4287
4288 /*
4289 * Don't re-read the value of "jiffies" every time since it may change
4290 * behind our back and break the math.
4291 */
4292 tmp_jiffies = jiffies;
4293 target_jiffies = timestamp_jiffies +
4294 msecs_to_jiffies_timeout(to_wait_ms);
4295
4296 if (time_after(target_jiffies, tmp_jiffies)) {
4297 remaining_jiffies = target_jiffies - tmp_jiffies;
4298 while (remaining_jiffies)
4299 remaining_jiffies =
4300 schedule_timeout_uninterruptible(remaining_jiffies);
4301 }
4302 }
4303
4304 static inline bool
4305 __i915_request_irq_complete(const struct drm_i915_gem_request *req)
4306 {
4307 struct intel_engine_cs *engine = req->engine;
4308 u32 seqno;
4309
4310 /* Note that the engine may have wrapped around the seqno, and
4311 * so our request->global_seqno will be ahead of the hardware,
4312 * even though it completed the request before wrapping. We catch
4313 * this by kicking all the waiters before resetting the seqno
4314 * in hardware, and also signal the fence.
4315 */
4316 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &req->fence.flags))
4317 return true;
4318
4319 /* The request was dequeued before we were awoken. We check after
4320 * inspecting the hw to confirm that this was the same request
4321 * that generated the HWS update. The memory barriers within
4322 * the request execution are sufficient to ensure that a check
4323 * after reading the value from hw matches this request.
4324 */
4325 seqno = i915_gem_request_global_seqno(req);
4326 if (!seqno)
4327 return false;
4328
4329 /* Before we do the heavier coherent read of the seqno,
4330 * check the value (hopefully) in the CPU cacheline.
4331 */
4332 if (__i915_gem_request_completed(req, seqno))
4333 return true;
4334
4335 /* Ensure our read of the seqno is coherent so that we
4336 * do not "miss an interrupt" (i.e. if this is the last
4337 * request and the seqno write from the GPU is not visible
4338 * by the time the interrupt fires, we will see that the
4339 * request is incomplete and go back to sleep awaiting
4340 * another interrupt that will never come.)
4341 *
4342 * Strictly, we only need to do this once after an interrupt,
4343 * but it is easier and safer to do it every time the waiter
4344 * is woken.
4345 */
4346 if (engine->irq_seqno_barrier &&
4347 test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
4348 struct intel_breadcrumbs *b = &engine->breadcrumbs;
4349
4350 /* The ordering of irq_posted versus applying the barrier
4351 * is crucial. The clearing of the current irq_posted must
4352 * be visible before we perform the barrier operation,
4353 * such that if a subsequent interrupt arrives, irq_posted
4354 * is reasserted and our task rewoken (which causes us to
4355 * do another __i915_request_irq_complete() immediately
4356 * and reapply the barrier). Conversely, if the clear
4357 * occurs after the barrier, then an interrupt that arrived
4358 * whilst we waited on the barrier would not trigger a
4359 * barrier on the next pass, and the read may not see the
4360 * seqno update.
4361 */
4362 engine->irq_seqno_barrier(engine);
4363
4364 /* If we consume the irq, but we are no longer the bottom-half,
4365 * the real bottom-half may not have serialised their own
4366 * seqno check with the irq-barrier (i.e. may have inspected
4367 * the seqno before we believe it coherent since they see
4368 * irq_posted == false but we are still running).
4369 */
4370 spin_lock_irq(&b->irq_lock);
4371 if (b->irq_wait && b->irq_wait->tsk != current)
4372 /* Note that if the bottom-half is changed as we
4373 * are sending the wake-up, the new bottom-half will
4374 * be woken by whomever made the change. We only have
4375 * to worry about when we steal the irq-posted for
4376 * ourself.
4377 */
4378 wake_up_process(b->irq_wait->tsk);
4379 spin_unlock_irq(&b->irq_lock);
4380
4381 if (__i915_gem_request_completed(req, seqno))
4382 return true;
4383 }
4384
4385 return false;
4386 }
4387
4388 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
4389 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
4390
4391 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
4392 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
4393 * perform the operation. To check beforehand, pass in the parameters to
4394 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
4395 * you only need to pass in the minor offsets, page-aligned pointers are
4396 * always valid.
4397 *
4398 * For just checking for SSE4.1, in the foreknowledge that the future use
4399 * will be correctly aligned, just use i915_has_memcpy_from_wc().
4400 */
4401 #define i915_can_memcpy_from_wc(dst, src, len) \
4402 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
4403
4404 #define i915_has_memcpy_from_wc() \
4405 i915_memcpy_from_wc(NULL, NULL, 0)
4406
4407 /* i915_mm.c */
4408 int remap_io_mapping(struct vm_area_struct *vma,
4409 unsigned long addr, unsigned long pfn, unsigned long size,
4410 struct io_mapping *iomap);
4411
4412 static inline int intel_hws_csb_write_index(struct drm_i915_private *i915)
4413 {
4414 if (INTEL_GEN(i915) >= 10)
4415 return CNL_HWS_CSB_WRITE_INDEX;
4416 else
4417 return I915_HWS_CSB_WRITE_INDEX;
4418 }
4419
4420 #endif