]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_drv.h
drm/i915: Clean up some expressions
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_drv.h
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/reservation.h>
45 #include <linux/shmem_fs.h>
46
47 #include <drm/drmP.h>
48 #include <drm/intel-gtt.h>
49 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
50 #include <drm/drm_gem.h>
51 #include <drm/drm_auth.h>
52 #include <drm/drm_cache.h>
53
54 #include "i915_params.h"
55 #include "i915_reg.h"
56 #include "i915_utils.h"
57
58 #include "intel_uncore.h"
59 #include "intel_bios.h"
60 #include "intel_dpll_mgr.h"
61 #include "intel_uc.h"
62 #include "intel_lrc.h"
63 #include "intel_ringbuffer.h"
64
65 #include "i915_gem.h"
66 #include "i915_gem_context.h"
67 #include "i915_gem_fence_reg.h"
68 #include "i915_gem_object.h"
69 #include "i915_gem_gtt.h"
70 #include "i915_gem_render_state.h"
71 #include "i915_gem_request.h"
72 #include "i915_gem_timeline.h"
73
74 #include "i915_vma.h"
75
76 #include "intel_gvt.h"
77
78 /* General customization:
79 */
80
81 #define DRIVER_NAME "i915"
82 #define DRIVER_DESC "Intel Graphics"
83 #define DRIVER_DATE "20170619"
84 #define DRIVER_TIMESTAMP 1497857498
85
86 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
87 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
88 * which may not necessarily be a user visible problem. This will either
89 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
90 * enable distros and users to tailor their preferred amount of i915 abrt
91 * spam.
92 */
93 #define I915_STATE_WARN(condition, format...) ({ \
94 int __ret_warn_on = !!(condition); \
95 if (unlikely(__ret_warn_on)) \
96 if (!WARN(i915.verbose_state_checks, format)) \
97 DRM_ERROR(format); \
98 unlikely(__ret_warn_on); \
99 })
100
101 #define I915_STATE_WARN_ON(x) \
102 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
103
104 bool __i915_inject_load_failure(const char *func, int line);
105 #define i915_inject_load_failure() \
106 __i915_inject_load_failure(__func__, __LINE__)
107
108 typedef struct {
109 uint32_t val;
110 } uint_fixed_16_16_t;
111
112 #define FP_16_16_MAX ({ \
113 uint_fixed_16_16_t fp; \
114 fp.val = UINT_MAX; \
115 fp; \
116 })
117
118 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
119 {
120 if (val.val == 0)
121 return true;
122 return false;
123 }
124
125 static inline uint_fixed_16_16_t u32_to_fixed_16_16(uint32_t val)
126 {
127 uint_fixed_16_16_t fp;
128
129 WARN_ON(val >> 16);
130
131 fp.val = val << 16;
132 return fp;
133 }
134
135 static inline uint32_t fixed_16_16_to_u32_round_up(uint_fixed_16_16_t fp)
136 {
137 return DIV_ROUND_UP(fp.val, 1 << 16);
138 }
139
140 static inline uint32_t fixed_16_16_to_u32(uint_fixed_16_16_t fp)
141 {
142 return fp.val >> 16;
143 }
144
145 static inline uint_fixed_16_16_t min_fixed_16_16(uint_fixed_16_16_t min1,
146 uint_fixed_16_16_t min2)
147 {
148 uint_fixed_16_16_t min;
149
150 min.val = min(min1.val, min2.val);
151 return min;
152 }
153
154 static inline uint_fixed_16_16_t max_fixed_16_16(uint_fixed_16_16_t max1,
155 uint_fixed_16_16_t max2)
156 {
157 uint_fixed_16_16_t max;
158
159 max.val = max(max1.val, max2.val);
160 return max;
161 }
162
163 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
164 uint_fixed_16_16_t d)
165 {
166 return DIV_ROUND_UP(val.val, d.val);
167 }
168
169 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
170 uint_fixed_16_16_t mul)
171 {
172 uint64_t intermediate_val;
173 uint32_t result;
174
175 intermediate_val = (uint64_t) val * mul.val;
176 intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
177 WARN_ON(intermediate_val >> 32);
178 result = clamp_t(uint32_t, intermediate_val, 0, ~0);
179 return result;
180 }
181
182 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
183 uint_fixed_16_16_t mul)
184 {
185 uint64_t intermediate_val;
186 uint_fixed_16_16_t fp;
187
188 intermediate_val = (uint64_t) val.val * mul.val;
189 intermediate_val = intermediate_val >> 16;
190 WARN_ON(intermediate_val >> 32);
191 fp.val = clamp_t(uint32_t, intermediate_val, 0, ~0);
192 return fp;
193 }
194
195 static inline uint_fixed_16_16_t fixed_16_16_div(uint32_t val, uint32_t d)
196 {
197 uint_fixed_16_16_t fp, res;
198
199 fp = u32_to_fixed_16_16(val);
200 res.val = DIV_ROUND_UP(fp.val, d);
201 return res;
202 }
203
204 static inline uint_fixed_16_16_t fixed_16_16_div_u64(uint32_t val, uint32_t d)
205 {
206 uint_fixed_16_16_t res;
207 uint64_t interm_val;
208
209 interm_val = (uint64_t)val << 16;
210 interm_val = DIV_ROUND_UP_ULL(interm_val, d);
211 WARN_ON(interm_val >> 32);
212 res.val = (uint32_t) interm_val;
213
214 return res;
215 }
216
217 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
218 uint_fixed_16_16_t d)
219 {
220 uint64_t interm_val;
221
222 interm_val = (uint64_t)val << 16;
223 interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
224 WARN_ON(interm_val >> 32);
225 return clamp_t(uint32_t, interm_val, 0, ~0);
226 }
227
228 static inline uint_fixed_16_16_t mul_u32_fixed_16_16(uint32_t val,
229 uint_fixed_16_16_t mul)
230 {
231 uint64_t intermediate_val;
232 uint_fixed_16_16_t fp;
233
234 intermediate_val = (uint64_t) val * mul.val;
235 WARN_ON(intermediate_val >> 32);
236 fp.val = (uint32_t) intermediate_val;
237 return fp;
238 }
239
240 static inline const char *yesno(bool v)
241 {
242 return v ? "yes" : "no";
243 }
244
245 static inline const char *onoff(bool v)
246 {
247 return v ? "on" : "off";
248 }
249
250 static inline const char *enableddisabled(bool v)
251 {
252 return v ? "enabled" : "disabled";
253 }
254
255 enum pipe {
256 INVALID_PIPE = -1,
257 PIPE_A = 0,
258 PIPE_B,
259 PIPE_C,
260 _PIPE_EDP,
261 I915_MAX_PIPES = _PIPE_EDP
262 };
263 #define pipe_name(p) ((p) + 'A')
264
265 enum transcoder {
266 TRANSCODER_A = 0,
267 TRANSCODER_B,
268 TRANSCODER_C,
269 TRANSCODER_EDP,
270 TRANSCODER_DSI_A,
271 TRANSCODER_DSI_C,
272 I915_MAX_TRANSCODERS
273 };
274
275 static inline const char *transcoder_name(enum transcoder transcoder)
276 {
277 switch (transcoder) {
278 case TRANSCODER_A:
279 return "A";
280 case TRANSCODER_B:
281 return "B";
282 case TRANSCODER_C:
283 return "C";
284 case TRANSCODER_EDP:
285 return "EDP";
286 case TRANSCODER_DSI_A:
287 return "DSI A";
288 case TRANSCODER_DSI_C:
289 return "DSI C";
290 default:
291 return "<invalid>";
292 }
293 }
294
295 static inline bool transcoder_is_dsi(enum transcoder transcoder)
296 {
297 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
298 }
299
300 /*
301 * Global legacy plane identifier. Valid only for primary/sprite
302 * planes on pre-g4x, and only for primary planes on g4x+.
303 */
304 enum plane {
305 PLANE_A,
306 PLANE_B,
307 PLANE_C,
308 };
309 #define plane_name(p) ((p) + 'A')
310
311 #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A')
312
313 /*
314 * Per-pipe plane identifier.
315 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
316 * number of planes per CRTC. Not all platforms really have this many planes,
317 * which means some arrays of size I915_MAX_PLANES may have unused entries
318 * between the topmost sprite plane and the cursor plane.
319 *
320 * This is expected to be passed to various register macros
321 * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care.
322 */
323 enum plane_id {
324 PLANE_PRIMARY,
325 PLANE_SPRITE0,
326 PLANE_SPRITE1,
327 PLANE_SPRITE2,
328 PLANE_CURSOR,
329 I915_MAX_PLANES,
330 };
331
332 #define for_each_plane_id_on_crtc(__crtc, __p) \
333 for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \
334 for_each_if ((__crtc)->plane_ids_mask & BIT(__p))
335
336 enum port {
337 PORT_NONE = -1,
338 PORT_A = 0,
339 PORT_B,
340 PORT_C,
341 PORT_D,
342 PORT_E,
343 I915_MAX_PORTS
344 };
345 #define port_name(p) ((p) + 'A')
346
347 #define I915_NUM_PHYS_VLV 2
348
349 enum dpio_channel {
350 DPIO_CH0,
351 DPIO_CH1
352 };
353
354 enum dpio_phy {
355 DPIO_PHY0,
356 DPIO_PHY1,
357 DPIO_PHY2,
358 };
359
360 enum intel_display_power_domain {
361 POWER_DOMAIN_PIPE_A,
362 POWER_DOMAIN_PIPE_B,
363 POWER_DOMAIN_PIPE_C,
364 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
365 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
366 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
367 POWER_DOMAIN_TRANSCODER_A,
368 POWER_DOMAIN_TRANSCODER_B,
369 POWER_DOMAIN_TRANSCODER_C,
370 POWER_DOMAIN_TRANSCODER_EDP,
371 POWER_DOMAIN_TRANSCODER_DSI_A,
372 POWER_DOMAIN_TRANSCODER_DSI_C,
373 POWER_DOMAIN_PORT_DDI_A_LANES,
374 POWER_DOMAIN_PORT_DDI_B_LANES,
375 POWER_DOMAIN_PORT_DDI_C_LANES,
376 POWER_DOMAIN_PORT_DDI_D_LANES,
377 POWER_DOMAIN_PORT_DDI_E_LANES,
378 POWER_DOMAIN_PORT_DDI_A_IO,
379 POWER_DOMAIN_PORT_DDI_B_IO,
380 POWER_DOMAIN_PORT_DDI_C_IO,
381 POWER_DOMAIN_PORT_DDI_D_IO,
382 POWER_DOMAIN_PORT_DDI_E_IO,
383 POWER_DOMAIN_PORT_DSI,
384 POWER_DOMAIN_PORT_CRT,
385 POWER_DOMAIN_PORT_OTHER,
386 POWER_DOMAIN_VGA,
387 POWER_DOMAIN_AUDIO,
388 POWER_DOMAIN_PLLS,
389 POWER_DOMAIN_AUX_A,
390 POWER_DOMAIN_AUX_B,
391 POWER_DOMAIN_AUX_C,
392 POWER_DOMAIN_AUX_D,
393 POWER_DOMAIN_GMBUS,
394 POWER_DOMAIN_MODESET,
395 POWER_DOMAIN_INIT,
396
397 POWER_DOMAIN_NUM,
398 };
399
400 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
401 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
402 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
403 #define POWER_DOMAIN_TRANSCODER(tran) \
404 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
405 (tran) + POWER_DOMAIN_TRANSCODER_A)
406
407 enum hpd_pin {
408 HPD_NONE = 0,
409 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
410 HPD_CRT,
411 HPD_SDVO_B,
412 HPD_SDVO_C,
413 HPD_PORT_A,
414 HPD_PORT_B,
415 HPD_PORT_C,
416 HPD_PORT_D,
417 HPD_PORT_E,
418 HPD_NUM_PINS
419 };
420
421 #define for_each_hpd_pin(__pin) \
422 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
423
424 #define HPD_STORM_DEFAULT_THRESHOLD 5
425
426 struct i915_hotplug {
427 struct work_struct hotplug_work;
428
429 struct {
430 unsigned long last_jiffies;
431 int count;
432 enum {
433 HPD_ENABLED = 0,
434 HPD_DISABLED = 1,
435 HPD_MARK_DISABLED = 2
436 } state;
437 } stats[HPD_NUM_PINS];
438 u32 event_bits;
439 struct delayed_work reenable_work;
440
441 struct intel_digital_port *irq_port[I915_MAX_PORTS];
442 u32 long_port_mask;
443 u32 short_port_mask;
444 struct work_struct dig_port_work;
445
446 struct work_struct poll_init_work;
447 bool poll_enabled;
448
449 unsigned int hpd_storm_threshold;
450
451 /*
452 * if we get a HPD irq from DP and a HPD irq from non-DP
453 * the non-DP HPD could block the workqueue on a mode config
454 * mutex getting, that userspace may have taken. However
455 * userspace is waiting on the DP workqueue to run which is
456 * blocked behind the non-DP one.
457 */
458 struct workqueue_struct *dp_wq;
459 };
460
461 #define I915_GEM_GPU_DOMAINS \
462 (I915_GEM_DOMAIN_RENDER | \
463 I915_GEM_DOMAIN_SAMPLER | \
464 I915_GEM_DOMAIN_COMMAND | \
465 I915_GEM_DOMAIN_INSTRUCTION | \
466 I915_GEM_DOMAIN_VERTEX)
467
468 #define for_each_pipe(__dev_priv, __p) \
469 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
470 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
471 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
472 for_each_if ((__mask) & (1 << (__p)))
473 #define for_each_universal_plane(__dev_priv, __pipe, __p) \
474 for ((__p) = 0; \
475 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
476 (__p)++)
477 #define for_each_sprite(__dev_priv, __p, __s) \
478 for ((__s) = 0; \
479 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
480 (__s)++)
481
482 #define for_each_port_masked(__port, __ports_mask) \
483 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
484 for_each_if ((__ports_mask) & (1 << (__port)))
485
486 #define for_each_crtc(dev, crtc) \
487 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
488
489 #define for_each_intel_plane(dev, intel_plane) \
490 list_for_each_entry(intel_plane, \
491 &(dev)->mode_config.plane_list, \
492 base.head)
493
494 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \
495 list_for_each_entry(intel_plane, \
496 &(dev)->mode_config.plane_list, \
497 base.head) \
498 for_each_if ((plane_mask) & \
499 (1 << drm_plane_index(&intel_plane->base)))
500
501 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
502 list_for_each_entry(intel_plane, \
503 &(dev)->mode_config.plane_list, \
504 base.head) \
505 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
506
507 #define for_each_intel_crtc(dev, intel_crtc) \
508 list_for_each_entry(intel_crtc, \
509 &(dev)->mode_config.crtc_list, \
510 base.head)
511
512 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \
513 list_for_each_entry(intel_crtc, \
514 &(dev)->mode_config.crtc_list, \
515 base.head) \
516 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
517
518 #define for_each_intel_encoder(dev, intel_encoder) \
519 list_for_each_entry(intel_encoder, \
520 &(dev)->mode_config.encoder_list, \
521 base.head)
522
523 #define for_each_intel_connector_iter(intel_connector, iter) \
524 while ((intel_connector = to_intel_connector(drm_connector_list_iter_next(iter))))
525
526 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
527 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
528 for_each_if ((intel_encoder)->base.crtc == (__crtc))
529
530 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
531 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
532 for_each_if ((intel_connector)->base.encoder == (__encoder))
533
534 #define for_each_power_domain(domain, mask) \
535 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
536 for_each_if (BIT_ULL(domain) & (mask))
537
538 #define for_each_power_well(__dev_priv, __power_well) \
539 for ((__power_well) = (__dev_priv)->power_domains.power_wells; \
540 (__power_well) - (__dev_priv)->power_domains.power_wells < \
541 (__dev_priv)->power_domains.power_well_count; \
542 (__power_well)++)
543
544 #define for_each_power_well_rev(__dev_priv, __power_well) \
545 for ((__power_well) = (__dev_priv)->power_domains.power_wells + \
546 (__dev_priv)->power_domains.power_well_count - 1; \
547 (__power_well) - (__dev_priv)->power_domains.power_wells >= 0; \
548 (__power_well)--)
549
550 #define for_each_power_domain_well(__dev_priv, __power_well, __domain_mask) \
551 for_each_power_well(__dev_priv, __power_well) \
552 for_each_if ((__power_well)->domains & (__domain_mask))
553
554 #define for_each_power_domain_well_rev(__dev_priv, __power_well, __domain_mask) \
555 for_each_power_well_rev(__dev_priv, __power_well) \
556 for_each_if ((__power_well)->domains & (__domain_mask))
557
558 #define for_each_intel_plane_in_state(__state, plane, plane_state, __i) \
559 for ((__i) = 0; \
560 (__i) < (__state)->base.dev->mode_config.num_total_plane && \
561 ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
562 (plane_state) = to_intel_plane_state((__state)->base.planes[__i].state), 1); \
563 (__i)++) \
564 for_each_if (plane_state)
565
566 struct drm_i915_private;
567 struct i915_mm_struct;
568 struct i915_mmu_object;
569
570 struct drm_i915_file_private {
571 struct drm_i915_private *dev_priv;
572 struct drm_file *file;
573
574 struct {
575 spinlock_t lock;
576 struct list_head request_list;
577 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
578 * chosen to prevent the CPU getting more than a frame ahead of the GPU
579 * (when using lax throttling for the frontbuffer). We also use it to
580 * offer free GPU waitboosts for severely congested workloads.
581 */
582 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
583 } mm;
584 struct idr context_idr;
585
586 struct intel_rps_client {
587 struct list_head link;
588 unsigned boosts;
589 } rps;
590
591 unsigned int bsd_engine;
592
593 /* Client can have a maximum of 3 contexts banned before
594 * it is denied of creating new contexts. As one context
595 * ban needs 4 consecutive hangs, and more if there is
596 * progress in between, this is a last resort stop gap measure
597 * to limit the badly behaving clients access to gpu.
598 */
599 #define I915_MAX_CLIENT_CONTEXT_BANS 3
600 int context_bans;
601 };
602
603 /* Used by dp and fdi links */
604 struct intel_link_m_n {
605 uint32_t tu;
606 uint32_t gmch_m;
607 uint32_t gmch_n;
608 uint32_t link_m;
609 uint32_t link_n;
610 };
611
612 void intel_link_compute_m_n(int bpp, int nlanes,
613 int pixel_clock, int link_clock,
614 struct intel_link_m_n *m_n);
615
616 /* Interface history:
617 *
618 * 1.1: Original.
619 * 1.2: Add Power Management
620 * 1.3: Add vblank support
621 * 1.4: Fix cmdbuffer path, add heap destroy
622 * 1.5: Add vblank pipe configuration
623 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
624 * - Support vertical blank on secondary display pipe
625 */
626 #define DRIVER_MAJOR 1
627 #define DRIVER_MINOR 6
628 #define DRIVER_PATCHLEVEL 0
629
630 struct opregion_header;
631 struct opregion_acpi;
632 struct opregion_swsci;
633 struct opregion_asle;
634
635 struct intel_opregion {
636 struct opregion_header *header;
637 struct opregion_acpi *acpi;
638 struct opregion_swsci *swsci;
639 u32 swsci_gbda_sub_functions;
640 u32 swsci_sbcb_sub_functions;
641 struct opregion_asle *asle;
642 void *rvda;
643 const void *vbt;
644 u32 vbt_size;
645 u32 *lid_state;
646 struct work_struct asle_work;
647 };
648 #define OPREGION_SIZE (8*1024)
649
650 struct intel_overlay;
651 struct intel_overlay_error_state;
652
653 struct sdvo_device_mapping {
654 u8 initialized;
655 u8 dvo_port;
656 u8 slave_addr;
657 u8 dvo_wiring;
658 u8 i2c_pin;
659 u8 ddc_pin;
660 };
661
662 struct intel_connector;
663 struct intel_encoder;
664 struct intel_atomic_state;
665 struct intel_crtc_state;
666 struct intel_initial_plane_config;
667 struct intel_crtc;
668 struct intel_limit;
669 struct dpll;
670 struct intel_cdclk_state;
671
672 struct drm_i915_display_funcs {
673 void (*get_cdclk)(struct drm_i915_private *dev_priv,
674 struct intel_cdclk_state *cdclk_state);
675 void (*set_cdclk)(struct drm_i915_private *dev_priv,
676 const struct intel_cdclk_state *cdclk_state);
677 int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane);
678 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
679 int (*compute_intermediate_wm)(struct drm_device *dev,
680 struct intel_crtc *intel_crtc,
681 struct intel_crtc_state *newstate);
682 void (*initial_watermarks)(struct intel_atomic_state *state,
683 struct intel_crtc_state *cstate);
684 void (*atomic_update_watermarks)(struct intel_atomic_state *state,
685 struct intel_crtc_state *cstate);
686 void (*optimize_watermarks)(struct intel_atomic_state *state,
687 struct intel_crtc_state *cstate);
688 int (*compute_global_watermarks)(struct drm_atomic_state *state);
689 void (*update_wm)(struct intel_crtc *crtc);
690 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
691 /* Returns the active state of the crtc, and if the crtc is active,
692 * fills out the pipe-config with the hw state. */
693 bool (*get_pipe_config)(struct intel_crtc *,
694 struct intel_crtc_state *);
695 void (*get_initial_plane_config)(struct intel_crtc *,
696 struct intel_initial_plane_config *);
697 int (*crtc_compute_clock)(struct intel_crtc *crtc,
698 struct intel_crtc_state *crtc_state);
699 void (*crtc_enable)(struct intel_crtc_state *pipe_config,
700 struct drm_atomic_state *old_state);
701 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
702 struct drm_atomic_state *old_state);
703 void (*update_crtcs)(struct drm_atomic_state *state,
704 unsigned int *crtc_vblank_mask);
705 void (*audio_codec_enable)(struct drm_connector *connector,
706 struct intel_encoder *encoder,
707 const struct drm_display_mode *adjusted_mode);
708 void (*audio_codec_disable)(struct intel_encoder *encoder);
709 void (*fdi_link_train)(struct intel_crtc *crtc,
710 const struct intel_crtc_state *crtc_state);
711 void (*init_clock_gating)(struct drm_i915_private *dev_priv);
712 int (*queue_flip)(struct drm_device *dev, struct drm_crtc *crtc,
713 struct drm_framebuffer *fb,
714 struct drm_i915_gem_object *obj,
715 struct drm_i915_gem_request *req,
716 uint32_t flags);
717 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
718 /* clock updates for mode set */
719 /* cursor updates */
720 /* render clock increase/decrease */
721 /* display clock increase/decrease */
722 /* pll clock increase/decrease */
723
724 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
725 void (*load_luts)(struct drm_crtc_state *crtc_state);
726 };
727
728 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
729 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
730 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
731
732 struct intel_csr {
733 struct work_struct work;
734 const char *fw_path;
735 uint32_t *dmc_payload;
736 uint32_t dmc_fw_size;
737 uint32_t version;
738 uint32_t mmio_count;
739 i915_reg_t mmioaddr[8];
740 uint32_t mmiodata[8];
741 uint32_t dc_state;
742 uint32_t allowed_dc_mask;
743 };
744
745 #define DEV_INFO_FOR_EACH_FLAG(func) \
746 func(is_mobile); \
747 func(is_lp); \
748 func(is_alpha_support); \
749 /* Keep has_* in alphabetical order */ \
750 func(has_64bit_reloc); \
751 func(has_aliasing_ppgtt); \
752 func(has_csr); \
753 func(has_ddi); \
754 func(has_dp_mst); \
755 func(has_reset_engine); \
756 func(has_fbc); \
757 func(has_fpga_dbg); \
758 func(has_full_ppgtt); \
759 func(has_full_48bit_ppgtt); \
760 func(has_gmbus_irq); \
761 func(has_gmch_display); \
762 func(has_guc); \
763 func(has_guc_ct); \
764 func(has_hotplug); \
765 func(has_l3_dpf); \
766 func(has_llc); \
767 func(has_logical_ring_contexts); \
768 func(has_overlay); \
769 func(has_pipe_cxsr); \
770 func(has_pooled_eu); \
771 func(has_psr); \
772 func(has_rc6); \
773 func(has_rc6p); \
774 func(has_resource_streamer); \
775 func(has_runtime_pm); \
776 func(has_snoop); \
777 func(unfenced_needs_alignment); \
778 func(cursor_needs_physical); \
779 func(hws_needs_physical); \
780 func(overlay_needs_physical); \
781 func(supports_tv);
782
783 struct sseu_dev_info {
784 u8 slice_mask;
785 u8 subslice_mask;
786 u8 eu_total;
787 u8 eu_per_subslice;
788 u8 min_eu_in_pool;
789 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
790 u8 subslice_7eu[3];
791 u8 has_slice_pg:1;
792 u8 has_subslice_pg:1;
793 u8 has_eu_pg:1;
794 };
795
796 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu)
797 {
798 return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask);
799 }
800
801 /* Keep in gen based order, and chronological order within a gen */
802 enum intel_platform {
803 INTEL_PLATFORM_UNINITIALIZED = 0,
804 INTEL_I830,
805 INTEL_I845G,
806 INTEL_I85X,
807 INTEL_I865G,
808 INTEL_I915G,
809 INTEL_I915GM,
810 INTEL_I945G,
811 INTEL_I945GM,
812 INTEL_G33,
813 INTEL_PINEVIEW,
814 INTEL_I965G,
815 INTEL_I965GM,
816 INTEL_G45,
817 INTEL_GM45,
818 INTEL_IRONLAKE,
819 INTEL_SANDYBRIDGE,
820 INTEL_IVYBRIDGE,
821 INTEL_VALLEYVIEW,
822 INTEL_HASWELL,
823 INTEL_BROADWELL,
824 INTEL_CHERRYVIEW,
825 INTEL_SKYLAKE,
826 INTEL_BROXTON,
827 INTEL_KABYLAKE,
828 INTEL_GEMINILAKE,
829 INTEL_COFFEELAKE,
830 INTEL_CANNONLAKE,
831 INTEL_MAX_PLATFORMS
832 };
833
834 struct intel_device_info {
835 u32 display_mmio_offset;
836 u16 device_id;
837 u8 num_pipes;
838 u8 num_sprites[I915_MAX_PIPES];
839 u8 num_scalers[I915_MAX_PIPES];
840 u8 gen;
841 u16 gen_mask;
842 enum intel_platform platform;
843 u8 ring_mask; /* Rings supported by the HW */
844 u8 num_rings;
845 #define DEFINE_FLAG(name) u8 name:1
846 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG);
847 #undef DEFINE_FLAG
848 u16 ddb_size; /* in blocks */
849 /* Register offsets for the various display pipes and transcoders */
850 int pipe_offsets[I915_MAX_TRANSCODERS];
851 int trans_offsets[I915_MAX_TRANSCODERS];
852 int palette_offsets[I915_MAX_PIPES];
853 int cursor_offsets[I915_MAX_PIPES];
854
855 /* Slice/subslice/EU info */
856 struct sseu_dev_info sseu;
857
858 struct color_luts {
859 u16 degamma_lut_size;
860 u16 gamma_lut_size;
861 } color;
862 };
863
864 struct intel_display_error_state;
865
866 struct i915_gpu_state {
867 struct kref ref;
868 struct timeval time;
869 struct timeval boottime;
870 struct timeval uptime;
871
872 struct drm_i915_private *i915;
873
874 char error_msg[128];
875 bool simulated;
876 bool awake;
877 bool wakelock;
878 bool suspended;
879 int iommu;
880 u32 reset_count;
881 u32 suspend_count;
882 struct intel_device_info device_info;
883 struct i915_params params;
884
885 /* Generic register state */
886 u32 eir;
887 u32 pgtbl_er;
888 u32 ier;
889 u32 gtier[4], ngtier;
890 u32 ccid;
891 u32 derrmr;
892 u32 forcewake;
893 u32 error; /* gen6+ */
894 u32 err_int; /* gen7 */
895 u32 fault_data0; /* gen8, gen9 */
896 u32 fault_data1; /* gen8, gen9 */
897 u32 done_reg;
898 u32 gac_eco;
899 u32 gam_ecochk;
900 u32 gab_ctl;
901 u32 gfx_mode;
902
903 u32 nfence;
904 u64 fence[I915_MAX_NUM_FENCES];
905 struct intel_overlay_error_state *overlay;
906 struct intel_display_error_state *display;
907 struct drm_i915_error_object *semaphore;
908 struct drm_i915_error_object *guc_log;
909
910 struct drm_i915_error_engine {
911 int engine_id;
912 /* Software tracked state */
913 bool waiting;
914 int num_waiters;
915 unsigned long hangcheck_timestamp;
916 bool hangcheck_stalled;
917 enum intel_engine_hangcheck_action hangcheck_action;
918 struct i915_address_space *vm;
919 int num_requests;
920 u32 reset_count;
921
922 /* position of active request inside the ring */
923 u32 rq_head, rq_post, rq_tail;
924
925 /* our own tracking of ring head and tail */
926 u32 cpu_ring_head;
927 u32 cpu_ring_tail;
928
929 u32 last_seqno;
930
931 /* Register state */
932 u32 start;
933 u32 tail;
934 u32 head;
935 u32 ctl;
936 u32 mode;
937 u32 hws;
938 u32 ipeir;
939 u32 ipehr;
940 u32 bbstate;
941 u32 instpm;
942 u32 instps;
943 u32 seqno;
944 u64 bbaddr;
945 u64 acthd;
946 u32 fault_reg;
947 u64 faddr;
948 u32 rc_psmi; /* sleep state */
949 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
950 struct intel_instdone instdone;
951
952 struct drm_i915_error_context {
953 char comm[TASK_COMM_LEN];
954 pid_t pid;
955 u32 handle;
956 u32 hw_id;
957 int ban_score;
958 int active;
959 int guilty;
960 } context;
961
962 struct drm_i915_error_object {
963 u64 gtt_offset;
964 u64 gtt_size;
965 int page_count;
966 int unused;
967 u32 *pages[0];
968 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
969
970 struct drm_i915_error_object **user_bo;
971 long user_bo_count;
972
973 struct drm_i915_error_object *wa_ctx;
974
975 struct drm_i915_error_request {
976 long jiffies;
977 pid_t pid;
978 u32 context;
979 int ban_score;
980 u32 seqno;
981 u32 head;
982 u32 tail;
983 } *requests, execlist[2];
984
985 struct drm_i915_error_waiter {
986 char comm[TASK_COMM_LEN];
987 pid_t pid;
988 u32 seqno;
989 } *waiters;
990
991 struct {
992 u32 gfx_mode;
993 union {
994 u64 pdp[4];
995 u32 pp_dir_base;
996 };
997 } vm_info;
998 } engine[I915_NUM_ENGINES];
999
1000 struct drm_i915_error_buffer {
1001 u32 size;
1002 u32 name;
1003 u32 rseqno[I915_NUM_ENGINES], wseqno;
1004 u64 gtt_offset;
1005 u32 read_domains;
1006 u32 write_domain;
1007 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
1008 u32 tiling:2;
1009 u32 dirty:1;
1010 u32 purgeable:1;
1011 u32 userptr:1;
1012 s32 engine:4;
1013 u32 cache_level:3;
1014 } *active_bo[I915_NUM_ENGINES], *pinned_bo;
1015 u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
1016 struct i915_address_space *active_vm[I915_NUM_ENGINES];
1017 };
1018
1019 enum i915_cache_level {
1020 I915_CACHE_NONE = 0,
1021 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
1022 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
1023 caches, eg sampler/render caches, and the
1024 large Last-Level-Cache. LLC is coherent with
1025 the CPU, but L3 is only visible to the GPU. */
1026 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
1027 };
1028
1029 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
1030
1031 enum fb_op_origin {
1032 ORIGIN_GTT,
1033 ORIGIN_CPU,
1034 ORIGIN_CS,
1035 ORIGIN_FLIP,
1036 ORIGIN_DIRTYFB,
1037 };
1038
1039 struct intel_fbc {
1040 /* This is always the inner lock when overlapping with struct_mutex and
1041 * it's the outer lock when overlapping with stolen_lock. */
1042 struct mutex lock;
1043 unsigned threshold;
1044 unsigned int possible_framebuffer_bits;
1045 unsigned int busy_bits;
1046 unsigned int visible_pipes_mask;
1047 struct intel_crtc *crtc;
1048
1049 struct drm_mm_node compressed_fb;
1050 struct drm_mm_node *compressed_llb;
1051
1052 bool false_color;
1053
1054 bool enabled;
1055 bool active;
1056
1057 bool underrun_detected;
1058 struct work_struct underrun_work;
1059
1060 struct intel_fbc_state_cache {
1061 struct i915_vma *vma;
1062
1063 struct {
1064 unsigned int mode_flags;
1065 uint32_t hsw_bdw_pixel_rate;
1066 } crtc;
1067
1068 struct {
1069 unsigned int rotation;
1070 int src_w;
1071 int src_h;
1072 bool visible;
1073 } plane;
1074
1075 struct {
1076 const struct drm_format_info *format;
1077 unsigned int stride;
1078 } fb;
1079 } state_cache;
1080
1081 struct intel_fbc_reg_params {
1082 struct i915_vma *vma;
1083
1084 struct {
1085 enum pipe pipe;
1086 enum plane plane;
1087 unsigned int fence_y_offset;
1088 } crtc;
1089
1090 struct {
1091 const struct drm_format_info *format;
1092 unsigned int stride;
1093 } fb;
1094
1095 int cfb_size;
1096 } params;
1097
1098 struct intel_fbc_work {
1099 bool scheduled;
1100 u32 scheduled_vblank;
1101 struct work_struct work;
1102 } work;
1103
1104 const char *no_fbc_reason;
1105 };
1106
1107 /*
1108 * HIGH_RR is the highest eDP panel refresh rate read from EDID
1109 * LOW_RR is the lowest eDP panel refresh rate found from EDID
1110 * parsing for same resolution.
1111 */
1112 enum drrs_refresh_rate_type {
1113 DRRS_HIGH_RR,
1114 DRRS_LOW_RR,
1115 DRRS_MAX_RR, /* RR count */
1116 };
1117
1118 enum drrs_support_type {
1119 DRRS_NOT_SUPPORTED = 0,
1120 STATIC_DRRS_SUPPORT = 1,
1121 SEAMLESS_DRRS_SUPPORT = 2
1122 };
1123
1124 struct intel_dp;
1125 struct i915_drrs {
1126 struct mutex mutex;
1127 struct delayed_work work;
1128 struct intel_dp *dp;
1129 unsigned busy_frontbuffer_bits;
1130 enum drrs_refresh_rate_type refresh_rate_type;
1131 enum drrs_support_type type;
1132 };
1133
1134 struct i915_psr {
1135 struct mutex lock;
1136 bool sink_support;
1137 bool source_ok;
1138 struct intel_dp *enabled;
1139 bool active;
1140 struct delayed_work work;
1141 unsigned busy_frontbuffer_bits;
1142 bool psr2_support;
1143 bool aux_frame_sync;
1144 bool link_standby;
1145 bool y_cord_support;
1146 bool colorimetry_support;
1147 bool alpm;
1148 };
1149
1150 enum intel_pch {
1151 PCH_NONE = 0, /* No PCH present */
1152 PCH_IBX, /* Ibexpeak PCH */
1153 PCH_CPT, /* Cougarpoint/Pantherpoint PCH */
1154 PCH_LPT, /* Lynxpoint/Wildcatpoint PCH */
1155 PCH_SPT, /* Sunrisepoint PCH */
1156 PCH_KBP, /* Kabypoint PCH */
1157 PCH_CNP, /* Cannonpoint PCH */
1158 PCH_NOP,
1159 };
1160
1161 enum intel_sbi_destination {
1162 SBI_ICLK,
1163 SBI_MPHY,
1164 };
1165
1166 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1167 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1168 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1169 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1170
1171 struct intel_fbdev;
1172 struct intel_fbc_work;
1173
1174 struct intel_gmbus {
1175 struct i2c_adapter adapter;
1176 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1177 u32 force_bit;
1178 u32 reg0;
1179 i915_reg_t gpio_reg;
1180 struct i2c_algo_bit_data bit_algo;
1181 struct drm_i915_private *dev_priv;
1182 };
1183
1184 struct i915_suspend_saved_registers {
1185 u32 saveDSPARB;
1186 u32 saveFBC_CONTROL;
1187 u32 saveCACHE_MODE_0;
1188 u32 saveMI_ARB_STATE;
1189 u32 saveSWF0[16];
1190 u32 saveSWF1[16];
1191 u32 saveSWF3[3];
1192 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1193 u32 savePCH_PORT_HOTPLUG;
1194 u16 saveGCDGMBUS;
1195 };
1196
1197 struct vlv_s0ix_state {
1198 /* GAM */
1199 u32 wr_watermark;
1200 u32 gfx_prio_ctrl;
1201 u32 arb_mode;
1202 u32 gfx_pend_tlb0;
1203 u32 gfx_pend_tlb1;
1204 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1205 u32 media_max_req_count;
1206 u32 gfx_max_req_count;
1207 u32 render_hwsp;
1208 u32 ecochk;
1209 u32 bsd_hwsp;
1210 u32 blt_hwsp;
1211 u32 tlb_rd_addr;
1212
1213 /* MBC */
1214 u32 g3dctl;
1215 u32 gsckgctl;
1216 u32 mbctl;
1217
1218 /* GCP */
1219 u32 ucgctl1;
1220 u32 ucgctl3;
1221 u32 rcgctl1;
1222 u32 rcgctl2;
1223 u32 rstctl;
1224 u32 misccpctl;
1225
1226 /* GPM */
1227 u32 gfxpause;
1228 u32 rpdeuhwtc;
1229 u32 rpdeuc;
1230 u32 ecobus;
1231 u32 pwrdwnupctl;
1232 u32 rp_down_timeout;
1233 u32 rp_deucsw;
1234 u32 rcubmabdtmr;
1235 u32 rcedata;
1236 u32 spare2gh;
1237
1238 /* Display 1 CZ domain */
1239 u32 gt_imr;
1240 u32 gt_ier;
1241 u32 pm_imr;
1242 u32 pm_ier;
1243 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1244
1245 /* GT SA CZ domain */
1246 u32 tilectl;
1247 u32 gt_fifoctl;
1248 u32 gtlc_wake_ctrl;
1249 u32 gtlc_survive;
1250 u32 pmwgicz;
1251
1252 /* Display 2 CZ domain */
1253 u32 gu_ctl0;
1254 u32 gu_ctl1;
1255 u32 pcbr;
1256 u32 clock_gate_dis2;
1257 };
1258
1259 struct intel_rps_ei {
1260 ktime_t ktime;
1261 u32 render_c0;
1262 u32 media_c0;
1263 };
1264
1265 struct intel_gen6_power_mgmt {
1266 /*
1267 * work, interrupts_enabled and pm_iir are protected by
1268 * dev_priv->irq_lock
1269 */
1270 struct work_struct work;
1271 bool interrupts_enabled;
1272 u32 pm_iir;
1273
1274 /* PM interrupt bits that should never be masked */
1275 u32 pm_intrmsk_mbz;
1276
1277 /* Frequencies are stored in potentially platform dependent multiples.
1278 * In other words, *_freq needs to be multiplied by X to be interesting.
1279 * Soft limits are those which are used for the dynamic reclocking done
1280 * by the driver (raise frequencies under heavy loads, and lower for
1281 * lighter loads). Hard limits are those imposed by the hardware.
1282 *
1283 * A distinction is made for overclocking, which is never enabled by
1284 * default, and is considered to be above the hard limit if it's
1285 * possible at all.
1286 */
1287 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1288 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1289 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1290 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1291 u8 min_freq; /* AKA RPn. Minimum frequency */
1292 u8 boost_freq; /* Frequency to request when wait boosting */
1293 u8 idle_freq; /* Frequency to request when we are idle */
1294 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1295 u8 rp1_freq; /* "less than" RP0 power/freqency */
1296 u8 rp0_freq; /* Non-overclocked max frequency. */
1297 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
1298
1299 u8 up_threshold; /* Current %busy required to uplock */
1300 u8 down_threshold; /* Current %busy required to downclock */
1301
1302 int last_adj;
1303 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1304
1305 spinlock_t client_lock;
1306 struct list_head clients;
1307 bool client_boost;
1308
1309 bool enabled;
1310 struct delayed_work autoenable_work;
1311 unsigned boosts;
1312
1313 /* manual wa residency calculations */
1314 struct intel_rps_ei ei;
1315
1316 /*
1317 * Protects RPS/RC6 register access and PCU communication.
1318 * Must be taken after struct_mutex if nested. Note that
1319 * this lock may be held for long periods of time when
1320 * talking to hw - so only take it when talking to hw!
1321 */
1322 struct mutex hw_lock;
1323 };
1324
1325 /* defined intel_pm.c */
1326 extern spinlock_t mchdev_lock;
1327
1328 struct intel_ilk_power_mgmt {
1329 u8 cur_delay;
1330 u8 min_delay;
1331 u8 max_delay;
1332 u8 fmax;
1333 u8 fstart;
1334
1335 u64 last_count1;
1336 unsigned long last_time1;
1337 unsigned long chipset_power;
1338 u64 last_count2;
1339 u64 last_time2;
1340 unsigned long gfx_power;
1341 u8 corr;
1342
1343 int c_m;
1344 int r_t;
1345 };
1346
1347 struct drm_i915_private;
1348 struct i915_power_well;
1349
1350 struct i915_power_well_ops {
1351 /*
1352 * Synchronize the well's hw state to match the current sw state, for
1353 * example enable/disable it based on the current refcount. Called
1354 * during driver init and resume time, possibly after first calling
1355 * the enable/disable handlers.
1356 */
1357 void (*sync_hw)(struct drm_i915_private *dev_priv,
1358 struct i915_power_well *power_well);
1359 /*
1360 * Enable the well and resources that depend on it (for example
1361 * interrupts located on the well). Called after the 0->1 refcount
1362 * transition.
1363 */
1364 void (*enable)(struct drm_i915_private *dev_priv,
1365 struct i915_power_well *power_well);
1366 /*
1367 * Disable the well and resources that depend on it. Called after
1368 * the 1->0 refcount transition.
1369 */
1370 void (*disable)(struct drm_i915_private *dev_priv,
1371 struct i915_power_well *power_well);
1372 /* Returns the hw enabled state. */
1373 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1374 struct i915_power_well *power_well);
1375 };
1376
1377 /* Power well structure for haswell */
1378 struct i915_power_well {
1379 const char *name;
1380 bool always_on;
1381 /* power well enable/disable usage count */
1382 int count;
1383 /* cached hw enabled state */
1384 bool hw_enabled;
1385 u64 domains;
1386 /* unique identifier for this power well */
1387 unsigned long id;
1388 /*
1389 * Arbitraty data associated with this power well. Platform and power
1390 * well specific.
1391 */
1392 unsigned long data;
1393 const struct i915_power_well_ops *ops;
1394 };
1395
1396 struct i915_power_domains {
1397 /*
1398 * Power wells needed for initialization at driver init and suspend
1399 * time are on. They are kept on until after the first modeset.
1400 */
1401 bool init_power_on;
1402 bool initializing;
1403 int power_well_count;
1404
1405 struct mutex lock;
1406 int domain_use_count[POWER_DOMAIN_NUM];
1407 struct i915_power_well *power_wells;
1408 };
1409
1410 #define MAX_L3_SLICES 2
1411 struct intel_l3_parity {
1412 u32 *remap_info[MAX_L3_SLICES];
1413 struct work_struct error_work;
1414 int which_slice;
1415 };
1416
1417 struct i915_gem_mm {
1418 /** Memory allocator for GTT stolen memory */
1419 struct drm_mm stolen;
1420 /** Protects the usage of the GTT stolen memory allocator. This is
1421 * always the inner lock when overlapping with struct_mutex. */
1422 struct mutex stolen_lock;
1423
1424 /** List of all objects in gtt_space. Used to restore gtt
1425 * mappings on resume */
1426 struct list_head bound_list;
1427 /**
1428 * List of objects which are not bound to the GTT (thus
1429 * are idle and not used by the GPU). These objects may or may
1430 * not actually have any pages attached.
1431 */
1432 struct list_head unbound_list;
1433
1434 /** List of all objects in gtt_space, currently mmaped by userspace.
1435 * All objects within this list must also be on bound_list.
1436 */
1437 struct list_head userfault_list;
1438
1439 /**
1440 * List of objects which are pending destruction.
1441 */
1442 struct llist_head free_list;
1443 struct work_struct free_work;
1444
1445 /** Usable portion of the GTT for GEM */
1446 dma_addr_t stolen_base; /* limited to low memory (32-bit) */
1447
1448 /** PPGTT used for aliasing the PPGTT with the GTT */
1449 struct i915_hw_ppgtt *aliasing_ppgtt;
1450
1451 struct notifier_block oom_notifier;
1452 struct notifier_block vmap_notifier;
1453 struct shrinker shrinker;
1454
1455 /** LRU list of objects with fence regs on them. */
1456 struct list_head fence_list;
1457
1458 /**
1459 * Workqueue to fault in userptr pages, flushed by the execbuf
1460 * when required but otherwise left to userspace to try again
1461 * on EAGAIN.
1462 */
1463 struct workqueue_struct *userptr_wq;
1464
1465 u64 unordered_timeline;
1466
1467 /* the indicator for dispatch video commands on two BSD rings */
1468 atomic_t bsd_engine_dispatch_index;
1469
1470 /** Bit 6 swizzling required for X tiling */
1471 uint32_t bit_6_swizzle_x;
1472 /** Bit 6 swizzling required for Y tiling */
1473 uint32_t bit_6_swizzle_y;
1474
1475 /* accounting, useful for userland debugging */
1476 spinlock_t object_stat_lock;
1477 u64 object_memory;
1478 u32 object_count;
1479 };
1480
1481 struct drm_i915_error_state_buf {
1482 struct drm_i915_private *i915;
1483 unsigned bytes;
1484 unsigned size;
1485 int err;
1486 u8 *buf;
1487 loff_t start;
1488 loff_t pos;
1489 };
1490
1491 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1492 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1493
1494 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */
1495 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */
1496
1497 struct i915_gpu_error {
1498 /* For hangcheck timer */
1499 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1500 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1501
1502 struct delayed_work hangcheck_work;
1503
1504 /* For reset and error_state handling. */
1505 spinlock_t lock;
1506 /* Protected by the above dev->gpu_error.lock. */
1507 struct i915_gpu_state *first_error;
1508
1509 unsigned long missed_irq_rings;
1510
1511 /**
1512 * State variable controlling the reset flow and count
1513 *
1514 * This is a counter which gets incremented when reset is triggered,
1515 *
1516 * Before the reset commences, the I915_RESET_BACKOFF bit is set
1517 * meaning that any waiters holding onto the struct_mutex should
1518 * relinquish the lock immediately in order for the reset to start.
1519 *
1520 * If reset is not completed succesfully, the I915_WEDGE bit is
1521 * set meaning that hardware is terminally sour and there is no
1522 * recovery. All waiters on the reset_queue will be woken when
1523 * that happens.
1524 *
1525 * This counter is used by the wait_seqno code to notice that reset
1526 * event happened and it needs to restart the entire ioctl (since most
1527 * likely the seqno it waited for won't ever signal anytime soon).
1528 *
1529 * This is important for lock-free wait paths, where no contended lock
1530 * naturally enforces the correct ordering between the bail-out of the
1531 * waiter and the gpu reset work code.
1532 */
1533 unsigned long reset_count;
1534
1535 /**
1536 * flags: Control various stages of the GPU reset
1537 *
1538 * #I915_RESET_BACKOFF - When we start a reset, we want to stop any
1539 * other users acquiring the struct_mutex. To do this we set the
1540 * #I915_RESET_BACKOFF bit in the error flags when we detect a reset
1541 * and then check for that bit before acquiring the struct_mutex (in
1542 * i915_mutex_lock_interruptible()?). I915_RESET_BACKOFF serves a
1543 * secondary role in preventing two concurrent global reset attempts.
1544 *
1545 * #I915_RESET_HANDOFF - To perform the actual GPU reset, we need the
1546 * struct_mutex. We try to acquire the struct_mutex in the reset worker,
1547 * but it may be held by some long running waiter (that we cannot
1548 * interrupt without causing trouble). Once we are ready to do the GPU
1549 * reset, we set the I915_RESET_HANDOFF bit and wakeup any waiters. If
1550 * they already hold the struct_mutex and want to participate they can
1551 * inspect the bit and do the reset directly, otherwise the worker
1552 * waits for the struct_mutex.
1553 *
1554 * #I915_RESET_ENGINE[num_engines] - Since the driver doesn't need to
1555 * acquire the struct_mutex to reset an engine, we need an explicit
1556 * flag to prevent two concurrent reset attempts in the same engine.
1557 * As the number of engines continues to grow, allocate the flags from
1558 * the most significant bits.
1559 *
1560 * #I915_WEDGED - If reset fails and we can no longer use the GPU,
1561 * we set the #I915_WEDGED bit. Prior to command submission, e.g.
1562 * i915_gem_request_alloc(), this bit is checked and the sequence
1563 * aborted (with -EIO reported to userspace) if set.
1564 */
1565 unsigned long flags;
1566 #define I915_RESET_BACKOFF 0
1567 #define I915_RESET_HANDOFF 1
1568 #define I915_WEDGED (BITS_PER_LONG - 1)
1569 #define I915_RESET_ENGINE (I915_WEDGED - I915_NUM_ENGINES)
1570
1571 /** Number of times an engine has been reset */
1572 u32 reset_engine_count[I915_NUM_ENGINES];
1573
1574 /**
1575 * Waitqueue to signal when a hang is detected. Used to for waiters
1576 * to release the struct_mutex for the reset to procede.
1577 */
1578 wait_queue_head_t wait_queue;
1579
1580 /**
1581 * Waitqueue to signal when the reset has completed. Used by clients
1582 * that wait for dev_priv->mm.wedged to settle.
1583 */
1584 wait_queue_head_t reset_queue;
1585
1586 /* For missed irq/seqno simulation. */
1587 unsigned long test_irq_rings;
1588 };
1589
1590 enum modeset_restore {
1591 MODESET_ON_LID_OPEN,
1592 MODESET_DONE,
1593 MODESET_SUSPENDED,
1594 };
1595
1596 #define DP_AUX_A 0x40
1597 #define DP_AUX_B 0x10
1598 #define DP_AUX_C 0x20
1599 #define DP_AUX_D 0x30
1600
1601 #define DDC_PIN_B 0x05
1602 #define DDC_PIN_C 0x04
1603 #define DDC_PIN_D 0x06
1604
1605 struct ddi_vbt_port_info {
1606 /*
1607 * This is an index in the HDMI/DVI DDI buffer translation table.
1608 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1609 * populate this field.
1610 */
1611 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1612 uint8_t hdmi_level_shift;
1613
1614 uint8_t supports_dvi:1;
1615 uint8_t supports_hdmi:1;
1616 uint8_t supports_dp:1;
1617 uint8_t supports_edp:1;
1618
1619 uint8_t alternate_aux_channel;
1620 uint8_t alternate_ddc_pin;
1621
1622 uint8_t dp_boost_level;
1623 uint8_t hdmi_boost_level;
1624 };
1625
1626 enum psr_lines_to_wait {
1627 PSR_0_LINES_TO_WAIT = 0,
1628 PSR_1_LINE_TO_WAIT,
1629 PSR_4_LINES_TO_WAIT,
1630 PSR_8_LINES_TO_WAIT
1631 };
1632
1633 struct intel_vbt_data {
1634 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1635 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1636
1637 /* Feature bits */
1638 unsigned int int_tv_support:1;
1639 unsigned int lvds_dither:1;
1640 unsigned int lvds_vbt:1;
1641 unsigned int int_crt_support:1;
1642 unsigned int lvds_use_ssc:1;
1643 unsigned int display_clock_mode:1;
1644 unsigned int fdi_rx_polarity_inverted:1;
1645 unsigned int panel_type:4;
1646 int lvds_ssc_freq;
1647 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1648
1649 enum drrs_support_type drrs_type;
1650
1651 struct {
1652 int rate;
1653 int lanes;
1654 int preemphasis;
1655 int vswing;
1656 bool low_vswing;
1657 bool initialized;
1658 bool support;
1659 int bpp;
1660 struct edp_power_seq pps;
1661 } edp;
1662
1663 struct {
1664 bool full_link;
1665 bool require_aux_wakeup;
1666 int idle_frames;
1667 enum psr_lines_to_wait lines_to_wait;
1668 int tp1_wakeup_time;
1669 int tp2_tp3_wakeup_time;
1670 } psr;
1671
1672 struct {
1673 u16 pwm_freq_hz;
1674 bool present;
1675 bool active_low_pwm;
1676 u8 min_brightness; /* min_brightness/255 of max */
1677 u8 controller; /* brightness controller number */
1678 enum intel_backlight_type type;
1679 } backlight;
1680
1681 /* MIPI DSI */
1682 struct {
1683 u16 panel_id;
1684 struct mipi_config *config;
1685 struct mipi_pps_data *pps;
1686 u8 seq_version;
1687 u32 size;
1688 u8 *data;
1689 const u8 *sequence[MIPI_SEQ_MAX];
1690 } dsi;
1691
1692 int crt_ddc_pin;
1693
1694 int child_dev_num;
1695 union child_device_config *child_dev;
1696
1697 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1698 struct sdvo_device_mapping sdvo_mappings[2];
1699 };
1700
1701 enum intel_ddb_partitioning {
1702 INTEL_DDB_PART_1_2,
1703 INTEL_DDB_PART_5_6, /* IVB+ */
1704 };
1705
1706 struct intel_wm_level {
1707 bool enable;
1708 uint32_t pri_val;
1709 uint32_t spr_val;
1710 uint32_t cur_val;
1711 uint32_t fbc_val;
1712 };
1713
1714 struct ilk_wm_values {
1715 uint32_t wm_pipe[3];
1716 uint32_t wm_lp[3];
1717 uint32_t wm_lp_spr[3];
1718 uint32_t wm_linetime[3];
1719 bool enable_fbc_wm;
1720 enum intel_ddb_partitioning partitioning;
1721 };
1722
1723 struct g4x_pipe_wm {
1724 uint16_t plane[I915_MAX_PLANES];
1725 uint16_t fbc;
1726 };
1727
1728 struct g4x_sr_wm {
1729 uint16_t plane;
1730 uint16_t cursor;
1731 uint16_t fbc;
1732 };
1733
1734 struct vlv_wm_ddl_values {
1735 uint8_t plane[I915_MAX_PLANES];
1736 };
1737
1738 struct vlv_wm_values {
1739 struct g4x_pipe_wm pipe[3];
1740 struct g4x_sr_wm sr;
1741 struct vlv_wm_ddl_values ddl[3];
1742 uint8_t level;
1743 bool cxsr;
1744 };
1745
1746 struct g4x_wm_values {
1747 struct g4x_pipe_wm pipe[2];
1748 struct g4x_sr_wm sr;
1749 struct g4x_sr_wm hpll;
1750 bool cxsr;
1751 bool hpll_en;
1752 bool fbc_en;
1753 };
1754
1755 struct skl_ddb_entry {
1756 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1757 };
1758
1759 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1760 {
1761 return entry->end - entry->start;
1762 }
1763
1764 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1765 const struct skl_ddb_entry *e2)
1766 {
1767 if (e1->start == e2->start && e1->end == e2->end)
1768 return true;
1769
1770 return false;
1771 }
1772
1773 struct skl_ddb_allocation {
1774 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1775 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1776 };
1777
1778 struct skl_wm_values {
1779 unsigned dirty_pipes;
1780 struct skl_ddb_allocation ddb;
1781 };
1782
1783 struct skl_wm_level {
1784 bool plane_en;
1785 uint16_t plane_res_b;
1786 uint8_t plane_res_l;
1787 };
1788
1789 /*
1790 * This struct helps tracking the state needed for runtime PM, which puts the
1791 * device in PCI D3 state. Notice that when this happens, nothing on the
1792 * graphics device works, even register access, so we don't get interrupts nor
1793 * anything else.
1794 *
1795 * Every piece of our code that needs to actually touch the hardware needs to
1796 * either call intel_runtime_pm_get or call intel_display_power_get with the
1797 * appropriate power domain.
1798 *
1799 * Our driver uses the autosuspend delay feature, which means we'll only really
1800 * suspend if we stay with zero refcount for a certain amount of time. The
1801 * default value is currently very conservative (see intel_runtime_pm_enable), but
1802 * it can be changed with the standard runtime PM files from sysfs.
1803 *
1804 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1805 * goes back to false exactly before we reenable the IRQs. We use this variable
1806 * to check if someone is trying to enable/disable IRQs while they're supposed
1807 * to be disabled. This shouldn't happen and we'll print some error messages in
1808 * case it happens.
1809 *
1810 * For more, read the Documentation/power/runtime_pm.txt.
1811 */
1812 struct i915_runtime_pm {
1813 atomic_t wakeref_count;
1814 bool suspended;
1815 bool irqs_enabled;
1816 };
1817
1818 enum intel_pipe_crc_source {
1819 INTEL_PIPE_CRC_SOURCE_NONE,
1820 INTEL_PIPE_CRC_SOURCE_PLANE1,
1821 INTEL_PIPE_CRC_SOURCE_PLANE2,
1822 INTEL_PIPE_CRC_SOURCE_PF,
1823 INTEL_PIPE_CRC_SOURCE_PIPE,
1824 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1825 INTEL_PIPE_CRC_SOURCE_TV,
1826 INTEL_PIPE_CRC_SOURCE_DP_B,
1827 INTEL_PIPE_CRC_SOURCE_DP_C,
1828 INTEL_PIPE_CRC_SOURCE_DP_D,
1829 INTEL_PIPE_CRC_SOURCE_AUTO,
1830 INTEL_PIPE_CRC_SOURCE_MAX,
1831 };
1832
1833 struct intel_pipe_crc_entry {
1834 uint32_t frame;
1835 uint32_t crc[5];
1836 };
1837
1838 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1839 struct intel_pipe_crc {
1840 spinlock_t lock;
1841 bool opened; /* exclusive access to the result file */
1842 struct intel_pipe_crc_entry *entries;
1843 enum intel_pipe_crc_source source;
1844 int head, tail;
1845 wait_queue_head_t wq;
1846 int skipped;
1847 };
1848
1849 struct i915_frontbuffer_tracking {
1850 spinlock_t lock;
1851
1852 /*
1853 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1854 * scheduled flips.
1855 */
1856 unsigned busy_bits;
1857 unsigned flip_bits;
1858 };
1859
1860 struct i915_wa_reg {
1861 i915_reg_t addr;
1862 u32 value;
1863 /* bitmask representing WA bits */
1864 u32 mask;
1865 };
1866
1867 /*
1868 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1869 * allowing it for RCS as we don't foresee any requirement of having
1870 * a whitelist for other engines. When it is really required for
1871 * other engines then the limit need to be increased.
1872 */
1873 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1874
1875 struct i915_workarounds {
1876 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1877 u32 count;
1878 u32 hw_whitelist_count[I915_NUM_ENGINES];
1879 };
1880
1881 struct i915_virtual_gpu {
1882 bool active;
1883 };
1884
1885 /* used in computing the new watermarks state */
1886 struct intel_wm_config {
1887 unsigned int num_pipes_active;
1888 bool sprites_enabled;
1889 bool sprites_scaled;
1890 };
1891
1892 struct i915_oa_format {
1893 u32 format;
1894 int size;
1895 };
1896
1897 struct i915_oa_reg {
1898 i915_reg_t addr;
1899 u32 value;
1900 };
1901
1902 struct i915_perf_stream;
1903
1904 /**
1905 * struct i915_perf_stream_ops - the OPs to support a specific stream type
1906 */
1907 struct i915_perf_stream_ops {
1908 /**
1909 * @enable: Enables the collection of HW samples, either in response to
1910 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1911 * without `I915_PERF_FLAG_DISABLED`.
1912 */
1913 void (*enable)(struct i915_perf_stream *stream);
1914
1915 /**
1916 * @disable: Disables the collection of HW samples, either in response
1917 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1918 * the stream.
1919 */
1920 void (*disable)(struct i915_perf_stream *stream);
1921
1922 /**
1923 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1924 * once there is something ready to read() for the stream
1925 */
1926 void (*poll_wait)(struct i915_perf_stream *stream,
1927 struct file *file,
1928 poll_table *wait);
1929
1930 /**
1931 * @wait_unlocked: For handling a blocking read, wait until there is
1932 * something to ready to read() for the stream. E.g. wait on the same
1933 * wait queue that would be passed to poll_wait().
1934 */
1935 int (*wait_unlocked)(struct i915_perf_stream *stream);
1936
1937 /**
1938 * @read: Copy buffered metrics as records to userspace
1939 * **buf**: the userspace, destination buffer
1940 * **count**: the number of bytes to copy, requested by userspace
1941 * **offset**: zero at the start of the read, updated as the read
1942 * proceeds, it represents how many bytes have been copied so far and
1943 * the buffer offset for copying the next record.
1944 *
1945 * Copy as many buffered i915 perf samples and records for this stream
1946 * to userspace as will fit in the given buffer.
1947 *
1948 * Only write complete records; returning -%ENOSPC if there isn't room
1949 * for a complete record.
1950 *
1951 * Return any error condition that results in a short read such as
1952 * -%ENOSPC or -%EFAULT, even though these may be squashed before
1953 * returning to userspace.
1954 */
1955 int (*read)(struct i915_perf_stream *stream,
1956 char __user *buf,
1957 size_t count,
1958 size_t *offset);
1959
1960 /**
1961 * @destroy: Cleanup any stream specific resources.
1962 *
1963 * The stream will always be disabled before this is called.
1964 */
1965 void (*destroy)(struct i915_perf_stream *stream);
1966 };
1967
1968 /**
1969 * struct i915_perf_stream - state for a single open stream FD
1970 */
1971 struct i915_perf_stream {
1972 /**
1973 * @dev_priv: i915 drm device
1974 */
1975 struct drm_i915_private *dev_priv;
1976
1977 /**
1978 * @link: Links the stream into ``&drm_i915_private->streams``
1979 */
1980 struct list_head link;
1981
1982 /**
1983 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
1984 * properties given when opening a stream, representing the contents
1985 * of a single sample as read() by userspace.
1986 */
1987 u32 sample_flags;
1988
1989 /**
1990 * @sample_size: Considering the configured contents of a sample
1991 * combined with the required header size, this is the total size
1992 * of a single sample record.
1993 */
1994 int sample_size;
1995
1996 /**
1997 * @ctx: %NULL if measuring system-wide across all contexts or a
1998 * specific context that is being monitored.
1999 */
2000 struct i915_gem_context *ctx;
2001
2002 /**
2003 * @enabled: Whether the stream is currently enabled, considering
2004 * whether the stream was opened in a disabled state and based
2005 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
2006 */
2007 bool enabled;
2008
2009 /**
2010 * @ops: The callbacks providing the implementation of this specific
2011 * type of configured stream.
2012 */
2013 const struct i915_perf_stream_ops *ops;
2014 };
2015
2016 /**
2017 * struct i915_oa_ops - Gen specific implementation of an OA unit stream
2018 */
2019 struct i915_oa_ops {
2020 /**
2021 * @init_oa_buffer: Resets the head and tail pointers of the
2022 * circular buffer for periodic OA reports.
2023 *
2024 * Called when first opening a stream for OA metrics, but also may be
2025 * called in response to an OA buffer overflow or other error
2026 * condition.
2027 *
2028 * Note it may be necessary to clear the full OA buffer here as part of
2029 * maintaining the invariable that new reports must be written to
2030 * zeroed memory for us to be able to reliable detect if an expected
2031 * report has not yet landed in memory. (At least on Haswell the OA
2032 * buffer tail pointer is not synchronized with reports being visible
2033 * to the CPU)
2034 */
2035 void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
2036
2037 /**
2038 * @select_metric_set: The auto generated code that checks whether a
2039 * requested OA config is applicable to the system and if so sets up
2040 * the mux, oa and flex eu register config pointers according to the
2041 * current dev_priv->perf.oa.metrics_set.
2042 */
2043 int (*select_metric_set)(struct drm_i915_private *dev_priv);
2044
2045 /**
2046 * @enable_metric_set: Selects and applies any MUX configuration to set
2047 * up the Boolean and Custom (B/C) counters that are part of the
2048 * counter reports being sampled. May apply system constraints such as
2049 * disabling EU clock gating as required.
2050 */
2051 int (*enable_metric_set)(struct drm_i915_private *dev_priv);
2052
2053 /**
2054 * @disable_metric_set: Remove system constraints associated with using
2055 * the OA unit.
2056 */
2057 void (*disable_metric_set)(struct drm_i915_private *dev_priv);
2058
2059 /**
2060 * @oa_enable: Enable periodic sampling
2061 */
2062 void (*oa_enable)(struct drm_i915_private *dev_priv);
2063
2064 /**
2065 * @oa_disable: Disable periodic sampling
2066 */
2067 void (*oa_disable)(struct drm_i915_private *dev_priv);
2068
2069 /**
2070 * @read: Copy data from the circular OA buffer into a given userspace
2071 * buffer.
2072 */
2073 int (*read)(struct i915_perf_stream *stream,
2074 char __user *buf,
2075 size_t count,
2076 size_t *offset);
2077
2078 /**
2079 * @oa_hw_tail_read: read the OA tail pointer register
2080 *
2081 * In particular this enables us to share all the fiddly code for
2082 * handling the OA unit tail pointer race that affects multiple
2083 * generations.
2084 */
2085 u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
2086 };
2087
2088 struct intel_cdclk_state {
2089 unsigned int cdclk, vco, ref;
2090 };
2091
2092 struct drm_i915_private {
2093 struct drm_device drm;
2094
2095 struct kmem_cache *objects;
2096 struct kmem_cache *vmas;
2097 struct kmem_cache *requests;
2098 struct kmem_cache *dependencies;
2099 struct kmem_cache *priorities;
2100
2101 const struct intel_device_info info;
2102
2103 void __iomem *regs;
2104
2105 struct intel_uncore uncore;
2106
2107 struct i915_virtual_gpu vgpu;
2108
2109 struct intel_gvt *gvt;
2110
2111 struct intel_huc huc;
2112 struct intel_guc guc;
2113
2114 struct intel_csr csr;
2115
2116 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
2117
2118 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
2119 * controller on different i2c buses. */
2120 struct mutex gmbus_mutex;
2121
2122 /**
2123 * Base address of the gmbus and gpio block.
2124 */
2125 uint32_t gpio_mmio_base;
2126
2127 /* MMIO base address for MIPI regs */
2128 uint32_t mipi_mmio_base;
2129
2130 uint32_t psr_mmio_base;
2131
2132 uint32_t pps_mmio_base;
2133
2134 wait_queue_head_t gmbus_wait_queue;
2135
2136 struct pci_dev *bridge_dev;
2137 struct i915_gem_context *kernel_context;
2138 struct intel_engine_cs *engine[I915_NUM_ENGINES];
2139 struct i915_vma *semaphore;
2140
2141 struct drm_dma_handle *status_page_dmah;
2142 struct resource mch_res;
2143
2144 /* protects the irq masks */
2145 spinlock_t irq_lock;
2146
2147 /* protects the mmio flip data */
2148 spinlock_t mmio_flip_lock;
2149
2150 bool display_irqs_enabled;
2151
2152 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
2153 struct pm_qos_request pm_qos;
2154
2155 /* Sideband mailbox protection */
2156 struct mutex sb_lock;
2157
2158 /** Cached value of IMR to avoid reads in updating the bitfield */
2159 union {
2160 u32 irq_mask;
2161 u32 de_irq_mask[I915_MAX_PIPES];
2162 };
2163 u32 gt_irq_mask;
2164 u32 pm_imr;
2165 u32 pm_ier;
2166 u32 pm_rps_events;
2167 u32 pm_guc_events;
2168 u32 pipestat_irq_mask[I915_MAX_PIPES];
2169
2170 struct i915_hotplug hotplug;
2171 struct intel_fbc fbc;
2172 struct i915_drrs drrs;
2173 struct intel_opregion opregion;
2174 struct intel_vbt_data vbt;
2175
2176 bool preserve_bios_swizzle;
2177
2178 /* overlay */
2179 struct intel_overlay *overlay;
2180
2181 /* backlight registers and fields in struct intel_panel */
2182 struct mutex backlight_lock;
2183
2184 /* LVDS info */
2185 bool no_aux_handshake;
2186
2187 /* protects panel power sequencer state */
2188 struct mutex pps_mutex;
2189
2190 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
2191 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
2192
2193 unsigned int fsb_freq, mem_freq, is_ddr3;
2194 unsigned int skl_preferred_vco_freq;
2195 unsigned int max_cdclk_freq;
2196
2197 unsigned int max_dotclk_freq;
2198 unsigned int rawclk_freq;
2199 unsigned int hpll_freq;
2200 unsigned int czclk_freq;
2201
2202 struct {
2203 /*
2204 * The current logical cdclk state.
2205 * See intel_atomic_state.cdclk.logical
2206 *
2207 * For reading holding any crtc lock is sufficient,
2208 * for writing must hold all of them.
2209 */
2210 struct intel_cdclk_state logical;
2211 /*
2212 * The current actual cdclk state.
2213 * See intel_atomic_state.cdclk.actual
2214 */
2215 struct intel_cdclk_state actual;
2216 /* The current hardware cdclk state */
2217 struct intel_cdclk_state hw;
2218 } cdclk;
2219
2220 /**
2221 * wq - Driver workqueue for GEM.
2222 *
2223 * NOTE: Work items scheduled here are not allowed to grab any modeset
2224 * locks, for otherwise the flushing done in the pageflip code will
2225 * result in deadlocks.
2226 */
2227 struct workqueue_struct *wq;
2228
2229 /* Display functions */
2230 struct drm_i915_display_funcs display;
2231
2232 /* PCH chipset type */
2233 enum intel_pch pch_type;
2234 unsigned short pch_id;
2235
2236 unsigned long quirks;
2237
2238 enum modeset_restore modeset_restore;
2239 struct mutex modeset_restore_lock;
2240 struct drm_atomic_state *modeset_restore_state;
2241 struct drm_modeset_acquire_ctx reset_ctx;
2242
2243 struct list_head vm_list; /* Global list of all address spaces */
2244 struct i915_ggtt ggtt; /* VM representing the global address space */
2245
2246 struct i915_gem_mm mm;
2247 DECLARE_HASHTABLE(mm_structs, 7);
2248 struct mutex mm_lock;
2249
2250 /* Kernel Modesetting */
2251
2252 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
2253 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
2254 wait_queue_head_t pending_flip_queue;
2255
2256 #ifdef CONFIG_DEBUG_FS
2257 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
2258 #endif
2259
2260 /* dpll and cdclk state is protected by connection_mutex */
2261 int num_shared_dpll;
2262 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
2263 const struct intel_dpll_mgr *dpll_mgr;
2264
2265 /*
2266 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
2267 * Must be global rather than per dpll, because on some platforms
2268 * plls share registers.
2269 */
2270 struct mutex dpll_lock;
2271
2272 unsigned int active_crtcs;
2273 unsigned int min_pixclk[I915_MAX_PIPES];
2274
2275 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
2276
2277 struct i915_workarounds workarounds;
2278
2279 struct i915_frontbuffer_tracking fb_tracking;
2280
2281 struct intel_atomic_helper {
2282 struct llist_head free_list;
2283 struct work_struct free_work;
2284 } atomic_helper;
2285
2286 u16 orig_clock;
2287
2288 bool mchbar_need_disable;
2289
2290 struct intel_l3_parity l3_parity;
2291
2292 /* Cannot be determined by PCIID. You must always read a register. */
2293 u32 edram_cap;
2294
2295 /* gen6+ rps state */
2296 struct intel_gen6_power_mgmt rps;
2297
2298 /* ilk-only ips/rps state. Everything in here is protected by the global
2299 * mchdev_lock in intel_pm.c */
2300 struct intel_ilk_power_mgmt ips;
2301
2302 struct i915_power_domains power_domains;
2303
2304 struct i915_psr psr;
2305
2306 struct i915_gpu_error gpu_error;
2307
2308 struct drm_i915_gem_object *vlv_pctx;
2309
2310 #ifdef CONFIG_DRM_FBDEV_EMULATION
2311 /* list of fbdev register on this device */
2312 struct intel_fbdev *fbdev;
2313 struct work_struct fbdev_suspend_work;
2314 #endif
2315
2316 struct drm_property *broadcast_rgb_property;
2317 struct drm_property *force_audio_property;
2318
2319 /* hda/i915 audio component */
2320 struct i915_audio_component *audio_component;
2321 bool audio_component_registered;
2322 /**
2323 * av_mutex - mutex for audio/video sync
2324 *
2325 */
2326 struct mutex av_mutex;
2327
2328 struct {
2329 struct list_head list;
2330 struct llist_head free_list;
2331 struct work_struct free_work;
2332
2333 /* The hw wants to have a stable context identifier for the
2334 * lifetime of the context (for OA, PASID, faults, etc).
2335 * This is limited in execlists to 21 bits.
2336 */
2337 struct ida hw_ida;
2338 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
2339 } contexts;
2340
2341 u32 fdi_rx_config;
2342
2343 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
2344 u32 chv_phy_control;
2345 /*
2346 * Shadows for CHV DPLL_MD regs to keep the state
2347 * checker somewhat working in the presence hardware
2348 * crappiness (can't read out DPLL_MD for pipes B & C).
2349 */
2350 u32 chv_dpll_md[I915_MAX_PIPES];
2351 u32 bxt_phy_grc;
2352
2353 u32 suspend_count;
2354 bool suspended_to_idle;
2355 struct i915_suspend_saved_registers regfile;
2356 struct vlv_s0ix_state vlv_s0ix_state;
2357
2358 enum {
2359 I915_SAGV_UNKNOWN = 0,
2360 I915_SAGV_DISABLED,
2361 I915_SAGV_ENABLED,
2362 I915_SAGV_NOT_CONTROLLED
2363 } sagv_status;
2364
2365 struct {
2366 /*
2367 * Raw watermark latency values:
2368 * in 0.1us units for WM0,
2369 * in 0.5us units for WM1+.
2370 */
2371 /* primary */
2372 uint16_t pri_latency[5];
2373 /* sprite */
2374 uint16_t spr_latency[5];
2375 /* cursor */
2376 uint16_t cur_latency[5];
2377 /*
2378 * Raw watermark memory latency values
2379 * for SKL for all 8 levels
2380 * in 1us units.
2381 */
2382 uint16_t skl_latency[8];
2383
2384 /* current hardware state */
2385 union {
2386 struct ilk_wm_values hw;
2387 struct skl_wm_values skl_hw;
2388 struct vlv_wm_values vlv;
2389 struct g4x_wm_values g4x;
2390 };
2391
2392 uint8_t max_level;
2393
2394 /*
2395 * Should be held around atomic WM register writing; also
2396 * protects * intel_crtc->wm.active and
2397 * cstate->wm.need_postvbl_update.
2398 */
2399 struct mutex wm_mutex;
2400
2401 /*
2402 * Set during HW readout of watermarks/DDB. Some platforms
2403 * need to know when we're still using BIOS-provided values
2404 * (which we don't fully trust).
2405 */
2406 bool distrust_bios_wm;
2407 } wm;
2408
2409 struct i915_runtime_pm pm;
2410
2411 struct {
2412 bool initialized;
2413
2414 struct kobject *metrics_kobj;
2415 struct ctl_table_header *sysctl_header;
2416
2417 struct mutex lock;
2418 struct list_head streams;
2419
2420 struct {
2421 struct i915_perf_stream *exclusive_stream;
2422
2423 u32 specific_ctx_id;
2424
2425 struct hrtimer poll_check_timer;
2426 wait_queue_head_t poll_wq;
2427 bool pollin;
2428
2429 /**
2430 * For rate limiting any notifications of spurious
2431 * invalid OA reports
2432 */
2433 struct ratelimit_state spurious_report_rs;
2434
2435 bool periodic;
2436 int period_exponent;
2437 int timestamp_frequency;
2438
2439 int metrics_set;
2440
2441 const struct i915_oa_reg *mux_regs[6];
2442 int mux_regs_lens[6];
2443 int n_mux_configs;
2444
2445 const struct i915_oa_reg *b_counter_regs;
2446 int b_counter_regs_len;
2447 const struct i915_oa_reg *flex_regs;
2448 int flex_regs_len;
2449
2450 struct {
2451 struct i915_vma *vma;
2452 u8 *vaddr;
2453 u32 last_ctx_id;
2454 int format;
2455 int format_size;
2456
2457 /**
2458 * Locks reads and writes to all head/tail state
2459 *
2460 * Consider: the head and tail pointer state
2461 * needs to be read consistently from a hrtimer
2462 * callback (atomic context) and read() fop
2463 * (user context) with tail pointer updates
2464 * happening in atomic context and head updates
2465 * in user context and the (unlikely)
2466 * possibility of read() errors needing to
2467 * reset all head/tail state.
2468 *
2469 * Note: Contention or performance aren't
2470 * currently a significant concern here
2471 * considering the relatively low frequency of
2472 * hrtimer callbacks (5ms period) and that
2473 * reads typically only happen in response to a
2474 * hrtimer event and likely complete before the
2475 * next callback.
2476 *
2477 * Note: This lock is not held *while* reading
2478 * and copying data to userspace so the value
2479 * of head observed in htrimer callbacks won't
2480 * represent any partial consumption of data.
2481 */
2482 spinlock_t ptr_lock;
2483
2484 /**
2485 * One 'aging' tail pointer and one 'aged'
2486 * tail pointer ready to used for reading.
2487 *
2488 * Initial values of 0xffffffff are invalid
2489 * and imply that an update is required
2490 * (and should be ignored by an attempted
2491 * read)
2492 */
2493 struct {
2494 u32 offset;
2495 } tails[2];
2496
2497 /**
2498 * Index for the aged tail ready to read()
2499 * data up to.
2500 */
2501 unsigned int aged_tail_idx;
2502
2503 /**
2504 * A monotonic timestamp for when the current
2505 * aging tail pointer was read; used to
2506 * determine when it is old enough to trust.
2507 */
2508 u64 aging_timestamp;
2509
2510 /**
2511 * Although we can always read back the head
2512 * pointer register, we prefer to avoid
2513 * trusting the HW state, just to avoid any
2514 * risk that some hardware condition could
2515 * somehow bump the head pointer unpredictably
2516 * and cause us to forward the wrong OA buffer
2517 * data to userspace.
2518 */
2519 u32 head;
2520 } oa_buffer;
2521
2522 u32 gen7_latched_oastatus1;
2523 u32 ctx_oactxctrl_offset;
2524 u32 ctx_flexeu0_offset;
2525
2526 /**
2527 * The RPT_ID/reason field for Gen8+ includes a bit
2528 * to determine if the CTX ID in the report is valid
2529 * but the specific bit differs between Gen 8 and 9
2530 */
2531 u32 gen8_valid_ctx_bit;
2532
2533 struct i915_oa_ops ops;
2534 const struct i915_oa_format *oa_formats;
2535 int n_builtin_sets;
2536 } oa;
2537 } perf;
2538
2539 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2540 struct {
2541 void (*resume)(struct drm_i915_private *);
2542 void (*cleanup_engine)(struct intel_engine_cs *engine);
2543
2544 struct list_head timelines;
2545 struct i915_gem_timeline global_timeline;
2546 u32 active_requests;
2547
2548 /**
2549 * Is the GPU currently considered idle, or busy executing
2550 * userspace requests? Whilst idle, we allow runtime power
2551 * management to power down the hardware and display clocks.
2552 * In order to reduce the effect on performance, there
2553 * is a slight delay before we do so.
2554 */
2555 bool awake;
2556
2557 /**
2558 * We leave the user IRQ off as much as possible,
2559 * but this means that requests will finish and never
2560 * be retired once the system goes idle. Set a timer to
2561 * fire periodically while the ring is running. When it
2562 * fires, go retire requests.
2563 */
2564 struct delayed_work retire_work;
2565
2566 /**
2567 * When we detect an idle GPU, we want to turn on
2568 * powersaving features. So once we see that there
2569 * are no more requests outstanding and no more
2570 * arrive within a small period of time, we fire
2571 * off the idle_work.
2572 */
2573 struct delayed_work idle_work;
2574
2575 ktime_t last_init_time;
2576 } gt;
2577
2578 /* perform PHY state sanity checks? */
2579 bool chv_phy_assert[2];
2580
2581 bool ipc_enabled;
2582
2583 /* Used to save the pipe-to-encoder mapping for audio */
2584 struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2585
2586 /* necessary resource sharing with HDMI LPE audio driver. */
2587 struct {
2588 struct platform_device *platdev;
2589 int irq;
2590 } lpe_audio;
2591
2592 /*
2593 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2594 * will be rejected. Instead look for a better place.
2595 */
2596 };
2597
2598 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2599 {
2600 return container_of(dev, struct drm_i915_private, drm);
2601 }
2602
2603 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2604 {
2605 return to_i915(dev_get_drvdata(kdev));
2606 }
2607
2608 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2609 {
2610 return container_of(guc, struct drm_i915_private, guc);
2611 }
2612
2613 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2614 {
2615 return container_of(huc, struct drm_i915_private, huc);
2616 }
2617
2618 /* Simple iterator over all initialised engines */
2619 #define for_each_engine(engine__, dev_priv__, id__) \
2620 for ((id__) = 0; \
2621 (id__) < I915_NUM_ENGINES; \
2622 (id__)++) \
2623 for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2624
2625 /* Iterator over subset of engines selected by mask */
2626 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2627 for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask; \
2628 tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2629
2630 enum hdmi_force_audio {
2631 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2632 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2633 HDMI_AUDIO_AUTO, /* trust EDID */
2634 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2635 };
2636
2637 #define I915_GTT_OFFSET_NONE ((u32)-1)
2638
2639 /*
2640 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2641 * considered to be the frontbuffer for the given plane interface-wise. This
2642 * doesn't mean that the hw necessarily already scans it out, but that any
2643 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2644 *
2645 * We have one bit per pipe and per scanout plane type.
2646 */
2647 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2648 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2649 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2650 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2651 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2652 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2653 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2654 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2655 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2656 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2657 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2658 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2659
2660 /*
2661 * Optimised SGL iterator for GEM objects
2662 */
2663 static __always_inline struct sgt_iter {
2664 struct scatterlist *sgp;
2665 union {
2666 unsigned long pfn;
2667 dma_addr_t dma;
2668 };
2669 unsigned int curr;
2670 unsigned int max;
2671 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2672 struct sgt_iter s = { .sgp = sgl };
2673
2674 if (s.sgp) {
2675 s.max = s.curr = s.sgp->offset;
2676 s.max += s.sgp->length;
2677 if (dma)
2678 s.dma = sg_dma_address(s.sgp);
2679 else
2680 s.pfn = page_to_pfn(sg_page(s.sgp));
2681 }
2682
2683 return s;
2684 }
2685
2686 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2687 {
2688 ++sg;
2689 if (unlikely(sg_is_chain(sg)))
2690 sg = sg_chain_ptr(sg);
2691 return sg;
2692 }
2693
2694 /**
2695 * __sg_next - return the next scatterlist entry in a list
2696 * @sg: The current sg entry
2697 *
2698 * Description:
2699 * If the entry is the last, return NULL; otherwise, step to the next
2700 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2701 * otherwise just return the pointer to the current element.
2702 **/
2703 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2704 {
2705 #ifdef CONFIG_DEBUG_SG
2706 BUG_ON(sg->sg_magic != SG_MAGIC);
2707 #endif
2708 return sg_is_last(sg) ? NULL : ____sg_next(sg);
2709 }
2710
2711 /**
2712 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2713 * @__dmap: DMA address (output)
2714 * @__iter: 'struct sgt_iter' (iterator state, internal)
2715 * @__sgt: sg_table to iterate over (input)
2716 */
2717 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2718 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2719 ((__dmap) = (__iter).dma + (__iter).curr); \
2720 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2721 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2722
2723 /**
2724 * for_each_sgt_page - iterate over the pages of the given sg_table
2725 * @__pp: page pointer (output)
2726 * @__iter: 'struct sgt_iter' (iterator state, internal)
2727 * @__sgt: sg_table to iterate over (input)
2728 */
2729 #define for_each_sgt_page(__pp, __iter, __sgt) \
2730 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2731 ((__pp) = (__iter).pfn == 0 ? NULL : \
2732 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2733 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2734 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2735
2736 static inline const struct intel_device_info *
2737 intel_info(const struct drm_i915_private *dev_priv)
2738 {
2739 return &dev_priv->info;
2740 }
2741
2742 #define INTEL_INFO(dev_priv) intel_info((dev_priv))
2743
2744 #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen)
2745 #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id)
2746
2747 #define REVID_FOREVER 0xff
2748 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision)
2749
2750 #define GEN_FOREVER (0)
2751 /*
2752 * Returns true if Gen is in inclusive range [Start, End].
2753 *
2754 * Use GEN_FOREVER for unbound start and or end.
2755 */
2756 #define IS_GEN(dev_priv, s, e) ({ \
2757 unsigned int __s = (s), __e = (e); \
2758 BUILD_BUG_ON(!__builtin_constant_p(s)); \
2759 BUILD_BUG_ON(!__builtin_constant_p(e)); \
2760 if ((__s) != GEN_FOREVER) \
2761 __s = (s) - 1; \
2762 if ((__e) == GEN_FOREVER) \
2763 __e = BITS_PER_LONG - 1; \
2764 else \
2765 __e = (e) - 1; \
2766 !!((dev_priv)->info.gen_mask & GENMASK((__e), (__s))); \
2767 })
2768
2769 /*
2770 * Return true if revision is in range [since,until] inclusive.
2771 *
2772 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2773 */
2774 #define IS_REVID(p, since, until) \
2775 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2776
2777 #define IS_I830(dev_priv) ((dev_priv)->info.platform == INTEL_I830)
2778 #define IS_I845G(dev_priv) ((dev_priv)->info.platform == INTEL_I845G)
2779 #define IS_I85X(dev_priv) ((dev_priv)->info.platform == INTEL_I85X)
2780 #define IS_I865G(dev_priv) ((dev_priv)->info.platform == INTEL_I865G)
2781 #define IS_I915G(dev_priv) ((dev_priv)->info.platform == INTEL_I915G)
2782 #define IS_I915GM(dev_priv) ((dev_priv)->info.platform == INTEL_I915GM)
2783 #define IS_I945G(dev_priv) ((dev_priv)->info.platform == INTEL_I945G)
2784 #define IS_I945GM(dev_priv) ((dev_priv)->info.platform == INTEL_I945GM)
2785 #define IS_I965G(dev_priv) ((dev_priv)->info.platform == INTEL_I965G)
2786 #define IS_I965GM(dev_priv) ((dev_priv)->info.platform == INTEL_I965GM)
2787 #define IS_G45(dev_priv) ((dev_priv)->info.platform == INTEL_G45)
2788 #define IS_GM45(dev_priv) ((dev_priv)->info.platform == INTEL_GM45)
2789 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv))
2790 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001)
2791 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011)
2792 #define IS_PINEVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_PINEVIEW)
2793 #define IS_G33(dev_priv) ((dev_priv)->info.platform == INTEL_G33)
2794 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046)
2795 #define IS_IVYBRIDGE(dev_priv) ((dev_priv)->info.platform == INTEL_IVYBRIDGE)
2796 #define IS_IVB_GT1(dev_priv) (INTEL_DEVID(dev_priv) == 0x0156 || \
2797 INTEL_DEVID(dev_priv) == 0x0152 || \
2798 INTEL_DEVID(dev_priv) == 0x015a)
2799 #define IS_VALLEYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_VALLEYVIEW)
2800 #define IS_CHERRYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_CHERRYVIEW)
2801 #define IS_HASWELL(dev_priv) ((dev_priv)->info.platform == INTEL_HASWELL)
2802 #define IS_BROADWELL(dev_priv) ((dev_priv)->info.platform == INTEL_BROADWELL)
2803 #define IS_SKYLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_SKYLAKE)
2804 #define IS_BROXTON(dev_priv) ((dev_priv)->info.platform == INTEL_BROXTON)
2805 #define IS_KABYLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_KABYLAKE)
2806 #define IS_GEMINILAKE(dev_priv) ((dev_priv)->info.platform == INTEL_GEMINILAKE)
2807 #define IS_COFFEELAKE(dev_priv) ((dev_priv)->info.platform == INTEL_COFFEELAKE)
2808 #define IS_CANNONLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_CANNONLAKE)
2809 #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile)
2810 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2811 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2812 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \
2813 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \
2814 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \
2815 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2816 /* ULX machines are also considered ULT. */
2817 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \
2818 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2819 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \
2820 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2821 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \
2822 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2823 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \
2824 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2825 /* ULX machines are also considered ULT. */
2826 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \
2827 INTEL_DEVID(dev_priv) == 0x0A1E)
2828 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \
2829 INTEL_DEVID(dev_priv) == 0x1913 || \
2830 INTEL_DEVID(dev_priv) == 0x1916 || \
2831 INTEL_DEVID(dev_priv) == 0x1921 || \
2832 INTEL_DEVID(dev_priv) == 0x1926)
2833 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \
2834 INTEL_DEVID(dev_priv) == 0x1915 || \
2835 INTEL_DEVID(dev_priv) == 0x191E)
2836 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \
2837 INTEL_DEVID(dev_priv) == 0x5913 || \
2838 INTEL_DEVID(dev_priv) == 0x5916 || \
2839 INTEL_DEVID(dev_priv) == 0x5921 || \
2840 INTEL_DEVID(dev_priv) == 0x5926)
2841 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \
2842 INTEL_DEVID(dev_priv) == 0x5915 || \
2843 INTEL_DEVID(dev_priv) == 0x591E)
2844 #define IS_SKL_GT2(dev_priv) (IS_SKYLAKE(dev_priv) && \
2845 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0010)
2846 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \
2847 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2848 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \
2849 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0030)
2850 #define IS_KBL_GT2(dev_priv) (IS_KABYLAKE(dev_priv) && \
2851 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0010)
2852 #define IS_KBL_GT3(dev_priv) (IS_KABYLAKE(dev_priv) && \
2853 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2854 #define IS_CFL_ULT(dev_priv) (IS_COFFEELAKE(dev_priv) && \
2855 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2856
2857 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2858
2859 #define SKL_REVID_A0 0x0
2860 #define SKL_REVID_B0 0x1
2861 #define SKL_REVID_C0 0x2
2862 #define SKL_REVID_D0 0x3
2863 #define SKL_REVID_E0 0x4
2864 #define SKL_REVID_F0 0x5
2865 #define SKL_REVID_G0 0x6
2866 #define SKL_REVID_H0 0x7
2867
2868 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2869
2870 #define BXT_REVID_A0 0x0
2871 #define BXT_REVID_A1 0x1
2872 #define BXT_REVID_B0 0x3
2873 #define BXT_REVID_B_LAST 0x8
2874 #define BXT_REVID_C0 0x9
2875
2876 #define IS_BXT_REVID(dev_priv, since, until) \
2877 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2878
2879 #define KBL_REVID_A0 0x0
2880 #define KBL_REVID_B0 0x1
2881 #define KBL_REVID_C0 0x2
2882 #define KBL_REVID_D0 0x3
2883 #define KBL_REVID_E0 0x4
2884
2885 #define IS_KBL_REVID(dev_priv, since, until) \
2886 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2887
2888 #define GLK_REVID_A0 0x0
2889 #define GLK_REVID_A1 0x1
2890
2891 #define IS_GLK_REVID(dev_priv, since, until) \
2892 (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2893
2894 #define CNL_REVID_A0 0x0
2895 #define CNL_REVID_B0 0x1
2896
2897 #define IS_CNL_REVID(p, since, until) \
2898 (IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2899
2900 /*
2901 * The genX designation typically refers to the render engine, so render
2902 * capability related checks should use IS_GEN, while display and other checks
2903 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2904 * chips, etc.).
2905 */
2906 #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1)))
2907 #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2)))
2908 #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3)))
2909 #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4)))
2910 #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5)))
2911 #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6)))
2912 #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7)))
2913 #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8)))
2914 #define IS_GEN10(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(9)))
2915
2916 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp)
2917 #define IS_GEN9_LP(dev_priv) (IS_GEN9(dev_priv) && IS_LP(dev_priv))
2918 #define IS_GEN9_BC(dev_priv) (IS_GEN9(dev_priv) && !IS_LP(dev_priv))
2919
2920 #define ENGINE_MASK(id) BIT(id)
2921 #define RENDER_RING ENGINE_MASK(RCS)
2922 #define BSD_RING ENGINE_MASK(VCS)
2923 #define BLT_RING ENGINE_MASK(BCS)
2924 #define VEBOX_RING ENGINE_MASK(VECS)
2925 #define BSD2_RING ENGINE_MASK(VCS2)
2926 #define ALL_ENGINES (~0)
2927
2928 #define HAS_ENGINE(dev_priv, id) \
2929 (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
2930
2931 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
2932 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
2933 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
2934 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
2935
2936 #define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc)
2937 #define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop)
2938 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED))
2939 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \
2940 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
2941
2942 #define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical)
2943
2944 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
2945 ((dev_priv)->info.has_logical_ring_contexts)
2946 #define USES_PPGTT(dev_priv) (i915.enable_ppgtt)
2947 #define USES_FULL_PPGTT(dev_priv) (i915.enable_ppgtt >= 2)
2948 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915.enable_ppgtt == 3)
2949
2950 #define HAS_OVERLAY(dev_priv) ((dev_priv)->info.has_overlay)
2951 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
2952 ((dev_priv)->info.overlay_needs_physical)
2953
2954 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
2955 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv))
2956
2957 /* WaRsDisableCoarsePowerGating:skl,bxt */
2958 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
2959 (IS_SKL_GT3(dev_priv) || IS_SKL_GT4(dev_priv))
2960
2961 /*
2962 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
2963 * even when in MSI mode. This results in spurious interrupt warnings if the
2964 * legacy irq no. is shared with another device. The kernel then disables that
2965 * interrupt source and so prevents the other device from working properly.
2966 */
2967 #define HAS_AUX_IRQ(dev_priv) ((dev_priv)->info.gen >= 5)
2968 #define HAS_GMBUS_IRQ(dev_priv) ((dev_priv)->info.has_gmbus_irq)
2969
2970 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
2971 * rows, which changed the alignment requirements and fence programming.
2972 */
2973 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
2974 !(IS_I915G(dev_priv) || \
2975 IS_I915GM(dev_priv)))
2976 #define SUPPORTS_TV(dev_priv) ((dev_priv)->info.supports_tv)
2977 #define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.has_hotplug)
2978
2979 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2)
2980 #define HAS_PIPE_CXSR(dev_priv) ((dev_priv)->info.has_pipe_cxsr)
2981 #define HAS_FBC(dev_priv) ((dev_priv)->info.has_fbc)
2982 #define HAS_CUR_FBC(dev_priv) (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_INFO(dev_priv)->gen >= 7)
2983
2984 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
2985
2986 #define HAS_DP_MST(dev_priv) ((dev_priv)->info.has_dp_mst)
2987
2988 #define HAS_DDI(dev_priv) ((dev_priv)->info.has_ddi)
2989 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
2990 #define HAS_PSR(dev_priv) ((dev_priv)->info.has_psr)
2991 #define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6)
2992 #define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p)
2993
2994 #define HAS_CSR(dev_priv) ((dev_priv)->info.has_csr)
2995
2996 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
2997 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
2998
2999 /*
3000 * For now, anything with a GuC requires uCode loading, and then supports
3001 * command submission once loaded. But these are logically independent
3002 * properties, so we have separate macros to test them.
3003 */
3004 #define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc)
3005 #define HAS_GUC_CT(dev_priv) ((dev_priv)->info.has_guc_ct)
3006 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3007 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv))
3008 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3009
3010 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
3011
3012 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu)
3013
3014 #define INTEL_PCH_DEVICE_ID_MASK 0xff00
3015 #define INTEL_PCH_DEVICE_ID_MASK_EXT 0xff80
3016 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
3017 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
3018 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
3019 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
3020 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
3021 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
3022 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
3023 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA200
3024 #define INTEL_PCH_CNP_DEVICE_ID_TYPE 0xA300
3025 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE 0x9D80
3026 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
3027 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
3028 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
3029
3030 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
3031 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
3032 #define HAS_PCH_CNP_LP(dev_priv) \
3033 ((dev_priv)->pch_id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
3034 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
3035 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
3036 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
3037 #define HAS_PCH_LPT_LP(dev_priv) \
3038 ((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
3039 #define HAS_PCH_LPT_H(dev_priv) \
3040 ((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE)
3041 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
3042 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
3043 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
3044 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
3045
3046 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
3047
3048 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
3049
3050 /* DPF == dynamic parity feature */
3051 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
3052 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
3053 2 : HAS_L3_DPF(dev_priv))
3054
3055 #define GT_FREQUENCY_MULTIPLIER 50
3056 #define GEN9_FREQ_SCALER 3
3057
3058 #include "i915_trace.h"
3059
3060 static inline bool intel_vtd_active(void)
3061 {
3062 #ifdef CONFIG_INTEL_IOMMU
3063 if (intel_iommu_gfx_mapped)
3064 return true;
3065 #endif
3066 return false;
3067 }
3068
3069 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
3070 {
3071 return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
3072 }
3073
3074 static inline bool
3075 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
3076 {
3077 return IS_BROXTON(dev_priv) && intel_vtd_active();
3078 }
3079
3080 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
3081 int enable_ppgtt);
3082
3083 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
3084
3085 /* i915_drv.c */
3086 void __printf(3, 4)
3087 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
3088 const char *fmt, ...);
3089
3090 #define i915_report_error(dev_priv, fmt, ...) \
3091 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
3092
3093 #ifdef CONFIG_COMPAT
3094 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
3095 unsigned long arg);
3096 #else
3097 #define i915_compat_ioctl NULL
3098 #endif
3099 extern const struct dev_pm_ops i915_pm_ops;
3100
3101 extern int i915_driver_load(struct pci_dev *pdev,
3102 const struct pci_device_id *ent);
3103 extern void i915_driver_unload(struct drm_device *dev);
3104 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
3105 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
3106 extern void i915_reset(struct drm_i915_private *dev_priv);
3107 extern int i915_reset_engine(struct intel_engine_cs *engine);
3108 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
3109 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
3110 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
3111 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
3112 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
3113 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
3114 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
3115 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
3116 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
3117
3118 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
3119 int intel_engines_init(struct drm_i915_private *dev_priv);
3120
3121 /* intel_hotplug.c */
3122 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
3123 u32 pin_mask, u32 long_mask);
3124 void intel_hpd_init(struct drm_i915_private *dev_priv);
3125 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
3126 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
3127 bool intel_hpd_pin_to_port(enum hpd_pin pin, enum port *port);
3128 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3129 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3130
3131 /* i915_irq.c */
3132 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
3133 {
3134 unsigned long delay;
3135
3136 if (unlikely(!i915.enable_hangcheck))
3137 return;
3138
3139 /* Don't continually defer the hangcheck so that it is always run at
3140 * least once after work has been scheduled on any ring. Otherwise,
3141 * we will ignore a hung ring if a second ring is kept busy.
3142 */
3143
3144 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
3145 queue_delayed_work(system_long_wq,
3146 &dev_priv->gpu_error.hangcheck_work, delay);
3147 }
3148
3149 __printf(3, 4)
3150 void i915_handle_error(struct drm_i915_private *dev_priv,
3151 u32 engine_mask,
3152 const char *fmt, ...);
3153
3154 extern void intel_irq_init(struct drm_i915_private *dev_priv);
3155 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
3156 int intel_irq_install(struct drm_i915_private *dev_priv);
3157 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
3158
3159 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3160 {
3161 return dev_priv->gvt;
3162 }
3163
3164 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3165 {
3166 return dev_priv->vgpu.active;
3167 }
3168
3169 void
3170 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3171 u32 status_mask);
3172
3173 void
3174 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3175 u32 status_mask);
3176
3177 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3178 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3179 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3180 uint32_t mask,
3181 uint32_t bits);
3182 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3183 uint32_t interrupt_mask,
3184 uint32_t enabled_irq_mask);
3185 static inline void
3186 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3187 {
3188 ilk_update_display_irq(dev_priv, bits, bits);
3189 }
3190 static inline void
3191 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3192 {
3193 ilk_update_display_irq(dev_priv, bits, 0);
3194 }
3195 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3196 enum pipe pipe,
3197 uint32_t interrupt_mask,
3198 uint32_t enabled_irq_mask);
3199 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3200 enum pipe pipe, uint32_t bits)
3201 {
3202 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3203 }
3204 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3205 enum pipe pipe, uint32_t bits)
3206 {
3207 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3208 }
3209 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3210 uint32_t interrupt_mask,
3211 uint32_t enabled_irq_mask);
3212 static inline void
3213 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3214 {
3215 ibx_display_interrupt_update(dev_priv, bits, bits);
3216 }
3217 static inline void
3218 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3219 {
3220 ibx_display_interrupt_update(dev_priv, bits, 0);
3221 }
3222
3223 /* i915_gem.c */
3224 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3225 struct drm_file *file_priv);
3226 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3227 struct drm_file *file_priv);
3228 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3229 struct drm_file *file_priv);
3230 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3231 struct drm_file *file_priv);
3232 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3233 struct drm_file *file_priv);
3234 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3235 struct drm_file *file_priv);
3236 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3237 struct drm_file *file_priv);
3238 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3239 struct drm_file *file_priv);
3240 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3241 struct drm_file *file_priv);
3242 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3243 struct drm_file *file_priv);
3244 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3245 struct drm_file *file);
3246 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3247 struct drm_file *file);
3248 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3249 struct drm_file *file_priv);
3250 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3251 struct drm_file *file_priv);
3252 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
3253 struct drm_file *file_priv);
3254 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
3255 struct drm_file *file_priv);
3256 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3257 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
3258 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3259 struct drm_file *file);
3260 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3261 struct drm_file *file_priv);
3262 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3263 struct drm_file *file_priv);
3264 void i915_gem_sanitize(struct drm_i915_private *i915);
3265 int i915_gem_load_init(struct drm_i915_private *dev_priv);
3266 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv);
3267 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3268 int i915_gem_freeze(struct drm_i915_private *dev_priv);
3269 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3270
3271 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
3272 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3273 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3274 const struct drm_i915_gem_object_ops *ops);
3275 struct drm_i915_gem_object *
3276 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
3277 struct drm_i915_gem_object *
3278 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
3279 const void *data, size_t size);
3280 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3281 void i915_gem_free_object(struct drm_gem_object *obj);
3282
3283 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
3284 {
3285 /* A single pass should suffice to release all the freed objects (along
3286 * most call paths) , but be a little more paranoid in that freeing
3287 * the objects does take a little amount of time, during which the rcu
3288 * callbacks could have added new objects into the freed list, and
3289 * armed the work again.
3290 */
3291 do {
3292 rcu_barrier();
3293 } while (flush_work(&i915->mm.free_work));
3294 }
3295
3296 struct i915_vma * __must_check
3297 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3298 const struct i915_ggtt_view *view,
3299 u64 size,
3300 u64 alignment,
3301 u64 flags);
3302
3303 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3304 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3305
3306 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3307
3308 static inline int __sg_page_count(const struct scatterlist *sg)
3309 {
3310 return sg->length >> PAGE_SHIFT;
3311 }
3312
3313 struct scatterlist *
3314 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3315 unsigned int n, unsigned int *offset);
3316
3317 struct page *
3318 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3319 unsigned int n);
3320
3321 struct page *
3322 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3323 unsigned int n);
3324
3325 dma_addr_t
3326 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3327 unsigned long n);
3328
3329 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3330 struct sg_table *pages);
3331 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3332
3333 static inline int __must_check
3334 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3335 {
3336 might_lock(&obj->mm.lock);
3337
3338 if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3339 return 0;
3340
3341 return __i915_gem_object_get_pages(obj);
3342 }
3343
3344 static inline void
3345 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3346 {
3347 GEM_BUG_ON(!obj->mm.pages);
3348
3349 atomic_inc(&obj->mm.pages_pin_count);
3350 }
3351
3352 static inline bool
3353 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3354 {
3355 return atomic_read(&obj->mm.pages_pin_count);
3356 }
3357
3358 static inline void
3359 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3360 {
3361 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3362 GEM_BUG_ON(!obj->mm.pages);
3363
3364 atomic_dec(&obj->mm.pages_pin_count);
3365 }
3366
3367 static inline void
3368 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3369 {
3370 __i915_gem_object_unpin_pages(obj);
3371 }
3372
3373 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3374 I915_MM_NORMAL = 0,
3375 I915_MM_SHRINKER
3376 };
3377
3378 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3379 enum i915_mm_subclass subclass);
3380 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3381
3382 enum i915_map_type {
3383 I915_MAP_WB = 0,
3384 I915_MAP_WC,
3385 };
3386
3387 /**
3388 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3389 * @obj: the object to map into kernel address space
3390 * @type: the type of mapping, used to select pgprot_t
3391 *
3392 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3393 * pages and then returns a contiguous mapping of the backing storage into
3394 * the kernel address space. Based on the @type of mapping, the PTE will be
3395 * set to either WriteBack or WriteCombine (via pgprot_t).
3396 *
3397 * The caller is responsible for calling i915_gem_object_unpin_map() when the
3398 * mapping is no longer required.
3399 *
3400 * Returns the pointer through which to access the mapped object, or an
3401 * ERR_PTR() on error.
3402 */
3403 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3404 enum i915_map_type type);
3405
3406 /**
3407 * i915_gem_object_unpin_map - releases an earlier mapping
3408 * @obj: the object to unmap
3409 *
3410 * After pinning the object and mapping its pages, once you are finished
3411 * with your access, call i915_gem_object_unpin_map() to release the pin
3412 * upon the mapping. Once the pin count reaches zero, that mapping may be
3413 * removed.
3414 */
3415 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3416 {
3417 i915_gem_object_unpin_pages(obj);
3418 }
3419
3420 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3421 unsigned int *needs_clflush);
3422 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3423 unsigned int *needs_clflush);
3424 #define CLFLUSH_BEFORE BIT(0)
3425 #define CLFLUSH_AFTER BIT(1)
3426 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER)
3427
3428 static inline void
3429 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3430 {
3431 i915_gem_object_unpin_pages(obj);
3432 }
3433
3434 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3435 void i915_vma_move_to_active(struct i915_vma *vma,
3436 struct drm_i915_gem_request *req,
3437 unsigned int flags);
3438 int i915_gem_dumb_create(struct drm_file *file_priv,
3439 struct drm_device *dev,
3440 struct drm_mode_create_dumb *args);
3441 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3442 uint32_t handle, uint64_t *offset);
3443 int i915_gem_mmap_gtt_version(void);
3444
3445 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3446 struct drm_i915_gem_object *new,
3447 unsigned frontbuffer_bits);
3448
3449 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3450
3451 struct drm_i915_gem_request *
3452 i915_gem_find_active_request(struct intel_engine_cs *engine);
3453
3454 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3455
3456 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3457 {
3458 return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3459 }
3460
3461 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3462 {
3463 return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3464 }
3465
3466 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3467 {
3468 return unlikely(test_bit(I915_WEDGED, &error->flags));
3469 }
3470
3471 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3472 {
3473 return i915_reset_backoff(error) | i915_terminally_wedged(error);
3474 }
3475
3476 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3477 {
3478 return READ_ONCE(error->reset_count);
3479 }
3480
3481 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3482 struct intel_engine_cs *engine)
3483 {
3484 return READ_ONCE(error->reset_engine_count[engine->id]);
3485 }
3486
3487 struct drm_i915_gem_request *
3488 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3489 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3490 void i915_gem_reset(struct drm_i915_private *dev_priv);
3491 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3492 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3493 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3494 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3495 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3496 struct drm_i915_gem_request *request);
3497
3498 void i915_gem_init_mmio(struct drm_i915_private *i915);
3499 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3500 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3501 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3502 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3503 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3504 unsigned int flags);
3505 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3506 void i915_gem_resume(struct drm_i915_private *dev_priv);
3507 int i915_gem_fault(struct vm_fault *vmf);
3508 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3509 unsigned int flags,
3510 long timeout,
3511 struct intel_rps_client *rps);
3512 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3513 unsigned int flags,
3514 int priority);
3515 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3516
3517 int __must_check
3518 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3519 int __must_check
3520 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3521 int __must_check
3522 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3523 struct i915_vma * __must_check
3524 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3525 u32 alignment,
3526 const struct i915_ggtt_view *view);
3527 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3528 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3529 int align);
3530 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3531 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3532
3533 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3534 enum i915_cache_level cache_level);
3535
3536 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3537 struct dma_buf *dma_buf);
3538
3539 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3540 struct drm_gem_object *gem_obj, int flags);
3541
3542 static inline struct i915_hw_ppgtt *
3543 i915_vm_to_ppgtt(struct i915_address_space *vm)
3544 {
3545 return container_of(vm, struct i915_hw_ppgtt, base);
3546 }
3547
3548 /* i915_gem_fence_reg.c */
3549 int __must_check i915_vma_get_fence(struct i915_vma *vma);
3550 int __must_check i915_vma_put_fence(struct i915_vma *vma);
3551
3552 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3553 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3554
3555 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3556 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3557 struct sg_table *pages);
3558 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3559 struct sg_table *pages);
3560
3561 static inline struct i915_gem_context *
3562 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3563 {
3564 return idr_find(&file_priv->context_idr, id);
3565 }
3566
3567 static inline struct i915_gem_context *
3568 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3569 {
3570 struct i915_gem_context *ctx;
3571
3572 rcu_read_lock();
3573 ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3574 if (ctx && !kref_get_unless_zero(&ctx->ref))
3575 ctx = NULL;
3576 rcu_read_unlock();
3577
3578 return ctx;
3579 }
3580
3581 static inline struct intel_timeline *
3582 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx,
3583 struct intel_engine_cs *engine)
3584 {
3585 struct i915_address_space *vm;
3586
3587 vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base;
3588 return &vm->timeline.engine[engine->id];
3589 }
3590
3591 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3592 struct drm_file *file);
3593 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3594 struct i915_gem_context *ctx,
3595 uint32_t *reg_state);
3596
3597 /* i915_gem_evict.c */
3598 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3599 u64 min_size, u64 alignment,
3600 unsigned cache_level,
3601 u64 start, u64 end,
3602 unsigned flags);
3603 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3604 struct drm_mm_node *node,
3605 unsigned int flags);
3606 int i915_gem_evict_vm(struct i915_address_space *vm);
3607
3608 /* belongs in i915_gem_gtt.h */
3609 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3610 {
3611 wmb();
3612 if (INTEL_GEN(dev_priv) < 6)
3613 intel_gtt_chipset_flush();
3614 }
3615
3616 /* i915_gem_stolen.c */
3617 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3618 struct drm_mm_node *node, u64 size,
3619 unsigned alignment);
3620 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3621 struct drm_mm_node *node, u64 size,
3622 unsigned alignment, u64 start,
3623 u64 end);
3624 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3625 struct drm_mm_node *node);
3626 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3627 void i915_gem_cleanup_stolen(struct drm_device *dev);
3628 struct drm_i915_gem_object *
3629 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size);
3630 struct drm_i915_gem_object *
3631 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3632 u32 stolen_offset,
3633 u32 gtt_offset,
3634 u32 size);
3635
3636 /* i915_gem_internal.c */
3637 struct drm_i915_gem_object *
3638 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3639 phys_addr_t size);
3640
3641 /* i915_gem_shrinker.c */
3642 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3643 unsigned long target,
3644 unsigned flags);
3645 #define I915_SHRINK_PURGEABLE 0x1
3646 #define I915_SHRINK_UNBOUND 0x2
3647 #define I915_SHRINK_BOUND 0x4
3648 #define I915_SHRINK_ACTIVE 0x8
3649 #define I915_SHRINK_VMAPS 0x10
3650 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3651 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3652 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3653
3654
3655 /* i915_gem_tiling.c */
3656 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3657 {
3658 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3659
3660 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3661 i915_gem_object_is_tiled(obj);
3662 }
3663
3664 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3665 unsigned int tiling, unsigned int stride);
3666 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3667 unsigned int tiling, unsigned int stride);
3668
3669 /* i915_debugfs.c */
3670 #ifdef CONFIG_DEBUG_FS
3671 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3672 int i915_debugfs_connector_add(struct drm_connector *connector);
3673 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3674 #else
3675 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
3676 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3677 { return 0; }
3678 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3679 #endif
3680
3681 /* i915_gpu_error.c */
3682 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3683
3684 __printf(2, 3)
3685 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3686 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3687 const struct i915_gpu_state *gpu);
3688 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3689 struct drm_i915_private *i915,
3690 size_t count, loff_t pos);
3691 static inline void i915_error_state_buf_release(
3692 struct drm_i915_error_state_buf *eb)
3693 {
3694 kfree(eb->buf);
3695 }
3696
3697 struct i915_gpu_state *i915_capture_gpu_state(struct drm_i915_private *i915);
3698 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3699 u32 engine_mask,
3700 const char *error_msg);
3701
3702 static inline struct i915_gpu_state *
3703 i915_gpu_state_get(struct i915_gpu_state *gpu)
3704 {
3705 kref_get(&gpu->ref);
3706 return gpu;
3707 }
3708
3709 void __i915_gpu_state_free(struct kref *kref);
3710 static inline void i915_gpu_state_put(struct i915_gpu_state *gpu)
3711 {
3712 if (gpu)
3713 kref_put(&gpu->ref, __i915_gpu_state_free);
3714 }
3715
3716 struct i915_gpu_state *i915_first_error_state(struct drm_i915_private *i915);
3717 void i915_reset_error_state(struct drm_i915_private *i915);
3718
3719 #else
3720
3721 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3722 u32 engine_mask,
3723 const char *error_msg)
3724 {
3725 }
3726
3727 static inline struct i915_gpu_state *
3728 i915_first_error_state(struct drm_i915_private *i915)
3729 {
3730 return NULL;
3731 }
3732
3733 static inline void i915_reset_error_state(struct drm_i915_private *i915)
3734 {
3735 }
3736
3737 #endif
3738
3739 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3740
3741 /* i915_cmd_parser.c */
3742 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3743 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3744 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3745 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
3746 struct drm_i915_gem_object *batch_obj,
3747 struct drm_i915_gem_object *shadow_batch_obj,
3748 u32 batch_start_offset,
3749 u32 batch_len,
3750 bool is_master);
3751
3752 /* i915_perf.c */
3753 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3754 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3755 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3756 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3757
3758 /* i915_suspend.c */
3759 extern int i915_save_state(struct drm_i915_private *dev_priv);
3760 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3761
3762 /* i915_sysfs.c */
3763 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3764 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3765
3766 /* intel_lpe_audio.c */
3767 int intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3768 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3769 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3770 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3771 enum pipe pipe, enum port port,
3772 const void *eld, int ls_clock, bool dp_output);
3773
3774 /* intel_i2c.c */
3775 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3776 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3777 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3778 unsigned int pin);
3779
3780 extern struct i2c_adapter *
3781 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3782 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3783 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
3784 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3785 {
3786 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3787 }
3788 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3789
3790 /* intel_bios.c */
3791 void intel_bios_init(struct drm_i915_private *dev_priv);
3792 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3793 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3794 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3795 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3796 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3797 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3798 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3799 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3800 enum port port);
3801 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3802 enum port port);
3803
3804
3805 /* intel_opregion.c */
3806 #ifdef CONFIG_ACPI
3807 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3808 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3809 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3810 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3811 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3812 bool enable);
3813 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3814 pci_power_t state);
3815 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3816 #else
3817 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
3818 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
3819 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
3820 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3821 {
3822 }
3823 static inline int
3824 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3825 {
3826 return 0;
3827 }
3828 static inline int
3829 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3830 {
3831 return 0;
3832 }
3833 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3834 {
3835 return -ENODEV;
3836 }
3837 #endif
3838
3839 /* intel_acpi.c */
3840 #ifdef CONFIG_ACPI
3841 extern void intel_register_dsm_handler(void);
3842 extern void intel_unregister_dsm_handler(void);
3843 #else
3844 static inline void intel_register_dsm_handler(void) { return; }
3845 static inline void intel_unregister_dsm_handler(void) { return; }
3846 #endif /* CONFIG_ACPI */
3847
3848 /* intel_device_info.c */
3849 static inline struct intel_device_info *
3850 mkwrite_device_info(struct drm_i915_private *dev_priv)
3851 {
3852 return (struct intel_device_info *)&dev_priv->info;
3853 }
3854
3855 const char *intel_platform_name(enum intel_platform platform);
3856 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
3857 void intel_device_info_dump(struct drm_i915_private *dev_priv);
3858
3859 /* modesetting */
3860 extern void intel_modeset_init_hw(struct drm_device *dev);
3861 extern int intel_modeset_init(struct drm_device *dev);
3862 extern void intel_modeset_gem_init(struct drm_device *dev);
3863 extern void intel_modeset_cleanup(struct drm_device *dev);
3864 extern int intel_connector_register(struct drm_connector *);
3865 extern void intel_connector_unregister(struct drm_connector *);
3866 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3867 bool state);
3868 extern void intel_display_resume(struct drm_device *dev);
3869 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3870 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3871 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3872 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3873 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3874 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3875 bool enable);
3876
3877 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3878 struct drm_file *file);
3879
3880 /* overlay */
3881 extern struct intel_overlay_error_state *
3882 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
3883 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
3884 struct intel_overlay_error_state *error);
3885
3886 extern struct intel_display_error_state *
3887 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
3888 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
3889 struct intel_display_error_state *error);
3890
3891 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
3892 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val);
3893 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
3894 u32 reply_mask, u32 reply, int timeout_base_ms);
3895
3896 /* intel_sideband.c */
3897 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
3898 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
3899 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
3900 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
3901 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
3902 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
3903 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3904 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
3905 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3906 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
3907 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3908 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
3909 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
3910 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
3911 enum intel_sbi_destination destination);
3912 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
3913 enum intel_sbi_destination destination);
3914 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
3915 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
3916
3917 /* intel_dpio_phy.c */
3918 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
3919 enum dpio_phy *phy, enum dpio_channel *ch);
3920 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
3921 enum port port, u32 margin, u32 scale,
3922 u32 enable, u32 deemphasis);
3923 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3924 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
3925 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
3926 enum dpio_phy phy);
3927 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
3928 enum dpio_phy phy);
3929 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
3930 uint8_t lane_count);
3931 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
3932 uint8_t lane_lat_optim_mask);
3933 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
3934
3935 void chv_set_phy_signal_level(struct intel_encoder *encoder,
3936 u32 deemph_reg_value, u32 margin_reg_value,
3937 bool uniq_trans_scale);
3938 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
3939 bool reset);
3940 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
3941 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3942 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
3943 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
3944
3945 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
3946 u32 demph_reg_value, u32 preemph_reg_value,
3947 u32 uniqtranscale_reg_value, u32 tx3_demph);
3948 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
3949 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
3950 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
3951
3952 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
3953 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
3954 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
3955 const i915_reg_t reg);
3956
3957 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
3958 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
3959
3960 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
3961 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
3962 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
3963 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
3964
3965 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
3966 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
3967 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
3968 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
3969
3970 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
3971 * will be implemented using 2 32-bit writes in an arbitrary order with
3972 * an arbitrary delay between them. This can cause the hardware to
3973 * act upon the intermediate value, possibly leading to corruption and
3974 * machine death. For this reason we do not support I915_WRITE64, or
3975 * dev_priv->uncore.funcs.mmio_writeq.
3976 *
3977 * When reading a 64-bit value as two 32-bit values, the delay may cause
3978 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
3979 * occasionally a 64-bit register does not actualy support a full readq
3980 * and must be read using two 32-bit reads.
3981 *
3982 * You have been warned.
3983 */
3984 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
3985
3986 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
3987 u32 upper, lower, old_upper, loop = 0; \
3988 upper = I915_READ(upper_reg); \
3989 do { \
3990 old_upper = upper; \
3991 lower = I915_READ(lower_reg); \
3992 upper = I915_READ(upper_reg); \
3993 } while (upper != old_upper && loop++ < 2); \
3994 (u64)upper << 32 | lower; })
3995
3996 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
3997 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
3998
3999 #define __raw_read(x, s) \
4000 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
4001 i915_reg_t reg) \
4002 { \
4003 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
4004 }
4005
4006 #define __raw_write(x, s) \
4007 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
4008 i915_reg_t reg, uint##x##_t val) \
4009 { \
4010 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
4011 }
4012 __raw_read(8, b)
4013 __raw_read(16, w)
4014 __raw_read(32, l)
4015 __raw_read(64, q)
4016
4017 __raw_write(8, b)
4018 __raw_write(16, w)
4019 __raw_write(32, l)
4020 __raw_write(64, q)
4021
4022 #undef __raw_read
4023 #undef __raw_write
4024
4025 /* These are untraced mmio-accessors that are only valid to be used inside
4026 * critical sections, such as inside IRQ handlers, where forcewake is explicitly
4027 * controlled.
4028 *
4029 * Think twice, and think again, before using these.
4030 *
4031 * As an example, these accessors can possibly be used between:
4032 *
4033 * spin_lock_irq(&dev_priv->uncore.lock);
4034 * intel_uncore_forcewake_get__locked();
4035 *
4036 * and
4037 *
4038 * intel_uncore_forcewake_put__locked();
4039 * spin_unlock_irq(&dev_priv->uncore.lock);
4040 *
4041 *
4042 * Note: some registers may not need forcewake held, so
4043 * intel_uncore_forcewake_{get,put} can be omitted, see
4044 * intel_uncore_forcewake_for_reg().
4045 *
4046 * Certain architectures will die if the same cacheline is concurrently accessed
4047 * by different clients (e.g. on Ivybridge). Access to registers should
4048 * therefore generally be serialised, by either the dev_priv->uncore.lock or
4049 * a more localised lock guarding all access to that bank of registers.
4050 */
4051 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
4052 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
4053 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
4054 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
4055
4056 /* "Broadcast RGB" property */
4057 #define INTEL_BROADCAST_RGB_AUTO 0
4058 #define INTEL_BROADCAST_RGB_FULL 1
4059 #define INTEL_BROADCAST_RGB_LIMITED 2
4060
4061 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
4062 {
4063 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4064 return VLV_VGACNTRL;
4065 else if (INTEL_GEN(dev_priv) >= 5)
4066 return CPU_VGACNTRL;
4067 else
4068 return VGACNTRL;
4069 }
4070
4071 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
4072 {
4073 unsigned long j = msecs_to_jiffies(m);
4074
4075 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4076 }
4077
4078 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
4079 {
4080 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
4081 }
4082
4083 static inline unsigned long
4084 timespec_to_jiffies_timeout(const struct timespec *value)
4085 {
4086 unsigned long j = timespec_to_jiffies(value);
4087
4088 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4089 }
4090
4091 /*
4092 * If you need to wait X milliseconds between events A and B, but event B
4093 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
4094 * when event A happened, then just before event B you call this function and
4095 * pass the timestamp as the first argument, and X as the second argument.
4096 */
4097 static inline void
4098 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
4099 {
4100 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
4101
4102 /*
4103 * Don't re-read the value of "jiffies" every time since it may change
4104 * behind our back and break the math.
4105 */
4106 tmp_jiffies = jiffies;
4107 target_jiffies = timestamp_jiffies +
4108 msecs_to_jiffies_timeout(to_wait_ms);
4109
4110 if (time_after(target_jiffies, tmp_jiffies)) {
4111 remaining_jiffies = target_jiffies - tmp_jiffies;
4112 while (remaining_jiffies)
4113 remaining_jiffies =
4114 schedule_timeout_uninterruptible(remaining_jiffies);
4115 }
4116 }
4117
4118 static inline bool
4119 __i915_request_irq_complete(const struct drm_i915_gem_request *req)
4120 {
4121 struct intel_engine_cs *engine = req->engine;
4122 u32 seqno;
4123
4124 /* Note that the engine may have wrapped around the seqno, and
4125 * so our request->global_seqno will be ahead of the hardware,
4126 * even though it completed the request before wrapping. We catch
4127 * this by kicking all the waiters before resetting the seqno
4128 * in hardware, and also signal the fence.
4129 */
4130 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &req->fence.flags))
4131 return true;
4132
4133 /* The request was dequeued before we were awoken. We check after
4134 * inspecting the hw to confirm that this was the same request
4135 * that generated the HWS update. The memory barriers within
4136 * the request execution are sufficient to ensure that a check
4137 * after reading the value from hw matches this request.
4138 */
4139 seqno = i915_gem_request_global_seqno(req);
4140 if (!seqno)
4141 return false;
4142
4143 /* Before we do the heavier coherent read of the seqno,
4144 * check the value (hopefully) in the CPU cacheline.
4145 */
4146 if (__i915_gem_request_completed(req, seqno))
4147 return true;
4148
4149 /* Ensure our read of the seqno is coherent so that we
4150 * do not "miss an interrupt" (i.e. if this is the last
4151 * request and the seqno write from the GPU is not visible
4152 * by the time the interrupt fires, we will see that the
4153 * request is incomplete and go back to sleep awaiting
4154 * another interrupt that will never come.)
4155 *
4156 * Strictly, we only need to do this once after an interrupt,
4157 * but it is easier and safer to do it every time the waiter
4158 * is woken.
4159 */
4160 if (engine->irq_seqno_barrier &&
4161 test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
4162 struct intel_breadcrumbs *b = &engine->breadcrumbs;
4163
4164 /* The ordering of irq_posted versus applying the barrier
4165 * is crucial. The clearing of the current irq_posted must
4166 * be visible before we perform the barrier operation,
4167 * such that if a subsequent interrupt arrives, irq_posted
4168 * is reasserted and our task rewoken (which causes us to
4169 * do another __i915_request_irq_complete() immediately
4170 * and reapply the barrier). Conversely, if the clear
4171 * occurs after the barrier, then an interrupt that arrived
4172 * whilst we waited on the barrier would not trigger a
4173 * barrier on the next pass, and the read may not see the
4174 * seqno update.
4175 */
4176 engine->irq_seqno_barrier(engine);
4177
4178 /* If we consume the irq, but we are no longer the bottom-half,
4179 * the real bottom-half may not have serialised their own
4180 * seqno check with the irq-barrier (i.e. may have inspected
4181 * the seqno before we believe it coherent since they see
4182 * irq_posted == false but we are still running).
4183 */
4184 spin_lock_irq(&b->irq_lock);
4185 if (b->irq_wait && b->irq_wait->tsk != current)
4186 /* Note that if the bottom-half is changed as we
4187 * are sending the wake-up, the new bottom-half will
4188 * be woken by whomever made the change. We only have
4189 * to worry about when we steal the irq-posted for
4190 * ourself.
4191 */
4192 wake_up_process(b->irq_wait->tsk);
4193 spin_unlock_irq(&b->irq_lock);
4194
4195 if (__i915_gem_request_completed(req, seqno))
4196 return true;
4197 }
4198
4199 return false;
4200 }
4201
4202 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
4203 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
4204
4205 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
4206 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
4207 * perform the operation. To check beforehand, pass in the parameters to
4208 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
4209 * you only need to pass in the minor offsets, page-aligned pointers are
4210 * always valid.
4211 *
4212 * For just checking for SSE4.1, in the foreknowledge that the future use
4213 * will be correctly aligned, just use i915_has_memcpy_from_wc().
4214 */
4215 #define i915_can_memcpy_from_wc(dst, src, len) \
4216 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
4217
4218 #define i915_has_memcpy_from_wc() \
4219 i915_memcpy_from_wc(NULL, NULL, 0)
4220
4221 /* i915_mm.c */
4222 int remap_io_mapping(struct vm_area_struct *vma,
4223 unsigned long addr, unsigned long pfn, unsigned long size,
4224 struct io_mapping *iomap);
4225
4226 static inline bool i915_gem_object_is_coherent(struct drm_i915_gem_object *obj)
4227 {
4228 return (obj->cache_level != I915_CACHE_NONE ||
4229 HAS_LLC(to_i915(obj->base.dev)));
4230 }
4231
4232 #endif