]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.h
drm/i915: Add per client max context ban limit
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hashtable.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/reservation.h>
45 #include <linux/shmem_fs.h>
46
47 #include <drm/drmP.h>
48 #include <drm/intel-gtt.h>
49 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
50 #include <drm/drm_gem.h>
51 #include <drm/drm_auth.h>
52
53 #include "i915_params.h"
54 #include "i915_reg.h"
55
56 #include "intel_bios.h"
57 #include "intel_dpll_mgr.h"
58 #include "intel_guc.h"
59 #include "intel_lrc.h"
60 #include "intel_ringbuffer.h"
61
62 #include "i915_gem.h"
63 #include "i915_gem_fence_reg.h"
64 #include "i915_gem_object.h"
65 #include "i915_gem_gtt.h"
66 #include "i915_gem_render_state.h"
67 #include "i915_gem_request.h"
68 #include "i915_gem_timeline.h"
69
70 #include "i915_vma.h"
71
72 #include "intel_gvt.h"
73
74 /* General customization:
75 */
76
77 #define DRIVER_NAME "i915"
78 #define DRIVER_DESC "Intel Graphics"
79 #define DRIVER_DATE "20161121"
80 #define DRIVER_TIMESTAMP 1479717903
81
82 #undef WARN_ON
83 /* Many gcc seem to no see through this and fall over :( */
84 #if 0
85 #define WARN_ON(x) ({ \
86 bool __i915_warn_cond = (x); \
87 if (__builtin_constant_p(__i915_warn_cond)) \
88 BUILD_BUG_ON(__i915_warn_cond); \
89 WARN(__i915_warn_cond, "WARN_ON(" #x ")"); })
90 #else
91 #define WARN_ON(x) WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
92 #endif
93
94 #undef WARN_ON_ONCE
95 #define WARN_ON_ONCE(x) WARN_ONCE((x), "%s", "WARN_ON_ONCE(" __stringify(x) ")")
96
97 #define MISSING_CASE(x) WARN(1, "Missing switch case (%lu) in %s\n", \
98 (long) (x), __func__);
99
100 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
101 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
102 * which may not necessarily be a user visible problem. This will either
103 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
104 * enable distros and users to tailor their preferred amount of i915 abrt
105 * spam.
106 */
107 #define I915_STATE_WARN(condition, format...) ({ \
108 int __ret_warn_on = !!(condition); \
109 if (unlikely(__ret_warn_on)) \
110 if (!WARN(i915.verbose_state_checks, format)) \
111 DRM_ERROR(format); \
112 unlikely(__ret_warn_on); \
113 })
114
115 #define I915_STATE_WARN_ON(x) \
116 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
117
118 bool __i915_inject_load_failure(const char *func, int line);
119 #define i915_inject_load_failure() \
120 __i915_inject_load_failure(__func__, __LINE__)
121
122 static inline const char *yesno(bool v)
123 {
124 return v ? "yes" : "no";
125 }
126
127 static inline const char *onoff(bool v)
128 {
129 return v ? "on" : "off";
130 }
131
132 static inline const char *enableddisabled(bool v)
133 {
134 return v ? "enabled" : "disabled";
135 }
136
137 enum pipe {
138 INVALID_PIPE = -1,
139 PIPE_A = 0,
140 PIPE_B,
141 PIPE_C,
142 _PIPE_EDP,
143 I915_MAX_PIPES = _PIPE_EDP
144 };
145 #define pipe_name(p) ((p) + 'A')
146
147 enum transcoder {
148 TRANSCODER_A = 0,
149 TRANSCODER_B,
150 TRANSCODER_C,
151 TRANSCODER_EDP,
152 TRANSCODER_DSI_A,
153 TRANSCODER_DSI_C,
154 I915_MAX_TRANSCODERS
155 };
156
157 static inline const char *transcoder_name(enum transcoder transcoder)
158 {
159 switch (transcoder) {
160 case TRANSCODER_A:
161 return "A";
162 case TRANSCODER_B:
163 return "B";
164 case TRANSCODER_C:
165 return "C";
166 case TRANSCODER_EDP:
167 return "EDP";
168 case TRANSCODER_DSI_A:
169 return "DSI A";
170 case TRANSCODER_DSI_C:
171 return "DSI C";
172 default:
173 return "<invalid>";
174 }
175 }
176
177 static inline bool transcoder_is_dsi(enum transcoder transcoder)
178 {
179 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
180 }
181
182 /*
183 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
184 * number of planes per CRTC. Not all platforms really have this many planes,
185 * which means some arrays of size I915_MAX_PLANES may have unused entries
186 * between the topmost sprite plane and the cursor plane.
187 */
188 enum plane {
189 PLANE_A = 0,
190 PLANE_B,
191 PLANE_C,
192 PLANE_CURSOR,
193 I915_MAX_PLANES,
194 };
195 #define plane_name(p) ((p) + 'A')
196
197 #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A')
198
199 enum port {
200 PORT_NONE = -1,
201 PORT_A = 0,
202 PORT_B,
203 PORT_C,
204 PORT_D,
205 PORT_E,
206 I915_MAX_PORTS
207 };
208 #define port_name(p) ((p) + 'A')
209
210 #define I915_NUM_PHYS_VLV 2
211
212 enum dpio_channel {
213 DPIO_CH0,
214 DPIO_CH1
215 };
216
217 enum dpio_phy {
218 DPIO_PHY0,
219 DPIO_PHY1
220 };
221
222 enum intel_display_power_domain {
223 POWER_DOMAIN_PIPE_A,
224 POWER_DOMAIN_PIPE_B,
225 POWER_DOMAIN_PIPE_C,
226 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
227 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
228 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
229 POWER_DOMAIN_TRANSCODER_A,
230 POWER_DOMAIN_TRANSCODER_B,
231 POWER_DOMAIN_TRANSCODER_C,
232 POWER_DOMAIN_TRANSCODER_EDP,
233 POWER_DOMAIN_TRANSCODER_DSI_A,
234 POWER_DOMAIN_TRANSCODER_DSI_C,
235 POWER_DOMAIN_PORT_DDI_A_LANES,
236 POWER_DOMAIN_PORT_DDI_B_LANES,
237 POWER_DOMAIN_PORT_DDI_C_LANES,
238 POWER_DOMAIN_PORT_DDI_D_LANES,
239 POWER_DOMAIN_PORT_DDI_E_LANES,
240 POWER_DOMAIN_PORT_DSI,
241 POWER_DOMAIN_PORT_CRT,
242 POWER_DOMAIN_PORT_OTHER,
243 POWER_DOMAIN_VGA,
244 POWER_DOMAIN_AUDIO,
245 POWER_DOMAIN_PLLS,
246 POWER_DOMAIN_AUX_A,
247 POWER_DOMAIN_AUX_B,
248 POWER_DOMAIN_AUX_C,
249 POWER_DOMAIN_AUX_D,
250 POWER_DOMAIN_GMBUS,
251 POWER_DOMAIN_MODESET,
252 POWER_DOMAIN_INIT,
253
254 POWER_DOMAIN_NUM,
255 };
256
257 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
258 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
259 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
260 #define POWER_DOMAIN_TRANSCODER(tran) \
261 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
262 (tran) + POWER_DOMAIN_TRANSCODER_A)
263
264 enum hpd_pin {
265 HPD_NONE = 0,
266 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
267 HPD_CRT,
268 HPD_SDVO_B,
269 HPD_SDVO_C,
270 HPD_PORT_A,
271 HPD_PORT_B,
272 HPD_PORT_C,
273 HPD_PORT_D,
274 HPD_PORT_E,
275 HPD_NUM_PINS
276 };
277
278 #define for_each_hpd_pin(__pin) \
279 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
280
281 struct i915_hotplug {
282 struct work_struct hotplug_work;
283
284 struct {
285 unsigned long last_jiffies;
286 int count;
287 enum {
288 HPD_ENABLED = 0,
289 HPD_DISABLED = 1,
290 HPD_MARK_DISABLED = 2
291 } state;
292 } stats[HPD_NUM_PINS];
293 u32 event_bits;
294 struct delayed_work reenable_work;
295
296 struct intel_digital_port *irq_port[I915_MAX_PORTS];
297 u32 long_port_mask;
298 u32 short_port_mask;
299 struct work_struct dig_port_work;
300
301 struct work_struct poll_init_work;
302 bool poll_enabled;
303
304 /*
305 * if we get a HPD irq from DP and a HPD irq from non-DP
306 * the non-DP HPD could block the workqueue on a mode config
307 * mutex getting, that userspace may have taken. However
308 * userspace is waiting on the DP workqueue to run which is
309 * blocked behind the non-DP one.
310 */
311 struct workqueue_struct *dp_wq;
312 };
313
314 #define I915_GEM_GPU_DOMAINS \
315 (I915_GEM_DOMAIN_RENDER | \
316 I915_GEM_DOMAIN_SAMPLER | \
317 I915_GEM_DOMAIN_COMMAND | \
318 I915_GEM_DOMAIN_INSTRUCTION | \
319 I915_GEM_DOMAIN_VERTEX)
320
321 #define for_each_pipe(__dev_priv, __p) \
322 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
323 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
324 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
325 for_each_if ((__mask) & (1 << (__p)))
326 #define for_each_universal_plane(__dev_priv, __pipe, __p) \
327 for ((__p) = 0; \
328 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
329 (__p)++)
330 #define for_each_sprite(__dev_priv, __p, __s) \
331 for ((__s) = 0; \
332 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
333 (__s)++)
334
335 #define for_each_port_masked(__port, __ports_mask) \
336 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
337 for_each_if ((__ports_mask) & (1 << (__port)))
338
339 #define for_each_crtc(dev, crtc) \
340 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
341
342 #define for_each_intel_plane(dev, intel_plane) \
343 list_for_each_entry(intel_plane, \
344 &(dev)->mode_config.plane_list, \
345 base.head)
346
347 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \
348 list_for_each_entry(intel_plane, \
349 &(dev)->mode_config.plane_list, \
350 base.head) \
351 for_each_if ((plane_mask) & \
352 (1 << drm_plane_index(&intel_plane->base)))
353
354 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
355 list_for_each_entry(intel_plane, \
356 &(dev)->mode_config.plane_list, \
357 base.head) \
358 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
359
360 #define for_each_intel_crtc(dev, intel_crtc) \
361 list_for_each_entry(intel_crtc, \
362 &(dev)->mode_config.crtc_list, \
363 base.head)
364
365 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \
366 list_for_each_entry(intel_crtc, \
367 &(dev)->mode_config.crtc_list, \
368 base.head) \
369 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
370
371 #define for_each_intel_encoder(dev, intel_encoder) \
372 list_for_each_entry(intel_encoder, \
373 &(dev)->mode_config.encoder_list, \
374 base.head)
375
376 #define for_each_intel_connector(dev, intel_connector) \
377 list_for_each_entry(intel_connector, \
378 &(dev)->mode_config.connector_list, \
379 base.head)
380
381 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
382 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
383 for_each_if ((intel_encoder)->base.crtc == (__crtc))
384
385 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
386 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
387 for_each_if ((intel_connector)->base.encoder == (__encoder))
388
389 #define for_each_power_domain(domain, mask) \
390 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
391 for_each_if ((1 << (domain)) & (mask))
392
393 struct drm_i915_private;
394 struct i915_mm_struct;
395 struct i915_mmu_object;
396
397 struct drm_i915_file_private {
398 struct drm_i915_private *dev_priv;
399 struct drm_file *file;
400
401 struct {
402 spinlock_t lock;
403 struct list_head request_list;
404 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
405 * chosen to prevent the CPU getting more than a frame ahead of the GPU
406 * (when using lax throttling for the frontbuffer). We also use it to
407 * offer free GPU waitboosts for severely congested workloads.
408 */
409 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
410 } mm;
411 struct idr context_idr;
412
413 struct intel_rps_client {
414 struct list_head link;
415 unsigned boosts;
416 } rps;
417
418 unsigned int bsd_engine;
419
420 /* Client can have a maximum of 3 contexts banned before
421 * it is denied of creating new contexts. As one context
422 * ban needs 4 consecutive hangs, and more if there is
423 * progress in between, this is a last resort stop gap measure
424 * to limit the badly behaving clients access to gpu.
425 */
426 #define I915_MAX_CLIENT_CONTEXT_BANS 3
427 int context_bans;
428 };
429
430 /* Used by dp and fdi links */
431 struct intel_link_m_n {
432 uint32_t tu;
433 uint32_t gmch_m;
434 uint32_t gmch_n;
435 uint32_t link_m;
436 uint32_t link_n;
437 };
438
439 void intel_link_compute_m_n(int bpp, int nlanes,
440 int pixel_clock, int link_clock,
441 struct intel_link_m_n *m_n);
442
443 /* Interface history:
444 *
445 * 1.1: Original.
446 * 1.2: Add Power Management
447 * 1.3: Add vblank support
448 * 1.4: Fix cmdbuffer path, add heap destroy
449 * 1.5: Add vblank pipe configuration
450 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
451 * - Support vertical blank on secondary display pipe
452 */
453 #define DRIVER_MAJOR 1
454 #define DRIVER_MINOR 6
455 #define DRIVER_PATCHLEVEL 0
456
457 struct opregion_header;
458 struct opregion_acpi;
459 struct opregion_swsci;
460 struct opregion_asle;
461
462 struct intel_opregion {
463 struct opregion_header *header;
464 struct opregion_acpi *acpi;
465 struct opregion_swsci *swsci;
466 u32 swsci_gbda_sub_functions;
467 u32 swsci_sbcb_sub_functions;
468 struct opregion_asle *asle;
469 void *rvda;
470 const void *vbt;
471 u32 vbt_size;
472 u32 *lid_state;
473 struct work_struct asle_work;
474 };
475 #define OPREGION_SIZE (8*1024)
476
477 struct intel_overlay;
478 struct intel_overlay_error_state;
479
480 struct sdvo_device_mapping {
481 u8 initialized;
482 u8 dvo_port;
483 u8 slave_addr;
484 u8 dvo_wiring;
485 u8 i2c_pin;
486 u8 ddc_pin;
487 };
488
489 struct intel_connector;
490 struct intel_encoder;
491 struct intel_atomic_state;
492 struct intel_crtc_state;
493 struct intel_initial_plane_config;
494 struct intel_crtc;
495 struct intel_limit;
496 struct dpll;
497
498 struct drm_i915_display_funcs {
499 int (*get_display_clock_speed)(struct drm_i915_private *dev_priv);
500 int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane);
501 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
502 int (*compute_intermediate_wm)(struct drm_device *dev,
503 struct intel_crtc *intel_crtc,
504 struct intel_crtc_state *newstate);
505 void (*initial_watermarks)(struct intel_atomic_state *state,
506 struct intel_crtc_state *cstate);
507 void (*atomic_update_watermarks)(struct intel_atomic_state *state,
508 struct intel_crtc_state *cstate);
509 void (*optimize_watermarks)(struct intel_atomic_state *state,
510 struct intel_crtc_state *cstate);
511 int (*compute_global_watermarks)(struct drm_atomic_state *state);
512 void (*update_wm)(struct intel_crtc *crtc);
513 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
514 void (*modeset_commit_cdclk)(struct drm_atomic_state *state);
515 /* Returns the active state of the crtc, and if the crtc is active,
516 * fills out the pipe-config with the hw state. */
517 bool (*get_pipe_config)(struct intel_crtc *,
518 struct intel_crtc_state *);
519 void (*get_initial_plane_config)(struct intel_crtc *,
520 struct intel_initial_plane_config *);
521 int (*crtc_compute_clock)(struct intel_crtc *crtc,
522 struct intel_crtc_state *crtc_state);
523 void (*crtc_enable)(struct intel_crtc_state *pipe_config,
524 struct drm_atomic_state *old_state);
525 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
526 struct drm_atomic_state *old_state);
527 void (*update_crtcs)(struct drm_atomic_state *state,
528 unsigned int *crtc_vblank_mask);
529 void (*audio_codec_enable)(struct drm_connector *connector,
530 struct intel_encoder *encoder,
531 const struct drm_display_mode *adjusted_mode);
532 void (*audio_codec_disable)(struct intel_encoder *encoder);
533 void (*fdi_link_train)(struct drm_crtc *crtc);
534 void (*init_clock_gating)(struct drm_i915_private *dev_priv);
535 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc,
536 struct drm_framebuffer *fb,
537 struct drm_i915_gem_object *obj,
538 struct drm_i915_gem_request *req,
539 uint32_t flags);
540 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
541 /* clock updates for mode set */
542 /* cursor updates */
543 /* render clock increase/decrease */
544 /* display clock increase/decrease */
545 /* pll clock increase/decrease */
546
547 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
548 void (*load_luts)(struct drm_crtc_state *crtc_state);
549 };
550
551 enum forcewake_domain_id {
552 FW_DOMAIN_ID_RENDER = 0,
553 FW_DOMAIN_ID_BLITTER,
554 FW_DOMAIN_ID_MEDIA,
555
556 FW_DOMAIN_ID_COUNT
557 };
558
559 enum forcewake_domains {
560 FORCEWAKE_RENDER = (1 << FW_DOMAIN_ID_RENDER),
561 FORCEWAKE_BLITTER = (1 << FW_DOMAIN_ID_BLITTER),
562 FORCEWAKE_MEDIA = (1 << FW_DOMAIN_ID_MEDIA),
563 FORCEWAKE_ALL = (FORCEWAKE_RENDER |
564 FORCEWAKE_BLITTER |
565 FORCEWAKE_MEDIA)
566 };
567
568 #define FW_REG_READ (1)
569 #define FW_REG_WRITE (2)
570
571 enum decoupled_power_domain {
572 GEN9_DECOUPLED_PD_BLITTER = 0,
573 GEN9_DECOUPLED_PD_RENDER,
574 GEN9_DECOUPLED_PD_MEDIA,
575 GEN9_DECOUPLED_PD_ALL
576 };
577
578 enum decoupled_ops {
579 GEN9_DECOUPLED_OP_WRITE = 0,
580 GEN9_DECOUPLED_OP_READ
581 };
582
583 enum forcewake_domains
584 intel_uncore_forcewake_for_reg(struct drm_i915_private *dev_priv,
585 i915_reg_t reg, unsigned int op);
586
587 struct intel_uncore_funcs {
588 void (*force_wake_get)(struct drm_i915_private *dev_priv,
589 enum forcewake_domains domains);
590 void (*force_wake_put)(struct drm_i915_private *dev_priv,
591 enum forcewake_domains domains);
592
593 uint8_t (*mmio_readb)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
594 uint16_t (*mmio_readw)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
595 uint32_t (*mmio_readl)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
596 uint64_t (*mmio_readq)(struct drm_i915_private *dev_priv, i915_reg_t r, bool trace);
597
598 void (*mmio_writeb)(struct drm_i915_private *dev_priv, i915_reg_t r,
599 uint8_t val, bool trace);
600 void (*mmio_writew)(struct drm_i915_private *dev_priv, i915_reg_t r,
601 uint16_t val, bool trace);
602 void (*mmio_writel)(struct drm_i915_private *dev_priv, i915_reg_t r,
603 uint32_t val, bool trace);
604 };
605
606 struct intel_forcewake_range {
607 u32 start;
608 u32 end;
609
610 enum forcewake_domains domains;
611 };
612
613 struct intel_uncore {
614 spinlock_t lock; /** lock is also taken in irq contexts. */
615
616 const struct intel_forcewake_range *fw_domains_table;
617 unsigned int fw_domains_table_entries;
618
619 struct intel_uncore_funcs funcs;
620
621 unsigned fifo_count;
622
623 enum forcewake_domains fw_domains;
624 enum forcewake_domains fw_domains_active;
625
626 struct intel_uncore_forcewake_domain {
627 struct drm_i915_private *i915;
628 enum forcewake_domain_id id;
629 enum forcewake_domains mask;
630 unsigned wake_count;
631 struct hrtimer timer;
632 i915_reg_t reg_set;
633 u32 val_set;
634 u32 val_clear;
635 i915_reg_t reg_ack;
636 i915_reg_t reg_post;
637 u32 val_reset;
638 } fw_domain[FW_DOMAIN_ID_COUNT];
639
640 int unclaimed_mmio_check;
641 };
642
643 /* Iterate over initialised fw domains */
644 #define for_each_fw_domain_masked(domain__, mask__, dev_priv__) \
645 for ((domain__) = &(dev_priv__)->uncore.fw_domain[0]; \
646 (domain__) < &(dev_priv__)->uncore.fw_domain[FW_DOMAIN_ID_COUNT]; \
647 (domain__)++) \
648 for_each_if ((mask__) & (domain__)->mask)
649
650 #define for_each_fw_domain(domain__, dev_priv__) \
651 for_each_fw_domain_masked(domain__, FORCEWAKE_ALL, dev_priv__)
652
653 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
654 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
655 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
656
657 struct intel_csr {
658 struct work_struct work;
659 const char *fw_path;
660 uint32_t *dmc_payload;
661 uint32_t dmc_fw_size;
662 uint32_t version;
663 uint32_t mmio_count;
664 i915_reg_t mmioaddr[8];
665 uint32_t mmiodata[8];
666 uint32_t dc_state;
667 uint32_t allowed_dc_mask;
668 };
669
670 #define DEV_INFO_FOR_EACH_FLAG(func) \
671 /* Keep is_* in chronological order */ \
672 func(is_mobile); \
673 func(is_i85x); \
674 func(is_i915g); \
675 func(is_i945gm); \
676 func(is_g33); \
677 func(is_g4x); \
678 func(is_pineview); \
679 func(is_broadwater); \
680 func(is_crestline); \
681 func(is_ivybridge); \
682 func(is_valleyview); \
683 func(is_cherryview); \
684 func(is_haswell); \
685 func(is_broadwell); \
686 func(is_skylake); \
687 func(is_broxton); \
688 func(is_kabylake); \
689 func(is_alpha_support); \
690 /* Keep has_* in alphabetical order */ \
691 func(has_64bit_reloc); \
692 func(has_csr); \
693 func(has_ddi); \
694 func(has_dp_mst); \
695 func(has_fbc); \
696 func(has_fpga_dbg); \
697 func(has_gmbus_irq); \
698 func(has_gmch_display); \
699 func(has_guc); \
700 func(has_hotplug); \
701 func(has_hw_contexts); \
702 func(has_l3_dpf); \
703 func(has_llc); \
704 func(has_logical_ring_contexts); \
705 func(has_overlay); \
706 func(has_pipe_cxsr); \
707 func(has_pooled_eu); \
708 func(has_psr); \
709 func(has_rc6); \
710 func(has_rc6p); \
711 func(has_resource_streamer); \
712 func(has_runtime_pm); \
713 func(has_snoop); \
714 func(cursor_needs_physical); \
715 func(hws_needs_physical); \
716 func(overlay_needs_physical); \
717 func(supports_tv); \
718 func(has_decoupled_mmio)
719
720 struct sseu_dev_info {
721 u8 slice_mask;
722 u8 subslice_mask;
723 u8 eu_total;
724 u8 eu_per_subslice;
725 u8 min_eu_in_pool;
726 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
727 u8 subslice_7eu[3];
728 u8 has_slice_pg:1;
729 u8 has_subslice_pg:1;
730 u8 has_eu_pg:1;
731 };
732
733 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu)
734 {
735 return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask);
736 }
737
738 struct intel_device_info {
739 u32 display_mmio_offset;
740 u16 device_id;
741 u8 num_pipes;
742 u8 num_sprites[I915_MAX_PIPES];
743 u8 gen;
744 u16 gen_mask;
745 u8 ring_mask; /* Rings supported by the HW */
746 u8 num_rings;
747 #define DEFINE_FLAG(name) u8 name:1
748 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG);
749 #undef DEFINE_FLAG
750 u16 ddb_size; /* in blocks */
751 /* Register offsets for the various display pipes and transcoders */
752 int pipe_offsets[I915_MAX_TRANSCODERS];
753 int trans_offsets[I915_MAX_TRANSCODERS];
754 int palette_offsets[I915_MAX_PIPES];
755 int cursor_offsets[I915_MAX_PIPES];
756
757 /* Slice/subslice/EU info */
758 struct sseu_dev_info sseu;
759
760 struct color_luts {
761 u16 degamma_lut_size;
762 u16 gamma_lut_size;
763 } color;
764 };
765
766 struct intel_display_error_state;
767
768 struct drm_i915_error_state {
769 struct kref ref;
770 struct timeval time;
771 struct timeval boottime;
772 struct timeval uptime;
773
774 struct drm_i915_private *i915;
775
776 char error_msg[128];
777 bool simulated;
778 int iommu;
779 u32 reset_count;
780 u32 suspend_count;
781 struct intel_device_info device_info;
782
783 /* Generic register state */
784 u32 eir;
785 u32 pgtbl_er;
786 u32 ier;
787 u32 gtier[4];
788 u32 ccid;
789 u32 derrmr;
790 u32 forcewake;
791 u32 error; /* gen6+ */
792 u32 err_int; /* gen7 */
793 u32 fault_data0; /* gen8, gen9 */
794 u32 fault_data1; /* gen8, gen9 */
795 u32 done_reg;
796 u32 gac_eco;
797 u32 gam_ecochk;
798 u32 gab_ctl;
799 u32 gfx_mode;
800
801 u64 fence[I915_MAX_NUM_FENCES];
802 struct intel_overlay_error_state *overlay;
803 struct intel_display_error_state *display;
804 struct drm_i915_error_object *semaphore;
805 struct drm_i915_error_object *guc_log;
806
807 struct drm_i915_error_engine {
808 int engine_id;
809 /* Software tracked state */
810 bool waiting;
811 int num_waiters;
812 unsigned long hangcheck_timestamp;
813 bool hangcheck_stalled;
814 enum intel_engine_hangcheck_action hangcheck_action;
815 struct i915_address_space *vm;
816 int num_requests;
817
818 /* position of active request inside the ring */
819 u32 rq_head, rq_post, rq_tail;
820
821 /* our own tracking of ring head and tail */
822 u32 cpu_ring_head;
823 u32 cpu_ring_tail;
824
825 u32 last_seqno;
826
827 /* Register state */
828 u32 start;
829 u32 tail;
830 u32 head;
831 u32 ctl;
832 u32 mode;
833 u32 hws;
834 u32 ipeir;
835 u32 ipehr;
836 u32 bbstate;
837 u32 instpm;
838 u32 instps;
839 u32 seqno;
840 u64 bbaddr;
841 u64 acthd;
842 u32 fault_reg;
843 u64 faddr;
844 u32 rc_psmi; /* sleep state */
845 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
846 struct intel_instdone instdone;
847
848 struct drm_i915_error_object {
849 u64 gtt_offset;
850 u64 gtt_size;
851 int page_count;
852 int unused;
853 u32 *pages[0];
854 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
855
856 struct drm_i915_error_object *wa_ctx;
857
858 struct drm_i915_error_request {
859 long jiffies;
860 pid_t pid;
861 u32 context;
862 int ban_score;
863 u32 seqno;
864 u32 head;
865 u32 tail;
866 } *requests, execlist[2];
867
868 struct drm_i915_error_waiter {
869 char comm[TASK_COMM_LEN];
870 pid_t pid;
871 u32 seqno;
872 } *waiters;
873
874 struct {
875 u32 gfx_mode;
876 union {
877 u64 pdp[4];
878 u32 pp_dir_base;
879 };
880 } vm_info;
881
882 pid_t pid;
883 char comm[TASK_COMM_LEN];
884 int context_bans;
885 } engine[I915_NUM_ENGINES];
886
887 struct drm_i915_error_buffer {
888 u32 size;
889 u32 name;
890 u32 rseqno[I915_NUM_ENGINES], wseqno;
891 u64 gtt_offset;
892 u32 read_domains;
893 u32 write_domain;
894 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
895 u32 tiling:2;
896 u32 dirty:1;
897 u32 purgeable:1;
898 u32 userptr:1;
899 s32 engine:4;
900 u32 cache_level:3;
901 } *active_bo[I915_NUM_ENGINES], *pinned_bo;
902 u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
903 struct i915_address_space *active_vm[I915_NUM_ENGINES];
904 };
905
906 enum i915_cache_level {
907 I915_CACHE_NONE = 0,
908 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
909 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
910 caches, eg sampler/render caches, and the
911 large Last-Level-Cache. LLC is coherent with
912 the CPU, but L3 is only visible to the GPU. */
913 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
914 };
915
916 struct i915_ctx_hang_stats {
917 /* This context had batch pending when hang was declared */
918 unsigned batch_pending;
919
920 /* This context had batch active when hang was declared */
921 unsigned batch_active;
922
923 bool bannable:1;
924
925 /* This context is banned to submit more work */
926 bool banned:1;
927
928 #define CONTEXT_SCORE_GUILTY 10
929 #define CONTEXT_SCORE_BAN_THRESHOLD 40
930 /* Accumulated score of hangs caused by this context */
931 int ban_score;
932 };
933
934 /* This must match up with the value previously used for execbuf2.rsvd1. */
935 #define DEFAULT_CONTEXT_HANDLE 0
936
937 /**
938 * struct i915_gem_context - as the name implies, represents a context.
939 * @ref: reference count.
940 * @user_handle: userspace tracking identity for this context.
941 * @remap_slice: l3 row remapping information.
942 * @flags: context specific flags:
943 * CONTEXT_NO_ZEROMAP: do not allow mapping things to page 0.
944 * @file_priv: filp associated with this context (NULL for global default
945 * context).
946 * @hang_stats: information about the role of this context in possible GPU
947 * hangs.
948 * @ppgtt: virtual memory space used by this context.
949 * @legacy_hw_ctx: render context backing object and whether it is correctly
950 * initialized (legacy ring submission mechanism only).
951 * @link: link in the global list of contexts.
952 *
953 * Contexts are memory images used by the hardware to store copies of their
954 * internal state.
955 */
956 struct i915_gem_context {
957 struct kref ref;
958 struct drm_i915_private *i915;
959 struct drm_i915_file_private *file_priv;
960 struct i915_hw_ppgtt *ppgtt;
961 struct pid *pid;
962 const char *name;
963
964 struct i915_ctx_hang_stats hang_stats;
965
966 unsigned long flags;
967 #define CONTEXT_NO_ZEROMAP BIT(0)
968 #define CONTEXT_NO_ERROR_CAPTURE BIT(1)
969
970 /* Unique identifier for this context, used by the hw for tracking */
971 unsigned int hw_id;
972 u32 user_handle;
973 int priority; /* greater priorities are serviced first */
974
975 u32 ggtt_alignment;
976
977 struct intel_context {
978 struct i915_vma *state;
979 struct intel_ring *ring;
980 uint32_t *lrc_reg_state;
981 u64 lrc_desc;
982 int pin_count;
983 bool initialised;
984 } engine[I915_NUM_ENGINES];
985 u32 ring_size;
986 u32 desc_template;
987 struct atomic_notifier_head status_notifier;
988 bool execlists_force_single_submission;
989
990 struct list_head link;
991
992 u8 remap_slice;
993 bool closed:1;
994 };
995
996 enum fb_op_origin {
997 ORIGIN_GTT,
998 ORIGIN_CPU,
999 ORIGIN_CS,
1000 ORIGIN_FLIP,
1001 ORIGIN_DIRTYFB,
1002 };
1003
1004 struct intel_fbc {
1005 /* This is always the inner lock when overlapping with struct_mutex and
1006 * it's the outer lock when overlapping with stolen_lock. */
1007 struct mutex lock;
1008 unsigned threshold;
1009 unsigned int possible_framebuffer_bits;
1010 unsigned int busy_bits;
1011 unsigned int visible_pipes_mask;
1012 struct intel_crtc *crtc;
1013
1014 struct drm_mm_node compressed_fb;
1015 struct drm_mm_node *compressed_llb;
1016
1017 bool false_color;
1018
1019 bool enabled;
1020 bool active;
1021
1022 bool underrun_detected;
1023 struct work_struct underrun_work;
1024
1025 struct intel_fbc_state_cache {
1026 struct {
1027 unsigned int mode_flags;
1028 uint32_t hsw_bdw_pixel_rate;
1029 } crtc;
1030
1031 struct {
1032 unsigned int rotation;
1033 int src_w;
1034 int src_h;
1035 bool visible;
1036 } plane;
1037
1038 struct {
1039 u64 ilk_ggtt_offset;
1040 uint32_t pixel_format;
1041 unsigned int stride;
1042 int fence_reg;
1043 unsigned int tiling_mode;
1044 } fb;
1045 } state_cache;
1046
1047 struct intel_fbc_reg_params {
1048 struct {
1049 enum pipe pipe;
1050 enum plane plane;
1051 unsigned int fence_y_offset;
1052 } crtc;
1053
1054 struct {
1055 u64 ggtt_offset;
1056 uint32_t pixel_format;
1057 unsigned int stride;
1058 int fence_reg;
1059 } fb;
1060
1061 int cfb_size;
1062 } params;
1063
1064 struct intel_fbc_work {
1065 bool scheduled;
1066 u32 scheduled_vblank;
1067 struct work_struct work;
1068 } work;
1069
1070 const char *no_fbc_reason;
1071 };
1072
1073 /**
1074 * HIGH_RR is the highest eDP panel refresh rate read from EDID
1075 * LOW_RR is the lowest eDP panel refresh rate found from EDID
1076 * parsing for same resolution.
1077 */
1078 enum drrs_refresh_rate_type {
1079 DRRS_HIGH_RR,
1080 DRRS_LOW_RR,
1081 DRRS_MAX_RR, /* RR count */
1082 };
1083
1084 enum drrs_support_type {
1085 DRRS_NOT_SUPPORTED = 0,
1086 STATIC_DRRS_SUPPORT = 1,
1087 SEAMLESS_DRRS_SUPPORT = 2
1088 };
1089
1090 struct intel_dp;
1091 struct i915_drrs {
1092 struct mutex mutex;
1093 struct delayed_work work;
1094 struct intel_dp *dp;
1095 unsigned busy_frontbuffer_bits;
1096 enum drrs_refresh_rate_type refresh_rate_type;
1097 enum drrs_support_type type;
1098 };
1099
1100 struct i915_psr {
1101 struct mutex lock;
1102 bool sink_support;
1103 bool source_ok;
1104 struct intel_dp *enabled;
1105 bool active;
1106 struct delayed_work work;
1107 unsigned busy_frontbuffer_bits;
1108 bool psr2_support;
1109 bool aux_frame_sync;
1110 bool link_standby;
1111 };
1112
1113 enum intel_pch {
1114 PCH_NONE = 0, /* No PCH present */
1115 PCH_IBX, /* Ibexpeak PCH */
1116 PCH_CPT, /* Cougarpoint PCH */
1117 PCH_LPT, /* Lynxpoint PCH */
1118 PCH_SPT, /* Sunrisepoint PCH */
1119 PCH_KBP, /* Kabypoint PCH */
1120 PCH_NOP,
1121 };
1122
1123 enum intel_sbi_destination {
1124 SBI_ICLK,
1125 SBI_MPHY,
1126 };
1127
1128 #define QUIRK_PIPEA_FORCE (1<<0)
1129 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1130 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1131 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1132 #define QUIRK_PIPEB_FORCE (1<<4)
1133 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1134
1135 struct intel_fbdev;
1136 struct intel_fbc_work;
1137
1138 struct intel_gmbus {
1139 struct i2c_adapter adapter;
1140 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1141 u32 force_bit;
1142 u32 reg0;
1143 i915_reg_t gpio_reg;
1144 struct i2c_algo_bit_data bit_algo;
1145 struct drm_i915_private *dev_priv;
1146 };
1147
1148 struct i915_suspend_saved_registers {
1149 u32 saveDSPARB;
1150 u32 saveFBC_CONTROL;
1151 u32 saveCACHE_MODE_0;
1152 u32 saveMI_ARB_STATE;
1153 u32 saveSWF0[16];
1154 u32 saveSWF1[16];
1155 u32 saveSWF3[3];
1156 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1157 u32 savePCH_PORT_HOTPLUG;
1158 u16 saveGCDGMBUS;
1159 };
1160
1161 struct vlv_s0ix_state {
1162 /* GAM */
1163 u32 wr_watermark;
1164 u32 gfx_prio_ctrl;
1165 u32 arb_mode;
1166 u32 gfx_pend_tlb0;
1167 u32 gfx_pend_tlb1;
1168 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1169 u32 media_max_req_count;
1170 u32 gfx_max_req_count;
1171 u32 render_hwsp;
1172 u32 ecochk;
1173 u32 bsd_hwsp;
1174 u32 blt_hwsp;
1175 u32 tlb_rd_addr;
1176
1177 /* MBC */
1178 u32 g3dctl;
1179 u32 gsckgctl;
1180 u32 mbctl;
1181
1182 /* GCP */
1183 u32 ucgctl1;
1184 u32 ucgctl3;
1185 u32 rcgctl1;
1186 u32 rcgctl2;
1187 u32 rstctl;
1188 u32 misccpctl;
1189
1190 /* GPM */
1191 u32 gfxpause;
1192 u32 rpdeuhwtc;
1193 u32 rpdeuc;
1194 u32 ecobus;
1195 u32 pwrdwnupctl;
1196 u32 rp_down_timeout;
1197 u32 rp_deucsw;
1198 u32 rcubmabdtmr;
1199 u32 rcedata;
1200 u32 spare2gh;
1201
1202 /* Display 1 CZ domain */
1203 u32 gt_imr;
1204 u32 gt_ier;
1205 u32 pm_imr;
1206 u32 pm_ier;
1207 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1208
1209 /* GT SA CZ domain */
1210 u32 tilectl;
1211 u32 gt_fifoctl;
1212 u32 gtlc_wake_ctrl;
1213 u32 gtlc_survive;
1214 u32 pmwgicz;
1215
1216 /* Display 2 CZ domain */
1217 u32 gu_ctl0;
1218 u32 gu_ctl1;
1219 u32 pcbr;
1220 u32 clock_gate_dis2;
1221 };
1222
1223 struct intel_rps_ei {
1224 u32 cz_clock;
1225 u32 render_c0;
1226 u32 media_c0;
1227 };
1228
1229 struct intel_gen6_power_mgmt {
1230 /*
1231 * work, interrupts_enabled and pm_iir are protected by
1232 * dev_priv->irq_lock
1233 */
1234 struct work_struct work;
1235 bool interrupts_enabled;
1236 u32 pm_iir;
1237
1238 /* PM interrupt bits that should never be masked */
1239 u32 pm_intr_keep;
1240
1241 /* Frequencies are stored in potentially platform dependent multiples.
1242 * In other words, *_freq needs to be multiplied by X to be interesting.
1243 * Soft limits are those which are used for the dynamic reclocking done
1244 * by the driver (raise frequencies under heavy loads, and lower for
1245 * lighter loads). Hard limits are those imposed by the hardware.
1246 *
1247 * A distinction is made for overclocking, which is never enabled by
1248 * default, and is considered to be above the hard limit if it's
1249 * possible at all.
1250 */
1251 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1252 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1253 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1254 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1255 u8 min_freq; /* AKA RPn. Minimum frequency */
1256 u8 boost_freq; /* Frequency to request when wait boosting */
1257 u8 idle_freq; /* Frequency to request when we are idle */
1258 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1259 u8 rp1_freq; /* "less than" RP0 power/freqency */
1260 u8 rp0_freq; /* Non-overclocked max frequency. */
1261 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
1262
1263 u8 up_threshold; /* Current %busy required to uplock */
1264 u8 down_threshold; /* Current %busy required to downclock */
1265
1266 int last_adj;
1267 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1268
1269 spinlock_t client_lock;
1270 struct list_head clients;
1271 bool client_boost;
1272
1273 bool enabled;
1274 struct delayed_work autoenable_work;
1275 unsigned boosts;
1276
1277 /* manual wa residency calculations */
1278 struct intel_rps_ei up_ei, down_ei;
1279
1280 /*
1281 * Protects RPS/RC6 register access and PCU communication.
1282 * Must be taken after struct_mutex if nested. Note that
1283 * this lock may be held for long periods of time when
1284 * talking to hw - so only take it when talking to hw!
1285 */
1286 struct mutex hw_lock;
1287 };
1288
1289 /* defined intel_pm.c */
1290 extern spinlock_t mchdev_lock;
1291
1292 struct intel_ilk_power_mgmt {
1293 u8 cur_delay;
1294 u8 min_delay;
1295 u8 max_delay;
1296 u8 fmax;
1297 u8 fstart;
1298
1299 u64 last_count1;
1300 unsigned long last_time1;
1301 unsigned long chipset_power;
1302 u64 last_count2;
1303 u64 last_time2;
1304 unsigned long gfx_power;
1305 u8 corr;
1306
1307 int c_m;
1308 int r_t;
1309 };
1310
1311 struct drm_i915_private;
1312 struct i915_power_well;
1313
1314 struct i915_power_well_ops {
1315 /*
1316 * Synchronize the well's hw state to match the current sw state, for
1317 * example enable/disable it based on the current refcount. Called
1318 * during driver init and resume time, possibly after first calling
1319 * the enable/disable handlers.
1320 */
1321 void (*sync_hw)(struct drm_i915_private *dev_priv,
1322 struct i915_power_well *power_well);
1323 /*
1324 * Enable the well and resources that depend on it (for example
1325 * interrupts located on the well). Called after the 0->1 refcount
1326 * transition.
1327 */
1328 void (*enable)(struct drm_i915_private *dev_priv,
1329 struct i915_power_well *power_well);
1330 /*
1331 * Disable the well and resources that depend on it. Called after
1332 * the 1->0 refcount transition.
1333 */
1334 void (*disable)(struct drm_i915_private *dev_priv,
1335 struct i915_power_well *power_well);
1336 /* Returns the hw enabled state. */
1337 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1338 struct i915_power_well *power_well);
1339 };
1340
1341 /* Power well structure for haswell */
1342 struct i915_power_well {
1343 const char *name;
1344 bool always_on;
1345 /* power well enable/disable usage count */
1346 int count;
1347 /* cached hw enabled state */
1348 bool hw_enabled;
1349 unsigned long domains;
1350 /* unique identifier for this power well */
1351 unsigned long id;
1352 /*
1353 * Arbitraty data associated with this power well. Platform and power
1354 * well specific.
1355 */
1356 unsigned long data;
1357 const struct i915_power_well_ops *ops;
1358 };
1359
1360 struct i915_power_domains {
1361 /*
1362 * Power wells needed for initialization at driver init and suspend
1363 * time are on. They are kept on until after the first modeset.
1364 */
1365 bool init_power_on;
1366 bool initializing;
1367 int power_well_count;
1368
1369 struct mutex lock;
1370 int domain_use_count[POWER_DOMAIN_NUM];
1371 struct i915_power_well *power_wells;
1372 };
1373
1374 #define MAX_L3_SLICES 2
1375 struct intel_l3_parity {
1376 u32 *remap_info[MAX_L3_SLICES];
1377 struct work_struct error_work;
1378 int which_slice;
1379 };
1380
1381 struct i915_gem_mm {
1382 /** Memory allocator for GTT stolen memory */
1383 struct drm_mm stolen;
1384 /** Protects the usage of the GTT stolen memory allocator. This is
1385 * always the inner lock when overlapping with struct_mutex. */
1386 struct mutex stolen_lock;
1387
1388 /** List of all objects in gtt_space. Used to restore gtt
1389 * mappings on resume */
1390 struct list_head bound_list;
1391 /**
1392 * List of objects which are not bound to the GTT (thus
1393 * are idle and not used by the GPU). These objects may or may
1394 * not actually have any pages attached.
1395 */
1396 struct list_head unbound_list;
1397
1398 /** List of all objects in gtt_space, currently mmaped by userspace.
1399 * All objects within this list must also be on bound_list.
1400 */
1401 struct list_head userfault_list;
1402
1403 /**
1404 * List of objects which are pending destruction.
1405 */
1406 struct llist_head free_list;
1407 struct work_struct free_work;
1408
1409 /** Usable portion of the GTT for GEM */
1410 unsigned long stolen_base; /* limited to low memory (32-bit) */
1411
1412 /** PPGTT used for aliasing the PPGTT with the GTT */
1413 struct i915_hw_ppgtt *aliasing_ppgtt;
1414
1415 struct notifier_block oom_notifier;
1416 struct notifier_block vmap_notifier;
1417 struct shrinker shrinker;
1418
1419 /** LRU list of objects with fence regs on them. */
1420 struct list_head fence_list;
1421
1422 /**
1423 * Are we in a non-interruptible section of code like
1424 * modesetting?
1425 */
1426 bool interruptible;
1427
1428 /* the indicator for dispatch video commands on two BSD rings */
1429 atomic_t bsd_engine_dispatch_index;
1430
1431 /** Bit 6 swizzling required for X tiling */
1432 uint32_t bit_6_swizzle_x;
1433 /** Bit 6 swizzling required for Y tiling */
1434 uint32_t bit_6_swizzle_y;
1435
1436 /* accounting, useful for userland debugging */
1437 spinlock_t object_stat_lock;
1438 u64 object_memory;
1439 u32 object_count;
1440 };
1441
1442 struct drm_i915_error_state_buf {
1443 struct drm_i915_private *i915;
1444 unsigned bytes;
1445 unsigned size;
1446 int err;
1447 u8 *buf;
1448 loff_t start;
1449 loff_t pos;
1450 };
1451
1452 struct i915_error_state_file_priv {
1453 struct drm_device *dev;
1454 struct drm_i915_error_state *error;
1455 };
1456
1457 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1458 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1459
1460 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */
1461 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */
1462
1463 struct i915_gpu_error {
1464 /* For hangcheck timer */
1465 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1466 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1467
1468 struct delayed_work hangcheck_work;
1469
1470 /* For reset and error_state handling. */
1471 spinlock_t lock;
1472 /* Protected by the above dev->gpu_error.lock. */
1473 struct drm_i915_error_state *first_error;
1474
1475 unsigned long missed_irq_rings;
1476
1477 /**
1478 * State variable controlling the reset flow and count
1479 *
1480 * This is a counter which gets incremented when reset is triggered,
1481 *
1482 * Before the reset commences, the I915_RESET_IN_PROGRESS bit is set
1483 * meaning that any waiters holding onto the struct_mutex should
1484 * relinquish the lock immediately in order for the reset to start.
1485 *
1486 * If reset is not completed succesfully, the I915_WEDGE bit is
1487 * set meaning that hardware is terminally sour and there is no
1488 * recovery. All waiters on the reset_queue will be woken when
1489 * that happens.
1490 *
1491 * This counter is used by the wait_seqno code to notice that reset
1492 * event happened and it needs to restart the entire ioctl (since most
1493 * likely the seqno it waited for won't ever signal anytime soon).
1494 *
1495 * This is important for lock-free wait paths, where no contended lock
1496 * naturally enforces the correct ordering between the bail-out of the
1497 * waiter and the gpu reset work code.
1498 */
1499 unsigned long reset_count;
1500
1501 unsigned long flags;
1502 #define I915_RESET_IN_PROGRESS 0
1503 #define I915_WEDGED (BITS_PER_LONG - 1)
1504
1505 /**
1506 * Waitqueue to signal when a hang is detected. Used to for waiters
1507 * to release the struct_mutex for the reset to procede.
1508 */
1509 wait_queue_head_t wait_queue;
1510
1511 /**
1512 * Waitqueue to signal when the reset has completed. Used by clients
1513 * that wait for dev_priv->mm.wedged to settle.
1514 */
1515 wait_queue_head_t reset_queue;
1516
1517 /* For missed irq/seqno simulation. */
1518 unsigned long test_irq_rings;
1519 };
1520
1521 enum modeset_restore {
1522 MODESET_ON_LID_OPEN,
1523 MODESET_DONE,
1524 MODESET_SUSPENDED,
1525 };
1526
1527 #define DP_AUX_A 0x40
1528 #define DP_AUX_B 0x10
1529 #define DP_AUX_C 0x20
1530 #define DP_AUX_D 0x30
1531
1532 #define DDC_PIN_B 0x05
1533 #define DDC_PIN_C 0x04
1534 #define DDC_PIN_D 0x06
1535
1536 struct ddi_vbt_port_info {
1537 /*
1538 * This is an index in the HDMI/DVI DDI buffer translation table.
1539 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1540 * populate this field.
1541 */
1542 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1543 uint8_t hdmi_level_shift;
1544
1545 uint8_t supports_dvi:1;
1546 uint8_t supports_hdmi:1;
1547 uint8_t supports_dp:1;
1548
1549 uint8_t alternate_aux_channel;
1550 uint8_t alternate_ddc_pin;
1551
1552 uint8_t dp_boost_level;
1553 uint8_t hdmi_boost_level;
1554 };
1555
1556 enum psr_lines_to_wait {
1557 PSR_0_LINES_TO_WAIT = 0,
1558 PSR_1_LINE_TO_WAIT,
1559 PSR_4_LINES_TO_WAIT,
1560 PSR_8_LINES_TO_WAIT
1561 };
1562
1563 struct intel_vbt_data {
1564 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1565 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1566
1567 /* Feature bits */
1568 unsigned int int_tv_support:1;
1569 unsigned int lvds_dither:1;
1570 unsigned int lvds_vbt:1;
1571 unsigned int int_crt_support:1;
1572 unsigned int lvds_use_ssc:1;
1573 unsigned int display_clock_mode:1;
1574 unsigned int fdi_rx_polarity_inverted:1;
1575 unsigned int panel_type:4;
1576 int lvds_ssc_freq;
1577 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1578
1579 enum drrs_support_type drrs_type;
1580
1581 struct {
1582 int rate;
1583 int lanes;
1584 int preemphasis;
1585 int vswing;
1586 bool low_vswing;
1587 bool initialized;
1588 bool support;
1589 int bpp;
1590 struct edp_power_seq pps;
1591 } edp;
1592
1593 struct {
1594 bool full_link;
1595 bool require_aux_wakeup;
1596 int idle_frames;
1597 enum psr_lines_to_wait lines_to_wait;
1598 int tp1_wakeup_time;
1599 int tp2_tp3_wakeup_time;
1600 } psr;
1601
1602 struct {
1603 u16 pwm_freq_hz;
1604 bool present;
1605 bool active_low_pwm;
1606 u8 min_brightness; /* min_brightness/255 of max */
1607 enum intel_backlight_type type;
1608 } backlight;
1609
1610 /* MIPI DSI */
1611 struct {
1612 u16 panel_id;
1613 struct mipi_config *config;
1614 struct mipi_pps_data *pps;
1615 u8 seq_version;
1616 u32 size;
1617 u8 *data;
1618 const u8 *sequence[MIPI_SEQ_MAX];
1619 } dsi;
1620
1621 int crt_ddc_pin;
1622
1623 int child_dev_num;
1624 union child_device_config *child_dev;
1625
1626 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1627 struct sdvo_device_mapping sdvo_mappings[2];
1628 };
1629
1630 enum intel_ddb_partitioning {
1631 INTEL_DDB_PART_1_2,
1632 INTEL_DDB_PART_5_6, /* IVB+ */
1633 };
1634
1635 struct intel_wm_level {
1636 bool enable;
1637 uint32_t pri_val;
1638 uint32_t spr_val;
1639 uint32_t cur_val;
1640 uint32_t fbc_val;
1641 };
1642
1643 struct ilk_wm_values {
1644 uint32_t wm_pipe[3];
1645 uint32_t wm_lp[3];
1646 uint32_t wm_lp_spr[3];
1647 uint32_t wm_linetime[3];
1648 bool enable_fbc_wm;
1649 enum intel_ddb_partitioning partitioning;
1650 };
1651
1652 struct vlv_pipe_wm {
1653 uint16_t primary;
1654 uint16_t sprite[2];
1655 uint8_t cursor;
1656 };
1657
1658 struct vlv_sr_wm {
1659 uint16_t plane;
1660 uint8_t cursor;
1661 };
1662
1663 struct vlv_wm_values {
1664 struct vlv_pipe_wm pipe[3];
1665 struct vlv_sr_wm sr;
1666 struct {
1667 uint8_t cursor;
1668 uint8_t sprite[2];
1669 uint8_t primary;
1670 } ddl[3];
1671 uint8_t level;
1672 bool cxsr;
1673 };
1674
1675 struct skl_ddb_entry {
1676 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1677 };
1678
1679 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1680 {
1681 return entry->end - entry->start;
1682 }
1683
1684 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1685 const struct skl_ddb_entry *e2)
1686 {
1687 if (e1->start == e2->start && e1->end == e2->end)
1688 return true;
1689
1690 return false;
1691 }
1692
1693 struct skl_ddb_allocation {
1694 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1695 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1696 };
1697
1698 struct skl_wm_values {
1699 unsigned dirty_pipes;
1700 struct skl_ddb_allocation ddb;
1701 };
1702
1703 struct skl_wm_level {
1704 bool plane_en;
1705 uint16_t plane_res_b;
1706 uint8_t plane_res_l;
1707 };
1708
1709 /*
1710 * This struct helps tracking the state needed for runtime PM, which puts the
1711 * device in PCI D3 state. Notice that when this happens, nothing on the
1712 * graphics device works, even register access, so we don't get interrupts nor
1713 * anything else.
1714 *
1715 * Every piece of our code that needs to actually touch the hardware needs to
1716 * either call intel_runtime_pm_get or call intel_display_power_get with the
1717 * appropriate power domain.
1718 *
1719 * Our driver uses the autosuspend delay feature, which means we'll only really
1720 * suspend if we stay with zero refcount for a certain amount of time. The
1721 * default value is currently very conservative (see intel_runtime_pm_enable), but
1722 * it can be changed with the standard runtime PM files from sysfs.
1723 *
1724 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1725 * goes back to false exactly before we reenable the IRQs. We use this variable
1726 * to check if someone is trying to enable/disable IRQs while they're supposed
1727 * to be disabled. This shouldn't happen and we'll print some error messages in
1728 * case it happens.
1729 *
1730 * For more, read the Documentation/power/runtime_pm.txt.
1731 */
1732 struct i915_runtime_pm {
1733 atomic_t wakeref_count;
1734 bool suspended;
1735 bool irqs_enabled;
1736 };
1737
1738 enum intel_pipe_crc_source {
1739 INTEL_PIPE_CRC_SOURCE_NONE,
1740 INTEL_PIPE_CRC_SOURCE_PLANE1,
1741 INTEL_PIPE_CRC_SOURCE_PLANE2,
1742 INTEL_PIPE_CRC_SOURCE_PF,
1743 INTEL_PIPE_CRC_SOURCE_PIPE,
1744 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1745 INTEL_PIPE_CRC_SOURCE_TV,
1746 INTEL_PIPE_CRC_SOURCE_DP_B,
1747 INTEL_PIPE_CRC_SOURCE_DP_C,
1748 INTEL_PIPE_CRC_SOURCE_DP_D,
1749 INTEL_PIPE_CRC_SOURCE_AUTO,
1750 INTEL_PIPE_CRC_SOURCE_MAX,
1751 };
1752
1753 struct intel_pipe_crc_entry {
1754 uint32_t frame;
1755 uint32_t crc[5];
1756 };
1757
1758 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1759 struct intel_pipe_crc {
1760 spinlock_t lock;
1761 bool opened; /* exclusive access to the result file */
1762 struct intel_pipe_crc_entry *entries;
1763 enum intel_pipe_crc_source source;
1764 int head, tail;
1765 wait_queue_head_t wq;
1766 };
1767
1768 struct i915_frontbuffer_tracking {
1769 spinlock_t lock;
1770
1771 /*
1772 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1773 * scheduled flips.
1774 */
1775 unsigned busy_bits;
1776 unsigned flip_bits;
1777 };
1778
1779 struct i915_wa_reg {
1780 i915_reg_t addr;
1781 u32 value;
1782 /* bitmask representing WA bits */
1783 u32 mask;
1784 };
1785
1786 /*
1787 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1788 * allowing it for RCS as we don't foresee any requirement of having
1789 * a whitelist for other engines. When it is really required for
1790 * other engines then the limit need to be increased.
1791 */
1792 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1793
1794 struct i915_workarounds {
1795 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1796 u32 count;
1797 u32 hw_whitelist_count[I915_NUM_ENGINES];
1798 };
1799
1800 struct i915_virtual_gpu {
1801 bool active;
1802 };
1803
1804 /* used in computing the new watermarks state */
1805 struct intel_wm_config {
1806 unsigned int num_pipes_active;
1807 bool sprites_enabled;
1808 bool sprites_scaled;
1809 };
1810
1811 struct drm_i915_private {
1812 struct drm_device drm;
1813
1814 struct kmem_cache *objects;
1815 struct kmem_cache *vmas;
1816 struct kmem_cache *requests;
1817 struct kmem_cache *dependencies;
1818
1819 const struct intel_device_info info;
1820
1821 int relative_constants_mode;
1822
1823 void __iomem *regs;
1824
1825 struct intel_uncore uncore;
1826
1827 struct i915_virtual_gpu vgpu;
1828
1829 struct intel_gvt *gvt;
1830
1831 struct intel_guc guc;
1832
1833 struct intel_csr csr;
1834
1835 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
1836
1837 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
1838 * controller on different i2c buses. */
1839 struct mutex gmbus_mutex;
1840
1841 /**
1842 * Base address of the gmbus and gpio block.
1843 */
1844 uint32_t gpio_mmio_base;
1845
1846 /* MMIO base address for MIPI regs */
1847 uint32_t mipi_mmio_base;
1848
1849 uint32_t psr_mmio_base;
1850
1851 uint32_t pps_mmio_base;
1852
1853 wait_queue_head_t gmbus_wait_queue;
1854
1855 struct pci_dev *bridge_dev;
1856 struct i915_gem_context *kernel_context;
1857 struct intel_engine_cs *engine[I915_NUM_ENGINES];
1858 struct i915_vma *semaphore;
1859
1860 struct drm_dma_handle *status_page_dmah;
1861 struct resource mch_res;
1862
1863 /* protects the irq masks */
1864 spinlock_t irq_lock;
1865
1866 /* protects the mmio flip data */
1867 spinlock_t mmio_flip_lock;
1868
1869 bool display_irqs_enabled;
1870
1871 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
1872 struct pm_qos_request pm_qos;
1873
1874 /* Sideband mailbox protection */
1875 struct mutex sb_lock;
1876
1877 /** Cached value of IMR to avoid reads in updating the bitfield */
1878 union {
1879 u32 irq_mask;
1880 u32 de_irq_mask[I915_MAX_PIPES];
1881 };
1882 u32 gt_irq_mask;
1883 u32 pm_imr;
1884 u32 pm_ier;
1885 u32 pm_rps_events;
1886 u32 pm_guc_events;
1887 u32 pipestat_irq_mask[I915_MAX_PIPES];
1888
1889 struct i915_hotplug hotplug;
1890 struct intel_fbc fbc;
1891 struct i915_drrs drrs;
1892 struct intel_opregion opregion;
1893 struct intel_vbt_data vbt;
1894
1895 bool preserve_bios_swizzle;
1896
1897 /* overlay */
1898 struct intel_overlay *overlay;
1899
1900 /* backlight registers and fields in struct intel_panel */
1901 struct mutex backlight_lock;
1902
1903 /* LVDS info */
1904 bool no_aux_handshake;
1905
1906 /* protects panel power sequencer state */
1907 struct mutex pps_mutex;
1908
1909 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
1910 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
1911
1912 unsigned int fsb_freq, mem_freq, is_ddr3;
1913 unsigned int skl_preferred_vco_freq;
1914 unsigned int cdclk_freq, max_cdclk_freq, atomic_cdclk_freq;
1915 unsigned int max_dotclk_freq;
1916 unsigned int rawclk_freq;
1917 unsigned int hpll_freq;
1918 unsigned int czclk_freq;
1919
1920 struct {
1921 unsigned int vco, ref;
1922 } cdclk_pll;
1923
1924 /**
1925 * wq - Driver workqueue for GEM.
1926 *
1927 * NOTE: Work items scheduled here are not allowed to grab any modeset
1928 * locks, for otherwise the flushing done in the pageflip code will
1929 * result in deadlocks.
1930 */
1931 struct workqueue_struct *wq;
1932
1933 /* Display functions */
1934 struct drm_i915_display_funcs display;
1935
1936 /* PCH chipset type */
1937 enum intel_pch pch_type;
1938 unsigned short pch_id;
1939
1940 unsigned long quirks;
1941
1942 enum modeset_restore modeset_restore;
1943 struct mutex modeset_restore_lock;
1944 struct drm_atomic_state *modeset_restore_state;
1945 struct drm_modeset_acquire_ctx reset_ctx;
1946
1947 struct list_head vm_list; /* Global list of all address spaces */
1948 struct i915_ggtt ggtt; /* VM representing the global address space */
1949
1950 struct i915_gem_mm mm;
1951 DECLARE_HASHTABLE(mm_structs, 7);
1952 struct mutex mm_lock;
1953
1954 /* The hw wants to have a stable context identifier for the lifetime
1955 * of the context (for OA, PASID, faults, etc). This is limited
1956 * in execlists to 21 bits.
1957 */
1958 struct ida context_hw_ida;
1959 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
1960
1961 /* Kernel Modesetting */
1962
1963 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
1964 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
1965 wait_queue_head_t pending_flip_queue;
1966
1967 #ifdef CONFIG_DEBUG_FS
1968 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
1969 #endif
1970
1971 /* dpll and cdclk state is protected by connection_mutex */
1972 int num_shared_dpll;
1973 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
1974 const struct intel_dpll_mgr *dpll_mgr;
1975
1976 /*
1977 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
1978 * Must be global rather than per dpll, because on some platforms
1979 * plls share registers.
1980 */
1981 struct mutex dpll_lock;
1982
1983 unsigned int active_crtcs;
1984 unsigned int min_pixclk[I915_MAX_PIPES];
1985
1986 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
1987
1988 struct i915_workarounds workarounds;
1989
1990 struct i915_frontbuffer_tracking fb_tracking;
1991
1992 u16 orig_clock;
1993
1994 bool mchbar_need_disable;
1995
1996 struct intel_l3_parity l3_parity;
1997
1998 /* Cannot be determined by PCIID. You must always read a register. */
1999 u32 edram_cap;
2000
2001 /* gen6+ rps state */
2002 struct intel_gen6_power_mgmt rps;
2003
2004 /* ilk-only ips/rps state. Everything in here is protected by the global
2005 * mchdev_lock in intel_pm.c */
2006 struct intel_ilk_power_mgmt ips;
2007
2008 struct i915_power_domains power_domains;
2009
2010 struct i915_psr psr;
2011
2012 struct i915_gpu_error gpu_error;
2013
2014 struct drm_i915_gem_object *vlv_pctx;
2015
2016 #ifdef CONFIG_DRM_FBDEV_EMULATION
2017 /* list of fbdev register on this device */
2018 struct intel_fbdev *fbdev;
2019 struct work_struct fbdev_suspend_work;
2020 #endif
2021
2022 struct drm_property *broadcast_rgb_property;
2023 struct drm_property *force_audio_property;
2024
2025 /* hda/i915 audio component */
2026 struct i915_audio_component *audio_component;
2027 bool audio_component_registered;
2028 /**
2029 * av_mutex - mutex for audio/video sync
2030 *
2031 */
2032 struct mutex av_mutex;
2033
2034 uint32_t hw_context_size;
2035 struct list_head context_list;
2036
2037 u32 fdi_rx_config;
2038
2039 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
2040 u32 chv_phy_control;
2041 /*
2042 * Shadows for CHV DPLL_MD regs to keep the state
2043 * checker somewhat working in the presence hardware
2044 * crappiness (can't read out DPLL_MD for pipes B & C).
2045 */
2046 u32 chv_dpll_md[I915_MAX_PIPES];
2047 u32 bxt_phy_grc;
2048
2049 u32 suspend_count;
2050 bool suspended_to_idle;
2051 struct i915_suspend_saved_registers regfile;
2052 struct vlv_s0ix_state vlv_s0ix_state;
2053
2054 enum {
2055 I915_SAGV_UNKNOWN = 0,
2056 I915_SAGV_DISABLED,
2057 I915_SAGV_ENABLED,
2058 I915_SAGV_NOT_CONTROLLED
2059 } sagv_status;
2060
2061 struct {
2062 /*
2063 * Raw watermark latency values:
2064 * in 0.1us units for WM0,
2065 * in 0.5us units for WM1+.
2066 */
2067 /* primary */
2068 uint16_t pri_latency[5];
2069 /* sprite */
2070 uint16_t spr_latency[5];
2071 /* cursor */
2072 uint16_t cur_latency[5];
2073 /*
2074 * Raw watermark memory latency values
2075 * for SKL for all 8 levels
2076 * in 1us units.
2077 */
2078 uint16_t skl_latency[8];
2079
2080 /* current hardware state */
2081 union {
2082 struct ilk_wm_values hw;
2083 struct skl_wm_values skl_hw;
2084 struct vlv_wm_values vlv;
2085 };
2086
2087 uint8_t max_level;
2088
2089 /*
2090 * Should be held around atomic WM register writing; also
2091 * protects * intel_crtc->wm.active and
2092 * cstate->wm.need_postvbl_update.
2093 */
2094 struct mutex wm_mutex;
2095
2096 /*
2097 * Set during HW readout of watermarks/DDB. Some platforms
2098 * need to know when we're still using BIOS-provided values
2099 * (which we don't fully trust).
2100 */
2101 bool distrust_bios_wm;
2102 } wm;
2103
2104 struct i915_runtime_pm pm;
2105
2106 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2107 struct {
2108 void (*resume)(struct drm_i915_private *);
2109 void (*cleanup_engine)(struct intel_engine_cs *engine);
2110
2111 struct list_head timelines;
2112 struct i915_gem_timeline global_timeline;
2113 u32 active_requests;
2114
2115 /**
2116 * Is the GPU currently considered idle, or busy executing
2117 * userspace requests? Whilst idle, we allow runtime power
2118 * management to power down the hardware and display clocks.
2119 * In order to reduce the effect on performance, there
2120 * is a slight delay before we do so.
2121 */
2122 bool awake;
2123
2124 /**
2125 * We leave the user IRQ off as much as possible,
2126 * but this means that requests will finish and never
2127 * be retired once the system goes idle. Set a timer to
2128 * fire periodically while the ring is running. When it
2129 * fires, go retire requests.
2130 */
2131 struct delayed_work retire_work;
2132
2133 /**
2134 * When we detect an idle GPU, we want to turn on
2135 * powersaving features. So once we see that there
2136 * are no more requests outstanding and no more
2137 * arrive within a small period of time, we fire
2138 * off the idle_work.
2139 */
2140 struct delayed_work idle_work;
2141
2142 ktime_t last_init_time;
2143 } gt;
2144
2145 /* perform PHY state sanity checks? */
2146 bool chv_phy_assert[2];
2147
2148 /* Used to save the pipe-to-encoder mapping for audio */
2149 struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2150
2151 /*
2152 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2153 * will be rejected. Instead look for a better place.
2154 */
2155 };
2156
2157 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2158 {
2159 return container_of(dev, struct drm_i915_private, drm);
2160 }
2161
2162 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2163 {
2164 return to_i915(dev_get_drvdata(kdev));
2165 }
2166
2167 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2168 {
2169 return container_of(guc, struct drm_i915_private, guc);
2170 }
2171
2172 /* Simple iterator over all initialised engines */
2173 #define for_each_engine(engine__, dev_priv__, id__) \
2174 for ((id__) = 0; \
2175 (id__) < I915_NUM_ENGINES; \
2176 (id__)++) \
2177 for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2178
2179 #define __mask_next_bit(mask) ({ \
2180 int __idx = ffs(mask) - 1; \
2181 mask &= ~BIT(__idx); \
2182 __idx; \
2183 })
2184
2185 /* Iterator over subset of engines selected by mask */
2186 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2187 for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask; \
2188 tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2189
2190 enum hdmi_force_audio {
2191 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2192 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2193 HDMI_AUDIO_AUTO, /* trust EDID */
2194 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2195 };
2196
2197 #define I915_GTT_OFFSET_NONE ((u32)-1)
2198
2199 /*
2200 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2201 * considered to be the frontbuffer for the given plane interface-wise. This
2202 * doesn't mean that the hw necessarily already scans it out, but that any
2203 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2204 *
2205 * We have one bit per pipe and per scanout plane type.
2206 */
2207 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2208 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2209 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2210 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2211 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2212 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2213 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2214 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2215 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2216 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2217 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2218 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2219
2220 /*
2221 * Optimised SGL iterator for GEM objects
2222 */
2223 static __always_inline struct sgt_iter {
2224 struct scatterlist *sgp;
2225 union {
2226 unsigned long pfn;
2227 dma_addr_t dma;
2228 };
2229 unsigned int curr;
2230 unsigned int max;
2231 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2232 struct sgt_iter s = { .sgp = sgl };
2233
2234 if (s.sgp) {
2235 s.max = s.curr = s.sgp->offset;
2236 s.max += s.sgp->length;
2237 if (dma)
2238 s.dma = sg_dma_address(s.sgp);
2239 else
2240 s.pfn = page_to_pfn(sg_page(s.sgp));
2241 }
2242
2243 return s;
2244 }
2245
2246 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2247 {
2248 ++sg;
2249 if (unlikely(sg_is_chain(sg)))
2250 sg = sg_chain_ptr(sg);
2251 return sg;
2252 }
2253
2254 /**
2255 * __sg_next - return the next scatterlist entry in a list
2256 * @sg: The current sg entry
2257 *
2258 * Description:
2259 * If the entry is the last, return NULL; otherwise, step to the next
2260 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2261 * otherwise just return the pointer to the current element.
2262 **/
2263 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2264 {
2265 #ifdef CONFIG_DEBUG_SG
2266 BUG_ON(sg->sg_magic != SG_MAGIC);
2267 #endif
2268 return sg_is_last(sg) ? NULL : ____sg_next(sg);
2269 }
2270
2271 /**
2272 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2273 * @__dmap: DMA address (output)
2274 * @__iter: 'struct sgt_iter' (iterator state, internal)
2275 * @__sgt: sg_table to iterate over (input)
2276 */
2277 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2278 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2279 ((__dmap) = (__iter).dma + (__iter).curr); \
2280 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2281 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2282
2283 /**
2284 * for_each_sgt_page - iterate over the pages of the given sg_table
2285 * @__pp: page pointer (output)
2286 * @__iter: 'struct sgt_iter' (iterator state, internal)
2287 * @__sgt: sg_table to iterate over (input)
2288 */
2289 #define for_each_sgt_page(__pp, __iter, __sgt) \
2290 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2291 ((__pp) = (__iter).pfn == 0 ? NULL : \
2292 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2293 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2294 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2295
2296 /*
2297 * A command that requires special handling by the command parser.
2298 */
2299 struct drm_i915_cmd_descriptor {
2300 /*
2301 * Flags describing how the command parser processes the command.
2302 *
2303 * CMD_DESC_FIXED: The command has a fixed length if this is set,
2304 * a length mask if not set
2305 * CMD_DESC_SKIP: The command is allowed but does not follow the
2306 * standard length encoding for the opcode range in
2307 * which it falls
2308 * CMD_DESC_REJECT: The command is never allowed
2309 * CMD_DESC_REGISTER: The command should be checked against the
2310 * register whitelist for the appropriate ring
2311 * CMD_DESC_MASTER: The command is allowed if the submitting process
2312 * is the DRM master
2313 */
2314 u32 flags;
2315 #define CMD_DESC_FIXED (1<<0)
2316 #define CMD_DESC_SKIP (1<<1)
2317 #define CMD_DESC_REJECT (1<<2)
2318 #define CMD_DESC_REGISTER (1<<3)
2319 #define CMD_DESC_BITMASK (1<<4)
2320 #define CMD_DESC_MASTER (1<<5)
2321
2322 /*
2323 * The command's unique identification bits and the bitmask to get them.
2324 * This isn't strictly the opcode field as defined in the spec and may
2325 * also include type, subtype, and/or subop fields.
2326 */
2327 struct {
2328 u32 value;
2329 u32 mask;
2330 } cmd;
2331
2332 /*
2333 * The command's length. The command is either fixed length (i.e. does
2334 * not include a length field) or has a length field mask. The flag
2335 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
2336 * a length mask. All command entries in a command table must include
2337 * length information.
2338 */
2339 union {
2340 u32 fixed;
2341 u32 mask;
2342 } length;
2343
2344 /*
2345 * Describes where to find a register address in the command to check
2346 * against the ring's register whitelist. Only valid if flags has the
2347 * CMD_DESC_REGISTER bit set.
2348 *
2349 * A non-zero step value implies that the command may access multiple
2350 * registers in sequence (e.g. LRI), in that case step gives the
2351 * distance in dwords between individual offset fields.
2352 */
2353 struct {
2354 u32 offset;
2355 u32 mask;
2356 u32 step;
2357 } reg;
2358
2359 #define MAX_CMD_DESC_BITMASKS 3
2360 /*
2361 * Describes command checks where a particular dword is masked and
2362 * compared against an expected value. If the command does not match
2363 * the expected value, the parser rejects it. Only valid if flags has
2364 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
2365 * are valid.
2366 *
2367 * If the check specifies a non-zero condition_mask then the parser
2368 * only performs the check when the bits specified by condition_mask
2369 * are non-zero.
2370 */
2371 struct {
2372 u32 offset;
2373 u32 mask;
2374 u32 expected;
2375 u32 condition_offset;
2376 u32 condition_mask;
2377 } bits[MAX_CMD_DESC_BITMASKS];
2378 };
2379
2380 /*
2381 * A table of commands requiring special handling by the command parser.
2382 *
2383 * Each engine has an array of tables. Each table consists of an array of
2384 * command descriptors, which must be sorted with command opcodes in
2385 * ascending order.
2386 */
2387 struct drm_i915_cmd_table {
2388 const struct drm_i915_cmd_descriptor *table;
2389 int count;
2390 };
2391
2392 static inline const struct intel_device_info *
2393 intel_info(const struct drm_i915_private *dev_priv)
2394 {
2395 return &dev_priv->info;
2396 }
2397
2398 #define INTEL_INFO(dev_priv) intel_info((dev_priv))
2399
2400 #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen)
2401 #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id)
2402
2403 #define REVID_FOREVER 0xff
2404 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision)
2405
2406 #define GEN_FOREVER (0)
2407 /*
2408 * Returns true if Gen is in inclusive range [Start, End].
2409 *
2410 * Use GEN_FOREVER for unbound start and or end.
2411 */
2412 #define IS_GEN(dev_priv, s, e) ({ \
2413 unsigned int __s = (s), __e = (e); \
2414 BUILD_BUG_ON(!__builtin_constant_p(s)); \
2415 BUILD_BUG_ON(!__builtin_constant_p(e)); \
2416 if ((__s) != GEN_FOREVER) \
2417 __s = (s) - 1; \
2418 if ((__e) == GEN_FOREVER) \
2419 __e = BITS_PER_LONG - 1; \
2420 else \
2421 __e = (e) - 1; \
2422 !!((dev_priv)->info.gen_mask & GENMASK((__e), (__s))); \
2423 })
2424
2425 /*
2426 * Return true if revision is in range [since,until] inclusive.
2427 *
2428 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2429 */
2430 #define IS_REVID(p, since, until) \
2431 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2432
2433 #define IS_I830(dev_priv) (INTEL_DEVID(dev_priv) == 0x3577)
2434 #define IS_845G(dev_priv) (INTEL_DEVID(dev_priv) == 0x2562)
2435 #define IS_I85X(dev_priv) ((dev_priv)->info.is_i85x)
2436 #define IS_I865G(dev_priv) (INTEL_DEVID(dev_priv) == 0x2572)
2437 #define IS_I915G(dev_priv) ((dev_priv)->info.is_i915g)
2438 #define IS_I915GM(dev_priv) (INTEL_DEVID(dev_priv) == 0x2592)
2439 #define IS_I945G(dev_priv) (INTEL_DEVID(dev_priv) == 0x2772)
2440 #define IS_I945GM(dev_priv) ((dev_priv)->info.is_i945gm)
2441 #define IS_BROADWATER(dev_priv) ((dev_priv)->info.is_broadwater)
2442 #define IS_CRESTLINE(dev_priv) ((dev_priv)->info.is_crestline)
2443 #define IS_GM45(dev_priv) (INTEL_DEVID(dev_priv) == 0x2A42)
2444 #define IS_G4X(dev_priv) ((dev_priv)->info.is_g4x)
2445 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001)
2446 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011)
2447 #define IS_PINEVIEW(dev_priv) ((dev_priv)->info.is_pineview)
2448 #define IS_G33(dev_priv) ((dev_priv)->info.is_g33)
2449 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046)
2450 #define IS_IVYBRIDGE(dev_priv) ((dev_priv)->info.is_ivybridge)
2451 #define IS_IVB_GT1(dev_priv) (INTEL_DEVID(dev_priv) == 0x0156 || \
2452 INTEL_DEVID(dev_priv) == 0x0152 || \
2453 INTEL_DEVID(dev_priv) == 0x015a)
2454 #define IS_VALLEYVIEW(dev_priv) ((dev_priv)->info.is_valleyview)
2455 #define IS_CHERRYVIEW(dev_priv) ((dev_priv)->info.is_cherryview)
2456 #define IS_HASWELL(dev_priv) ((dev_priv)->info.is_haswell)
2457 #define IS_BROADWELL(dev_priv) ((dev_priv)->info.is_broadwell)
2458 #define IS_SKYLAKE(dev_priv) ((dev_priv)->info.is_skylake)
2459 #define IS_BROXTON(dev_priv) ((dev_priv)->info.is_broxton)
2460 #define IS_KABYLAKE(dev_priv) ((dev_priv)->info.is_kabylake)
2461 #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile)
2462 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2463 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2464 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \
2465 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \
2466 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \
2467 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2468 /* ULX machines are also considered ULT. */
2469 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \
2470 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2471 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \
2472 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2473 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \
2474 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2475 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \
2476 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2477 /* ULX machines are also considered ULT. */
2478 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \
2479 INTEL_DEVID(dev_priv) == 0x0A1E)
2480 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \
2481 INTEL_DEVID(dev_priv) == 0x1913 || \
2482 INTEL_DEVID(dev_priv) == 0x1916 || \
2483 INTEL_DEVID(dev_priv) == 0x1921 || \
2484 INTEL_DEVID(dev_priv) == 0x1926)
2485 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \
2486 INTEL_DEVID(dev_priv) == 0x1915 || \
2487 INTEL_DEVID(dev_priv) == 0x191E)
2488 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \
2489 INTEL_DEVID(dev_priv) == 0x5913 || \
2490 INTEL_DEVID(dev_priv) == 0x5916 || \
2491 INTEL_DEVID(dev_priv) == 0x5921 || \
2492 INTEL_DEVID(dev_priv) == 0x5926)
2493 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \
2494 INTEL_DEVID(dev_priv) == 0x5915 || \
2495 INTEL_DEVID(dev_priv) == 0x591E)
2496 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \
2497 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2498 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \
2499 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0030)
2500
2501 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2502
2503 #define SKL_REVID_A0 0x0
2504 #define SKL_REVID_B0 0x1
2505 #define SKL_REVID_C0 0x2
2506 #define SKL_REVID_D0 0x3
2507 #define SKL_REVID_E0 0x4
2508 #define SKL_REVID_F0 0x5
2509 #define SKL_REVID_G0 0x6
2510 #define SKL_REVID_H0 0x7
2511
2512 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2513
2514 #define BXT_REVID_A0 0x0
2515 #define BXT_REVID_A1 0x1
2516 #define BXT_REVID_B0 0x3
2517 #define BXT_REVID_C0 0x9
2518
2519 #define IS_BXT_REVID(dev_priv, since, until) \
2520 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2521
2522 #define KBL_REVID_A0 0x0
2523 #define KBL_REVID_B0 0x1
2524 #define KBL_REVID_C0 0x2
2525 #define KBL_REVID_D0 0x3
2526 #define KBL_REVID_E0 0x4
2527
2528 #define IS_KBL_REVID(dev_priv, since, until) \
2529 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2530
2531 /*
2532 * The genX designation typically refers to the render engine, so render
2533 * capability related checks should use IS_GEN, while display and other checks
2534 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2535 * chips, etc.).
2536 */
2537 #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1)))
2538 #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2)))
2539 #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3)))
2540 #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4)))
2541 #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5)))
2542 #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6)))
2543 #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7)))
2544 #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8)))
2545
2546 #define ENGINE_MASK(id) BIT(id)
2547 #define RENDER_RING ENGINE_MASK(RCS)
2548 #define BSD_RING ENGINE_MASK(VCS)
2549 #define BLT_RING ENGINE_MASK(BCS)
2550 #define VEBOX_RING ENGINE_MASK(VECS)
2551 #define BSD2_RING ENGINE_MASK(VCS2)
2552 #define ALL_ENGINES (~0)
2553
2554 #define HAS_ENGINE(dev_priv, id) \
2555 (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
2556
2557 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
2558 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
2559 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
2560 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
2561
2562 #define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc)
2563 #define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop)
2564 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED))
2565 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \
2566 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
2567
2568 #define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical)
2569
2570 #define HAS_HW_CONTEXTS(dev_priv) ((dev_priv)->info.has_hw_contexts)
2571 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
2572 ((dev_priv)->info.has_logical_ring_contexts)
2573 #define USES_PPGTT(dev_priv) (i915.enable_ppgtt)
2574 #define USES_FULL_PPGTT(dev_priv) (i915.enable_ppgtt >= 2)
2575 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915.enable_ppgtt == 3)
2576
2577 #define HAS_OVERLAY(dev_priv) ((dev_priv)->info.has_overlay)
2578 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
2579 ((dev_priv)->info.overlay_needs_physical)
2580
2581 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2582 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_845G(dev_priv))
2583
2584 /* WaRsDisableCoarsePowerGating:skl,bxt */
2585 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2586 (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1) || \
2587 IS_SKL_GT3(dev_priv) || \
2588 IS_SKL_GT4(dev_priv))
2589
2590 /*
2591 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2592 * even when in MSI mode. This results in spurious interrupt warnings if the
2593 * legacy irq no. is shared with another device. The kernel then disables that
2594 * interrupt source and so prevents the other device from working properly.
2595 */
2596 #define HAS_AUX_IRQ(dev_priv) ((dev_priv)->info.gen >= 5)
2597 #define HAS_GMBUS_IRQ(dev_priv) ((dev_priv)->info.has_gmbus_irq)
2598
2599 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2600 * rows, which changed the alignment requirements and fence programming.
2601 */
2602 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
2603 !(IS_I915G(dev_priv) || \
2604 IS_I915GM(dev_priv)))
2605 #define SUPPORTS_TV(dev_priv) ((dev_priv)->info.supports_tv)
2606 #define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.has_hotplug)
2607
2608 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2)
2609 #define HAS_PIPE_CXSR(dev_priv) ((dev_priv)->info.has_pipe_cxsr)
2610 #define HAS_FBC(dev_priv) ((dev_priv)->info.has_fbc)
2611
2612 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
2613
2614 #define HAS_DP_MST(dev_priv) ((dev_priv)->info.has_dp_mst)
2615
2616 #define HAS_DDI(dev_priv) ((dev_priv)->info.has_ddi)
2617 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
2618 #define HAS_PSR(dev_priv) ((dev_priv)->info.has_psr)
2619 #define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6)
2620 #define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p)
2621
2622 #define HAS_CSR(dev_priv) ((dev_priv)->info.has_csr)
2623
2624 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
2625 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
2626
2627 /*
2628 * For now, anything with a GuC requires uCode loading, and then supports
2629 * command submission once loaded. But these are logically independent
2630 * properties, so we have separate macros to test them.
2631 */
2632 #define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc)
2633 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
2634 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv))
2635
2636 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
2637
2638 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu)
2639
2640 #define INTEL_PCH_DEVICE_ID_MASK 0xff00
2641 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
2642 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
2643 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
2644 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
2645 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
2646 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
2647 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
2648 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA200
2649 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
2650 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
2651 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
2652
2653 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
2654 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
2655 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
2656 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
2657 #define HAS_PCH_LPT_LP(dev_priv) \
2658 ((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
2659 #define HAS_PCH_LPT_H(dev_priv) \
2660 ((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE)
2661 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
2662 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
2663 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
2664 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
2665
2666 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
2667
2668 #define HAS_LSPCON(dev_priv) (IS_GEN9(dev_priv))
2669
2670 /* DPF == dynamic parity feature */
2671 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
2672 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
2673 2 : HAS_L3_DPF(dev_priv))
2674
2675 #define GT_FREQUENCY_MULTIPLIER 50
2676 #define GEN9_FREQ_SCALER 3
2677
2678 #define HAS_DECOUPLED_MMIO(dev_priv) (INTEL_INFO(dev_priv)->has_decoupled_mmio)
2679
2680 #include "i915_trace.h"
2681
2682 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
2683 {
2684 #ifdef CONFIG_INTEL_IOMMU
2685 if (INTEL_GEN(dev_priv) >= 6 && intel_iommu_gfx_mapped)
2686 return true;
2687 #endif
2688 return false;
2689 }
2690
2691 extern int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
2692 extern int i915_resume_switcheroo(struct drm_device *dev);
2693
2694 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
2695 int enable_ppgtt);
2696
2697 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
2698
2699 /* i915_drv.c */
2700 void __printf(3, 4)
2701 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
2702 const char *fmt, ...);
2703
2704 #define i915_report_error(dev_priv, fmt, ...) \
2705 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
2706
2707 #ifdef CONFIG_COMPAT
2708 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
2709 unsigned long arg);
2710 #else
2711 #define i915_compat_ioctl NULL
2712 #endif
2713 extern const struct dev_pm_ops i915_pm_ops;
2714
2715 extern int i915_driver_load(struct pci_dev *pdev,
2716 const struct pci_device_id *ent);
2717 extern void i915_driver_unload(struct drm_device *dev);
2718 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
2719 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
2720 extern void i915_reset(struct drm_i915_private *dev_priv);
2721 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
2722 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
2723 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
2724 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
2725 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
2726 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
2727 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
2728 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
2729
2730 /* intel_hotplug.c */
2731 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
2732 u32 pin_mask, u32 long_mask);
2733 void intel_hpd_init(struct drm_i915_private *dev_priv);
2734 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
2735 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
2736 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
2737 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2738 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
2739
2740 /* i915_irq.c */
2741 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
2742 {
2743 unsigned long delay;
2744
2745 if (unlikely(!i915.enable_hangcheck))
2746 return;
2747
2748 /* Don't continually defer the hangcheck so that it is always run at
2749 * least once after work has been scheduled on any ring. Otherwise,
2750 * we will ignore a hung ring if a second ring is kept busy.
2751 */
2752
2753 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
2754 queue_delayed_work(system_long_wq,
2755 &dev_priv->gpu_error.hangcheck_work, delay);
2756 }
2757
2758 __printf(3, 4)
2759 void i915_handle_error(struct drm_i915_private *dev_priv,
2760 u32 engine_mask,
2761 const char *fmt, ...);
2762
2763 extern void intel_irq_init(struct drm_i915_private *dev_priv);
2764 int intel_irq_install(struct drm_i915_private *dev_priv);
2765 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
2766
2767 extern void intel_uncore_sanitize(struct drm_i915_private *dev_priv);
2768 extern void intel_uncore_early_sanitize(struct drm_i915_private *dev_priv,
2769 bool restore_forcewake);
2770 extern void intel_uncore_init(struct drm_i915_private *dev_priv);
2771 extern bool intel_uncore_unclaimed_mmio(struct drm_i915_private *dev_priv);
2772 extern bool intel_uncore_arm_unclaimed_mmio_detection(struct drm_i915_private *dev_priv);
2773 extern void intel_uncore_fini(struct drm_i915_private *dev_priv);
2774 extern void intel_uncore_forcewake_reset(struct drm_i915_private *dev_priv,
2775 bool restore);
2776 const char *intel_uncore_forcewake_domain_to_str(const enum forcewake_domain_id id);
2777 void intel_uncore_forcewake_get(struct drm_i915_private *dev_priv,
2778 enum forcewake_domains domains);
2779 void intel_uncore_forcewake_put(struct drm_i915_private *dev_priv,
2780 enum forcewake_domains domains);
2781 /* Like above but the caller must manage the uncore.lock itself.
2782 * Must be used with I915_READ_FW and friends.
2783 */
2784 void intel_uncore_forcewake_get__locked(struct drm_i915_private *dev_priv,
2785 enum forcewake_domains domains);
2786 void intel_uncore_forcewake_put__locked(struct drm_i915_private *dev_priv,
2787 enum forcewake_domains domains);
2788 u64 intel_uncore_edram_size(struct drm_i915_private *dev_priv);
2789
2790 void assert_forcewakes_inactive(struct drm_i915_private *dev_priv);
2791
2792 int intel_wait_for_register(struct drm_i915_private *dev_priv,
2793 i915_reg_t reg,
2794 const u32 mask,
2795 const u32 value,
2796 const unsigned long timeout_ms);
2797 int intel_wait_for_register_fw(struct drm_i915_private *dev_priv,
2798 i915_reg_t reg,
2799 const u32 mask,
2800 const u32 value,
2801 const unsigned long timeout_ms);
2802
2803 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
2804 {
2805 return dev_priv->gvt;
2806 }
2807
2808 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
2809 {
2810 return dev_priv->vgpu.active;
2811 }
2812
2813 void
2814 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2815 u32 status_mask);
2816
2817 void
2818 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
2819 u32 status_mask);
2820
2821 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
2822 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
2823 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
2824 uint32_t mask,
2825 uint32_t bits);
2826 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
2827 uint32_t interrupt_mask,
2828 uint32_t enabled_irq_mask);
2829 static inline void
2830 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2831 {
2832 ilk_update_display_irq(dev_priv, bits, bits);
2833 }
2834 static inline void
2835 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
2836 {
2837 ilk_update_display_irq(dev_priv, bits, 0);
2838 }
2839 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
2840 enum pipe pipe,
2841 uint32_t interrupt_mask,
2842 uint32_t enabled_irq_mask);
2843 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
2844 enum pipe pipe, uint32_t bits)
2845 {
2846 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
2847 }
2848 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
2849 enum pipe pipe, uint32_t bits)
2850 {
2851 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
2852 }
2853 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
2854 uint32_t interrupt_mask,
2855 uint32_t enabled_irq_mask);
2856 static inline void
2857 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2858 {
2859 ibx_display_interrupt_update(dev_priv, bits, bits);
2860 }
2861 static inline void
2862 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
2863 {
2864 ibx_display_interrupt_update(dev_priv, bits, 0);
2865 }
2866
2867 /* i915_gem.c */
2868 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
2869 struct drm_file *file_priv);
2870 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
2871 struct drm_file *file_priv);
2872 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
2873 struct drm_file *file_priv);
2874 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
2875 struct drm_file *file_priv);
2876 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2877 struct drm_file *file_priv);
2878 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
2879 struct drm_file *file_priv);
2880 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
2881 struct drm_file *file_priv);
2882 int i915_gem_execbuffer(struct drm_device *dev, void *data,
2883 struct drm_file *file_priv);
2884 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
2885 struct drm_file *file_priv);
2886 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2887 struct drm_file *file_priv);
2888 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
2889 struct drm_file *file);
2890 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
2891 struct drm_file *file);
2892 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2893 struct drm_file *file_priv);
2894 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
2895 struct drm_file *file_priv);
2896 int i915_gem_set_tiling(struct drm_device *dev, void *data,
2897 struct drm_file *file_priv);
2898 int i915_gem_get_tiling(struct drm_device *dev, void *data,
2899 struct drm_file *file_priv);
2900 void i915_gem_init_userptr(struct drm_i915_private *dev_priv);
2901 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
2902 struct drm_file *file);
2903 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
2904 struct drm_file *file_priv);
2905 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
2906 struct drm_file *file_priv);
2907 int i915_gem_load_init(struct drm_device *dev);
2908 void i915_gem_load_cleanup(struct drm_device *dev);
2909 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
2910 int i915_gem_freeze(struct drm_i915_private *dev_priv);
2911 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
2912
2913 void *i915_gem_object_alloc(struct drm_device *dev);
2914 void i915_gem_object_free(struct drm_i915_gem_object *obj);
2915 void i915_gem_object_init(struct drm_i915_gem_object *obj,
2916 const struct drm_i915_gem_object_ops *ops);
2917 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
2918 u64 size);
2919 struct drm_i915_gem_object *i915_gem_object_create_from_data(
2920 struct drm_device *dev, const void *data, size_t size);
2921 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
2922 void i915_gem_free_object(struct drm_gem_object *obj);
2923
2924 struct i915_vma * __must_check
2925 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
2926 const struct i915_ggtt_view *view,
2927 u64 size,
2928 u64 alignment,
2929 u64 flags);
2930
2931 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
2932 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
2933
2934 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
2935
2936 static inline int __sg_page_count(const struct scatterlist *sg)
2937 {
2938 return sg->length >> PAGE_SHIFT;
2939 }
2940
2941 struct scatterlist *
2942 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
2943 unsigned int n, unsigned int *offset);
2944
2945 struct page *
2946 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
2947 unsigned int n);
2948
2949 struct page *
2950 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
2951 unsigned int n);
2952
2953 dma_addr_t
2954 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
2955 unsigned long n);
2956
2957 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2958 struct sg_table *pages);
2959 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
2960
2961 static inline int __must_check
2962 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
2963 {
2964 might_lock(&obj->mm.lock);
2965
2966 if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
2967 return 0;
2968
2969 return __i915_gem_object_get_pages(obj);
2970 }
2971
2972 static inline void
2973 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
2974 {
2975 GEM_BUG_ON(!obj->mm.pages);
2976
2977 atomic_inc(&obj->mm.pages_pin_count);
2978 }
2979
2980 static inline bool
2981 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
2982 {
2983 return atomic_read(&obj->mm.pages_pin_count);
2984 }
2985
2986 static inline void
2987 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
2988 {
2989 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
2990 GEM_BUG_ON(!obj->mm.pages);
2991
2992 atomic_dec(&obj->mm.pages_pin_count);
2993 GEM_BUG_ON(atomic_read(&obj->mm.pages_pin_count) < obj->bind_count);
2994 }
2995
2996 static inline void
2997 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
2998 {
2999 __i915_gem_object_unpin_pages(obj);
3000 }
3001
3002 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3003 I915_MM_NORMAL = 0,
3004 I915_MM_SHRINKER
3005 };
3006
3007 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3008 enum i915_mm_subclass subclass);
3009 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3010
3011 enum i915_map_type {
3012 I915_MAP_WB = 0,
3013 I915_MAP_WC,
3014 };
3015
3016 /**
3017 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3018 * @obj - the object to map into kernel address space
3019 * @type - the type of mapping, used to select pgprot_t
3020 *
3021 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3022 * pages and then returns a contiguous mapping of the backing storage into
3023 * the kernel address space. Based on the @type of mapping, the PTE will be
3024 * set to either WriteBack or WriteCombine (via pgprot_t).
3025 *
3026 * The caller is responsible for calling i915_gem_object_unpin_map() when the
3027 * mapping is no longer required.
3028 *
3029 * Returns the pointer through which to access the mapped object, or an
3030 * ERR_PTR() on error.
3031 */
3032 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3033 enum i915_map_type type);
3034
3035 /**
3036 * i915_gem_object_unpin_map - releases an earlier mapping
3037 * @obj - the object to unmap
3038 *
3039 * After pinning the object and mapping its pages, once you are finished
3040 * with your access, call i915_gem_object_unpin_map() to release the pin
3041 * upon the mapping. Once the pin count reaches zero, that mapping may be
3042 * removed.
3043 */
3044 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3045 {
3046 i915_gem_object_unpin_pages(obj);
3047 }
3048
3049 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3050 unsigned int *needs_clflush);
3051 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3052 unsigned int *needs_clflush);
3053 #define CLFLUSH_BEFORE 0x1
3054 #define CLFLUSH_AFTER 0x2
3055 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER)
3056
3057 static inline void
3058 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3059 {
3060 i915_gem_object_unpin_pages(obj);
3061 }
3062
3063 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3064 void i915_vma_move_to_active(struct i915_vma *vma,
3065 struct drm_i915_gem_request *req,
3066 unsigned int flags);
3067 int i915_gem_dumb_create(struct drm_file *file_priv,
3068 struct drm_device *dev,
3069 struct drm_mode_create_dumb *args);
3070 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3071 uint32_t handle, uint64_t *offset);
3072 int i915_gem_mmap_gtt_version(void);
3073
3074 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3075 struct drm_i915_gem_object *new,
3076 unsigned frontbuffer_bits);
3077
3078 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3079
3080 struct drm_i915_gem_request *
3081 i915_gem_find_active_request(struct intel_engine_cs *engine);
3082
3083 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3084
3085 static inline bool i915_reset_in_progress(struct i915_gpu_error *error)
3086 {
3087 return unlikely(test_bit(I915_RESET_IN_PROGRESS, &error->flags));
3088 }
3089
3090 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3091 {
3092 return unlikely(test_bit(I915_WEDGED, &error->flags));
3093 }
3094
3095 static inline bool i915_reset_in_progress_or_wedged(struct i915_gpu_error *error)
3096 {
3097 return i915_reset_in_progress(error) | i915_terminally_wedged(error);
3098 }
3099
3100 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3101 {
3102 return READ_ONCE(error->reset_count);
3103 }
3104
3105 void i915_gem_reset(struct drm_i915_private *dev_priv);
3106 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3107 void i915_gem_clflush_object(struct drm_i915_gem_object *obj, bool force);
3108 int __must_check i915_gem_init(struct drm_device *dev);
3109 int __must_check i915_gem_init_hw(struct drm_device *dev);
3110 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3111 void i915_gem_cleanup_engines(struct drm_device *dev);
3112 int __must_check i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3113 unsigned int flags);
3114 int __must_check i915_gem_suspend(struct drm_device *dev);
3115 void i915_gem_resume(struct drm_device *dev);
3116 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf);
3117 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3118 unsigned int flags,
3119 long timeout,
3120 struct intel_rps_client *rps);
3121 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3122 unsigned int flags,
3123 int priority);
3124 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3125
3126 int __must_check
3127 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj,
3128 bool write);
3129 int __must_check
3130 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3131 struct i915_vma * __must_check
3132 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3133 u32 alignment,
3134 const struct i915_ggtt_view *view);
3135 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3136 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3137 int align);
3138 int i915_gem_open(struct drm_device *dev, struct drm_file *file);
3139 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3140
3141 u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv, u64 size,
3142 int tiling_mode);
3143 u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
3144 int tiling_mode, bool fenced);
3145
3146 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3147 enum i915_cache_level cache_level);
3148
3149 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3150 struct dma_buf *dma_buf);
3151
3152 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3153 struct drm_gem_object *gem_obj, int flags);
3154
3155 struct i915_vma *
3156 i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
3157 struct i915_address_space *vm,
3158 const struct i915_ggtt_view *view);
3159
3160 struct i915_vma *
3161 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3162 struct i915_address_space *vm,
3163 const struct i915_ggtt_view *view);
3164
3165 static inline struct i915_hw_ppgtt *
3166 i915_vm_to_ppgtt(struct i915_address_space *vm)
3167 {
3168 return container_of(vm, struct i915_hw_ppgtt, base);
3169 }
3170
3171 static inline struct i915_vma *
3172 i915_gem_object_to_ggtt(struct drm_i915_gem_object *obj,
3173 const struct i915_ggtt_view *view)
3174 {
3175 return i915_gem_obj_to_vma(obj, &to_i915(obj->base.dev)->ggtt.base, view);
3176 }
3177
3178 static inline unsigned long
3179 i915_gem_object_ggtt_offset(struct drm_i915_gem_object *o,
3180 const struct i915_ggtt_view *view)
3181 {
3182 return i915_ggtt_offset(i915_gem_object_to_ggtt(o, view));
3183 }
3184
3185 /* i915_gem_fence_reg.c */
3186 int __must_check i915_vma_get_fence(struct i915_vma *vma);
3187 int __must_check i915_vma_put_fence(struct i915_vma *vma);
3188
3189 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3190
3191 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3192 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3193 struct sg_table *pages);
3194 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3195 struct sg_table *pages);
3196
3197 /* i915_gem_context.c */
3198 int __must_check i915_gem_context_init(struct drm_device *dev);
3199 void i915_gem_context_lost(struct drm_i915_private *dev_priv);
3200 void i915_gem_context_fini(struct drm_device *dev);
3201 int i915_gem_context_open(struct drm_device *dev, struct drm_file *file);
3202 void i915_gem_context_close(struct drm_device *dev, struct drm_file *file);
3203 int i915_switch_context(struct drm_i915_gem_request *req);
3204 int i915_gem_switch_to_kernel_context(struct drm_i915_private *dev_priv);
3205 struct i915_vma *
3206 i915_gem_context_pin_legacy(struct i915_gem_context *ctx,
3207 unsigned int flags);
3208 void i915_gem_context_free(struct kref *ctx_ref);
3209 struct drm_i915_gem_object *
3210 i915_gem_alloc_context_obj(struct drm_device *dev, size_t size);
3211 struct i915_gem_context *
3212 i915_gem_context_create_gvt(struct drm_device *dev);
3213
3214 static inline struct i915_gem_context *
3215 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3216 {
3217 struct i915_gem_context *ctx;
3218
3219 lockdep_assert_held(&file_priv->dev_priv->drm.struct_mutex);
3220
3221 ctx = idr_find(&file_priv->context_idr, id);
3222 if (!ctx)
3223 return ERR_PTR(-ENOENT);
3224
3225 return ctx;
3226 }
3227
3228 static inline struct i915_gem_context *
3229 i915_gem_context_get(struct i915_gem_context *ctx)
3230 {
3231 kref_get(&ctx->ref);
3232 return ctx;
3233 }
3234
3235 static inline void i915_gem_context_put(struct i915_gem_context *ctx)
3236 {
3237 lockdep_assert_held(&ctx->i915->drm.struct_mutex);
3238 kref_put(&ctx->ref, i915_gem_context_free);
3239 }
3240
3241 static inline struct intel_timeline *
3242 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx,
3243 struct intel_engine_cs *engine)
3244 {
3245 struct i915_address_space *vm;
3246
3247 vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base;
3248 return &vm->timeline.engine[engine->id];
3249 }
3250
3251 static inline bool i915_gem_context_is_default(const struct i915_gem_context *c)
3252 {
3253 return c->user_handle == DEFAULT_CONTEXT_HANDLE;
3254 }
3255
3256 int i915_gem_context_create_ioctl(struct drm_device *dev, void *data,
3257 struct drm_file *file);
3258 int i915_gem_context_destroy_ioctl(struct drm_device *dev, void *data,
3259 struct drm_file *file);
3260 int i915_gem_context_getparam_ioctl(struct drm_device *dev, void *data,
3261 struct drm_file *file_priv);
3262 int i915_gem_context_setparam_ioctl(struct drm_device *dev, void *data,
3263 struct drm_file *file_priv);
3264 int i915_gem_context_reset_stats_ioctl(struct drm_device *dev, void *data,
3265 struct drm_file *file);
3266
3267 /* i915_gem_evict.c */
3268 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3269 u64 min_size, u64 alignment,
3270 unsigned cache_level,
3271 u64 start, u64 end,
3272 unsigned flags);
3273 int __must_check i915_gem_evict_for_vma(struct i915_vma *target);
3274 int i915_gem_evict_vm(struct i915_address_space *vm, bool do_idle);
3275
3276 /* belongs in i915_gem_gtt.h */
3277 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3278 {
3279 wmb();
3280 if (INTEL_GEN(dev_priv) < 6)
3281 intel_gtt_chipset_flush();
3282 }
3283
3284 /* i915_gem_stolen.c */
3285 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3286 struct drm_mm_node *node, u64 size,
3287 unsigned alignment);
3288 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3289 struct drm_mm_node *node, u64 size,
3290 unsigned alignment, u64 start,
3291 u64 end);
3292 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3293 struct drm_mm_node *node);
3294 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3295 void i915_gem_cleanup_stolen(struct drm_device *dev);
3296 struct drm_i915_gem_object *
3297 i915_gem_object_create_stolen(struct drm_device *dev, u32 size);
3298 struct drm_i915_gem_object *
3299 i915_gem_object_create_stolen_for_preallocated(struct drm_device *dev,
3300 u32 stolen_offset,
3301 u32 gtt_offset,
3302 u32 size);
3303
3304 /* i915_gem_internal.c */
3305 struct drm_i915_gem_object *
3306 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3307 unsigned int size);
3308
3309 /* i915_gem_shrinker.c */
3310 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3311 unsigned long target,
3312 unsigned flags);
3313 #define I915_SHRINK_PURGEABLE 0x1
3314 #define I915_SHRINK_UNBOUND 0x2
3315 #define I915_SHRINK_BOUND 0x4
3316 #define I915_SHRINK_ACTIVE 0x8
3317 #define I915_SHRINK_VMAPS 0x10
3318 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3319 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3320 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3321
3322
3323 /* i915_gem_tiling.c */
3324 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3325 {
3326 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3327
3328 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3329 i915_gem_object_is_tiled(obj);
3330 }
3331
3332 /* i915_debugfs.c */
3333 #ifdef CONFIG_DEBUG_FS
3334 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3335 void i915_debugfs_unregister(struct drm_i915_private *dev_priv);
3336 int i915_debugfs_connector_add(struct drm_connector *connector);
3337 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3338 #else
3339 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3340 static inline void i915_debugfs_unregister(struct drm_i915_private *dev_priv) {}
3341 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3342 { return 0; }
3343 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3344 #endif
3345
3346 /* i915_gpu_error.c */
3347 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3348
3349 __printf(2, 3)
3350 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3351 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3352 const struct i915_error_state_file_priv *error);
3353 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3354 struct drm_i915_private *i915,
3355 size_t count, loff_t pos);
3356 static inline void i915_error_state_buf_release(
3357 struct drm_i915_error_state_buf *eb)
3358 {
3359 kfree(eb->buf);
3360 }
3361 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3362 u32 engine_mask,
3363 const char *error_msg);
3364 void i915_error_state_get(struct drm_device *dev,
3365 struct i915_error_state_file_priv *error_priv);
3366 void i915_error_state_put(struct i915_error_state_file_priv *error_priv);
3367 void i915_destroy_error_state(struct drm_device *dev);
3368
3369 #else
3370
3371 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3372 u32 engine_mask,
3373 const char *error_msg)
3374 {
3375 }
3376
3377 static inline void i915_destroy_error_state(struct drm_device *dev)
3378 {
3379 }
3380
3381 #endif
3382
3383 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3384
3385 /* i915_cmd_parser.c */
3386 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3387 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3388 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3389 bool intel_engine_needs_cmd_parser(struct intel_engine_cs *engine);
3390 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3391 struct drm_i915_gem_object *batch_obj,
3392 struct drm_i915_gem_object *shadow_batch_obj,
3393 u32 batch_start_offset,
3394 u32 batch_len,
3395 bool is_master);
3396
3397 /* i915_suspend.c */
3398 extern int i915_save_state(struct drm_device *dev);
3399 extern int i915_restore_state(struct drm_device *dev);
3400
3401 /* i915_sysfs.c */
3402 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3403 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3404
3405 /* intel_i2c.c */
3406 extern int intel_setup_gmbus(struct drm_device *dev);
3407 extern void intel_teardown_gmbus(struct drm_device *dev);
3408 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3409 unsigned int pin);
3410
3411 extern struct i2c_adapter *
3412 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3413 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3414 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3415 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3416 {
3417 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3418 }
3419 extern void intel_i2c_reset(struct drm_device *dev);
3420
3421 /* intel_bios.c */
3422 int intel_bios_init(struct drm_i915_private *dev_priv);
3423 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3424 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3425 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3426 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3427 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3428 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3429 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3430 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3431 enum port port);
3432 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3433 enum port port);
3434
3435
3436 /* intel_opregion.c */
3437 #ifdef CONFIG_ACPI
3438 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3439 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3440 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3441 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3442 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3443 bool enable);
3444 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3445 pci_power_t state);
3446 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3447 #else
3448 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3449 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3450 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3451 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3452 {
3453 }
3454 static inline int
3455 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3456 {
3457 return 0;
3458 }
3459 static inline int
3460 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3461 {
3462 return 0;
3463 }
3464 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3465 {
3466 return -ENODEV;
3467 }
3468 #endif
3469
3470 /* intel_acpi.c */
3471 #ifdef CONFIG_ACPI
3472 extern void intel_register_dsm_handler(void);
3473 extern void intel_unregister_dsm_handler(void);
3474 #else
3475 static inline void intel_register_dsm_handler(void) { return; }
3476 static inline void intel_unregister_dsm_handler(void) { return; }
3477 #endif /* CONFIG_ACPI */
3478
3479 /* intel_device_info.c */
3480 static inline struct intel_device_info *
3481 mkwrite_device_info(struct drm_i915_private *dev_priv)
3482 {
3483 return (struct intel_device_info *)&dev_priv->info;
3484 }
3485
3486 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
3487 void intel_device_info_dump(struct drm_i915_private *dev_priv);
3488
3489 /* modesetting */
3490 extern void intel_modeset_init_hw(struct drm_device *dev);
3491 extern int intel_modeset_init(struct drm_device *dev);
3492 extern void intel_modeset_gem_init(struct drm_device *dev);
3493 extern void intel_modeset_cleanup(struct drm_device *dev);
3494 extern int intel_connector_register(struct drm_connector *);
3495 extern void intel_connector_unregister(struct drm_connector *);
3496 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3497 bool state);
3498 extern void intel_display_resume(struct drm_device *dev);
3499 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3500 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3501 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3502 extern void intel_init_pch_refclk(struct drm_device *dev);
3503 extern void intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3504 extern void intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3505 bool enable);
3506
3507 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3508 struct drm_file *file);
3509
3510 /* overlay */
3511 extern struct intel_overlay_error_state *
3512 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3513 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3514 struct intel_overlay_error_state *error);
3515
3516 extern struct intel_display_error_state *
3517 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3518 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3519 struct drm_i915_private *dev_priv,
3520 struct intel_display_error_state *error);
3521
3522 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3523 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3524
3525 /* intel_sideband.c */
3526 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3527 void vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3528 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3529 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3530 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3531 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3532 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3533 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3534 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3535 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3536 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3537 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3538 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3539 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3540 enum intel_sbi_destination destination);
3541 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3542 enum intel_sbi_destination destination);
3543 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3544 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3545
3546 /* intel_dpio_phy.c */
3547 void bxt_port_to_phy_channel(enum port port,
3548 enum dpio_phy *phy, enum dpio_channel *ch);
3549 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
3550 enum port port, u32 margin, u32 scale,
3551 u32 enable, u32 deemphasis);
3552 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3553 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3554 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
3555 enum dpio_phy phy);
3556 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
3557 enum dpio_phy phy);
3558 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
3559 uint8_t lane_count);
3560 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
3561 uint8_t lane_lat_optim_mask);
3562 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
3563
3564 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3565 u32 deemph_reg_value, u32 margin_reg_value,
3566 bool uniq_trans_scale);
3567 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3568 bool reset);
3569 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
3570 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3571 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3572 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
3573
3574 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3575 u32 demph_reg_value, u32 preemph_reg_value,
3576 u32 uniqtranscale_reg_value, u32 tx3_demph);
3577 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
3578 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3579 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
3580
3581 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3582 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3583
3584 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3585 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3586
3587 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3588 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3589 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3590 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3591
3592 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3593 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3594 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3595 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3596
3597 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3598 * will be implemented using 2 32-bit writes in an arbitrary order with
3599 * an arbitrary delay between them. This can cause the hardware to
3600 * act upon the intermediate value, possibly leading to corruption and
3601 * machine death. For this reason we do not support I915_WRITE64, or
3602 * dev_priv->uncore.funcs.mmio_writeq.
3603 *
3604 * When reading a 64-bit value as two 32-bit values, the delay may cause
3605 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
3606 * occasionally a 64-bit register does not actualy support a full readq
3607 * and must be read using two 32-bit reads.
3608 *
3609 * You have been warned.
3610 */
3611 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3612
3613 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
3614 u32 upper, lower, old_upper, loop = 0; \
3615 upper = I915_READ(upper_reg); \
3616 do { \
3617 old_upper = upper; \
3618 lower = I915_READ(lower_reg); \
3619 upper = I915_READ(upper_reg); \
3620 } while (upper != old_upper && loop++ < 2); \
3621 (u64)upper << 32 | lower; })
3622
3623 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
3624 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
3625
3626 #define __raw_read(x, s) \
3627 static inline uint##x##_t __raw_i915_read##x(struct drm_i915_private *dev_priv, \
3628 i915_reg_t reg) \
3629 { \
3630 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
3631 }
3632
3633 #define __raw_write(x, s) \
3634 static inline void __raw_i915_write##x(struct drm_i915_private *dev_priv, \
3635 i915_reg_t reg, uint##x##_t val) \
3636 { \
3637 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
3638 }
3639 __raw_read(8, b)
3640 __raw_read(16, w)
3641 __raw_read(32, l)
3642 __raw_read(64, q)
3643
3644 __raw_write(8, b)
3645 __raw_write(16, w)
3646 __raw_write(32, l)
3647 __raw_write(64, q)
3648
3649 #undef __raw_read
3650 #undef __raw_write
3651
3652 /* These are untraced mmio-accessors that are only valid to be used inside
3653 * critical sections, such as inside IRQ handlers, where forcewake is explicitly
3654 * controlled.
3655 *
3656 * Think twice, and think again, before using these.
3657 *
3658 * As an example, these accessors can possibly be used between:
3659 *
3660 * spin_lock_irq(&dev_priv->uncore.lock);
3661 * intel_uncore_forcewake_get__locked();
3662 *
3663 * and
3664 *
3665 * intel_uncore_forcewake_put__locked();
3666 * spin_unlock_irq(&dev_priv->uncore.lock);
3667 *
3668 *
3669 * Note: some registers may not need forcewake held, so
3670 * intel_uncore_forcewake_{get,put} can be omitted, see
3671 * intel_uncore_forcewake_for_reg().
3672 *
3673 * Certain architectures will die if the same cacheline is concurrently accessed
3674 * by different clients (e.g. on Ivybridge). Access to registers should
3675 * therefore generally be serialised, by either the dev_priv->uncore.lock or
3676 * a more localised lock guarding all access to that bank of registers.
3677 */
3678 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
3679 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
3680 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
3681 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
3682
3683 /* "Broadcast RGB" property */
3684 #define INTEL_BROADCAST_RGB_AUTO 0
3685 #define INTEL_BROADCAST_RGB_FULL 1
3686 #define INTEL_BROADCAST_RGB_LIMITED 2
3687
3688 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
3689 {
3690 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3691 return VLV_VGACNTRL;
3692 else if (INTEL_GEN(dev_priv) >= 5)
3693 return CPU_VGACNTRL;
3694 else
3695 return VGACNTRL;
3696 }
3697
3698 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
3699 {
3700 unsigned long j = msecs_to_jiffies(m);
3701
3702 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3703 }
3704
3705 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
3706 {
3707 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
3708 }
3709
3710 static inline unsigned long
3711 timespec_to_jiffies_timeout(const struct timespec *value)
3712 {
3713 unsigned long j = timespec_to_jiffies(value);
3714
3715 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
3716 }
3717
3718 /*
3719 * If you need to wait X milliseconds between events A and B, but event B
3720 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
3721 * when event A happened, then just before event B you call this function and
3722 * pass the timestamp as the first argument, and X as the second argument.
3723 */
3724 static inline void
3725 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
3726 {
3727 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
3728
3729 /*
3730 * Don't re-read the value of "jiffies" every time since it may change
3731 * behind our back and break the math.
3732 */
3733 tmp_jiffies = jiffies;
3734 target_jiffies = timestamp_jiffies +
3735 msecs_to_jiffies_timeout(to_wait_ms);
3736
3737 if (time_after(target_jiffies, tmp_jiffies)) {
3738 remaining_jiffies = target_jiffies - tmp_jiffies;
3739 while (remaining_jiffies)
3740 remaining_jiffies =
3741 schedule_timeout_uninterruptible(remaining_jiffies);
3742 }
3743 }
3744
3745 static inline bool
3746 __i915_request_irq_complete(struct drm_i915_gem_request *req)
3747 {
3748 struct intel_engine_cs *engine = req->engine;
3749
3750 /* Before we do the heavier coherent read of the seqno,
3751 * check the value (hopefully) in the CPU cacheline.
3752 */
3753 if (__i915_gem_request_completed(req))
3754 return true;
3755
3756 /* Ensure our read of the seqno is coherent so that we
3757 * do not "miss an interrupt" (i.e. if this is the last
3758 * request and the seqno write from the GPU is not visible
3759 * by the time the interrupt fires, we will see that the
3760 * request is incomplete and go back to sleep awaiting
3761 * another interrupt that will never come.)
3762 *
3763 * Strictly, we only need to do this once after an interrupt,
3764 * but it is easier and safer to do it every time the waiter
3765 * is woken.
3766 */
3767 if (engine->irq_seqno_barrier &&
3768 rcu_access_pointer(engine->breadcrumbs.irq_seqno_bh) == current &&
3769 cmpxchg_relaxed(&engine->breadcrumbs.irq_posted, 1, 0)) {
3770 struct task_struct *tsk;
3771
3772 /* The ordering of irq_posted versus applying the barrier
3773 * is crucial. The clearing of the current irq_posted must
3774 * be visible before we perform the barrier operation,
3775 * such that if a subsequent interrupt arrives, irq_posted
3776 * is reasserted and our task rewoken (which causes us to
3777 * do another __i915_request_irq_complete() immediately
3778 * and reapply the barrier). Conversely, if the clear
3779 * occurs after the barrier, then an interrupt that arrived
3780 * whilst we waited on the barrier would not trigger a
3781 * barrier on the next pass, and the read may not see the
3782 * seqno update.
3783 */
3784 engine->irq_seqno_barrier(engine);
3785
3786 /* If we consume the irq, but we are no longer the bottom-half,
3787 * the real bottom-half may not have serialised their own
3788 * seqno check with the irq-barrier (i.e. may have inspected
3789 * the seqno before we believe it coherent since they see
3790 * irq_posted == false but we are still running).
3791 */
3792 rcu_read_lock();
3793 tsk = rcu_dereference(engine->breadcrumbs.irq_seqno_bh);
3794 if (tsk && tsk != current)
3795 /* Note that if the bottom-half is changed as we
3796 * are sending the wake-up, the new bottom-half will
3797 * be woken by whomever made the change. We only have
3798 * to worry about when we steal the irq-posted for
3799 * ourself.
3800 */
3801 wake_up_process(tsk);
3802 rcu_read_unlock();
3803
3804 if (__i915_gem_request_completed(req))
3805 return true;
3806 }
3807
3808 return false;
3809 }
3810
3811 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
3812 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
3813
3814 /* i915_mm.c */
3815 int remap_io_mapping(struct vm_area_struct *vma,
3816 unsigned long addr, unsigned long pfn, unsigned long size,
3817 struct io_mapping *iomap);
3818
3819 #define ptr_mask_bits(ptr) ({ \
3820 unsigned long __v = (unsigned long)(ptr); \
3821 (typeof(ptr))(__v & PAGE_MASK); \
3822 })
3823
3824 #define ptr_unpack_bits(ptr, bits) ({ \
3825 unsigned long __v = (unsigned long)(ptr); \
3826 (bits) = __v & ~PAGE_MASK; \
3827 (typeof(ptr))(__v & PAGE_MASK); \
3828 })
3829
3830 #define ptr_pack_bits(ptr, bits) \
3831 ((typeof(ptr))((unsigned long)(ptr) | (bits)))
3832
3833 #define fetch_and_zero(ptr) ({ \
3834 typeof(*ptr) __T = *(ptr); \
3835 *(ptr) = (typeof(*ptr))0; \
3836 __T; \
3837 })
3838
3839 #endif