]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.h
Merge tag 'dw-hdmi-next-2016-09-19' of git://git.pengutronix.de/git/pza/linux into...
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hashtable.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/reservation.h>
45 #include <linux/shmem_fs.h>
46
47 #include <drm/drmP.h>
48 #include <drm/intel-gtt.h>
49 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
50 #include <drm/drm_gem.h>
51 #include <drm/drm_auth.h>
52
53 #include "i915_params.h"
54 #include "i915_reg.h"
55
56 #include "intel_bios.h"
57 #include "intel_dpll_mgr.h"
58 #include "intel_guc.h"
59 #include "intel_lrc.h"
60 #include "intel_ringbuffer.h"
61
62 #include "i915_gem.h"
63 #include "i915_gem_gtt.h"
64 #include "i915_gem_render_state.h"
65 #include "i915_gem_request.h"
66 #include "i915_gem_timeline.h"
67
68 #include "intel_gvt.h"
69
70 /* General customization:
71 */
72
73 #define DRIVER_NAME "i915"
74 #define DRIVER_DESC "Intel Graphics"
75 #define DRIVER_DATE "20161108"
76 #define DRIVER_TIMESTAMP 1478587895
77
78 #undef WARN_ON
79 /* Many gcc seem to no see through this and fall over :( */
80 #if 0
81 #define WARN_ON(x) ({ \
82 bool __i915_warn_cond = (x); \
83 if (__builtin_constant_p(__i915_warn_cond)) \
84 BUILD_BUG_ON(__i915_warn_cond); \
85 WARN(__i915_warn_cond, "WARN_ON(" #x ")"); })
86 #else
87 #define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
88 #endif
89
90 #undef WARN_ON_ONCE
91 #define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")")
92
93 #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \
94 (long) (x), __func__);
95
96 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
97 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
98 * which may not necessarily be a user visible problem. This will either
99 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
100 * enable distros and users to tailor their preferred amount of i915 abrt
101 * spam.
102 */
103 #define I915_STATE_WARN(condition, format...) ({ \
104 int __ret_warn_on = !!(condition); \
105 if (unlikely(__ret_warn_on)) \
106 if (!WARN(i915.verbose_state_checks, format)) \
107 DRM_ERROR(format); \
108 unlikely(__ret_warn_on); \
109 })
110
111 #define I915_STATE_WARN_ON(x) \
112 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
113
114 bool __i915_inject_load_failure(const char *func, int line);
115 #define i915_inject_load_failure() \
116 __i915_inject_load_failure(__func__, __LINE__)
117
118 static inline const char *yesno(bool v)
119 {
120 return v ? "yes" : "no";
121 }
122
123 static inline const char *onoff(bool v)
124 {
125 return v ? "on" : "off";
126 }
127
128 enum pipe {
129 INVALID_PIPE = -1,
130 PIPE_A = 0,
131 PIPE_B,
132 PIPE_C,
133 _PIPE_EDP,
134 I915_MAX_PIPES = _PIPE_EDP
135 };
136 #define pipe_name(p) ((p) + 'A')
137
138 enum transcoder {
139 TRANSCODER_A = 0,
140 TRANSCODER_B,
141 TRANSCODER_C,
142 TRANSCODER_EDP,
143 TRANSCODER_DSI_A,
144 TRANSCODER_DSI_C,
145 I915_MAX_TRANSCODERS
146 };
147
148 static inline const char *transcoder_name(enum transcoder transcoder)
149 {
150 switch (transcoder) {
151 case TRANSCODER_A:
152 return "A";
153 case TRANSCODER_B:
154 return "B";
155 case TRANSCODER_C:
156 return "C";
157 case TRANSCODER_EDP:
158 return "EDP";
159 case TRANSCODER_DSI_A:
160 return "DSI A";
161 case TRANSCODER_DSI_C:
162 return "DSI C";
163 default:
164 return "<invalid>";
165 }
166 }
167
168 static inline bool transcoder_is_dsi(enum transcoder transcoder)
169 {
170 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
171 }
172
173 /*
174 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
175 * number of planes per CRTC. Not all platforms really have this many planes,
176 * which means some arrays of size I915_MAX_PLANES may have unused entries
177 * between the topmost sprite plane and the cursor plane.
178 */
179 enum plane {
180 PLANE_A = 0,
181 PLANE_B,
182 PLANE_C,
183 PLANE_CURSOR,
184 I915_MAX_PLANES,
185 };
186 #define plane_name(p) ((p) + 'A')
187
188 #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A')
189
190 enum port {
191 PORT_NONE = -1,
192 PORT_A = 0,
193 PORT_B,
194 PORT_C,
195 PORT_D,
196 PORT_E,
197 I915_MAX_PORTS
198 };
199 #define port_name(p) ((p) + 'A')
200
201 #define I915_NUM_PHYS_VLV 2
202
203 enum dpio_channel {
204 DPIO_CH0,
205 DPIO_CH1
206 };
207
208 enum dpio_phy {
209 DPIO_PHY0,
210 DPIO_PHY1
211 };
212
213 enum intel_display_power_domain {
214 POWER_DOMAIN_PIPE_A,
215 POWER_DOMAIN_PIPE_B,
216 POWER_DOMAIN_PIPE_C,
217 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
218 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
219 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
220 POWER_DOMAIN_TRANSCODER_A,
221 POWER_DOMAIN_TRANSCODER_B,
222 POWER_DOMAIN_TRANSCODER_C,
223 POWER_DOMAIN_TRANSCODER_EDP,
224 POWER_DOMAIN_TRANSCODER_DSI_A,
225 POWER_DOMAIN_TRANSCODER_DSI_C,
226 POWER_DOMAIN_PORT_DDI_A_LANES,
227 POWER_DOMAIN_PORT_DDI_B_LANES,
228 POWER_DOMAIN_PORT_DDI_C_LANES,
229 POWER_DOMAIN_PORT_DDI_D_LANES,
230 POWER_DOMAIN_PORT_DDI_E_LANES,
231 POWER_DOMAIN_PORT_DSI,
232 POWER_DOMAIN_PORT_CRT,
233 POWER_DOMAIN_PORT_OTHER,
234 POWER_DOMAIN_VGA,
235 POWER_DOMAIN_AUDIO,
236 POWER_DOMAIN_PLLS,
237 POWER_DOMAIN_AUX_A,
238 POWER_DOMAIN_AUX_B,
239 POWER_DOMAIN_AUX_C,
240 POWER_DOMAIN_AUX_D,
241 POWER_DOMAIN_GMBUS,
242 POWER_DOMAIN_MODESET,
243 POWER_DOMAIN_INIT,
244
245 POWER_DOMAIN_NUM,
246 };
247
248 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
249 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
250 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
251 #define POWER_DOMAIN_TRANSCODER(tran) \
252 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
253 (tran) + POWER_DOMAIN_TRANSCODER_A)
254
255 enum hpd_pin {
256 HPD_NONE = 0,
257 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
258 HPD_CRT,
259 HPD_SDVO_B,
260 HPD_SDVO_C,
261 HPD_PORT_A,
262 HPD_PORT_B,
263 HPD_PORT_C,
264 HPD_PORT_D,
265 HPD_PORT_E,
266 HPD_NUM_PINS
267 };
268
269 #define for_each_hpd_pin(__pin) \
270 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
271
272 struct i915_hotplug {
273 struct work_struct hotplug_work;
274
275 struct {
276 unsigned long last_jiffies;
277 int count;
278 enum {
279 HPD_ENABLED = 0,
280 HPD_DISABLED = 1,
281 HPD_MARK_DISABLED = 2
282 } state;
283 } stats[HPD_NUM_PINS];
284 u32 event_bits;
285 struct delayed_work reenable_work;
286
287 struct intel_digital_port *irq_port[I915_MAX_PORTS];
288 u32 long_port_mask;
289 u32 short_port_mask;
290 struct work_struct dig_port_work;
291
292 struct work_struct poll_init_work;
293 bool poll_enabled;
294
295 /*
296 * if we get a HPD irq from DP and a HPD irq from non-DP
297 * the non-DP HPD could block the workqueue on a mode config
298 * mutex getting, that userspace may have taken. However
299 * userspace is waiting on the DP workqueue to run which is
300 * blocked behind the non-DP one.
301 */
302 struct workqueue_struct *dp_wq;
303 };
304
305 #define I915_GEM_GPU_DOMAINS \
306 (I915_GEM_DOMAIN_RENDER | \
307 I915_GEM_DOMAIN_SAMPLER | \
308 I915_GEM_DOMAIN_COMMAND | \
309 I915_GEM_DOMAIN_INSTRUCTION | \
310 I915_GEM_DOMAIN_VERTEX)
311
312 #define for_each_pipe(__dev_priv, __p) \
313 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
314 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
315 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
316 for_each_if ((__mask) & (1 << (__p)))
317 #define for_each_universal_plane(__dev_priv, __pipe, __p) \
318 for ((__p) = 0; \
319 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
320 (__p)++)
321 #define for_each_sprite(__dev_priv, __p, __s) \
322 for ((__s) = 0; \
323 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
324 (__s)++)
325
326 #define for_each_port_masked(__port, __ports_mask) \
327 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
328 for_each_if ((__ports_mask) & (1 << (__port)))
329
330 #define for_each_crtc(dev, crtc) \
331 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
332
333 #define for_each_intel_plane(dev, intel_plane) \
334 list_for_each_entry(intel_plane, \
335 &(dev)->mode_config.plane_list, \
336 base.head)
337
338 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \
339 list_for_each_entry(intel_plane, \
340 &(dev)->mode_config.plane_list, \
341 base.head) \
342 for_each_if ((plane_mask) & \
343 (1 << drm_plane_index(&intel_plane->base)))
344
345 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
346 list_for_each_entry(intel_plane, \
347 &(dev)->mode_config.plane_list, \
348 base.head) \
349 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
350
351 #define for_each_intel_crtc(dev, intel_crtc) \
352 list_for_each_entry(intel_crtc, \
353 &(dev)->mode_config.crtc_list, \
354 base.head)
355
356 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \
357 list_for_each_entry(intel_crtc, \
358 &(dev)->mode_config.crtc_list, \
359 base.head) \
360 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
361
362 #define for_each_intel_encoder(dev, intel_encoder) \
363 list_for_each_entry(intel_encoder, \
364 &(dev)->mode_config.encoder_list, \
365 base.head)
366
367 #define for_each_intel_connector(dev, intel_connector) \
368 list_for_each_entry(intel_connector, \
369 &(dev)->mode_config.connector_list, \
370 base.head)
371
372 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
373 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
374 for_each_if ((intel_encoder)->base.crtc == (__crtc))
375
376 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
377 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
378 for_each_if ((intel_connector)->base.encoder == (__encoder))
379
380 #define for_each_power_domain(domain, mask) \
381 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
382 for_each_if ((1 << (domain)) & (mask))
383
384 struct drm_i915_private;
385 struct i915_mm_struct;
386 struct i915_mmu_object;
387
388 struct drm_i915_file_private {
389 struct drm_i915_private *dev_priv;
390 struct drm_file *file;
391
392 struct {
393 spinlock_t lock;
394 struct list_head request_list;
395 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
396 * chosen to prevent the CPU getting more than a frame ahead of the GPU
397 * (when using lax throttling for the frontbuffer). We also use it to
398 * offer free GPU waitboosts for severely congested workloads.
399 */
400 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
401 } mm;
402 struct idr context_idr;
403
404 struct intel_rps_client {
405 struct list_head link;
406 unsigned boosts;
407 } rps;
408
409 unsigned int bsd_engine;
410 };
411
412 /* Used by dp and fdi links */
413 struct intel_link_m_n {
414 uint32_t tu;
415 uint32_t gmch_m;
416 uint32_t gmch_n;
417 uint32_t link_m;
418 uint32_t link_n;
419 };
420
421 void intel_link_compute_m_n(int bpp, int nlanes,
422 int pixel_clock, int link_clock,
423 struct intel_link_m_n *m_n);
424
425 /* Interface history:
426 *
427 * 1.1: Original.
428 * 1.2: Add Power Management
429 * 1.3: Add vblank support
430 * 1.4: Fix cmdbuffer path, add heap destroy
431 * 1.5: Add vblank pipe configuration
432 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
433 * - Support vertical blank on secondary display pipe
434 */
435 #define DRIVER_MAJOR 1
436 #define DRIVER_MINOR 6
437 #define DRIVER_PATCHLEVEL 0
438
439 struct opregion_header;
440 struct opregion_acpi;
441 struct opregion_swsci;
442 struct opregion_asle;
443
444 struct intel_opregion {
445 struct opregion_header *header;
446 struct opregion_acpi *acpi;
447 struct opregion_swsci *swsci;
448 u32 swsci_gbda_sub_functions;
449 u32 swsci_sbcb_sub_functions;
450 struct opregion_asle *asle;
451 void *rvda;
452 const void *vbt;
453 u32 vbt_size;
454 u32 *lid_state;
455 struct work_struct asle_work;
456 };
457 #define OPREGION_SIZE (8*1024)
458
459 struct intel_overlay;
460 struct intel_overlay_error_state;
461
462 struct drm_i915_fence_reg {
463 struct list_head link;
464 struct drm_i915_private *i915;
465 struct i915_vma *vma;
466 int pin_count;
467 int id;
468 /**
469 * Whether the tiling parameters for the currently
470 * associated fence register have changed. Note that
471 * for the purposes of tracking tiling changes we also
472 * treat the unfenced register, the register slot that
473 * the object occupies whilst it executes a fenced
474 * command (such as BLT on gen2/3), as a "fence".
475 */
476 bool dirty;
477 };
478
479 struct sdvo_device_mapping {
480 u8 initialized;
481 u8 dvo_port;
482 u8 slave_addr;
483 u8 dvo_wiring;
484 u8 i2c_pin;
485 u8 ddc_pin;
486 };
487
488 struct intel_connector;
489 struct intel_encoder;
490 struct intel_crtc_state;
491 struct intel_initial_plane_config;
492 struct intel_crtc;
493 struct intel_limit;
494 struct dpll;
495
496 struct drm_i915_display_funcs {
497 int (*get_display_clock_speed)(struct drm_i915_private *dev_priv);
498 int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane);
499 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
500 int (*compute_intermediate_wm)(struct drm_device *dev,
501 struct intel_crtc *intel_crtc,
502 struct intel_crtc_state *newstate);
503 void (*initial_watermarks)(struct intel_crtc_state *cstate);
504 void (*optimize_watermarks)(struct intel_crtc_state *cstate);
505 int (*compute_global_watermarks)(struct drm_atomic_state *state);
506 void (*update_wm)(struct intel_crtc *crtc);
507 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
508 void (*modeset_commit_cdclk)(struct drm_atomic_state *state);
509 /* Returns the active state of the crtc, and if the crtc is active,
510 * fills out the pipe-config with the hw state. */
511 bool (*get_pipe_config)(struct intel_crtc *,
512 struct intel_crtc_state *);
513 void (*get_initial_plane_config)(struct intel_crtc *,
514 struct intel_initial_plane_config *);
515 int (*crtc_compute_clock)(struct intel_crtc *crtc,
516 struct intel_crtc_state *crtc_state);
517 void (*crtc_enable)(struct intel_crtc_state *pipe_config,
518 struct drm_atomic_state *old_state);
519 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
520 struct drm_atomic_state *old_state);
521 void (*update_crtcs)(struct drm_atomic_state *state,
522 unsigned int *crtc_vblank_mask);
523 void (*audio_codec_enable)(struct drm_connector *connector,
524 struct intel_encoder *encoder,
525 const struct drm_display_mode *adjusted_mode);
526 void (*audio_codec_disable)(struct intel_encoder *encoder);
527 void (*fdi_link_train)(struct drm_crtc *crtc);
528 void (*init_clock_gating)(struct drm_i915_private *dev_priv);
529 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc,
530 struct drm_framebuffer *fb,
531 struct drm_i915_gem_object *obj,
532 struct drm_i915_gem_request *req,
533 uint32_t flags);
534 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
535 /* clock updates for mode set */
536 /* cursor updates */
537 /* render clock increase/decrease */
538 /* display clock increase/decrease */
539 /* pll clock increase/decrease */
540
541 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
542 void (*load_luts)(struct drm_crtc_state *crtc_state);
543 };
544
545 enum forcewake_domain_id {
546 FW_DOMAIN_ID_RENDER = 0,
547 FW_DOMAIN_ID_BLITTER,
548 FW_DOMAIN_ID_MEDIA,
549
550 FW_DOMAIN_ID_COUNT
551 };
552
553 enum forcewake_domains {
554 FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER),
555 FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER),
556 FORCEWAKE_MEDIA = (1 << FW_DOMAIN_ID_MEDIA),
557 FORCEWAKE_ALL = (FORCEWAKE_RENDER |
558 FORCEWAKE_BLITTER |
559 FORCEWAKE_MEDIA)
560 };
561
562 #define FW_REG_READ (1)
563 #define FW_REG_WRITE (2)
564
565 enum forcewake_domains
566 intel_uncore_forcewake_for_reg(struct drm_i915_private *dev_priv,
567 i915_reg_t reg, unsigned int op);
568
569 struct intel_uncore_funcs {
570 void (*force_wake_get)(struct drm_i915_private *dev_priv,
571 enum forcewake_domains domains);
572 void (*force_wake_put)(struct drm_i915_private *dev_priv,
573 enum forcewake_domains domains);
574
575 uint8_t (*mmio_readb)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
576 uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
577 uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
578 uint64_t (*mmio_readq)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
579
580 void (*mmio_writeb)(struct drm_i915_private *dev_priv, i915_reg_t r,
581 uint8_t val, bool trace);
582 void (*mmio_writew)(struct drm_i915_private *dev_priv, i915_reg_t r,
583 uint16_t val, bool trace);
584 void (*mmio_writel)(struct drm_i915_private *dev_priv, i915_reg_t r,
585 uint32_t val, bool trace);
586 };
587
588 struct intel_forcewake_range {
589 u32 start;
590 u32 end;
591
592 enum forcewake_domains domains;
593 };
594
595 struct intel_uncore {
596 spinlock_t lock; /** lock is also taken in irq contexts. */
597
598 const struct intel_forcewake_range *fw_domains_table;
599 unsigned int fw_domains_table_entries;
600
601 struct intel_uncore_funcs funcs;
602
603 unsigned fifo_count;
604
605 enum forcewake_domains fw_domains;
606 enum forcewake_domains fw_domains_active;
607
608 struct intel_uncore_forcewake_domain {
609 struct drm_i915_private *i915;
610 enum forcewake_domain_id id;
611 enum forcewake_domains mask;
612 unsigned wake_count;
613 struct hrtimer timer;
614 i915_reg_t reg_set;
615 u32 val_set;
616 u32 val_clear;
617 i915_reg_t reg_ack;
618 i915_reg_t reg_post;
619 u32 val_reset;
620 } fw_domain[FW_DOMAIN_ID_COUNT];
621
622 int unclaimed_mmio_check;
623 };
624
625 /* Iterate over initialised fw domains */
626 #define for_each_fw_domain_masked(domain__, mask__, dev_priv__) \
627 for ((domain__) = &(dev_priv__)->uncore.fw_domain[0]; \
628 (domain__) < &(dev_priv__)->uncore.fw_domain[FW_DOMAIN_ID_COUNT]; \
629 (domain__)++) \
630 for_each_if ((mask__) & (domain__)->mask)
631
632 #define for_each_fw_domain(domain__, dev_priv__) \
633 for_each_fw_domain_masked(domain__, FORCEWAKE_ALL, dev_priv__)
634
635 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
636 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
637 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
638
639 struct intel_csr {
640 struct work_struct work;
641 const char *fw_path;
642 uint32_t *dmc_payload;
643 uint32_t dmc_fw_size;
644 uint32_t version;
645 uint32_t mmio_count;
646 i915_reg_t mmioaddr[8];
647 uint32_t mmiodata[8];
648 uint32_t dc_state;
649 uint32_t allowed_dc_mask;
650 };
651
652 #define DEV_INFO_FOR_EACH_FLAG(func) \
653 /* Keep is_* in chronological order */ \
654 func(is_mobile); \
655 func(is_i85x); \
656 func(is_i915g); \
657 func(is_i945gm); \
658 func(is_g33); \
659 func(is_g4x); \
660 func(is_pineview); \
661 func(is_broadwater); \
662 func(is_crestline); \
663 func(is_ivybridge); \
664 func(is_valleyview); \
665 func(is_cherryview); \
666 func(is_haswell); \
667 func(is_broadwell); \
668 func(is_skylake); \
669 func(is_broxton); \
670 func(is_kabylake); \
671 func(is_preliminary); \
672 /* Keep has_* in alphabetical order */ \
673 func(has_64bit_reloc); \
674 func(has_csr); \
675 func(has_ddi); \
676 func(has_dp_mst); \
677 func(has_fbc); \
678 func(has_fpga_dbg); \
679 func(has_gmbus_irq); \
680 func(has_gmch_display); \
681 func(has_guc); \
682 func(has_hotplug); \
683 func(has_hw_contexts); \
684 func(has_l3_dpf); \
685 func(has_llc); \
686 func(has_logical_ring_contexts); \
687 func(has_overlay); \
688 func(has_pipe_cxsr); \
689 func(has_pooled_eu); \
690 func(has_psr); \
691 func(has_rc6); \
692 func(has_rc6p); \
693 func(has_resource_streamer); \
694 func(has_runtime_pm); \
695 func(has_snoop); \
696 func(cursor_needs_physical); \
697 func(hws_needs_physical); \
698 func(overlay_needs_physical); \
699 func(supports_tv)
700
701 struct sseu_dev_info {
702 u8 slice_mask;
703 u8 subslice_mask;
704 u8 eu_total;
705 u8 eu_per_subslice;
706 u8 min_eu_in_pool;
707 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
708 u8 subslice_7eu[3];
709 u8 has_slice_pg:1;
710 u8 has_subslice_pg:1;
711 u8 has_eu_pg:1;
712 };
713
714 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu)
715 {
716 return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask);
717 }
718
719 struct intel_device_info {
720 u32 display_mmio_offset;
721 u16 device_id;
722 u8 num_pipes;
723 u8 num_sprites[I915_MAX_PIPES];
724 u8 gen;
725 u16 gen_mask;
726 u8 ring_mask; /* Rings supported by the HW */
727 u8 num_rings;
728 #define DEFINE_FLAG(name) u8 name:1
729 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG);
730 #undef DEFINE_FLAG
731 u16 ddb_size; /* in blocks */
732 /* Register offsets for the various display pipes and transcoders */
733 int pipe_offsets[I915_MAX_TRANSCODERS];
734 int trans_offsets[I915_MAX_TRANSCODERS];
735 int palette_offsets[I915_MAX_PIPES];
736 int cursor_offsets[I915_MAX_PIPES];
737
738 /* Slice/subslice/EU info */
739 struct sseu_dev_info sseu;
740
741 struct color_luts {
742 u16 degamma_lut_size;
743 u16 gamma_lut_size;
744 } color;
745 };
746
747 struct intel_display_error_state;
748
749 struct drm_i915_error_state {
750 struct kref ref;
751 struct timeval time;
752 struct timeval boottime;
753 struct timeval uptime;
754
755 struct drm_i915_private *i915;
756
757 char error_msg[128];
758 bool simulated;
759 int iommu;
760 u32 reset_count;
761 u32 suspend_count;
762 struct intel_device_info device_info;
763
764 /* Generic register state */
765 u32 eir;
766 u32 pgtbl_er;
767 u32 ier;
768 u32 gtier[4];
769 u32 ccid;
770 u32 derrmr;
771 u32 forcewake;
772 u32 error; /* gen6+ */
773 u32 err_int; /* gen7 */
774 u32 fault_data0; /* gen8, gen9 */
775 u32 fault_data1; /* gen8, gen9 */
776 u32 done_reg;
777 u32 gac_eco;
778 u32 gam_ecochk;
779 u32 gab_ctl;
780 u32 gfx_mode;
781
782 u64 fence[I915_MAX_NUM_FENCES];
783 struct intel_overlay_error_state *overlay;
784 struct intel_display_error_state *display;
785 struct drm_i915_error_object *semaphore;
786 struct drm_i915_error_object *guc_log;
787
788 struct drm_i915_error_engine {
789 int engine_id;
790 /* Software tracked state */
791 bool waiting;
792 int num_waiters;
793 int hangcheck_score;
794 enum intel_engine_hangcheck_action hangcheck_action;
795 struct i915_address_space *vm;
796 int num_requests;
797
798 /* position of active request inside the ring */
799 u32 rq_head, rq_post, rq_tail;
800
801 /* our own tracking of ring head and tail */
802 u32 cpu_ring_head;
803 u32 cpu_ring_tail;
804
805 u32 last_seqno;
806
807 /* Register state */
808 u32 start;
809 u32 tail;
810 u32 head;
811 u32 ctl;
812 u32 mode;
813 u32 hws;
814 u32 ipeir;
815 u32 ipehr;
816 u32 bbstate;
817 u32 instpm;
818 u32 instps;
819 u32 seqno;
820 u64 bbaddr;
821 u64 acthd;
822 u32 fault_reg;
823 u64 faddr;
824 u32 rc_psmi; /* sleep state */
825 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
826 struct intel_instdone instdone;
827
828 struct drm_i915_error_object {
829 u64 gtt_offset;
830 u64 gtt_size;
831 int page_count;
832 int unused;
833 u32 *pages[0];
834 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
835
836 struct drm_i915_error_object *wa_ctx;
837
838 struct drm_i915_error_request {
839 long jiffies;
840 pid_t pid;
841 u32 context;
842 u32 seqno;
843 u32 head;
844 u32 tail;
845 } *requests, execlist[2];
846
847 struct drm_i915_error_waiter {
848 char comm[TASK_COMM_LEN];
849 pid_t pid;
850 u32 seqno;
851 } *waiters;
852
853 struct {
854 u32 gfx_mode;
855 union {
856 u64 pdp[4];
857 u32 pp_dir_base;
858 };
859 } vm_info;
860
861 pid_t pid;
862 char comm[TASK_COMM_LEN];
863 } engine[I915_NUM_ENGINES];
864
865 struct drm_i915_error_buffer {
866 u32 size;
867 u32 name;
868 u32 rseqno[I915_NUM_ENGINES], wseqno;
869 u64 gtt_offset;
870 u32 read_domains;
871 u32 write_domain;
872 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
873 u32 tiling:2;
874 u32 dirty:1;
875 u32 purgeable:1;
876 u32 userptr:1;
877 s32 engine:4;
878 u32 cache_level:3;
879 } *active_bo[I915_NUM_ENGINES], *pinned_bo;
880 u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
881 struct i915_address_space *active_vm[I915_NUM_ENGINES];
882 };
883
884 enum i915_cache_level {
885 I915_CACHE_NONE = 0,
886 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
887 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
888 caches, eg sampler/render caches, and the
889 large Last-Level-Cache. LLC is coherent with
890 the CPU, but L3 is only visible to the GPU. */
891 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
892 };
893
894 struct i915_ctx_hang_stats {
895 /* This context had batch pending when hang was declared */
896 unsigned batch_pending;
897
898 /* This context had batch active when hang was declared */
899 unsigned batch_active;
900
901 /* Time when this context was last blamed for a GPU reset */
902 unsigned long guilty_ts;
903
904 /* If the contexts causes a second GPU hang within this time,
905 * it is permanently banned from submitting any more work.
906 */
907 unsigned long ban_period_seconds;
908
909 /* This context is banned to submit more work */
910 bool banned;
911 };
912
913 /* This must match up with the value previously used for execbuf2.rsvd1. */
914 #define DEFAULT_CONTEXT_HANDLE 0
915
916 /**
917 * struct i915_gem_context - as the name implies, represents a context.
918 * @ref: reference count.
919 * @user_handle: userspace tracking identity for this context.
920 * @remap_slice: l3 row remapping information.
921 * @flags: context specific flags:
922 * CONTEXT_NO_ZEROMAP: do not allow mapping things to page 0.
923 * @file_priv: filp associated with this context (NULL for global default
924 * context).
925 * @hang_stats: information about the role of this context in possible GPU
926 * hangs.
927 * @ppgtt: virtual memory space used by this context.
928 * @legacy_hw_ctx: render context backing object and whether it is correctly
929 * initialized (legacy ring submission mechanism only).
930 * @link: link in the global list of contexts.
931 *
932 * Contexts are memory images used by the hardware to store copies of their
933 * internal state.
934 */
935 struct i915_gem_context {
936 struct kref ref;
937 struct drm_i915_private *i915;
938 struct drm_i915_file_private *file_priv;
939 struct i915_hw_ppgtt *ppgtt;
940 struct pid *pid;
941 const char *name;
942
943 struct i915_ctx_hang_stats hang_stats;
944
945 unsigned long flags;
946 #define CONTEXT_NO_ZEROMAP BIT(0)
947 #define CONTEXT_NO_ERROR_CAPTURE BIT(1)
948
949 /* Unique identifier for this context, used by the hw for tracking */
950 unsigned int hw_id;
951 u32 user_handle;
952
953 u32 ggtt_alignment;
954
955 struct intel_context {
956 struct i915_vma *state;
957 struct intel_ring *ring;
958 uint32_t *lrc_reg_state;
959 u64 lrc_desc;
960 int pin_count;
961 bool initialised;
962 } engine[I915_NUM_ENGINES];
963 u32 ring_size;
964 u32 desc_template;
965 struct atomic_notifier_head status_notifier;
966 bool execlists_force_single_submission;
967
968 struct list_head link;
969
970 u8 remap_slice;
971 bool closed:1;
972 };
973
974 enum fb_op_origin {
975 ORIGIN_GTT,
976 ORIGIN_CPU,
977 ORIGIN_CS,
978 ORIGIN_FLIP,
979 ORIGIN_DIRTYFB,
980 };
981
982 struct intel_fbc {
983 /* This is always the inner lock when overlapping with struct_mutex and
984 * it's the outer lock when overlapping with stolen_lock. */
985 struct mutex lock;
986 unsigned threshold;
987 unsigned int possible_framebuffer_bits;
988 unsigned int busy_bits;
989 unsigned int visible_pipes_mask;
990 struct intel_crtc *crtc;
991
992 struct drm_mm_node compressed_fb;
993 struct drm_mm_node *compressed_llb;
994
995 bool false_color;
996
997 bool enabled;
998 bool active;
999
1000 bool underrun_detected;
1001 struct work_struct underrun_work;
1002
1003 struct intel_fbc_state_cache {
1004 struct {
1005 unsigned int mode_flags;
1006 uint32_t hsw_bdw_pixel_rate;
1007 } crtc;
1008
1009 struct {
1010 unsigned int rotation;
1011 int src_w;
1012 int src_h;
1013 bool visible;
1014 } plane;
1015
1016 struct {
1017 u64 ilk_ggtt_offset;
1018 uint32_t pixel_format;
1019 unsigned int stride;
1020 int fence_reg;
1021 unsigned int tiling_mode;
1022 } fb;
1023 } state_cache;
1024
1025 struct intel_fbc_reg_params {
1026 struct {
1027 enum pipe pipe;
1028 enum plane plane;
1029 unsigned int fence_y_offset;
1030 } crtc;
1031
1032 struct {
1033 u64 ggtt_offset;
1034 uint32_t pixel_format;
1035 unsigned int stride;
1036 int fence_reg;
1037 } fb;
1038
1039 int cfb_size;
1040 } params;
1041
1042 struct intel_fbc_work {
1043 bool scheduled;
1044 u32 scheduled_vblank;
1045 struct work_struct work;
1046 } work;
1047
1048 const char *no_fbc_reason;
1049 };
1050
1051 /**
1052 * HIGH_RR is the highest eDP panel refresh rate read from EDID
1053 * LOW_RR is the lowest eDP panel refresh rate found from EDID
1054 * parsing for same resolution.
1055 */
1056 enum drrs_refresh_rate_type {
1057 DRRS_HIGH_RR,
1058 DRRS_LOW_RR,
1059 DRRS_MAX_RR, /* RR count */
1060 };
1061
1062 enum drrs_support_type {
1063 DRRS_NOT_SUPPORTED = 0,
1064 STATIC_DRRS_SUPPORT = 1,
1065 SEAMLESS_DRRS_SUPPORT = 2
1066 };
1067
1068 struct intel_dp;
1069 struct i915_drrs {
1070 struct mutex mutex;
1071 struct delayed_work work;
1072 struct intel_dp *dp;
1073 unsigned busy_frontbuffer_bits;
1074 enum drrs_refresh_rate_type refresh_rate_type;
1075 enum drrs_support_type type;
1076 };
1077
1078 struct i915_psr {
1079 struct mutex lock;
1080 bool sink_support;
1081 bool source_ok;
1082 struct intel_dp *enabled;
1083 bool active;
1084 struct delayed_work work;
1085 unsigned busy_frontbuffer_bits;
1086 bool psr2_support;
1087 bool aux_frame_sync;
1088 bool link_standby;
1089 };
1090
1091 enum intel_pch {
1092 PCH_NONE = 0, /* No PCH present */
1093 PCH_IBX, /* Ibexpeak PCH */
1094 PCH_CPT, /* Cougarpoint PCH */
1095 PCH_LPT, /* Lynxpoint PCH */
1096 PCH_SPT, /* Sunrisepoint PCH */
1097 PCH_KBP, /* Kabypoint PCH */
1098 PCH_NOP,
1099 };
1100
1101 enum intel_sbi_destination {
1102 SBI_ICLK,
1103 SBI_MPHY,
1104 };
1105
1106 #define QUIRK_PIPEA_FORCE (1<<0)
1107 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1108 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1109 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1110 #define QUIRK_PIPEB_FORCE (1<<4)
1111 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1112
1113 struct intel_fbdev;
1114 struct intel_fbc_work;
1115
1116 struct intel_gmbus {
1117 struct i2c_adapter adapter;
1118 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1119 u32 force_bit;
1120 u32 reg0;
1121 i915_reg_t gpio_reg;
1122 struct i2c_algo_bit_data bit_algo;
1123 struct drm_i915_private *dev_priv;
1124 };
1125
1126 struct i915_suspend_saved_registers {
1127 u32 saveDSPARB;
1128 u32 saveFBC_CONTROL;
1129 u32 saveCACHE_MODE_0;
1130 u32 saveMI_ARB_STATE;
1131 u32 saveSWF0[16];
1132 u32 saveSWF1[16];
1133 u32 saveSWF3[3];
1134 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1135 u32 savePCH_PORT_HOTPLUG;
1136 u16 saveGCDGMBUS;
1137 };
1138
1139 struct vlv_s0ix_state {
1140 /* GAM */
1141 u32 wr_watermark;
1142 u32 gfx_prio_ctrl;
1143 u32 arb_mode;
1144 u32 gfx_pend_tlb0;
1145 u32 gfx_pend_tlb1;
1146 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1147 u32 media_max_req_count;
1148 u32 gfx_max_req_count;
1149 u32 render_hwsp;
1150 u32 ecochk;
1151 u32 bsd_hwsp;
1152 u32 blt_hwsp;
1153 u32 tlb_rd_addr;
1154
1155 /* MBC */
1156 u32 g3dctl;
1157 u32 gsckgctl;
1158 u32 mbctl;
1159
1160 /* GCP */
1161 u32 ucgctl1;
1162 u32 ucgctl3;
1163 u32 rcgctl1;
1164 u32 rcgctl2;
1165 u32 rstctl;
1166 u32 misccpctl;
1167
1168 /* GPM */
1169 u32 gfxpause;
1170 u32 rpdeuhwtc;
1171 u32 rpdeuc;
1172 u32 ecobus;
1173 u32 pwrdwnupctl;
1174 u32 rp_down_timeout;
1175 u32 rp_deucsw;
1176 u32 rcubmabdtmr;
1177 u32 rcedata;
1178 u32 spare2gh;
1179
1180 /* Display 1 CZ domain */
1181 u32 gt_imr;
1182 u32 gt_ier;
1183 u32 pm_imr;
1184 u32 pm_ier;
1185 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1186
1187 /* GT SA CZ domain */
1188 u32 tilectl;
1189 u32 gt_fifoctl;
1190 u32 gtlc_wake_ctrl;
1191 u32 gtlc_survive;
1192 u32 pmwgicz;
1193
1194 /* Display 2 CZ domain */
1195 u32 gu_ctl0;
1196 u32 gu_ctl1;
1197 u32 pcbr;
1198 u32 clock_gate_dis2;
1199 };
1200
1201 struct intel_rps_ei {
1202 u32 cz_clock;
1203 u32 render_c0;
1204 u32 media_c0;
1205 };
1206
1207 struct intel_gen6_power_mgmt {
1208 /*
1209 * work, interrupts_enabled and pm_iir are protected by
1210 * dev_priv->irq_lock
1211 */
1212 struct work_struct work;
1213 bool interrupts_enabled;
1214 u32 pm_iir;
1215
1216 /* PM interrupt bits that should never be masked */
1217 u32 pm_intr_keep;
1218
1219 /* Frequencies are stored in potentially platform dependent multiples.
1220 * In other words, *_freq needs to be multiplied by X to be interesting.
1221 * Soft limits are those which are used for the dynamic reclocking done
1222 * by the driver (raise frequencies under heavy loads, and lower for
1223 * lighter loads). Hard limits are those imposed by the hardware.
1224 *
1225 * A distinction is made for overclocking, which is never enabled by
1226 * default, and is considered to be above the hard limit if it's
1227 * possible at all.
1228 */
1229 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1230 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1231 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1232 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1233 u8 min_freq; /* AKA RPn. Minimum frequency */
1234 u8 boost_freq; /* Frequency to request when wait boosting */
1235 u8 idle_freq; /* Frequency to request when we are idle */
1236 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1237 u8 rp1_freq; /* "less than" RP0 power/freqency */
1238 u8 rp0_freq; /* Non-overclocked max frequency. */
1239 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
1240
1241 u8 up_threshold; /* Current %busy required to uplock */
1242 u8 down_threshold; /* Current %busy required to downclock */
1243
1244 int last_adj;
1245 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1246
1247 spinlock_t client_lock;
1248 struct list_head clients;
1249 bool client_boost;
1250
1251 bool enabled;
1252 struct delayed_work autoenable_work;
1253 unsigned boosts;
1254
1255 /* manual wa residency calculations */
1256 struct intel_rps_ei up_ei, down_ei;
1257
1258 /*
1259 * Protects RPS/RC6 register access and PCU communication.
1260 * Must be taken after struct_mutex if nested. Note that
1261 * this lock may be held for long periods of time when
1262 * talking to hw - so only take it when talking to hw!
1263 */
1264 struct mutex hw_lock;
1265 };
1266
1267 /* defined intel_pm.c */
1268 extern spinlock_t mchdev_lock;
1269
1270 struct intel_ilk_power_mgmt {
1271 u8 cur_delay;
1272 u8 min_delay;
1273 u8 max_delay;
1274 u8 fmax;
1275 u8 fstart;
1276
1277 u64 last_count1;
1278 unsigned long last_time1;
1279 unsigned long chipset_power;
1280 u64 last_count2;
1281 u64 last_time2;
1282 unsigned long gfx_power;
1283 u8 corr;
1284
1285 int c_m;
1286 int r_t;
1287 };
1288
1289 struct drm_i915_private;
1290 struct i915_power_well;
1291
1292 struct i915_power_well_ops {
1293 /*
1294 * Synchronize the well's hw state to match the current sw state, for
1295 * example enable/disable it based on the current refcount. Called
1296 * during driver init and resume time, possibly after first calling
1297 * the enable/disable handlers.
1298 */
1299 void (*sync_hw)(struct drm_i915_private *dev_priv,
1300 struct i915_power_well *power_well);
1301 /*
1302 * Enable the well and resources that depend on it (for example
1303 * interrupts located on the well). Called after the 0->1 refcount
1304 * transition.
1305 */
1306 void (*enable)(struct drm_i915_private *dev_priv,
1307 struct i915_power_well *power_well);
1308 /*
1309 * Disable the well and resources that depend on it. Called after
1310 * the 1->0 refcount transition.
1311 */
1312 void (*disable)(struct drm_i915_private *dev_priv,
1313 struct i915_power_well *power_well);
1314 /* Returns the hw enabled state. */
1315 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1316 struct i915_power_well *power_well);
1317 };
1318
1319 /* Power well structure for haswell */
1320 struct i915_power_well {
1321 const char *name;
1322 bool always_on;
1323 /* power well enable/disable usage count */
1324 int count;
1325 /* cached hw enabled state */
1326 bool hw_enabled;
1327 unsigned long domains;
1328 /* unique identifier for this power well */
1329 unsigned long id;
1330 /*
1331 * Arbitraty data associated with this power well. Platform and power
1332 * well specific.
1333 */
1334 unsigned long data;
1335 const struct i915_power_well_ops *ops;
1336 };
1337
1338 struct i915_power_domains {
1339 /*
1340 * Power wells needed for initialization at driver init and suspend
1341 * time are on. They are kept on until after the first modeset.
1342 */
1343 bool init_power_on;
1344 bool initializing;
1345 int power_well_count;
1346
1347 struct mutex lock;
1348 int domain_use_count[POWER_DOMAIN_NUM];
1349 struct i915_power_well *power_wells;
1350 };
1351
1352 #define MAX_L3_SLICES 2
1353 struct intel_l3_parity {
1354 u32 *remap_info[MAX_L3_SLICES];
1355 struct work_struct error_work;
1356 int which_slice;
1357 };
1358
1359 struct i915_gem_mm {
1360 /** Memory allocator for GTT stolen memory */
1361 struct drm_mm stolen;
1362 /** Protects the usage of the GTT stolen memory allocator. This is
1363 * always the inner lock when overlapping with struct_mutex. */
1364 struct mutex stolen_lock;
1365
1366 /** List of all objects in gtt_space. Used to restore gtt
1367 * mappings on resume */
1368 struct list_head bound_list;
1369 /**
1370 * List of objects which are not bound to the GTT (thus
1371 * are idle and not used by the GPU). These objects may or may
1372 * not actually have any pages attached.
1373 */
1374 struct list_head unbound_list;
1375
1376 /** List of all objects in gtt_space, currently mmaped by userspace.
1377 * All objects within this list must also be on bound_list.
1378 */
1379 struct list_head userfault_list;
1380
1381 /**
1382 * List of objects which are pending destruction.
1383 */
1384 struct llist_head free_list;
1385 struct work_struct free_work;
1386
1387 /** Usable portion of the GTT for GEM */
1388 unsigned long stolen_base; /* limited to low memory (32-bit) */
1389
1390 /** PPGTT used for aliasing the PPGTT with the GTT */
1391 struct i915_hw_ppgtt *aliasing_ppgtt;
1392
1393 struct notifier_block oom_notifier;
1394 struct notifier_block vmap_notifier;
1395 struct shrinker shrinker;
1396
1397 /** LRU list of objects with fence regs on them. */
1398 struct list_head fence_list;
1399
1400 /**
1401 * Are we in a non-interruptible section of code like
1402 * modesetting?
1403 */
1404 bool interruptible;
1405
1406 /* the indicator for dispatch video commands on two BSD rings */
1407 atomic_t bsd_engine_dispatch_index;
1408
1409 /** Bit 6 swizzling required for X tiling */
1410 uint32_t bit_6_swizzle_x;
1411 /** Bit 6 swizzling required for Y tiling */
1412 uint32_t bit_6_swizzle_y;
1413
1414 /* accounting, useful for userland debugging */
1415 spinlock_t object_stat_lock;
1416 u64 object_memory;
1417 u32 object_count;
1418 };
1419
1420 struct drm_i915_error_state_buf {
1421 struct drm_i915_private *i915;
1422 unsigned bytes;
1423 unsigned size;
1424 int err;
1425 u8 *buf;
1426 loff_t start;
1427 loff_t pos;
1428 };
1429
1430 struct i915_error_state_file_priv {
1431 struct drm_device *dev;
1432 struct drm_i915_error_state *error;
1433 };
1434
1435 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1436 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1437
1438 struct i915_gpu_error {
1439 /* For hangcheck timer */
1440 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1441 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1442 /* Hang gpu twice in this window and your context gets banned */
1443 #define DRM_I915_CTX_BAN_PERIOD DIV_ROUND_UP(8*DRM_I915_HANGCHECK_PERIOD, 1000)
1444
1445 struct delayed_work hangcheck_work;
1446
1447 /* For reset and error_state handling. */
1448 spinlock_t lock;
1449 /* Protected by the above dev->gpu_error.lock. */
1450 struct drm_i915_error_state *first_error;
1451
1452 unsigned long missed_irq_rings;
1453
1454 /**
1455 * State variable controlling the reset flow and count
1456 *
1457 * This is a counter which gets incremented when reset is triggered,
1458 *
1459 * Before the reset commences, the I915_RESET_IN_PROGRESS bit is set
1460 * meaning that any waiters holding onto the struct_mutex should
1461 * relinquish the lock immediately in order for the reset to start.
1462 *
1463 * If reset is not completed succesfully, the I915_WEDGE bit is
1464 * set meaning that hardware is terminally sour and there is no
1465 * recovery. All waiters on the reset_queue will be woken when
1466 * that happens.
1467 *
1468 * This counter is used by the wait_seqno code to notice that reset
1469 * event happened and it needs to restart the entire ioctl (since most
1470 * likely the seqno it waited for won't ever signal anytime soon).
1471 *
1472 * This is important for lock-free wait paths, where no contended lock
1473 * naturally enforces the correct ordering between the bail-out of the
1474 * waiter and the gpu reset work code.
1475 */
1476 unsigned long reset_count;
1477
1478 unsigned long flags;
1479 #define I915_RESET_IN_PROGRESS 0
1480 #define I915_WEDGED (BITS_PER_LONG - 1)
1481
1482 /**
1483 * Waitqueue to signal when a hang is detected. Used to for waiters
1484 * to release the struct_mutex for the reset to procede.
1485 */
1486 wait_queue_head_t wait_queue;
1487
1488 /**
1489 * Waitqueue to signal when the reset has completed. Used by clients
1490 * that wait for dev_priv->mm.wedged to settle.
1491 */
1492 wait_queue_head_t reset_queue;
1493
1494 /* For missed irq/seqno simulation. */
1495 unsigned long test_irq_rings;
1496 };
1497
1498 enum modeset_restore {
1499 MODESET_ON_LID_OPEN,
1500 MODESET_DONE,
1501 MODESET_SUSPENDED,
1502 };
1503
1504 #define DP_AUX_A 0x40
1505 #define DP_AUX_B 0x10
1506 #define DP_AUX_C 0x20
1507 #define DP_AUX_D 0x30
1508
1509 #define DDC_PIN_B 0x05
1510 #define DDC_PIN_C 0x04
1511 #define DDC_PIN_D 0x06
1512
1513 struct ddi_vbt_port_info {
1514 /*
1515 * This is an index in the HDMI/DVI DDI buffer translation table.
1516 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1517 * populate this field.
1518 */
1519 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1520 uint8_t hdmi_level_shift;
1521
1522 uint8_t supports_dvi:1;
1523 uint8_t supports_hdmi:1;
1524 uint8_t supports_dp:1;
1525
1526 uint8_t alternate_aux_channel;
1527 uint8_t alternate_ddc_pin;
1528
1529 uint8_t dp_boost_level;
1530 uint8_t hdmi_boost_level;
1531 };
1532
1533 enum psr_lines_to_wait {
1534 PSR_0_LINES_TO_WAIT = 0,
1535 PSR_1_LINE_TO_WAIT,
1536 PSR_4_LINES_TO_WAIT,
1537 PSR_8_LINES_TO_WAIT
1538 };
1539
1540 struct intel_vbt_data {
1541 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1542 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1543
1544 /* Feature bits */
1545 unsigned int int_tv_support:1;
1546 unsigned int lvds_dither:1;
1547 unsigned int lvds_vbt:1;
1548 unsigned int int_crt_support:1;
1549 unsigned int lvds_use_ssc:1;
1550 unsigned int display_clock_mode:1;
1551 unsigned int fdi_rx_polarity_inverted:1;
1552 unsigned int panel_type:4;
1553 int lvds_ssc_freq;
1554 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1555
1556 enum drrs_support_type drrs_type;
1557
1558 struct {
1559 int rate;
1560 int lanes;
1561 int preemphasis;
1562 int vswing;
1563 bool low_vswing;
1564 bool initialized;
1565 bool support;
1566 int bpp;
1567 struct edp_power_seq pps;
1568 } edp;
1569
1570 struct {
1571 bool full_link;
1572 bool require_aux_wakeup;
1573 int idle_frames;
1574 enum psr_lines_to_wait lines_to_wait;
1575 int tp1_wakeup_time;
1576 int tp2_tp3_wakeup_time;
1577 } psr;
1578
1579 struct {
1580 u16 pwm_freq_hz;
1581 bool present;
1582 bool active_low_pwm;
1583 u8 min_brightness; /* min_brightness/255 of max */
1584 enum intel_backlight_type type;
1585 } backlight;
1586
1587 /* MIPI DSI */
1588 struct {
1589 u16 panel_id;
1590 struct mipi_config *config;
1591 struct mipi_pps_data *pps;
1592 u8 seq_version;
1593 u32 size;
1594 u8 *data;
1595 const u8 *sequence[MIPI_SEQ_MAX];
1596 } dsi;
1597
1598 int crt_ddc_pin;
1599
1600 int child_dev_num;
1601 union child_device_config *child_dev;
1602
1603 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1604 struct sdvo_device_mapping sdvo_mappings[2];
1605 };
1606
1607 enum intel_ddb_partitioning {
1608 INTEL_DDB_PART_1_2,
1609 INTEL_DDB_PART_5_6, /* IVB+ */
1610 };
1611
1612 struct intel_wm_level {
1613 bool enable;
1614 uint32_t pri_val;
1615 uint32_t spr_val;
1616 uint32_t cur_val;
1617 uint32_t fbc_val;
1618 };
1619
1620 struct ilk_wm_values {
1621 uint32_t wm_pipe[3];
1622 uint32_t wm_lp[3];
1623 uint32_t wm_lp_spr[3];
1624 uint32_t wm_linetime[3];
1625 bool enable_fbc_wm;
1626 enum intel_ddb_partitioning partitioning;
1627 };
1628
1629 struct vlv_pipe_wm {
1630 uint16_t primary;
1631 uint16_t sprite[2];
1632 uint8_t cursor;
1633 };
1634
1635 struct vlv_sr_wm {
1636 uint16_t plane;
1637 uint8_t cursor;
1638 };
1639
1640 struct vlv_wm_values {
1641 struct vlv_pipe_wm pipe[3];
1642 struct vlv_sr_wm sr;
1643 struct {
1644 uint8_t cursor;
1645 uint8_t sprite[2];
1646 uint8_t primary;
1647 } ddl[3];
1648 uint8_t level;
1649 bool cxsr;
1650 };
1651
1652 struct skl_ddb_entry {
1653 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1654 };
1655
1656 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1657 {
1658 return entry->end - entry->start;
1659 }
1660
1661 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1662 const struct skl_ddb_entry *e2)
1663 {
1664 if (e1->start == e2->start && e1->end == e2->end)
1665 return true;
1666
1667 return false;
1668 }
1669
1670 struct skl_ddb_allocation {
1671 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1672 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1673 };
1674
1675 struct skl_wm_values {
1676 unsigned dirty_pipes;
1677 struct skl_ddb_allocation ddb;
1678 };
1679
1680 struct skl_wm_level {
1681 bool plane_en;
1682 uint16_t plane_res_b;
1683 uint8_t plane_res_l;
1684 };
1685
1686 /*
1687 * This struct helps tracking the state needed for runtime PM, which puts the
1688 * device in PCI D3 state. Notice that when this happens, nothing on the
1689 * graphics device works, even register access, so we don't get interrupts nor
1690 * anything else.
1691 *
1692 * Every piece of our code that needs to actually touch the hardware needs to
1693 * either call intel_runtime_pm_get or call intel_display_power_get with the
1694 * appropriate power domain.
1695 *
1696 * Our driver uses the autosuspend delay feature, which means we'll only really
1697 * suspend if we stay with zero refcount for a certain amount of time. The
1698 * default value is currently very conservative (see intel_runtime_pm_enable), but
1699 * it can be changed with the standard runtime PM files from sysfs.
1700 *
1701 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1702 * goes back to false exactly before we reenable the IRQs. We use this variable
1703 * to check if someone is trying to enable/disable IRQs while they're supposed
1704 * to be disabled. This shouldn't happen and we'll print some error messages in
1705 * case it happens.
1706 *
1707 * For more, read the Documentation/power/runtime_pm.txt.
1708 */
1709 struct i915_runtime_pm {
1710 atomic_t wakeref_count;
1711 bool suspended;
1712 bool irqs_enabled;
1713 };
1714
1715 enum intel_pipe_crc_source {
1716 INTEL_PIPE_CRC_SOURCE_NONE,
1717 INTEL_PIPE_CRC_SOURCE_PLANE1,
1718 INTEL_PIPE_CRC_SOURCE_PLANE2,
1719 INTEL_PIPE_CRC_SOURCE_PF,
1720 INTEL_PIPE_CRC_SOURCE_PIPE,
1721 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1722 INTEL_PIPE_CRC_SOURCE_TV,
1723 INTEL_PIPE_CRC_SOURCE_DP_B,
1724 INTEL_PIPE_CRC_SOURCE_DP_C,
1725 INTEL_PIPE_CRC_SOURCE_DP_D,
1726 INTEL_PIPE_CRC_SOURCE_AUTO,
1727 INTEL_PIPE_CRC_SOURCE_MAX,
1728 };
1729
1730 struct intel_pipe_crc_entry {
1731 uint32_t frame;
1732 uint32_t crc[5];
1733 };
1734
1735 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1736 struct intel_pipe_crc {
1737 spinlock_t lock;
1738 bool opened; /* exclusive access to the result file */
1739 struct intel_pipe_crc_entry *entries;
1740 enum intel_pipe_crc_source source;
1741 int head, tail;
1742 wait_queue_head_t wq;
1743 };
1744
1745 struct i915_frontbuffer_tracking {
1746 spinlock_t lock;
1747
1748 /*
1749 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1750 * scheduled flips.
1751 */
1752 unsigned busy_bits;
1753 unsigned flip_bits;
1754 };
1755
1756 struct i915_wa_reg {
1757 i915_reg_t addr;
1758 u32 value;
1759 /* bitmask representing WA bits */
1760 u32 mask;
1761 };
1762
1763 /*
1764 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1765 * allowing it for RCS as we don't foresee any requirement of having
1766 * a whitelist for other engines. When it is really required for
1767 * other engines then the limit need to be increased.
1768 */
1769 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1770
1771 struct i915_workarounds {
1772 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1773 u32 count;
1774 u32 hw_whitelist_count[I915_NUM_ENGINES];
1775 };
1776
1777 struct i915_virtual_gpu {
1778 bool active;
1779 };
1780
1781 /* used in computing the new watermarks state */
1782 struct intel_wm_config {
1783 unsigned int num_pipes_active;
1784 bool sprites_enabled;
1785 bool sprites_scaled;
1786 };
1787
1788 struct drm_i915_private {
1789 struct drm_device drm;
1790
1791 struct kmem_cache *objects;
1792 struct kmem_cache *vmas;
1793 struct kmem_cache *requests;
1794
1795 const struct intel_device_info info;
1796
1797 int relative_constants_mode;
1798
1799 void __iomem *regs;
1800
1801 struct intel_uncore uncore;
1802
1803 struct i915_virtual_gpu vgpu;
1804
1805 struct intel_gvt *gvt;
1806
1807 struct intel_guc guc;
1808
1809 struct intel_csr csr;
1810
1811 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1812
1813 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
1814 * controller on different i2c buses. */
1815 struct mutex gmbus_mutex;
1816
1817 /**
1818 * Base address of the gmbus and gpio block.
1819 */
1820 uint32_t gpio_mmio_base;
1821
1822 /* MMIO base address for MIPI regs */
1823 uint32_t mipi_mmio_base;
1824
1825 uint32_t psr_mmio_base;
1826
1827 uint32_t pps_mmio_base;
1828
1829 wait_queue_head_t gmbus_wait_queue;
1830
1831 struct pci_dev *bridge_dev;
1832 struct i915_gem_context *kernel_context;
1833 struct intel_engine_cs *engine[I915_NUM_ENGINES];
1834 struct i915_vma *semaphore;
1835
1836 struct drm_dma_handle *status_page_dmah;
1837 struct resource mch_res;
1838
1839 /* protects the irq masks */
1840 spinlock_t irq_lock;
1841
1842 /* protects the mmio flip data */
1843 spinlock_t mmio_flip_lock;
1844
1845 bool display_irqs_enabled;
1846
1847 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1848 struct pm_qos_request pm_qos;
1849
1850 /* Sideband mailbox protection */
1851 struct mutex sb_lock;
1852
1853 /** Cached value of IMR to avoid reads in updating the bitfield */
1854 union {
1855 u32 irq_mask;
1856 u32 de_irq_mask[I915_MAX_PIPES];
1857 };
1858 u32 gt_irq_mask;
1859 u32 pm_imr;
1860 u32 pm_ier;
1861 u32 pm_rps_events;
1862 u32 pm_guc_events;
1863 u32 pipestat_irq_mask[I915_MAX_PIPES];
1864
1865 struct i915_hotplug hotplug;
1866 struct intel_fbc fbc;
1867 struct i915_drrs drrs;
1868 struct intel_opregion opregion;
1869 struct intel_vbt_data vbt;
1870
1871 bool preserve_bios_swizzle;
1872
1873 /* overlay */
1874 struct intel_overlay *overlay;
1875
1876 /* backlight registers and fields in struct intel_panel */
1877 struct mutex backlight_lock;
1878
1879 /* LVDS info */
1880 bool no_aux_handshake;
1881
1882 /* protects panel power sequencer state */
1883 struct mutex pps_mutex;
1884
1885 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1886 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1887
1888 unsigned int fsb_freq, mem_freq, is_ddr3;
1889 unsigned int skl_preferred_vco_freq;
1890 unsigned int cdclk_freq, max_cdclk_freq, atomic_cdclk_freq;
1891 unsigned int max_dotclk_freq;
1892 unsigned int rawclk_freq;
1893 unsigned int hpll_freq;
1894 unsigned int czclk_freq;
1895
1896 struct {
1897 unsigned int vco, ref;
1898 } cdclk_pll;
1899
1900 /**
1901 * wq - Driver workqueue for GEM.
1902 *
1903 * NOTE: Work items scheduled here are not allowed to grab any modeset
1904 * locks, for otherwise the flushing done in the pageflip code will
1905 * result in deadlocks.
1906 */
1907 struct workqueue_struct *wq;
1908
1909 /* Display functions */
1910 struct drm_i915_display_funcs display;
1911
1912 /* PCH chipset type */
1913 enum intel_pch pch_type;
1914 unsigned short pch_id;
1915
1916 unsigned long quirks;
1917
1918 enum modeset_restore modeset_restore;
1919 struct mutex modeset_restore_lock;
1920 struct drm_atomic_state *modeset_restore_state;
1921 struct drm_modeset_acquire_ctx reset_ctx;
1922
1923 struct list_head vm_list; /* Global list of all address spaces */
1924 struct i915_ggtt ggtt; /* VM representing the global address space */
1925
1926 struct i915_gem_mm mm;
1927 DECLARE_HASHTABLE(mm_structs, 7);
1928 struct mutex mm_lock;
1929
1930 /* The hw wants to have a stable context identifier for the lifetime
1931 * of the context (for OA, PASID, faults, etc). This is limited
1932 * in execlists to 21 bits.
1933 */
1934 struct ida context_hw_ida;
1935 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1936
1937 /* Kernel Modesetting */
1938
1939 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1940 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1941 wait_queue_head_t pending_flip_queue;
1942
1943 #ifdef CONFIG_DEBUG_FS
1944 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1945 #endif
1946
1947 /* dpll and cdclk state is protected by connection_mutex */
1948 int num_shared_dpll;
1949 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1950 const struct intel_dpll_mgr *dpll_mgr;
1951
1952 /*
1953 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1954 * Must be global rather than per dpll, because on some platforms
1955 * plls share registers.
1956 */
1957 struct mutex dpll_lock;
1958
1959 unsigned int active_crtcs;
1960 unsigned int min_pixclk[I915_MAX_PIPES];
1961
1962 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1963
1964 struct i915_workarounds workarounds;
1965
1966 struct i915_frontbuffer_tracking fb_tracking;
1967
1968 u16 orig_clock;
1969
1970 bool mchbar_need_disable;
1971
1972 struct intel_l3_parity l3_parity;
1973
1974 /* Cannot be determined by PCIID. You must always read a register. */
1975 u32 edram_cap;
1976
1977 /* gen6+ rps state */
1978 struct intel_gen6_power_mgmt rps;
1979
1980 /* ilk-only ips/rps state. Everything in here is protected by the global
1981 * mchdev_lock in intel_pm.c */
1982 struct intel_ilk_power_mgmt ips;
1983
1984 struct i915_power_domains power_domains;
1985
1986 struct i915_psr psr;
1987
1988 struct i915_gpu_error gpu_error;
1989
1990 struct drm_i915_gem_object *vlv_pctx;
1991
1992 #ifdef CONFIG_DRM_FBDEV_EMULATION
1993 /* list of fbdev register on this device */
1994 struct intel_fbdev *fbdev;
1995 struct work_struct fbdev_suspend_work;
1996 #endif
1997
1998 struct drm_property *broadcast_rgb_property;
1999 struct drm_property *force_audio_property;
2000
2001 /* hda/i915 audio component */
2002 struct i915_audio_component *audio_component;
2003 bool audio_component_registered;
2004 /**
2005 * av_mutex - mutex for audio/video sync
2006 *
2007 */
2008 struct mutex av_mutex;
2009
2010 uint32_t hw_context_size;
2011 struct list_head context_list;
2012
2013 u32 fdi_rx_config;
2014
2015 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
2016 u32 chv_phy_control;
2017 /*
2018 * Shadows for CHV DPLL_MD regs to keep the state
2019 * checker somewhat working in the presence hardware
2020 * crappiness (can't read out DPLL_MD for pipes B & C).
2021 */
2022 u32 chv_dpll_md[I915_MAX_PIPES];
2023 u32 bxt_phy_grc;
2024
2025 u32 suspend_count;
2026 bool suspended_to_idle;
2027 struct i915_suspend_saved_registers regfile;
2028 struct vlv_s0ix_state vlv_s0ix_state;
2029
2030 enum {
2031 I915_SAGV_UNKNOWN = 0,
2032 I915_SAGV_DISABLED,
2033 I915_SAGV_ENABLED,
2034 I915_SAGV_NOT_CONTROLLED
2035 } sagv_status;
2036
2037 struct {
2038 /*
2039 * Raw watermark latency values:
2040 * in 0.1us units for WM0,
2041 * in 0.5us units for WM1+.
2042 */
2043 /* primary */
2044 uint16_t pri_latency[5];
2045 /* sprite */
2046 uint16_t spr_latency[5];
2047 /* cursor */
2048 uint16_t cur_latency[5];
2049 /*
2050 * Raw watermark memory latency values
2051 * for SKL for all 8 levels
2052 * in 1us units.
2053 */
2054 uint16_t skl_latency[8];
2055
2056 /*
2057 * The skl_wm_values structure is a bit too big for stack
2058 * allocation, so we keep the staging struct where we store
2059 * intermediate results here instead.
2060 */
2061 struct skl_wm_values skl_results;
2062
2063 /* current hardware state */
2064 union {
2065 struct ilk_wm_values hw;
2066 struct skl_wm_values skl_hw;
2067 struct vlv_wm_values vlv;
2068 };
2069
2070 uint8_t max_level;
2071
2072 /*
2073 * Should be held around atomic WM register writing; also
2074 * protects * intel_crtc->wm.active and
2075 * cstate->wm.need_postvbl_update.
2076 */
2077 struct mutex wm_mutex;
2078
2079 /*
2080 * Set during HW readout of watermarks/DDB. Some platforms
2081 * need to know when we're still using BIOS-provided values
2082 * (which we don't fully trust).
2083 */
2084 bool distrust_bios_wm;
2085 } wm;
2086
2087 struct i915_runtime_pm pm;
2088
2089 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2090 struct {
2091 void (*resume)(struct drm_i915_private *);
2092 void (*cleanup_engine)(struct intel_engine_cs *engine);
2093
2094 struct list_head timelines;
2095 struct i915_gem_timeline global_timeline;
2096 u32 active_requests;
2097
2098 /**
2099 * Is the GPU currently considered idle, or busy executing
2100 * userspace requests? Whilst idle, we allow runtime power
2101 * management to power down the hardware and display clocks.
2102 * In order to reduce the effect on performance, there
2103 * is a slight delay before we do so.
2104 */
2105 bool awake;
2106
2107 /**
2108 * We leave the user IRQ off as much as possible,
2109 * but this means that requests will finish and never
2110 * be retired once the system goes idle. Set a timer to
2111 * fire periodically while the ring is running. When it
2112 * fires, go retire requests.
2113 */
2114 struct delayed_work retire_work;
2115
2116 /**
2117 * When we detect an idle GPU, we want to turn on
2118 * powersaving features. So once we see that there
2119 * are no more requests outstanding and no more
2120 * arrive within a small period of time, we fire
2121 * off the idle_work.
2122 */
2123 struct delayed_work idle_work;
2124
2125 ktime_t last_init_time;
2126 } gt;
2127
2128 /* perform PHY state sanity checks? */
2129 bool chv_phy_assert[2];
2130
2131 /* Used to save the pipe-to-encoder mapping for audio */
2132 struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2133
2134 /*
2135 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2136 * will be rejected. Instead look for a better place.
2137 */
2138 };
2139
2140 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2141 {
2142 return container_of(dev, struct drm_i915_private, drm);
2143 }
2144
2145 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2146 {
2147 return to_i915(dev_get_drvdata(kdev));
2148 }
2149
2150 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2151 {
2152 return container_of(guc, struct drm_i915_private, guc);
2153 }
2154
2155 /* Simple iterator over all initialised engines */
2156 #define for_each_engine(engine__, dev_priv__, id__) \
2157 for ((id__) = 0; \
2158 (id__) < I915_NUM_ENGINES; \
2159 (id__)++) \
2160 for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2161
2162 #define __mask_next_bit(mask) ({ \
2163 int __idx = ffs(mask) - 1; \
2164 mask &= ~BIT(__idx); \
2165 __idx; \
2166 })
2167
2168 /* Iterator over subset of engines selected by mask */
2169 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2170 for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask; \
2171 tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2172
2173 enum hdmi_force_audio {
2174 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2175 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2176 HDMI_AUDIO_AUTO, /* trust EDID */
2177 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2178 };
2179
2180 #define I915_GTT_OFFSET_NONE ((u32)-1)
2181
2182 struct drm_i915_gem_object_ops {
2183 unsigned int flags;
2184 #define I915_GEM_OBJECT_HAS_STRUCT_PAGE 0x1
2185 #define I915_GEM_OBJECT_IS_SHRINKABLE 0x2
2186
2187 /* Interface between the GEM object and its backing storage.
2188 * get_pages() is called once prior to the use of the associated set
2189 * of pages before to binding them into the GTT, and put_pages() is
2190 * called after we no longer need them. As we expect there to be
2191 * associated cost with migrating pages between the backing storage
2192 * and making them available for the GPU (e.g. clflush), we may hold
2193 * onto the pages after they are no longer referenced by the GPU
2194 * in case they may be used again shortly (for example migrating the
2195 * pages to a different memory domain within the GTT). put_pages()
2196 * will therefore most likely be called when the object itself is
2197 * being released or under memory pressure (where we attempt to
2198 * reap pages for the shrinker).
2199 */
2200 struct sg_table *(*get_pages)(struct drm_i915_gem_object *);
2201 void (*put_pages)(struct drm_i915_gem_object *, struct sg_table *);
2202
2203 int (*dmabuf_export)(struct drm_i915_gem_object *);
2204 void (*release)(struct drm_i915_gem_object *);
2205 };
2206
2207 /*
2208 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2209 * considered to be the frontbuffer for the given plane interface-wise. This
2210 * doesn't mean that the hw necessarily already scans it out, but that any
2211 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2212 *
2213 * We have one bit per pipe and per scanout plane type.
2214 */
2215 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2216 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2217 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2218 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2219 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2220 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2221 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2222 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2223 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2224 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2225 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2226 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2227
2228 struct drm_i915_gem_object {
2229 struct drm_gem_object base;
2230
2231 const struct drm_i915_gem_object_ops *ops;
2232
2233 /** List of VMAs backed by this object */
2234 struct list_head vma_list;
2235 struct rb_root vma_tree;
2236
2237 /** Stolen memory for this object, instead of being backed by shmem. */
2238 struct drm_mm_node *stolen;
2239 struct list_head global_link;
2240 union {
2241 struct rcu_head rcu;
2242 struct llist_node freed;
2243 };
2244
2245 /**
2246 * Whether the object is currently in the GGTT mmap.
2247 */
2248 struct list_head userfault_link;
2249
2250 /** Used in execbuf to temporarily hold a ref */
2251 struct list_head obj_exec_link;
2252
2253 struct list_head batch_pool_link;
2254
2255 unsigned long flags;
2256
2257 /**
2258 * Have we taken a reference for the object for incomplete GPU
2259 * activity?
2260 */
2261 #define I915_BO_ACTIVE_REF 0
2262
2263 /*
2264 * Is the object to be mapped as read-only to the GPU
2265 * Only honoured if hardware has relevant pte bit
2266 */
2267 unsigned long gt_ro:1;
2268 unsigned int cache_level:3;
2269 unsigned int cache_dirty:1;
2270
2271 atomic_t frontbuffer_bits;
2272 unsigned int frontbuffer_ggtt_origin; /* write once */
2273
2274 /** Current tiling stride for the object, if it's tiled. */
2275 unsigned int tiling_and_stride;
2276 #define FENCE_MINIMUM_STRIDE 128 /* See i915_tiling_ok() */
2277 #define TILING_MASK (FENCE_MINIMUM_STRIDE-1)
2278 #define STRIDE_MASK (~TILING_MASK)
2279
2280 /** Count of VMA actually bound by this object */
2281 unsigned int bind_count;
2282 unsigned int active_count;
2283 unsigned int pin_display;
2284
2285 struct {
2286 struct mutex lock; /* protects the pages and their use */
2287 atomic_t pages_pin_count;
2288
2289 struct sg_table *pages;
2290 void *mapping;
2291
2292 struct i915_gem_object_page_iter {
2293 struct scatterlist *sg_pos;
2294 unsigned int sg_idx; /* in pages, but 32bit eek! */
2295
2296 struct radix_tree_root radix;
2297 struct mutex lock; /* protects this cache */
2298 } get_page;
2299
2300 /**
2301 * Advice: are the backing pages purgeable?
2302 */
2303 unsigned int madv:2;
2304
2305 /**
2306 * This is set if the object has been written to since the
2307 * pages were last acquired.
2308 */
2309 bool dirty:1;
2310
2311 /**
2312 * This is set if the object has been pinned due to unknown
2313 * swizzling.
2314 */
2315 bool quirked:1;
2316 } mm;
2317
2318 /** Breadcrumb of last rendering to the buffer.
2319 * There can only be one writer, but we allow for multiple readers.
2320 * If there is a writer that necessarily implies that all other
2321 * read requests are complete - but we may only be lazily clearing
2322 * the read requests. A read request is naturally the most recent
2323 * request on a ring, so we may have two different write and read
2324 * requests on one ring where the write request is older than the
2325 * read request. This allows for the CPU to read from an active
2326 * buffer by only waiting for the write to complete.
2327 */
2328 struct reservation_object *resv;
2329
2330 /** References from framebuffers, locks out tiling changes. */
2331 unsigned long framebuffer_references;
2332
2333 /** Record of address bit 17 of each page at last unbind. */
2334 unsigned long *bit_17;
2335
2336 struct i915_gem_userptr {
2337 uintptr_t ptr;
2338 unsigned read_only :1;
2339
2340 struct i915_mm_struct *mm;
2341 struct i915_mmu_object *mmu_object;
2342 struct work_struct *work;
2343 } userptr;
2344
2345 /** for phys allocated objects */
2346 struct drm_dma_handle *phys_handle;
2347
2348 struct reservation_object __builtin_resv;
2349 };
2350
2351 static inline struct drm_i915_gem_object *
2352 to_intel_bo(struct drm_gem_object *gem)
2353 {
2354 /* Assert that to_intel_bo(NULL) == NULL */
2355 BUILD_BUG_ON(offsetof(struct drm_i915_gem_object, base));
2356
2357 return container_of(gem, struct drm_i915_gem_object, base);
2358 }
2359
2360 /**
2361 * i915_gem_object_lookup_rcu - look up a temporary GEM object from its handle
2362 * @filp: DRM file private date
2363 * @handle: userspace handle
2364 *
2365 * Returns:
2366 *
2367 * A pointer to the object named by the handle if such exists on @filp, NULL
2368 * otherwise. This object is only valid whilst under the RCU read lock, and
2369 * note carefully the object may be in the process of being destroyed.
2370 */
2371 static inline struct drm_i915_gem_object *
2372 i915_gem_object_lookup_rcu(struct drm_file *file, u32 handle)
2373 {
2374 #ifdef CONFIG_LOCKDEP
2375 WARN_ON(debug_locks && !lock_is_held(&rcu_lock_map));
2376 #endif
2377 return idr_find(&file->object_idr, handle);
2378 }
2379
2380 static inline struct drm_i915_gem_object *
2381 i915_gem_object_lookup(struct drm_file *file, u32 handle)
2382 {
2383 struct drm_i915_gem_object *obj;
2384
2385 rcu_read_lock();
2386 obj = i915_gem_object_lookup_rcu(file, handle);
2387 if (obj && !kref_get_unless_zero(&obj->base.refcount))
2388 obj = NULL;
2389 rcu_read_unlock();
2390
2391 return obj;
2392 }
2393
2394 __deprecated
2395 extern struct drm_gem_object *
2396 drm_gem_object_lookup(struct drm_file *file, u32 handle);
2397
2398 __attribute__((nonnull))
2399 static inline struct drm_i915_gem_object *
2400 i915_gem_object_get(struct drm_i915_gem_object *obj)
2401 {
2402 drm_gem_object_reference(&obj->base);
2403 return obj;
2404 }
2405
2406 __deprecated
2407 extern void drm_gem_object_reference(struct drm_gem_object *);
2408
2409 __attribute__((nonnull))
2410 static inline void
2411 i915_gem_object_put(struct drm_i915_gem_object *obj)
2412 {
2413 __drm_gem_object_unreference(&obj->base);
2414 }
2415
2416 __deprecated
2417 extern void drm_gem_object_unreference(struct drm_gem_object *);
2418
2419 __deprecated
2420 extern void drm_gem_object_unreference_unlocked(struct drm_gem_object *);
2421
2422 static inline bool
2423 i915_gem_object_is_dead(const struct drm_i915_gem_object *obj)
2424 {
2425 return atomic_read(&obj->base.refcount.refcount) == 0;
2426 }
2427
2428 static inline bool
2429 i915_gem_object_has_struct_page(const struct drm_i915_gem_object *obj)
2430 {
2431 return obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE;
2432 }
2433
2434 static inline bool
2435 i915_gem_object_is_shrinkable(const struct drm_i915_gem_object *obj)
2436 {
2437 return obj->ops->flags & I915_GEM_OBJECT_IS_SHRINKABLE;
2438 }
2439
2440 static inline bool
2441 i915_gem_object_is_active(const struct drm_i915_gem_object *obj)
2442 {
2443 return obj->active_count;
2444 }
2445
2446 static inline bool
2447 i915_gem_object_has_active_reference(const struct drm_i915_gem_object *obj)
2448 {
2449 return test_bit(I915_BO_ACTIVE_REF, &obj->flags);
2450 }
2451
2452 static inline void
2453 i915_gem_object_set_active_reference(struct drm_i915_gem_object *obj)
2454 {
2455 lockdep_assert_held(&obj->base.dev->struct_mutex);
2456 __set_bit(I915_BO_ACTIVE_REF, &obj->flags);
2457 }
2458
2459 static inline void
2460 i915_gem_object_clear_active_reference(struct drm_i915_gem_object *obj)
2461 {
2462 lockdep_assert_held(&obj->base.dev->struct_mutex);
2463 __clear_bit(I915_BO_ACTIVE_REF, &obj->flags);
2464 }
2465
2466 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj);
2467
2468 static inline unsigned int
2469 i915_gem_object_get_tiling(struct drm_i915_gem_object *obj)
2470 {
2471 return obj->tiling_and_stride & TILING_MASK;
2472 }
2473
2474 static inline bool
2475 i915_gem_object_is_tiled(struct drm_i915_gem_object *obj)
2476 {
2477 return i915_gem_object_get_tiling(obj) != I915_TILING_NONE;
2478 }
2479
2480 static inline unsigned int
2481 i915_gem_object_get_stride(struct drm_i915_gem_object *obj)
2482 {
2483 return obj->tiling_and_stride & STRIDE_MASK;
2484 }
2485
2486 static inline struct intel_engine_cs *
2487 i915_gem_object_last_write_engine(struct drm_i915_gem_object *obj)
2488 {
2489 struct intel_engine_cs *engine = NULL;
2490 struct dma_fence *fence;
2491
2492 rcu_read_lock();
2493 fence = reservation_object_get_excl_rcu(obj->resv);
2494 rcu_read_unlock();
2495
2496 if (fence && dma_fence_is_i915(fence) && !dma_fence_is_signaled(fence))
2497 engine = to_request(fence)->engine;
2498 dma_fence_put(fence);
2499
2500 return engine;
2501 }
2502
2503 static inline struct i915_vma *i915_vma_get(struct i915_vma *vma)
2504 {
2505 i915_gem_object_get(vma->obj);
2506 return vma;
2507 }
2508
2509 static inline void i915_vma_put(struct i915_vma *vma)
2510 {
2511 i915_gem_object_put(vma->obj);
2512 }
2513
2514 /*
2515 * Optimised SGL iterator for GEM objects
2516 */
2517 static __always_inline struct sgt_iter {
2518 struct scatterlist *sgp;
2519 union {
2520 unsigned long pfn;
2521 dma_addr_t dma;
2522 };
2523 unsigned int curr;
2524 unsigned int max;
2525 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2526 struct sgt_iter s = { .sgp = sgl };
2527
2528 if (s.sgp) {
2529 s.max = s.curr = s.sgp->offset;
2530 s.max += s.sgp->length;
2531 if (dma)
2532 s.dma = sg_dma_address(s.sgp);
2533 else
2534 s.pfn = page_to_pfn(sg_page(s.sgp));
2535 }
2536
2537 return s;
2538 }
2539
2540 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2541 {
2542 ++sg;
2543 if (unlikely(sg_is_chain(sg)))
2544 sg = sg_chain_ptr(sg);
2545 return sg;
2546 }
2547
2548 /**
2549 * __sg_next - return the next scatterlist entry in a list
2550 * @sg: The current sg entry
2551 *
2552 * Description:
2553 * If the entry is the last, return NULL; otherwise, step to the next
2554 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2555 * otherwise just return the pointer to the current element.
2556 **/
2557 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2558 {
2559 #ifdef CONFIG_DEBUG_SG
2560 BUG_ON(sg->sg_magic != SG_MAGIC);
2561 #endif
2562 return sg_is_last(sg) ? NULL : ____sg_next(sg);
2563 }
2564
2565 /**
2566 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2567 * @__dmap: DMA address (output)
2568 * @__iter: 'struct sgt_iter' (iterator state, internal)
2569 * @__sgt: sg_table to iterate over (input)
2570 */
2571 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2572 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2573 ((__dmap) = (__iter).dma + (__iter).curr); \
2574 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2575 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2576
2577 /**
2578 * for_each_sgt_page - iterate over the pages of the given sg_table
2579 * @__pp: page pointer (output)
2580 * @__iter: 'struct sgt_iter' (iterator state, internal)
2581 * @__sgt: sg_table to iterate over (input)
2582 */
2583 #define for_each_sgt_page(__pp, __iter, __sgt) \
2584 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2585 ((__pp) = (__iter).pfn == 0 ? NULL : \
2586 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2587 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2588 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2589
2590 /*
2591 * A command that requires special handling by the command parser.
2592 */
2593 struct drm_i915_cmd_descriptor {
2594 /*
2595 * Flags describing how the command parser processes the command.
2596 *
2597 * CMD_DESC_FIXED: The command has a fixed length if this is set,
2598 * a length mask if not set
2599 * CMD_DESC_SKIP: The command is allowed but does not follow the
2600 * standard length encoding for the opcode range in
2601 * which it falls
2602 * CMD_DESC_REJECT: The command is never allowed
2603 * CMD_DESC_REGISTER: The command should be checked against the
2604 * register whitelist for the appropriate ring
2605 * CMD_DESC_MASTER: The command is allowed if the submitting process
2606 * is the DRM master
2607 */
2608 u32 flags;
2609 #define CMD_DESC_FIXED (1<<0)
2610 #define CMD_DESC_SKIP (1<<1)
2611 #define CMD_DESC_REJECT (1<<2)
2612 #define CMD_DESC_REGISTER (1<<3)
2613 #define CMD_DESC_BITMASK (1<<4)
2614 #define CMD_DESC_MASTER (1<<5)
2615
2616 /*
2617 * The command's unique identification bits and the bitmask to get them.
2618 * This isn't strictly the opcode field as defined in the spec and may
2619 * also include type, subtype, and/or subop fields.
2620 */
2621 struct {
2622 u32 value;
2623 u32 mask;
2624 } cmd;
2625
2626 /*
2627 * The command's length. The command is either fixed length (i.e. does
2628 * not include a length field) or has a length field mask. The flag
2629 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
2630 * a length mask. All command entries in a command table must include
2631 * length information.
2632 */
2633 union {
2634 u32 fixed;
2635 u32 mask;
2636 } length;
2637
2638 /*
2639 * Describes where to find a register address in the command to check
2640 * against the ring's register whitelist. Only valid if flags has the
2641 * CMD_DESC_REGISTER bit set.
2642 *
2643 * A non-zero step value implies that the command may access multiple
2644 * registers in sequence (e.g. LRI), in that case step gives the
2645 * distance in dwords between individual offset fields.
2646 */
2647 struct {
2648 u32 offset;
2649 u32 mask;
2650 u32 step;
2651 } reg;
2652
2653 #define MAX_CMD_DESC_BITMASKS 3
2654 /*
2655 * Describes command checks where a particular dword is masked and
2656 * compared against an expected value. If the command does not match
2657 * the expected value, the parser rejects it. Only valid if flags has
2658 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
2659 * are valid.
2660 *
2661 * If the check specifies a non-zero condition_mask then the parser
2662 * only performs the check when the bits specified by condition_mask
2663 * are non-zero.
2664 */
2665 struct {
2666 u32 offset;
2667 u32 mask;
2668 u32 expected;
2669 u32 condition_offset;
2670 u32 condition_mask;
2671 } bits[MAX_CMD_DESC_BITMASKS];
2672 };
2673
2674 /*
2675 * A table of commands requiring special handling by the command parser.
2676 *
2677 * Each engine has an array of tables. Each table consists of an array of
2678 * command descriptors, which must be sorted with command opcodes in
2679 * ascending order.
2680 */
2681 struct drm_i915_cmd_table {
2682 const struct drm_i915_cmd_descriptor *table;
2683 int count;
2684 };
2685
2686 /* Note that the (struct drm_i915_private *) cast is just to shut up gcc. */
2687 #define __I915__(p) ({ \
2688 struct drm_i915_private *__p; \
2689 if (__builtin_types_compatible_p(typeof(*p), struct drm_i915_private)) \
2690 __p = (struct drm_i915_private *)p; \
2691 else if (__builtin_types_compatible_p(typeof(*p), struct drm_device)) \
2692 __p = to_i915((struct drm_device *)p); \
2693 else \
2694 BUILD_BUG(); \
2695 __p; \
2696 })
2697 #define INTEL_INFO(p) (&__I915__(p)->info)
2698
2699 #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen)
2700 #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id)
2701
2702 #define REVID_FOREVER 0xff
2703 #define INTEL_REVID(p) (__I915__(p)->drm.pdev->revision)
2704
2705 #define GEN_FOREVER (0)
2706 /*
2707 * Returns true if Gen is in inclusive range [Start, End].
2708 *
2709 * Use GEN_FOREVER for unbound start and or end.
2710 */
2711 #define IS_GEN(dev_priv, s, e) ({ \
2712 unsigned int __s = (s), __e = (e); \
2713 BUILD_BUG_ON(!__builtin_constant_p(s)); \
2714 BUILD_BUG_ON(!__builtin_constant_p(e)); \
2715 if ((__s) != GEN_FOREVER) \
2716 __s = (s) - 1; \
2717 if ((__e) == GEN_FOREVER) \
2718 __e = BITS_PER_LONG - 1; \
2719 else \
2720 __e = (e) - 1; \
2721 !!((dev_priv)->info.gen_mask & GENMASK((__e), (__s))); \
2722 })
2723
2724 /*
2725 * Return true if revision is in range [since,until] inclusive.
2726 *
2727 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2728 */
2729 #define IS_REVID(p, since, until) \
2730 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2731
2732 #define IS_I830(dev_priv) (INTEL_DEVID(dev_priv) == 0x3577)
2733 #define IS_845G(dev_priv) (INTEL_DEVID(dev_priv) == 0x2562)
2734 #define IS_I85X(dev_priv) ((dev_priv)->info.is_i85x)
2735 #define IS_I865G(dev_priv) (INTEL_DEVID(dev_priv) == 0x2572)
2736 #define IS_I915G(dev_priv) ((dev_priv)->info.is_i915g)
2737 #define IS_I915GM(dev_priv) (INTEL_DEVID(dev_priv) == 0x2592)
2738 #define IS_I945G(dev_priv) (INTEL_DEVID(dev_priv) == 0x2772)
2739 #define IS_I945GM(dev_priv) ((dev_priv)->info.is_i945gm)
2740 #define IS_BROADWATER(dev_priv) ((dev_priv)->info.is_broadwater)
2741 #define IS_CRESTLINE(dev_priv) ((dev_priv)->info.is_crestline)
2742 #define IS_GM45(dev_priv) (INTEL_DEVID(dev_priv) == 0x2A42)
2743 #define IS_G4X(dev_priv) ((dev_priv)->info.is_g4x)
2744 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001)
2745 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011)
2746 #define IS_PINEVIEW(dev_priv) ((dev_priv)->info.is_pineview)
2747 #define IS_G33(dev_priv) ((dev_priv)->info.is_g33)
2748 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046)
2749 #define IS_IVYBRIDGE(dev_priv) ((dev_priv)->info.is_ivybridge)
2750 #define IS_IVB_GT1(dev_priv) (INTEL_DEVID(dev_priv) == 0x0156 || \
2751 INTEL_DEVID(dev_priv) == 0x0152 || \
2752 INTEL_DEVID(dev_priv) == 0x015a)
2753 #define IS_VALLEYVIEW(dev_priv) ((dev_priv)->info.is_valleyview)
2754 #define IS_CHERRYVIEW(dev_priv) ((dev_priv)->info.is_cherryview)
2755 #define IS_HASWELL(dev_priv) ((dev_priv)->info.is_haswell)
2756 #define IS_BROADWELL(dev_priv) ((dev_priv)->info.is_broadwell)
2757 #define IS_SKYLAKE(dev_priv) ((dev_priv)->info.is_skylake)
2758 #define IS_BROXTON(dev_priv) ((dev_priv)->info.is_broxton)
2759 #define IS_KABYLAKE(dev_priv) ((dev_priv)->info.is_kabylake)
2760 #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile)
2761 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2762 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2763 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \
2764 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \
2765 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \
2766 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2767 /* ULX machines are also considered ULT. */
2768 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \
2769 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2770 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \
2771 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2772 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \
2773 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2774 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \
2775 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2776 /* ULX machines are also considered ULT. */
2777 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \
2778 INTEL_DEVID(dev_priv) == 0x0A1E)
2779 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \
2780 INTEL_DEVID(dev_priv) == 0x1913 || \
2781 INTEL_DEVID(dev_priv) == 0x1916 || \
2782 INTEL_DEVID(dev_priv) == 0x1921 || \
2783 INTEL_DEVID(dev_priv) == 0x1926)
2784 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \
2785 INTEL_DEVID(dev_priv) == 0x1915 || \
2786 INTEL_DEVID(dev_priv) == 0x191E)
2787 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \
2788 INTEL_DEVID(dev_priv) == 0x5913 || \
2789 INTEL_DEVID(dev_priv) == 0x5916 || \
2790 INTEL_DEVID(dev_priv) == 0x5921 || \
2791 INTEL_DEVID(dev_priv) == 0x5926)
2792 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \
2793 INTEL_DEVID(dev_priv) == 0x5915 || \
2794 INTEL_DEVID(dev_priv) == 0x591E)
2795 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \
2796 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2797 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \
2798 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0030)
2799
2800 #define IS_PRELIMINARY_HW(intel_info) ((intel_info)->is_preliminary)
2801
2802 #define SKL_REVID_A0 0x0
2803 #define SKL_REVID_B0 0x1
2804 #define SKL_REVID_C0 0x2
2805 #define SKL_REVID_D0 0x3
2806 #define SKL_REVID_E0 0x4
2807 #define SKL_REVID_F0 0x5
2808 #define SKL_REVID_G0 0x6
2809 #define SKL_REVID_H0 0x7
2810
2811 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2812
2813 #define BXT_REVID_A0 0x0
2814 #define BXT_REVID_A1 0x1
2815 #define BXT_REVID_B0 0x3
2816 #define BXT_REVID_C0 0x9
2817
2818 #define IS_BXT_REVID(dev_priv, since, until) \
2819 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2820
2821 #define KBL_REVID_A0 0x0
2822 #define KBL_REVID_B0 0x1
2823 #define KBL_REVID_C0 0x2
2824 #define KBL_REVID_D0 0x3
2825 #define KBL_REVID_E0 0x4
2826
2827 #define IS_KBL_REVID(dev_priv, since, until) \
2828 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2829
2830 /*
2831 * The genX designation typically refers to the render engine, so render
2832 * capability related checks should use IS_GEN, while display and other checks
2833 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2834 * chips, etc.).
2835 */
2836 #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1)))
2837 #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2)))
2838 #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3)))
2839 #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4)))
2840 #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5)))
2841 #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6)))
2842 #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7)))
2843 #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8)))
2844
2845 #define ENGINE_MASK(id) BIT(id)
2846 #define RENDER_RING ENGINE_MASK(RCS)
2847 #define BSD_RING ENGINE_MASK(VCS)
2848 #define BLT_RING ENGINE_MASK(BCS)
2849 #define VEBOX_RING ENGINE_MASK(VECS)
2850 #define BSD2_RING ENGINE_MASK(VCS2)
2851 #define ALL_ENGINES (~0)
2852
2853 #define HAS_ENGINE(dev_priv, id) \
2854 (!!(INTEL_INFO(dev_priv)->ring_mask & ENGINE_MASK(id)))
2855
2856 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
2857 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
2858 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
2859 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
2860
2861 #define HAS_LLC(dev) (INTEL_INFO(dev)->has_llc)
2862 #define HAS_SNOOP(dev) (INTEL_INFO(dev)->has_snoop)
2863 #define HAS_EDRAM(dev) (!!(__I915__(dev)->edram_cap & EDRAM_ENABLED))
2864 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \
2865 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
2866 #define HWS_NEEDS_PHYSICAL(dev) (INTEL_INFO(dev)->hws_needs_physical)
2867
2868 #define HAS_HW_CONTEXTS(dev) (INTEL_INFO(dev)->has_hw_contexts)
2869 #define HAS_LOGICAL_RING_CONTEXTS(dev) (INTEL_INFO(dev)->has_logical_ring_contexts)
2870 #define USES_PPGTT(dev) (i915.enable_ppgtt)
2871 #define USES_FULL_PPGTT(dev) (i915.enable_ppgtt >= 2)
2872 #define USES_FULL_48BIT_PPGTT(dev) (i915.enable_ppgtt == 3)
2873
2874 #define HAS_OVERLAY(dev) (INTEL_INFO(dev)->has_overlay)
2875 #define OVERLAY_NEEDS_PHYSICAL(dev) (INTEL_INFO(dev)->overlay_needs_physical)
2876
2877 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2878 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_845G(dev_priv))
2879
2880 /* WaRsDisableCoarsePowerGating:skl,bxt */
2881 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2882 (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) || \
2883 IS_SKL_GT3(dev_priv) || \
2884 IS_SKL_GT4(dev_priv))
2885
2886 /*
2887 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2888 * even when in MSI mode. This results in spurious interrupt warnings if the
2889 * legacy irq no. is shared with another device. The kernel then disables that
2890 * interrupt source and so prevents the other device from working properly.
2891 */
2892 #define HAS_AUX_IRQ(dev) (INTEL_INFO(dev)->gen >= 5)
2893 #define HAS_GMBUS_IRQ(dev) (INTEL_INFO(dev)->has_gmbus_irq)
2894
2895 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2896 * rows, which changed the alignment requirements and fence programming.
2897 */
2898 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
2899 !(IS_I915G(dev_priv) || \
2900 IS_I915GM(dev_priv)))
2901 #define SUPPORTS_TV(dev) (INTEL_INFO(dev)->supports_tv)
2902 #define I915_HAS_HOTPLUG(dev) (INTEL_INFO(dev)->has_hotplug)
2903
2904 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2)
2905 #define HAS_PIPE_CXSR(dev) (INTEL_INFO(dev)->has_pipe_cxsr)
2906 #define HAS_FBC(dev) (INTEL_INFO(dev)->has_fbc)
2907
2908 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
2909
2910 #define HAS_DP_MST(dev) (INTEL_INFO(dev)->has_dp_mst)
2911
2912 #define HAS_DDI(dev_priv) ((dev_priv)->info.has_ddi)
2913 #define HAS_FPGA_DBG_UNCLAIMED(dev) (INTEL_INFO(dev)->has_fpga_dbg)
2914 #define HAS_PSR(dev) (INTEL_INFO(dev)->has_psr)
2915 #define HAS_RC6(dev) (INTEL_INFO(dev)->has_rc6)
2916 #define HAS_RC6p(dev) (INTEL_INFO(dev)->has_rc6p)
2917
2918 #define HAS_CSR(dev) (INTEL_INFO(dev)->has_csr)
2919
2920 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
2921 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
2922
2923 /*
2924 * For now, anything with a GuC requires uCode loading, and then supports
2925 * command submission once loaded. But these are logically independent
2926 * properties, so we have separate macros to test them.
2927 */
2928 #define HAS_GUC(dev) (INTEL_INFO(dev)->has_guc)
2929 #define HAS_GUC_UCODE(dev) (HAS_GUC(dev))
2930 #define HAS_GUC_SCHED(dev) (HAS_GUC(dev))
2931
2932 #define HAS_RESOURCE_STREAMER(dev) (INTEL_INFO(dev)->has_resource_streamer)
2933
2934 #define HAS_POOLED_EU(dev) (INTEL_INFO(dev)->has_pooled_eu)
2935
2936 #define INTEL_PCH_DEVICE_ID_MASK 0xff00
2937 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
2938 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
2939 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
2940 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
2941 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
2942 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
2943 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
2944 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA200
2945 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
2946 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
2947 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
2948
2949 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
2950 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
2951 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
2952 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
2953 #define HAS_PCH_LPT_LP(dev_priv) \
2954 ((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
2955 #define HAS_PCH_LPT_H(dev_priv) \
2956 ((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE)
2957 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
2958 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
2959 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
2960 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
2961
2962 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
2963
2964 #define HAS_LSPCON(dev_priv) (IS_GEN9(dev_priv))
2965
2966 /* DPF == dynamic parity feature */
2967 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
2968 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
2969 2 : HAS_L3_DPF(dev_priv))
2970
2971 #define GT_FREQUENCY_MULTIPLIER 50
2972 #define GEN9_FREQ_SCALER 3
2973
2974 #include "i915_trace.h"
2975
2976 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2977 {
2978 #ifdef CONFIG_INTEL_IOMMU
2979 if (INTEL_GEN(dev_priv) >= 6 && intel_iommu_gfx_mapped)
2980 return true;
2981 #endif
2982 return false;
2983 }
2984
2985 extern int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
2986 extern int i915_resume_switcheroo(struct drm_device *dev);
2987
2988 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
2989 int enable_ppgtt);
2990
2991 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
2992
2993 /* i915_drv.c */
2994 void __printf(3, 4)
2995 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2996 const char *fmt, ...);
2997
2998 #define i915_report_error(dev_priv, fmt, ...) \
2999 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
3000
3001 #ifdef CONFIG_COMPAT
3002 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
3003 unsigned long arg);
3004 #else
3005 #define i915_compat_ioctl NULL
3006 #endif
3007 extern const struct dev_pm_ops i915_pm_ops;
3008
3009 extern int i915_driver_load(struct pci_dev *pdev,
3010 const struct pci_device_id *ent);
3011 extern void i915_driver_unload(struct drm_device *dev);
3012 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
3013 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
3014 extern void i915_reset(struct drm_i915_private *dev_priv);
3015 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
3016 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
3017 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
3018 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
3019 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
3020 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
3021 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
3022 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
3023
3024 /* intel_hotplug.c */
3025 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
3026 u32 pin_mask, u32 long_mask);
3027 void intel_hpd_init(struct drm_i915_private *dev_priv);
3028 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
3029 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
3030 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
3031 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3032 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3033
3034 /* i915_irq.c */
3035 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
3036 {
3037 unsigned long delay;
3038
3039 if (unlikely(!i915.enable_hangcheck))
3040 return;
3041
3042 /* Don't continually defer the hangcheck so that it is always run at
3043 * least once after work has been scheduled on any ring. Otherwise,
3044 * we will ignore a hung ring if a second ring is kept busy.
3045 */
3046
3047 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
3048 queue_delayed_work(system_long_wq,
3049 &dev_priv->gpu_error.hangcheck_work, delay);
3050 }
3051
3052 __printf(3, 4)
3053 void i915_handle_error(struct drm_i915_private *dev_priv,
3054 u32 engine_mask,
3055 const char *fmt, ...);
3056
3057 extern void intel_irq_init(struct drm_i915_private *dev_priv);
3058 int intel_irq_install(struct drm_i915_private *dev_priv);
3059 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
3060
3061 extern void intel_uncore_sanitize(struct drm_i915_private *dev_priv);
3062 extern void intel_uncore_early_sanitize(struct drm_i915_private *dev_priv,
3063 bool restore_forcewake);
3064 extern void intel_uncore_init(struct drm_i915_private *dev_priv);
3065 extern bool intel_uncore_unclaimed_mmio(struct drm_i915_private *dev_priv);
3066 extern bool intel_uncore_arm_unclaimed_mmio_detection(struct drm_i915_private *dev_priv);
3067 extern void intel_uncore_fini(struct drm_i915_private *dev_priv);
3068 extern void intel_uncore_forcewake_reset(struct drm_i915_private *dev_priv,
3069 bool restore);
3070 const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id);
3071 void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv,
3072 enum forcewake_domains domains);
3073 void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv,
3074 enum forcewake_domains domains);
3075 /* Like above but the caller must manage the uncore.lock itself.
3076 * Must be used with I915_READ_FW and friends.
3077 */
3078 void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv,
3079 enum forcewake_domains domains);
3080 void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv,
3081 enum forcewake_domains domains);
3082 u64 intel_uncore_edram_size(struct drm_i915_private *dev_priv);
3083
3084 void assert_forcewakes_inactive(struct drm_i915_private *dev_priv);
3085
3086 int intel_wait_for_register(struct drm_i915_private *dev_priv,
3087 i915_reg_t reg,
3088 const u32 mask,
3089 const u32 value,
3090 const unsigned long timeout_ms);
3091 int intel_wait_for_register_fw(struct drm_i915_private *dev_priv,
3092 i915_reg_t reg,
3093 const u32 mask,
3094 const u32 value,
3095 const unsigned long timeout_ms);
3096
3097 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3098 {
3099 return dev_priv->gvt;
3100 }
3101
3102 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3103 {
3104 return dev_priv->vgpu.active;
3105 }
3106
3107 void
3108 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3109 u32 status_mask);
3110
3111 void
3112 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3113 u32 status_mask);
3114
3115 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3116 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3117 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3118 uint32_t mask,
3119 uint32_t bits);
3120 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3121 uint32_t interrupt_mask,
3122 uint32_t enabled_irq_mask);
3123 static inline void
3124 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3125 {
3126 ilk_update_display_irq(dev_priv, bits, bits);
3127 }
3128 static inline void
3129 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3130 {
3131 ilk_update_display_irq(dev_priv, bits, 0);
3132 }
3133 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3134 enum pipe pipe,
3135 uint32_t interrupt_mask,
3136 uint32_t enabled_irq_mask);
3137 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3138 enum pipe pipe, uint32_t bits)
3139 {
3140 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3141 }
3142 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3143 enum pipe pipe, uint32_t bits)
3144 {
3145 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3146 }
3147 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3148 uint32_t interrupt_mask,
3149 uint32_t enabled_irq_mask);
3150 static inline void
3151 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3152 {
3153 ibx_display_interrupt_update(dev_priv, bits, bits);
3154 }
3155 static inline void
3156 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3157 {
3158 ibx_display_interrupt_update(dev_priv, bits, 0);
3159 }
3160
3161 /* i915_gem.c */
3162 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3163 struct drm_file *file_priv);
3164 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3165 struct drm_file *file_priv);
3166 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3167 struct drm_file *file_priv);
3168 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3169 struct drm_file *file_priv);
3170 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3171 struct drm_file *file_priv);
3172 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3173 struct drm_file *file_priv);
3174 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3175 struct drm_file *file_priv);
3176 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3177 struct drm_file *file_priv);
3178 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3179 struct drm_file *file_priv);
3180 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3181 struct drm_file *file_priv);
3182 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3183 struct drm_file *file);
3184 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3185 struct drm_file *file);
3186 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3187 struct drm_file *file_priv);
3188 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3189 struct drm_file *file_priv);
3190 int i915_gem_set_tiling(struct drm_device *dev, void *data,
3191 struct drm_file *file_priv);
3192 int i915_gem_get_tiling(struct drm_device *dev, void *data,
3193 struct drm_file *file_priv);
3194 void i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3195 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3196 struct drm_file *file);
3197 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3198 struct drm_file *file_priv);
3199 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3200 struct drm_file *file_priv);
3201 int i915_gem_load_init(struct drm_device *dev);
3202 void i915_gem_load_cleanup(struct drm_device *dev);
3203 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3204 int i915_gem_freeze(struct drm_i915_private *dev_priv);
3205 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3206
3207 void *i915_gem_object_alloc(struct drm_device *dev);
3208 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3209 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3210 const struct drm_i915_gem_object_ops *ops);
3211 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
3212 u64 size);
3213 struct drm_i915_gem_object *i915_gem_object_create_from_data(
3214 struct drm_device *dev, const void *data, size_t size);
3215 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3216 void i915_gem_free_object(struct drm_gem_object *obj);
3217
3218 struct i915_vma * __must_check
3219 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3220 const struct i915_ggtt_view *view,
3221 u64 size,
3222 u64 alignment,
3223 u64 flags);
3224
3225 int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3226 u32 flags);
3227 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma);
3228 int __must_check i915_vma_unbind(struct i915_vma *vma);
3229 void i915_vma_close(struct i915_vma *vma);
3230 void i915_vma_destroy(struct i915_vma *vma);
3231
3232 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3233 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3234
3235 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3236
3237 static inline int __sg_page_count(const struct scatterlist *sg)
3238 {
3239 return sg->length >> PAGE_SHIFT;
3240 }
3241
3242 struct scatterlist *
3243 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3244 unsigned int n, unsigned int *offset);
3245
3246 struct page *
3247 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3248 unsigned int n);
3249
3250 struct page *
3251 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3252 unsigned int n);
3253
3254 dma_addr_t
3255 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3256 unsigned long n);
3257
3258 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3259 struct sg_table *pages);
3260 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3261
3262 static inline int __must_check
3263 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3264 {
3265 might_lock(&obj->mm.lock);
3266
3267 if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3268 return 0;
3269
3270 return __i915_gem_object_get_pages(obj);
3271 }
3272
3273 static inline void
3274 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3275 {
3276 GEM_BUG_ON(!obj->mm.pages);
3277
3278 atomic_inc(&obj->mm.pages_pin_count);
3279 }
3280
3281 static inline bool
3282 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3283 {
3284 return atomic_read(&obj->mm.pages_pin_count);
3285 }
3286
3287 static inline void
3288 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3289 {
3290 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3291 GEM_BUG_ON(!obj->mm.pages);
3292
3293 atomic_dec(&obj->mm.pages_pin_count);
3294 GEM_BUG_ON(atomic_read(&obj->mm.pages_pin_count) < obj->bind_count);
3295 }
3296
3297 static inline void
3298 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3299 {
3300 __i915_gem_object_unpin_pages(obj);
3301 }
3302
3303 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3304 I915_MM_NORMAL = 0,
3305 I915_MM_SHRINKER
3306 };
3307
3308 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3309 enum i915_mm_subclass subclass);
3310 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3311
3312 enum i915_map_type {
3313 I915_MAP_WB = 0,
3314 I915_MAP_WC,
3315 };
3316
3317 /**
3318 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3319 * @obj - the object to map into kernel address space
3320 * @type - the type of mapping, used to select pgprot_t
3321 *
3322 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3323 * pages and then returns a contiguous mapping of the backing storage into
3324 * the kernel address space. Based on the @type of mapping, the PTE will be
3325 * set to either WriteBack or WriteCombine (via pgprot_t).
3326 *
3327 * The caller is responsible for calling i915_gem_object_unpin_map() when the
3328 * mapping is no longer required.
3329 *
3330 * Returns the pointer through which to access the mapped object, or an
3331 * ERR_PTR() on error.
3332 */
3333 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3334 enum i915_map_type type);
3335
3336 /**
3337 * i915_gem_object_unpin_map - releases an earlier mapping
3338 * @obj - the object to unmap
3339 *
3340 * After pinning the object and mapping its pages, once you are finished
3341 * with your access, call i915_gem_object_unpin_map() to release the pin
3342 * upon the mapping. Once the pin count reaches zero, that mapping may be
3343 * removed.
3344 */
3345 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3346 {
3347 i915_gem_object_unpin_pages(obj);
3348 }
3349
3350 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3351 unsigned int *needs_clflush);
3352 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3353 unsigned int *needs_clflush);
3354 #define CLFLUSH_BEFORE 0x1
3355 #define CLFLUSH_AFTER 0x2
3356 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER)
3357
3358 static inline void
3359 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3360 {
3361 i915_gem_object_unpin_pages(obj);
3362 }
3363
3364 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3365 void i915_vma_move_to_active(struct i915_vma *vma,
3366 struct drm_i915_gem_request *req,
3367 unsigned int flags);
3368 int i915_gem_dumb_create(struct drm_file *file_priv,
3369 struct drm_device *dev,
3370 struct drm_mode_create_dumb *args);
3371 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3372 uint32_t handle, uint64_t *offset);
3373 int i915_gem_mmap_gtt_version(void);
3374
3375 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3376 struct drm_i915_gem_object *new,
3377 unsigned frontbuffer_bits);
3378
3379 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3380
3381 struct drm_i915_gem_request *
3382 i915_gem_find_active_request(struct intel_engine_cs *engine);
3383
3384 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3385
3386 static inline bool i915_reset_in_progress(struct i915_gpu_error *error)
3387 {
3388 return unlikely(test_bit(I915_RESET_IN_PROGRESS, &error->flags));
3389 }
3390
3391 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3392 {
3393 return unlikely(test_bit(I915_WEDGED, &error->flags));
3394 }
3395
3396 static inline bool i915_reset_in_progress_or_wedged(struct i915_gpu_error *error)
3397 {
3398 return i915_reset_in_progress(error) | i915_terminally_wedged(error);
3399 }
3400
3401 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3402 {
3403 return READ_ONCE(error->reset_count);
3404 }
3405
3406 void i915_gem_reset(struct drm_i915_private *dev_priv);
3407 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3408 bool i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force);
3409 int __must_check i915_gem_init(struct drm_device *dev);
3410 int __must_check i915_gem_init_hw(struct drm_device *dev);
3411 void i915_gem_init_swizzling(struct drm_device *dev);
3412 void i915_gem_cleanup_engines(struct drm_device *dev);
3413 int __must_check i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3414 unsigned int flags);
3415 int __must_check i915_gem_suspend(struct drm_device *dev);
3416 void i915_gem_resume(struct drm_device *dev);
3417 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf);
3418 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3419 unsigned int flags,
3420 long timeout,
3421 struct intel_rps_client *rps);
3422 int __must_check
3423 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj,
3424 bool write);
3425 int __must_check
3426 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3427 struct i915_vma * __must_check
3428 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3429 u32 alignment,
3430 const struct i915_ggtt_view *view);
3431 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3432 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3433 int align);
3434 int i915_gem_open(struct drm_device *dev, struct drm_file *file);
3435 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3436
3437 u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv, u64 size,
3438 int tiling_mode);
3439 u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
3440 int tiling_mode, bool fenced);
3441
3442 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3443 enum i915_cache_level cache_level);
3444
3445 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3446 struct dma_buf *dma_buf);
3447
3448 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3449 struct drm_gem_object *gem_obj, int flags);
3450
3451 struct i915_vma *
3452 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
3453 struct i915_address_space *vm,
3454 const struct i915_ggtt_view *view);
3455
3456 struct i915_vma *
3457 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3458 struct i915_address_space *vm,
3459 const struct i915_ggtt_view *view);
3460
3461 static inline struct i915_hw_ppgtt *
3462 i915_vm_to_ppgtt(struct i915_address_space *vm)
3463 {
3464 return container_of(vm, struct i915_hw_ppgtt, base);
3465 }
3466
3467 static inline struct i915_vma *
3468 i915_gem_object_to_ggtt(struct drm_i915_gem_object *obj,
3469 const struct i915_ggtt_view *view)
3470 {
3471 return i915_gem_obj_to_vma(obj, &to_i915(obj->base.dev)->ggtt.base, view);
3472 }
3473
3474 static inline unsigned long
3475 i915_gem_object_ggtt_offset(struct drm_i915_gem_object *o,
3476 const struct i915_ggtt_view *view)
3477 {
3478 return i915_ggtt_offset(i915_gem_object_to_ggtt(o, view));
3479 }
3480
3481 /* i915_gem_fence.c */
3482 int __must_check i915_vma_get_fence(struct i915_vma *vma);
3483 int __must_check i915_vma_put_fence(struct i915_vma *vma);
3484
3485 /**
3486 * i915_vma_pin_fence - pin fencing state
3487 * @vma: vma to pin fencing for
3488 *
3489 * This pins the fencing state (whether tiled or untiled) to make sure the
3490 * vma (and its object) is ready to be used as a scanout target. Fencing
3491 * status must be synchronize first by calling i915_vma_get_fence():
3492 *
3493 * The resulting fence pin reference must be released again with
3494 * i915_vma_unpin_fence().
3495 *
3496 * Returns:
3497 *
3498 * True if the vma has a fence, false otherwise.
3499 */
3500 static inline bool
3501 i915_vma_pin_fence(struct i915_vma *vma)
3502 {
3503 lockdep_assert_held(&vma->vm->dev->struct_mutex);
3504 if (vma->fence) {
3505 vma->fence->pin_count++;
3506 return true;
3507 } else
3508 return false;
3509 }
3510
3511 /**
3512 * i915_vma_unpin_fence - unpin fencing state
3513 * @vma: vma to unpin fencing for
3514 *
3515 * This releases the fence pin reference acquired through
3516 * i915_vma_pin_fence. It will handle both objects with and without an
3517 * attached fence correctly, callers do not need to distinguish this.
3518 */
3519 static inline void
3520 i915_vma_unpin_fence(struct i915_vma *vma)
3521 {
3522 lockdep_assert_held(&vma->vm->dev->struct_mutex);
3523 if (vma->fence) {
3524 GEM_BUG_ON(vma->fence->pin_count <= 0);
3525 vma->fence->pin_count--;
3526 }
3527 }
3528
3529 void i915_gem_restore_fences(struct drm_device *dev);
3530
3531 void i915_gem_detect_bit_6_swizzle(struct drm_device *dev);
3532 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3533 struct sg_table *pages);
3534 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3535 struct sg_table *pages);
3536
3537 /* i915_gem_context.c */
3538 int __must_check i915_gem_context_init(struct drm_device *dev);
3539 void i915_gem_context_lost(struct drm_i915_private *dev_priv);
3540 void i915_gem_context_fini(struct drm_device *dev);
3541 int i915_gem_context_open(struct drm_device *dev, struct drm_file *file);
3542 void i915_gem_context_close(struct drm_device *dev, struct drm_file *file);
3543 int i915_switch_context(struct drm_i915_gem_request *req);
3544 int i915_gem_switch_to_kernel_context(struct drm_i915_private *dev_priv);
3545 struct i915_vma *
3546 i915_gem_context_pin_legacy(struct i915_gem_context *ctx,
3547 unsigned int flags);
3548 void i915_gem_context_free(struct kref *ctx_ref);
3549 struct drm_i915_gem_object *
3550 i915_gem_alloc_context_obj(struct drm_device *dev, size_t size);
3551 struct i915_gem_context *
3552 i915_gem_context_create_gvt(struct drm_device *dev);
3553
3554 static inline struct i915_gem_context *
3555 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3556 {
3557 struct i915_gem_context *ctx;
3558
3559 lockdep_assert_held(&file_priv->dev_priv->drm.struct_mutex);
3560
3561 ctx = idr_find(&file_priv->context_idr, id);
3562 if (!ctx)
3563 return ERR_PTR(-ENOENT);
3564
3565 return ctx;
3566 }
3567
3568 static inline struct i915_gem_context *
3569 i915_gem_context_get(struct i915_gem_context *ctx)
3570 {
3571 kref_get(&ctx->ref);
3572 return ctx;
3573 }
3574
3575 static inline void i915_gem_context_put(struct i915_gem_context *ctx)
3576 {
3577 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
3578 kref_put(&ctx->ref, i915_gem_context_free);
3579 }
3580
3581 static inline struct intel_timeline *
3582 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx,
3583 struct intel_engine_cs *engine)
3584 {
3585 struct i915_address_space *vm;
3586
3587 vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base;
3588 return &vm->timeline.engine[engine->id];
3589 }
3590
3591 static inline bool i915_gem_context_is_default(const struct i915_gem_context *c)
3592 {
3593 return c->user_handle == DEFAULT_CONTEXT_HANDLE;
3594 }
3595
3596 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
3597 struct drm_file *file);
3598 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
3599 struct drm_file *file);
3600 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
3601 struct drm_file *file_priv);
3602 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
3603 struct drm_file *file_priv);
3604 int i915_gem_context_reset_stats_ioctl(struct drm_device *dev, void *data,
3605 struct drm_file *file);
3606
3607 /* i915_gem_evict.c */
3608 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3609 u64 min_size, u64 alignment,
3610 unsigned cache_level,
3611 u64 start, u64 end,
3612 unsigned flags);
3613 int __must_check i915_gem_evict_for_vma(struct i915_vma *target);
3614 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle);
3615
3616 /* belongs in i915_gem_gtt.h */
3617 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3618 {
3619 wmb();
3620 if (INTEL_GEN(dev_priv) < 6)
3621 intel_gtt_chipset_flush();
3622 }
3623
3624 /* i915_gem_stolen.c */
3625 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3626 struct drm_mm_node *node, u64 size,
3627 unsigned alignment);
3628 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3629 struct drm_mm_node *node, u64 size,
3630 unsigned alignment, u64 start,
3631 u64 end);
3632 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3633 struct drm_mm_node *node);
3634 int i915_gem_init_stolen(struct drm_device *dev);
3635 void i915_gem_cleanup_stolen(struct drm_device *dev);
3636 struct drm_i915_gem_object *
3637 i915_gem_object_create_stolen(struct drm_device *dev, u32 size);
3638 struct drm_i915_gem_object *
3639 i915_gem_object_create_stolen_for_preallocated(struct drm_device *dev,
3640 u32 stolen_offset,
3641 u32 gtt_offset,
3642 u32 size);
3643
3644 /* i915_gem_internal.c */
3645 struct drm_i915_gem_object *
3646 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3647 unsigned int size);
3648
3649 /* i915_gem_shrinker.c */
3650 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3651 unsigned long target,
3652 unsigned flags);
3653 #define I915_SHRINK_PURGEABLE 0x1
3654 #define I915_SHRINK_UNBOUND 0x2
3655 #define I915_SHRINK_BOUND 0x4
3656 #define I915_SHRINK_ACTIVE 0x8
3657 #define I915_SHRINK_VMAPS 0x10
3658 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3659 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3660 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3661
3662
3663 /* i915_gem_tiling.c */
3664 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3665 {
3666 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3667
3668 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3669 i915_gem_object_is_tiled(obj);
3670 }
3671
3672 /* i915_debugfs.c */
3673 #ifdef CONFIG_DEBUG_FS
3674 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3675 void i915_debugfs_unregister(struct drm_i915_private *dev_priv);
3676 int i915_debugfs_connector_add(struct drm_connector *connector);
3677 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3678 #else
3679 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3680 static inline void i915_debugfs_unregister(struct drm_i915_private *dev_priv) {}
3681 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3682 { return 0; }
3683 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3684 #endif
3685
3686 /* i915_gpu_error.c */
3687 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3688
3689 __printf(2, 3)
3690 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3691 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3692 const struct i915_error_state_file_priv *error);
3693 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3694 struct drm_i915_private *i915,
3695 size_t count, loff_t pos);
3696 static inline void i915_error_state_buf_release(
3697 struct drm_i915_error_state_buf *eb)
3698 {
3699 kfree(eb->buf);
3700 }
3701 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3702 u32 engine_mask,
3703 const char *error_msg);
3704 void i915_error_state_get(struct drm_device *dev,
3705 struct i915_error_state_file_priv *error_priv);
3706 void i915_error_state_put(struct i915_error_state_file_priv *error_priv);
3707 void i915_destroy_error_state(struct drm_device *dev);
3708
3709 #else
3710
3711 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3712 u32 engine_mask,
3713 const char *error_msg)
3714 {
3715 }
3716
3717 static inline void i915_destroy_error_state(struct drm_device *dev)
3718 {
3719 }
3720
3721 #endif
3722
3723 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3724
3725 /* i915_cmd_parser.c */
3726 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3727 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3728 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3729 bool intel_engine_needs_cmd_parser(struct intel_engine_cs *engine);
3730 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3731 struct drm_i915_gem_object *batch_obj,
3732 struct drm_i915_gem_object *shadow_batch_obj,
3733 u32 batch_start_offset,
3734 u32 batch_len,
3735 bool is_master);
3736
3737 /* i915_suspend.c */
3738 extern int i915_save_state(struct drm_device *dev);
3739 extern int i915_restore_state(struct drm_device *dev);
3740
3741 /* i915_sysfs.c */
3742 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3743 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3744
3745 /* intel_i2c.c */
3746 extern int intel_setup_gmbus(struct drm_device *dev);
3747 extern void intel_teardown_gmbus(struct drm_device *dev);
3748 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3749 unsigned int pin);
3750
3751 extern struct i2c_adapter *
3752 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3753 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3754 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3755 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3756 {
3757 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3758 }
3759 extern void intel_i2c_reset(struct drm_device *dev);
3760
3761 /* intel_bios.c */
3762 int intel_bios_init(struct drm_i915_private *dev_priv);
3763 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3764 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3765 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3766 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3767 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3768 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3769 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3770 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3771 enum port port);
3772 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3773 enum port port);
3774
3775
3776 /* intel_opregion.c */
3777 #ifdef CONFIG_ACPI
3778 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3779 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3780 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3781 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3782 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3783 bool enable);
3784 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3785 pci_power_t state);
3786 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3787 #else
3788 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3789 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3790 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3791 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3792 {
3793 }
3794 static inline int
3795 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3796 {
3797 return 0;
3798 }
3799 static inline int
3800 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3801 {
3802 return 0;
3803 }
3804 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3805 {
3806 return -ENODEV;
3807 }
3808 #endif
3809
3810 /* intel_acpi.c */
3811 #ifdef CONFIG_ACPI
3812 extern void intel_register_dsm_handler(void);
3813 extern void intel_unregister_dsm_handler(void);
3814 #else
3815 static inline void intel_register_dsm_handler(void) { return; }
3816 static inline void intel_unregister_dsm_handler(void) { return; }
3817 #endif /* CONFIG_ACPI */
3818
3819 /* intel_device_info.c */
3820 static inline struct intel_device_info *
3821 mkwrite_device_info(struct drm_i915_private *dev_priv)
3822 {
3823 return (struct intel_device_info *)&dev_priv->info;
3824 }
3825
3826 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
3827 void intel_device_info_dump(struct drm_i915_private *dev_priv);
3828
3829 /* modesetting */
3830 extern void intel_modeset_init_hw(struct drm_device *dev);
3831 extern int intel_modeset_init(struct drm_device *dev);
3832 extern void intel_modeset_gem_init(struct drm_device *dev);
3833 extern void intel_modeset_cleanup(struct drm_device *dev);
3834 extern int intel_connector_register(struct drm_connector *);
3835 extern void intel_connector_unregister(struct drm_connector *);
3836 extern int intel_modeset_vga_set_state(struct drm_device *dev, bool state);
3837 extern void intel_display_resume(struct drm_device *dev);
3838 extern void i915_redisable_vga(struct drm_device *dev);
3839 extern void i915_redisable_vga_power_on(struct drm_device *dev);
3840 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3841 extern void intel_init_pch_refclk(struct drm_device *dev);
3842 extern void intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3843 extern void intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3844 bool enable);
3845
3846 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3847 struct drm_file *file);
3848
3849 /* overlay */
3850 extern struct intel_overlay_error_state *
3851 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3852 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3853 struct intel_overlay_error_state *error);
3854
3855 extern struct intel_display_error_state *
3856 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3857 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3858 struct drm_device *dev,
3859 struct intel_display_error_state *error);
3860
3861 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3862 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3863
3864 /* intel_sideband.c */
3865 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3866 void vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3867 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3868 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3869 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3870 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3871 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3872 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3873 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3874 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3875 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3876 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3877 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3878 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3879 enum intel_sbi_destination destination);
3880 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3881 enum intel_sbi_destination destination);
3882 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3883 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3884
3885 /* intel_dpio_phy.c */
3886 void bxt_port_to_phy_channel(enum port port,
3887 enum dpio_phy *phy, enum dpio_channel *ch);
3888 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
3889 enum port port, u32 margin, u32 scale,
3890 u32 enable, u32 deemphasis);
3891 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3892 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3893 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
3894 enum dpio_phy phy);
3895 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
3896 enum dpio_phy phy);
3897 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
3898 uint8_t lane_count);
3899 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
3900 uint8_t lane_lat_optim_mask);
3901 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
3902
3903 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3904 u32 deemph_reg_value, u32 margin_reg_value,
3905 bool uniq_trans_scale);
3906 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3907 bool reset);
3908 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
3909 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3910 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3911 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
3912
3913 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3914 u32 demph_reg_value, u32 preemph_reg_value,
3915 u32 uniqtranscale_reg_value, u32 tx3_demph);
3916 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
3917 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3918 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
3919
3920 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3921 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3922
3923 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3924 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3925
3926 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3927 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3928 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3929 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3930
3931 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3932 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3933 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3934 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3935
3936 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3937 * will be implemented using 2 32-bit writes in an arbitrary order with
3938 * an arbitrary delay between them. This can cause the hardware to
3939 * act upon the intermediate value, possibly leading to corruption and
3940 * machine death. For this reason we do not support I915_WRITE64, or
3941 * dev_priv->uncore.funcs.mmio_writeq.
3942 *
3943 * When reading a 64-bit value as two 32-bit values, the delay may cause
3944 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
3945 * occasionally a 64-bit register does not actualy support a full readq
3946 * and must be read using two 32-bit reads.
3947 *
3948 * You have been warned.
3949 */
3950 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3951
3952 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
3953 u32 upper, lower, old_upper, loop = 0; \
3954 upper = I915_READ(upper_reg); \
3955 do { \
3956 old_upper = upper; \
3957 lower = I915_READ(lower_reg); \
3958 upper = I915_READ(upper_reg); \
3959 } while (upper != old_upper && loop++ < 2); \
3960 (u64)upper << 32 | lower; })
3961
3962 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
3963 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
3964
3965 #define __raw_read(x, s) \
3966 static inline uint##x##_t __raw_i915_read##x(struct drm_i915_private *dev_priv, \
3967 i915_reg_t reg) \
3968 { \
3969 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3970 }
3971
3972 #define __raw_write(x, s) \
3973 static inline void __raw_i915_write##x(struct drm_i915_private *dev_priv, \
3974 i915_reg_t reg, uint##x##_t val) \
3975 { \
3976 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3977 }
3978 __raw_read(8, b)
3979 __raw_read(16, w)
3980 __raw_read(32, l)
3981 __raw_read(64, q)
3982
3983 __raw_write(8, b)
3984 __raw_write(16, w)
3985 __raw_write(32, l)
3986 __raw_write(64, q)
3987
3988 #undef __raw_read
3989 #undef __raw_write
3990
3991 /* These are untraced mmio-accessors that are only valid to be used inside
3992 * critical sections, such as inside IRQ handlers, where forcewake is explicitly
3993 * controlled.
3994 *
3995 * Think twice, and think again, before using these.
3996 *
3997 * As an example, these accessors can possibly be used between:
3998 *
3999 * spin_lock_irq(&dev_priv->uncore.lock);
4000 * intel_uncore_forcewake_get__locked();
4001 *
4002 * and
4003 *
4004 * intel_uncore_forcewake_put__locked();
4005 * spin_unlock_irq(&dev_priv->uncore.lock);
4006 *
4007 *
4008 * Note: some registers may not need forcewake held, so
4009 * intel_uncore_forcewake_{get,put} can be omitted, see
4010 * intel_uncore_forcewake_for_reg().
4011 *
4012 * Certain architectures will die if the same cacheline is concurrently accessed
4013 * by different clients (e.g. on Ivybridge). Access to registers should
4014 * therefore generally be serialised, by either the dev_priv->uncore.lock or
4015 * a more localised lock guarding all access to that bank of registers.
4016 */
4017 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
4018 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
4019 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
4020 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
4021
4022 /* "Broadcast RGB" property */
4023 #define INTEL_BROADCAST_RGB_AUTO 0
4024 #define INTEL_BROADCAST_RGB_FULL 1
4025 #define INTEL_BROADCAST_RGB_LIMITED 2
4026
4027 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
4028 {
4029 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4030 return VLV_VGACNTRL;
4031 else if (INTEL_GEN(dev_priv) >= 5)
4032 return CPU_VGACNTRL;
4033 else
4034 return VGACNTRL;
4035 }
4036
4037 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
4038 {
4039 unsigned long j = msecs_to_jiffies(m);
4040
4041 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4042 }
4043
4044 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
4045 {
4046 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
4047 }
4048
4049 static inline unsigned long
4050 timespec_to_jiffies_timeout(const struct timespec *value)
4051 {
4052 unsigned long j = timespec_to_jiffies(value);
4053
4054 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4055 }
4056
4057 /*
4058 * If you need to wait X milliseconds between events A and B, but event B
4059 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
4060 * when event A happened, then just before event B you call this function and
4061 * pass the timestamp as the first argument, and X as the second argument.
4062 */
4063 static inline void
4064 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
4065 {
4066 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
4067
4068 /*
4069 * Don't re-read the value of "jiffies" every time since it may change
4070 * behind our back and break the math.
4071 */
4072 tmp_jiffies = jiffies;
4073 target_jiffies = timestamp_jiffies +
4074 msecs_to_jiffies_timeout(to_wait_ms);
4075
4076 if (time_after(target_jiffies, tmp_jiffies)) {
4077 remaining_jiffies = target_jiffies - tmp_jiffies;
4078 while (remaining_jiffies)
4079 remaining_jiffies =
4080 schedule_timeout_uninterruptible(remaining_jiffies);
4081 }
4082 }
4083
4084 static inline bool
4085 __i915_request_irq_complete(struct drm_i915_gem_request *req)
4086 {
4087 struct intel_engine_cs *engine = req->engine;
4088
4089 /* Before we do the heavier coherent read of the seqno,
4090 * check the value (hopefully) in the CPU cacheline.
4091 */
4092 if (__i915_gem_request_completed(req))
4093 return true;
4094
4095 /* Ensure our read of the seqno is coherent so that we
4096 * do not "miss an interrupt" (i.e. if this is the last
4097 * request and the seqno write from the GPU is not visible
4098 * by the time the interrupt fires, we will see that the
4099 * request is incomplete and go back to sleep awaiting
4100 * another interrupt that will never come.)
4101 *
4102 * Strictly, we only need to do this once after an interrupt,
4103 * but it is easier and safer to do it every time the waiter
4104 * is woken.
4105 */
4106 if (engine->irq_seqno_barrier &&
4107 rcu_access_pointer(engine->breadcrumbs.irq_seqno_bh) == current &&
4108 cmpxchg_relaxed(&engine->breadcrumbs.irq_posted, 1, 0)) {
4109 struct task_struct *tsk;
4110
4111 /* The ordering of irq_posted versus applying the barrier
4112 * is crucial. The clearing of the current irq_posted must
4113 * be visible before we perform the barrier operation,
4114 * such that if a subsequent interrupt arrives, irq_posted
4115 * is reasserted and our task rewoken (which causes us to
4116 * do another __i915_request_irq_complete() immediately
4117 * and reapply the barrier). Conversely, if the clear
4118 * occurs after the barrier, then an interrupt that arrived
4119 * whilst we waited on the barrier would not trigger a
4120 * barrier on the next pass, and the read may not see the
4121 * seqno update.
4122 */
4123 engine->irq_seqno_barrier(engine);
4124
4125 /* If we consume the irq, but we are no longer the bottom-half,
4126 * the real bottom-half may not have serialised their own
4127 * seqno check with the irq-barrier (i.e. may have inspected
4128 * the seqno before we believe it coherent since they see
4129 * irq_posted == false but we are still running).
4130 */
4131 rcu_read_lock();
4132 tsk = rcu_dereference(engine->breadcrumbs.irq_seqno_bh);
4133 if (tsk && tsk != current)
4134 /* Note that if the bottom-half is changed as we
4135 * are sending the wake-up, the new bottom-half will
4136 * be woken by whomever made the change. We only have
4137 * to worry about when we steal the irq-posted for
4138 * ourself.
4139 */
4140 wake_up_process(tsk);
4141 rcu_read_unlock();
4142
4143 if (__i915_gem_request_completed(req))
4144 return true;
4145 }
4146
4147 return false;
4148 }
4149
4150 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
4151 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
4152
4153 /* i915_mm.c */
4154 int remap_io_mapping(struct vm_area_struct *vma,
4155 unsigned long addr, unsigned long pfn, unsigned long size,
4156 struct io_mapping *iomap);
4157
4158 #define ptr_mask_bits(ptr) ({ \
4159 unsigned long __v = (unsigned long)(ptr); \
4160 (typeof(ptr))(__v & PAGE_MASK); \
4161 })
4162
4163 #define ptr_unpack_bits(ptr, bits) ({ \
4164 unsigned long __v = (unsigned long)(ptr); \
4165 (bits) = __v & ~PAGE_MASK; \
4166 (typeof(ptr))(__v & PAGE_MASK); \
4167 })
4168
4169 #define ptr_pack_bits(ptr, bits) \
4170 ((typeof(ptr))((unsigned long)(ptr) | (bits)))
4171
4172 #define fetch_and_zero(ptr) ({ \
4173 typeof(*ptr) __T = *(ptr); \
4174 *(ptr) = (typeof(*ptr))0; \
4175 __T; \
4176 })
4177
4178 #endif