]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.h
Merge tag 'for-linus-20161104' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hashtable.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/shmem_fs.h>
45
46 #include <drm/drmP.h>
47 #include <drm/intel-gtt.h>
48 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
49 #include <drm/drm_gem.h>
50 #include <drm/drm_auth.h>
51
52 #include "i915_params.h"
53 #include "i915_reg.h"
54
55 #include "intel_bios.h"
56 #include "intel_dpll_mgr.h"
57 #include "intel_guc.h"
58 #include "intel_lrc.h"
59 #include "intel_ringbuffer.h"
60
61 #include "i915_gem.h"
62 #include "i915_gem_gtt.h"
63 #include "i915_gem_render_state.h"
64 #include "i915_gem_request.h"
65
66 #include "intel_gvt.h"
67
68 /* General customization:
69 */
70
71 #define DRIVER_NAME "i915"
72 #define DRIVER_DESC "Intel Graphics"
73 #define DRIVER_DATE "20160919"
74
75 #undef WARN_ON
76 /* Many gcc seem to no see through this and fall over :( */
77 #if 0
78 #define WARN_ON(x) ({ \
79 bool __i915_warn_cond = (x); \
80 if (__builtin_constant_p(__i915_warn_cond)) \
81 BUILD_BUG_ON(__i915_warn_cond); \
82 WARN(__i915_warn_cond, "WARN_ON(" #x ")"); })
83 #else
84 #define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
85 #endif
86
87 #undef WARN_ON_ONCE
88 #define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")")
89
90 #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \
91 (long) (x), __func__);
92
93 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
94 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
95 * which may not necessarily be a user visible problem. This will either
96 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
97 * enable distros and users to tailor their preferred amount of i915 abrt
98 * spam.
99 */
100 #define I915_STATE_WARN(condition, format...) ({ \
101 int __ret_warn_on = !!(condition); \
102 if (unlikely(__ret_warn_on)) \
103 if (!WARN(i915.verbose_state_checks, format)) \
104 DRM_ERROR(format); \
105 unlikely(__ret_warn_on); \
106 })
107
108 #define I915_STATE_WARN_ON(x) \
109 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
110
111 bool __i915_inject_load_failure(const char *func, int line);
112 #define i915_inject_load_failure() \
113 __i915_inject_load_failure(__func__, __LINE__)
114
115 static inline const char *yesno(bool v)
116 {
117 return v ? "yes" : "no";
118 }
119
120 static inline const char *onoff(bool v)
121 {
122 return v ? "on" : "off";
123 }
124
125 enum pipe {
126 INVALID_PIPE = -1,
127 PIPE_A = 0,
128 PIPE_B,
129 PIPE_C,
130 _PIPE_EDP,
131 I915_MAX_PIPES = _PIPE_EDP
132 };
133 #define pipe_name(p) ((p) + 'A')
134
135 enum transcoder {
136 TRANSCODER_A = 0,
137 TRANSCODER_B,
138 TRANSCODER_C,
139 TRANSCODER_EDP,
140 TRANSCODER_DSI_A,
141 TRANSCODER_DSI_C,
142 I915_MAX_TRANSCODERS
143 };
144
145 static inline const char *transcoder_name(enum transcoder transcoder)
146 {
147 switch (transcoder) {
148 case TRANSCODER_A:
149 return "A";
150 case TRANSCODER_B:
151 return "B";
152 case TRANSCODER_C:
153 return "C";
154 case TRANSCODER_EDP:
155 return "EDP";
156 case TRANSCODER_DSI_A:
157 return "DSI A";
158 case TRANSCODER_DSI_C:
159 return "DSI C";
160 default:
161 return "<invalid>";
162 }
163 }
164
165 static inline bool transcoder_is_dsi(enum transcoder transcoder)
166 {
167 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
168 }
169
170 /*
171 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
172 * number of planes per CRTC. Not all platforms really have this many planes,
173 * which means some arrays of size I915_MAX_PLANES may have unused entries
174 * between the topmost sprite plane and the cursor plane.
175 */
176 enum plane {
177 PLANE_A = 0,
178 PLANE_B,
179 PLANE_C,
180 PLANE_CURSOR,
181 I915_MAX_PLANES,
182 };
183 #define plane_name(p) ((p) + 'A')
184
185 #define sprite_name(p, s) ((p) * INTEL_INFO(dev)->num_sprites[(p)] + (s) + 'A')
186
187 enum port {
188 PORT_A = 0,
189 PORT_B,
190 PORT_C,
191 PORT_D,
192 PORT_E,
193 I915_MAX_PORTS
194 };
195 #define port_name(p) ((p) + 'A')
196
197 #define I915_NUM_PHYS_VLV 2
198
199 enum dpio_channel {
200 DPIO_CH0,
201 DPIO_CH1
202 };
203
204 enum dpio_phy {
205 DPIO_PHY0,
206 DPIO_PHY1
207 };
208
209 enum intel_display_power_domain {
210 POWER_DOMAIN_PIPE_A,
211 POWER_DOMAIN_PIPE_B,
212 POWER_DOMAIN_PIPE_C,
213 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
214 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
215 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
216 POWER_DOMAIN_TRANSCODER_A,
217 POWER_DOMAIN_TRANSCODER_B,
218 POWER_DOMAIN_TRANSCODER_C,
219 POWER_DOMAIN_TRANSCODER_EDP,
220 POWER_DOMAIN_TRANSCODER_DSI_A,
221 POWER_DOMAIN_TRANSCODER_DSI_C,
222 POWER_DOMAIN_PORT_DDI_A_LANES,
223 POWER_DOMAIN_PORT_DDI_B_LANES,
224 POWER_DOMAIN_PORT_DDI_C_LANES,
225 POWER_DOMAIN_PORT_DDI_D_LANES,
226 POWER_DOMAIN_PORT_DDI_E_LANES,
227 POWER_DOMAIN_PORT_DSI,
228 POWER_DOMAIN_PORT_CRT,
229 POWER_DOMAIN_PORT_OTHER,
230 POWER_DOMAIN_VGA,
231 POWER_DOMAIN_AUDIO,
232 POWER_DOMAIN_PLLS,
233 POWER_DOMAIN_AUX_A,
234 POWER_DOMAIN_AUX_B,
235 POWER_DOMAIN_AUX_C,
236 POWER_DOMAIN_AUX_D,
237 POWER_DOMAIN_GMBUS,
238 POWER_DOMAIN_MODESET,
239 POWER_DOMAIN_INIT,
240
241 POWER_DOMAIN_NUM,
242 };
243
244 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
245 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
246 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
247 #define POWER_DOMAIN_TRANSCODER(tran) \
248 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
249 (tran) + POWER_DOMAIN_TRANSCODER_A)
250
251 enum hpd_pin {
252 HPD_NONE = 0,
253 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
254 HPD_CRT,
255 HPD_SDVO_B,
256 HPD_SDVO_C,
257 HPD_PORT_A,
258 HPD_PORT_B,
259 HPD_PORT_C,
260 HPD_PORT_D,
261 HPD_PORT_E,
262 HPD_NUM_PINS
263 };
264
265 #define for_each_hpd_pin(__pin) \
266 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
267
268 struct i915_hotplug {
269 struct work_struct hotplug_work;
270
271 struct {
272 unsigned long last_jiffies;
273 int count;
274 enum {
275 HPD_ENABLED = 0,
276 HPD_DISABLED = 1,
277 HPD_MARK_DISABLED = 2
278 } state;
279 } stats[HPD_NUM_PINS];
280 u32 event_bits;
281 struct delayed_work reenable_work;
282
283 struct intel_digital_port *irq_port[I915_MAX_PORTS];
284 u32 long_port_mask;
285 u32 short_port_mask;
286 struct work_struct dig_port_work;
287
288 struct work_struct poll_init_work;
289 bool poll_enabled;
290
291 /*
292 * if we get a HPD irq from DP and a HPD irq from non-DP
293 * the non-DP HPD could block the workqueue on a mode config
294 * mutex getting, that userspace may have taken. However
295 * userspace is waiting on the DP workqueue to run which is
296 * blocked behind the non-DP one.
297 */
298 struct workqueue_struct *dp_wq;
299 };
300
301 #define I915_GEM_GPU_DOMAINS \
302 (I915_GEM_DOMAIN_RENDER | \
303 I915_GEM_DOMAIN_SAMPLER | \
304 I915_GEM_DOMAIN_COMMAND | \
305 I915_GEM_DOMAIN_INSTRUCTION | \
306 I915_GEM_DOMAIN_VERTEX)
307
308 #define for_each_pipe(__dev_priv, __p) \
309 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
310 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
311 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
312 for_each_if ((__mask) & (1 << (__p)))
313 #define for_each_plane(__dev_priv, __pipe, __p) \
314 for ((__p) = 0; \
315 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
316 (__p)++)
317 #define for_each_sprite(__dev_priv, __p, __s) \
318 for ((__s) = 0; \
319 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
320 (__s)++)
321
322 #define for_each_port_masked(__port, __ports_mask) \
323 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
324 for_each_if ((__ports_mask) & (1 << (__port)))
325
326 #define for_each_crtc(dev, crtc) \
327 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
328
329 #define for_each_intel_plane(dev, intel_plane) \
330 list_for_each_entry(intel_plane, \
331 &(dev)->mode_config.plane_list, \
332 base.head)
333
334 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \
335 list_for_each_entry(intel_plane, \
336 &(dev)->mode_config.plane_list, \
337 base.head) \
338 for_each_if ((plane_mask) & \
339 (1 << drm_plane_index(&intel_plane->base)))
340
341 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
342 list_for_each_entry(intel_plane, \
343 &(dev)->mode_config.plane_list, \
344 base.head) \
345 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
346
347 #define for_each_intel_crtc(dev, intel_crtc) \
348 list_for_each_entry(intel_crtc, \
349 &(dev)->mode_config.crtc_list, \
350 base.head)
351
352 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \
353 list_for_each_entry(intel_crtc, \
354 &(dev)->mode_config.crtc_list, \
355 base.head) \
356 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
357
358 #define for_each_intel_encoder(dev, intel_encoder) \
359 list_for_each_entry(intel_encoder, \
360 &(dev)->mode_config.encoder_list, \
361 base.head)
362
363 #define for_each_intel_connector(dev, intel_connector) \
364 list_for_each_entry(intel_connector, \
365 &(dev)->mode_config.connector_list, \
366 base.head)
367
368 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
369 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
370 for_each_if ((intel_encoder)->base.crtc == (__crtc))
371
372 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
373 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
374 for_each_if ((intel_connector)->base.encoder == (__encoder))
375
376 #define for_each_power_domain(domain, mask) \
377 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
378 for_each_if ((1 << (domain)) & (mask))
379
380 struct drm_i915_private;
381 struct i915_mm_struct;
382 struct i915_mmu_object;
383
384 struct drm_i915_file_private {
385 struct drm_i915_private *dev_priv;
386 struct drm_file *file;
387
388 struct {
389 spinlock_t lock;
390 struct list_head request_list;
391 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
392 * chosen to prevent the CPU getting more than a frame ahead of the GPU
393 * (when using lax throttling for the frontbuffer). We also use it to
394 * offer free GPU waitboosts for severely congested workloads.
395 */
396 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
397 } mm;
398 struct idr context_idr;
399
400 struct intel_rps_client {
401 struct list_head link;
402 unsigned boosts;
403 } rps;
404
405 unsigned int bsd_engine;
406 };
407
408 /* Used by dp and fdi links */
409 struct intel_link_m_n {
410 uint32_t tu;
411 uint32_t gmch_m;
412 uint32_t gmch_n;
413 uint32_t link_m;
414 uint32_t link_n;
415 };
416
417 void intel_link_compute_m_n(int bpp, int nlanes,
418 int pixel_clock, int link_clock,
419 struct intel_link_m_n *m_n);
420
421 /* Interface history:
422 *
423 * 1.1: Original.
424 * 1.2: Add Power Management
425 * 1.3: Add vblank support
426 * 1.4: Fix cmdbuffer path, add heap destroy
427 * 1.5: Add vblank pipe configuration
428 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
429 * - Support vertical blank on secondary display pipe
430 */
431 #define DRIVER_MAJOR 1
432 #define DRIVER_MINOR 6
433 #define DRIVER_PATCHLEVEL 0
434
435 struct opregion_header;
436 struct opregion_acpi;
437 struct opregion_swsci;
438 struct opregion_asle;
439
440 struct intel_opregion {
441 struct opregion_header *header;
442 struct opregion_acpi *acpi;
443 struct opregion_swsci *swsci;
444 u32 swsci_gbda_sub_functions;
445 u32 swsci_sbcb_sub_functions;
446 struct opregion_asle *asle;
447 void *rvda;
448 const void *vbt;
449 u32 vbt_size;
450 u32 *lid_state;
451 struct work_struct asle_work;
452 };
453 #define OPREGION_SIZE (8*1024)
454
455 struct intel_overlay;
456 struct intel_overlay_error_state;
457
458 struct drm_i915_fence_reg {
459 struct list_head link;
460 struct drm_i915_private *i915;
461 struct i915_vma *vma;
462 int pin_count;
463 int id;
464 /**
465 * Whether the tiling parameters for the currently
466 * associated fence register have changed. Note that
467 * for the purposes of tracking tiling changes we also
468 * treat the unfenced register, the register slot that
469 * the object occupies whilst it executes a fenced
470 * command (such as BLT on gen2/3), as a "fence".
471 */
472 bool dirty;
473 };
474
475 struct sdvo_device_mapping {
476 u8 initialized;
477 u8 dvo_port;
478 u8 slave_addr;
479 u8 dvo_wiring;
480 u8 i2c_pin;
481 u8 ddc_pin;
482 };
483
484 struct intel_connector;
485 struct intel_encoder;
486 struct intel_crtc_state;
487 struct intel_initial_plane_config;
488 struct intel_crtc;
489 struct intel_limit;
490 struct dpll;
491
492 struct drm_i915_display_funcs {
493 int (*get_display_clock_speed)(struct drm_device *dev);
494 int (*get_fifo_size)(struct drm_device *dev, int plane);
495 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
496 int (*compute_intermediate_wm)(struct drm_device *dev,
497 struct intel_crtc *intel_crtc,
498 struct intel_crtc_state *newstate);
499 void (*initial_watermarks)(struct intel_crtc_state *cstate);
500 void (*optimize_watermarks)(struct intel_crtc_state *cstate);
501 int (*compute_global_watermarks)(struct drm_atomic_state *state);
502 void (*update_wm)(struct drm_crtc *crtc);
503 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
504 void (*modeset_commit_cdclk)(struct drm_atomic_state *state);
505 /* Returns the active state of the crtc, and if the crtc is active,
506 * fills out the pipe-config with the hw state. */
507 bool (*get_pipe_config)(struct intel_crtc *,
508 struct intel_crtc_state *);
509 void (*get_initial_plane_config)(struct intel_crtc *,
510 struct intel_initial_plane_config *);
511 int (*crtc_compute_clock)(struct intel_crtc *crtc,
512 struct intel_crtc_state *crtc_state);
513 void (*crtc_enable)(struct intel_crtc_state *pipe_config,
514 struct drm_atomic_state *old_state);
515 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
516 struct drm_atomic_state *old_state);
517 void (*update_crtcs)(struct drm_atomic_state *state,
518 unsigned int *crtc_vblank_mask);
519 void (*audio_codec_enable)(struct drm_connector *connector,
520 struct intel_encoder *encoder,
521 const struct drm_display_mode *adjusted_mode);
522 void (*audio_codec_disable)(struct intel_encoder *encoder);
523 void (*fdi_link_train)(struct drm_crtc *crtc);
524 void (*init_clock_gating)(struct drm_device *dev);
525 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc,
526 struct drm_framebuffer *fb,
527 struct drm_i915_gem_object *obj,
528 struct drm_i915_gem_request *req,
529 uint32_t flags);
530 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
531 /* clock updates for mode set */
532 /* cursor updates */
533 /* render clock increase/decrease */
534 /* display clock increase/decrease */
535 /* pll clock increase/decrease */
536
537 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
538 void (*load_luts)(struct drm_crtc_state *crtc_state);
539 };
540
541 enum forcewake_domain_id {
542 FW_DOMAIN_ID_RENDER = 0,
543 FW_DOMAIN_ID_BLITTER,
544 FW_DOMAIN_ID_MEDIA,
545
546 FW_DOMAIN_ID_COUNT
547 };
548
549 enum forcewake_domains {
550 FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER),
551 FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER),
552 FORCEWAKE_MEDIA = (1 << FW_DOMAIN_ID_MEDIA),
553 FORCEWAKE_ALL = (FORCEWAKE_RENDER |
554 FORCEWAKE_BLITTER |
555 FORCEWAKE_MEDIA)
556 };
557
558 #define FW_REG_READ (1)
559 #define FW_REG_WRITE (2)
560
561 enum forcewake_domains
562 intel_uncore_forcewake_for_reg(struct drm_i915_private *dev_priv,
563 i915_reg_t reg, unsigned int op);
564
565 struct intel_uncore_funcs {
566 void (*force_wake_get)(struct drm_i915_private *dev_priv,
567 enum forcewake_domains domains);
568 void (*force_wake_put)(struct drm_i915_private *dev_priv,
569 enum forcewake_domains domains);
570
571 uint8_t (*mmio_readb)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
572 uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
573 uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
574 uint64_t (*mmio_readq)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
575
576 void (*mmio_writeb)(struct drm_i915_private *dev_priv, i915_reg_t r,
577 uint8_t val, bool trace);
578 void (*mmio_writew)(struct drm_i915_private *dev_priv, i915_reg_t r,
579 uint16_t val, bool trace);
580 void (*mmio_writel)(struct drm_i915_private *dev_priv, i915_reg_t r,
581 uint32_t val, bool trace);
582 };
583
584 struct intel_uncore {
585 spinlock_t lock; /** lock is also taken in irq contexts. */
586
587 struct intel_uncore_funcs funcs;
588
589 unsigned fifo_count;
590 enum forcewake_domains fw_domains;
591
592 struct intel_uncore_forcewake_domain {
593 struct drm_i915_private *i915;
594 enum forcewake_domain_id id;
595 enum forcewake_domains mask;
596 unsigned wake_count;
597 struct hrtimer timer;
598 i915_reg_t reg_set;
599 u32 val_set;
600 u32 val_clear;
601 i915_reg_t reg_ack;
602 i915_reg_t reg_post;
603 u32 val_reset;
604 } fw_domain[FW_DOMAIN_ID_COUNT];
605
606 int unclaimed_mmio_check;
607 };
608
609 /* Iterate over initialised fw domains */
610 #define for_each_fw_domain_masked(domain__, mask__, dev_priv__) \
611 for ((domain__) = &(dev_priv__)->uncore.fw_domain[0]; \
612 (domain__) < &(dev_priv__)->uncore.fw_domain[FW_DOMAIN_ID_COUNT]; \
613 (domain__)++) \
614 for_each_if ((mask__) & (domain__)->mask)
615
616 #define for_each_fw_domain(domain__, dev_priv__) \
617 for_each_fw_domain_masked(domain__, FORCEWAKE_ALL, dev_priv__)
618
619 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
620 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
621 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
622
623 struct intel_csr {
624 struct work_struct work;
625 const char *fw_path;
626 uint32_t *dmc_payload;
627 uint32_t dmc_fw_size;
628 uint32_t version;
629 uint32_t mmio_count;
630 i915_reg_t mmioaddr[8];
631 uint32_t mmiodata[8];
632 uint32_t dc_state;
633 uint32_t allowed_dc_mask;
634 };
635
636 #define DEV_INFO_FOR_EACH_FLAG(func, sep) \
637 func(is_mobile) sep \
638 func(is_i85x) sep \
639 func(is_i915g) sep \
640 func(is_i945gm) sep \
641 func(is_g33) sep \
642 func(hws_needs_physical) sep \
643 func(is_g4x) sep \
644 func(is_pineview) sep \
645 func(is_broadwater) sep \
646 func(is_crestline) sep \
647 func(is_ivybridge) sep \
648 func(is_valleyview) sep \
649 func(is_cherryview) sep \
650 func(is_haswell) sep \
651 func(is_broadwell) sep \
652 func(is_skylake) sep \
653 func(is_broxton) sep \
654 func(is_kabylake) sep \
655 func(is_preliminary) sep \
656 func(has_fbc) sep \
657 func(has_psr) sep \
658 func(has_runtime_pm) sep \
659 func(has_csr) sep \
660 func(has_resource_streamer) sep \
661 func(has_rc6) sep \
662 func(has_rc6p) sep \
663 func(has_dp_mst) sep \
664 func(has_gmbus_irq) sep \
665 func(has_hw_contexts) sep \
666 func(has_logical_ring_contexts) sep \
667 func(has_l3_dpf) sep \
668 func(has_gmch_display) sep \
669 func(has_guc) sep \
670 func(has_pipe_cxsr) sep \
671 func(has_hotplug) sep \
672 func(cursor_needs_physical) sep \
673 func(has_overlay) sep \
674 func(overlay_needs_physical) sep \
675 func(supports_tv) sep \
676 func(has_llc) sep \
677 func(has_snoop) sep \
678 func(has_ddi) sep \
679 func(has_fpga_dbg) sep \
680 func(has_pooled_eu)
681
682 #define DEFINE_FLAG(name) u8 name:1
683 #define SEP_SEMICOLON ;
684
685 struct sseu_dev_info {
686 u8 slice_mask;
687 u8 subslice_mask;
688 u8 eu_total;
689 u8 eu_per_subslice;
690 u8 min_eu_in_pool;
691 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
692 u8 subslice_7eu[3];
693 u8 has_slice_pg:1;
694 u8 has_subslice_pg:1;
695 u8 has_eu_pg:1;
696 };
697
698 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu)
699 {
700 return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask);
701 }
702
703 struct intel_device_info {
704 u32 display_mmio_offset;
705 u16 device_id;
706 u8 num_pipes;
707 u8 num_sprites[I915_MAX_PIPES];
708 u8 gen;
709 u16 gen_mask;
710 u8 ring_mask; /* Rings supported by the HW */
711 u8 num_rings;
712 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG, SEP_SEMICOLON);
713 u16 ddb_size; /* in blocks */
714 /* Register offsets for the various display pipes and transcoders */
715 int pipe_offsets[I915_MAX_TRANSCODERS];
716 int trans_offsets[I915_MAX_TRANSCODERS];
717 int palette_offsets[I915_MAX_PIPES];
718 int cursor_offsets[I915_MAX_PIPES];
719
720 /* Slice/subslice/EU info */
721 struct sseu_dev_info sseu;
722
723 struct color_luts {
724 u16 degamma_lut_size;
725 u16 gamma_lut_size;
726 } color;
727 };
728
729 #undef DEFINE_FLAG
730 #undef SEP_SEMICOLON
731
732 struct intel_display_error_state;
733
734 struct drm_i915_error_state {
735 struct kref ref;
736 struct timeval time;
737
738 char error_msg[128];
739 bool simulated;
740 int iommu;
741 u32 reset_count;
742 u32 suspend_count;
743 struct intel_device_info device_info;
744
745 /* Generic register state */
746 u32 eir;
747 u32 pgtbl_er;
748 u32 ier;
749 u32 gtier[4];
750 u32 ccid;
751 u32 derrmr;
752 u32 forcewake;
753 u32 error; /* gen6+ */
754 u32 err_int; /* gen7 */
755 u32 fault_data0; /* gen8, gen9 */
756 u32 fault_data1; /* gen8, gen9 */
757 u32 done_reg;
758 u32 gac_eco;
759 u32 gam_ecochk;
760 u32 gab_ctl;
761 u32 gfx_mode;
762 u32 extra_instdone[I915_NUM_INSTDONE_REG];
763 u64 fence[I915_MAX_NUM_FENCES];
764 struct intel_overlay_error_state *overlay;
765 struct intel_display_error_state *display;
766 struct drm_i915_error_object *semaphore;
767
768 struct drm_i915_error_engine {
769 int engine_id;
770 /* Software tracked state */
771 bool waiting;
772 int num_waiters;
773 int hangcheck_score;
774 enum intel_engine_hangcheck_action hangcheck_action;
775 struct i915_address_space *vm;
776 int num_requests;
777
778 /* our own tracking of ring head and tail */
779 u32 cpu_ring_head;
780 u32 cpu_ring_tail;
781
782 u32 last_seqno;
783 u32 semaphore_seqno[I915_NUM_ENGINES - 1];
784
785 /* Register state */
786 u32 start;
787 u32 tail;
788 u32 head;
789 u32 ctl;
790 u32 mode;
791 u32 hws;
792 u32 ipeir;
793 u32 ipehr;
794 u32 instdone;
795 u32 bbstate;
796 u32 instpm;
797 u32 instps;
798 u32 seqno;
799 u64 bbaddr;
800 u64 acthd;
801 u32 fault_reg;
802 u64 faddr;
803 u32 rc_psmi; /* sleep state */
804 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
805
806 struct drm_i915_error_object {
807 int page_count;
808 u64 gtt_offset;
809 u64 gtt_size;
810 u32 *pages[0];
811 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
812
813 struct drm_i915_error_object *wa_ctx;
814
815 struct drm_i915_error_request {
816 long jiffies;
817 pid_t pid;
818 u32 seqno;
819 u32 head;
820 u32 tail;
821 } *requests;
822
823 struct drm_i915_error_waiter {
824 char comm[TASK_COMM_LEN];
825 pid_t pid;
826 u32 seqno;
827 } *waiters;
828
829 struct {
830 u32 gfx_mode;
831 union {
832 u64 pdp[4];
833 u32 pp_dir_base;
834 };
835 } vm_info;
836
837 pid_t pid;
838 char comm[TASK_COMM_LEN];
839 } engine[I915_NUM_ENGINES];
840
841 struct drm_i915_error_buffer {
842 u32 size;
843 u32 name;
844 u32 rseqno[I915_NUM_ENGINES], wseqno;
845 u64 gtt_offset;
846 u32 read_domains;
847 u32 write_domain;
848 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
849 u32 tiling:2;
850 u32 dirty:1;
851 u32 purgeable:1;
852 u32 userptr:1;
853 s32 engine:4;
854 u32 cache_level:3;
855 } *active_bo[I915_NUM_ENGINES], *pinned_bo;
856 u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
857 struct i915_address_space *active_vm[I915_NUM_ENGINES];
858 };
859
860 enum i915_cache_level {
861 I915_CACHE_NONE = 0,
862 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
863 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
864 caches, eg sampler/render caches, and the
865 large Last-Level-Cache. LLC is coherent with
866 the CPU, but L3 is only visible to the GPU. */
867 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
868 };
869
870 struct i915_ctx_hang_stats {
871 /* This context had batch pending when hang was declared */
872 unsigned batch_pending;
873
874 /* This context had batch active when hang was declared */
875 unsigned batch_active;
876
877 /* Time when this context was last blamed for a GPU reset */
878 unsigned long guilty_ts;
879
880 /* If the contexts causes a second GPU hang within this time,
881 * it is permanently banned from submitting any more work.
882 */
883 unsigned long ban_period_seconds;
884
885 /* This context is banned to submit more work */
886 bool banned;
887 };
888
889 /* This must match up with the value previously used for execbuf2.rsvd1. */
890 #define DEFAULT_CONTEXT_HANDLE 0
891
892 /**
893 * struct i915_gem_context - as the name implies, represents a context.
894 * @ref: reference count.
895 * @user_handle: userspace tracking identity for this context.
896 * @remap_slice: l3 row remapping information.
897 * @flags: context specific flags:
898 * CONTEXT_NO_ZEROMAP: do not allow mapping things to page 0.
899 * @file_priv: filp associated with this context (NULL for global default
900 * context).
901 * @hang_stats: information about the role of this context in possible GPU
902 * hangs.
903 * @ppgtt: virtual memory space used by this context.
904 * @legacy_hw_ctx: render context backing object and whether it is correctly
905 * initialized (legacy ring submission mechanism only).
906 * @link: link in the global list of contexts.
907 *
908 * Contexts are memory images used by the hardware to store copies of their
909 * internal state.
910 */
911 struct i915_gem_context {
912 struct kref ref;
913 struct drm_i915_private *i915;
914 struct drm_i915_file_private *file_priv;
915 struct i915_hw_ppgtt *ppgtt;
916 struct pid *pid;
917
918 struct i915_ctx_hang_stats hang_stats;
919
920 unsigned long flags;
921 #define CONTEXT_NO_ZEROMAP BIT(0)
922 #define CONTEXT_NO_ERROR_CAPTURE BIT(1)
923
924 /* Unique identifier for this context, used by the hw for tracking */
925 unsigned int hw_id;
926 u32 user_handle;
927
928 u32 ggtt_alignment;
929
930 struct intel_context {
931 struct i915_vma *state;
932 struct intel_ring *ring;
933 uint32_t *lrc_reg_state;
934 u64 lrc_desc;
935 int pin_count;
936 bool initialised;
937 } engine[I915_NUM_ENGINES];
938 u32 ring_size;
939 u32 desc_template;
940 struct atomic_notifier_head status_notifier;
941 bool execlists_force_single_submission;
942
943 struct list_head link;
944
945 u8 remap_slice;
946 bool closed:1;
947 };
948
949 enum fb_op_origin {
950 ORIGIN_GTT,
951 ORIGIN_CPU,
952 ORIGIN_CS,
953 ORIGIN_FLIP,
954 ORIGIN_DIRTYFB,
955 };
956
957 struct intel_fbc {
958 /* This is always the inner lock when overlapping with struct_mutex and
959 * it's the outer lock when overlapping with stolen_lock. */
960 struct mutex lock;
961 unsigned threshold;
962 unsigned int possible_framebuffer_bits;
963 unsigned int busy_bits;
964 unsigned int visible_pipes_mask;
965 struct intel_crtc *crtc;
966
967 struct drm_mm_node compressed_fb;
968 struct drm_mm_node *compressed_llb;
969
970 bool false_color;
971
972 bool enabled;
973 bool active;
974
975 struct intel_fbc_state_cache {
976 struct {
977 unsigned int mode_flags;
978 uint32_t hsw_bdw_pixel_rate;
979 } crtc;
980
981 struct {
982 unsigned int rotation;
983 int src_w;
984 int src_h;
985 bool visible;
986 } plane;
987
988 struct {
989 u64 ilk_ggtt_offset;
990 uint32_t pixel_format;
991 unsigned int stride;
992 int fence_reg;
993 unsigned int tiling_mode;
994 } fb;
995 } state_cache;
996
997 struct intel_fbc_reg_params {
998 struct {
999 enum pipe pipe;
1000 enum plane plane;
1001 unsigned int fence_y_offset;
1002 } crtc;
1003
1004 struct {
1005 u64 ggtt_offset;
1006 uint32_t pixel_format;
1007 unsigned int stride;
1008 int fence_reg;
1009 } fb;
1010
1011 int cfb_size;
1012 } params;
1013
1014 struct intel_fbc_work {
1015 bool scheduled;
1016 u32 scheduled_vblank;
1017 struct work_struct work;
1018 } work;
1019
1020 const char *no_fbc_reason;
1021 };
1022
1023 /**
1024 * HIGH_RR is the highest eDP panel refresh rate read from EDID
1025 * LOW_RR is the lowest eDP panel refresh rate found from EDID
1026 * parsing for same resolution.
1027 */
1028 enum drrs_refresh_rate_type {
1029 DRRS_HIGH_RR,
1030 DRRS_LOW_RR,
1031 DRRS_MAX_RR, /* RR count */
1032 };
1033
1034 enum drrs_support_type {
1035 DRRS_NOT_SUPPORTED = 0,
1036 STATIC_DRRS_SUPPORT = 1,
1037 SEAMLESS_DRRS_SUPPORT = 2
1038 };
1039
1040 struct intel_dp;
1041 struct i915_drrs {
1042 struct mutex mutex;
1043 struct delayed_work work;
1044 struct intel_dp *dp;
1045 unsigned busy_frontbuffer_bits;
1046 enum drrs_refresh_rate_type refresh_rate_type;
1047 enum drrs_support_type type;
1048 };
1049
1050 struct i915_psr {
1051 struct mutex lock;
1052 bool sink_support;
1053 bool source_ok;
1054 struct intel_dp *enabled;
1055 bool active;
1056 struct delayed_work work;
1057 unsigned busy_frontbuffer_bits;
1058 bool psr2_support;
1059 bool aux_frame_sync;
1060 bool link_standby;
1061 };
1062
1063 enum intel_pch {
1064 PCH_NONE = 0, /* No PCH present */
1065 PCH_IBX, /* Ibexpeak PCH */
1066 PCH_CPT, /* Cougarpoint PCH */
1067 PCH_LPT, /* Lynxpoint PCH */
1068 PCH_SPT, /* Sunrisepoint PCH */
1069 PCH_KBP, /* Kabypoint PCH */
1070 PCH_NOP,
1071 };
1072
1073 enum intel_sbi_destination {
1074 SBI_ICLK,
1075 SBI_MPHY,
1076 };
1077
1078 #define QUIRK_PIPEA_FORCE (1<<0)
1079 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1080 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1081 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1082 #define QUIRK_PIPEB_FORCE (1<<4)
1083 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1084
1085 struct intel_fbdev;
1086 struct intel_fbc_work;
1087
1088 struct intel_gmbus {
1089 struct i2c_adapter adapter;
1090 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1091 u32 force_bit;
1092 u32 reg0;
1093 i915_reg_t gpio_reg;
1094 struct i2c_algo_bit_data bit_algo;
1095 struct drm_i915_private *dev_priv;
1096 };
1097
1098 struct i915_suspend_saved_registers {
1099 u32 saveDSPARB;
1100 u32 saveFBC_CONTROL;
1101 u32 saveCACHE_MODE_0;
1102 u32 saveMI_ARB_STATE;
1103 u32 saveSWF0[16];
1104 u32 saveSWF1[16];
1105 u32 saveSWF3[3];
1106 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1107 u32 savePCH_PORT_HOTPLUG;
1108 u16 saveGCDGMBUS;
1109 };
1110
1111 struct vlv_s0ix_state {
1112 /* GAM */
1113 u32 wr_watermark;
1114 u32 gfx_prio_ctrl;
1115 u32 arb_mode;
1116 u32 gfx_pend_tlb0;
1117 u32 gfx_pend_tlb1;
1118 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1119 u32 media_max_req_count;
1120 u32 gfx_max_req_count;
1121 u32 render_hwsp;
1122 u32 ecochk;
1123 u32 bsd_hwsp;
1124 u32 blt_hwsp;
1125 u32 tlb_rd_addr;
1126
1127 /* MBC */
1128 u32 g3dctl;
1129 u32 gsckgctl;
1130 u32 mbctl;
1131
1132 /* GCP */
1133 u32 ucgctl1;
1134 u32 ucgctl3;
1135 u32 rcgctl1;
1136 u32 rcgctl2;
1137 u32 rstctl;
1138 u32 misccpctl;
1139
1140 /* GPM */
1141 u32 gfxpause;
1142 u32 rpdeuhwtc;
1143 u32 rpdeuc;
1144 u32 ecobus;
1145 u32 pwrdwnupctl;
1146 u32 rp_down_timeout;
1147 u32 rp_deucsw;
1148 u32 rcubmabdtmr;
1149 u32 rcedata;
1150 u32 spare2gh;
1151
1152 /* Display 1 CZ domain */
1153 u32 gt_imr;
1154 u32 gt_ier;
1155 u32 pm_imr;
1156 u32 pm_ier;
1157 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1158
1159 /* GT SA CZ domain */
1160 u32 tilectl;
1161 u32 gt_fifoctl;
1162 u32 gtlc_wake_ctrl;
1163 u32 gtlc_survive;
1164 u32 pmwgicz;
1165
1166 /* Display 2 CZ domain */
1167 u32 gu_ctl0;
1168 u32 gu_ctl1;
1169 u32 pcbr;
1170 u32 clock_gate_dis2;
1171 };
1172
1173 struct intel_rps_ei {
1174 u32 cz_clock;
1175 u32 render_c0;
1176 u32 media_c0;
1177 };
1178
1179 struct intel_gen6_power_mgmt {
1180 /*
1181 * work, interrupts_enabled and pm_iir are protected by
1182 * dev_priv->irq_lock
1183 */
1184 struct work_struct work;
1185 bool interrupts_enabled;
1186 u32 pm_iir;
1187
1188 /* PM interrupt bits that should never be masked */
1189 u32 pm_intr_keep;
1190
1191 /* Frequencies are stored in potentially platform dependent multiples.
1192 * In other words, *_freq needs to be multiplied by X to be interesting.
1193 * Soft limits are those which are used for the dynamic reclocking done
1194 * by the driver (raise frequencies under heavy loads, and lower for
1195 * lighter loads). Hard limits are those imposed by the hardware.
1196 *
1197 * A distinction is made for overclocking, which is never enabled by
1198 * default, and is considered to be above the hard limit if it's
1199 * possible at all.
1200 */
1201 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1202 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1203 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1204 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1205 u8 min_freq; /* AKA RPn. Minimum frequency */
1206 u8 boost_freq; /* Frequency to request when wait boosting */
1207 u8 idle_freq; /* Frequency to request when we are idle */
1208 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1209 u8 rp1_freq; /* "less than" RP0 power/freqency */
1210 u8 rp0_freq; /* Non-overclocked max frequency. */
1211 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
1212
1213 u8 up_threshold; /* Current %busy required to uplock */
1214 u8 down_threshold; /* Current %busy required to downclock */
1215
1216 int last_adj;
1217 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1218
1219 spinlock_t client_lock;
1220 struct list_head clients;
1221 bool client_boost;
1222
1223 bool enabled;
1224 struct delayed_work autoenable_work;
1225 unsigned boosts;
1226
1227 /* manual wa residency calculations */
1228 struct intel_rps_ei up_ei, down_ei;
1229
1230 /*
1231 * Protects RPS/RC6 register access and PCU communication.
1232 * Must be taken after struct_mutex if nested. Note that
1233 * this lock may be held for long periods of time when
1234 * talking to hw - so only take it when talking to hw!
1235 */
1236 struct mutex hw_lock;
1237 };
1238
1239 /* defined intel_pm.c */
1240 extern spinlock_t mchdev_lock;
1241
1242 struct intel_ilk_power_mgmt {
1243 u8 cur_delay;
1244 u8 min_delay;
1245 u8 max_delay;
1246 u8 fmax;
1247 u8 fstart;
1248
1249 u64 last_count1;
1250 unsigned long last_time1;
1251 unsigned long chipset_power;
1252 u64 last_count2;
1253 u64 last_time2;
1254 unsigned long gfx_power;
1255 u8 corr;
1256
1257 int c_m;
1258 int r_t;
1259 };
1260
1261 struct drm_i915_private;
1262 struct i915_power_well;
1263
1264 struct i915_power_well_ops {
1265 /*
1266 * Synchronize the well's hw state to match the current sw state, for
1267 * example enable/disable it based on the current refcount. Called
1268 * during driver init and resume time, possibly after first calling
1269 * the enable/disable handlers.
1270 */
1271 void (*sync_hw)(struct drm_i915_private *dev_priv,
1272 struct i915_power_well *power_well);
1273 /*
1274 * Enable the well and resources that depend on it (for example
1275 * interrupts located on the well). Called after the 0->1 refcount
1276 * transition.
1277 */
1278 void (*enable)(struct drm_i915_private *dev_priv,
1279 struct i915_power_well *power_well);
1280 /*
1281 * Disable the well and resources that depend on it. Called after
1282 * the 1->0 refcount transition.
1283 */
1284 void (*disable)(struct drm_i915_private *dev_priv,
1285 struct i915_power_well *power_well);
1286 /* Returns the hw enabled state. */
1287 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1288 struct i915_power_well *power_well);
1289 };
1290
1291 /* Power well structure for haswell */
1292 struct i915_power_well {
1293 const char *name;
1294 bool always_on;
1295 /* power well enable/disable usage count */
1296 int count;
1297 /* cached hw enabled state */
1298 bool hw_enabled;
1299 unsigned long domains;
1300 unsigned long data;
1301 const struct i915_power_well_ops *ops;
1302 };
1303
1304 struct i915_power_domains {
1305 /*
1306 * Power wells needed for initialization at driver init and suspend
1307 * time are on. They are kept on until after the first modeset.
1308 */
1309 bool init_power_on;
1310 bool initializing;
1311 int power_well_count;
1312
1313 struct mutex lock;
1314 int domain_use_count[POWER_DOMAIN_NUM];
1315 struct i915_power_well *power_wells;
1316 };
1317
1318 #define MAX_L3_SLICES 2
1319 struct intel_l3_parity {
1320 u32 *remap_info[MAX_L3_SLICES];
1321 struct work_struct error_work;
1322 int which_slice;
1323 };
1324
1325 struct i915_gem_mm {
1326 /** Memory allocator for GTT stolen memory */
1327 struct drm_mm stolen;
1328 /** Protects the usage of the GTT stolen memory allocator. This is
1329 * always the inner lock when overlapping with struct_mutex. */
1330 struct mutex stolen_lock;
1331
1332 /** List of all objects in gtt_space. Used to restore gtt
1333 * mappings on resume */
1334 struct list_head bound_list;
1335 /**
1336 * List of objects which are not bound to the GTT (thus
1337 * are idle and not used by the GPU) but still have
1338 * (presumably uncached) pages still attached.
1339 */
1340 struct list_head unbound_list;
1341
1342 /** Usable portion of the GTT for GEM */
1343 unsigned long stolen_base; /* limited to low memory (32-bit) */
1344
1345 /** PPGTT used for aliasing the PPGTT with the GTT */
1346 struct i915_hw_ppgtt *aliasing_ppgtt;
1347
1348 struct notifier_block oom_notifier;
1349 struct notifier_block vmap_notifier;
1350 struct shrinker shrinker;
1351
1352 /** LRU list of objects with fence regs on them. */
1353 struct list_head fence_list;
1354
1355 /**
1356 * Are we in a non-interruptible section of code like
1357 * modesetting?
1358 */
1359 bool interruptible;
1360
1361 /* the indicator for dispatch video commands on two BSD rings */
1362 atomic_t bsd_engine_dispatch_index;
1363
1364 /** Bit 6 swizzling required for X tiling */
1365 uint32_t bit_6_swizzle_x;
1366 /** Bit 6 swizzling required for Y tiling */
1367 uint32_t bit_6_swizzle_y;
1368
1369 /* accounting, useful for userland debugging */
1370 spinlock_t object_stat_lock;
1371 size_t object_memory;
1372 u32 object_count;
1373 };
1374
1375 struct drm_i915_error_state_buf {
1376 struct drm_i915_private *i915;
1377 unsigned bytes;
1378 unsigned size;
1379 int err;
1380 u8 *buf;
1381 loff_t start;
1382 loff_t pos;
1383 };
1384
1385 struct i915_error_state_file_priv {
1386 struct drm_device *dev;
1387 struct drm_i915_error_state *error;
1388 };
1389
1390 struct i915_gpu_error {
1391 /* For hangcheck timer */
1392 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1393 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1394 /* Hang gpu twice in this window and your context gets banned */
1395 #define DRM_I915_CTX_BAN_PERIOD DIV_ROUND_UP(8*DRM_I915_HANGCHECK_PERIOD, 1000)
1396
1397 struct delayed_work hangcheck_work;
1398
1399 /* For reset and error_state handling. */
1400 spinlock_t lock;
1401 /* Protected by the above dev->gpu_error.lock. */
1402 struct drm_i915_error_state *first_error;
1403
1404 unsigned long missed_irq_rings;
1405
1406 /**
1407 * State variable controlling the reset flow and count
1408 *
1409 * This is a counter which gets incremented when reset is triggered,
1410 *
1411 * Before the reset commences, the I915_RESET_IN_PROGRESS bit is set
1412 * meaning that any waiters holding onto the struct_mutex should
1413 * relinquish the lock immediately in order for the reset to start.
1414 *
1415 * If reset is not completed succesfully, the I915_WEDGE bit is
1416 * set meaning that hardware is terminally sour and there is no
1417 * recovery. All waiters on the reset_queue will be woken when
1418 * that happens.
1419 *
1420 * This counter is used by the wait_seqno code to notice that reset
1421 * event happened and it needs to restart the entire ioctl (since most
1422 * likely the seqno it waited for won't ever signal anytime soon).
1423 *
1424 * This is important for lock-free wait paths, where no contended lock
1425 * naturally enforces the correct ordering between the bail-out of the
1426 * waiter and the gpu reset work code.
1427 */
1428 unsigned long reset_count;
1429
1430 unsigned long flags;
1431 #define I915_RESET_IN_PROGRESS 0
1432 #define I915_WEDGED (BITS_PER_LONG - 1)
1433
1434 /**
1435 * Waitqueue to signal when a hang is detected. Used to for waiters
1436 * to release the struct_mutex for the reset to procede.
1437 */
1438 wait_queue_head_t wait_queue;
1439
1440 /**
1441 * Waitqueue to signal when the reset has completed. Used by clients
1442 * that wait for dev_priv->mm.wedged to settle.
1443 */
1444 wait_queue_head_t reset_queue;
1445
1446 /* For missed irq/seqno simulation. */
1447 unsigned long test_irq_rings;
1448 };
1449
1450 enum modeset_restore {
1451 MODESET_ON_LID_OPEN,
1452 MODESET_DONE,
1453 MODESET_SUSPENDED,
1454 };
1455
1456 #define DP_AUX_A 0x40
1457 #define DP_AUX_B 0x10
1458 #define DP_AUX_C 0x20
1459 #define DP_AUX_D 0x30
1460
1461 #define DDC_PIN_B 0x05
1462 #define DDC_PIN_C 0x04
1463 #define DDC_PIN_D 0x06
1464
1465 struct ddi_vbt_port_info {
1466 /*
1467 * This is an index in the HDMI/DVI DDI buffer translation table.
1468 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1469 * populate this field.
1470 */
1471 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1472 uint8_t hdmi_level_shift;
1473
1474 uint8_t supports_dvi:1;
1475 uint8_t supports_hdmi:1;
1476 uint8_t supports_dp:1;
1477
1478 uint8_t alternate_aux_channel;
1479 uint8_t alternate_ddc_pin;
1480
1481 uint8_t dp_boost_level;
1482 uint8_t hdmi_boost_level;
1483 };
1484
1485 enum psr_lines_to_wait {
1486 PSR_0_LINES_TO_WAIT = 0,
1487 PSR_1_LINE_TO_WAIT,
1488 PSR_4_LINES_TO_WAIT,
1489 PSR_8_LINES_TO_WAIT
1490 };
1491
1492 struct intel_vbt_data {
1493 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1494 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1495
1496 /* Feature bits */
1497 unsigned int int_tv_support:1;
1498 unsigned int lvds_dither:1;
1499 unsigned int lvds_vbt:1;
1500 unsigned int int_crt_support:1;
1501 unsigned int lvds_use_ssc:1;
1502 unsigned int display_clock_mode:1;
1503 unsigned int fdi_rx_polarity_inverted:1;
1504 unsigned int panel_type:4;
1505 int lvds_ssc_freq;
1506 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1507
1508 enum drrs_support_type drrs_type;
1509
1510 struct {
1511 int rate;
1512 int lanes;
1513 int preemphasis;
1514 int vswing;
1515 bool low_vswing;
1516 bool initialized;
1517 bool support;
1518 int bpp;
1519 struct edp_power_seq pps;
1520 } edp;
1521
1522 struct {
1523 bool full_link;
1524 bool require_aux_wakeup;
1525 int idle_frames;
1526 enum psr_lines_to_wait lines_to_wait;
1527 int tp1_wakeup_time;
1528 int tp2_tp3_wakeup_time;
1529 } psr;
1530
1531 struct {
1532 u16 pwm_freq_hz;
1533 bool present;
1534 bool active_low_pwm;
1535 u8 min_brightness; /* min_brightness/255 of max */
1536 enum intel_backlight_type type;
1537 } backlight;
1538
1539 /* MIPI DSI */
1540 struct {
1541 u16 panel_id;
1542 struct mipi_config *config;
1543 struct mipi_pps_data *pps;
1544 u8 seq_version;
1545 u32 size;
1546 u8 *data;
1547 const u8 *sequence[MIPI_SEQ_MAX];
1548 } dsi;
1549
1550 int crt_ddc_pin;
1551
1552 int child_dev_num;
1553 union child_device_config *child_dev;
1554
1555 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1556 struct sdvo_device_mapping sdvo_mappings[2];
1557 };
1558
1559 enum intel_ddb_partitioning {
1560 INTEL_DDB_PART_1_2,
1561 INTEL_DDB_PART_5_6, /* IVB+ */
1562 };
1563
1564 struct intel_wm_level {
1565 bool enable;
1566 uint32_t pri_val;
1567 uint32_t spr_val;
1568 uint32_t cur_val;
1569 uint32_t fbc_val;
1570 };
1571
1572 struct ilk_wm_values {
1573 uint32_t wm_pipe[3];
1574 uint32_t wm_lp[3];
1575 uint32_t wm_lp_spr[3];
1576 uint32_t wm_linetime[3];
1577 bool enable_fbc_wm;
1578 enum intel_ddb_partitioning partitioning;
1579 };
1580
1581 struct vlv_pipe_wm {
1582 uint16_t primary;
1583 uint16_t sprite[2];
1584 uint8_t cursor;
1585 };
1586
1587 struct vlv_sr_wm {
1588 uint16_t plane;
1589 uint8_t cursor;
1590 };
1591
1592 struct vlv_wm_values {
1593 struct vlv_pipe_wm pipe[3];
1594 struct vlv_sr_wm sr;
1595 struct {
1596 uint8_t cursor;
1597 uint8_t sprite[2];
1598 uint8_t primary;
1599 } ddl[3];
1600 uint8_t level;
1601 bool cxsr;
1602 };
1603
1604 struct skl_ddb_entry {
1605 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1606 };
1607
1608 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1609 {
1610 return entry->end - entry->start;
1611 }
1612
1613 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1614 const struct skl_ddb_entry *e2)
1615 {
1616 if (e1->start == e2->start && e1->end == e2->end)
1617 return true;
1618
1619 return false;
1620 }
1621
1622 struct skl_ddb_allocation {
1623 struct skl_ddb_entry pipe[I915_MAX_PIPES];
1624 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1625 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1626 };
1627
1628 struct skl_wm_values {
1629 unsigned dirty_pipes;
1630 struct skl_ddb_allocation ddb;
1631 uint32_t wm_linetime[I915_MAX_PIPES];
1632 uint32_t plane[I915_MAX_PIPES][I915_MAX_PLANES][8];
1633 uint32_t plane_trans[I915_MAX_PIPES][I915_MAX_PLANES];
1634 };
1635
1636 struct skl_wm_level {
1637 bool plane_en[I915_MAX_PLANES];
1638 uint16_t plane_res_b[I915_MAX_PLANES];
1639 uint8_t plane_res_l[I915_MAX_PLANES];
1640 };
1641
1642 /*
1643 * This struct helps tracking the state needed for runtime PM, which puts the
1644 * device in PCI D3 state. Notice that when this happens, nothing on the
1645 * graphics device works, even register access, so we don't get interrupts nor
1646 * anything else.
1647 *
1648 * Every piece of our code that needs to actually touch the hardware needs to
1649 * either call intel_runtime_pm_get or call intel_display_power_get with the
1650 * appropriate power domain.
1651 *
1652 * Our driver uses the autosuspend delay feature, which means we'll only really
1653 * suspend if we stay with zero refcount for a certain amount of time. The
1654 * default value is currently very conservative (see intel_runtime_pm_enable), but
1655 * it can be changed with the standard runtime PM files from sysfs.
1656 *
1657 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1658 * goes back to false exactly before we reenable the IRQs. We use this variable
1659 * to check if someone is trying to enable/disable IRQs while they're supposed
1660 * to be disabled. This shouldn't happen and we'll print some error messages in
1661 * case it happens.
1662 *
1663 * For more, read the Documentation/power/runtime_pm.txt.
1664 */
1665 struct i915_runtime_pm {
1666 atomic_t wakeref_count;
1667 atomic_t atomic_seq;
1668 bool suspended;
1669 bool irqs_enabled;
1670 };
1671
1672 enum intel_pipe_crc_source {
1673 INTEL_PIPE_CRC_SOURCE_NONE,
1674 INTEL_PIPE_CRC_SOURCE_PLANE1,
1675 INTEL_PIPE_CRC_SOURCE_PLANE2,
1676 INTEL_PIPE_CRC_SOURCE_PF,
1677 INTEL_PIPE_CRC_SOURCE_PIPE,
1678 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1679 INTEL_PIPE_CRC_SOURCE_TV,
1680 INTEL_PIPE_CRC_SOURCE_DP_B,
1681 INTEL_PIPE_CRC_SOURCE_DP_C,
1682 INTEL_PIPE_CRC_SOURCE_DP_D,
1683 INTEL_PIPE_CRC_SOURCE_AUTO,
1684 INTEL_PIPE_CRC_SOURCE_MAX,
1685 };
1686
1687 struct intel_pipe_crc_entry {
1688 uint32_t frame;
1689 uint32_t crc[5];
1690 };
1691
1692 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1693 struct intel_pipe_crc {
1694 spinlock_t lock;
1695 bool opened; /* exclusive access to the result file */
1696 struct intel_pipe_crc_entry *entries;
1697 enum intel_pipe_crc_source source;
1698 int head, tail;
1699 wait_queue_head_t wq;
1700 };
1701
1702 struct i915_frontbuffer_tracking {
1703 spinlock_t lock;
1704
1705 /*
1706 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1707 * scheduled flips.
1708 */
1709 unsigned busy_bits;
1710 unsigned flip_bits;
1711 };
1712
1713 struct i915_wa_reg {
1714 i915_reg_t addr;
1715 u32 value;
1716 /* bitmask representing WA bits */
1717 u32 mask;
1718 };
1719
1720 /*
1721 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1722 * allowing it for RCS as we don't foresee any requirement of having
1723 * a whitelist for other engines. When it is really required for
1724 * other engines then the limit need to be increased.
1725 */
1726 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1727
1728 struct i915_workarounds {
1729 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1730 u32 count;
1731 u32 hw_whitelist_count[I915_NUM_ENGINES];
1732 };
1733
1734 struct i915_virtual_gpu {
1735 bool active;
1736 };
1737
1738 /* used in computing the new watermarks state */
1739 struct intel_wm_config {
1740 unsigned int num_pipes_active;
1741 bool sprites_enabled;
1742 bool sprites_scaled;
1743 };
1744
1745 struct drm_i915_private {
1746 struct drm_device drm;
1747
1748 struct kmem_cache *objects;
1749 struct kmem_cache *vmas;
1750 struct kmem_cache *requests;
1751
1752 const struct intel_device_info info;
1753
1754 int relative_constants_mode;
1755
1756 void __iomem *regs;
1757
1758 struct intel_uncore uncore;
1759
1760 struct i915_virtual_gpu vgpu;
1761
1762 struct intel_gvt gvt;
1763
1764 struct intel_guc guc;
1765
1766 struct intel_csr csr;
1767
1768 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1769
1770 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
1771 * controller on different i2c buses. */
1772 struct mutex gmbus_mutex;
1773
1774 /**
1775 * Base address of the gmbus and gpio block.
1776 */
1777 uint32_t gpio_mmio_base;
1778
1779 /* MMIO base address for MIPI regs */
1780 uint32_t mipi_mmio_base;
1781
1782 uint32_t psr_mmio_base;
1783
1784 uint32_t pps_mmio_base;
1785
1786 wait_queue_head_t gmbus_wait_queue;
1787
1788 struct pci_dev *bridge_dev;
1789 struct i915_gem_context *kernel_context;
1790 struct intel_engine_cs engine[I915_NUM_ENGINES];
1791 struct i915_vma *semaphore;
1792 u32 next_seqno;
1793
1794 struct drm_dma_handle *status_page_dmah;
1795 struct resource mch_res;
1796
1797 /* protects the irq masks */
1798 spinlock_t irq_lock;
1799
1800 /* protects the mmio flip data */
1801 spinlock_t mmio_flip_lock;
1802
1803 bool display_irqs_enabled;
1804
1805 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1806 struct pm_qos_request pm_qos;
1807
1808 /* Sideband mailbox protection */
1809 struct mutex sb_lock;
1810
1811 /** Cached value of IMR to avoid reads in updating the bitfield */
1812 union {
1813 u32 irq_mask;
1814 u32 de_irq_mask[I915_MAX_PIPES];
1815 };
1816 u32 gt_irq_mask;
1817 u32 pm_irq_mask;
1818 u32 pm_rps_events;
1819 u32 pipestat_irq_mask[I915_MAX_PIPES];
1820
1821 struct i915_hotplug hotplug;
1822 struct intel_fbc fbc;
1823 struct i915_drrs drrs;
1824 struct intel_opregion opregion;
1825 struct intel_vbt_data vbt;
1826
1827 bool preserve_bios_swizzle;
1828
1829 /* overlay */
1830 struct intel_overlay *overlay;
1831
1832 /* backlight registers and fields in struct intel_panel */
1833 struct mutex backlight_lock;
1834
1835 /* LVDS info */
1836 bool no_aux_handshake;
1837
1838 /* protects panel power sequencer state */
1839 struct mutex pps_mutex;
1840
1841 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1842 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1843
1844 unsigned int fsb_freq, mem_freq, is_ddr3;
1845 unsigned int skl_preferred_vco_freq;
1846 unsigned int cdclk_freq, max_cdclk_freq, atomic_cdclk_freq;
1847 unsigned int max_dotclk_freq;
1848 unsigned int rawclk_freq;
1849 unsigned int hpll_freq;
1850 unsigned int czclk_freq;
1851
1852 struct {
1853 unsigned int vco, ref;
1854 } cdclk_pll;
1855
1856 /**
1857 * wq - Driver workqueue for GEM.
1858 *
1859 * NOTE: Work items scheduled here are not allowed to grab any modeset
1860 * locks, for otherwise the flushing done in the pageflip code will
1861 * result in deadlocks.
1862 */
1863 struct workqueue_struct *wq;
1864
1865 /* Display functions */
1866 struct drm_i915_display_funcs display;
1867
1868 /* PCH chipset type */
1869 enum intel_pch pch_type;
1870 unsigned short pch_id;
1871
1872 unsigned long quirks;
1873
1874 enum modeset_restore modeset_restore;
1875 struct mutex modeset_restore_lock;
1876 struct drm_atomic_state *modeset_restore_state;
1877 struct drm_modeset_acquire_ctx reset_ctx;
1878
1879 struct list_head vm_list; /* Global list of all address spaces */
1880 struct i915_ggtt ggtt; /* VM representing the global address space */
1881
1882 struct i915_gem_mm mm;
1883 DECLARE_HASHTABLE(mm_structs, 7);
1884 struct mutex mm_lock;
1885
1886 /* The hw wants to have a stable context identifier for the lifetime
1887 * of the context (for OA, PASID, faults, etc). This is limited
1888 * in execlists to 21 bits.
1889 */
1890 struct ida context_hw_ida;
1891 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1892
1893 /* Kernel Modesetting */
1894
1895 struct drm_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1896 struct drm_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1897 wait_queue_head_t pending_flip_queue;
1898
1899 #ifdef CONFIG_DEBUG_FS
1900 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1901 #endif
1902
1903 /* dpll and cdclk state is protected by connection_mutex */
1904 int num_shared_dpll;
1905 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1906 const struct intel_dpll_mgr *dpll_mgr;
1907
1908 /*
1909 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1910 * Must be global rather than per dpll, because on some platforms
1911 * plls share registers.
1912 */
1913 struct mutex dpll_lock;
1914
1915 unsigned int active_crtcs;
1916 unsigned int min_pixclk[I915_MAX_PIPES];
1917
1918 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1919
1920 struct i915_workarounds workarounds;
1921
1922 struct i915_frontbuffer_tracking fb_tracking;
1923
1924 u16 orig_clock;
1925
1926 bool mchbar_need_disable;
1927
1928 struct intel_l3_parity l3_parity;
1929
1930 /* Cannot be determined by PCIID. You must always read a register. */
1931 u32 edram_cap;
1932
1933 /* gen6+ rps state */
1934 struct intel_gen6_power_mgmt rps;
1935
1936 /* ilk-only ips/rps state. Everything in here is protected by the global
1937 * mchdev_lock in intel_pm.c */
1938 struct intel_ilk_power_mgmt ips;
1939
1940 struct i915_power_domains power_domains;
1941
1942 struct i915_psr psr;
1943
1944 struct i915_gpu_error gpu_error;
1945
1946 struct drm_i915_gem_object *vlv_pctx;
1947
1948 #ifdef CONFIG_DRM_FBDEV_EMULATION
1949 /* list of fbdev register on this device */
1950 struct intel_fbdev *fbdev;
1951 struct work_struct fbdev_suspend_work;
1952 #endif
1953
1954 struct drm_property *broadcast_rgb_property;
1955 struct drm_property *force_audio_property;
1956
1957 /* hda/i915 audio component */
1958 struct i915_audio_component *audio_component;
1959 bool audio_component_registered;
1960 /**
1961 * av_mutex - mutex for audio/video sync
1962 *
1963 */
1964 struct mutex av_mutex;
1965
1966 uint32_t hw_context_size;
1967 struct list_head context_list;
1968
1969 u32 fdi_rx_config;
1970
1971 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
1972 u32 chv_phy_control;
1973 /*
1974 * Shadows for CHV DPLL_MD regs to keep the state
1975 * checker somewhat working in the presence hardware
1976 * crappiness (can't read out DPLL_MD for pipes B & C).
1977 */
1978 u32 chv_dpll_md[I915_MAX_PIPES];
1979 u32 bxt_phy_grc;
1980
1981 u32 suspend_count;
1982 bool suspended_to_idle;
1983 struct i915_suspend_saved_registers regfile;
1984 struct vlv_s0ix_state vlv_s0ix_state;
1985
1986 enum {
1987 I915_SAGV_UNKNOWN = 0,
1988 I915_SAGV_DISABLED,
1989 I915_SAGV_ENABLED,
1990 I915_SAGV_NOT_CONTROLLED
1991 } sagv_status;
1992
1993 struct {
1994 /*
1995 * Raw watermark latency values:
1996 * in 0.1us units for WM0,
1997 * in 0.5us units for WM1+.
1998 */
1999 /* primary */
2000 uint16_t pri_latency[5];
2001 /* sprite */
2002 uint16_t spr_latency[5];
2003 /* cursor */
2004 uint16_t cur_latency[5];
2005 /*
2006 * Raw watermark memory latency values
2007 * for SKL for all 8 levels
2008 * in 1us units.
2009 */
2010 uint16_t skl_latency[8];
2011
2012 /*
2013 * The skl_wm_values structure is a bit too big for stack
2014 * allocation, so we keep the staging struct where we store
2015 * intermediate results here instead.
2016 */
2017 struct skl_wm_values skl_results;
2018
2019 /* current hardware state */
2020 union {
2021 struct ilk_wm_values hw;
2022 struct skl_wm_values skl_hw;
2023 struct vlv_wm_values vlv;
2024 };
2025
2026 uint8_t max_level;
2027
2028 /*
2029 * Should be held around atomic WM register writing; also
2030 * protects * intel_crtc->wm.active and
2031 * cstate->wm.need_postvbl_update.
2032 */
2033 struct mutex wm_mutex;
2034
2035 /*
2036 * Set during HW readout of watermarks/DDB. Some platforms
2037 * need to know when we're still using BIOS-provided values
2038 * (which we don't fully trust).
2039 */
2040 bool distrust_bios_wm;
2041 } wm;
2042
2043 struct i915_runtime_pm pm;
2044
2045 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2046 struct {
2047 void (*resume)(struct drm_i915_private *);
2048 void (*cleanup_engine)(struct intel_engine_cs *engine);
2049
2050 /**
2051 * Is the GPU currently considered idle, or busy executing
2052 * userspace requests? Whilst idle, we allow runtime power
2053 * management to power down the hardware and display clocks.
2054 * In order to reduce the effect on performance, there
2055 * is a slight delay before we do so.
2056 */
2057 unsigned int active_engines;
2058 bool awake;
2059
2060 /**
2061 * We leave the user IRQ off as much as possible,
2062 * but this means that requests will finish and never
2063 * be retired once the system goes idle. Set a timer to
2064 * fire periodically while the ring is running. When it
2065 * fires, go retire requests.
2066 */
2067 struct delayed_work retire_work;
2068
2069 /**
2070 * When we detect an idle GPU, we want to turn on
2071 * powersaving features. So once we see that there
2072 * are no more requests outstanding and no more
2073 * arrive within a small period of time, we fire
2074 * off the idle_work.
2075 */
2076 struct delayed_work idle_work;
2077 } gt;
2078
2079 /* perform PHY state sanity checks? */
2080 bool chv_phy_assert[2];
2081
2082 struct intel_encoder *dig_port_map[I915_MAX_PORTS];
2083
2084 /*
2085 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2086 * will be rejected. Instead look for a better place.
2087 */
2088 };
2089
2090 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2091 {
2092 return container_of(dev, struct drm_i915_private, drm);
2093 }
2094
2095 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2096 {
2097 return to_i915(dev_get_drvdata(kdev));
2098 }
2099
2100 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2101 {
2102 return container_of(guc, struct drm_i915_private, guc);
2103 }
2104
2105 /* Simple iterator over all initialised engines */
2106 #define for_each_engine(engine__, dev_priv__) \
2107 for ((engine__) = &(dev_priv__)->engine[0]; \
2108 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2109 (engine__)++) \
2110 for_each_if (intel_engine_initialized(engine__))
2111
2112 /* Iterator with engine_id */
2113 #define for_each_engine_id(engine__, dev_priv__, id__) \
2114 for ((engine__) = &(dev_priv__)->engine[0], (id__) = 0; \
2115 (engine__) < &(dev_priv__)->engine[I915_NUM_ENGINES]; \
2116 (engine__)++) \
2117 for_each_if (((id__) = (engine__)->id, \
2118 intel_engine_initialized(engine__)))
2119
2120 #define __mask_next_bit(mask) ({ \
2121 int __idx = ffs(mask) - 1; \
2122 mask &= ~BIT(__idx); \
2123 __idx; \
2124 })
2125
2126 /* Iterator over subset of engines selected by mask */
2127 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2128 for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask; \
2129 tmp__ ? (engine__ = &(dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2130
2131 enum hdmi_force_audio {
2132 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2133 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2134 HDMI_AUDIO_AUTO, /* trust EDID */
2135 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2136 };
2137
2138 #define I915_GTT_OFFSET_NONE ((u32)-1)
2139
2140 struct drm_i915_gem_object_ops {
2141 unsigned int flags;
2142 #define I915_GEM_OBJECT_HAS_STRUCT_PAGE 0x1
2143
2144 /* Interface between the GEM object and its backing storage.
2145 * get_pages() is called once prior to the use of the associated set
2146 * of pages before to binding them into the GTT, and put_pages() is
2147 * called after we no longer need them. As we expect there to be
2148 * associated cost with migrating pages between the backing storage
2149 * and making them available for the GPU (e.g. clflush), we may hold
2150 * onto the pages after they are no longer referenced by the GPU
2151 * in case they may be used again shortly (for example migrating the
2152 * pages to a different memory domain within the GTT). put_pages()
2153 * will therefore most likely be called when the object itself is
2154 * being released or under memory pressure (where we attempt to
2155 * reap pages for the shrinker).
2156 */
2157 int (*get_pages)(struct drm_i915_gem_object *);
2158 void (*put_pages)(struct drm_i915_gem_object *);
2159
2160 int (*dmabuf_export)(struct drm_i915_gem_object *);
2161 void (*release)(struct drm_i915_gem_object *);
2162 };
2163
2164 /*
2165 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2166 * considered to be the frontbuffer for the given plane interface-wise. This
2167 * doesn't mean that the hw necessarily already scans it out, but that any
2168 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2169 *
2170 * We have one bit per pipe and per scanout plane type.
2171 */
2172 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2173 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2174 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2175 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2176 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2177 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2178 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2179 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2180 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2181 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2182 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2183 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2184
2185 struct drm_i915_gem_object {
2186 struct drm_gem_object base;
2187
2188 const struct drm_i915_gem_object_ops *ops;
2189
2190 /** List of VMAs backed by this object */
2191 struct list_head vma_list;
2192
2193 /** Stolen memory for this object, instead of being backed by shmem. */
2194 struct drm_mm_node *stolen;
2195 struct list_head global_list;
2196
2197 /** Used in execbuf to temporarily hold a ref */
2198 struct list_head obj_exec_link;
2199
2200 struct list_head batch_pool_link;
2201
2202 unsigned long flags;
2203 /**
2204 * This is set if the object is on the active lists (has pending
2205 * rendering and so a non-zero seqno), and is not set if it i s on
2206 * inactive (ready to be unbound) list.
2207 */
2208 #define I915_BO_ACTIVE_SHIFT 0
2209 #define I915_BO_ACTIVE_MASK ((1 << I915_NUM_ENGINES) - 1)
2210 #define __I915_BO_ACTIVE(bo) \
2211 ((READ_ONCE((bo)->flags) >> I915_BO_ACTIVE_SHIFT) & I915_BO_ACTIVE_MASK)
2212
2213 /**
2214 * This is set if the object has been written to since last bound
2215 * to the GTT
2216 */
2217 unsigned int dirty:1;
2218
2219 /**
2220 * Advice: are the backing pages purgeable?
2221 */
2222 unsigned int madv:2;
2223
2224 /**
2225 * Whether the current gtt mapping needs to be mappable (and isn't just
2226 * mappable by accident). Track pin and fault separate for a more
2227 * accurate mappable working set.
2228 */
2229 unsigned int fault_mappable:1;
2230
2231 /*
2232 * Is the object to be mapped as read-only to the GPU
2233 * Only honoured if hardware has relevant pte bit
2234 */
2235 unsigned long gt_ro:1;
2236 unsigned int cache_level:3;
2237 unsigned int cache_dirty:1;
2238
2239 atomic_t frontbuffer_bits;
2240 unsigned int frontbuffer_ggtt_origin; /* write once */
2241
2242 /** Current tiling stride for the object, if it's tiled. */
2243 unsigned int tiling_and_stride;
2244 #define FENCE_MINIMUM_STRIDE 128 /* See i915_tiling_ok() */
2245 #define TILING_MASK (FENCE_MINIMUM_STRIDE-1)
2246 #define STRIDE_MASK (~TILING_MASK)
2247
2248 /** Count of VMA actually bound by this object */
2249 unsigned int bind_count;
2250 unsigned int pin_display;
2251
2252 struct sg_table *pages;
2253 int pages_pin_count;
2254 struct get_page {
2255 struct scatterlist *sg;
2256 int last;
2257 } get_page;
2258 void *mapping;
2259
2260 /** Breadcrumb of last rendering to the buffer.
2261 * There can only be one writer, but we allow for multiple readers.
2262 * If there is a writer that necessarily implies that all other
2263 * read requests are complete - but we may only be lazily clearing
2264 * the read requests. A read request is naturally the most recent
2265 * request on a ring, so we may have two different write and read
2266 * requests on one ring where the write request is older than the
2267 * read request. This allows for the CPU to read from an active
2268 * buffer by only waiting for the write to complete.
2269 */
2270 struct i915_gem_active last_read[I915_NUM_ENGINES];
2271 struct i915_gem_active last_write;
2272
2273 /** References from framebuffers, locks out tiling changes. */
2274 unsigned long framebuffer_references;
2275
2276 /** Record of address bit 17 of each page at last unbind. */
2277 unsigned long *bit_17;
2278
2279 struct i915_gem_userptr {
2280 uintptr_t ptr;
2281 unsigned read_only :1;
2282 unsigned workers :4;
2283 #define I915_GEM_USERPTR_MAX_WORKERS 15
2284
2285 struct i915_mm_struct *mm;
2286 struct i915_mmu_object *mmu_object;
2287 struct work_struct *work;
2288 } userptr;
2289
2290 /** for phys allocated objects */
2291 struct drm_dma_handle *phys_handle;
2292 };
2293
2294 static inline struct drm_i915_gem_object *
2295 to_intel_bo(struct drm_gem_object *gem)
2296 {
2297 /* Assert that to_intel_bo(NULL) == NULL */
2298 BUILD_BUG_ON(offsetof(struct drm_i915_gem_object, base));
2299
2300 return container_of(gem, struct drm_i915_gem_object, base);
2301 }
2302
2303 static inline struct drm_i915_gem_object *
2304 i915_gem_object_lookup(struct drm_file *file, u32 handle)
2305 {
2306 return to_intel_bo(drm_gem_object_lookup(file, handle));
2307 }
2308
2309 __deprecated
2310 extern struct drm_gem_object *
2311 drm_gem_object_lookup(struct drm_file *file, u32 handle);
2312
2313 __attribute__((nonnull))
2314 static inline struct drm_i915_gem_object *
2315 i915_gem_object_get(struct drm_i915_gem_object *obj)
2316 {
2317 drm_gem_object_reference(&obj->base);
2318 return obj;
2319 }
2320
2321 __deprecated
2322 extern void drm_gem_object_reference(struct drm_gem_object *);
2323
2324 __attribute__((nonnull))
2325 static inline void
2326 i915_gem_object_put(struct drm_i915_gem_object *obj)
2327 {
2328 drm_gem_object_unreference(&obj->base);
2329 }
2330
2331 __deprecated
2332 extern void drm_gem_object_unreference(struct drm_gem_object *);
2333
2334 __attribute__((nonnull))
2335 static inline void
2336 i915_gem_object_put_unlocked(struct drm_i915_gem_object *obj)
2337 {
2338 drm_gem_object_unreference_unlocked(&obj->base);
2339 }
2340
2341 __deprecated
2342 extern void drm_gem_object_unreference_unlocked(struct drm_gem_object *);
2343
2344 static inline bool
2345 i915_gem_object_has_struct_page(const struct drm_i915_gem_object *obj)
2346 {
2347 return obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE;
2348 }
2349
2350 static inline unsigned long
2351 i915_gem_object_get_active(const struct drm_i915_gem_object *obj)
2352 {
2353 return (obj->flags >> I915_BO_ACTIVE_SHIFT) & I915_BO_ACTIVE_MASK;
2354 }
2355
2356 static inline bool
2357 i915_gem_object_is_active(const struct drm_i915_gem_object *obj)
2358 {
2359 return i915_gem_object_get_active(obj);
2360 }
2361
2362 static inline void
2363 i915_gem_object_set_active(struct drm_i915_gem_object *obj, int engine)
2364 {
2365 obj->flags |= BIT(engine + I915_BO_ACTIVE_SHIFT);
2366 }
2367
2368 static inline void
2369 i915_gem_object_clear_active(struct drm_i915_gem_object *obj, int engine)
2370 {
2371 obj->flags &= ~BIT(engine + I915_BO_ACTIVE_SHIFT);
2372 }
2373
2374 static inline bool
2375 i915_gem_object_has_active_engine(const struct drm_i915_gem_object *obj,
2376 int engine)
2377 {
2378 return obj->flags & BIT(engine + I915_BO_ACTIVE_SHIFT);
2379 }
2380
2381 static inline unsigned int
2382 i915_gem_object_get_tiling(struct drm_i915_gem_object *obj)
2383 {
2384 return obj->tiling_and_stride & TILING_MASK;
2385 }
2386
2387 static inline bool
2388 i915_gem_object_is_tiled(struct drm_i915_gem_object *obj)
2389 {
2390 return i915_gem_object_get_tiling(obj) != I915_TILING_NONE;
2391 }
2392
2393 static inline unsigned int
2394 i915_gem_object_get_stride(struct drm_i915_gem_object *obj)
2395 {
2396 return obj->tiling_and_stride & STRIDE_MASK;
2397 }
2398
2399 static inline struct i915_vma *i915_vma_get(struct i915_vma *vma)
2400 {
2401 i915_gem_object_get(vma->obj);
2402 return vma;
2403 }
2404
2405 static inline void i915_vma_put(struct i915_vma *vma)
2406 {
2407 lockdep_assert_held(&vma->vm->dev->struct_mutex);
2408 i915_gem_object_put(vma->obj);
2409 }
2410
2411 /*
2412 * Optimised SGL iterator for GEM objects
2413 */
2414 static __always_inline struct sgt_iter {
2415 struct scatterlist *sgp;
2416 union {
2417 unsigned long pfn;
2418 dma_addr_t dma;
2419 };
2420 unsigned int curr;
2421 unsigned int max;
2422 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2423 struct sgt_iter s = { .sgp = sgl };
2424
2425 if (s.sgp) {
2426 s.max = s.curr = s.sgp->offset;
2427 s.max += s.sgp->length;
2428 if (dma)
2429 s.dma = sg_dma_address(s.sgp);
2430 else
2431 s.pfn = page_to_pfn(sg_page(s.sgp));
2432 }
2433
2434 return s;
2435 }
2436
2437 /**
2438 * __sg_next - return the next scatterlist entry in a list
2439 * @sg: The current sg entry
2440 *
2441 * Description:
2442 * If the entry is the last, return NULL; otherwise, step to the next
2443 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2444 * otherwise just return the pointer to the current element.
2445 **/
2446 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2447 {
2448 #ifdef CONFIG_DEBUG_SG
2449 BUG_ON(sg->sg_magic != SG_MAGIC);
2450 #endif
2451 return sg_is_last(sg) ? NULL :
2452 likely(!sg_is_chain(++sg)) ? sg :
2453 sg_chain_ptr(sg);
2454 }
2455
2456 /**
2457 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2458 * @__dmap: DMA address (output)
2459 * @__iter: 'struct sgt_iter' (iterator state, internal)
2460 * @__sgt: sg_table to iterate over (input)
2461 */
2462 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2463 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2464 ((__dmap) = (__iter).dma + (__iter).curr); \
2465 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2466 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2467
2468 /**
2469 * for_each_sgt_page - iterate over the pages of the given sg_table
2470 * @__pp: page pointer (output)
2471 * @__iter: 'struct sgt_iter' (iterator state, internal)
2472 * @__sgt: sg_table to iterate over (input)
2473 */
2474 #define for_each_sgt_page(__pp, __iter, __sgt) \
2475 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2476 ((__pp) = (__iter).pfn == 0 ? NULL : \
2477 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2478 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2479 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2480
2481 /*
2482 * A command that requires special handling by the command parser.
2483 */
2484 struct drm_i915_cmd_descriptor {
2485 /*
2486 * Flags describing how the command parser processes the command.
2487 *
2488 * CMD_DESC_FIXED: The command has a fixed length if this is set,
2489 * a length mask if not set
2490 * CMD_DESC_SKIP: The command is allowed but does not follow the
2491 * standard length encoding for the opcode range in
2492 * which it falls
2493 * CMD_DESC_REJECT: The command is never allowed
2494 * CMD_DESC_REGISTER: The command should be checked against the
2495 * register whitelist for the appropriate ring
2496 * CMD_DESC_MASTER: The command is allowed if the submitting process
2497 * is the DRM master
2498 */
2499 u32 flags;
2500 #define CMD_DESC_FIXED (1<<0)
2501 #define CMD_DESC_SKIP (1<<1)
2502 #define CMD_DESC_REJECT (1<<2)
2503 #define CMD_DESC_REGISTER (1<<3)
2504 #define CMD_DESC_BITMASK (1<<4)
2505 #define CMD_DESC_MASTER (1<<5)
2506
2507 /*
2508 * The command's unique identification bits and the bitmask to get them.
2509 * This isn't strictly the opcode field as defined in the spec and may
2510 * also include type, subtype, and/or subop fields.
2511 */
2512 struct {
2513 u32 value;
2514 u32 mask;
2515 } cmd;
2516
2517 /*
2518 * The command's length. The command is either fixed length (i.e. does
2519 * not include a length field) or has a length field mask. The flag
2520 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
2521 * a length mask. All command entries in a command table must include
2522 * length information.
2523 */
2524 union {
2525 u32 fixed;
2526 u32 mask;
2527 } length;
2528
2529 /*
2530 * Describes where to find a register address in the command to check
2531 * against the ring's register whitelist. Only valid if flags has the
2532 * CMD_DESC_REGISTER bit set.
2533 *
2534 * A non-zero step value implies that the command may access multiple
2535 * registers in sequence (e.g. LRI), in that case step gives the
2536 * distance in dwords between individual offset fields.
2537 */
2538 struct {
2539 u32 offset;
2540 u32 mask;
2541 u32 step;
2542 } reg;
2543
2544 #define MAX_CMD_DESC_BITMASKS 3
2545 /*
2546 * Describes command checks where a particular dword is masked and
2547 * compared against an expected value. If the command does not match
2548 * the expected value, the parser rejects it. Only valid if flags has
2549 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
2550 * are valid.
2551 *
2552 * If the check specifies a non-zero condition_mask then the parser
2553 * only performs the check when the bits specified by condition_mask
2554 * are non-zero.
2555 */
2556 struct {
2557 u32 offset;
2558 u32 mask;
2559 u32 expected;
2560 u32 condition_offset;
2561 u32 condition_mask;
2562 } bits[MAX_CMD_DESC_BITMASKS];
2563 };
2564
2565 /*
2566 * A table of commands requiring special handling by the command parser.
2567 *
2568 * Each engine has an array of tables. Each table consists of an array of
2569 * command descriptors, which must be sorted with command opcodes in
2570 * ascending order.
2571 */
2572 struct drm_i915_cmd_table {
2573 const struct drm_i915_cmd_descriptor *table;
2574 int count;
2575 };
2576
2577 /* Note that the (struct drm_i915_private *) cast is just to shut up gcc. */
2578 #define __I915__(p) ({ \
2579 struct drm_i915_private *__p; \
2580 if (__builtin_types_compatible_p(typeof(*p), struct drm_i915_private)) \
2581 __p = (struct drm_i915_private *)p; \
2582 else if (__builtin_types_compatible_p(typeof(*p), struct drm_device)) \
2583 __p = to_i915((struct drm_device *)p); \
2584 else \
2585 BUILD_BUG(); \
2586 __p; \
2587 })
2588 #define INTEL_INFO(p) (&__I915__(p)->info)
2589 #define INTEL_GEN(p) (INTEL_INFO(p)->gen)
2590 #define INTEL_DEVID(p) (INTEL_INFO(p)->device_id)
2591
2592 #define REVID_FOREVER 0xff
2593 #define INTEL_REVID(p) (__I915__(p)->drm.pdev->revision)
2594
2595 #define GEN_FOREVER (0)
2596 /*
2597 * Returns true if Gen is in inclusive range [Start, End].
2598 *
2599 * Use GEN_FOREVER for unbound start and or end.
2600 */
2601 #define IS_GEN(p, s, e) ({ \
2602 unsigned int __s = (s), __e = (e); \
2603 BUILD_BUG_ON(!__builtin_constant_p(s)); \
2604 BUILD_BUG_ON(!__builtin_constant_p(e)); \
2605 if ((__s) != GEN_FOREVER) \
2606 __s = (s) - 1; \
2607 if ((__e) == GEN_FOREVER) \
2608 __e = BITS_PER_LONG - 1; \
2609 else \
2610 __e = (e) - 1; \
2611 !!(INTEL_INFO(p)->gen_mask & GENMASK((__e), (__s))); \
2612 })
2613
2614 /*
2615 * Return true if revision is in range [since,until] inclusive.
2616 *
2617 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2618 */
2619 #define IS_REVID(p, since, until) \
2620 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2621
2622 #define IS_I830(dev) (INTEL_DEVID(dev) == 0x3577)
2623 #define IS_845G(dev) (INTEL_DEVID(dev) == 0x2562)
2624 #define IS_I85X(dev) (INTEL_INFO(dev)->is_i85x)
2625 #define IS_I865G(dev) (INTEL_DEVID(dev) == 0x2572)
2626 #define IS_I915G(dev) (INTEL_INFO(dev)->is_i915g)
2627 #define IS_I915GM(dev) (INTEL_DEVID(dev) == 0x2592)
2628 #define IS_I945G(dev) (INTEL_DEVID(dev) == 0x2772)
2629 #define IS_I945GM(dev) (INTEL_INFO(dev)->is_i945gm)
2630 #define IS_BROADWATER(dev) (INTEL_INFO(dev)->is_broadwater)
2631 #define IS_CRESTLINE(dev) (INTEL_INFO(dev)->is_crestline)
2632 #define IS_GM45(dev) (INTEL_DEVID(dev) == 0x2A42)
2633 #define IS_G4X(dev) (INTEL_INFO(dev)->is_g4x)
2634 #define IS_PINEVIEW_G(dev) (INTEL_DEVID(dev) == 0xa001)
2635 #define IS_PINEVIEW_M(dev) (INTEL_DEVID(dev) == 0xa011)
2636 #define IS_PINEVIEW(dev) (INTEL_INFO(dev)->is_pineview)
2637 #define IS_G33(dev) (INTEL_INFO(dev)->is_g33)
2638 #define IS_IRONLAKE_M(dev) (INTEL_DEVID(dev) == 0x0046)
2639 #define IS_IVYBRIDGE(dev) (INTEL_INFO(dev)->is_ivybridge)
2640 #define IS_IVB_GT1(dev) (INTEL_DEVID(dev) == 0x0156 || \
2641 INTEL_DEVID(dev) == 0x0152 || \
2642 INTEL_DEVID(dev) == 0x015a)
2643 #define IS_VALLEYVIEW(dev) (INTEL_INFO(dev)->is_valleyview)
2644 #define IS_CHERRYVIEW(dev) (INTEL_INFO(dev)->is_cherryview)
2645 #define IS_HASWELL(dev) (INTEL_INFO(dev)->is_haswell)
2646 #define IS_BROADWELL(dev) (INTEL_INFO(dev)->is_broadwell)
2647 #define IS_SKYLAKE(dev) (INTEL_INFO(dev)->is_skylake)
2648 #define IS_BROXTON(dev) (INTEL_INFO(dev)->is_broxton)
2649 #define IS_KABYLAKE(dev) (INTEL_INFO(dev)->is_kabylake)
2650 #define IS_MOBILE(dev) (INTEL_INFO(dev)->is_mobile)
2651 #define IS_HSW_EARLY_SDV(dev) (IS_HASWELL(dev) && \
2652 (INTEL_DEVID(dev) & 0xFF00) == 0x0C00)
2653 #define IS_BDW_ULT(dev) (IS_BROADWELL(dev) && \
2654 ((INTEL_DEVID(dev) & 0xf) == 0x6 || \
2655 (INTEL_DEVID(dev) & 0xf) == 0xb || \
2656 (INTEL_DEVID(dev) & 0xf) == 0xe))
2657 /* ULX machines are also considered ULT. */
2658 #define IS_BDW_ULX(dev) (IS_BROADWELL(dev) && \
2659 (INTEL_DEVID(dev) & 0xf) == 0xe)
2660 #define IS_BDW_GT3(dev) (IS_BROADWELL(dev) && \
2661 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2662 #define IS_HSW_ULT(dev) (IS_HASWELL(dev) && \
2663 (INTEL_DEVID(dev) & 0xFF00) == 0x0A00)
2664 #define IS_HSW_GT3(dev) (IS_HASWELL(dev) && \
2665 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2666 /* ULX machines are also considered ULT. */
2667 #define IS_HSW_ULX(dev) (INTEL_DEVID(dev) == 0x0A0E || \
2668 INTEL_DEVID(dev) == 0x0A1E)
2669 #define IS_SKL_ULT(dev) (INTEL_DEVID(dev) == 0x1906 || \
2670 INTEL_DEVID(dev) == 0x1913 || \
2671 INTEL_DEVID(dev) == 0x1916 || \
2672 INTEL_DEVID(dev) == 0x1921 || \
2673 INTEL_DEVID(dev) == 0x1926)
2674 #define IS_SKL_ULX(dev) (INTEL_DEVID(dev) == 0x190E || \
2675 INTEL_DEVID(dev) == 0x1915 || \
2676 INTEL_DEVID(dev) == 0x191E)
2677 #define IS_KBL_ULT(dev) (INTEL_DEVID(dev) == 0x5906 || \
2678 INTEL_DEVID(dev) == 0x5913 || \
2679 INTEL_DEVID(dev) == 0x5916 || \
2680 INTEL_DEVID(dev) == 0x5921 || \
2681 INTEL_DEVID(dev) == 0x5926)
2682 #define IS_KBL_ULX(dev) (INTEL_DEVID(dev) == 0x590E || \
2683 INTEL_DEVID(dev) == 0x5915 || \
2684 INTEL_DEVID(dev) == 0x591E)
2685 #define IS_SKL_GT3(dev) (IS_SKYLAKE(dev) && \
2686 (INTEL_DEVID(dev) & 0x00F0) == 0x0020)
2687 #define IS_SKL_GT4(dev) (IS_SKYLAKE(dev) && \
2688 (INTEL_DEVID(dev) & 0x00F0) == 0x0030)
2689
2690 #define IS_PRELIMINARY_HW(intel_info) ((intel_info)->is_preliminary)
2691
2692 #define SKL_REVID_A0 0x0
2693 #define SKL_REVID_B0 0x1
2694 #define SKL_REVID_C0 0x2
2695 #define SKL_REVID_D0 0x3
2696 #define SKL_REVID_E0 0x4
2697 #define SKL_REVID_F0 0x5
2698 #define SKL_REVID_G0 0x6
2699 #define SKL_REVID_H0 0x7
2700
2701 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2702
2703 #define BXT_REVID_A0 0x0
2704 #define BXT_REVID_A1 0x1
2705 #define BXT_REVID_B0 0x3
2706 #define BXT_REVID_C0 0x9
2707
2708 #define IS_BXT_REVID(p, since, until) (IS_BROXTON(p) && IS_REVID(p, since, until))
2709
2710 #define KBL_REVID_A0 0x0
2711 #define KBL_REVID_B0 0x1
2712 #define KBL_REVID_C0 0x2
2713 #define KBL_REVID_D0 0x3
2714 #define KBL_REVID_E0 0x4
2715
2716 #define IS_KBL_REVID(p, since, until) \
2717 (IS_KABYLAKE(p) && IS_REVID(p, since, until))
2718
2719 /*
2720 * The genX designation typically refers to the render engine, so render
2721 * capability related checks should use IS_GEN, while display and other checks
2722 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2723 * chips, etc.).
2724 */
2725 #define IS_GEN2(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(1)))
2726 #define IS_GEN3(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(2)))
2727 #define IS_GEN4(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(3)))
2728 #define IS_GEN5(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(4)))
2729 #define IS_GEN6(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(5)))
2730 #define IS_GEN7(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(6)))
2731 #define IS_GEN8(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(7)))
2732 #define IS_GEN9(dev) (!!(INTEL_INFO(dev)->gen_mask & BIT(8)))
2733
2734 #define ENGINE_MASK(id) BIT(id)
2735 #define RENDER_RING ENGINE_MASK(RCS)
2736 #define BSD_RING ENGINE_MASK(VCS)
2737 #define BLT_RING ENGINE_MASK(BCS)
2738 #define VEBOX_RING ENGINE_MASK(VECS)
2739 #define BSD2_RING ENGINE_MASK(VCS2)
2740 #define ALL_ENGINES (~0)
2741
2742 #define HAS_ENGINE(dev_priv, id) \
2743 (!!(INTEL_INFO(dev_priv)->ring_mask & ENGINE_MASK(id)))
2744
2745 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
2746 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
2747 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
2748 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
2749
2750 #define HAS_LLC(dev) (INTEL_INFO(dev)->has_llc)
2751 #define HAS_SNOOP(dev) (INTEL_INFO(dev)->has_snoop)
2752 #define HAS_EDRAM(dev) (!!(__I915__(dev)->edram_cap & EDRAM_ENABLED))
2753 #define HAS_WT(dev) ((IS_HASWELL(dev) || IS_BROADWELL(dev)) && \
2754 HAS_EDRAM(dev))
2755 #define HWS_NEEDS_PHYSICAL(dev) (INTEL_INFO(dev)->hws_needs_physical)
2756
2757 #define HAS_HW_CONTEXTS(dev) (INTEL_INFO(dev)->has_hw_contexts)
2758 #define HAS_LOGICAL_RING_CONTEXTS(dev) (INTEL_INFO(dev)->has_logical_ring_contexts)
2759 #define USES_PPGTT(dev) (i915.enable_ppgtt)
2760 #define USES_FULL_PPGTT(dev) (i915.enable_ppgtt >= 2)
2761 #define USES_FULL_48BIT_PPGTT(dev) (i915.enable_ppgtt == 3)
2762
2763 #define HAS_OVERLAY(dev) (INTEL_INFO(dev)->has_overlay)
2764 #define OVERLAY_NEEDS_PHYSICAL(dev) (INTEL_INFO(dev)->overlay_needs_physical)
2765
2766 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2767 #define HAS_BROKEN_CS_TLB(dev) (IS_I830(dev) || IS_845G(dev))
2768
2769 /* WaRsDisableCoarsePowerGating:skl,bxt */
2770 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2771 (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) || \
2772 IS_SKL_GT3(dev_priv) || \
2773 IS_SKL_GT4(dev_priv))
2774
2775 /*
2776 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2777 * even when in MSI mode. This results in spurious interrupt warnings if the
2778 * legacy irq no. is shared with another device. The kernel then disables that
2779 * interrupt source and so prevents the other device from working properly.
2780 */
2781 #define HAS_AUX_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2782 #define HAS_GMBUS_IRQ(dev) (INTEL_INFO(dev)->has_gmbus_irq)
2783
2784 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2785 * rows, which changed the alignment requirements and fence programming.
2786 */
2787 #define HAS_128_BYTE_Y_TILING(dev) (!IS_GEN2(dev) && !(IS_I915G(dev) || \
2788 IS_I915GM(dev)))
2789 #define SUPPORTS_TV(dev) (INTEL_INFO(dev)->supports_tv)
2790 #define I915_HAS_HOTPLUG(dev) (INTEL_INFO(dev)->has_hotplug)
2791
2792 #define HAS_FW_BLC(dev) (INTEL_INFO(dev)->gen > 2)
2793 #define HAS_PIPE_CXSR(dev) (INTEL_INFO(dev)->has_pipe_cxsr)
2794 #define HAS_FBC(dev) (INTEL_INFO(dev)->has_fbc)
2795
2796 #define HAS_IPS(dev) (IS_HSW_ULT(dev) || IS_BROADWELL(dev))
2797
2798 #define HAS_DP_MST(dev) (INTEL_INFO(dev)->has_dp_mst)
2799
2800 #define HAS_DDI(dev) (INTEL_INFO(dev)->has_ddi)
2801 #define HAS_FPGA_DBG_UNCLAIMED(dev) (INTEL_INFO(dev)->has_fpga_dbg)
2802 #define HAS_PSR(dev) (INTEL_INFO(dev)->has_psr)
2803 #define HAS_RUNTIME_PM(dev) (INTEL_INFO(dev)->has_runtime_pm)
2804 #define HAS_RC6(dev) (INTEL_INFO(dev)->has_rc6)
2805 #define HAS_RC6p(dev) (INTEL_INFO(dev)->has_rc6p)
2806
2807 #define HAS_CSR(dev) (INTEL_INFO(dev)->has_csr)
2808
2809 /*
2810 * For now, anything with a GuC requires uCode loading, and then supports
2811 * command submission once loaded. But these are logically independent
2812 * properties, so we have separate macros to test them.
2813 */
2814 #define HAS_GUC(dev) (INTEL_INFO(dev)->has_guc)
2815 #define HAS_GUC_UCODE(dev) (HAS_GUC(dev))
2816 #define HAS_GUC_SCHED(dev) (HAS_GUC(dev))
2817
2818 #define HAS_RESOURCE_STREAMER(dev) (INTEL_INFO(dev)->has_resource_streamer)
2819
2820 #define HAS_POOLED_EU(dev) (INTEL_INFO(dev)->has_pooled_eu)
2821
2822 #define INTEL_PCH_DEVICE_ID_MASK 0xff00
2823 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
2824 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
2825 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
2826 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
2827 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
2828 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
2829 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
2830 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA200
2831 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
2832 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
2833 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
2834
2835 #define INTEL_PCH_TYPE(dev) (__I915__(dev)->pch_type)
2836 #define HAS_PCH_KBP(dev) (INTEL_PCH_TYPE(dev) == PCH_KBP)
2837 #define HAS_PCH_SPT(dev) (INTEL_PCH_TYPE(dev) == PCH_SPT)
2838 #define HAS_PCH_LPT(dev) (INTEL_PCH_TYPE(dev) == PCH_LPT)
2839 #define HAS_PCH_LPT_LP(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
2840 #define HAS_PCH_LPT_H(dev) (__I915__(dev)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE)
2841 #define HAS_PCH_CPT(dev) (INTEL_PCH_TYPE(dev) == PCH_CPT)
2842 #define HAS_PCH_IBX(dev) (INTEL_PCH_TYPE(dev) == PCH_IBX)
2843 #define HAS_PCH_NOP(dev) (INTEL_PCH_TYPE(dev) == PCH_NOP)
2844 #define HAS_PCH_SPLIT(dev) (INTEL_PCH_TYPE(dev) != PCH_NONE)
2845
2846 #define HAS_GMCH_DISPLAY(dev) (INTEL_INFO(dev)->has_gmch_display)
2847
2848 /* DPF == dynamic parity feature */
2849 #define HAS_L3_DPF(dev) (INTEL_INFO(dev)->has_l3_dpf)
2850 #define NUM_L3_SLICES(dev) (IS_HSW_GT3(dev) ? 2 : HAS_L3_DPF(dev))
2851
2852 #define GT_FREQUENCY_MULTIPLIER 50
2853 #define GEN9_FREQ_SCALER 3
2854
2855 #include "i915_trace.h"
2856
2857 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2858 {
2859 #ifdef CONFIG_INTEL_IOMMU
2860 if (INTEL_GEN(dev_priv) >= 6 && intel_iommu_gfx_mapped)
2861 return true;
2862 #endif
2863 return false;
2864 }
2865
2866 extern int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
2867 extern int i915_resume_switcheroo(struct drm_device *dev);
2868
2869 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
2870 int enable_ppgtt);
2871
2872 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
2873
2874 /* i915_drv.c */
2875 void __printf(3, 4)
2876 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2877 const char *fmt, ...);
2878
2879 #define i915_report_error(dev_priv, fmt, ...) \
2880 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2881
2882 #ifdef CONFIG_COMPAT
2883 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2884 unsigned long arg);
2885 #endif
2886 extern const struct dev_pm_ops i915_pm_ops;
2887
2888 extern int i915_driver_load(struct pci_dev *pdev,
2889 const struct pci_device_id *ent);
2890 extern void i915_driver_unload(struct drm_device *dev);
2891 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
2892 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
2893 extern void i915_reset(struct drm_i915_private *dev_priv);
2894 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
2895 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2896 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2897 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2898 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2899 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2900 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2901
2902 /* intel_hotplug.c */
2903 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2904 u32 pin_mask, u32 long_mask);
2905 void intel_hpd_init(struct drm_i915_private *dev_priv);
2906 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2907 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2908 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
2909 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2910 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2911
2912 /* i915_irq.c */
2913 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2914 {
2915 unsigned long delay;
2916
2917 if (unlikely(!i915.enable_hangcheck))
2918 return;
2919
2920 /* Don't continually defer the hangcheck so that it is always run at
2921 * least once after work has been scheduled on any ring. Otherwise,
2922 * we will ignore a hung ring if a second ring is kept busy.
2923 */
2924
2925 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2926 queue_delayed_work(system_long_wq,
2927 &dev_priv->gpu_error.hangcheck_work, delay);
2928 }
2929
2930 __printf(3, 4)
2931 void i915_handle_error(struct drm_i915_private *dev_priv,
2932 u32 engine_mask,
2933 const char *fmt, ...);
2934
2935 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2936 int intel_irq_install(struct drm_i915_private *dev_priv);
2937 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2938
2939 extern void intel_uncore_sanitize(struct drm_i915_private *dev_priv);
2940 extern void intel_uncore_early_sanitize(struct drm_i915_private *dev_priv,
2941 bool restore_forcewake);
2942 extern void intel_uncore_init(struct drm_i915_private *dev_priv);
2943 extern bool intel_uncore_unclaimed_mmio(struct drm_i915_private *dev_priv);
2944 extern bool intel_uncore_arm_unclaimed_mmio_detection(struct drm_i915_private *dev_priv);
2945 extern void intel_uncore_fini(struct drm_i915_private *dev_priv);
2946 extern void intel_uncore_forcewake_reset(struct drm_i915_private *dev_priv,
2947 bool restore);
2948 const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id);
2949 void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv,
2950 enum forcewake_domains domains);
2951 void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv,
2952 enum forcewake_domains domains);
2953 /* Like above but the caller must manage the uncore.lock itself.
2954 * Must be used with I915_READ_FW and friends.
2955 */
2956 void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv,
2957 enum forcewake_domains domains);
2958 void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv,
2959 enum forcewake_domains domains);
2960 u64 intel_uncore_edram_size(struct drm_i915_private *dev_priv);
2961
2962 void assert_forcewakes_inactive(struct drm_i915_private *dev_priv);
2963
2964 int intel_wait_for_register(struct drm_i915_private *dev_priv,
2965 i915_reg_t reg,
2966 const u32 mask,
2967 const u32 value,
2968 const unsigned long timeout_ms);
2969 int intel_wait_for_register_fw(struct drm_i915_private *dev_priv,
2970 i915_reg_t reg,
2971 const u32 mask,
2972 const u32 value,
2973 const unsigned long timeout_ms);
2974
2975 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
2976 {
2977 return dev_priv->gvt.initialized;
2978 }
2979
2980 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
2981 {
2982 return dev_priv->vgpu.active;
2983 }
2984
2985 void
2986 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2987 u32 status_mask);
2988
2989 void
2990 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2991 u32 status_mask);
2992
2993 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
2994 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
2995 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
2996 uint32_t mask,
2997 uint32_t bits);
2998 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
2999 uint32_t interrupt_mask,
3000 uint32_t enabled_irq_mask);
3001 static inline void
3002 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3003 {
3004 ilk_update_display_irq(dev_priv, bits, bits);
3005 }
3006 static inline void
3007 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3008 {
3009 ilk_update_display_irq(dev_priv, bits, 0);
3010 }
3011 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3012 enum pipe pipe,
3013 uint32_t interrupt_mask,
3014 uint32_t enabled_irq_mask);
3015 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3016 enum pipe pipe, uint32_t bits)
3017 {
3018 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3019 }
3020 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3021 enum pipe pipe, uint32_t bits)
3022 {
3023 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3024 }
3025 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3026 uint32_t interrupt_mask,
3027 uint32_t enabled_irq_mask);
3028 static inline void
3029 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3030 {
3031 ibx_display_interrupt_update(dev_priv, bits, bits);
3032 }
3033 static inline void
3034 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3035 {
3036 ibx_display_interrupt_update(dev_priv, bits, 0);
3037 }
3038
3039 /* i915_gem.c */
3040 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3041 struct drm_file *file_priv);
3042 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3043 struct drm_file *file_priv);
3044 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3045 struct drm_file *file_priv);
3046 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3047 struct drm_file *file_priv);
3048 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3049 struct drm_file *file_priv);
3050 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3051 struct drm_file *file_priv);
3052 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3053 struct drm_file *file_priv);
3054 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3055 struct drm_file *file_priv);
3056 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3057 struct drm_file *file_priv);
3058 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3059 struct drm_file *file_priv);
3060 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3061 struct drm_file *file);
3062 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3063 struct drm_file *file);
3064 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3065 struct drm_file *file_priv);
3066 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3067 struct drm_file *file_priv);
3068 int i915_gem_set_tiling(struct drm_device *dev, void *data,
3069 struct drm_file *file_priv);
3070 int i915_gem_get_tiling(struct drm_device *dev, void *data,
3071 struct drm_file *file_priv);
3072 void i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3073 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3074 struct drm_file *file);
3075 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3076 struct drm_file *file_priv);
3077 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3078 struct drm_file *file_priv);
3079 void i915_gem_load_init(struct drm_device *dev);
3080 void i915_gem_load_cleanup(struct drm_device *dev);
3081 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3082 int i915_gem_freeze(struct drm_i915_private *dev_priv);
3083 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3084
3085 void *i915_gem_object_alloc(struct drm_device *dev);
3086 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3087 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3088 const struct drm_i915_gem_object_ops *ops);
3089 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
3090 size_t size);
3091 struct drm_i915_gem_object *i915_gem_object_create_from_data(
3092 struct drm_device *dev, const void *data, size_t size);
3093 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3094 void i915_gem_free_object(struct drm_gem_object *obj);
3095
3096 struct i915_vma * __must_check
3097 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3098 const struct i915_ggtt_view *view,
3099 u64 size,
3100 u64 alignment,
3101 u64 flags);
3102
3103 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3104 u32 flags);
3105 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma);
3106 int __must_check i915_vma_unbind(struct i915_vma *vma);
3107 void i915_vma_close(struct i915_vma *vma);
3108 void i915_vma_destroy(struct i915_vma *vma);
3109
3110 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3111 int i915_gem_object_put_pages(struct drm_i915_gem_object *obj);
3112 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv);
3113 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3114
3115 int __must_check i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3116
3117 static inline int __sg_page_count(struct scatterlist *sg)
3118 {
3119 return sg->length >> PAGE_SHIFT;
3120 }
3121
3122 struct page *
3123 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n);
3124
3125 static inline dma_addr_t
3126 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj, int n)
3127 {
3128 if (n < obj->get_page.last) {
3129 obj->get_page.sg = obj->pages->sgl;
3130 obj->get_page.last = 0;
3131 }
3132
3133 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
3134 obj->get_page.last += __sg_page_count(obj->get_page.sg++);
3135 if (unlikely(sg_is_chain(obj->get_page.sg)))
3136 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
3137 }
3138
3139 return sg_dma_address(obj->get_page.sg) + ((n - obj->get_page.last) << PAGE_SHIFT);
3140 }
3141
3142 static inline struct page *
3143 i915_gem_object_get_page(struct drm_i915_gem_object *obj, int n)
3144 {
3145 if (WARN_ON(n >= obj->base.size >> PAGE_SHIFT))
3146 return NULL;
3147
3148 if (n < obj->get_page.last) {
3149 obj->get_page.sg = obj->pages->sgl;
3150 obj->get_page.last = 0;
3151 }
3152
3153 while (obj->get_page.last + __sg_page_count(obj->get_page.sg) <= n) {
3154 obj->get_page.last += __sg_page_count(obj->get_page.sg++);
3155 if (unlikely(sg_is_chain(obj->get_page.sg)))
3156 obj->get_page.sg = sg_chain_ptr(obj->get_page.sg);
3157 }
3158
3159 return nth_page(sg_page(obj->get_page.sg), n - obj->get_page.last);
3160 }
3161
3162 static inline void i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3163 {
3164 BUG_ON(obj->pages == NULL);
3165 obj->pages_pin_count++;
3166 }
3167
3168 static inline void i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3169 {
3170 BUG_ON(obj->pages_pin_count == 0);
3171 obj->pages_pin_count--;
3172 }
3173
3174 enum i915_map_type {
3175 I915_MAP_WB = 0,
3176 I915_MAP_WC,
3177 };
3178
3179 /**
3180 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3181 * @obj - the object to map into kernel address space
3182 * @type - the type of mapping, used to select pgprot_t
3183 *
3184 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3185 * pages and then returns a contiguous mapping of the backing storage into
3186 * the kernel address space. Based on the @type of mapping, the PTE will be
3187 * set to either WriteBack or WriteCombine (via pgprot_t).
3188 *
3189 * The caller must hold the struct_mutex, and is responsible for calling
3190 * i915_gem_object_unpin_map() when the mapping is no longer required.
3191 *
3192 * Returns the pointer through which to access the mapped object, or an
3193 * ERR_PTR() on error.
3194 */
3195 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3196 enum i915_map_type type);
3197
3198 /**
3199 * i915_gem_object_unpin_map - releases an earlier mapping
3200 * @obj - the object to unmap
3201 *
3202 * After pinning the object and mapping its pages, once you are finished
3203 * with your access, call i915_gem_object_unpin_map() to release the pin
3204 * upon the mapping. Once the pin count reaches zero, that mapping may be
3205 * removed.
3206 *
3207 * The caller must hold the struct_mutex.
3208 */
3209 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3210 {
3211 lockdep_assert_held(&obj->base.dev->struct_mutex);
3212 i915_gem_object_unpin_pages(obj);
3213 }
3214
3215 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3216 unsigned int *needs_clflush);
3217 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3218 unsigned int *needs_clflush);
3219 #define CLFLUSH_BEFORE 0x1
3220 #define CLFLUSH_AFTER 0x2
3221 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER)
3222
3223 static inline void
3224 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3225 {
3226 i915_gem_object_unpin_pages(obj);
3227 }
3228
3229 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3230 void i915_vma_move_to_active(struct i915_vma *vma,
3231 struct drm_i915_gem_request *req,
3232 unsigned int flags);
3233 int i915_gem_dumb_create(struct drm_file *file_priv,
3234 struct drm_device *dev,
3235 struct drm_mode_create_dumb *args);
3236 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3237 uint32_t handle, uint64_t *offset);
3238 int i915_gem_mmap_gtt_version(void);
3239
3240 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3241 struct drm_i915_gem_object *new,
3242 unsigned frontbuffer_bits);
3243
3244 int __must_check i915_gem_set_seqno(struct drm_device *dev, u32 seqno);
3245
3246 struct drm_i915_gem_request *
3247 i915_gem_find_active_request(struct intel_engine_cs *engine);
3248
3249 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3250
3251 static inline bool i915_reset_in_progress(struct i915_gpu_error *error)
3252 {
3253 return unlikely(test_bit(I915_RESET_IN_PROGRESS, &error->flags));
3254 }
3255
3256 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3257 {
3258 return unlikely(test_bit(I915_WEDGED, &error->flags));
3259 }
3260
3261 static inline bool i915_reset_in_progress_or_wedged(struct i915_gpu_error *error)
3262 {
3263 return i915_reset_in_progress(error) | i915_terminally_wedged(error);
3264 }
3265
3266 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3267 {
3268 return READ_ONCE(error->reset_count);
3269 }
3270
3271 void i915_gem_reset(struct drm_i915_private *dev_priv);
3272 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3273 bool i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force);
3274 int __must_check i915_gem_init(struct drm_device *dev);
3275 int __must_check i915_gem_init_hw(struct drm_device *dev);
3276 void i915_gem_init_swizzling(struct drm_device *dev);
3277 void i915_gem_cleanup_engines(struct drm_device *dev);
3278 int __must_check i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3279 unsigned int flags);
3280 int __must_check i915_gem_suspend(struct drm_device *dev);
3281 void i915_gem_resume(struct drm_device *dev);
3282 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf);
3283 int __must_check
3284 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
3285 bool readonly);
3286 int __must_check
3287 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj,
3288 bool write);
3289 int __must_check
3290 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3291 struct i915_vma * __must_check
3292 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3293 u32 alignment,
3294 const struct i915_ggtt_view *view);
3295 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3296 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3297 int align);
3298 int i915_gem_open(struct drm_device *dev, struct drm_file *file);
3299 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3300
3301 u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv, u64 size,
3302 int tiling_mode);
3303 u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
3304 int tiling_mode, bool fenced);
3305
3306 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3307 enum i915_cache_level cache_level);
3308
3309 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3310 struct dma_buf *dma_buf);
3311
3312 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3313 struct drm_gem_object *gem_obj, int flags);
3314
3315 struct i915_vma *
3316 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
3317 struct i915_address_space *vm,
3318 const struct i915_ggtt_view *view);
3319
3320 struct i915_vma *
3321 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3322 struct i915_address_space *vm,
3323 const struct i915_ggtt_view *view);
3324
3325 static inline struct i915_hw_ppgtt *
3326 i915_vm_to_ppgtt(struct i915_address_space *vm)
3327 {
3328 return container_of(vm, struct i915_hw_ppgtt, base);
3329 }
3330
3331 static inline struct i915_vma *
3332 i915_gem_object_to_ggtt(struct drm_i915_gem_object *obj,
3333 const struct i915_ggtt_view *view)
3334 {
3335 return i915_gem_obj_to_vma(obj, &to_i915(obj->base.dev)->ggtt.base, view);
3336 }
3337
3338 static inline unsigned long
3339 i915_gem_object_ggtt_offset(struct drm_i915_gem_object *o,
3340 const struct i915_ggtt_view *view)
3341 {
3342 return i915_ggtt_offset(i915_gem_object_to_ggtt(o, view));
3343 }
3344
3345 /* i915_gem_fence.c */
3346 int __must_check i915_vma_get_fence(struct i915_vma *vma);
3347 int __must_check i915_vma_put_fence(struct i915_vma *vma);
3348
3349 /**
3350 * i915_vma_pin_fence - pin fencing state
3351 * @vma: vma to pin fencing for
3352 *
3353 * This pins the fencing state (whether tiled or untiled) to make sure the
3354 * vma (and its object) is ready to be used as a scanout target. Fencing
3355 * status must be synchronize first by calling i915_vma_get_fence():
3356 *
3357 * The resulting fence pin reference must be released again with
3358 * i915_vma_unpin_fence().
3359 *
3360 * Returns:
3361 *
3362 * True if the vma has a fence, false otherwise.
3363 */
3364 static inline bool
3365 i915_vma_pin_fence(struct i915_vma *vma)
3366 {
3367 if (vma->fence) {
3368 vma->fence->pin_count++;
3369 return true;
3370 } else
3371 return false;
3372 }
3373
3374 /**
3375 * i915_vma_unpin_fence - unpin fencing state
3376 * @vma: vma to unpin fencing for
3377 *
3378 * This releases the fence pin reference acquired through
3379 * i915_vma_pin_fence. It will handle both objects with and without an
3380 * attached fence correctly, callers do not need to distinguish this.
3381 */
3382 static inline void
3383 i915_vma_unpin_fence(struct i915_vma *vma)
3384 {
3385 if (vma->fence) {
3386 GEM_BUG_ON(vma->fence->pin_count <= 0);
3387 vma->fence->pin_count--;
3388 }
3389 }
3390
3391 void i915_gem_restore_fences(struct drm_device *dev);
3392
3393 void i915_gem_detect_bit_6_swizzle(struct drm_device *dev);
3394 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj);
3395 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj);
3396
3397 /* i915_gem_context.c */
3398 int __must_check i915_gem_context_init(struct drm_device *dev);
3399 void i915_gem_context_lost(struct drm_i915_private *dev_priv);
3400 void i915_gem_context_fini(struct drm_device *dev);
3401 int i915_gem_context_open(struct drm_device *dev, struct drm_file *file);
3402 void i915_gem_context_close(struct drm_device *dev, struct drm_file *file);
3403 int i915_switch_context(struct drm_i915_gem_request *req);
3404 int i915_gem_switch_to_kernel_context(struct drm_i915_private *dev_priv);
3405 void i915_gem_context_free(struct kref *ctx_ref);
3406 struct drm_i915_gem_object *
3407 i915_gem_alloc_context_obj(struct drm_device *dev, size_t size);
3408 struct i915_gem_context *
3409 i915_gem_context_create_gvt(struct drm_device *dev);
3410
3411 static inline struct i915_gem_context *
3412 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3413 {
3414 struct i915_gem_context *ctx;
3415
3416 lockdep_assert_held(&file_priv->dev_priv->drm.struct_mutex);
3417
3418 ctx = idr_find(&file_priv->context_idr, id);
3419 if (!ctx)
3420 return ERR_PTR(-ENOENT);
3421
3422 return ctx;
3423 }
3424
3425 static inline struct i915_gem_context *
3426 i915_gem_context_get(struct i915_gem_context *ctx)
3427 {
3428 kref_get(&ctx->ref);
3429 return ctx;
3430 }
3431
3432 static inline void i915_gem_context_put(struct i915_gem_context *ctx)
3433 {
3434 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
3435 kref_put(&ctx->ref, i915_gem_context_free);
3436 }
3437
3438 static inline bool i915_gem_context_is_default(const struct i915_gem_context *c)
3439 {
3440 return c->user_handle == DEFAULT_CONTEXT_HANDLE;
3441 }
3442
3443 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
3444 struct drm_file *file);
3445 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
3446 struct drm_file *file);
3447 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
3448 struct drm_file *file_priv);
3449 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
3450 struct drm_file *file_priv);
3451 int i915_gem_context_reset_stats_ioctl(struct drm_device *dev, void *data,
3452 struct drm_file *file);
3453
3454 /* i915_gem_evict.c */
3455 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3456 u64 min_size, u64 alignment,
3457 unsigned cache_level,
3458 u64 start, u64 end,
3459 unsigned flags);
3460 int __must_check i915_gem_evict_for_vma(struct i915_vma *target);
3461 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle);
3462
3463 /* belongs in i915_gem_gtt.h */
3464 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3465 {
3466 wmb();
3467 if (INTEL_GEN(dev_priv) < 6)
3468 intel_gtt_chipset_flush();
3469 }
3470
3471 /* i915_gem_stolen.c */
3472 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3473 struct drm_mm_node *node, u64 size,
3474 unsigned alignment);
3475 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3476 struct drm_mm_node *node, u64 size,
3477 unsigned alignment, u64 start,
3478 u64 end);
3479 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3480 struct drm_mm_node *node);
3481 int i915_gem_init_stolen(struct drm_device *dev);
3482 void i915_gem_cleanup_stolen(struct drm_device *dev);
3483 struct drm_i915_gem_object *
3484 i915_gem_object_create_stolen(struct drm_device *dev, u32 size);
3485 struct drm_i915_gem_object *
3486 i915_gem_object_create_stolen_for_preallocated(struct drm_device *dev,
3487 u32 stolen_offset,
3488 u32 gtt_offset,
3489 u32 size);
3490
3491 /* i915_gem_shrinker.c */
3492 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3493 unsigned long target,
3494 unsigned flags);
3495 #define I915_SHRINK_PURGEABLE 0x1
3496 #define I915_SHRINK_UNBOUND 0x2
3497 #define I915_SHRINK_BOUND 0x4
3498 #define I915_SHRINK_ACTIVE 0x8
3499 #define I915_SHRINK_VMAPS 0x10
3500 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3501 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3502 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3503
3504
3505 /* i915_gem_tiling.c */
3506 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3507 {
3508 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3509
3510 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3511 i915_gem_object_is_tiled(obj);
3512 }
3513
3514 /* i915_debugfs.c */
3515 #ifdef CONFIG_DEBUG_FS
3516 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3517 void i915_debugfs_unregister(struct drm_i915_private *dev_priv);
3518 int i915_debugfs_connector_add(struct drm_connector *connector);
3519 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3520 #else
3521 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3522 static inline void i915_debugfs_unregister(struct drm_i915_private *dev_priv) {}
3523 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3524 { return 0; }
3525 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3526 #endif
3527
3528 /* i915_gpu_error.c */
3529 __printf(2, 3)
3530 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3531 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3532 const struct i915_error_state_file_priv *error);
3533 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3534 struct drm_i915_private *i915,
3535 size_t count, loff_t pos);
3536 static inline void i915_error_state_buf_release(
3537 struct drm_i915_error_state_buf *eb)
3538 {
3539 kfree(eb->buf);
3540 }
3541 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3542 u32 engine_mask,
3543 const char *error_msg);
3544 void i915_error_state_get(struct drm_device *dev,
3545 struct i915_error_state_file_priv *error_priv);
3546 void i915_error_state_put(struct i915_error_state_file_priv *error_priv);
3547 void i915_destroy_error_state(struct drm_device *dev);
3548
3549 void i915_get_extra_instdone(struct drm_i915_private *dev_priv, uint32_t *instdone);
3550 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3551
3552 /* i915_cmd_parser.c */
3553 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3554 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3555 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3556 bool intel_engine_needs_cmd_parser(struct intel_engine_cs *engine);
3557 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3558 struct drm_i915_gem_object *batch_obj,
3559 struct drm_i915_gem_object *shadow_batch_obj,
3560 u32 batch_start_offset,
3561 u32 batch_len,
3562 bool is_master);
3563
3564 /* i915_suspend.c */
3565 extern int i915_save_state(struct drm_device *dev);
3566 extern int i915_restore_state(struct drm_device *dev);
3567
3568 /* i915_sysfs.c */
3569 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3570 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3571
3572 /* intel_i2c.c */
3573 extern int intel_setup_gmbus(struct drm_device *dev);
3574 extern void intel_teardown_gmbus(struct drm_device *dev);
3575 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3576 unsigned int pin);
3577
3578 extern struct i2c_adapter *
3579 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3580 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3581 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3582 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3583 {
3584 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3585 }
3586 extern void intel_i2c_reset(struct drm_device *dev);
3587
3588 /* intel_bios.c */
3589 int intel_bios_init(struct drm_i915_private *dev_priv);
3590 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3591 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3592 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3593 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3594 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3595 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3596 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3597 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3598 enum port port);
3599
3600 /* intel_opregion.c */
3601 #ifdef CONFIG_ACPI
3602 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3603 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3604 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3605 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3606 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3607 bool enable);
3608 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3609 pci_power_t state);
3610 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3611 #else
3612 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3613 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3614 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3615 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3616 {
3617 }
3618 static inline int
3619 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3620 {
3621 return 0;
3622 }
3623 static inline int
3624 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3625 {
3626 return 0;
3627 }
3628 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3629 {
3630 return -ENODEV;
3631 }
3632 #endif
3633
3634 /* intel_acpi.c */
3635 #ifdef CONFIG_ACPI
3636 extern void intel_register_dsm_handler(void);
3637 extern void intel_unregister_dsm_handler(void);
3638 #else
3639 static inline void intel_register_dsm_handler(void) { return; }
3640 static inline void intel_unregister_dsm_handler(void) { return; }
3641 #endif /* CONFIG_ACPI */
3642
3643 /* intel_device_info.c */
3644 static inline struct intel_device_info *
3645 mkwrite_device_info(struct drm_i915_private *dev_priv)
3646 {
3647 return (struct intel_device_info *)&dev_priv->info;
3648 }
3649
3650 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
3651 void intel_device_info_dump(struct drm_i915_private *dev_priv);
3652
3653 /* modesetting */
3654 extern void intel_modeset_init_hw(struct drm_device *dev);
3655 extern void intel_modeset_init(struct drm_device *dev);
3656 extern void intel_modeset_gem_init(struct drm_device *dev);
3657 extern void intel_modeset_cleanup(struct drm_device *dev);
3658 extern int intel_connector_register(struct drm_connector *);
3659 extern void intel_connector_unregister(struct drm_connector *);
3660 extern int intel_modeset_vga_set_state(struct drm_device *dev, bool state);
3661 extern void intel_display_resume(struct drm_device *dev);
3662 extern void i915_redisable_vga(struct drm_device *dev);
3663 extern void i915_redisable_vga_power_on(struct drm_device *dev);
3664 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3665 extern void intel_init_pch_refclk(struct drm_device *dev);
3666 extern void intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3667 extern void intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3668 bool enable);
3669
3670 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3671 struct drm_file *file);
3672
3673 /* overlay */
3674 extern struct intel_overlay_error_state *
3675 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3676 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3677 struct intel_overlay_error_state *error);
3678
3679 extern struct intel_display_error_state *
3680 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3681 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3682 struct drm_device *dev,
3683 struct intel_display_error_state *error);
3684
3685 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3686 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3687
3688 /* intel_sideband.c */
3689 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3690 void vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3691 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3692 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3693 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3694 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3695 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3696 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3697 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3698 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3699 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3700 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3701 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3702 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3703 enum intel_sbi_destination destination);
3704 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3705 enum intel_sbi_destination destination);
3706 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3707 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3708
3709 /* intel_dpio_phy.c */
3710 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3711 u32 deemph_reg_value, u32 margin_reg_value,
3712 bool uniq_trans_scale);
3713 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3714 bool reset);
3715 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
3716 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3717 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3718 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
3719
3720 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3721 u32 demph_reg_value, u32 preemph_reg_value,
3722 u32 uniqtranscale_reg_value, u32 tx3_demph);
3723 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
3724 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3725 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
3726
3727 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3728 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3729
3730 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3731 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3732
3733 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3734 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3735 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3736 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3737
3738 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3739 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3740 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3741 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3742
3743 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3744 * will be implemented using 2 32-bit writes in an arbitrary order with
3745 * an arbitrary delay between them. This can cause the hardware to
3746 * act upon the intermediate value, possibly leading to corruption and
3747 * machine death. For this reason we do not support I915_WRITE64, or
3748 * dev_priv->uncore.funcs.mmio_writeq.
3749 *
3750 * When reading a 64-bit value as two 32-bit values, the delay may cause
3751 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
3752 * occasionally a 64-bit register does not actualy support a full readq
3753 * and must be read using two 32-bit reads.
3754 *
3755 * You have been warned.
3756 */
3757 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3758
3759 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
3760 u32 upper, lower, old_upper, loop = 0; \
3761 upper = I915_READ(upper_reg); \
3762 do { \
3763 old_upper = upper; \
3764 lower = I915_READ(lower_reg); \
3765 upper = I915_READ(upper_reg); \
3766 } while (upper != old_upper && loop++ < 2); \
3767 (u64)upper << 32 | lower; })
3768
3769 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
3770 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
3771
3772 #define __raw_read(x, s) \
3773 static inline uint##x##_t __raw_i915_read##x(struct drm_i915_private *dev_priv, \
3774 i915_reg_t reg) \
3775 { \
3776 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3777 }
3778
3779 #define __raw_write(x, s) \
3780 static inline void __raw_i915_write##x(struct drm_i915_private *dev_priv, \
3781 i915_reg_t reg, uint##x##_t val) \
3782 { \
3783 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3784 }
3785 __raw_read(8, b)
3786 __raw_read(16, w)
3787 __raw_read(32, l)
3788 __raw_read(64, q)
3789
3790 __raw_write(8, b)
3791 __raw_write(16, w)
3792 __raw_write(32, l)
3793 __raw_write(64, q)
3794
3795 #undef __raw_read
3796 #undef __raw_write
3797
3798 /* These are untraced mmio-accessors that are only valid to be used inside
3799 * critical sections inside IRQ handlers where forcewake is explicitly
3800 * controlled.
3801 * Think twice, and think again, before using these.
3802 * Note: Should only be used between intel_uncore_forcewake_irqlock() and
3803 * intel_uncore_forcewake_irqunlock().
3804 */
3805 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3806 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3807 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3808 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3809
3810 /* "Broadcast RGB" property */
3811 #define INTEL_BROADCAST_RGB_AUTO 0
3812 #define INTEL_BROADCAST_RGB_FULL 1
3813 #define INTEL_BROADCAST_RGB_LIMITED 2
3814
3815 static inline i915_reg_t i915_vgacntrl_reg(struct drm_device *dev)
3816 {
3817 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
3818 return VLV_VGACNTRL;
3819 else if (INTEL_INFO(dev)->gen >= 5)
3820 return CPU_VGACNTRL;
3821 else
3822 return VGACNTRL;
3823 }
3824
3825 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3826 {
3827 unsigned long j = msecs_to_jiffies(m);
3828
3829 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3830 }
3831
3832 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3833 {
3834 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3835 }
3836
3837 static inline unsigned long
3838 timespec_to_jiffies_timeout(const struct timespec *value)
3839 {
3840 unsigned long j = timespec_to_jiffies(value);
3841
3842 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3843 }
3844
3845 /*
3846 * If you need to wait X milliseconds between events A and B, but event B
3847 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3848 * when event A happened, then just before event B you call this function and
3849 * pass the timestamp as the first argument, and X as the second argument.
3850 */
3851 static inline void
3852 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3853 {
3854 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3855
3856 /*
3857 * Don't re-read the value of "jiffies" every time since it may change
3858 * behind our back and break the math.
3859 */
3860 tmp_jiffies = jiffies;
3861 target_jiffies = timestamp_jiffies +
3862 msecs_to_jiffies_timeout(to_wait_ms);
3863
3864 if (time_after(target_jiffies, tmp_jiffies)) {
3865 remaining_jiffies = target_jiffies - tmp_jiffies;
3866 while (remaining_jiffies)
3867 remaining_jiffies =
3868 schedule_timeout_uninterruptible(remaining_jiffies);
3869 }
3870 }
3871
3872 static inline bool
3873 __i915_request_irq_complete(struct drm_i915_gem_request *req)
3874 {
3875 struct intel_engine_cs *engine = req->engine;
3876
3877 /* Before we do the heavier coherent read of the seqno,
3878 * check the value (hopefully) in the CPU cacheline.
3879 */
3880 if (i915_gem_request_completed(req))
3881 return true;
3882
3883 /* Ensure our read of the seqno is coherent so that we
3884 * do not "miss an interrupt" (i.e. if this is the last
3885 * request and the seqno write from the GPU is not visible
3886 * by the time the interrupt fires, we will see that the
3887 * request is incomplete and go back to sleep awaiting
3888 * another interrupt that will never come.)
3889 *
3890 * Strictly, we only need to do this once after an interrupt,
3891 * but it is easier and safer to do it every time the waiter
3892 * is woken.
3893 */
3894 if (engine->irq_seqno_barrier &&
3895 rcu_access_pointer(engine->breadcrumbs.irq_seqno_bh) == current &&
3896 cmpxchg_relaxed(&engine->breadcrumbs.irq_posted, 1, 0)) {
3897 struct task_struct *tsk;
3898
3899 /* The ordering of irq_posted versus applying the barrier
3900 * is crucial. The clearing of the current irq_posted must
3901 * be visible before we perform the barrier operation,
3902 * such that if a subsequent interrupt arrives, irq_posted
3903 * is reasserted and our task rewoken (which causes us to
3904 * do another __i915_request_irq_complete() immediately
3905 * and reapply the barrier). Conversely, if the clear
3906 * occurs after the barrier, then an interrupt that arrived
3907 * whilst we waited on the barrier would not trigger a
3908 * barrier on the next pass, and the read may not see the
3909 * seqno update.
3910 */
3911 engine->irq_seqno_barrier(engine);
3912
3913 /* If we consume the irq, but we are no longer the bottom-half,
3914 * the real bottom-half may not have serialised their own
3915 * seqno check with the irq-barrier (i.e. may have inspected
3916 * the seqno before we believe it coherent since they see
3917 * irq_posted == false but we are still running).
3918 */
3919 rcu_read_lock();
3920 tsk = rcu_dereference(engine->breadcrumbs.irq_seqno_bh);
3921 if (tsk && tsk != current)
3922 /* Note that if the bottom-half is changed as we
3923 * are sending the wake-up, the new bottom-half will
3924 * be woken by whomever made the change. We only have
3925 * to worry about when we steal the irq-posted for
3926 * ourself.
3927 */
3928 wake_up_process(tsk);
3929 rcu_read_unlock();
3930
3931 if (i915_gem_request_completed(req))
3932 return true;
3933 }
3934
3935 return false;
3936 }
3937
3938 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
3939 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
3940
3941 /* i915_mm.c */
3942 int remap_io_mapping(struct vm_area_struct *vma,
3943 unsigned long addr, unsigned long pfn, unsigned long size,
3944 struct io_mapping *iomap);
3945
3946 #define ptr_mask_bits(ptr) ({ \
3947 unsigned long __v = (unsigned long)(ptr); \
3948 (typeof(ptr))(__v & PAGE_MASK); \
3949 })
3950
3951 #define ptr_unpack_bits(ptr, bits) ({ \
3952 unsigned long __v = (unsigned long)(ptr); \
3953 (bits) = __v & ~PAGE_MASK; \
3954 (typeof(ptr))(__v & PAGE_MASK); \
3955 })
3956
3957 #define ptr_pack_bits(ptr, bits) \
3958 ((typeof(ptr))((unsigned long)(ptr) | (bits)))
3959
3960 #define fetch_and_zero(ptr) ({ \
3961 typeof(*ptr) __T = *(ptr); \
3962 *(ptr) = (typeof(*ptr))0; \
3963 __T; \
3964 })
3965
3966 #endif