]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
Merge branch 'drm-intel-next' of git://anongit.freedesktop.org/drm-intel into drm...
[mirror_ubuntu-artful-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_mocs.h"
36 #include <linux/shmem_fs.h>
37 #include <linux/slab.h>
38 #include <linux/swap.h>
39 #include <linux/pci.h>
40 #include <linux/dma-buf.h>
41
42 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44 static void
45 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
46 static void
47 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48
49 static bool cpu_cache_is_coherent(struct drm_device *dev,
50 enum i915_cache_level level)
51 {
52 return HAS_LLC(dev) || level != I915_CACHE_NONE;
53 }
54
55 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56 {
57 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
58 return true;
59
60 return obj->pin_display;
61 }
62
63 /* some bookkeeping */
64 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
65 size_t size)
66 {
67 spin_lock(&dev_priv->mm.object_stat_lock);
68 dev_priv->mm.object_count++;
69 dev_priv->mm.object_memory += size;
70 spin_unlock(&dev_priv->mm.object_stat_lock);
71 }
72
73 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
74 size_t size)
75 {
76 spin_lock(&dev_priv->mm.object_stat_lock);
77 dev_priv->mm.object_count--;
78 dev_priv->mm.object_memory -= size;
79 spin_unlock(&dev_priv->mm.object_stat_lock);
80 }
81
82 static int
83 i915_gem_wait_for_error(struct i915_gpu_error *error)
84 {
85 int ret;
86
87 if (!i915_reset_in_progress(error))
88 return 0;
89
90 /*
91 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
92 * userspace. If it takes that long something really bad is going on and
93 * we should simply try to bail out and fail as gracefully as possible.
94 */
95 ret = wait_event_interruptible_timeout(error->reset_queue,
96 !i915_reset_in_progress(error),
97 10*HZ);
98 if (ret == 0) {
99 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
100 return -EIO;
101 } else if (ret < 0) {
102 return ret;
103 } else {
104 return 0;
105 }
106 }
107
108 int i915_mutex_lock_interruptible(struct drm_device *dev)
109 {
110 struct drm_i915_private *dev_priv = dev->dev_private;
111 int ret;
112
113 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
114 if (ret)
115 return ret;
116
117 ret = mutex_lock_interruptible(&dev->struct_mutex);
118 if (ret)
119 return ret;
120
121 WARN_ON(i915_verify_lists(dev));
122 return 0;
123 }
124
125 int
126 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
127 struct drm_file *file)
128 {
129 struct drm_i915_private *dev_priv = to_i915(dev);
130 struct i915_ggtt *ggtt = &dev_priv->ggtt;
131 struct drm_i915_gem_get_aperture *args = data;
132 struct i915_vma *vma;
133 size_t pinned;
134
135 pinned = 0;
136 mutex_lock(&dev->struct_mutex);
137 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
138 if (vma->pin_count)
139 pinned += vma->node.size;
140 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
141 if (vma->pin_count)
142 pinned += vma->node.size;
143 mutex_unlock(&dev->struct_mutex);
144
145 args->aper_size = ggtt->base.total;
146 args->aper_available_size = args->aper_size - pinned;
147
148 return 0;
149 }
150
151 static int
152 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
153 {
154 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
155 char *vaddr = obj->phys_handle->vaddr;
156 struct sg_table *st;
157 struct scatterlist *sg;
158 int i;
159
160 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
161 return -EINVAL;
162
163 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
164 struct page *page;
165 char *src;
166
167 page = shmem_read_mapping_page(mapping, i);
168 if (IS_ERR(page))
169 return PTR_ERR(page);
170
171 src = kmap_atomic(page);
172 memcpy(vaddr, src, PAGE_SIZE);
173 drm_clflush_virt_range(vaddr, PAGE_SIZE);
174 kunmap_atomic(src);
175
176 put_page(page);
177 vaddr += PAGE_SIZE;
178 }
179
180 i915_gem_chipset_flush(to_i915(obj->base.dev));
181
182 st = kmalloc(sizeof(*st), GFP_KERNEL);
183 if (st == NULL)
184 return -ENOMEM;
185
186 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
187 kfree(st);
188 return -ENOMEM;
189 }
190
191 sg = st->sgl;
192 sg->offset = 0;
193 sg->length = obj->base.size;
194
195 sg_dma_address(sg) = obj->phys_handle->busaddr;
196 sg_dma_len(sg) = obj->base.size;
197
198 obj->pages = st;
199 return 0;
200 }
201
202 static void
203 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
204 {
205 int ret;
206
207 BUG_ON(obj->madv == __I915_MADV_PURGED);
208
209 ret = i915_gem_object_set_to_cpu_domain(obj, true);
210 if (WARN_ON(ret)) {
211 /* In the event of a disaster, abandon all caches and
212 * hope for the best.
213 */
214 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
215 }
216
217 if (obj->madv == I915_MADV_DONTNEED)
218 obj->dirty = 0;
219
220 if (obj->dirty) {
221 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
222 char *vaddr = obj->phys_handle->vaddr;
223 int i;
224
225 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
226 struct page *page;
227 char *dst;
228
229 page = shmem_read_mapping_page(mapping, i);
230 if (IS_ERR(page))
231 continue;
232
233 dst = kmap_atomic(page);
234 drm_clflush_virt_range(vaddr, PAGE_SIZE);
235 memcpy(dst, vaddr, PAGE_SIZE);
236 kunmap_atomic(dst);
237
238 set_page_dirty(page);
239 if (obj->madv == I915_MADV_WILLNEED)
240 mark_page_accessed(page);
241 put_page(page);
242 vaddr += PAGE_SIZE;
243 }
244 obj->dirty = 0;
245 }
246
247 sg_free_table(obj->pages);
248 kfree(obj->pages);
249 }
250
251 static void
252 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
253 {
254 drm_pci_free(obj->base.dev, obj->phys_handle);
255 }
256
257 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
258 .get_pages = i915_gem_object_get_pages_phys,
259 .put_pages = i915_gem_object_put_pages_phys,
260 .release = i915_gem_object_release_phys,
261 };
262
263 static int
264 drop_pages(struct drm_i915_gem_object *obj)
265 {
266 struct i915_vma *vma, *next;
267 int ret;
268
269 drm_gem_object_reference(&obj->base);
270 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
271 if (i915_vma_unbind(vma))
272 break;
273
274 ret = i915_gem_object_put_pages(obj);
275 drm_gem_object_unreference(&obj->base);
276
277 return ret;
278 }
279
280 int
281 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
282 int align)
283 {
284 drm_dma_handle_t *phys;
285 int ret;
286
287 if (obj->phys_handle) {
288 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
289 return -EBUSY;
290
291 return 0;
292 }
293
294 if (obj->madv != I915_MADV_WILLNEED)
295 return -EFAULT;
296
297 if (obj->base.filp == NULL)
298 return -EINVAL;
299
300 ret = drop_pages(obj);
301 if (ret)
302 return ret;
303
304 /* create a new object */
305 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
306 if (!phys)
307 return -ENOMEM;
308
309 obj->phys_handle = phys;
310 obj->ops = &i915_gem_phys_ops;
311
312 return i915_gem_object_get_pages(obj);
313 }
314
315 static int
316 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
317 struct drm_i915_gem_pwrite *args,
318 struct drm_file *file_priv)
319 {
320 struct drm_device *dev = obj->base.dev;
321 void *vaddr = obj->phys_handle->vaddr + args->offset;
322 char __user *user_data = u64_to_user_ptr(args->data_ptr);
323 int ret = 0;
324
325 /* We manually control the domain here and pretend that it
326 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
327 */
328 ret = i915_gem_object_wait_rendering(obj, false);
329 if (ret)
330 return ret;
331
332 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
333 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
334 unsigned long unwritten;
335
336 /* The physical object once assigned is fixed for the lifetime
337 * of the obj, so we can safely drop the lock and continue
338 * to access vaddr.
339 */
340 mutex_unlock(&dev->struct_mutex);
341 unwritten = copy_from_user(vaddr, user_data, args->size);
342 mutex_lock(&dev->struct_mutex);
343 if (unwritten) {
344 ret = -EFAULT;
345 goto out;
346 }
347 }
348
349 drm_clflush_virt_range(vaddr, args->size);
350 i915_gem_chipset_flush(to_i915(dev));
351
352 out:
353 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
354 return ret;
355 }
356
357 void *i915_gem_object_alloc(struct drm_device *dev)
358 {
359 struct drm_i915_private *dev_priv = dev->dev_private;
360 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
361 }
362
363 void i915_gem_object_free(struct drm_i915_gem_object *obj)
364 {
365 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
366 kmem_cache_free(dev_priv->objects, obj);
367 }
368
369 static int
370 i915_gem_create(struct drm_file *file,
371 struct drm_device *dev,
372 uint64_t size,
373 uint32_t *handle_p)
374 {
375 struct drm_i915_gem_object *obj;
376 int ret;
377 u32 handle;
378
379 size = roundup(size, PAGE_SIZE);
380 if (size == 0)
381 return -EINVAL;
382
383 /* Allocate the new object */
384 obj = i915_gem_object_create(dev, size);
385 if (IS_ERR(obj))
386 return PTR_ERR(obj);
387
388 ret = drm_gem_handle_create(file, &obj->base, &handle);
389 /* drop reference from allocate - handle holds it now */
390 drm_gem_object_unreference_unlocked(&obj->base);
391 if (ret)
392 return ret;
393
394 *handle_p = handle;
395 return 0;
396 }
397
398 int
399 i915_gem_dumb_create(struct drm_file *file,
400 struct drm_device *dev,
401 struct drm_mode_create_dumb *args)
402 {
403 /* have to work out size/pitch and return them */
404 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
405 args->size = args->pitch * args->height;
406 return i915_gem_create(file, dev,
407 args->size, &args->handle);
408 }
409
410 /**
411 * Creates a new mm object and returns a handle to it.
412 */
413 int
414 i915_gem_create_ioctl(struct drm_device *dev, void *data,
415 struct drm_file *file)
416 {
417 struct drm_i915_gem_create *args = data;
418
419 return i915_gem_create(file, dev,
420 args->size, &args->handle);
421 }
422
423 static inline int
424 __copy_to_user_swizzled(char __user *cpu_vaddr,
425 const char *gpu_vaddr, int gpu_offset,
426 int length)
427 {
428 int ret, cpu_offset = 0;
429
430 while (length > 0) {
431 int cacheline_end = ALIGN(gpu_offset + 1, 64);
432 int this_length = min(cacheline_end - gpu_offset, length);
433 int swizzled_gpu_offset = gpu_offset ^ 64;
434
435 ret = __copy_to_user(cpu_vaddr + cpu_offset,
436 gpu_vaddr + swizzled_gpu_offset,
437 this_length);
438 if (ret)
439 return ret + length;
440
441 cpu_offset += this_length;
442 gpu_offset += this_length;
443 length -= this_length;
444 }
445
446 return 0;
447 }
448
449 static inline int
450 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
451 const char __user *cpu_vaddr,
452 int length)
453 {
454 int ret, cpu_offset = 0;
455
456 while (length > 0) {
457 int cacheline_end = ALIGN(gpu_offset + 1, 64);
458 int this_length = min(cacheline_end - gpu_offset, length);
459 int swizzled_gpu_offset = gpu_offset ^ 64;
460
461 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
462 cpu_vaddr + cpu_offset,
463 this_length);
464 if (ret)
465 return ret + length;
466
467 cpu_offset += this_length;
468 gpu_offset += this_length;
469 length -= this_length;
470 }
471
472 return 0;
473 }
474
475 /*
476 * Pins the specified object's pages and synchronizes the object with
477 * GPU accesses. Sets needs_clflush to non-zero if the caller should
478 * flush the object from the CPU cache.
479 */
480 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
481 int *needs_clflush)
482 {
483 int ret;
484
485 *needs_clflush = 0;
486
487 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
488 return -EINVAL;
489
490 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
491 /* If we're not in the cpu read domain, set ourself into the gtt
492 * read domain and manually flush cachelines (if required). This
493 * optimizes for the case when the gpu will dirty the data
494 * anyway again before the next pread happens. */
495 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
496 obj->cache_level);
497 ret = i915_gem_object_wait_rendering(obj, true);
498 if (ret)
499 return ret;
500 }
501
502 ret = i915_gem_object_get_pages(obj);
503 if (ret)
504 return ret;
505
506 i915_gem_object_pin_pages(obj);
507
508 return ret;
509 }
510
511 /* Per-page copy function for the shmem pread fastpath.
512 * Flushes invalid cachelines before reading the target if
513 * needs_clflush is set. */
514 static int
515 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
516 char __user *user_data,
517 bool page_do_bit17_swizzling, bool needs_clflush)
518 {
519 char *vaddr;
520 int ret;
521
522 if (unlikely(page_do_bit17_swizzling))
523 return -EINVAL;
524
525 vaddr = kmap_atomic(page);
526 if (needs_clflush)
527 drm_clflush_virt_range(vaddr + shmem_page_offset,
528 page_length);
529 ret = __copy_to_user_inatomic(user_data,
530 vaddr + shmem_page_offset,
531 page_length);
532 kunmap_atomic(vaddr);
533
534 return ret ? -EFAULT : 0;
535 }
536
537 static void
538 shmem_clflush_swizzled_range(char *addr, unsigned long length,
539 bool swizzled)
540 {
541 if (unlikely(swizzled)) {
542 unsigned long start = (unsigned long) addr;
543 unsigned long end = (unsigned long) addr + length;
544
545 /* For swizzling simply ensure that we always flush both
546 * channels. Lame, but simple and it works. Swizzled
547 * pwrite/pread is far from a hotpath - current userspace
548 * doesn't use it at all. */
549 start = round_down(start, 128);
550 end = round_up(end, 128);
551
552 drm_clflush_virt_range((void *)start, end - start);
553 } else {
554 drm_clflush_virt_range(addr, length);
555 }
556
557 }
558
559 /* Only difference to the fast-path function is that this can handle bit17
560 * and uses non-atomic copy and kmap functions. */
561 static int
562 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
563 char __user *user_data,
564 bool page_do_bit17_swizzling, bool needs_clflush)
565 {
566 char *vaddr;
567 int ret;
568
569 vaddr = kmap(page);
570 if (needs_clflush)
571 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
572 page_length,
573 page_do_bit17_swizzling);
574
575 if (page_do_bit17_swizzling)
576 ret = __copy_to_user_swizzled(user_data,
577 vaddr, shmem_page_offset,
578 page_length);
579 else
580 ret = __copy_to_user(user_data,
581 vaddr + shmem_page_offset,
582 page_length);
583 kunmap(page);
584
585 return ret ? - EFAULT : 0;
586 }
587
588 static int
589 i915_gem_shmem_pread(struct drm_device *dev,
590 struct drm_i915_gem_object *obj,
591 struct drm_i915_gem_pread *args,
592 struct drm_file *file)
593 {
594 char __user *user_data;
595 ssize_t remain;
596 loff_t offset;
597 int shmem_page_offset, page_length, ret = 0;
598 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
599 int prefaulted = 0;
600 int needs_clflush = 0;
601 struct sg_page_iter sg_iter;
602
603 user_data = u64_to_user_ptr(args->data_ptr);
604 remain = args->size;
605
606 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
607
608 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
609 if (ret)
610 return ret;
611
612 offset = args->offset;
613
614 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
615 offset >> PAGE_SHIFT) {
616 struct page *page = sg_page_iter_page(&sg_iter);
617
618 if (remain <= 0)
619 break;
620
621 /* Operation in this page
622 *
623 * shmem_page_offset = offset within page in shmem file
624 * page_length = bytes to copy for this page
625 */
626 shmem_page_offset = offset_in_page(offset);
627 page_length = remain;
628 if ((shmem_page_offset + page_length) > PAGE_SIZE)
629 page_length = PAGE_SIZE - shmem_page_offset;
630
631 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
632 (page_to_phys(page) & (1 << 17)) != 0;
633
634 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
635 user_data, page_do_bit17_swizzling,
636 needs_clflush);
637 if (ret == 0)
638 goto next_page;
639
640 mutex_unlock(&dev->struct_mutex);
641
642 if (likely(!i915.prefault_disable) && !prefaulted) {
643 ret = fault_in_multipages_writeable(user_data, remain);
644 /* Userspace is tricking us, but we've already clobbered
645 * its pages with the prefault and promised to write the
646 * data up to the first fault. Hence ignore any errors
647 * and just continue. */
648 (void)ret;
649 prefaulted = 1;
650 }
651
652 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
653 user_data, page_do_bit17_swizzling,
654 needs_clflush);
655
656 mutex_lock(&dev->struct_mutex);
657
658 if (ret)
659 goto out;
660
661 next_page:
662 remain -= page_length;
663 user_data += page_length;
664 offset += page_length;
665 }
666
667 out:
668 i915_gem_object_unpin_pages(obj);
669
670 return ret;
671 }
672
673 /**
674 * Reads data from the object referenced by handle.
675 *
676 * On error, the contents of *data are undefined.
677 */
678 int
679 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
680 struct drm_file *file)
681 {
682 struct drm_i915_gem_pread *args = data;
683 struct drm_i915_gem_object *obj;
684 int ret = 0;
685
686 if (args->size == 0)
687 return 0;
688
689 if (!access_ok(VERIFY_WRITE,
690 u64_to_user_ptr(args->data_ptr),
691 args->size))
692 return -EFAULT;
693
694 ret = i915_mutex_lock_interruptible(dev);
695 if (ret)
696 return ret;
697
698 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
699 if (&obj->base == NULL) {
700 ret = -ENOENT;
701 goto unlock;
702 }
703
704 /* Bounds check source. */
705 if (args->offset > obj->base.size ||
706 args->size > obj->base.size - args->offset) {
707 ret = -EINVAL;
708 goto out;
709 }
710
711 /* prime objects have no backing filp to GEM pread/pwrite
712 * pages from.
713 */
714 if (!obj->base.filp) {
715 ret = -EINVAL;
716 goto out;
717 }
718
719 trace_i915_gem_object_pread(obj, args->offset, args->size);
720
721 ret = i915_gem_shmem_pread(dev, obj, args, file);
722
723 out:
724 drm_gem_object_unreference(&obj->base);
725 unlock:
726 mutex_unlock(&dev->struct_mutex);
727 return ret;
728 }
729
730 /* This is the fast write path which cannot handle
731 * page faults in the source data
732 */
733
734 static inline int
735 fast_user_write(struct io_mapping *mapping,
736 loff_t page_base, int page_offset,
737 char __user *user_data,
738 int length)
739 {
740 void __iomem *vaddr_atomic;
741 void *vaddr;
742 unsigned long unwritten;
743
744 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
745 /* We can use the cpu mem copy function because this is X86. */
746 vaddr = (void __force*)vaddr_atomic + page_offset;
747 unwritten = __copy_from_user_inatomic_nocache(vaddr,
748 user_data, length);
749 io_mapping_unmap_atomic(vaddr_atomic);
750 return unwritten;
751 }
752
753 /**
754 * This is the fast pwrite path, where we copy the data directly from the
755 * user into the GTT, uncached.
756 */
757 static int
758 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
759 struct drm_i915_gem_object *obj,
760 struct drm_i915_gem_pwrite *args,
761 struct drm_file *file)
762 {
763 struct drm_i915_private *dev_priv = to_i915(dev);
764 struct i915_ggtt *ggtt = &dev_priv->ggtt;
765 ssize_t remain;
766 loff_t offset, page_base;
767 char __user *user_data;
768 int page_offset, page_length, ret;
769
770 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
771 if (ret)
772 goto out;
773
774 ret = i915_gem_object_set_to_gtt_domain(obj, true);
775 if (ret)
776 goto out_unpin;
777
778 ret = i915_gem_object_put_fence(obj);
779 if (ret)
780 goto out_unpin;
781
782 user_data = u64_to_user_ptr(args->data_ptr);
783 remain = args->size;
784
785 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
786
787 intel_fb_obj_invalidate(obj, ORIGIN_GTT);
788
789 while (remain > 0) {
790 /* Operation in this page
791 *
792 * page_base = page offset within aperture
793 * page_offset = offset within page
794 * page_length = bytes to copy for this page
795 */
796 page_base = offset & PAGE_MASK;
797 page_offset = offset_in_page(offset);
798 page_length = remain;
799 if ((page_offset + remain) > PAGE_SIZE)
800 page_length = PAGE_SIZE - page_offset;
801
802 /* If we get a fault while copying data, then (presumably) our
803 * source page isn't available. Return the error and we'll
804 * retry in the slow path.
805 */
806 if (fast_user_write(ggtt->mappable, page_base,
807 page_offset, user_data, page_length)) {
808 ret = -EFAULT;
809 goto out_flush;
810 }
811
812 remain -= page_length;
813 user_data += page_length;
814 offset += page_length;
815 }
816
817 out_flush:
818 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
819 out_unpin:
820 i915_gem_object_ggtt_unpin(obj);
821 out:
822 return ret;
823 }
824
825 /* Per-page copy function for the shmem pwrite fastpath.
826 * Flushes invalid cachelines before writing to the target if
827 * needs_clflush_before is set and flushes out any written cachelines after
828 * writing if needs_clflush is set. */
829 static int
830 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
831 char __user *user_data,
832 bool page_do_bit17_swizzling,
833 bool needs_clflush_before,
834 bool needs_clflush_after)
835 {
836 char *vaddr;
837 int ret;
838
839 if (unlikely(page_do_bit17_swizzling))
840 return -EINVAL;
841
842 vaddr = kmap_atomic(page);
843 if (needs_clflush_before)
844 drm_clflush_virt_range(vaddr + shmem_page_offset,
845 page_length);
846 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
847 user_data, page_length);
848 if (needs_clflush_after)
849 drm_clflush_virt_range(vaddr + shmem_page_offset,
850 page_length);
851 kunmap_atomic(vaddr);
852
853 return ret ? -EFAULT : 0;
854 }
855
856 /* Only difference to the fast-path function is that this can handle bit17
857 * and uses non-atomic copy and kmap functions. */
858 static int
859 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
860 char __user *user_data,
861 bool page_do_bit17_swizzling,
862 bool needs_clflush_before,
863 bool needs_clflush_after)
864 {
865 char *vaddr;
866 int ret;
867
868 vaddr = kmap(page);
869 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
870 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
871 page_length,
872 page_do_bit17_swizzling);
873 if (page_do_bit17_swizzling)
874 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
875 user_data,
876 page_length);
877 else
878 ret = __copy_from_user(vaddr + shmem_page_offset,
879 user_data,
880 page_length);
881 if (needs_clflush_after)
882 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
883 page_length,
884 page_do_bit17_swizzling);
885 kunmap(page);
886
887 return ret ? -EFAULT : 0;
888 }
889
890 static int
891 i915_gem_shmem_pwrite(struct drm_device *dev,
892 struct drm_i915_gem_object *obj,
893 struct drm_i915_gem_pwrite *args,
894 struct drm_file *file)
895 {
896 ssize_t remain;
897 loff_t offset;
898 char __user *user_data;
899 int shmem_page_offset, page_length, ret = 0;
900 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
901 int hit_slowpath = 0;
902 int needs_clflush_after = 0;
903 int needs_clflush_before = 0;
904 struct sg_page_iter sg_iter;
905
906 user_data = u64_to_user_ptr(args->data_ptr);
907 remain = args->size;
908
909 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
910
911 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
912 /* If we're not in the cpu write domain, set ourself into the gtt
913 * write domain and manually flush cachelines (if required). This
914 * optimizes for the case when the gpu will use the data
915 * right away and we therefore have to clflush anyway. */
916 needs_clflush_after = cpu_write_needs_clflush(obj);
917 ret = i915_gem_object_wait_rendering(obj, false);
918 if (ret)
919 return ret;
920 }
921 /* Same trick applies to invalidate partially written cachelines read
922 * before writing. */
923 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
924 needs_clflush_before =
925 !cpu_cache_is_coherent(dev, obj->cache_level);
926
927 ret = i915_gem_object_get_pages(obj);
928 if (ret)
929 return ret;
930
931 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
932
933 i915_gem_object_pin_pages(obj);
934
935 offset = args->offset;
936 obj->dirty = 1;
937
938 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
939 offset >> PAGE_SHIFT) {
940 struct page *page = sg_page_iter_page(&sg_iter);
941 int partial_cacheline_write;
942
943 if (remain <= 0)
944 break;
945
946 /* Operation in this page
947 *
948 * shmem_page_offset = offset within page in shmem file
949 * page_length = bytes to copy for this page
950 */
951 shmem_page_offset = offset_in_page(offset);
952
953 page_length = remain;
954 if ((shmem_page_offset + page_length) > PAGE_SIZE)
955 page_length = PAGE_SIZE - shmem_page_offset;
956
957 /* If we don't overwrite a cacheline completely we need to be
958 * careful to have up-to-date data by first clflushing. Don't
959 * overcomplicate things and flush the entire patch. */
960 partial_cacheline_write = needs_clflush_before &&
961 ((shmem_page_offset | page_length)
962 & (boot_cpu_data.x86_clflush_size - 1));
963
964 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
965 (page_to_phys(page) & (1 << 17)) != 0;
966
967 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
968 user_data, page_do_bit17_swizzling,
969 partial_cacheline_write,
970 needs_clflush_after);
971 if (ret == 0)
972 goto next_page;
973
974 hit_slowpath = 1;
975 mutex_unlock(&dev->struct_mutex);
976 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
977 user_data, page_do_bit17_swizzling,
978 partial_cacheline_write,
979 needs_clflush_after);
980
981 mutex_lock(&dev->struct_mutex);
982
983 if (ret)
984 goto out;
985
986 next_page:
987 remain -= page_length;
988 user_data += page_length;
989 offset += page_length;
990 }
991
992 out:
993 i915_gem_object_unpin_pages(obj);
994
995 if (hit_slowpath) {
996 /*
997 * Fixup: Flush cpu caches in case we didn't flush the dirty
998 * cachelines in-line while writing and the object moved
999 * out of the cpu write domain while we've dropped the lock.
1000 */
1001 if (!needs_clflush_after &&
1002 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1003 if (i915_gem_clflush_object(obj, obj->pin_display))
1004 needs_clflush_after = true;
1005 }
1006 }
1007
1008 if (needs_clflush_after)
1009 i915_gem_chipset_flush(to_i915(dev));
1010 else
1011 obj->cache_dirty = true;
1012
1013 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1014 return ret;
1015 }
1016
1017 /**
1018 * Writes data to the object referenced by handle.
1019 *
1020 * On error, the contents of the buffer that were to be modified are undefined.
1021 */
1022 int
1023 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1024 struct drm_file *file)
1025 {
1026 struct drm_i915_private *dev_priv = dev->dev_private;
1027 struct drm_i915_gem_pwrite *args = data;
1028 struct drm_i915_gem_object *obj;
1029 int ret;
1030
1031 if (args->size == 0)
1032 return 0;
1033
1034 if (!access_ok(VERIFY_READ,
1035 u64_to_user_ptr(args->data_ptr),
1036 args->size))
1037 return -EFAULT;
1038
1039 if (likely(!i915.prefault_disable)) {
1040 ret = fault_in_multipages_readable(u64_to_user_ptr(args->data_ptr),
1041 args->size);
1042 if (ret)
1043 return -EFAULT;
1044 }
1045
1046 intel_runtime_pm_get(dev_priv);
1047
1048 ret = i915_mutex_lock_interruptible(dev);
1049 if (ret)
1050 goto put_rpm;
1051
1052 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1053 if (&obj->base == NULL) {
1054 ret = -ENOENT;
1055 goto unlock;
1056 }
1057
1058 /* Bounds check destination. */
1059 if (args->offset > obj->base.size ||
1060 args->size > obj->base.size - args->offset) {
1061 ret = -EINVAL;
1062 goto out;
1063 }
1064
1065 /* prime objects have no backing filp to GEM pread/pwrite
1066 * pages from.
1067 */
1068 if (!obj->base.filp) {
1069 ret = -EINVAL;
1070 goto out;
1071 }
1072
1073 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1074
1075 ret = -EFAULT;
1076 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1077 * it would end up going through the fenced access, and we'll get
1078 * different detiling behavior between reading and writing.
1079 * pread/pwrite currently are reading and writing from the CPU
1080 * perspective, requiring manual detiling by the client.
1081 */
1082 if (obj->tiling_mode == I915_TILING_NONE &&
1083 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1084 cpu_write_needs_clflush(obj)) {
1085 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1086 /* Note that the gtt paths might fail with non-page-backed user
1087 * pointers (e.g. gtt mappings when moving data between
1088 * textures). Fallback to the shmem path in that case. */
1089 }
1090
1091 if (ret == -EFAULT || ret == -ENOSPC) {
1092 if (obj->phys_handle)
1093 ret = i915_gem_phys_pwrite(obj, args, file);
1094 else
1095 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1096 }
1097
1098 out:
1099 drm_gem_object_unreference(&obj->base);
1100 unlock:
1101 mutex_unlock(&dev->struct_mutex);
1102 put_rpm:
1103 intel_runtime_pm_put(dev_priv);
1104
1105 return ret;
1106 }
1107
1108 static int
1109 i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1110 {
1111 if (__i915_terminally_wedged(reset_counter))
1112 return -EIO;
1113
1114 if (__i915_reset_in_progress(reset_counter)) {
1115 /* Non-interruptible callers can't handle -EAGAIN, hence return
1116 * -EIO unconditionally for these. */
1117 if (!interruptible)
1118 return -EIO;
1119
1120 return -EAGAIN;
1121 }
1122
1123 return 0;
1124 }
1125
1126 static void fake_irq(unsigned long data)
1127 {
1128 wake_up_process((struct task_struct *)data);
1129 }
1130
1131 static bool missed_irq(struct drm_i915_private *dev_priv,
1132 struct intel_engine_cs *engine)
1133 {
1134 return test_bit(engine->id, &dev_priv->gpu_error.missed_irq_rings);
1135 }
1136
1137 static unsigned long local_clock_us(unsigned *cpu)
1138 {
1139 unsigned long t;
1140
1141 /* Cheaply and approximately convert from nanoseconds to microseconds.
1142 * The result and subsequent calculations are also defined in the same
1143 * approximate microseconds units. The principal source of timing
1144 * error here is from the simple truncation.
1145 *
1146 * Note that local_clock() is only defined wrt to the current CPU;
1147 * the comparisons are no longer valid if we switch CPUs. Instead of
1148 * blocking preemption for the entire busywait, we can detect the CPU
1149 * switch and use that as indicator of system load and a reason to
1150 * stop busywaiting, see busywait_stop().
1151 */
1152 *cpu = get_cpu();
1153 t = local_clock() >> 10;
1154 put_cpu();
1155
1156 return t;
1157 }
1158
1159 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1160 {
1161 unsigned this_cpu;
1162
1163 if (time_after(local_clock_us(&this_cpu), timeout))
1164 return true;
1165
1166 return this_cpu != cpu;
1167 }
1168
1169 static int __i915_spin_request(struct drm_i915_gem_request *req, int state)
1170 {
1171 unsigned long timeout;
1172 unsigned cpu;
1173
1174 /* When waiting for high frequency requests, e.g. during synchronous
1175 * rendering split between the CPU and GPU, the finite amount of time
1176 * required to set up the irq and wait upon it limits the response
1177 * rate. By busywaiting on the request completion for a short while we
1178 * can service the high frequency waits as quick as possible. However,
1179 * if it is a slow request, we want to sleep as quickly as possible.
1180 * The tradeoff between waiting and sleeping is roughly the time it
1181 * takes to sleep on a request, on the order of a microsecond.
1182 */
1183
1184 if (req->engine->irq_refcount)
1185 return -EBUSY;
1186
1187 /* Only spin if we know the GPU is processing this request */
1188 if (!i915_gem_request_started(req, true))
1189 return -EAGAIN;
1190
1191 timeout = local_clock_us(&cpu) + 5;
1192 while (!need_resched()) {
1193 if (i915_gem_request_completed(req, true))
1194 return 0;
1195
1196 if (signal_pending_state(state, current))
1197 break;
1198
1199 if (busywait_stop(timeout, cpu))
1200 break;
1201
1202 cpu_relax_lowlatency();
1203 }
1204
1205 if (i915_gem_request_completed(req, false))
1206 return 0;
1207
1208 return -EAGAIN;
1209 }
1210
1211 /**
1212 * __i915_wait_request - wait until execution of request has finished
1213 * @req: duh!
1214 * @interruptible: do an interruptible wait (normally yes)
1215 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1216 *
1217 * Note: It is of utmost importance that the passed in seqno and reset_counter
1218 * values have been read by the caller in an smp safe manner. Where read-side
1219 * locks are involved, it is sufficient to read the reset_counter before
1220 * unlocking the lock that protects the seqno. For lockless tricks, the
1221 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1222 * inserted.
1223 *
1224 * Returns 0 if the request was found within the alloted time. Else returns the
1225 * errno with remaining time filled in timeout argument.
1226 */
1227 int __i915_wait_request(struct drm_i915_gem_request *req,
1228 bool interruptible,
1229 s64 *timeout,
1230 struct intel_rps_client *rps)
1231 {
1232 struct intel_engine_cs *engine = i915_gem_request_get_engine(req);
1233 struct drm_i915_private *dev_priv = req->i915;
1234 const bool irq_test_in_progress =
1235 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_engine_flag(engine);
1236 int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1237 DEFINE_WAIT(wait);
1238 unsigned long timeout_expire;
1239 s64 before = 0; /* Only to silence a compiler warning. */
1240 int ret;
1241
1242 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1243
1244 if (list_empty(&req->list))
1245 return 0;
1246
1247 if (i915_gem_request_completed(req, true))
1248 return 0;
1249
1250 timeout_expire = 0;
1251 if (timeout) {
1252 if (WARN_ON(*timeout < 0))
1253 return -EINVAL;
1254
1255 if (*timeout == 0)
1256 return -ETIME;
1257
1258 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1259
1260 /*
1261 * Record current time in case interrupted by signal, or wedged.
1262 */
1263 before = ktime_get_raw_ns();
1264 }
1265
1266 if (INTEL_INFO(dev_priv)->gen >= 6)
1267 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1268
1269 trace_i915_gem_request_wait_begin(req);
1270
1271 /* Optimistic spin for the next jiffie before touching IRQs */
1272 ret = __i915_spin_request(req, state);
1273 if (ret == 0)
1274 goto out;
1275
1276 if (!irq_test_in_progress && WARN_ON(!engine->irq_get(engine))) {
1277 ret = -ENODEV;
1278 goto out;
1279 }
1280
1281 for (;;) {
1282 struct timer_list timer;
1283
1284 prepare_to_wait(&engine->irq_queue, &wait, state);
1285
1286 /* We need to check whether any gpu reset happened in between
1287 * the request being submitted and now. If a reset has occurred,
1288 * the request is effectively complete (we either are in the
1289 * process of or have discarded the rendering and completely
1290 * reset the GPU. The results of the request are lost and we
1291 * are free to continue on with the original operation.
1292 */
1293 if (req->reset_counter != i915_reset_counter(&dev_priv->gpu_error)) {
1294 ret = 0;
1295 break;
1296 }
1297
1298 if (i915_gem_request_completed(req, false)) {
1299 ret = 0;
1300 break;
1301 }
1302
1303 if (signal_pending_state(state, current)) {
1304 ret = -ERESTARTSYS;
1305 break;
1306 }
1307
1308 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1309 ret = -ETIME;
1310 break;
1311 }
1312
1313 timer.function = NULL;
1314 if (timeout || missed_irq(dev_priv, engine)) {
1315 unsigned long expire;
1316
1317 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1318 expire = missed_irq(dev_priv, engine) ? jiffies + 1 : timeout_expire;
1319 mod_timer(&timer, expire);
1320 }
1321
1322 io_schedule();
1323
1324 if (timer.function) {
1325 del_singleshot_timer_sync(&timer);
1326 destroy_timer_on_stack(&timer);
1327 }
1328 }
1329 if (!irq_test_in_progress)
1330 engine->irq_put(engine);
1331
1332 finish_wait(&engine->irq_queue, &wait);
1333
1334 out:
1335 trace_i915_gem_request_wait_end(req);
1336
1337 if (timeout) {
1338 s64 tres = *timeout - (ktime_get_raw_ns() - before);
1339
1340 *timeout = tres < 0 ? 0 : tres;
1341
1342 /*
1343 * Apparently ktime isn't accurate enough and occasionally has a
1344 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1345 * things up to make the test happy. We allow up to 1 jiffy.
1346 *
1347 * This is a regrssion from the timespec->ktime conversion.
1348 */
1349 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1350 *timeout = 0;
1351 }
1352
1353 return ret;
1354 }
1355
1356 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1357 struct drm_file *file)
1358 {
1359 struct drm_i915_file_private *file_priv;
1360
1361 WARN_ON(!req || !file || req->file_priv);
1362
1363 if (!req || !file)
1364 return -EINVAL;
1365
1366 if (req->file_priv)
1367 return -EINVAL;
1368
1369 file_priv = file->driver_priv;
1370
1371 spin_lock(&file_priv->mm.lock);
1372 req->file_priv = file_priv;
1373 list_add_tail(&req->client_list, &file_priv->mm.request_list);
1374 spin_unlock(&file_priv->mm.lock);
1375
1376 req->pid = get_pid(task_pid(current));
1377
1378 return 0;
1379 }
1380
1381 static inline void
1382 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1383 {
1384 struct drm_i915_file_private *file_priv = request->file_priv;
1385
1386 if (!file_priv)
1387 return;
1388
1389 spin_lock(&file_priv->mm.lock);
1390 list_del(&request->client_list);
1391 request->file_priv = NULL;
1392 spin_unlock(&file_priv->mm.lock);
1393
1394 put_pid(request->pid);
1395 request->pid = NULL;
1396 }
1397
1398 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1399 {
1400 trace_i915_gem_request_retire(request);
1401
1402 /* We know the GPU must have read the request to have
1403 * sent us the seqno + interrupt, so use the position
1404 * of tail of the request to update the last known position
1405 * of the GPU head.
1406 *
1407 * Note this requires that we are always called in request
1408 * completion order.
1409 */
1410 request->ringbuf->last_retired_head = request->postfix;
1411
1412 list_del_init(&request->list);
1413 i915_gem_request_remove_from_client(request);
1414
1415 if (request->previous_context) {
1416 if (i915.enable_execlists)
1417 intel_lr_context_unpin(request->previous_context,
1418 request->engine);
1419 }
1420
1421 i915_gem_context_unreference(request->ctx);
1422 i915_gem_request_unreference(request);
1423 }
1424
1425 static void
1426 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1427 {
1428 struct intel_engine_cs *engine = req->engine;
1429 struct drm_i915_gem_request *tmp;
1430
1431 lockdep_assert_held(&engine->i915->dev->struct_mutex);
1432
1433 if (list_empty(&req->list))
1434 return;
1435
1436 do {
1437 tmp = list_first_entry(&engine->request_list,
1438 typeof(*tmp), list);
1439
1440 i915_gem_request_retire(tmp);
1441 } while (tmp != req);
1442
1443 WARN_ON(i915_verify_lists(engine->dev));
1444 }
1445
1446 /**
1447 * Waits for a request to be signaled, and cleans up the
1448 * request and object lists appropriately for that event.
1449 */
1450 int
1451 i915_wait_request(struct drm_i915_gem_request *req)
1452 {
1453 struct drm_i915_private *dev_priv = req->i915;
1454 bool interruptible;
1455 int ret;
1456
1457 interruptible = dev_priv->mm.interruptible;
1458
1459 BUG_ON(!mutex_is_locked(&dev_priv->dev->struct_mutex));
1460
1461 ret = __i915_wait_request(req, interruptible, NULL, NULL);
1462 if (ret)
1463 return ret;
1464
1465 /* If the GPU hung, we want to keep the requests to find the guilty. */
1466 if (req->reset_counter == i915_reset_counter(&dev_priv->gpu_error))
1467 __i915_gem_request_retire__upto(req);
1468
1469 return 0;
1470 }
1471
1472 /**
1473 * Ensures that all rendering to the object has completed and the object is
1474 * safe to unbind from the GTT or access from the CPU.
1475 */
1476 int
1477 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1478 bool readonly)
1479 {
1480 int ret, i;
1481
1482 if (!obj->active)
1483 return 0;
1484
1485 if (readonly) {
1486 if (obj->last_write_req != NULL) {
1487 ret = i915_wait_request(obj->last_write_req);
1488 if (ret)
1489 return ret;
1490
1491 i = obj->last_write_req->engine->id;
1492 if (obj->last_read_req[i] == obj->last_write_req)
1493 i915_gem_object_retire__read(obj, i);
1494 else
1495 i915_gem_object_retire__write(obj);
1496 }
1497 } else {
1498 for (i = 0; i < I915_NUM_ENGINES; i++) {
1499 if (obj->last_read_req[i] == NULL)
1500 continue;
1501
1502 ret = i915_wait_request(obj->last_read_req[i]);
1503 if (ret)
1504 return ret;
1505
1506 i915_gem_object_retire__read(obj, i);
1507 }
1508 GEM_BUG_ON(obj->active);
1509 }
1510
1511 return 0;
1512 }
1513
1514 static void
1515 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1516 struct drm_i915_gem_request *req)
1517 {
1518 int ring = req->engine->id;
1519
1520 if (obj->last_read_req[ring] == req)
1521 i915_gem_object_retire__read(obj, ring);
1522 else if (obj->last_write_req == req)
1523 i915_gem_object_retire__write(obj);
1524
1525 if (req->reset_counter == i915_reset_counter(&req->i915->gpu_error))
1526 __i915_gem_request_retire__upto(req);
1527 }
1528
1529 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1530 * as the object state may change during this call.
1531 */
1532 static __must_check int
1533 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1534 struct intel_rps_client *rps,
1535 bool readonly)
1536 {
1537 struct drm_device *dev = obj->base.dev;
1538 struct drm_i915_private *dev_priv = dev->dev_private;
1539 struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1540 int ret, i, n = 0;
1541
1542 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1543 BUG_ON(!dev_priv->mm.interruptible);
1544
1545 if (!obj->active)
1546 return 0;
1547
1548 if (readonly) {
1549 struct drm_i915_gem_request *req;
1550
1551 req = obj->last_write_req;
1552 if (req == NULL)
1553 return 0;
1554
1555 requests[n++] = i915_gem_request_reference(req);
1556 } else {
1557 for (i = 0; i < I915_NUM_ENGINES; i++) {
1558 struct drm_i915_gem_request *req;
1559
1560 req = obj->last_read_req[i];
1561 if (req == NULL)
1562 continue;
1563
1564 requests[n++] = i915_gem_request_reference(req);
1565 }
1566 }
1567
1568 mutex_unlock(&dev->struct_mutex);
1569 ret = 0;
1570 for (i = 0; ret == 0 && i < n; i++)
1571 ret = __i915_wait_request(requests[i], true, NULL, rps);
1572 mutex_lock(&dev->struct_mutex);
1573
1574 for (i = 0; i < n; i++) {
1575 if (ret == 0)
1576 i915_gem_object_retire_request(obj, requests[i]);
1577 i915_gem_request_unreference(requests[i]);
1578 }
1579
1580 return ret;
1581 }
1582
1583 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1584 {
1585 struct drm_i915_file_private *fpriv = file->driver_priv;
1586 return &fpriv->rps;
1587 }
1588
1589 /**
1590 * Called when user space prepares to use an object with the CPU, either
1591 * through the mmap ioctl's mapping or a GTT mapping.
1592 */
1593 int
1594 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1595 struct drm_file *file)
1596 {
1597 struct drm_i915_gem_set_domain *args = data;
1598 struct drm_i915_gem_object *obj;
1599 uint32_t read_domains = args->read_domains;
1600 uint32_t write_domain = args->write_domain;
1601 int ret;
1602
1603 /* Only handle setting domains to types used by the CPU. */
1604 if (write_domain & I915_GEM_GPU_DOMAINS)
1605 return -EINVAL;
1606
1607 if (read_domains & I915_GEM_GPU_DOMAINS)
1608 return -EINVAL;
1609
1610 /* Having something in the write domain implies it's in the read
1611 * domain, and only that read domain. Enforce that in the request.
1612 */
1613 if (write_domain != 0 && read_domains != write_domain)
1614 return -EINVAL;
1615
1616 ret = i915_mutex_lock_interruptible(dev);
1617 if (ret)
1618 return ret;
1619
1620 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1621 if (&obj->base == NULL) {
1622 ret = -ENOENT;
1623 goto unlock;
1624 }
1625
1626 /* Try to flush the object off the GPU without holding the lock.
1627 * We will repeat the flush holding the lock in the normal manner
1628 * to catch cases where we are gazumped.
1629 */
1630 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1631 to_rps_client(file),
1632 !write_domain);
1633 if (ret)
1634 goto unref;
1635
1636 if (read_domains & I915_GEM_DOMAIN_GTT)
1637 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1638 else
1639 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1640
1641 if (write_domain != 0)
1642 intel_fb_obj_invalidate(obj,
1643 write_domain == I915_GEM_DOMAIN_GTT ?
1644 ORIGIN_GTT : ORIGIN_CPU);
1645
1646 unref:
1647 drm_gem_object_unreference(&obj->base);
1648 unlock:
1649 mutex_unlock(&dev->struct_mutex);
1650 return ret;
1651 }
1652
1653 /**
1654 * Called when user space has done writes to this buffer
1655 */
1656 int
1657 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1658 struct drm_file *file)
1659 {
1660 struct drm_i915_gem_sw_finish *args = data;
1661 struct drm_i915_gem_object *obj;
1662 int ret = 0;
1663
1664 ret = i915_mutex_lock_interruptible(dev);
1665 if (ret)
1666 return ret;
1667
1668 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1669 if (&obj->base == NULL) {
1670 ret = -ENOENT;
1671 goto unlock;
1672 }
1673
1674 /* Pinned buffers may be scanout, so flush the cache */
1675 if (obj->pin_display)
1676 i915_gem_object_flush_cpu_write_domain(obj);
1677
1678 drm_gem_object_unreference(&obj->base);
1679 unlock:
1680 mutex_unlock(&dev->struct_mutex);
1681 return ret;
1682 }
1683
1684 /**
1685 * Maps the contents of an object, returning the address it is mapped
1686 * into.
1687 *
1688 * While the mapping holds a reference on the contents of the object, it doesn't
1689 * imply a ref on the object itself.
1690 *
1691 * IMPORTANT:
1692 *
1693 * DRM driver writers who look a this function as an example for how to do GEM
1694 * mmap support, please don't implement mmap support like here. The modern way
1695 * to implement DRM mmap support is with an mmap offset ioctl (like
1696 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1697 * That way debug tooling like valgrind will understand what's going on, hiding
1698 * the mmap call in a driver private ioctl will break that. The i915 driver only
1699 * does cpu mmaps this way because we didn't know better.
1700 */
1701 int
1702 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1703 struct drm_file *file)
1704 {
1705 struct drm_i915_gem_mmap *args = data;
1706 struct drm_gem_object *obj;
1707 unsigned long addr;
1708
1709 if (args->flags & ~(I915_MMAP_WC))
1710 return -EINVAL;
1711
1712 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1713 return -ENODEV;
1714
1715 obj = drm_gem_object_lookup(file, args->handle);
1716 if (obj == NULL)
1717 return -ENOENT;
1718
1719 /* prime objects have no backing filp to GEM mmap
1720 * pages from.
1721 */
1722 if (!obj->filp) {
1723 drm_gem_object_unreference_unlocked(obj);
1724 return -EINVAL;
1725 }
1726
1727 addr = vm_mmap(obj->filp, 0, args->size,
1728 PROT_READ | PROT_WRITE, MAP_SHARED,
1729 args->offset);
1730 if (args->flags & I915_MMAP_WC) {
1731 struct mm_struct *mm = current->mm;
1732 struct vm_area_struct *vma;
1733
1734 if (down_write_killable(&mm->mmap_sem)) {
1735 drm_gem_object_unreference_unlocked(obj);
1736 return -EINTR;
1737 }
1738 vma = find_vma(mm, addr);
1739 if (vma)
1740 vma->vm_page_prot =
1741 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1742 else
1743 addr = -ENOMEM;
1744 up_write(&mm->mmap_sem);
1745 }
1746 drm_gem_object_unreference_unlocked(obj);
1747 if (IS_ERR((void *)addr))
1748 return addr;
1749
1750 args->addr_ptr = (uint64_t) addr;
1751
1752 return 0;
1753 }
1754
1755 /**
1756 * i915_gem_fault - fault a page into the GTT
1757 * @vma: VMA in question
1758 * @vmf: fault info
1759 *
1760 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1761 * from userspace. The fault handler takes care of binding the object to
1762 * the GTT (if needed), allocating and programming a fence register (again,
1763 * only if needed based on whether the old reg is still valid or the object
1764 * is tiled) and inserting a new PTE into the faulting process.
1765 *
1766 * Note that the faulting process may involve evicting existing objects
1767 * from the GTT and/or fence registers to make room. So performance may
1768 * suffer if the GTT working set is large or there are few fence registers
1769 * left.
1770 */
1771 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1772 {
1773 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1774 struct drm_device *dev = obj->base.dev;
1775 struct drm_i915_private *dev_priv = to_i915(dev);
1776 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1777 struct i915_ggtt_view view = i915_ggtt_view_normal;
1778 pgoff_t page_offset;
1779 unsigned long pfn;
1780 int ret = 0;
1781 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1782
1783 intel_runtime_pm_get(dev_priv);
1784
1785 /* We don't use vmf->pgoff since that has the fake offset */
1786 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1787 PAGE_SHIFT;
1788
1789 ret = i915_mutex_lock_interruptible(dev);
1790 if (ret)
1791 goto out;
1792
1793 trace_i915_gem_object_fault(obj, page_offset, true, write);
1794
1795 /* Try to flush the object off the GPU first without holding the lock.
1796 * Upon reacquiring the lock, we will perform our sanity checks and then
1797 * repeat the flush holding the lock in the normal manner to catch cases
1798 * where we are gazumped.
1799 */
1800 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1801 if (ret)
1802 goto unlock;
1803
1804 /* Access to snoopable pages through the GTT is incoherent. */
1805 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1806 ret = -EFAULT;
1807 goto unlock;
1808 }
1809
1810 /* Use a partial view if the object is bigger than the aperture. */
1811 if (obj->base.size >= ggtt->mappable_end &&
1812 obj->tiling_mode == I915_TILING_NONE) {
1813 static const unsigned int chunk_size = 256; // 1 MiB
1814
1815 memset(&view, 0, sizeof(view));
1816 view.type = I915_GGTT_VIEW_PARTIAL;
1817 view.params.partial.offset = rounddown(page_offset, chunk_size);
1818 view.params.partial.size =
1819 min_t(unsigned int,
1820 chunk_size,
1821 (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1822 view.params.partial.offset);
1823 }
1824
1825 /* Now pin it into the GTT if needed */
1826 ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1827 if (ret)
1828 goto unlock;
1829
1830 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1831 if (ret)
1832 goto unpin;
1833
1834 ret = i915_gem_object_get_fence(obj);
1835 if (ret)
1836 goto unpin;
1837
1838 /* Finally, remap it using the new GTT offset */
1839 pfn = ggtt->mappable_base +
1840 i915_gem_obj_ggtt_offset_view(obj, &view);
1841 pfn >>= PAGE_SHIFT;
1842
1843 if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1844 /* Overriding existing pages in partial view does not cause
1845 * us any trouble as TLBs are still valid because the fault
1846 * is due to userspace losing part of the mapping or never
1847 * having accessed it before (at this partials' range).
1848 */
1849 unsigned long base = vma->vm_start +
1850 (view.params.partial.offset << PAGE_SHIFT);
1851 unsigned int i;
1852
1853 for (i = 0; i < view.params.partial.size; i++) {
1854 ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1855 if (ret)
1856 break;
1857 }
1858
1859 obj->fault_mappable = true;
1860 } else {
1861 if (!obj->fault_mappable) {
1862 unsigned long size = min_t(unsigned long,
1863 vma->vm_end - vma->vm_start,
1864 obj->base.size);
1865 int i;
1866
1867 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1868 ret = vm_insert_pfn(vma,
1869 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1870 pfn + i);
1871 if (ret)
1872 break;
1873 }
1874
1875 obj->fault_mappable = true;
1876 } else
1877 ret = vm_insert_pfn(vma,
1878 (unsigned long)vmf->virtual_address,
1879 pfn + page_offset);
1880 }
1881 unpin:
1882 i915_gem_object_ggtt_unpin_view(obj, &view);
1883 unlock:
1884 mutex_unlock(&dev->struct_mutex);
1885 out:
1886 switch (ret) {
1887 case -EIO:
1888 /*
1889 * We eat errors when the gpu is terminally wedged to avoid
1890 * userspace unduly crashing (gl has no provisions for mmaps to
1891 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1892 * and so needs to be reported.
1893 */
1894 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1895 ret = VM_FAULT_SIGBUS;
1896 break;
1897 }
1898 case -EAGAIN:
1899 /*
1900 * EAGAIN means the gpu is hung and we'll wait for the error
1901 * handler to reset everything when re-faulting in
1902 * i915_mutex_lock_interruptible.
1903 */
1904 case 0:
1905 case -ERESTARTSYS:
1906 case -EINTR:
1907 case -EBUSY:
1908 /*
1909 * EBUSY is ok: this just means that another thread
1910 * already did the job.
1911 */
1912 ret = VM_FAULT_NOPAGE;
1913 break;
1914 case -ENOMEM:
1915 ret = VM_FAULT_OOM;
1916 break;
1917 case -ENOSPC:
1918 case -EFAULT:
1919 ret = VM_FAULT_SIGBUS;
1920 break;
1921 default:
1922 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1923 ret = VM_FAULT_SIGBUS;
1924 break;
1925 }
1926
1927 intel_runtime_pm_put(dev_priv);
1928 return ret;
1929 }
1930
1931 /**
1932 * i915_gem_release_mmap - remove physical page mappings
1933 * @obj: obj in question
1934 *
1935 * Preserve the reservation of the mmapping with the DRM core code, but
1936 * relinquish ownership of the pages back to the system.
1937 *
1938 * It is vital that we remove the page mapping if we have mapped a tiled
1939 * object through the GTT and then lose the fence register due to
1940 * resource pressure. Similarly if the object has been moved out of the
1941 * aperture, than pages mapped into userspace must be revoked. Removing the
1942 * mapping will then trigger a page fault on the next user access, allowing
1943 * fixup by i915_gem_fault().
1944 */
1945 void
1946 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1947 {
1948 /* Serialisation between user GTT access and our code depends upon
1949 * revoking the CPU's PTE whilst the mutex is held. The next user
1950 * pagefault then has to wait until we release the mutex.
1951 */
1952 lockdep_assert_held(&obj->base.dev->struct_mutex);
1953
1954 if (!obj->fault_mappable)
1955 return;
1956
1957 drm_vma_node_unmap(&obj->base.vma_node,
1958 obj->base.dev->anon_inode->i_mapping);
1959
1960 /* Ensure that the CPU's PTE are revoked and there are not outstanding
1961 * memory transactions from userspace before we return. The TLB
1962 * flushing implied above by changing the PTE above *should* be
1963 * sufficient, an extra barrier here just provides us with a bit
1964 * of paranoid documentation about our requirement to serialise
1965 * memory writes before touching registers / GSM.
1966 */
1967 wmb();
1968
1969 obj->fault_mappable = false;
1970 }
1971
1972 void
1973 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1974 {
1975 struct drm_i915_gem_object *obj;
1976
1977 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1978 i915_gem_release_mmap(obj);
1979 }
1980
1981 uint32_t
1982 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1983 {
1984 uint32_t gtt_size;
1985
1986 if (INTEL_INFO(dev)->gen >= 4 ||
1987 tiling_mode == I915_TILING_NONE)
1988 return size;
1989
1990 /* Previous chips need a power-of-two fence region when tiling */
1991 if (IS_GEN3(dev))
1992 gtt_size = 1024*1024;
1993 else
1994 gtt_size = 512*1024;
1995
1996 while (gtt_size < size)
1997 gtt_size <<= 1;
1998
1999 return gtt_size;
2000 }
2001
2002 /**
2003 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2004 * @obj: object to check
2005 *
2006 * Return the required GTT alignment for an object, taking into account
2007 * potential fence register mapping.
2008 */
2009 uint32_t
2010 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2011 int tiling_mode, bool fenced)
2012 {
2013 /*
2014 * Minimum alignment is 4k (GTT page size), but might be greater
2015 * if a fence register is needed for the object.
2016 */
2017 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2018 tiling_mode == I915_TILING_NONE)
2019 return 4096;
2020
2021 /*
2022 * Previous chips need to be aligned to the size of the smallest
2023 * fence register that can contain the object.
2024 */
2025 return i915_gem_get_gtt_size(dev, size, tiling_mode);
2026 }
2027
2028 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2029 {
2030 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2031 int ret;
2032
2033 dev_priv->mm.shrinker_no_lock_stealing = true;
2034
2035 ret = drm_gem_create_mmap_offset(&obj->base);
2036 if (ret != -ENOSPC)
2037 goto out;
2038
2039 /* Badly fragmented mmap space? The only way we can recover
2040 * space is by destroying unwanted objects. We can't randomly release
2041 * mmap_offsets as userspace expects them to be persistent for the
2042 * lifetime of the objects. The closest we can is to release the
2043 * offsets on purgeable objects by truncating it and marking it purged,
2044 * which prevents userspace from ever using that object again.
2045 */
2046 i915_gem_shrink(dev_priv,
2047 obj->base.size >> PAGE_SHIFT,
2048 I915_SHRINK_BOUND |
2049 I915_SHRINK_UNBOUND |
2050 I915_SHRINK_PURGEABLE);
2051 ret = drm_gem_create_mmap_offset(&obj->base);
2052 if (ret != -ENOSPC)
2053 goto out;
2054
2055 i915_gem_shrink_all(dev_priv);
2056 ret = drm_gem_create_mmap_offset(&obj->base);
2057 out:
2058 dev_priv->mm.shrinker_no_lock_stealing = false;
2059
2060 return ret;
2061 }
2062
2063 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2064 {
2065 drm_gem_free_mmap_offset(&obj->base);
2066 }
2067
2068 int
2069 i915_gem_mmap_gtt(struct drm_file *file,
2070 struct drm_device *dev,
2071 uint32_t handle,
2072 uint64_t *offset)
2073 {
2074 struct drm_i915_gem_object *obj;
2075 int ret;
2076
2077 ret = i915_mutex_lock_interruptible(dev);
2078 if (ret)
2079 return ret;
2080
2081 obj = to_intel_bo(drm_gem_object_lookup(file, handle));
2082 if (&obj->base == NULL) {
2083 ret = -ENOENT;
2084 goto unlock;
2085 }
2086
2087 if (obj->madv != I915_MADV_WILLNEED) {
2088 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2089 ret = -EFAULT;
2090 goto out;
2091 }
2092
2093 ret = i915_gem_object_create_mmap_offset(obj);
2094 if (ret)
2095 goto out;
2096
2097 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2098
2099 out:
2100 drm_gem_object_unreference(&obj->base);
2101 unlock:
2102 mutex_unlock(&dev->struct_mutex);
2103 return ret;
2104 }
2105
2106 /**
2107 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2108 * @dev: DRM device
2109 * @data: GTT mapping ioctl data
2110 * @file: GEM object info
2111 *
2112 * Simply returns the fake offset to userspace so it can mmap it.
2113 * The mmap call will end up in drm_gem_mmap(), which will set things
2114 * up so we can get faults in the handler above.
2115 *
2116 * The fault handler will take care of binding the object into the GTT
2117 * (since it may have been evicted to make room for something), allocating
2118 * a fence register, and mapping the appropriate aperture address into
2119 * userspace.
2120 */
2121 int
2122 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2123 struct drm_file *file)
2124 {
2125 struct drm_i915_gem_mmap_gtt *args = data;
2126
2127 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2128 }
2129
2130 /* Immediately discard the backing storage */
2131 static void
2132 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2133 {
2134 i915_gem_object_free_mmap_offset(obj);
2135
2136 if (obj->base.filp == NULL)
2137 return;
2138
2139 /* Our goal here is to return as much of the memory as
2140 * is possible back to the system as we are called from OOM.
2141 * To do this we must instruct the shmfs to drop all of its
2142 * backing pages, *now*.
2143 */
2144 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2145 obj->madv = __I915_MADV_PURGED;
2146 }
2147
2148 /* Try to discard unwanted pages */
2149 static void
2150 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2151 {
2152 struct address_space *mapping;
2153
2154 switch (obj->madv) {
2155 case I915_MADV_DONTNEED:
2156 i915_gem_object_truncate(obj);
2157 case __I915_MADV_PURGED:
2158 return;
2159 }
2160
2161 if (obj->base.filp == NULL)
2162 return;
2163
2164 mapping = file_inode(obj->base.filp)->i_mapping,
2165 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2166 }
2167
2168 static void
2169 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2170 {
2171 struct sgt_iter sgt_iter;
2172 struct page *page;
2173 int ret;
2174
2175 BUG_ON(obj->madv == __I915_MADV_PURGED);
2176
2177 ret = i915_gem_object_set_to_cpu_domain(obj, true);
2178 if (WARN_ON(ret)) {
2179 /* In the event of a disaster, abandon all caches and
2180 * hope for the best.
2181 */
2182 i915_gem_clflush_object(obj, true);
2183 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2184 }
2185
2186 i915_gem_gtt_finish_object(obj);
2187
2188 if (i915_gem_object_needs_bit17_swizzle(obj))
2189 i915_gem_object_save_bit_17_swizzle(obj);
2190
2191 if (obj->madv == I915_MADV_DONTNEED)
2192 obj->dirty = 0;
2193
2194 for_each_sgt_page(page, sgt_iter, obj->pages) {
2195 if (obj->dirty)
2196 set_page_dirty(page);
2197
2198 if (obj->madv == I915_MADV_WILLNEED)
2199 mark_page_accessed(page);
2200
2201 put_page(page);
2202 }
2203 obj->dirty = 0;
2204
2205 sg_free_table(obj->pages);
2206 kfree(obj->pages);
2207 }
2208
2209 int
2210 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2211 {
2212 const struct drm_i915_gem_object_ops *ops = obj->ops;
2213
2214 if (obj->pages == NULL)
2215 return 0;
2216
2217 if (obj->pages_pin_count)
2218 return -EBUSY;
2219
2220 BUG_ON(i915_gem_obj_bound_any(obj));
2221
2222 /* ->put_pages might need to allocate memory for the bit17 swizzle
2223 * array, hence protect them from being reaped by removing them from gtt
2224 * lists early. */
2225 list_del(&obj->global_list);
2226
2227 if (obj->mapping) {
2228 if (is_vmalloc_addr(obj->mapping))
2229 vunmap(obj->mapping);
2230 else
2231 kunmap(kmap_to_page(obj->mapping));
2232 obj->mapping = NULL;
2233 }
2234
2235 ops->put_pages(obj);
2236 obj->pages = NULL;
2237
2238 i915_gem_object_invalidate(obj);
2239
2240 return 0;
2241 }
2242
2243 static int
2244 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2245 {
2246 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2247 int page_count, i;
2248 struct address_space *mapping;
2249 struct sg_table *st;
2250 struct scatterlist *sg;
2251 struct sgt_iter sgt_iter;
2252 struct page *page;
2253 unsigned long last_pfn = 0; /* suppress gcc warning */
2254 int ret;
2255 gfp_t gfp;
2256
2257 /* Assert that the object is not currently in any GPU domain. As it
2258 * wasn't in the GTT, there shouldn't be any way it could have been in
2259 * a GPU cache
2260 */
2261 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2262 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2263
2264 st = kmalloc(sizeof(*st), GFP_KERNEL);
2265 if (st == NULL)
2266 return -ENOMEM;
2267
2268 page_count = obj->base.size / PAGE_SIZE;
2269 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2270 kfree(st);
2271 return -ENOMEM;
2272 }
2273
2274 /* Get the list of pages out of our struct file. They'll be pinned
2275 * at this point until we release them.
2276 *
2277 * Fail silently without starting the shrinker
2278 */
2279 mapping = file_inode(obj->base.filp)->i_mapping;
2280 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2281 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2282 sg = st->sgl;
2283 st->nents = 0;
2284 for (i = 0; i < page_count; i++) {
2285 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2286 if (IS_ERR(page)) {
2287 i915_gem_shrink(dev_priv,
2288 page_count,
2289 I915_SHRINK_BOUND |
2290 I915_SHRINK_UNBOUND |
2291 I915_SHRINK_PURGEABLE);
2292 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2293 }
2294 if (IS_ERR(page)) {
2295 /* We've tried hard to allocate the memory by reaping
2296 * our own buffer, now let the real VM do its job and
2297 * go down in flames if truly OOM.
2298 */
2299 i915_gem_shrink_all(dev_priv);
2300 page = shmem_read_mapping_page(mapping, i);
2301 if (IS_ERR(page)) {
2302 ret = PTR_ERR(page);
2303 goto err_pages;
2304 }
2305 }
2306 #ifdef CONFIG_SWIOTLB
2307 if (swiotlb_nr_tbl()) {
2308 st->nents++;
2309 sg_set_page(sg, page, PAGE_SIZE, 0);
2310 sg = sg_next(sg);
2311 continue;
2312 }
2313 #endif
2314 if (!i || page_to_pfn(page) != last_pfn + 1) {
2315 if (i)
2316 sg = sg_next(sg);
2317 st->nents++;
2318 sg_set_page(sg, page, PAGE_SIZE, 0);
2319 } else {
2320 sg->length += PAGE_SIZE;
2321 }
2322 last_pfn = page_to_pfn(page);
2323
2324 /* Check that the i965g/gm workaround works. */
2325 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2326 }
2327 #ifdef CONFIG_SWIOTLB
2328 if (!swiotlb_nr_tbl())
2329 #endif
2330 sg_mark_end(sg);
2331 obj->pages = st;
2332
2333 ret = i915_gem_gtt_prepare_object(obj);
2334 if (ret)
2335 goto err_pages;
2336
2337 if (i915_gem_object_needs_bit17_swizzle(obj))
2338 i915_gem_object_do_bit_17_swizzle(obj);
2339
2340 if (obj->tiling_mode != I915_TILING_NONE &&
2341 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2342 i915_gem_object_pin_pages(obj);
2343
2344 return 0;
2345
2346 err_pages:
2347 sg_mark_end(sg);
2348 for_each_sgt_page(page, sgt_iter, st)
2349 put_page(page);
2350 sg_free_table(st);
2351 kfree(st);
2352
2353 /* shmemfs first checks if there is enough memory to allocate the page
2354 * and reports ENOSPC should there be insufficient, along with the usual
2355 * ENOMEM for a genuine allocation failure.
2356 *
2357 * We use ENOSPC in our driver to mean that we have run out of aperture
2358 * space and so want to translate the error from shmemfs back to our
2359 * usual understanding of ENOMEM.
2360 */
2361 if (ret == -ENOSPC)
2362 ret = -ENOMEM;
2363
2364 return ret;
2365 }
2366
2367 /* Ensure that the associated pages are gathered from the backing storage
2368 * and pinned into our object. i915_gem_object_get_pages() may be called
2369 * multiple times before they are released by a single call to
2370 * i915_gem_object_put_pages() - once the pages are no longer referenced
2371 * either as a result of memory pressure (reaping pages under the shrinker)
2372 * or as the object is itself released.
2373 */
2374 int
2375 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2376 {
2377 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2378 const struct drm_i915_gem_object_ops *ops = obj->ops;
2379 int ret;
2380
2381 if (obj->pages)
2382 return 0;
2383
2384 if (obj->madv != I915_MADV_WILLNEED) {
2385 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2386 return -EFAULT;
2387 }
2388
2389 BUG_ON(obj->pages_pin_count);
2390
2391 ret = ops->get_pages(obj);
2392 if (ret)
2393 return ret;
2394
2395 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2396
2397 obj->get_page.sg = obj->pages->sgl;
2398 obj->get_page.last = 0;
2399
2400 return 0;
2401 }
2402
2403 /* The 'mapping' part of i915_gem_object_pin_map() below */
2404 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
2405 {
2406 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2407 struct sg_table *sgt = obj->pages;
2408 struct sgt_iter sgt_iter;
2409 struct page *page;
2410 struct page *stack_pages[32];
2411 struct page **pages = stack_pages;
2412 unsigned long i = 0;
2413 void *addr;
2414
2415 /* A single page can always be kmapped */
2416 if (n_pages == 1)
2417 return kmap(sg_page(sgt->sgl));
2418
2419 if (n_pages > ARRAY_SIZE(stack_pages)) {
2420 /* Too big for stack -- allocate temporary array instead */
2421 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2422 if (!pages)
2423 return NULL;
2424 }
2425
2426 for_each_sgt_page(page, sgt_iter, sgt)
2427 pages[i++] = page;
2428
2429 /* Check that we have the expected number of pages */
2430 GEM_BUG_ON(i != n_pages);
2431
2432 addr = vmap(pages, n_pages, 0, PAGE_KERNEL);
2433
2434 if (pages != stack_pages)
2435 drm_free_large(pages);
2436
2437 return addr;
2438 }
2439
2440 /* get, pin, and map the pages of the object into kernel space */
2441 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2442 {
2443 int ret;
2444
2445 lockdep_assert_held(&obj->base.dev->struct_mutex);
2446
2447 ret = i915_gem_object_get_pages(obj);
2448 if (ret)
2449 return ERR_PTR(ret);
2450
2451 i915_gem_object_pin_pages(obj);
2452
2453 if (!obj->mapping) {
2454 obj->mapping = i915_gem_object_map(obj);
2455 if (!obj->mapping) {
2456 i915_gem_object_unpin_pages(obj);
2457 return ERR_PTR(-ENOMEM);
2458 }
2459 }
2460
2461 return obj->mapping;
2462 }
2463
2464 void i915_vma_move_to_active(struct i915_vma *vma,
2465 struct drm_i915_gem_request *req)
2466 {
2467 struct drm_i915_gem_object *obj = vma->obj;
2468 struct intel_engine_cs *engine;
2469
2470 engine = i915_gem_request_get_engine(req);
2471
2472 /* Add a reference if we're newly entering the active list. */
2473 if (obj->active == 0)
2474 drm_gem_object_reference(&obj->base);
2475 obj->active |= intel_engine_flag(engine);
2476
2477 list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2478 i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2479
2480 list_move_tail(&vma->vm_link, &vma->vm->active_list);
2481 }
2482
2483 static void
2484 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2485 {
2486 GEM_BUG_ON(obj->last_write_req == NULL);
2487 GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2488
2489 i915_gem_request_assign(&obj->last_write_req, NULL);
2490 intel_fb_obj_flush(obj, true, ORIGIN_CS);
2491 }
2492
2493 static void
2494 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2495 {
2496 struct i915_vma *vma;
2497
2498 GEM_BUG_ON(obj->last_read_req[ring] == NULL);
2499 GEM_BUG_ON(!(obj->active & (1 << ring)));
2500
2501 list_del_init(&obj->engine_list[ring]);
2502 i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2503
2504 if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2505 i915_gem_object_retire__write(obj);
2506
2507 obj->active &= ~(1 << ring);
2508 if (obj->active)
2509 return;
2510
2511 /* Bump our place on the bound list to keep it roughly in LRU order
2512 * so that we don't steal from recently used but inactive objects
2513 * (unless we are forced to ofc!)
2514 */
2515 list_move_tail(&obj->global_list,
2516 &to_i915(obj->base.dev)->mm.bound_list);
2517
2518 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2519 if (!list_empty(&vma->vm_link))
2520 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2521 }
2522
2523 i915_gem_request_assign(&obj->last_fenced_req, NULL);
2524 drm_gem_object_unreference(&obj->base);
2525 }
2526
2527 static int
2528 i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
2529 {
2530 struct intel_engine_cs *engine;
2531 int ret;
2532
2533 /* Carefully retire all requests without writing to the rings */
2534 for_each_engine(engine, dev_priv) {
2535 ret = intel_engine_idle(engine);
2536 if (ret)
2537 return ret;
2538 }
2539 i915_gem_retire_requests(dev_priv);
2540
2541 /* Finally reset hw state */
2542 for_each_engine(engine, dev_priv)
2543 intel_ring_init_seqno(engine, seqno);
2544
2545 return 0;
2546 }
2547
2548 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2549 {
2550 struct drm_i915_private *dev_priv = dev->dev_private;
2551 int ret;
2552
2553 if (seqno == 0)
2554 return -EINVAL;
2555
2556 /* HWS page needs to be set less than what we
2557 * will inject to ring
2558 */
2559 ret = i915_gem_init_seqno(dev_priv, seqno - 1);
2560 if (ret)
2561 return ret;
2562
2563 /* Carefully set the last_seqno value so that wrap
2564 * detection still works
2565 */
2566 dev_priv->next_seqno = seqno;
2567 dev_priv->last_seqno = seqno - 1;
2568 if (dev_priv->last_seqno == 0)
2569 dev_priv->last_seqno--;
2570
2571 return 0;
2572 }
2573
2574 int
2575 i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
2576 {
2577 /* reserve 0 for non-seqno */
2578 if (dev_priv->next_seqno == 0) {
2579 int ret = i915_gem_init_seqno(dev_priv, 0);
2580 if (ret)
2581 return ret;
2582
2583 dev_priv->next_seqno = 1;
2584 }
2585
2586 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2587 return 0;
2588 }
2589
2590 /*
2591 * NB: This function is not allowed to fail. Doing so would mean the the
2592 * request is not being tracked for completion but the work itself is
2593 * going to happen on the hardware. This would be a Bad Thing(tm).
2594 */
2595 void __i915_add_request(struct drm_i915_gem_request *request,
2596 struct drm_i915_gem_object *obj,
2597 bool flush_caches)
2598 {
2599 struct intel_engine_cs *engine;
2600 struct drm_i915_private *dev_priv;
2601 struct intel_ringbuffer *ringbuf;
2602 u32 request_start;
2603 u32 reserved_tail;
2604 int ret;
2605
2606 if (WARN_ON(request == NULL))
2607 return;
2608
2609 engine = request->engine;
2610 dev_priv = request->i915;
2611 ringbuf = request->ringbuf;
2612
2613 /*
2614 * To ensure that this call will not fail, space for its emissions
2615 * should already have been reserved in the ring buffer. Let the ring
2616 * know that it is time to use that space up.
2617 */
2618 request_start = intel_ring_get_tail(ringbuf);
2619 reserved_tail = request->reserved_space;
2620 request->reserved_space = 0;
2621
2622 /*
2623 * Emit any outstanding flushes - execbuf can fail to emit the flush
2624 * after having emitted the batchbuffer command. Hence we need to fix
2625 * things up similar to emitting the lazy request. The difference here
2626 * is that the flush _must_ happen before the next request, no matter
2627 * what.
2628 */
2629 if (flush_caches) {
2630 if (i915.enable_execlists)
2631 ret = logical_ring_flush_all_caches(request);
2632 else
2633 ret = intel_ring_flush_all_caches(request);
2634 /* Not allowed to fail! */
2635 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2636 }
2637
2638 trace_i915_gem_request_add(request);
2639
2640 request->head = request_start;
2641
2642 /* Whilst this request exists, batch_obj will be on the
2643 * active_list, and so will hold the active reference. Only when this
2644 * request is retired will the the batch_obj be moved onto the
2645 * inactive_list and lose its active reference. Hence we do not need
2646 * to explicitly hold another reference here.
2647 */
2648 request->batch_obj = obj;
2649
2650 /* Seal the request and mark it as pending execution. Note that
2651 * we may inspect this state, without holding any locks, during
2652 * hangcheck. Hence we apply the barrier to ensure that we do not
2653 * see a more recent value in the hws than we are tracking.
2654 */
2655 request->emitted_jiffies = jiffies;
2656 request->previous_seqno = engine->last_submitted_seqno;
2657 smp_store_mb(engine->last_submitted_seqno, request->seqno);
2658 list_add_tail(&request->list, &engine->request_list);
2659
2660 /* Record the position of the start of the request so that
2661 * should we detect the updated seqno part-way through the
2662 * GPU processing the request, we never over-estimate the
2663 * position of the head.
2664 */
2665 request->postfix = intel_ring_get_tail(ringbuf);
2666
2667 if (i915.enable_execlists)
2668 ret = engine->emit_request(request);
2669 else {
2670 ret = engine->add_request(request);
2671
2672 request->tail = intel_ring_get_tail(ringbuf);
2673 }
2674 /* Not allowed to fail! */
2675 WARN(ret, "emit|add_request failed: %d!\n", ret);
2676
2677 i915_queue_hangcheck(engine->i915);
2678
2679 queue_delayed_work(dev_priv->wq,
2680 &dev_priv->mm.retire_work,
2681 round_jiffies_up_relative(HZ));
2682 intel_mark_busy(dev_priv);
2683
2684 /* Sanity check that the reserved size was large enough. */
2685 ret = intel_ring_get_tail(ringbuf) - request_start;
2686 if (ret < 0)
2687 ret += ringbuf->size;
2688 WARN_ONCE(ret > reserved_tail,
2689 "Not enough space reserved (%d bytes) "
2690 "for adding the request (%d bytes)\n",
2691 reserved_tail, ret);
2692 }
2693
2694 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2695 const struct intel_context *ctx)
2696 {
2697 unsigned long elapsed;
2698
2699 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2700
2701 if (ctx->hang_stats.banned)
2702 return true;
2703
2704 if (ctx->hang_stats.ban_period_seconds &&
2705 elapsed <= ctx->hang_stats.ban_period_seconds) {
2706 if (!i915_gem_context_is_default(ctx)) {
2707 DRM_DEBUG("context hanging too fast, banning!\n");
2708 return true;
2709 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2710 if (i915_stop_ring_allow_warn(dev_priv))
2711 DRM_ERROR("gpu hanging too fast, banning!\n");
2712 return true;
2713 }
2714 }
2715
2716 return false;
2717 }
2718
2719 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2720 struct intel_context *ctx,
2721 const bool guilty)
2722 {
2723 struct i915_ctx_hang_stats *hs;
2724
2725 if (WARN_ON(!ctx))
2726 return;
2727
2728 hs = &ctx->hang_stats;
2729
2730 if (guilty) {
2731 hs->banned = i915_context_is_banned(dev_priv, ctx);
2732 hs->batch_active++;
2733 hs->guilty_ts = get_seconds();
2734 } else {
2735 hs->batch_pending++;
2736 }
2737 }
2738
2739 void i915_gem_request_free(struct kref *req_ref)
2740 {
2741 struct drm_i915_gem_request *req = container_of(req_ref,
2742 typeof(*req), ref);
2743 kmem_cache_free(req->i915->requests, req);
2744 }
2745
2746 static inline int
2747 __i915_gem_request_alloc(struct intel_engine_cs *engine,
2748 struct intel_context *ctx,
2749 struct drm_i915_gem_request **req_out)
2750 {
2751 struct drm_i915_private *dev_priv = engine->i915;
2752 unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
2753 struct drm_i915_gem_request *req;
2754 int ret;
2755
2756 if (!req_out)
2757 return -EINVAL;
2758
2759 *req_out = NULL;
2760
2761 /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2762 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
2763 * and restart.
2764 */
2765 ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
2766 if (ret)
2767 return ret;
2768
2769 req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2770 if (req == NULL)
2771 return -ENOMEM;
2772
2773 ret = i915_gem_get_seqno(engine->i915, &req->seqno);
2774 if (ret)
2775 goto err;
2776
2777 kref_init(&req->ref);
2778 req->i915 = dev_priv;
2779 req->engine = engine;
2780 req->reset_counter = reset_counter;
2781 req->ctx = ctx;
2782 i915_gem_context_reference(req->ctx);
2783
2784 /*
2785 * Reserve space in the ring buffer for all the commands required to
2786 * eventually emit this request. This is to guarantee that the
2787 * i915_add_request() call can't fail. Note that the reserve may need
2788 * to be redone if the request is not actually submitted straight
2789 * away, e.g. because a GPU scheduler has deferred it.
2790 */
2791 req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
2792
2793 if (i915.enable_execlists)
2794 ret = intel_logical_ring_alloc_request_extras(req);
2795 else
2796 ret = intel_ring_alloc_request_extras(req);
2797 if (ret)
2798 goto err_ctx;
2799
2800 *req_out = req;
2801 return 0;
2802
2803 err_ctx:
2804 i915_gem_context_unreference(ctx);
2805 err:
2806 kmem_cache_free(dev_priv->requests, req);
2807 return ret;
2808 }
2809
2810 /**
2811 * i915_gem_request_alloc - allocate a request structure
2812 *
2813 * @engine: engine that we wish to issue the request on.
2814 * @ctx: context that the request will be associated with.
2815 * This can be NULL if the request is not directly related to
2816 * any specific user context, in which case this function will
2817 * choose an appropriate context to use.
2818 *
2819 * Returns a pointer to the allocated request if successful,
2820 * or an error code if not.
2821 */
2822 struct drm_i915_gem_request *
2823 i915_gem_request_alloc(struct intel_engine_cs *engine,
2824 struct intel_context *ctx)
2825 {
2826 struct drm_i915_gem_request *req;
2827 int err;
2828
2829 if (ctx == NULL)
2830 ctx = engine->i915->kernel_context;
2831 err = __i915_gem_request_alloc(engine, ctx, &req);
2832 return err ? ERR_PTR(err) : req;
2833 }
2834
2835 struct drm_i915_gem_request *
2836 i915_gem_find_active_request(struct intel_engine_cs *engine)
2837 {
2838 struct drm_i915_gem_request *request;
2839
2840 list_for_each_entry(request, &engine->request_list, list) {
2841 if (i915_gem_request_completed(request, false))
2842 continue;
2843
2844 return request;
2845 }
2846
2847 return NULL;
2848 }
2849
2850 static void i915_gem_reset_engine_status(struct drm_i915_private *dev_priv,
2851 struct intel_engine_cs *engine)
2852 {
2853 struct drm_i915_gem_request *request;
2854 bool ring_hung;
2855
2856 request = i915_gem_find_active_request(engine);
2857
2858 if (request == NULL)
2859 return;
2860
2861 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2862
2863 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2864
2865 list_for_each_entry_continue(request, &engine->request_list, list)
2866 i915_set_reset_status(dev_priv, request->ctx, false);
2867 }
2868
2869 static void i915_gem_reset_engine_cleanup(struct drm_i915_private *dev_priv,
2870 struct intel_engine_cs *engine)
2871 {
2872 struct intel_ringbuffer *buffer;
2873
2874 while (!list_empty(&engine->active_list)) {
2875 struct drm_i915_gem_object *obj;
2876
2877 obj = list_first_entry(&engine->active_list,
2878 struct drm_i915_gem_object,
2879 engine_list[engine->id]);
2880
2881 i915_gem_object_retire__read(obj, engine->id);
2882 }
2883
2884 /*
2885 * Clear the execlists queue up before freeing the requests, as those
2886 * are the ones that keep the context and ringbuffer backing objects
2887 * pinned in place.
2888 */
2889
2890 if (i915.enable_execlists) {
2891 /* Ensure irq handler finishes or is cancelled. */
2892 tasklet_kill(&engine->irq_tasklet);
2893
2894 intel_execlists_cancel_requests(engine);
2895 }
2896
2897 /*
2898 * We must free the requests after all the corresponding objects have
2899 * been moved off active lists. Which is the same order as the normal
2900 * retire_requests function does. This is important if object hold
2901 * implicit references on things like e.g. ppgtt address spaces through
2902 * the request.
2903 */
2904 while (!list_empty(&engine->request_list)) {
2905 struct drm_i915_gem_request *request;
2906
2907 request = list_first_entry(&engine->request_list,
2908 struct drm_i915_gem_request,
2909 list);
2910
2911 i915_gem_request_retire(request);
2912 }
2913
2914 /* Having flushed all requests from all queues, we know that all
2915 * ringbuffers must now be empty. However, since we do not reclaim
2916 * all space when retiring the request (to prevent HEADs colliding
2917 * with rapid ringbuffer wraparound) the amount of available space
2918 * upon reset is less than when we start. Do one more pass over
2919 * all the ringbuffers to reset last_retired_head.
2920 */
2921 list_for_each_entry(buffer, &engine->buffers, link) {
2922 buffer->last_retired_head = buffer->tail;
2923 intel_ring_update_space(buffer);
2924 }
2925
2926 intel_ring_init_seqno(engine, engine->last_submitted_seqno);
2927 }
2928
2929 void i915_gem_reset(struct drm_device *dev)
2930 {
2931 struct drm_i915_private *dev_priv = dev->dev_private;
2932 struct intel_engine_cs *engine;
2933
2934 /*
2935 * Before we free the objects from the requests, we need to inspect
2936 * them for finding the guilty party. As the requests only borrow
2937 * their reference to the objects, the inspection must be done first.
2938 */
2939 for_each_engine(engine, dev_priv)
2940 i915_gem_reset_engine_status(dev_priv, engine);
2941
2942 for_each_engine(engine, dev_priv)
2943 i915_gem_reset_engine_cleanup(dev_priv, engine);
2944
2945 i915_gem_context_reset(dev);
2946
2947 i915_gem_restore_fences(dev);
2948
2949 WARN_ON(i915_verify_lists(dev));
2950 }
2951
2952 /**
2953 * This function clears the request list as sequence numbers are passed.
2954 */
2955 void
2956 i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
2957 {
2958 WARN_ON(i915_verify_lists(engine->dev));
2959
2960 /* Retire requests first as we use it above for the early return.
2961 * If we retire requests last, we may use a later seqno and so clear
2962 * the requests lists without clearing the active list, leading to
2963 * confusion.
2964 */
2965 while (!list_empty(&engine->request_list)) {
2966 struct drm_i915_gem_request *request;
2967
2968 request = list_first_entry(&engine->request_list,
2969 struct drm_i915_gem_request,
2970 list);
2971
2972 if (!i915_gem_request_completed(request, true))
2973 break;
2974
2975 i915_gem_request_retire(request);
2976 }
2977
2978 /* Move any buffers on the active list that are no longer referenced
2979 * by the ringbuffer to the flushing/inactive lists as appropriate,
2980 * before we free the context associated with the requests.
2981 */
2982 while (!list_empty(&engine->active_list)) {
2983 struct drm_i915_gem_object *obj;
2984
2985 obj = list_first_entry(&engine->active_list,
2986 struct drm_i915_gem_object,
2987 engine_list[engine->id]);
2988
2989 if (!list_empty(&obj->last_read_req[engine->id]->list))
2990 break;
2991
2992 i915_gem_object_retire__read(obj, engine->id);
2993 }
2994
2995 if (unlikely(engine->trace_irq_req &&
2996 i915_gem_request_completed(engine->trace_irq_req, true))) {
2997 engine->irq_put(engine);
2998 i915_gem_request_assign(&engine->trace_irq_req, NULL);
2999 }
3000
3001 WARN_ON(i915_verify_lists(engine->dev));
3002 }
3003
3004 bool
3005 i915_gem_retire_requests(struct drm_i915_private *dev_priv)
3006 {
3007 struct intel_engine_cs *engine;
3008 bool idle = true;
3009
3010 for_each_engine(engine, dev_priv) {
3011 i915_gem_retire_requests_ring(engine);
3012 idle &= list_empty(&engine->request_list);
3013 if (i915.enable_execlists) {
3014 spin_lock_bh(&engine->execlist_lock);
3015 idle &= list_empty(&engine->execlist_queue);
3016 spin_unlock_bh(&engine->execlist_lock);
3017 }
3018 }
3019
3020 if (idle)
3021 mod_delayed_work(dev_priv->wq,
3022 &dev_priv->mm.idle_work,
3023 msecs_to_jiffies(100));
3024
3025 return idle;
3026 }
3027
3028 static void
3029 i915_gem_retire_work_handler(struct work_struct *work)
3030 {
3031 struct drm_i915_private *dev_priv =
3032 container_of(work, typeof(*dev_priv), mm.retire_work.work);
3033 struct drm_device *dev = dev_priv->dev;
3034 bool idle;
3035
3036 /* Come back later if the device is busy... */
3037 idle = false;
3038 if (mutex_trylock(&dev->struct_mutex)) {
3039 idle = i915_gem_retire_requests(dev_priv);
3040 mutex_unlock(&dev->struct_mutex);
3041 }
3042 if (!idle)
3043 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
3044 round_jiffies_up_relative(HZ));
3045 }
3046
3047 static void
3048 i915_gem_idle_work_handler(struct work_struct *work)
3049 {
3050 struct drm_i915_private *dev_priv =
3051 container_of(work, typeof(*dev_priv), mm.idle_work.work);
3052 struct drm_device *dev = dev_priv->dev;
3053 struct intel_engine_cs *engine;
3054
3055 for_each_engine(engine, dev_priv)
3056 if (!list_empty(&engine->request_list))
3057 return;
3058
3059 /* we probably should sync with hangcheck here, using cancel_work_sync.
3060 * Also locking seems to be fubar here, engine->request_list is protected
3061 * by dev->struct_mutex. */
3062
3063 intel_mark_idle(dev_priv);
3064
3065 if (mutex_trylock(&dev->struct_mutex)) {
3066 for_each_engine(engine, dev_priv)
3067 i915_gem_batch_pool_fini(&engine->batch_pool);
3068
3069 mutex_unlock(&dev->struct_mutex);
3070 }
3071 }
3072
3073 /**
3074 * Ensures that an object will eventually get non-busy by flushing any required
3075 * write domains, emitting any outstanding lazy request and retiring and
3076 * completed requests.
3077 */
3078 static int
3079 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3080 {
3081 int i;
3082
3083 if (!obj->active)
3084 return 0;
3085
3086 for (i = 0; i < I915_NUM_ENGINES; i++) {
3087 struct drm_i915_gem_request *req;
3088
3089 req = obj->last_read_req[i];
3090 if (req == NULL)
3091 continue;
3092
3093 if (i915_gem_request_completed(req, true))
3094 i915_gem_object_retire__read(obj, i);
3095 }
3096
3097 return 0;
3098 }
3099
3100 /**
3101 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3102 * @DRM_IOCTL_ARGS: standard ioctl arguments
3103 *
3104 * Returns 0 if successful, else an error is returned with the remaining time in
3105 * the timeout parameter.
3106 * -ETIME: object is still busy after timeout
3107 * -ERESTARTSYS: signal interrupted the wait
3108 * -ENONENT: object doesn't exist
3109 * Also possible, but rare:
3110 * -EAGAIN: GPU wedged
3111 * -ENOMEM: damn
3112 * -ENODEV: Internal IRQ fail
3113 * -E?: The add request failed
3114 *
3115 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3116 * non-zero timeout parameter the wait ioctl will wait for the given number of
3117 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3118 * without holding struct_mutex the object may become re-busied before this
3119 * function completes. A similar but shorter * race condition exists in the busy
3120 * ioctl
3121 */
3122 int
3123 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3124 {
3125 struct drm_i915_gem_wait *args = data;
3126 struct drm_i915_gem_object *obj;
3127 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3128 int i, n = 0;
3129 int ret;
3130
3131 if (args->flags != 0)
3132 return -EINVAL;
3133
3134 ret = i915_mutex_lock_interruptible(dev);
3135 if (ret)
3136 return ret;
3137
3138 obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
3139 if (&obj->base == NULL) {
3140 mutex_unlock(&dev->struct_mutex);
3141 return -ENOENT;
3142 }
3143
3144 /* Need to make sure the object gets inactive eventually. */
3145 ret = i915_gem_object_flush_active(obj);
3146 if (ret)
3147 goto out;
3148
3149 if (!obj->active)
3150 goto out;
3151
3152 /* Do this after OLR check to make sure we make forward progress polling
3153 * on this IOCTL with a timeout == 0 (like busy ioctl)
3154 */
3155 if (args->timeout_ns == 0) {
3156 ret = -ETIME;
3157 goto out;
3158 }
3159
3160 drm_gem_object_unreference(&obj->base);
3161
3162 for (i = 0; i < I915_NUM_ENGINES; i++) {
3163 if (obj->last_read_req[i] == NULL)
3164 continue;
3165
3166 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3167 }
3168
3169 mutex_unlock(&dev->struct_mutex);
3170
3171 for (i = 0; i < n; i++) {
3172 if (ret == 0)
3173 ret = __i915_wait_request(req[i], true,
3174 args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3175 to_rps_client(file));
3176 i915_gem_request_unreference(req[i]);
3177 }
3178 return ret;
3179
3180 out:
3181 drm_gem_object_unreference(&obj->base);
3182 mutex_unlock(&dev->struct_mutex);
3183 return ret;
3184 }
3185
3186 static int
3187 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3188 struct intel_engine_cs *to,
3189 struct drm_i915_gem_request *from_req,
3190 struct drm_i915_gem_request **to_req)
3191 {
3192 struct intel_engine_cs *from;
3193 int ret;
3194
3195 from = i915_gem_request_get_engine(from_req);
3196 if (to == from)
3197 return 0;
3198
3199 if (i915_gem_request_completed(from_req, true))
3200 return 0;
3201
3202 if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
3203 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3204 ret = __i915_wait_request(from_req,
3205 i915->mm.interruptible,
3206 NULL,
3207 &i915->rps.semaphores);
3208 if (ret)
3209 return ret;
3210
3211 i915_gem_object_retire_request(obj, from_req);
3212 } else {
3213 int idx = intel_ring_sync_index(from, to);
3214 u32 seqno = i915_gem_request_get_seqno(from_req);
3215
3216 WARN_ON(!to_req);
3217
3218 if (seqno <= from->semaphore.sync_seqno[idx])
3219 return 0;
3220
3221 if (*to_req == NULL) {
3222 struct drm_i915_gem_request *req;
3223
3224 req = i915_gem_request_alloc(to, NULL);
3225 if (IS_ERR(req))
3226 return PTR_ERR(req);
3227
3228 *to_req = req;
3229 }
3230
3231 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3232 ret = to->semaphore.sync_to(*to_req, from, seqno);
3233 if (ret)
3234 return ret;
3235
3236 /* We use last_read_req because sync_to()
3237 * might have just caused seqno wrap under
3238 * the radar.
3239 */
3240 from->semaphore.sync_seqno[idx] =
3241 i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3242 }
3243
3244 return 0;
3245 }
3246
3247 /**
3248 * i915_gem_object_sync - sync an object to a ring.
3249 *
3250 * @obj: object which may be in use on another ring.
3251 * @to: ring we wish to use the object on. May be NULL.
3252 * @to_req: request we wish to use the object for. See below.
3253 * This will be allocated and returned if a request is
3254 * required but not passed in.
3255 *
3256 * This code is meant to abstract object synchronization with the GPU.
3257 * Calling with NULL implies synchronizing the object with the CPU
3258 * rather than a particular GPU ring. Conceptually we serialise writes
3259 * between engines inside the GPU. We only allow one engine to write
3260 * into a buffer at any time, but multiple readers. To ensure each has
3261 * a coherent view of memory, we must:
3262 *
3263 * - If there is an outstanding write request to the object, the new
3264 * request must wait for it to complete (either CPU or in hw, requests
3265 * on the same ring will be naturally ordered).
3266 *
3267 * - If we are a write request (pending_write_domain is set), the new
3268 * request must wait for outstanding read requests to complete.
3269 *
3270 * For CPU synchronisation (NULL to) no request is required. For syncing with
3271 * rings to_req must be non-NULL. However, a request does not have to be
3272 * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3273 * request will be allocated automatically and returned through *to_req. Note
3274 * that it is not guaranteed that commands will be emitted (because the system
3275 * might already be idle). Hence there is no need to create a request that
3276 * might never have any work submitted. Note further that if a request is
3277 * returned in *to_req, it is the responsibility of the caller to submit
3278 * that request (after potentially adding more work to it).
3279 *
3280 * Returns 0 if successful, else propagates up the lower layer error.
3281 */
3282 int
3283 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3284 struct intel_engine_cs *to,
3285 struct drm_i915_gem_request **to_req)
3286 {
3287 const bool readonly = obj->base.pending_write_domain == 0;
3288 struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3289 int ret, i, n;
3290
3291 if (!obj->active)
3292 return 0;
3293
3294 if (to == NULL)
3295 return i915_gem_object_wait_rendering(obj, readonly);
3296
3297 n = 0;
3298 if (readonly) {
3299 if (obj->last_write_req)
3300 req[n++] = obj->last_write_req;
3301 } else {
3302 for (i = 0; i < I915_NUM_ENGINES; i++)
3303 if (obj->last_read_req[i])
3304 req[n++] = obj->last_read_req[i];
3305 }
3306 for (i = 0; i < n; i++) {
3307 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3308 if (ret)
3309 return ret;
3310 }
3311
3312 return 0;
3313 }
3314
3315 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3316 {
3317 u32 old_write_domain, old_read_domains;
3318
3319 /* Force a pagefault for domain tracking on next user access */
3320 i915_gem_release_mmap(obj);
3321
3322 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3323 return;
3324
3325 old_read_domains = obj->base.read_domains;
3326 old_write_domain = obj->base.write_domain;
3327
3328 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3329 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3330
3331 trace_i915_gem_object_change_domain(obj,
3332 old_read_domains,
3333 old_write_domain);
3334 }
3335
3336 static void __i915_vma_iounmap(struct i915_vma *vma)
3337 {
3338 GEM_BUG_ON(vma->pin_count);
3339
3340 if (vma->iomap == NULL)
3341 return;
3342
3343 io_mapping_unmap(vma->iomap);
3344 vma->iomap = NULL;
3345 }
3346
3347 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3348 {
3349 struct drm_i915_gem_object *obj = vma->obj;
3350 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3351 int ret;
3352
3353 if (list_empty(&vma->obj_link))
3354 return 0;
3355
3356 if (!drm_mm_node_allocated(&vma->node)) {
3357 i915_gem_vma_destroy(vma);
3358 return 0;
3359 }
3360
3361 if (vma->pin_count)
3362 return -EBUSY;
3363
3364 BUG_ON(obj->pages == NULL);
3365
3366 if (wait) {
3367 ret = i915_gem_object_wait_rendering(obj, false);
3368 if (ret)
3369 return ret;
3370 }
3371
3372 if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3373 i915_gem_object_finish_gtt(obj);
3374
3375 /* release the fence reg _after_ flushing */
3376 ret = i915_gem_object_put_fence(obj);
3377 if (ret)
3378 return ret;
3379
3380 __i915_vma_iounmap(vma);
3381 }
3382
3383 trace_i915_vma_unbind(vma);
3384
3385 vma->vm->unbind_vma(vma);
3386 vma->bound = 0;
3387
3388 list_del_init(&vma->vm_link);
3389 if (vma->is_ggtt) {
3390 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3391 obj->map_and_fenceable = false;
3392 } else if (vma->ggtt_view.pages) {
3393 sg_free_table(vma->ggtt_view.pages);
3394 kfree(vma->ggtt_view.pages);
3395 }
3396 vma->ggtt_view.pages = NULL;
3397 }
3398
3399 drm_mm_remove_node(&vma->node);
3400 i915_gem_vma_destroy(vma);
3401
3402 /* Since the unbound list is global, only move to that list if
3403 * no more VMAs exist. */
3404 if (list_empty(&obj->vma_list))
3405 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3406
3407 /* And finally now the object is completely decoupled from this vma,
3408 * we can drop its hold on the backing storage and allow it to be
3409 * reaped by the shrinker.
3410 */
3411 i915_gem_object_unpin_pages(obj);
3412
3413 return 0;
3414 }
3415
3416 int i915_vma_unbind(struct i915_vma *vma)
3417 {
3418 return __i915_vma_unbind(vma, true);
3419 }
3420
3421 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3422 {
3423 return __i915_vma_unbind(vma, false);
3424 }
3425
3426 int i915_gpu_idle(struct drm_device *dev)
3427 {
3428 struct drm_i915_private *dev_priv = dev->dev_private;
3429 struct intel_engine_cs *engine;
3430 int ret;
3431
3432 /* Flush everything onto the inactive list. */
3433 for_each_engine(engine, dev_priv) {
3434 if (!i915.enable_execlists) {
3435 struct drm_i915_gem_request *req;
3436
3437 req = i915_gem_request_alloc(engine, NULL);
3438 if (IS_ERR(req))
3439 return PTR_ERR(req);
3440
3441 ret = i915_switch_context(req);
3442 i915_add_request_no_flush(req);
3443 if (ret)
3444 return ret;
3445 }
3446
3447 ret = intel_engine_idle(engine);
3448 if (ret)
3449 return ret;
3450 }
3451
3452 WARN_ON(i915_verify_lists(dev));
3453 return 0;
3454 }
3455
3456 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3457 unsigned long cache_level)
3458 {
3459 struct drm_mm_node *gtt_space = &vma->node;
3460 struct drm_mm_node *other;
3461
3462 /*
3463 * On some machines we have to be careful when putting differing types
3464 * of snoopable memory together to avoid the prefetcher crossing memory
3465 * domains and dying. During vm initialisation, we decide whether or not
3466 * these constraints apply and set the drm_mm.color_adjust
3467 * appropriately.
3468 */
3469 if (vma->vm->mm.color_adjust == NULL)
3470 return true;
3471
3472 if (!drm_mm_node_allocated(gtt_space))
3473 return true;
3474
3475 if (list_empty(&gtt_space->node_list))
3476 return true;
3477
3478 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3479 if (other->allocated && !other->hole_follows && other->color != cache_level)
3480 return false;
3481
3482 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3483 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3484 return false;
3485
3486 return true;
3487 }
3488
3489 /**
3490 * Finds free space in the GTT aperture and binds the object or a view of it
3491 * there.
3492 */
3493 static struct i915_vma *
3494 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3495 struct i915_address_space *vm,
3496 const struct i915_ggtt_view *ggtt_view,
3497 unsigned alignment,
3498 uint64_t flags)
3499 {
3500 struct drm_device *dev = obj->base.dev;
3501 struct drm_i915_private *dev_priv = to_i915(dev);
3502 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3503 u32 fence_alignment, unfenced_alignment;
3504 u32 search_flag, alloc_flag;
3505 u64 start, end;
3506 u64 size, fence_size;
3507 struct i915_vma *vma;
3508 int ret;
3509
3510 if (i915_is_ggtt(vm)) {
3511 u32 view_size;
3512
3513 if (WARN_ON(!ggtt_view))
3514 return ERR_PTR(-EINVAL);
3515
3516 view_size = i915_ggtt_view_size(obj, ggtt_view);
3517
3518 fence_size = i915_gem_get_gtt_size(dev,
3519 view_size,
3520 obj->tiling_mode);
3521 fence_alignment = i915_gem_get_gtt_alignment(dev,
3522 view_size,
3523 obj->tiling_mode,
3524 true);
3525 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3526 view_size,
3527 obj->tiling_mode,
3528 false);
3529 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3530 } else {
3531 fence_size = i915_gem_get_gtt_size(dev,
3532 obj->base.size,
3533 obj->tiling_mode);
3534 fence_alignment = i915_gem_get_gtt_alignment(dev,
3535 obj->base.size,
3536 obj->tiling_mode,
3537 true);
3538 unfenced_alignment =
3539 i915_gem_get_gtt_alignment(dev,
3540 obj->base.size,
3541 obj->tiling_mode,
3542 false);
3543 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3544 }
3545
3546 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3547 end = vm->total;
3548 if (flags & PIN_MAPPABLE)
3549 end = min_t(u64, end, ggtt->mappable_end);
3550 if (flags & PIN_ZONE_4G)
3551 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3552
3553 if (alignment == 0)
3554 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3555 unfenced_alignment;
3556 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3557 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3558 ggtt_view ? ggtt_view->type : 0,
3559 alignment);
3560 return ERR_PTR(-EINVAL);
3561 }
3562
3563 /* If binding the object/GGTT view requires more space than the entire
3564 * aperture has, reject it early before evicting everything in a vain
3565 * attempt to find space.
3566 */
3567 if (size > end) {
3568 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3569 ggtt_view ? ggtt_view->type : 0,
3570 size,
3571 flags & PIN_MAPPABLE ? "mappable" : "total",
3572 end);
3573 return ERR_PTR(-E2BIG);
3574 }
3575
3576 ret = i915_gem_object_get_pages(obj);
3577 if (ret)
3578 return ERR_PTR(ret);
3579
3580 i915_gem_object_pin_pages(obj);
3581
3582 vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3583 i915_gem_obj_lookup_or_create_vma(obj, vm);
3584
3585 if (IS_ERR(vma))
3586 goto err_unpin;
3587
3588 if (flags & PIN_OFFSET_FIXED) {
3589 uint64_t offset = flags & PIN_OFFSET_MASK;
3590
3591 if (offset & (alignment - 1) || offset + size > end) {
3592 ret = -EINVAL;
3593 goto err_free_vma;
3594 }
3595 vma->node.start = offset;
3596 vma->node.size = size;
3597 vma->node.color = obj->cache_level;
3598 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3599 if (ret) {
3600 ret = i915_gem_evict_for_vma(vma);
3601 if (ret == 0)
3602 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3603 }
3604 if (ret)
3605 goto err_free_vma;
3606 } else {
3607 if (flags & PIN_HIGH) {
3608 search_flag = DRM_MM_SEARCH_BELOW;
3609 alloc_flag = DRM_MM_CREATE_TOP;
3610 } else {
3611 search_flag = DRM_MM_SEARCH_DEFAULT;
3612 alloc_flag = DRM_MM_CREATE_DEFAULT;
3613 }
3614
3615 search_free:
3616 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3617 size, alignment,
3618 obj->cache_level,
3619 start, end,
3620 search_flag,
3621 alloc_flag);
3622 if (ret) {
3623 ret = i915_gem_evict_something(dev, vm, size, alignment,
3624 obj->cache_level,
3625 start, end,
3626 flags);
3627 if (ret == 0)
3628 goto search_free;
3629
3630 goto err_free_vma;
3631 }
3632 }
3633 if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3634 ret = -EINVAL;
3635 goto err_remove_node;
3636 }
3637
3638 trace_i915_vma_bind(vma, flags);
3639 ret = i915_vma_bind(vma, obj->cache_level, flags);
3640 if (ret)
3641 goto err_remove_node;
3642
3643 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3644 list_add_tail(&vma->vm_link, &vm->inactive_list);
3645
3646 return vma;
3647
3648 err_remove_node:
3649 drm_mm_remove_node(&vma->node);
3650 err_free_vma:
3651 i915_gem_vma_destroy(vma);
3652 vma = ERR_PTR(ret);
3653 err_unpin:
3654 i915_gem_object_unpin_pages(obj);
3655 return vma;
3656 }
3657
3658 bool
3659 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3660 bool force)
3661 {
3662 /* If we don't have a page list set up, then we're not pinned
3663 * to GPU, and we can ignore the cache flush because it'll happen
3664 * again at bind time.
3665 */
3666 if (obj->pages == NULL)
3667 return false;
3668
3669 /*
3670 * Stolen memory is always coherent with the GPU as it is explicitly
3671 * marked as wc by the system, or the system is cache-coherent.
3672 */
3673 if (obj->stolen || obj->phys_handle)
3674 return false;
3675
3676 /* If the GPU is snooping the contents of the CPU cache,
3677 * we do not need to manually clear the CPU cache lines. However,
3678 * the caches are only snooped when the render cache is
3679 * flushed/invalidated. As we always have to emit invalidations
3680 * and flushes when moving into and out of the RENDER domain, correct
3681 * snooping behaviour occurs naturally as the result of our domain
3682 * tracking.
3683 */
3684 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3685 obj->cache_dirty = true;
3686 return false;
3687 }
3688
3689 trace_i915_gem_object_clflush(obj);
3690 drm_clflush_sg(obj->pages);
3691 obj->cache_dirty = false;
3692
3693 return true;
3694 }
3695
3696 /** Flushes the GTT write domain for the object if it's dirty. */
3697 static void
3698 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3699 {
3700 uint32_t old_write_domain;
3701
3702 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3703 return;
3704
3705 /* No actual flushing is required for the GTT write domain. Writes
3706 * to it immediately go to main memory as far as we know, so there's
3707 * no chipset flush. It also doesn't land in render cache.
3708 *
3709 * However, we do have to enforce the order so that all writes through
3710 * the GTT land before any writes to the device, such as updates to
3711 * the GATT itself.
3712 */
3713 wmb();
3714
3715 old_write_domain = obj->base.write_domain;
3716 obj->base.write_domain = 0;
3717
3718 intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3719
3720 trace_i915_gem_object_change_domain(obj,
3721 obj->base.read_domains,
3722 old_write_domain);
3723 }
3724
3725 /** Flushes the CPU write domain for the object if it's dirty. */
3726 static void
3727 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3728 {
3729 uint32_t old_write_domain;
3730
3731 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3732 return;
3733
3734 if (i915_gem_clflush_object(obj, obj->pin_display))
3735 i915_gem_chipset_flush(to_i915(obj->base.dev));
3736
3737 old_write_domain = obj->base.write_domain;
3738 obj->base.write_domain = 0;
3739
3740 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3741
3742 trace_i915_gem_object_change_domain(obj,
3743 obj->base.read_domains,
3744 old_write_domain);
3745 }
3746
3747 /**
3748 * Moves a single object to the GTT read, and possibly write domain.
3749 *
3750 * This function returns when the move is complete, including waiting on
3751 * flushes to occur.
3752 */
3753 int
3754 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3755 {
3756 struct drm_device *dev = obj->base.dev;
3757 struct drm_i915_private *dev_priv = to_i915(dev);
3758 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3759 uint32_t old_write_domain, old_read_domains;
3760 struct i915_vma *vma;
3761 int ret;
3762
3763 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3764 return 0;
3765
3766 ret = i915_gem_object_wait_rendering(obj, !write);
3767 if (ret)
3768 return ret;
3769
3770 /* Flush and acquire obj->pages so that we are coherent through
3771 * direct access in memory with previous cached writes through
3772 * shmemfs and that our cache domain tracking remains valid.
3773 * For example, if the obj->filp was moved to swap without us
3774 * being notified and releasing the pages, we would mistakenly
3775 * continue to assume that the obj remained out of the CPU cached
3776 * domain.
3777 */
3778 ret = i915_gem_object_get_pages(obj);
3779 if (ret)
3780 return ret;
3781
3782 i915_gem_object_flush_cpu_write_domain(obj);
3783
3784 /* Serialise direct access to this object with the barriers for
3785 * coherent writes from the GPU, by effectively invalidating the
3786 * GTT domain upon first access.
3787 */
3788 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3789 mb();
3790
3791 old_write_domain = obj->base.write_domain;
3792 old_read_domains = obj->base.read_domains;
3793
3794 /* It should now be out of any other write domains, and we can update
3795 * the domain values for our changes.
3796 */
3797 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3798 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3799 if (write) {
3800 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3801 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3802 obj->dirty = 1;
3803 }
3804
3805 trace_i915_gem_object_change_domain(obj,
3806 old_read_domains,
3807 old_write_domain);
3808
3809 /* And bump the LRU for this access */
3810 vma = i915_gem_obj_to_ggtt(obj);
3811 if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3812 list_move_tail(&vma->vm_link,
3813 &ggtt->base.inactive_list);
3814
3815 return 0;
3816 }
3817
3818 /**
3819 * Changes the cache-level of an object across all VMA.
3820 *
3821 * After this function returns, the object will be in the new cache-level
3822 * across all GTT and the contents of the backing storage will be coherent,
3823 * with respect to the new cache-level. In order to keep the backing storage
3824 * coherent for all users, we only allow a single cache level to be set
3825 * globally on the object and prevent it from being changed whilst the
3826 * hardware is reading from the object. That is if the object is currently
3827 * on the scanout it will be set to uncached (or equivalent display
3828 * cache coherency) and all non-MOCS GPU access will also be uncached so
3829 * that all direct access to the scanout remains coherent.
3830 */
3831 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3832 enum i915_cache_level cache_level)
3833 {
3834 struct drm_device *dev = obj->base.dev;
3835 struct i915_vma *vma, *next;
3836 bool bound = false;
3837 int ret = 0;
3838
3839 if (obj->cache_level == cache_level)
3840 goto out;
3841
3842 /* Inspect the list of currently bound VMA and unbind any that would
3843 * be invalid given the new cache-level. This is principally to
3844 * catch the issue of the CS prefetch crossing page boundaries and
3845 * reading an invalid PTE on older architectures.
3846 */
3847 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
3848 if (!drm_mm_node_allocated(&vma->node))
3849 continue;
3850
3851 if (vma->pin_count) {
3852 DRM_DEBUG("can not change the cache level of pinned objects\n");
3853 return -EBUSY;
3854 }
3855
3856 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3857 ret = i915_vma_unbind(vma);
3858 if (ret)
3859 return ret;
3860 } else
3861 bound = true;
3862 }
3863
3864 /* We can reuse the existing drm_mm nodes but need to change the
3865 * cache-level on the PTE. We could simply unbind them all and
3866 * rebind with the correct cache-level on next use. However since
3867 * we already have a valid slot, dma mapping, pages etc, we may as
3868 * rewrite the PTE in the belief that doing so tramples upon less
3869 * state and so involves less work.
3870 */
3871 if (bound) {
3872 /* Before we change the PTE, the GPU must not be accessing it.
3873 * If we wait upon the object, we know that all the bound
3874 * VMA are no longer active.
3875 */
3876 ret = i915_gem_object_wait_rendering(obj, false);
3877 if (ret)
3878 return ret;
3879
3880 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3881 /* Access to snoopable pages through the GTT is
3882 * incoherent and on some machines causes a hard
3883 * lockup. Relinquish the CPU mmaping to force
3884 * userspace to refault in the pages and we can
3885 * then double check if the GTT mapping is still
3886 * valid for that pointer access.
3887 */
3888 i915_gem_release_mmap(obj);
3889
3890 /* As we no longer need a fence for GTT access,
3891 * we can relinquish it now (and so prevent having
3892 * to steal a fence from someone else on the next
3893 * fence request). Note GPU activity would have
3894 * dropped the fence as all snoopable access is
3895 * supposed to be linear.
3896 */
3897 ret = i915_gem_object_put_fence(obj);
3898 if (ret)
3899 return ret;
3900 } else {
3901 /* We either have incoherent backing store and
3902 * so no GTT access or the architecture is fully
3903 * coherent. In such cases, existing GTT mmaps
3904 * ignore the cache bit in the PTE and we can
3905 * rewrite it without confusing the GPU or having
3906 * to force userspace to fault back in its mmaps.
3907 */
3908 }
3909
3910 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3911 if (!drm_mm_node_allocated(&vma->node))
3912 continue;
3913
3914 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3915 if (ret)
3916 return ret;
3917 }
3918 }
3919
3920 list_for_each_entry(vma, &obj->vma_list, obj_link)
3921 vma->node.color = cache_level;
3922 obj->cache_level = cache_level;
3923
3924 out:
3925 /* Flush the dirty CPU caches to the backing storage so that the
3926 * object is now coherent at its new cache level (with respect
3927 * to the access domain).
3928 */
3929 if (obj->cache_dirty &&
3930 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3931 cpu_write_needs_clflush(obj)) {
3932 if (i915_gem_clflush_object(obj, true))
3933 i915_gem_chipset_flush(to_i915(obj->base.dev));
3934 }
3935
3936 return 0;
3937 }
3938
3939 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3940 struct drm_file *file)
3941 {
3942 struct drm_i915_gem_caching *args = data;
3943 struct drm_i915_gem_object *obj;
3944
3945 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
3946 if (&obj->base == NULL)
3947 return -ENOENT;
3948
3949 switch (obj->cache_level) {
3950 case I915_CACHE_LLC:
3951 case I915_CACHE_L3_LLC:
3952 args->caching = I915_CACHING_CACHED;
3953 break;
3954
3955 case I915_CACHE_WT:
3956 args->caching = I915_CACHING_DISPLAY;
3957 break;
3958
3959 default:
3960 args->caching = I915_CACHING_NONE;
3961 break;
3962 }
3963
3964 drm_gem_object_unreference_unlocked(&obj->base);
3965 return 0;
3966 }
3967
3968 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3969 struct drm_file *file)
3970 {
3971 struct drm_i915_private *dev_priv = dev->dev_private;
3972 struct drm_i915_gem_caching *args = data;
3973 struct drm_i915_gem_object *obj;
3974 enum i915_cache_level level;
3975 int ret;
3976
3977 switch (args->caching) {
3978 case I915_CACHING_NONE:
3979 level = I915_CACHE_NONE;
3980 break;
3981 case I915_CACHING_CACHED:
3982 /*
3983 * Due to a HW issue on BXT A stepping, GPU stores via a
3984 * snooped mapping may leave stale data in a corresponding CPU
3985 * cacheline, whereas normally such cachelines would get
3986 * invalidated.
3987 */
3988 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3989 return -ENODEV;
3990
3991 level = I915_CACHE_LLC;
3992 break;
3993 case I915_CACHING_DISPLAY:
3994 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3995 break;
3996 default:
3997 return -EINVAL;
3998 }
3999
4000 intel_runtime_pm_get(dev_priv);
4001
4002 ret = i915_mutex_lock_interruptible(dev);
4003 if (ret)
4004 goto rpm_put;
4005
4006 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4007 if (&obj->base == NULL) {
4008 ret = -ENOENT;
4009 goto unlock;
4010 }
4011
4012 ret = i915_gem_object_set_cache_level(obj, level);
4013
4014 drm_gem_object_unreference(&obj->base);
4015 unlock:
4016 mutex_unlock(&dev->struct_mutex);
4017 rpm_put:
4018 intel_runtime_pm_put(dev_priv);
4019
4020 return ret;
4021 }
4022
4023 /*
4024 * Prepare buffer for display plane (scanout, cursors, etc).
4025 * Can be called from an uninterruptible phase (modesetting) and allows
4026 * any flushes to be pipelined (for pageflips).
4027 */
4028 int
4029 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4030 u32 alignment,
4031 const struct i915_ggtt_view *view)
4032 {
4033 u32 old_read_domains, old_write_domain;
4034 int ret;
4035
4036 /* Mark the pin_display early so that we account for the
4037 * display coherency whilst setting up the cache domains.
4038 */
4039 obj->pin_display++;
4040
4041 /* The display engine is not coherent with the LLC cache on gen6. As
4042 * a result, we make sure that the pinning that is about to occur is
4043 * done with uncached PTEs. This is lowest common denominator for all
4044 * chipsets.
4045 *
4046 * However for gen6+, we could do better by using the GFDT bit instead
4047 * of uncaching, which would allow us to flush all the LLC-cached data
4048 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4049 */
4050 ret = i915_gem_object_set_cache_level(obj,
4051 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4052 if (ret)
4053 goto err_unpin_display;
4054
4055 /* As the user may map the buffer once pinned in the display plane
4056 * (e.g. libkms for the bootup splash), we have to ensure that we
4057 * always use map_and_fenceable for all scanout buffers.
4058 */
4059 ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4060 view->type == I915_GGTT_VIEW_NORMAL ?
4061 PIN_MAPPABLE : 0);
4062 if (ret)
4063 goto err_unpin_display;
4064
4065 i915_gem_object_flush_cpu_write_domain(obj);
4066
4067 old_write_domain = obj->base.write_domain;
4068 old_read_domains = obj->base.read_domains;
4069
4070 /* It should now be out of any other write domains, and we can update
4071 * the domain values for our changes.
4072 */
4073 obj->base.write_domain = 0;
4074 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4075
4076 trace_i915_gem_object_change_domain(obj,
4077 old_read_domains,
4078 old_write_domain);
4079
4080 return 0;
4081
4082 err_unpin_display:
4083 obj->pin_display--;
4084 return ret;
4085 }
4086
4087 void
4088 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4089 const struct i915_ggtt_view *view)
4090 {
4091 if (WARN_ON(obj->pin_display == 0))
4092 return;
4093
4094 i915_gem_object_ggtt_unpin_view(obj, view);
4095
4096 obj->pin_display--;
4097 }
4098
4099 /**
4100 * Moves a single object to the CPU read, and possibly write domain.
4101 *
4102 * This function returns when the move is complete, including waiting on
4103 * flushes to occur.
4104 */
4105 int
4106 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4107 {
4108 uint32_t old_write_domain, old_read_domains;
4109 int ret;
4110
4111 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4112 return 0;
4113
4114 ret = i915_gem_object_wait_rendering(obj, !write);
4115 if (ret)
4116 return ret;
4117
4118 i915_gem_object_flush_gtt_write_domain(obj);
4119
4120 old_write_domain = obj->base.write_domain;
4121 old_read_domains = obj->base.read_domains;
4122
4123 /* Flush the CPU cache if it's still invalid. */
4124 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4125 i915_gem_clflush_object(obj, false);
4126
4127 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4128 }
4129
4130 /* It should now be out of any other write domains, and we can update
4131 * the domain values for our changes.
4132 */
4133 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4134
4135 /* If we're writing through the CPU, then the GPU read domains will
4136 * need to be invalidated at next use.
4137 */
4138 if (write) {
4139 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4140 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4141 }
4142
4143 trace_i915_gem_object_change_domain(obj,
4144 old_read_domains,
4145 old_write_domain);
4146
4147 return 0;
4148 }
4149
4150 /* Throttle our rendering by waiting until the ring has completed our requests
4151 * emitted over 20 msec ago.
4152 *
4153 * Note that if we were to use the current jiffies each time around the loop,
4154 * we wouldn't escape the function with any frames outstanding if the time to
4155 * render a frame was over 20ms.
4156 *
4157 * This should get us reasonable parallelism between CPU and GPU but also
4158 * relatively low latency when blocking on a particular request to finish.
4159 */
4160 static int
4161 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4162 {
4163 struct drm_i915_private *dev_priv = dev->dev_private;
4164 struct drm_i915_file_private *file_priv = file->driver_priv;
4165 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4166 struct drm_i915_gem_request *request, *target = NULL;
4167 int ret;
4168
4169 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4170 if (ret)
4171 return ret;
4172
4173 /* ABI: return -EIO if already wedged */
4174 if (i915_terminally_wedged(&dev_priv->gpu_error))
4175 return -EIO;
4176
4177 spin_lock(&file_priv->mm.lock);
4178 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4179 if (time_after_eq(request->emitted_jiffies, recent_enough))
4180 break;
4181
4182 /*
4183 * Note that the request might not have been submitted yet.
4184 * In which case emitted_jiffies will be zero.
4185 */
4186 if (!request->emitted_jiffies)
4187 continue;
4188
4189 target = request;
4190 }
4191 if (target)
4192 i915_gem_request_reference(target);
4193 spin_unlock(&file_priv->mm.lock);
4194
4195 if (target == NULL)
4196 return 0;
4197
4198 ret = __i915_wait_request(target, true, NULL, NULL);
4199 if (ret == 0)
4200 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4201
4202 i915_gem_request_unreference(target);
4203
4204 return ret;
4205 }
4206
4207 static bool
4208 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4209 {
4210 struct drm_i915_gem_object *obj = vma->obj;
4211
4212 if (alignment &&
4213 vma->node.start & (alignment - 1))
4214 return true;
4215
4216 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4217 return true;
4218
4219 if (flags & PIN_OFFSET_BIAS &&
4220 vma->node.start < (flags & PIN_OFFSET_MASK))
4221 return true;
4222
4223 if (flags & PIN_OFFSET_FIXED &&
4224 vma->node.start != (flags & PIN_OFFSET_MASK))
4225 return true;
4226
4227 return false;
4228 }
4229
4230 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4231 {
4232 struct drm_i915_gem_object *obj = vma->obj;
4233 bool mappable, fenceable;
4234 u32 fence_size, fence_alignment;
4235
4236 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4237 obj->base.size,
4238 obj->tiling_mode);
4239 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4240 obj->base.size,
4241 obj->tiling_mode,
4242 true);
4243
4244 fenceable = (vma->node.size == fence_size &&
4245 (vma->node.start & (fence_alignment - 1)) == 0);
4246
4247 mappable = (vma->node.start + fence_size <=
4248 to_i915(obj->base.dev)->ggtt.mappable_end);
4249
4250 obj->map_and_fenceable = mappable && fenceable;
4251 }
4252
4253 static int
4254 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4255 struct i915_address_space *vm,
4256 const struct i915_ggtt_view *ggtt_view,
4257 uint32_t alignment,
4258 uint64_t flags)
4259 {
4260 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4261 struct i915_vma *vma;
4262 unsigned bound;
4263 int ret;
4264
4265 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4266 return -ENODEV;
4267
4268 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4269 return -EINVAL;
4270
4271 if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4272 return -EINVAL;
4273
4274 if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4275 return -EINVAL;
4276
4277 vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4278 i915_gem_obj_to_vma(obj, vm);
4279
4280 if (vma) {
4281 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4282 return -EBUSY;
4283
4284 if (i915_vma_misplaced(vma, alignment, flags)) {
4285 WARN(vma->pin_count,
4286 "bo is already pinned in %s with incorrect alignment:"
4287 " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4288 " obj->map_and_fenceable=%d\n",
4289 ggtt_view ? "ggtt" : "ppgtt",
4290 upper_32_bits(vma->node.start),
4291 lower_32_bits(vma->node.start),
4292 alignment,
4293 !!(flags & PIN_MAPPABLE),
4294 obj->map_and_fenceable);
4295 ret = i915_vma_unbind(vma);
4296 if (ret)
4297 return ret;
4298
4299 vma = NULL;
4300 }
4301 }
4302
4303 bound = vma ? vma->bound : 0;
4304 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4305 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4306 flags);
4307 if (IS_ERR(vma))
4308 return PTR_ERR(vma);
4309 } else {
4310 ret = i915_vma_bind(vma, obj->cache_level, flags);
4311 if (ret)
4312 return ret;
4313 }
4314
4315 if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4316 (bound ^ vma->bound) & GLOBAL_BIND) {
4317 __i915_vma_set_map_and_fenceable(vma);
4318 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4319 }
4320
4321 vma->pin_count++;
4322 return 0;
4323 }
4324
4325 int
4326 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4327 struct i915_address_space *vm,
4328 uint32_t alignment,
4329 uint64_t flags)
4330 {
4331 return i915_gem_object_do_pin(obj, vm,
4332 i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4333 alignment, flags);
4334 }
4335
4336 int
4337 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4338 const struct i915_ggtt_view *view,
4339 uint32_t alignment,
4340 uint64_t flags)
4341 {
4342 struct drm_device *dev = obj->base.dev;
4343 struct drm_i915_private *dev_priv = to_i915(dev);
4344 struct i915_ggtt *ggtt = &dev_priv->ggtt;
4345
4346 BUG_ON(!view);
4347
4348 return i915_gem_object_do_pin(obj, &ggtt->base, view,
4349 alignment, flags | PIN_GLOBAL);
4350 }
4351
4352 void
4353 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4354 const struct i915_ggtt_view *view)
4355 {
4356 struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4357
4358 WARN_ON(vma->pin_count == 0);
4359 WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4360
4361 --vma->pin_count;
4362 }
4363
4364 int
4365 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4366 struct drm_file *file)
4367 {
4368 struct drm_i915_gem_busy *args = data;
4369 struct drm_i915_gem_object *obj;
4370 int ret;
4371
4372 ret = i915_mutex_lock_interruptible(dev);
4373 if (ret)
4374 return ret;
4375
4376 obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4377 if (&obj->base == NULL) {
4378 ret = -ENOENT;
4379 goto unlock;
4380 }
4381
4382 /* Count all active objects as busy, even if they are currently not used
4383 * by the gpu. Users of this interface expect objects to eventually
4384 * become non-busy without any further actions, therefore emit any
4385 * necessary flushes here.
4386 */
4387 ret = i915_gem_object_flush_active(obj);
4388 if (ret)
4389 goto unref;
4390
4391 args->busy = 0;
4392 if (obj->active) {
4393 int i;
4394
4395 for (i = 0; i < I915_NUM_ENGINES; i++) {
4396 struct drm_i915_gem_request *req;
4397
4398 req = obj->last_read_req[i];
4399 if (req)
4400 args->busy |= 1 << (16 + req->engine->exec_id);
4401 }
4402 if (obj->last_write_req)
4403 args->busy |= obj->last_write_req->engine->exec_id;
4404 }
4405
4406 unref:
4407 drm_gem_object_unreference(&obj->base);
4408 unlock:
4409 mutex_unlock(&dev->struct_mutex);
4410 return ret;
4411 }
4412
4413 int
4414 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4415 struct drm_file *file_priv)
4416 {
4417 return i915_gem_ring_throttle(dev, file_priv);
4418 }
4419
4420 int
4421 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4422 struct drm_file *file_priv)
4423 {
4424 struct drm_i915_private *dev_priv = dev->dev_private;
4425 struct drm_i915_gem_madvise *args = data;
4426 struct drm_i915_gem_object *obj;
4427 int ret;
4428
4429 switch (args->madv) {
4430 case I915_MADV_DONTNEED:
4431 case I915_MADV_WILLNEED:
4432 break;
4433 default:
4434 return -EINVAL;
4435 }
4436
4437 ret = i915_mutex_lock_interruptible(dev);
4438 if (ret)
4439 return ret;
4440
4441 obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
4442 if (&obj->base == NULL) {
4443 ret = -ENOENT;
4444 goto unlock;
4445 }
4446
4447 if (i915_gem_obj_is_pinned(obj)) {
4448 ret = -EINVAL;
4449 goto out;
4450 }
4451
4452 if (obj->pages &&
4453 obj->tiling_mode != I915_TILING_NONE &&
4454 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4455 if (obj->madv == I915_MADV_WILLNEED)
4456 i915_gem_object_unpin_pages(obj);
4457 if (args->madv == I915_MADV_WILLNEED)
4458 i915_gem_object_pin_pages(obj);
4459 }
4460
4461 if (obj->madv != __I915_MADV_PURGED)
4462 obj->madv = args->madv;
4463
4464 /* if the object is no longer attached, discard its backing storage */
4465 if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4466 i915_gem_object_truncate(obj);
4467
4468 args->retained = obj->madv != __I915_MADV_PURGED;
4469
4470 out:
4471 drm_gem_object_unreference(&obj->base);
4472 unlock:
4473 mutex_unlock(&dev->struct_mutex);
4474 return ret;
4475 }
4476
4477 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4478 const struct drm_i915_gem_object_ops *ops)
4479 {
4480 int i;
4481
4482 INIT_LIST_HEAD(&obj->global_list);
4483 for (i = 0; i < I915_NUM_ENGINES; i++)
4484 INIT_LIST_HEAD(&obj->engine_list[i]);
4485 INIT_LIST_HEAD(&obj->obj_exec_link);
4486 INIT_LIST_HEAD(&obj->vma_list);
4487 INIT_LIST_HEAD(&obj->batch_pool_link);
4488
4489 obj->ops = ops;
4490
4491 obj->fence_reg = I915_FENCE_REG_NONE;
4492 obj->madv = I915_MADV_WILLNEED;
4493
4494 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4495 }
4496
4497 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4498 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4499 .get_pages = i915_gem_object_get_pages_gtt,
4500 .put_pages = i915_gem_object_put_pages_gtt,
4501 };
4502
4503 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4504 size_t size)
4505 {
4506 struct drm_i915_gem_object *obj;
4507 struct address_space *mapping;
4508 gfp_t mask;
4509 int ret;
4510
4511 obj = i915_gem_object_alloc(dev);
4512 if (obj == NULL)
4513 return ERR_PTR(-ENOMEM);
4514
4515 ret = drm_gem_object_init(dev, &obj->base, size);
4516 if (ret)
4517 goto fail;
4518
4519 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4520 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4521 /* 965gm cannot relocate objects above 4GiB. */
4522 mask &= ~__GFP_HIGHMEM;
4523 mask |= __GFP_DMA32;
4524 }
4525
4526 mapping = file_inode(obj->base.filp)->i_mapping;
4527 mapping_set_gfp_mask(mapping, mask);
4528
4529 i915_gem_object_init(obj, &i915_gem_object_ops);
4530
4531 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4532 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4533
4534 if (HAS_LLC(dev)) {
4535 /* On some devices, we can have the GPU use the LLC (the CPU
4536 * cache) for about a 10% performance improvement
4537 * compared to uncached. Graphics requests other than
4538 * display scanout are coherent with the CPU in
4539 * accessing this cache. This means in this mode we
4540 * don't need to clflush on the CPU side, and on the
4541 * GPU side we only need to flush internal caches to
4542 * get data visible to the CPU.
4543 *
4544 * However, we maintain the display planes as UC, and so
4545 * need to rebind when first used as such.
4546 */
4547 obj->cache_level = I915_CACHE_LLC;
4548 } else
4549 obj->cache_level = I915_CACHE_NONE;
4550
4551 trace_i915_gem_object_create(obj);
4552
4553 return obj;
4554
4555 fail:
4556 i915_gem_object_free(obj);
4557
4558 return ERR_PTR(ret);
4559 }
4560
4561 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4562 {
4563 /* If we are the last user of the backing storage (be it shmemfs
4564 * pages or stolen etc), we know that the pages are going to be
4565 * immediately released. In this case, we can then skip copying
4566 * back the contents from the GPU.
4567 */
4568
4569 if (obj->madv != I915_MADV_WILLNEED)
4570 return false;
4571
4572 if (obj->base.filp == NULL)
4573 return true;
4574
4575 /* At first glance, this looks racy, but then again so would be
4576 * userspace racing mmap against close. However, the first external
4577 * reference to the filp can only be obtained through the
4578 * i915_gem_mmap_ioctl() which safeguards us against the user
4579 * acquiring such a reference whilst we are in the middle of
4580 * freeing the object.
4581 */
4582 return atomic_long_read(&obj->base.filp->f_count) == 1;
4583 }
4584
4585 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4586 {
4587 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4588 struct drm_device *dev = obj->base.dev;
4589 struct drm_i915_private *dev_priv = dev->dev_private;
4590 struct i915_vma *vma, *next;
4591
4592 intel_runtime_pm_get(dev_priv);
4593
4594 trace_i915_gem_object_destroy(obj);
4595
4596 list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4597 int ret;
4598
4599 vma->pin_count = 0;
4600 ret = i915_vma_unbind(vma);
4601 if (WARN_ON(ret == -ERESTARTSYS)) {
4602 bool was_interruptible;
4603
4604 was_interruptible = dev_priv->mm.interruptible;
4605 dev_priv->mm.interruptible = false;
4606
4607 WARN_ON(i915_vma_unbind(vma));
4608
4609 dev_priv->mm.interruptible = was_interruptible;
4610 }
4611 }
4612
4613 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4614 * before progressing. */
4615 if (obj->stolen)
4616 i915_gem_object_unpin_pages(obj);
4617
4618 WARN_ON(obj->frontbuffer_bits);
4619
4620 if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4621 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4622 obj->tiling_mode != I915_TILING_NONE)
4623 i915_gem_object_unpin_pages(obj);
4624
4625 if (WARN_ON(obj->pages_pin_count))
4626 obj->pages_pin_count = 0;
4627 if (discard_backing_storage(obj))
4628 obj->madv = I915_MADV_DONTNEED;
4629 i915_gem_object_put_pages(obj);
4630 i915_gem_object_free_mmap_offset(obj);
4631
4632 BUG_ON(obj->pages);
4633
4634 if (obj->base.import_attach)
4635 drm_prime_gem_destroy(&obj->base, NULL);
4636
4637 if (obj->ops->release)
4638 obj->ops->release(obj);
4639
4640 drm_gem_object_release(&obj->base);
4641 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4642
4643 kfree(obj->bit_17);
4644 i915_gem_object_free(obj);
4645
4646 intel_runtime_pm_put(dev_priv);
4647 }
4648
4649 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4650 struct i915_address_space *vm)
4651 {
4652 struct i915_vma *vma;
4653 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4654 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4655 vma->vm == vm)
4656 return vma;
4657 }
4658 return NULL;
4659 }
4660
4661 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4662 const struct i915_ggtt_view *view)
4663 {
4664 struct i915_vma *vma;
4665
4666 GEM_BUG_ON(!view);
4667
4668 list_for_each_entry(vma, &obj->vma_list, obj_link)
4669 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4670 return vma;
4671 return NULL;
4672 }
4673
4674 void i915_gem_vma_destroy(struct i915_vma *vma)
4675 {
4676 WARN_ON(vma->node.allocated);
4677
4678 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4679 if (!list_empty(&vma->exec_list))
4680 return;
4681
4682 if (!vma->is_ggtt)
4683 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4684
4685 list_del(&vma->obj_link);
4686
4687 kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4688 }
4689
4690 static void
4691 i915_gem_stop_engines(struct drm_device *dev)
4692 {
4693 struct drm_i915_private *dev_priv = dev->dev_private;
4694 struct intel_engine_cs *engine;
4695
4696 for_each_engine(engine, dev_priv)
4697 dev_priv->gt.stop_engine(engine);
4698 }
4699
4700 int
4701 i915_gem_suspend(struct drm_device *dev)
4702 {
4703 struct drm_i915_private *dev_priv = dev->dev_private;
4704 int ret = 0;
4705
4706 mutex_lock(&dev->struct_mutex);
4707 ret = i915_gpu_idle(dev);
4708 if (ret)
4709 goto err;
4710
4711 i915_gem_retire_requests(dev_priv);
4712
4713 i915_gem_stop_engines(dev);
4714 i915_gem_context_lost(dev_priv);
4715 mutex_unlock(&dev->struct_mutex);
4716
4717 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4718 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4719 flush_delayed_work(&dev_priv->mm.idle_work);
4720
4721 /* Assert that we sucessfully flushed all the work and
4722 * reset the GPU back to its idle, low power state.
4723 */
4724 WARN_ON(dev_priv->mm.busy);
4725
4726 return 0;
4727
4728 err:
4729 mutex_unlock(&dev->struct_mutex);
4730 return ret;
4731 }
4732
4733 void i915_gem_init_swizzling(struct drm_device *dev)
4734 {
4735 struct drm_i915_private *dev_priv = dev->dev_private;
4736
4737 if (INTEL_INFO(dev)->gen < 5 ||
4738 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4739 return;
4740
4741 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4742 DISP_TILE_SURFACE_SWIZZLING);
4743
4744 if (IS_GEN5(dev))
4745 return;
4746
4747 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4748 if (IS_GEN6(dev))
4749 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4750 else if (IS_GEN7(dev))
4751 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4752 else if (IS_GEN8(dev))
4753 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4754 else
4755 BUG();
4756 }
4757
4758 static void init_unused_ring(struct drm_device *dev, u32 base)
4759 {
4760 struct drm_i915_private *dev_priv = dev->dev_private;
4761
4762 I915_WRITE(RING_CTL(base), 0);
4763 I915_WRITE(RING_HEAD(base), 0);
4764 I915_WRITE(RING_TAIL(base), 0);
4765 I915_WRITE(RING_START(base), 0);
4766 }
4767
4768 static void init_unused_rings(struct drm_device *dev)
4769 {
4770 if (IS_I830(dev)) {
4771 init_unused_ring(dev, PRB1_BASE);
4772 init_unused_ring(dev, SRB0_BASE);
4773 init_unused_ring(dev, SRB1_BASE);
4774 init_unused_ring(dev, SRB2_BASE);
4775 init_unused_ring(dev, SRB3_BASE);
4776 } else if (IS_GEN2(dev)) {
4777 init_unused_ring(dev, SRB0_BASE);
4778 init_unused_ring(dev, SRB1_BASE);
4779 } else if (IS_GEN3(dev)) {
4780 init_unused_ring(dev, PRB1_BASE);
4781 init_unused_ring(dev, PRB2_BASE);
4782 }
4783 }
4784
4785 int i915_gem_init_engines(struct drm_device *dev)
4786 {
4787 struct drm_i915_private *dev_priv = dev->dev_private;
4788 int ret;
4789
4790 ret = intel_init_render_ring_buffer(dev);
4791 if (ret)
4792 return ret;
4793
4794 if (HAS_BSD(dev)) {
4795 ret = intel_init_bsd_ring_buffer(dev);
4796 if (ret)
4797 goto cleanup_render_ring;
4798 }
4799
4800 if (HAS_BLT(dev)) {
4801 ret = intel_init_blt_ring_buffer(dev);
4802 if (ret)
4803 goto cleanup_bsd_ring;
4804 }
4805
4806 if (HAS_VEBOX(dev)) {
4807 ret = intel_init_vebox_ring_buffer(dev);
4808 if (ret)
4809 goto cleanup_blt_ring;
4810 }
4811
4812 if (HAS_BSD2(dev)) {
4813 ret = intel_init_bsd2_ring_buffer(dev);
4814 if (ret)
4815 goto cleanup_vebox_ring;
4816 }
4817
4818 return 0;
4819
4820 cleanup_vebox_ring:
4821 intel_cleanup_engine(&dev_priv->engine[VECS]);
4822 cleanup_blt_ring:
4823 intel_cleanup_engine(&dev_priv->engine[BCS]);
4824 cleanup_bsd_ring:
4825 intel_cleanup_engine(&dev_priv->engine[VCS]);
4826 cleanup_render_ring:
4827 intel_cleanup_engine(&dev_priv->engine[RCS]);
4828
4829 return ret;
4830 }
4831
4832 int
4833 i915_gem_init_hw(struct drm_device *dev)
4834 {
4835 struct drm_i915_private *dev_priv = dev->dev_private;
4836 struct intel_engine_cs *engine;
4837 int ret;
4838
4839 /* Double layer security blanket, see i915_gem_init() */
4840 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4841
4842 if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4843 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4844
4845 if (IS_HASWELL(dev))
4846 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4847 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4848
4849 if (HAS_PCH_NOP(dev)) {
4850 if (IS_IVYBRIDGE(dev)) {
4851 u32 temp = I915_READ(GEN7_MSG_CTL);
4852 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4853 I915_WRITE(GEN7_MSG_CTL, temp);
4854 } else if (INTEL_INFO(dev)->gen >= 7) {
4855 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4856 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4857 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4858 }
4859 }
4860
4861 i915_gem_init_swizzling(dev);
4862
4863 /*
4864 * At least 830 can leave some of the unused rings
4865 * "active" (ie. head != tail) after resume which
4866 * will prevent c3 entry. Makes sure all unused rings
4867 * are totally idle.
4868 */
4869 init_unused_rings(dev);
4870
4871 BUG_ON(!dev_priv->kernel_context);
4872
4873 ret = i915_ppgtt_init_hw(dev);
4874 if (ret) {
4875 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4876 goto out;
4877 }
4878
4879 /* Need to do basic initialisation of all rings first: */
4880 for_each_engine(engine, dev_priv) {
4881 ret = engine->init_hw(engine);
4882 if (ret)
4883 goto out;
4884 }
4885
4886 intel_mocs_init_l3cc_table(dev);
4887
4888 /* We can't enable contexts until all firmware is loaded */
4889 if (HAS_GUC_UCODE(dev)) {
4890 ret = intel_guc_ucode_load(dev);
4891 if (ret) {
4892 DRM_ERROR("Failed to initialize GuC, error %d\n", ret);
4893 ret = -EIO;
4894 goto out;
4895 }
4896 }
4897
4898 /*
4899 * Increment the next seqno by 0x100 so we have a visible break
4900 * on re-initialisation
4901 */
4902 ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4903
4904 out:
4905 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4906 return ret;
4907 }
4908
4909 int i915_gem_init(struct drm_device *dev)
4910 {
4911 struct drm_i915_private *dev_priv = dev->dev_private;
4912 int ret;
4913
4914 mutex_lock(&dev->struct_mutex);
4915
4916 if (!i915.enable_execlists) {
4917 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4918 dev_priv->gt.init_engines = i915_gem_init_engines;
4919 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
4920 dev_priv->gt.stop_engine = intel_stop_engine;
4921 } else {
4922 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4923 dev_priv->gt.init_engines = intel_logical_rings_init;
4924 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4925 dev_priv->gt.stop_engine = intel_logical_ring_stop;
4926 }
4927
4928 /* This is just a security blanket to placate dragons.
4929 * On some systems, we very sporadically observe that the first TLBs
4930 * used by the CS may be stale, despite us poking the TLB reset. If
4931 * we hold the forcewake during initialisation these problems
4932 * just magically go away.
4933 */
4934 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4935
4936 i915_gem_init_userptr(dev_priv);
4937 i915_gem_init_ggtt(dev);
4938
4939 ret = i915_gem_context_init(dev);
4940 if (ret)
4941 goto out_unlock;
4942
4943 ret = dev_priv->gt.init_engines(dev);
4944 if (ret)
4945 goto out_unlock;
4946
4947 ret = i915_gem_init_hw(dev);
4948 if (ret == -EIO) {
4949 /* Allow ring initialisation to fail by marking the GPU as
4950 * wedged. But we only want to do this where the GPU is angry,
4951 * for all other failure, such as an allocation failure, bail.
4952 */
4953 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4954 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4955 ret = 0;
4956 }
4957
4958 out_unlock:
4959 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4960 mutex_unlock(&dev->struct_mutex);
4961
4962 return ret;
4963 }
4964
4965 void
4966 i915_gem_cleanup_engines(struct drm_device *dev)
4967 {
4968 struct drm_i915_private *dev_priv = dev->dev_private;
4969 struct intel_engine_cs *engine;
4970
4971 for_each_engine(engine, dev_priv)
4972 dev_priv->gt.cleanup_engine(engine);
4973 }
4974
4975 static void
4976 init_engine_lists(struct intel_engine_cs *engine)
4977 {
4978 INIT_LIST_HEAD(&engine->active_list);
4979 INIT_LIST_HEAD(&engine->request_list);
4980 }
4981
4982 void
4983 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4984 {
4985 struct drm_device *dev = dev_priv->dev;
4986
4987 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4988 !IS_CHERRYVIEW(dev_priv))
4989 dev_priv->num_fence_regs = 32;
4990 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4991 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4992 dev_priv->num_fence_regs = 16;
4993 else
4994 dev_priv->num_fence_regs = 8;
4995
4996 if (intel_vgpu_active(dev_priv))
4997 dev_priv->num_fence_regs =
4998 I915_READ(vgtif_reg(avail_rs.fence_num));
4999
5000 /* Initialize fence registers to zero */
5001 i915_gem_restore_fences(dev);
5002
5003 i915_gem_detect_bit_6_swizzle(dev);
5004 }
5005
5006 void
5007 i915_gem_load_init(struct drm_device *dev)
5008 {
5009 struct drm_i915_private *dev_priv = dev->dev_private;
5010 int i;
5011
5012 dev_priv->objects =
5013 kmem_cache_create("i915_gem_object",
5014 sizeof(struct drm_i915_gem_object), 0,
5015 SLAB_HWCACHE_ALIGN,
5016 NULL);
5017 dev_priv->vmas =
5018 kmem_cache_create("i915_gem_vma",
5019 sizeof(struct i915_vma), 0,
5020 SLAB_HWCACHE_ALIGN,
5021 NULL);
5022 dev_priv->requests =
5023 kmem_cache_create("i915_gem_request",
5024 sizeof(struct drm_i915_gem_request), 0,
5025 SLAB_HWCACHE_ALIGN,
5026 NULL);
5027
5028 INIT_LIST_HEAD(&dev_priv->vm_list);
5029 INIT_LIST_HEAD(&dev_priv->context_list);
5030 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5031 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5032 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5033 for (i = 0; i < I915_NUM_ENGINES; i++)
5034 init_engine_lists(&dev_priv->engine[i]);
5035 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5036 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5037 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
5038 i915_gem_retire_work_handler);
5039 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
5040 i915_gem_idle_work_handler);
5041 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5042
5043 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5044
5045 /*
5046 * Set initial sequence number for requests.
5047 * Using this number allows the wraparound to happen early,
5048 * catching any obvious problems.
5049 */
5050 dev_priv->next_seqno = ((u32)~0 - 0x1100);
5051 dev_priv->last_seqno = ((u32)~0 - 0x1101);
5052
5053 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5054
5055 init_waitqueue_head(&dev_priv->pending_flip_queue);
5056
5057 dev_priv->mm.interruptible = true;
5058
5059 mutex_init(&dev_priv->fb_tracking.lock);
5060 }
5061
5062 void i915_gem_load_cleanup(struct drm_device *dev)
5063 {
5064 struct drm_i915_private *dev_priv = to_i915(dev);
5065
5066 kmem_cache_destroy(dev_priv->requests);
5067 kmem_cache_destroy(dev_priv->vmas);
5068 kmem_cache_destroy(dev_priv->objects);
5069 }
5070
5071 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5072 {
5073 struct drm_i915_gem_object *obj;
5074
5075 /* Called just before we write the hibernation image.
5076 *
5077 * We need to update the domain tracking to reflect that the CPU
5078 * will be accessing all the pages to create and restore from the
5079 * hibernation, and so upon restoration those pages will be in the
5080 * CPU domain.
5081 *
5082 * To make sure the hibernation image contains the latest state,
5083 * we update that state just before writing out the image.
5084 */
5085
5086 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5087 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5088 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5089 }
5090
5091 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5092 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5093 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5094 }
5095
5096 return 0;
5097 }
5098
5099 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5100 {
5101 struct drm_i915_file_private *file_priv = file->driver_priv;
5102
5103 /* Clean up our request list when the client is going away, so that
5104 * later retire_requests won't dereference our soon-to-be-gone
5105 * file_priv.
5106 */
5107 spin_lock(&file_priv->mm.lock);
5108 while (!list_empty(&file_priv->mm.request_list)) {
5109 struct drm_i915_gem_request *request;
5110
5111 request = list_first_entry(&file_priv->mm.request_list,
5112 struct drm_i915_gem_request,
5113 client_list);
5114 list_del(&request->client_list);
5115 request->file_priv = NULL;
5116 }
5117 spin_unlock(&file_priv->mm.lock);
5118
5119 if (!list_empty(&file_priv->rps.link)) {
5120 spin_lock(&to_i915(dev)->rps.client_lock);
5121 list_del(&file_priv->rps.link);
5122 spin_unlock(&to_i915(dev)->rps.client_lock);
5123 }
5124 }
5125
5126 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5127 {
5128 struct drm_i915_file_private *file_priv;
5129 int ret;
5130
5131 DRM_DEBUG_DRIVER("\n");
5132
5133 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5134 if (!file_priv)
5135 return -ENOMEM;
5136
5137 file->driver_priv = file_priv;
5138 file_priv->dev_priv = dev->dev_private;
5139 file_priv->file = file;
5140 INIT_LIST_HEAD(&file_priv->rps.link);
5141
5142 spin_lock_init(&file_priv->mm.lock);
5143 INIT_LIST_HEAD(&file_priv->mm.request_list);
5144
5145 file_priv->bsd_ring = -1;
5146
5147 ret = i915_gem_context_open(dev, file);
5148 if (ret)
5149 kfree(file_priv);
5150
5151 return ret;
5152 }
5153
5154 /**
5155 * i915_gem_track_fb - update frontbuffer tracking
5156 * @old: current GEM buffer for the frontbuffer slots
5157 * @new: new GEM buffer for the frontbuffer slots
5158 * @frontbuffer_bits: bitmask of frontbuffer slots
5159 *
5160 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5161 * from @old and setting them in @new. Both @old and @new can be NULL.
5162 */
5163 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5164 struct drm_i915_gem_object *new,
5165 unsigned frontbuffer_bits)
5166 {
5167 if (old) {
5168 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5169 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5170 old->frontbuffer_bits &= ~frontbuffer_bits;
5171 }
5172
5173 if (new) {
5174 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5175 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5176 new->frontbuffer_bits |= frontbuffer_bits;
5177 }
5178 }
5179
5180 /* All the new VM stuff */
5181 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5182 struct i915_address_space *vm)
5183 {
5184 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5185 struct i915_vma *vma;
5186
5187 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5188
5189 list_for_each_entry(vma, &o->vma_list, obj_link) {
5190 if (vma->is_ggtt &&
5191 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5192 continue;
5193 if (vma->vm == vm)
5194 return vma->node.start;
5195 }
5196
5197 WARN(1, "%s vma for this object not found.\n",
5198 i915_is_ggtt(vm) ? "global" : "ppgtt");
5199 return -1;
5200 }
5201
5202 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5203 const struct i915_ggtt_view *view)
5204 {
5205 struct i915_vma *vma;
5206
5207 list_for_each_entry(vma, &o->vma_list, obj_link)
5208 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
5209 return vma->node.start;
5210
5211 WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5212 return -1;
5213 }
5214
5215 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5216 struct i915_address_space *vm)
5217 {
5218 struct i915_vma *vma;
5219
5220 list_for_each_entry(vma, &o->vma_list, obj_link) {
5221 if (vma->is_ggtt &&
5222 vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5223 continue;
5224 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5225 return true;
5226 }
5227
5228 return false;
5229 }
5230
5231 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5232 const struct i915_ggtt_view *view)
5233 {
5234 struct i915_vma *vma;
5235
5236 list_for_each_entry(vma, &o->vma_list, obj_link)
5237 if (vma->is_ggtt &&
5238 i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5239 drm_mm_node_allocated(&vma->node))
5240 return true;
5241
5242 return false;
5243 }
5244
5245 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5246 {
5247 struct i915_vma *vma;
5248
5249 list_for_each_entry(vma, &o->vma_list, obj_link)
5250 if (drm_mm_node_allocated(&vma->node))
5251 return true;
5252
5253 return false;
5254 }
5255
5256 unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
5257 {
5258 struct i915_vma *vma;
5259
5260 GEM_BUG_ON(list_empty(&o->vma_list));
5261
5262 list_for_each_entry(vma, &o->vma_list, obj_link) {
5263 if (vma->is_ggtt &&
5264 vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5265 return vma->node.size;
5266 }
5267
5268 return 0;
5269 }
5270
5271 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5272 {
5273 struct i915_vma *vma;
5274 list_for_each_entry(vma, &obj->vma_list, obj_link)
5275 if (vma->pin_count > 0)
5276 return true;
5277
5278 return false;
5279 }
5280
5281 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5282 struct page *
5283 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5284 {
5285 struct page *page;
5286
5287 /* Only default objects have per-page dirty tracking */
5288 if (WARN_ON((obj->ops->flags & I915_GEM_OBJECT_HAS_STRUCT_PAGE) == 0))
5289 return NULL;
5290
5291 page = i915_gem_object_get_page(obj, n);
5292 set_page_dirty(page);
5293 return page;
5294 }
5295
5296 /* Allocate a new GEM object and fill it with the supplied data */
5297 struct drm_i915_gem_object *
5298 i915_gem_object_create_from_data(struct drm_device *dev,
5299 const void *data, size_t size)
5300 {
5301 struct drm_i915_gem_object *obj;
5302 struct sg_table *sg;
5303 size_t bytes;
5304 int ret;
5305
5306 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5307 if (IS_ERR(obj))
5308 return obj;
5309
5310 ret = i915_gem_object_set_to_cpu_domain(obj, true);
5311 if (ret)
5312 goto fail;
5313
5314 ret = i915_gem_object_get_pages(obj);
5315 if (ret)
5316 goto fail;
5317
5318 i915_gem_object_pin_pages(obj);
5319 sg = obj->pages;
5320 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5321 obj->dirty = 1; /* Backing store is now out of date */
5322 i915_gem_object_unpin_pages(obj);
5323
5324 if (WARN_ON(bytes != size)) {
5325 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5326 ret = -EFAULT;
5327 goto fail;
5328 }
5329
5330 return obj;
5331
5332 fail:
5333 drm_gem_object_unreference(&obj->base);
5334 return ERR_PTR(ret);
5335 }