]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Flush pending GTT writes before unbinding
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include "i915_gemfs.h"
39 #include <linux/dma-fence-array.h>
40 #include <linux/kthread.h>
41 #include <linux/reservation.h>
42 #include <linux/shmem_fs.h>
43 #include <linux/slab.h>
44 #include <linux/stop_machine.h>
45 #include <linux/swap.h>
46 #include <linux/pci.h>
47 #include <linux/dma-buf.h>
48
49 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
50
51 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
52 {
53 if (obj->cache_dirty)
54 return false;
55
56 if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
57 return true;
58
59 return obj->pin_global; /* currently in use by HW, keep flushed */
60 }
61
62 static int
63 insert_mappable_node(struct i915_ggtt *ggtt,
64 struct drm_mm_node *node, u32 size)
65 {
66 memset(node, 0, sizeof(*node));
67 return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
68 size, 0, I915_COLOR_UNEVICTABLE,
69 0, ggtt->mappable_end,
70 DRM_MM_INSERT_LOW);
71 }
72
73 static void
74 remove_mappable_node(struct drm_mm_node *node)
75 {
76 drm_mm_remove_node(node);
77 }
78
79 /* some bookkeeping */
80 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
81 u64 size)
82 {
83 spin_lock(&dev_priv->mm.object_stat_lock);
84 dev_priv->mm.object_count++;
85 dev_priv->mm.object_memory += size;
86 spin_unlock(&dev_priv->mm.object_stat_lock);
87 }
88
89 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
90 u64 size)
91 {
92 spin_lock(&dev_priv->mm.object_stat_lock);
93 dev_priv->mm.object_count--;
94 dev_priv->mm.object_memory -= size;
95 spin_unlock(&dev_priv->mm.object_stat_lock);
96 }
97
98 static int
99 i915_gem_wait_for_error(struct i915_gpu_error *error)
100 {
101 int ret;
102
103 might_sleep();
104
105 /*
106 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
107 * userspace. If it takes that long something really bad is going on and
108 * we should simply try to bail out and fail as gracefully as possible.
109 */
110 ret = wait_event_interruptible_timeout(error->reset_queue,
111 !i915_reset_backoff(error),
112 I915_RESET_TIMEOUT);
113 if (ret == 0) {
114 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
115 return -EIO;
116 } else if (ret < 0) {
117 return ret;
118 } else {
119 return 0;
120 }
121 }
122
123 int i915_mutex_lock_interruptible(struct drm_device *dev)
124 {
125 struct drm_i915_private *dev_priv = to_i915(dev);
126 int ret;
127
128 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
129 if (ret)
130 return ret;
131
132 ret = mutex_lock_interruptible(&dev->struct_mutex);
133 if (ret)
134 return ret;
135
136 return 0;
137 }
138
139 int
140 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
141 struct drm_file *file)
142 {
143 struct drm_i915_private *dev_priv = to_i915(dev);
144 struct i915_ggtt *ggtt = &dev_priv->ggtt;
145 struct drm_i915_gem_get_aperture *args = data;
146 struct i915_vma *vma;
147 u64 pinned;
148
149 pinned = ggtt->base.reserved;
150 mutex_lock(&dev->struct_mutex);
151 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
152 if (i915_vma_is_pinned(vma))
153 pinned += vma->node.size;
154 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
155 if (i915_vma_is_pinned(vma))
156 pinned += vma->node.size;
157 mutex_unlock(&dev->struct_mutex);
158
159 args->aper_size = ggtt->base.total;
160 args->aper_available_size = args->aper_size - pinned;
161
162 return 0;
163 }
164
165 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166 {
167 struct address_space *mapping = obj->base.filp->f_mapping;
168 drm_dma_handle_t *phys;
169 struct sg_table *st;
170 struct scatterlist *sg;
171 char *vaddr;
172 int i;
173 int err;
174
175 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
176 return -EINVAL;
177
178 /* Always aligning to the object size, allows a single allocation
179 * to handle all possible callers, and given typical object sizes,
180 * the alignment of the buddy allocation will naturally match.
181 */
182 phys = drm_pci_alloc(obj->base.dev,
183 roundup_pow_of_two(obj->base.size),
184 roundup_pow_of_two(obj->base.size));
185 if (!phys)
186 return -ENOMEM;
187
188 vaddr = phys->vaddr;
189 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
190 struct page *page;
191 char *src;
192
193 page = shmem_read_mapping_page(mapping, i);
194 if (IS_ERR(page)) {
195 err = PTR_ERR(page);
196 goto err_phys;
197 }
198
199 src = kmap_atomic(page);
200 memcpy(vaddr, src, PAGE_SIZE);
201 drm_clflush_virt_range(vaddr, PAGE_SIZE);
202 kunmap_atomic(src);
203
204 put_page(page);
205 vaddr += PAGE_SIZE;
206 }
207
208 i915_gem_chipset_flush(to_i915(obj->base.dev));
209
210 st = kmalloc(sizeof(*st), GFP_KERNEL);
211 if (!st) {
212 err = -ENOMEM;
213 goto err_phys;
214 }
215
216 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
217 kfree(st);
218 err = -ENOMEM;
219 goto err_phys;
220 }
221
222 sg = st->sgl;
223 sg->offset = 0;
224 sg->length = obj->base.size;
225
226 sg_dma_address(sg) = phys->busaddr;
227 sg_dma_len(sg) = obj->base.size;
228
229 obj->phys_handle = phys;
230
231 __i915_gem_object_set_pages(obj, st, sg->length);
232
233 return 0;
234
235 err_phys:
236 drm_pci_free(obj->base.dev, phys);
237
238 return err;
239 }
240
241 static void __start_cpu_write(struct drm_i915_gem_object *obj)
242 {
243 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
244 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
245 if (cpu_write_needs_clflush(obj))
246 obj->cache_dirty = true;
247 }
248
249 static void
250 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
251 struct sg_table *pages,
252 bool needs_clflush)
253 {
254 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
255
256 if (obj->mm.madv == I915_MADV_DONTNEED)
257 obj->mm.dirty = false;
258
259 if (needs_clflush &&
260 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
261 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
262 drm_clflush_sg(pages);
263
264 __start_cpu_write(obj);
265 }
266
267 static void
268 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
269 struct sg_table *pages)
270 {
271 __i915_gem_object_release_shmem(obj, pages, false);
272
273 if (obj->mm.dirty) {
274 struct address_space *mapping = obj->base.filp->f_mapping;
275 char *vaddr = obj->phys_handle->vaddr;
276 int i;
277
278 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
279 struct page *page;
280 char *dst;
281
282 page = shmem_read_mapping_page(mapping, i);
283 if (IS_ERR(page))
284 continue;
285
286 dst = kmap_atomic(page);
287 drm_clflush_virt_range(vaddr, PAGE_SIZE);
288 memcpy(dst, vaddr, PAGE_SIZE);
289 kunmap_atomic(dst);
290
291 set_page_dirty(page);
292 if (obj->mm.madv == I915_MADV_WILLNEED)
293 mark_page_accessed(page);
294 put_page(page);
295 vaddr += PAGE_SIZE;
296 }
297 obj->mm.dirty = false;
298 }
299
300 sg_free_table(pages);
301 kfree(pages);
302
303 drm_pci_free(obj->base.dev, obj->phys_handle);
304 }
305
306 static void
307 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
308 {
309 i915_gem_object_unpin_pages(obj);
310 }
311
312 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
313 .get_pages = i915_gem_object_get_pages_phys,
314 .put_pages = i915_gem_object_put_pages_phys,
315 .release = i915_gem_object_release_phys,
316 };
317
318 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
319
320 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
321 {
322 struct i915_vma *vma;
323 LIST_HEAD(still_in_list);
324 int ret;
325
326 lockdep_assert_held(&obj->base.dev->struct_mutex);
327
328 /* Closed vma are removed from the obj->vma_list - but they may
329 * still have an active binding on the object. To remove those we
330 * must wait for all rendering to complete to the object (as unbinding
331 * must anyway), and retire the requests.
332 */
333 ret = i915_gem_object_set_to_cpu_domain(obj, false);
334 if (ret)
335 return ret;
336
337 while ((vma = list_first_entry_or_null(&obj->vma_list,
338 struct i915_vma,
339 obj_link))) {
340 list_move_tail(&vma->obj_link, &still_in_list);
341 ret = i915_vma_unbind(vma);
342 if (ret)
343 break;
344 }
345 list_splice(&still_in_list, &obj->vma_list);
346
347 return ret;
348 }
349
350 static long
351 i915_gem_object_wait_fence(struct dma_fence *fence,
352 unsigned int flags,
353 long timeout,
354 struct intel_rps_client *rps_client)
355 {
356 struct drm_i915_gem_request *rq;
357
358 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
359
360 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
361 return timeout;
362
363 if (!dma_fence_is_i915(fence))
364 return dma_fence_wait_timeout(fence,
365 flags & I915_WAIT_INTERRUPTIBLE,
366 timeout);
367
368 rq = to_request(fence);
369 if (i915_gem_request_completed(rq))
370 goto out;
371
372 /* This client is about to stall waiting for the GPU. In many cases
373 * this is undesirable and limits the throughput of the system, as
374 * many clients cannot continue processing user input/output whilst
375 * blocked. RPS autotuning may take tens of milliseconds to respond
376 * to the GPU load and thus incurs additional latency for the client.
377 * We can circumvent that by promoting the GPU frequency to maximum
378 * before we wait. This makes the GPU throttle up much more quickly
379 * (good for benchmarks and user experience, e.g. window animations),
380 * but at a cost of spending more power processing the workload
381 * (bad for battery). Not all clients even want their results
382 * immediately and for them we should just let the GPU select its own
383 * frequency to maximise efficiency. To prevent a single client from
384 * forcing the clocks too high for the whole system, we only allow
385 * each client to waitboost once in a busy period.
386 */
387 if (rps_client) {
388 if (INTEL_GEN(rq->i915) >= 6)
389 gen6_rps_boost(rq, rps_client);
390 else
391 rps_client = NULL;
392 }
393
394 timeout = i915_wait_request(rq, flags, timeout);
395
396 out:
397 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
398 i915_gem_request_retire_upto(rq);
399
400 return timeout;
401 }
402
403 static long
404 i915_gem_object_wait_reservation(struct reservation_object *resv,
405 unsigned int flags,
406 long timeout,
407 struct intel_rps_client *rps_client)
408 {
409 unsigned int seq = __read_seqcount_begin(&resv->seq);
410 struct dma_fence *excl;
411 bool prune_fences = false;
412
413 if (flags & I915_WAIT_ALL) {
414 struct dma_fence **shared;
415 unsigned int count, i;
416 int ret;
417
418 ret = reservation_object_get_fences_rcu(resv,
419 &excl, &count, &shared);
420 if (ret)
421 return ret;
422
423 for (i = 0; i < count; i++) {
424 timeout = i915_gem_object_wait_fence(shared[i],
425 flags, timeout,
426 rps_client);
427 if (timeout < 0)
428 break;
429
430 dma_fence_put(shared[i]);
431 }
432
433 for (; i < count; i++)
434 dma_fence_put(shared[i]);
435 kfree(shared);
436
437 prune_fences = count && timeout >= 0;
438 } else {
439 excl = reservation_object_get_excl_rcu(resv);
440 }
441
442 if (excl && timeout >= 0) {
443 timeout = i915_gem_object_wait_fence(excl, flags, timeout,
444 rps_client);
445 prune_fences = timeout >= 0;
446 }
447
448 dma_fence_put(excl);
449
450 /* Oportunistically prune the fences iff we know they have *all* been
451 * signaled and that the reservation object has not been changed (i.e.
452 * no new fences have been added).
453 */
454 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
455 if (reservation_object_trylock(resv)) {
456 if (!__read_seqcount_retry(&resv->seq, seq))
457 reservation_object_add_excl_fence(resv, NULL);
458 reservation_object_unlock(resv);
459 }
460 }
461
462 return timeout;
463 }
464
465 static void __fence_set_priority(struct dma_fence *fence, int prio)
466 {
467 struct drm_i915_gem_request *rq;
468 struct intel_engine_cs *engine;
469
470 if (!dma_fence_is_i915(fence))
471 return;
472
473 rq = to_request(fence);
474 engine = rq->engine;
475 if (!engine->schedule)
476 return;
477
478 engine->schedule(rq, prio);
479 }
480
481 static void fence_set_priority(struct dma_fence *fence, int prio)
482 {
483 /* Recurse once into a fence-array */
484 if (dma_fence_is_array(fence)) {
485 struct dma_fence_array *array = to_dma_fence_array(fence);
486 int i;
487
488 for (i = 0; i < array->num_fences; i++)
489 __fence_set_priority(array->fences[i], prio);
490 } else {
491 __fence_set_priority(fence, prio);
492 }
493 }
494
495 int
496 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
497 unsigned int flags,
498 int prio)
499 {
500 struct dma_fence *excl;
501
502 if (flags & I915_WAIT_ALL) {
503 struct dma_fence **shared;
504 unsigned int count, i;
505 int ret;
506
507 ret = reservation_object_get_fences_rcu(obj->resv,
508 &excl, &count, &shared);
509 if (ret)
510 return ret;
511
512 for (i = 0; i < count; i++) {
513 fence_set_priority(shared[i], prio);
514 dma_fence_put(shared[i]);
515 }
516
517 kfree(shared);
518 } else {
519 excl = reservation_object_get_excl_rcu(obj->resv);
520 }
521
522 if (excl) {
523 fence_set_priority(excl, prio);
524 dma_fence_put(excl);
525 }
526 return 0;
527 }
528
529 /**
530 * Waits for rendering to the object to be completed
531 * @obj: i915 gem object
532 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
533 * @timeout: how long to wait
534 * @rps: client (user process) to charge for any waitboosting
535 */
536 int
537 i915_gem_object_wait(struct drm_i915_gem_object *obj,
538 unsigned int flags,
539 long timeout,
540 struct intel_rps_client *rps_client)
541 {
542 might_sleep();
543 #if IS_ENABLED(CONFIG_LOCKDEP)
544 GEM_BUG_ON(debug_locks &&
545 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
546 !!(flags & I915_WAIT_LOCKED));
547 #endif
548 GEM_BUG_ON(timeout < 0);
549
550 timeout = i915_gem_object_wait_reservation(obj->resv,
551 flags, timeout,
552 rps_client);
553 return timeout < 0 ? timeout : 0;
554 }
555
556 static struct intel_rps_client *to_rps_client(struct drm_file *file)
557 {
558 struct drm_i915_file_private *fpriv = file->driver_priv;
559
560 return &fpriv->rps_client;
561 }
562
563 static int
564 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
565 struct drm_i915_gem_pwrite *args,
566 struct drm_file *file)
567 {
568 void *vaddr = obj->phys_handle->vaddr + args->offset;
569 char __user *user_data = u64_to_user_ptr(args->data_ptr);
570
571 /* We manually control the domain here and pretend that it
572 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
573 */
574 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
575 if (copy_from_user(vaddr, user_data, args->size))
576 return -EFAULT;
577
578 drm_clflush_virt_range(vaddr, args->size);
579 i915_gem_chipset_flush(to_i915(obj->base.dev));
580
581 intel_fb_obj_flush(obj, ORIGIN_CPU);
582 return 0;
583 }
584
585 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
586 {
587 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
588 }
589
590 void i915_gem_object_free(struct drm_i915_gem_object *obj)
591 {
592 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
593 kmem_cache_free(dev_priv->objects, obj);
594 }
595
596 static int
597 i915_gem_create(struct drm_file *file,
598 struct drm_i915_private *dev_priv,
599 uint64_t size,
600 uint32_t *handle_p)
601 {
602 struct drm_i915_gem_object *obj;
603 int ret;
604 u32 handle;
605
606 size = roundup(size, PAGE_SIZE);
607 if (size == 0)
608 return -EINVAL;
609
610 /* Allocate the new object */
611 obj = i915_gem_object_create(dev_priv, size);
612 if (IS_ERR(obj))
613 return PTR_ERR(obj);
614
615 ret = drm_gem_handle_create(file, &obj->base, &handle);
616 /* drop reference from allocate - handle holds it now */
617 i915_gem_object_put(obj);
618 if (ret)
619 return ret;
620
621 *handle_p = handle;
622 return 0;
623 }
624
625 int
626 i915_gem_dumb_create(struct drm_file *file,
627 struct drm_device *dev,
628 struct drm_mode_create_dumb *args)
629 {
630 /* have to work out size/pitch and return them */
631 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
632 args->size = args->pitch * args->height;
633 return i915_gem_create(file, to_i915(dev),
634 args->size, &args->handle);
635 }
636
637 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
638 {
639 return !(obj->cache_level == I915_CACHE_NONE ||
640 obj->cache_level == I915_CACHE_WT);
641 }
642
643 /**
644 * Creates a new mm object and returns a handle to it.
645 * @dev: drm device pointer
646 * @data: ioctl data blob
647 * @file: drm file pointer
648 */
649 int
650 i915_gem_create_ioctl(struct drm_device *dev, void *data,
651 struct drm_file *file)
652 {
653 struct drm_i915_private *dev_priv = to_i915(dev);
654 struct drm_i915_gem_create *args = data;
655
656 i915_gem_flush_free_objects(dev_priv);
657
658 return i915_gem_create(file, dev_priv,
659 args->size, &args->handle);
660 }
661
662 static inline enum fb_op_origin
663 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
664 {
665 return (domain == I915_GEM_DOMAIN_GTT ?
666 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
667 }
668
669 static void
670 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
671 {
672 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
673
674 if (!(obj->base.write_domain & flush_domains))
675 return;
676
677 /* No actual flushing is required for the GTT write domain. Writes
678 * to it "immediately" go to main memory as far as we know, so there's
679 * no chipset flush. It also doesn't land in render cache.
680 *
681 * However, we do have to enforce the order so that all writes through
682 * the GTT land before any writes to the device, such as updates to
683 * the GATT itself.
684 *
685 * We also have to wait a bit for the writes to land from the GTT.
686 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
687 * timing. This issue has only been observed when switching quickly
688 * between GTT writes and CPU reads from inside the kernel on recent hw,
689 * and it appears to only affect discrete GTT blocks (i.e. on LLC
690 * system agents we cannot reproduce this behaviour).
691 */
692 wmb();
693
694 switch (obj->base.write_domain) {
695 case I915_GEM_DOMAIN_GTT:
696 if (!HAS_LLC(dev_priv)) {
697 intel_runtime_pm_get(dev_priv);
698 spin_lock_irq(&dev_priv->uncore.lock);
699 POSTING_READ_FW(RING_HEAD(dev_priv->engine[RCS]->mmio_base));
700 spin_unlock_irq(&dev_priv->uncore.lock);
701 intel_runtime_pm_put(dev_priv);
702 }
703
704 intel_fb_obj_flush(obj,
705 fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
706 break;
707
708 case I915_GEM_DOMAIN_CPU:
709 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
710 break;
711
712 case I915_GEM_DOMAIN_RENDER:
713 if (gpu_write_needs_clflush(obj))
714 obj->cache_dirty = true;
715 break;
716 }
717
718 obj->base.write_domain = 0;
719 }
720
721 static inline int
722 __copy_to_user_swizzled(char __user *cpu_vaddr,
723 const char *gpu_vaddr, int gpu_offset,
724 int length)
725 {
726 int ret, cpu_offset = 0;
727
728 while (length > 0) {
729 int cacheline_end = ALIGN(gpu_offset + 1, 64);
730 int this_length = min(cacheline_end - gpu_offset, length);
731 int swizzled_gpu_offset = gpu_offset ^ 64;
732
733 ret = __copy_to_user(cpu_vaddr + cpu_offset,
734 gpu_vaddr + swizzled_gpu_offset,
735 this_length);
736 if (ret)
737 return ret + length;
738
739 cpu_offset += this_length;
740 gpu_offset += this_length;
741 length -= this_length;
742 }
743
744 return 0;
745 }
746
747 static inline int
748 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
749 const char __user *cpu_vaddr,
750 int length)
751 {
752 int ret, cpu_offset = 0;
753
754 while (length > 0) {
755 int cacheline_end = ALIGN(gpu_offset + 1, 64);
756 int this_length = min(cacheline_end - gpu_offset, length);
757 int swizzled_gpu_offset = gpu_offset ^ 64;
758
759 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
760 cpu_vaddr + cpu_offset,
761 this_length);
762 if (ret)
763 return ret + length;
764
765 cpu_offset += this_length;
766 gpu_offset += this_length;
767 length -= this_length;
768 }
769
770 return 0;
771 }
772
773 /*
774 * Pins the specified object's pages and synchronizes the object with
775 * GPU accesses. Sets needs_clflush to non-zero if the caller should
776 * flush the object from the CPU cache.
777 */
778 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
779 unsigned int *needs_clflush)
780 {
781 int ret;
782
783 lockdep_assert_held(&obj->base.dev->struct_mutex);
784
785 *needs_clflush = 0;
786 if (!i915_gem_object_has_struct_page(obj))
787 return -ENODEV;
788
789 ret = i915_gem_object_wait(obj,
790 I915_WAIT_INTERRUPTIBLE |
791 I915_WAIT_LOCKED,
792 MAX_SCHEDULE_TIMEOUT,
793 NULL);
794 if (ret)
795 return ret;
796
797 ret = i915_gem_object_pin_pages(obj);
798 if (ret)
799 return ret;
800
801 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
802 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
803 ret = i915_gem_object_set_to_cpu_domain(obj, false);
804 if (ret)
805 goto err_unpin;
806 else
807 goto out;
808 }
809
810 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
811
812 /* If we're not in the cpu read domain, set ourself into the gtt
813 * read domain and manually flush cachelines (if required). This
814 * optimizes for the case when the gpu will dirty the data
815 * anyway again before the next pread happens.
816 */
817 if (!obj->cache_dirty &&
818 !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
819 *needs_clflush = CLFLUSH_BEFORE;
820
821 out:
822 /* return with the pages pinned */
823 return 0;
824
825 err_unpin:
826 i915_gem_object_unpin_pages(obj);
827 return ret;
828 }
829
830 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
831 unsigned int *needs_clflush)
832 {
833 int ret;
834
835 lockdep_assert_held(&obj->base.dev->struct_mutex);
836
837 *needs_clflush = 0;
838 if (!i915_gem_object_has_struct_page(obj))
839 return -ENODEV;
840
841 ret = i915_gem_object_wait(obj,
842 I915_WAIT_INTERRUPTIBLE |
843 I915_WAIT_LOCKED |
844 I915_WAIT_ALL,
845 MAX_SCHEDULE_TIMEOUT,
846 NULL);
847 if (ret)
848 return ret;
849
850 ret = i915_gem_object_pin_pages(obj);
851 if (ret)
852 return ret;
853
854 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
855 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
856 ret = i915_gem_object_set_to_cpu_domain(obj, true);
857 if (ret)
858 goto err_unpin;
859 else
860 goto out;
861 }
862
863 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
864
865 /* If we're not in the cpu write domain, set ourself into the
866 * gtt write domain and manually flush cachelines (as required).
867 * This optimizes for the case when the gpu will use the data
868 * right away and we therefore have to clflush anyway.
869 */
870 if (!obj->cache_dirty) {
871 *needs_clflush |= CLFLUSH_AFTER;
872
873 /*
874 * Same trick applies to invalidate partially written
875 * cachelines read before writing.
876 */
877 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
878 *needs_clflush |= CLFLUSH_BEFORE;
879 }
880
881 out:
882 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
883 obj->mm.dirty = true;
884 /* return with the pages pinned */
885 return 0;
886
887 err_unpin:
888 i915_gem_object_unpin_pages(obj);
889 return ret;
890 }
891
892 static void
893 shmem_clflush_swizzled_range(char *addr, unsigned long length,
894 bool swizzled)
895 {
896 if (unlikely(swizzled)) {
897 unsigned long start = (unsigned long) addr;
898 unsigned long end = (unsigned long) addr + length;
899
900 /* For swizzling simply ensure that we always flush both
901 * channels. Lame, but simple and it works. Swizzled
902 * pwrite/pread is far from a hotpath - current userspace
903 * doesn't use it at all. */
904 start = round_down(start, 128);
905 end = round_up(end, 128);
906
907 drm_clflush_virt_range((void *)start, end - start);
908 } else {
909 drm_clflush_virt_range(addr, length);
910 }
911
912 }
913
914 /* Only difference to the fast-path function is that this can handle bit17
915 * and uses non-atomic copy and kmap functions. */
916 static int
917 shmem_pread_slow(struct page *page, int offset, int length,
918 char __user *user_data,
919 bool page_do_bit17_swizzling, bool needs_clflush)
920 {
921 char *vaddr;
922 int ret;
923
924 vaddr = kmap(page);
925 if (needs_clflush)
926 shmem_clflush_swizzled_range(vaddr + offset, length,
927 page_do_bit17_swizzling);
928
929 if (page_do_bit17_swizzling)
930 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
931 else
932 ret = __copy_to_user(user_data, vaddr + offset, length);
933 kunmap(page);
934
935 return ret ? - EFAULT : 0;
936 }
937
938 static int
939 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
940 bool page_do_bit17_swizzling, bool needs_clflush)
941 {
942 int ret;
943
944 ret = -ENODEV;
945 if (!page_do_bit17_swizzling) {
946 char *vaddr = kmap_atomic(page);
947
948 if (needs_clflush)
949 drm_clflush_virt_range(vaddr + offset, length);
950 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
951 kunmap_atomic(vaddr);
952 }
953 if (ret == 0)
954 return 0;
955
956 return shmem_pread_slow(page, offset, length, user_data,
957 page_do_bit17_swizzling, needs_clflush);
958 }
959
960 static int
961 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
962 struct drm_i915_gem_pread *args)
963 {
964 char __user *user_data;
965 u64 remain;
966 unsigned int obj_do_bit17_swizzling;
967 unsigned int needs_clflush;
968 unsigned int idx, offset;
969 int ret;
970
971 obj_do_bit17_swizzling = 0;
972 if (i915_gem_object_needs_bit17_swizzle(obj))
973 obj_do_bit17_swizzling = BIT(17);
974
975 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
976 if (ret)
977 return ret;
978
979 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
980 mutex_unlock(&obj->base.dev->struct_mutex);
981 if (ret)
982 return ret;
983
984 remain = args->size;
985 user_data = u64_to_user_ptr(args->data_ptr);
986 offset = offset_in_page(args->offset);
987 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
988 struct page *page = i915_gem_object_get_page(obj, idx);
989 int length;
990
991 length = remain;
992 if (offset + length > PAGE_SIZE)
993 length = PAGE_SIZE - offset;
994
995 ret = shmem_pread(page, offset, length, user_data,
996 page_to_phys(page) & obj_do_bit17_swizzling,
997 needs_clflush);
998 if (ret)
999 break;
1000
1001 remain -= length;
1002 user_data += length;
1003 offset = 0;
1004 }
1005
1006 i915_gem_obj_finish_shmem_access(obj);
1007 return ret;
1008 }
1009
1010 static inline bool
1011 gtt_user_read(struct io_mapping *mapping,
1012 loff_t base, int offset,
1013 char __user *user_data, int length)
1014 {
1015 void __iomem *vaddr;
1016 unsigned long unwritten;
1017
1018 /* We can use the cpu mem copy function because this is X86. */
1019 vaddr = io_mapping_map_atomic_wc(mapping, base);
1020 unwritten = __copy_to_user_inatomic(user_data,
1021 (void __force *)vaddr + offset,
1022 length);
1023 io_mapping_unmap_atomic(vaddr);
1024 if (unwritten) {
1025 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1026 unwritten = copy_to_user(user_data,
1027 (void __force *)vaddr + offset,
1028 length);
1029 io_mapping_unmap(vaddr);
1030 }
1031 return unwritten;
1032 }
1033
1034 static int
1035 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1036 const struct drm_i915_gem_pread *args)
1037 {
1038 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1039 struct i915_ggtt *ggtt = &i915->ggtt;
1040 struct drm_mm_node node;
1041 struct i915_vma *vma;
1042 void __user *user_data;
1043 u64 remain, offset;
1044 int ret;
1045
1046 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1047 if (ret)
1048 return ret;
1049
1050 intel_runtime_pm_get(i915);
1051 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1052 PIN_MAPPABLE |
1053 PIN_NONFAULT |
1054 PIN_NONBLOCK);
1055 if (!IS_ERR(vma)) {
1056 node.start = i915_ggtt_offset(vma);
1057 node.allocated = false;
1058 ret = i915_vma_put_fence(vma);
1059 if (ret) {
1060 i915_vma_unpin(vma);
1061 vma = ERR_PTR(ret);
1062 }
1063 }
1064 if (IS_ERR(vma)) {
1065 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1066 if (ret)
1067 goto out_unlock;
1068 GEM_BUG_ON(!node.allocated);
1069 }
1070
1071 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1072 if (ret)
1073 goto out_unpin;
1074
1075 mutex_unlock(&i915->drm.struct_mutex);
1076
1077 user_data = u64_to_user_ptr(args->data_ptr);
1078 remain = args->size;
1079 offset = args->offset;
1080
1081 while (remain > 0) {
1082 /* Operation in this page
1083 *
1084 * page_base = page offset within aperture
1085 * page_offset = offset within page
1086 * page_length = bytes to copy for this page
1087 */
1088 u32 page_base = node.start;
1089 unsigned page_offset = offset_in_page(offset);
1090 unsigned page_length = PAGE_SIZE - page_offset;
1091 page_length = remain < page_length ? remain : page_length;
1092 if (node.allocated) {
1093 wmb();
1094 ggtt->base.insert_page(&ggtt->base,
1095 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1096 node.start, I915_CACHE_NONE, 0);
1097 wmb();
1098 } else {
1099 page_base += offset & PAGE_MASK;
1100 }
1101
1102 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1103 user_data, page_length)) {
1104 ret = -EFAULT;
1105 break;
1106 }
1107
1108 remain -= page_length;
1109 user_data += page_length;
1110 offset += page_length;
1111 }
1112
1113 mutex_lock(&i915->drm.struct_mutex);
1114 out_unpin:
1115 if (node.allocated) {
1116 wmb();
1117 ggtt->base.clear_range(&ggtt->base,
1118 node.start, node.size);
1119 remove_mappable_node(&node);
1120 } else {
1121 i915_vma_unpin(vma);
1122 }
1123 out_unlock:
1124 intel_runtime_pm_put(i915);
1125 mutex_unlock(&i915->drm.struct_mutex);
1126
1127 return ret;
1128 }
1129
1130 /**
1131 * Reads data from the object referenced by handle.
1132 * @dev: drm device pointer
1133 * @data: ioctl data blob
1134 * @file: drm file pointer
1135 *
1136 * On error, the contents of *data are undefined.
1137 */
1138 int
1139 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1140 struct drm_file *file)
1141 {
1142 struct drm_i915_gem_pread *args = data;
1143 struct drm_i915_gem_object *obj;
1144 int ret;
1145
1146 if (args->size == 0)
1147 return 0;
1148
1149 if (!access_ok(VERIFY_WRITE,
1150 u64_to_user_ptr(args->data_ptr),
1151 args->size))
1152 return -EFAULT;
1153
1154 obj = i915_gem_object_lookup(file, args->handle);
1155 if (!obj)
1156 return -ENOENT;
1157
1158 /* Bounds check source. */
1159 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1160 ret = -EINVAL;
1161 goto out;
1162 }
1163
1164 trace_i915_gem_object_pread(obj, args->offset, args->size);
1165
1166 ret = i915_gem_object_wait(obj,
1167 I915_WAIT_INTERRUPTIBLE,
1168 MAX_SCHEDULE_TIMEOUT,
1169 to_rps_client(file));
1170 if (ret)
1171 goto out;
1172
1173 ret = i915_gem_object_pin_pages(obj);
1174 if (ret)
1175 goto out;
1176
1177 ret = i915_gem_shmem_pread(obj, args);
1178 if (ret == -EFAULT || ret == -ENODEV)
1179 ret = i915_gem_gtt_pread(obj, args);
1180
1181 i915_gem_object_unpin_pages(obj);
1182 out:
1183 i915_gem_object_put(obj);
1184 return ret;
1185 }
1186
1187 /* This is the fast write path which cannot handle
1188 * page faults in the source data
1189 */
1190
1191 static inline bool
1192 ggtt_write(struct io_mapping *mapping,
1193 loff_t base, int offset,
1194 char __user *user_data, int length)
1195 {
1196 void __iomem *vaddr;
1197 unsigned long unwritten;
1198
1199 /* We can use the cpu mem copy function because this is X86. */
1200 vaddr = io_mapping_map_atomic_wc(mapping, base);
1201 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1202 user_data, length);
1203 io_mapping_unmap_atomic(vaddr);
1204 if (unwritten) {
1205 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1206 unwritten = copy_from_user((void __force *)vaddr + offset,
1207 user_data, length);
1208 io_mapping_unmap(vaddr);
1209 }
1210
1211 return unwritten;
1212 }
1213
1214 /**
1215 * This is the fast pwrite path, where we copy the data directly from the
1216 * user into the GTT, uncached.
1217 * @obj: i915 GEM object
1218 * @args: pwrite arguments structure
1219 */
1220 static int
1221 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1222 const struct drm_i915_gem_pwrite *args)
1223 {
1224 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1225 struct i915_ggtt *ggtt = &i915->ggtt;
1226 struct drm_mm_node node;
1227 struct i915_vma *vma;
1228 u64 remain, offset;
1229 void __user *user_data;
1230 int ret;
1231
1232 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1233 if (ret)
1234 return ret;
1235
1236 if (i915_gem_object_has_struct_page(obj)) {
1237 /*
1238 * Avoid waking the device up if we can fallback, as
1239 * waking/resuming is very slow (worst-case 10-100 ms
1240 * depending on PCI sleeps and our own resume time).
1241 * This easily dwarfs any performance advantage from
1242 * using the cache bypass of indirect GGTT access.
1243 */
1244 if (!intel_runtime_pm_get_if_in_use(i915)) {
1245 ret = -EFAULT;
1246 goto out_unlock;
1247 }
1248 } else {
1249 /* No backing pages, no fallback, we must force GGTT access */
1250 intel_runtime_pm_get(i915);
1251 }
1252
1253 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1254 PIN_MAPPABLE |
1255 PIN_NONFAULT |
1256 PIN_NONBLOCK);
1257 if (!IS_ERR(vma)) {
1258 node.start = i915_ggtt_offset(vma);
1259 node.allocated = false;
1260 ret = i915_vma_put_fence(vma);
1261 if (ret) {
1262 i915_vma_unpin(vma);
1263 vma = ERR_PTR(ret);
1264 }
1265 }
1266 if (IS_ERR(vma)) {
1267 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1268 if (ret)
1269 goto out_rpm;
1270 GEM_BUG_ON(!node.allocated);
1271 }
1272
1273 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1274 if (ret)
1275 goto out_unpin;
1276
1277 mutex_unlock(&i915->drm.struct_mutex);
1278
1279 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1280
1281 user_data = u64_to_user_ptr(args->data_ptr);
1282 offset = args->offset;
1283 remain = args->size;
1284 while (remain) {
1285 /* Operation in this page
1286 *
1287 * page_base = page offset within aperture
1288 * page_offset = offset within page
1289 * page_length = bytes to copy for this page
1290 */
1291 u32 page_base = node.start;
1292 unsigned int page_offset = offset_in_page(offset);
1293 unsigned int page_length = PAGE_SIZE - page_offset;
1294 page_length = remain < page_length ? remain : page_length;
1295 if (node.allocated) {
1296 wmb(); /* flush the write before we modify the GGTT */
1297 ggtt->base.insert_page(&ggtt->base,
1298 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1299 node.start, I915_CACHE_NONE, 0);
1300 wmb(); /* flush modifications to the GGTT (insert_page) */
1301 } else {
1302 page_base += offset & PAGE_MASK;
1303 }
1304 /* If we get a fault while copying data, then (presumably) our
1305 * source page isn't available. Return the error and we'll
1306 * retry in the slow path.
1307 * If the object is non-shmem backed, we retry again with the
1308 * path that handles page fault.
1309 */
1310 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1311 user_data, page_length)) {
1312 ret = -EFAULT;
1313 break;
1314 }
1315
1316 remain -= page_length;
1317 user_data += page_length;
1318 offset += page_length;
1319 }
1320 intel_fb_obj_flush(obj, ORIGIN_CPU);
1321
1322 mutex_lock(&i915->drm.struct_mutex);
1323 out_unpin:
1324 if (node.allocated) {
1325 wmb();
1326 ggtt->base.clear_range(&ggtt->base,
1327 node.start, node.size);
1328 remove_mappable_node(&node);
1329 } else {
1330 i915_vma_unpin(vma);
1331 }
1332 out_rpm:
1333 intel_runtime_pm_put(i915);
1334 out_unlock:
1335 mutex_unlock(&i915->drm.struct_mutex);
1336 return ret;
1337 }
1338
1339 static int
1340 shmem_pwrite_slow(struct page *page, int offset, int length,
1341 char __user *user_data,
1342 bool page_do_bit17_swizzling,
1343 bool needs_clflush_before,
1344 bool needs_clflush_after)
1345 {
1346 char *vaddr;
1347 int ret;
1348
1349 vaddr = kmap(page);
1350 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1351 shmem_clflush_swizzled_range(vaddr + offset, length,
1352 page_do_bit17_swizzling);
1353 if (page_do_bit17_swizzling)
1354 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1355 length);
1356 else
1357 ret = __copy_from_user(vaddr + offset, user_data, length);
1358 if (needs_clflush_after)
1359 shmem_clflush_swizzled_range(vaddr + offset, length,
1360 page_do_bit17_swizzling);
1361 kunmap(page);
1362
1363 return ret ? -EFAULT : 0;
1364 }
1365
1366 /* Per-page copy function for the shmem pwrite fastpath.
1367 * Flushes invalid cachelines before writing to the target if
1368 * needs_clflush_before is set and flushes out any written cachelines after
1369 * writing if needs_clflush is set.
1370 */
1371 static int
1372 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1373 bool page_do_bit17_swizzling,
1374 bool needs_clflush_before,
1375 bool needs_clflush_after)
1376 {
1377 int ret;
1378
1379 ret = -ENODEV;
1380 if (!page_do_bit17_swizzling) {
1381 char *vaddr = kmap_atomic(page);
1382
1383 if (needs_clflush_before)
1384 drm_clflush_virt_range(vaddr + offset, len);
1385 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1386 if (needs_clflush_after)
1387 drm_clflush_virt_range(vaddr + offset, len);
1388
1389 kunmap_atomic(vaddr);
1390 }
1391 if (ret == 0)
1392 return ret;
1393
1394 return shmem_pwrite_slow(page, offset, len, user_data,
1395 page_do_bit17_swizzling,
1396 needs_clflush_before,
1397 needs_clflush_after);
1398 }
1399
1400 static int
1401 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1402 const struct drm_i915_gem_pwrite *args)
1403 {
1404 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1405 void __user *user_data;
1406 u64 remain;
1407 unsigned int obj_do_bit17_swizzling;
1408 unsigned int partial_cacheline_write;
1409 unsigned int needs_clflush;
1410 unsigned int offset, idx;
1411 int ret;
1412
1413 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1414 if (ret)
1415 return ret;
1416
1417 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1418 mutex_unlock(&i915->drm.struct_mutex);
1419 if (ret)
1420 return ret;
1421
1422 obj_do_bit17_swizzling = 0;
1423 if (i915_gem_object_needs_bit17_swizzle(obj))
1424 obj_do_bit17_swizzling = BIT(17);
1425
1426 /* If we don't overwrite a cacheline completely we need to be
1427 * careful to have up-to-date data by first clflushing. Don't
1428 * overcomplicate things and flush the entire patch.
1429 */
1430 partial_cacheline_write = 0;
1431 if (needs_clflush & CLFLUSH_BEFORE)
1432 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1433
1434 user_data = u64_to_user_ptr(args->data_ptr);
1435 remain = args->size;
1436 offset = offset_in_page(args->offset);
1437 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1438 struct page *page = i915_gem_object_get_page(obj, idx);
1439 int length;
1440
1441 length = remain;
1442 if (offset + length > PAGE_SIZE)
1443 length = PAGE_SIZE - offset;
1444
1445 ret = shmem_pwrite(page, offset, length, user_data,
1446 page_to_phys(page) & obj_do_bit17_swizzling,
1447 (offset | length) & partial_cacheline_write,
1448 needs_clflush & CLFLUSH_AFTER);
1449 if (ret)
1450 break;
1451
1452 remain -= length;
1453 user_data += length;
1454 offset = 0;
1455 }
1456
1457 intel_fb_obj_flush(obj, ORIGIN_CPU);
1458 i915_gem_obj_finish_shmem_access(obj);
1459 return ret;
1460 }
1461
1462 /**
1463 * Writes data to the object referenced by handle.
1464 * @dev: drm device
1465 * @data: ioctl data blob
1466 * @file: drm file
1467 *
1468 * On error, the contents of the buffer that were to be modified are undefined.
1469 */
1470 int
1471 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1472 struct drm_file *file)
1473 {
1474 struct drm_i915_gem_pwrite *args = data;
1475 struct drm_i915_gem_object *obj;
1476 int ret;
1477
1478 if (args->size == 0)
1479 return 0;
1480
1481 if (!access_ok(VERIFY_READ,
1482 u64_to_user_ptr(args->data_ptr),
1483 args->size))
1484 return -EFAULT;
1485
1486 obj = i915_gem_object_lookup(file, args->handle);
1487 if (!obj)
1488 return -ENOENT;
1489
1490 /* Bounds check destination. */
1491 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1492 ret = -EINVAL;
1493 goto err;
1494 }
1495
1496 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1497
1498 ret = -ENODEV;
1499 if (obj->ops->pwrite)
1500 ret = obj->ops->pwrite(obj, args);
1501 if (ret != -ENODEV)
1502 goto err;
1503
1504 ret = i915_gem_object_wait(obj,
1505 I915_WAIT_INTERRUPTIBLE |
1506 I915_WAIT_ALL,
1507 MAX_SCHEDULE_TIMEOUT,
1508 to_rps_client(file));
1509 if (ret)
1510 goto err;
1511
1512 ret = i915_gem_object_pin_pages(obj);
1513 if (ret)
1514 goto err;
1515
1516 ret = -EFAULT;
1517 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1518 * it would end up going through the fenced access, and we'll get
1519 * different detiling behavior between reading and writing.
1520 * pread/pwrite currently are reading and writing from the CPU
1521 * perspective, requiring manual detiling by the client.
1522 */
1523 if (!i915_gem_object_has_struct_page(obj) ||
1524 cpu_write_needs_clflush(obj))
1525 /* Note that the gtt paths might fail with non-page-backed user
1526 * pointers (e.g. gtt mappings when moving data between
1527 * textures). Fallback to the shmem path in that case.
1528 */
1529 ret = i915_gem_gtt_pwrite_fast(obj, args);
1530
1531 if (ret == -EFAULT || ret == -ENOSPC) {
1532 if (obj->phys_handle)
1533 ret = i915_gem_phys_pwrite(obj, args, file);
1534 else
1535 ret = i915_gem_shmem_pwrite(obj, args);
1536 }
1537
1538 i915_gem_object_unpin_pages(obj);
1539 err:
1540 i915_gem_object_put(obj);
1541 return ret;
1542 }
1543
1544 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1545 {
1546 struct drm_i915_private *i915;
1547 struct list_head *list;
1548 struct i915_vma *vma;
1549
1550 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1551
1552 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1553 if (!i915_vma_is_ggtt(vma))
1554 break;
1555
1556 if (i915_vma_is_active(vma))
1557 continue;
1558
1559 if (!drm_mm_node_allocated(&vma->node))
1560 continue;
1561
1562 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1563 }
1564
1565 i915 = to_i915(obj->base.dev);
1566 spin_lock(&i915->mm.obj_lock);
1567 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1568 list_move_tail(&obj->mm.link, list);
1569 spin_unlock(&i915->mm.obj_lock);
1570 }
1571
1572 /**
1573 * Called when user space prepares to use an object with the CPU, either
1574 * through the mmap ioctl's mapping or a GTT mapping.
1575 * @dev: drm device
1576 * @data: ioctl data blob
1577 * @file: drm file
1578 */
1579 int
1580 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1581 struct drm_file *file)
1582 {
1583 struct drm_i915_gem_set_domain *args = data;
1584 struct drm_i915_gem_object *obj;
1585 uint32_t read_domains = args->read_domains;
1586 uint32_t write_domain = args->write_domain;
1587 int err;
1588
1589 /* Only handle setting domains to types used by the CPU. */
1590 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1591 return -EINVAL;
1592
1593 /* Having something in the write domain implies it's in the read
1594 * domain, and only that read domain. Enforce that in the request.
1595 */
1596 if (write_domain != 0 && read_domains != write_domain)
1597 return -EINVAL;
1598
1599 obj = i915_gem_object_lookup(file, args->handle);
1600 if (!obj)
1601 return -ENOENT;
1602
1603 /* Try to flush the object off the GPU without holding the lock.
1604 * We will repeat the flush holding the lock in the normal manner
1605 * to catch cases where we are gazumped.
1606 */
1607 err = i915_gem_object_wait(obj,
1608 I915_WAIT_INTERRUPTIBLE |
1609 (write_domain ? I915_WAIT_ALL : 0),
1610 MAX_SCHEDULE_TIMEOUT,
1611 to_rps_client(file));
1612 if (err)
1613 goto out;
1614
1615 /* Flush and acquire obj->pages so that we are coherent through
1616 * direct access in memory with previous cached writes through
1617 * shmemfs and that our cache domain tracking remains valid.
1618 * For example, if the obj->filp was moved to swap without us
1619 * being notified and releasing the pages, we would mistakenly
1620 * continue to assume that the obj remained out of the CPU cached
1621 * domain.
1622 */
1623 err = i915_gem_object_pin_pages(obj);
1624 if (err)
1625 goto out;
1626
1627 err = i915_mutex_lock_interruptible(dev);
1628 if (err)
1629 goto out_unpin;
1630
1631 if (read_domains & I915_GEM_DOMAIN_WC)
1632 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1633 else if (read_domains & I915_GEM_DOMAIN_GTT)
1634 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1635 else
1636 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1637
1638 /* And bump the LRU for this access */
1639 i915_gem_object_bump_inactive_ggtt(obj);
1640
1641 mutex_unlock(&dev->struct_mutex);
1642
1643 if (write_domain != 0)
1644 intel_fb_obj_invalidate(obj,
1645 fb_write_origin(obj, write_domain));
1646
1647 out_unpin:
1648 i915_gem_object_unpin_pages(obj);
1649 out:
1650 i915_gem_object_put(obj);
1651 return err;
1652 }
1653
1654 /**
1655 * Called when user space has done writes to this buffer
1656 * @dev: drm device
1657 * @data: ioctl data blob
1658 * @file: drm file
1659 */
1660 int
1661 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1662 struct drm_file *file)
1663 {
1664 struct drm_i915_gem_sw_finish *args = data;
1665 struct drm_i915_gem_object *obj;
1666
1667 obj = i915_gem_object_lookup(file, args->handle);
1668 if (!obj)
1669 return -ENOENT;
1670
1671 /* Pinned buffers may be scanout, so flush the cache */
1672 i915_gem_object_flush_if_display(obj);
1673 i915_gem_object_put(obj);
1674
1675 return 0;
1676 }
1677
1678 /**
1679 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1680 * it is mapped to.
1681 * @dev: drm device
1682 * @data: ioctl data blob
1683 * @file: drm file
1684 *
1685 * While the mapping holds a reference on the contents of the object, it doesn't
1686 * imply a ref on the object itself.
1687 *
1688 * IMPORTANT:
1689 *
1690 * DRM driver writers who look a this function as an example for how to do GEM
1691 * mmap support, please don't implement mmap support like here. The modern way
1692 * to implement DRM mmap support is with an mmap offset ioctl (like
1693 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1694 * That way debug tooling like valgrind will understand what's going on, hiding
1695 * the mmap call in a driver private ioctl will break that. The i915 driver only
1696 * does cpu mmaps this way because we didn't know better.
1697 */
1698 int
1699 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1700 struct drm_file *file)
1701 {
1702 struct drm_i915_gem_mmap *args = data;
1703 struct drm_i915_gem_object *obj;
1704 unsigned long addr;
1705
1706 if (args->flags & ~(I915_MMAP_WC))
1707 return -EINVAL;
1708
1709 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1710 return -ENODEV;
1711
1712 obj = i915_gem_object_lookup(file, args->handle);
1713 if (!obj)
1714 return -ENOENT;
1715
1716 /* prime objects have no backing filp to GEM mmap
1717 * pages from.
1718 */
1719 if (!obj->base.filp) {
1720 i915_gem_object_put(obj);
1721 return -EINVAL;
1722 }
1723
1724 addr = vm_mmap(obj->base.filp, 0, args->size,
1725 PROT_READ | PROT_WRITE, MAP_SHARED,
1726 args->offset);
1727 if (args->flags & I915_MMAP_WC) {
1728 struct mm_struct *mm = current->mm;
1729 struct vm_area_struct *vma;
1730
1731 if (down_write_killable(&mm->mmap_sem)) {
1732 i915_gem_object_put(obj);
1733 return -EINTR;
1734 }
1735 vma = find_vma(mm, addr);
1736 if (vma)
1737 vma->vm_page_prot =
1738 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1739 else
1740 addr = -ENOMEM;
1741 up_write(&mm->mmap_sem);
1742
1743 /* This may race, but that's ok, it only gets set */
1744 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1745 }
1746 i915_gem_object_put(obj);
1747 if (IS_ERR((void *)addr))
1748 return addr;
1749
1750 args->addr_ptr = (uint64_t) addr;
1751
1752 return 0;
1753 }
1754
1755 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1756 {
1757 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1758 }
1759
1760 /**
1761 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1762 *
1763 * A history of the GTT mmap interface:
1764 *
1765 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1766 * aligned and suitable for fencing, and still fit into the available
1767 * mappable space left by the pinned display objects. A classic problem
1768 * we called the page-fault-of-doom where we would ping-pong between
1769 * two objects that could not fit inside the GTT and so the memcpy
1770 * would page one object in at the expense of the other between every
1771 * single byte.
1772 *
1773 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1774 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1775 * object is too large for the available space (or simply too large
1776 * for the mappable aperture!), a view is created instead and faulted
1777 * into userspace. (This view is aligned and sized appropriately for
1778 * fenced access.)
1779 *
1780 * 2 - Recognise WC as a separate cache domain so that we can flush the
1781 * delayed writes via GTT before performing direct access via WC.
1782 *
1783 * Restrictions:
1784 *
1785 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1786 * hangs on some architectures, corruption on others. An attempt to service
1787 * a GTT page fault from a snoopable object will generate a SIGBUS.
1788 *
1789 * * the object must be able to fit into RAM (physical memory, though no
1790 * limited to the mappable aperture).
1791 *
1792 *
1793 * Caveats:
1794 *
1795 * * a new GTT page fault will synchronize rendering from the GPU and flush
1796 * all data to system memory. Subsequent access will not be synchronized.
1797 *
1798 * * all mappings are revoked on runtime device suspend.
1799 *
1800 * * there are only 8, 16 or 32 fence registers to share between all users
1801 * (older machines require fence register for display and blitter access
1802 * as well). Contention of the fence registers will cause the previous users
1803 * to be unmapped and any new access will generate new page faults.
1804 *
1805 * * running out of memory while servicing a fault may generate a SIGBUS,
1806 * rather than the expected SIGSEGV.
1807 */
1808 int i915_gem_mmap_gtt_version(void)
1809 {
1810 return 2;
1811 }
1812
1813 static inline struct i915_ggtt_view
1814 compute_partial_view(struct drm_i915_gem_object *obj,
1815 pgoff_t page_offset,
1816 unsigned int chunk)
1817 {
1818 struct i915_ggtt_view view;
1819
1820 if (i915_gem_object_is_tiled(obj))
1821 chunk = roundup(chunk, tile_row_pages(obj));
1822
1823 view.type = I915_GGTT_VIEW_PARTIAL;
1824 view.partial.offset = rounddown(page_offset, chunk);
1825 view.partial.size =
1826 min_t(unsigned int, chunk,
1827 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1828
1829 /* If the partial covers the entire object, just create a normal VMA. */
1830 if (chunk >= obj->base.size >> PAGE_SHIFT)
1831 view.type = I915_GGTT_VIEW_NORMAL;
1832
1833 return view;
1834 }
1835
1836 /**
1837 * i915_gem_fault - fault a page into the GTT
1838 * @vmf: fault info
1839 *
1840 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1841 * from userspace. The fault handler takes care of binding the object to
1842 * the GTT (if needed), allocating and programming a fence register (again,
1843 * only if needed based on whether the old reg is still valid or the object
1844 * is tiled) and inserting a new PTE into the faulting process.
1845 *
1846 * Note that the faulting process may involve evicting existing objects
1847 * from the GTT and/or fence registers to make room. So performance may
1848 * suffer if the GTT working set is large or there are few fence registers
1849 * left.
1850 *
1851 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1852 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1853 */
1854 int i915_gem_fault(struct vm_fault *vmf)
1855 {
1856 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1857 struct vm_area_struct *area = vmf->vma;
1858 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1859 struct drm_device *dev = obj->base.dev;
1860 struct drm_i915_private *dev_priv = to_i915(dev);
1861 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1862 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1863 struct i915_vma *vma;
1864 pgoff_t page_offset;
1865 unsigned int flags;
1866 int ret;
1867
1868 /* We don't use vmf->pgoff since that has the fake offset */
1869 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1870
1871 trace_i915_gem_object_fault(obj, page_offset, true, write);
1872
1873 /* Try to flush the object off the GPU first without holding the lock.
1874 * Upon acquiring the lock, we will perform our sanity checks and then
1875 * repeat the flush holding the lock in the normal manner to catch cases
1876 * where we are gazumped.
1877 */
1878 ret = i915_gem_object_wait(obj,
1879 I915_WAIT_INTERRUPTIBLE,
1880 MAX_SCHEDULE_TIMEOUT,
1881 NULL);
1882 if (ret)
1883 goto err;
1884
1885 ret = i915_gem_object_pin_pages(obj);
1886 if (ret)
1887 goto err;
1888
1889 intel_runtime_pm_get(dev_priv);
1890
1891 ret = i915_mutex_lock_interruptible(dev);
1892 if (ret)
1893 goto err_rpm;
1894
1895 /* Access to snoopable pages through the GTT is incoherent. */
1896 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1897 ret = -EFAULT;
1898 goto err_unlock;
1899 }
1900
1901 /* If the object is smaller than a couple of partial vma, it is
1902 * not worth only creating a single partial vma - we may as well
1903 * clear enough space for the full object.
1904 */
1905 flags = PIN_MAPPABLE;
1906 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1907 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1908
1909 /* Now pin it into the GTT as needed */
1910 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1911 if (IS_ERR(vma)) {
1912 /* Use a partial view if it is bigger than available space */
1913 struct i915_ggtt_view view =
1914 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1915
1916 /* Userspace is now writing through an untracked VMA, abandon
1917 * all hope that the hardware is able to track future writes.
1918 */
1919 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1920
1921 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1922 }
1923 if (IS_ERR(vma)) {
1924 ret = PTR_ERR(vma);
1925 goto err_unlock;
1926 }
1927
1928 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1929 if (ret)
1930 goto err_unpin;
1931
1932 ret = i915_vma_pin_fence(vma);
1933 if (ret)
1934 goto err_unpin;
1935
1936 /* Finally, remap it using the new GTT offset */
1937 ret = remap_io_mapping(area,
1938 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1939 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1940 min_t(u64, vma->size, area->vm_end - area->vm_start),
1941 &ggtt->mappable);
1942 if (ret)
1943 goto err_fence;
1944
1945 /* Mark as being mmapped into userspace for later revocation */
1946 assert_rpm_wakelock_held(dev_priv);
1947 if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
1948 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1949 GEM_BUG_ON(!obj->userfault_count);
1950
1951 err_fence:
1952 i915_vma_unpin_fence(vma);
1953 err_unpin:
1954 __i915_vma_unpin(vma);
1955 err_unlock:
1956 mutex_unlock(&dev->struct_mutex);
1957 err_rpm:
1958 intel_runtime_pm_put(dev_priv);
1959 i915_gem_object_unpin_pages(obj);
1960 err:
1961 switch (ret) {
1962 case -EIO:
1963 /*
1964 * We eat errors when the gpu is terminally wedged to avoid
1965 * userspace unduly crashing (gl has no provisions for mmaps to
1966 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1967 * and so needs to be reported.
1968 */
1969 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1970 ret = VM_FAULT_SIGBUS;
1971 break;
1972 }
1973 case -EAGAIN:
1974 /*
1975 * EAGAIN means the gpu is hung and we'll wait for the error
1976 * handler to reset everything when re-faulting in
1977 * i915_mutex_lock_interruptible.
1978 */
1979 case 0:
1980 case -ERESTARTSYS:
1981 case -EINTR:
1982 case -EBUSY:
1983 /*
1984 * EBUSY is ok: this just means that another thread
1985 * already did the job.
1986 */
1987 ret = VM_FAULT_NOPAGE;
1988 break;
1989 case -ENOMEM:
1990 ret = VM_FAULT_OOM;
1991 break;
1992 case -ENOSPC:
1993 case -EFAULT:
1994 ret = VM_FAULT_SIGBUS;
1995 break;
1996 default:
1997 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1998 ret = VM_FAULT_SIGBUS;
1999 break;
2000 }
2001 return ret;
2002 }
2003
2004 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2005 {
2006 struct i915_vma *vma;
2007
2008 GEM_BUG_ON(!obj->userfault_count);
2009
2010 obj->userfault_count = 0;
2011 list_del(&obj->userfault_link);
2012 drm_vma_node_unmap(&obj->base.vma_node,
2013 obj->base.dev->anon_inode->i_mapping);
2014
2015 list_for_each_entry(vma, &obj->vma_list, obj_link) {
2016 if (!i915_vma_is_ggtt(vma))
2017 break;
2018
2019 i915_vma_unset_userfault(vma);
2020 }
2021 }
2022
2023 /**
2024 * i915_gem_release_mmap - remove physical page mappings
2025 * @obj: obj in question
2026 *
2027 * Preserve the reservation of the mmapping with the DRM core code, but
2028 * relinquish ownership of the pages back to the system.
2029 *
2030 * It is vital that we remove the page mapping if we have mapped a tiled
2031 * object through the GTT and then lose the fence register due to
2032 * resource pressure. Similarly if the object has been moved out of the
2033 * aperture, than pages mapped into userspace must be revoked. Removing the
2034 * mapping will then trigger a page fault on the next user access, allowing
2035 * fixup by i915_gem_fault().
2036 */
2037 void
2038 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2039 {
2040 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2041
2042 /* Serialisation between user GTT access and our code depends upon
2043 * revoking the CPU's PTE whilst the mutex is held. The next user
2044 * pagefault then has to wait until we release the mutex.
2045 *
2046 * Note that RPM complicates somewhat by adding an additional
2047 * requirement that operations to the GGTT be made holding the RPM
2048 * wakeref.
2049 */
2050 lockdep_assert_held(&i915->drm.struct_mutex);
2051 intel_runtime_pm_get(i915);
2052
2053 if (!obj->userfault_count)
2054 goto out;
2055
2056 __i915_gem_object_release_mmap(obj);
2057
2058 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2059 * memory transactions from userspace before we return. The TLB
2060 * flushing implied above by changing the PTE above *should* be
2061 * sufficient, an extra barrier here just provides us with a bit
2062 * of paranoid documentation about our requirement to serialise
2063 * memory writes before touching registers / GSM.
2064 */
2065 wmb();
2066
2067 out:
2068 intel_runtime_pm_put(i915);
2069 }
2070
2071 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2072 {
2073 struct drm_i915_gem_object *obj, *on;
2074 int i;
2075
2076 /*
2077 * Only called during RPM suspend. All users of the userfault_list
2078 * must be holding an RPM wakeref to ensure that this can not
2079 * run concurrently with themselves (and use the struct_mutex for
2080 * protection between themselves).
2081 */
2082
2083 list_for_each_entry_safe(obj, on,
2084 &dev_priv->mm.userfault_list, userfault_link)
2085 __i915_gem_object_release_mmap(obj);
2086
2087 /* The fence will be lost when the device powers down. If any were
2088 * in use by hardware (i.e. they are pinned), we should not be powering
2089 * down! All other fences will be reacquired by the user upon waking.
2090 */
2091 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2092 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2093
2094 /* Ideally we want to assert that the fence register is not
2095 * live at this point (i.e. that no piece of code will be
2096 * trying to write through fence + GTT, as that both violates
2097 * our tracking of activity and associated locking/barriers,
2098 * but also is illegal given that the hw is powered down).
2099 *
2100 * Previously we used reg->pin_count as a "liveness" indicator.
2101 * That is not sufficient, and we need a more fine-grained
2102 * tool if we want to have a sanity check here.
2103 */
2104
2105 if (!reg->vma)
2106 continue;
2107
2108 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2109 reg->dirty = true;
2110 }
2111 }
2112
2113 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2114 {
2115 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2116 int err;
2117
2118 err = drm_gem_create_mmap_offset(&obj->base);
2119 if (likely(!err))
2120 return 0;
2121
2122 /* Attempt to reap some mmap space from dead objects */
2123 do {
2124 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2125 if (err)
2126 break;
2127
2128 i915_gem_drain_freed_objects(dev_priv);
2129 err = drm_gem_create_mmap_offset(&obj->base);
2130 if (!err)
2131 break;
2132
2133 } while (flush_delayed_work(&dev_priv->gt.retire_work));
2134
2135 return err;
2136 }
2137
2138 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2139 {
2140 drm_gem_free_mmap_offset(&obj->base);
2141 }
2142
2143 int
2144 i915_gem_mmap_gtt(struct drm_file *file,
2145 struct drm_device *dev,
2146 uint32_t handle,
2147 uint64_t *offset)
2148 {
2149 struct drm_i915_gem_object *obj;
2150 int ret;
2151
2152 obj = i915_gem_object_lookup(file, handle);
2153 if (!obj)
2154 return -ENOENT;
2155
2156 ret = i915_gem_object_create_mmap_offset(obj);
2157 if (ret == 0)
2158 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2159
2160 i915_gem_object_put(obj);
2161 return ret;
2162 }
2163
2164 /**
2165 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2166 * @dev: DRM device
2167 * @data: GTT mapping ioctl data
2168 * @file: GEM object info
2169 *
2170 * Simply returns the fake offset to userspace so it can mmap it.
2171 * The mmap call will end up in drm_gem_mmap(), which will set things
2172 * up so we can get faults in the handler above.
2173 *
2174 * The fault handler will take care of binding the object into the GTT
2175 * (since it may have been evicted to make room for something), allocating
2176 * a fence register, and mapping the appropriate aperture address into
2177 * userspace.
2178 */
2179 int
2180 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2181 struct drm_file *file)
2182 {
2183 struct drm_i915_gem_mmap_gtt *args = data;
2184
2185 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2186 }
2187
2188 /* Immediately discard the backing storage */
2189 static void
2190 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2191 {
2192 i915_gem_object_free_mmap_offset(obj);
2193
2194 if (obj->base.filp == NULL)
2195 return;
2196
2197 /* Our goal here is to return as much of the memory as
2198 * is possible back to the system as we are called from OOM.
2199 * To do this we must instruct the shmfs to drop all of its
2200 * backing pages, *now*.
2201 */
2202 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2203 obj->mm.madv = __I915_MADV_PURGED;
2204 obj->mm.pages = ERR_PTR(-EFAULT);
2205 }
2206
2207 /* Try to discard unwanted pages */
2208 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2209 {
2210 struct address_space *mapping;
2211
2212 lockdep_assert_held(&obj->mm.lock);
2213 GEM_BUG_ON(i915_gem_object_has_pages(obj));
2214
2215 switch (obj->mm.madv) {
2216 case I915_MADV_DONTNEED:
2217 i915_gem_object_truncate(obj);
2218 case __I915_MADV_PURGED:
2219 return;
2220 }
2221
2222 if (obj->base.filp == NULL)
2223 return;
2224
2225 mapping = obj->base.filp->f_mapping,
2226 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2227 }
2228
2229 static void
2230 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2231 struct sg_table *pages)
2232 {
2233 struct sgt_iter sgt_iter;
2234 struct page *page;
2235
2236 __i915_gem_object_release_shmem(obj, pages, true);
2237
2238 i915_gem_gtt_finish_pages(obj, pages);
2239
2240 if (i915_gem_object_needs_bit17_swizzle(obj))
2241 i915_gem_object_save_bit_17_swizzle(obj, pages);
2242
2243 for_each_sgt_page(page, sgt_iter, pages) {
2244 if (obj->mm.dirty)
2245 set_page_dirty(page);
2246
2247 if (obj->mm.madv == I915_MADV_WILLNEED)
2248 mark_page_accessed(page);
2249
2250 put_page(page);
2251 }
2252 obj->mm.dirty = false;
2253
2254 sg_free_table(pages);
2255 kfree(pages);
2256 }
2257
2258 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2259 {
2260 struct radix_tree_iter iter;
2261 void __rcu **slot;
2262
2263 rcu_read_lock();
2264 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2265 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2266 rcu_read_unlock();
2267 }
2268
2269 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2270 enum i915_mm_subclass subclass)
2271 {
2272 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2273 struct sg_table *pages;
2274
2275 if (i915_gem_object_has_pinned_pages(obj))
2276 return;
2277
2278 GEM_BUG_ON(obj->bind_count);
2279 if (!i915_gem_object_has_pages(obj))
2280 return;
2281
2282 /* May be called by shrinker from within get_pages() (on another bo) */
2283 mutex_lock_nested(&obj->mm.lock, subclass);
2284 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2285 goto unlock;
2286
2287 /* ->put_pages might need to allocate memory for the bit17 swizzle
2288 * array, hence protect them from being reaped by removing them from gtt
2289 * lists early. */
2290 pages = fetch_and_zero(&obj->mm.pages);
2291 GEM_BUG_ON(!pages);
2292
2293 spin_lock(&i915->mm.obj_lock);
2294 list_del(&obj->mm.link);
2295 spin_unlock(&i915->mm.obj_lock);
2296
2297 if (obj->mm.mapping) {
2298 void *ptr;
2299
2300 ptr = page_mask_bits(obj->mm.mapping);
2301 if (is_vmalloc_addr(ptr))
2302 vunmap(ptr);
2303 else
2304 kunmap(kmap_to_page(ptr));
2305
2306 obj->mm.mapping = NULL;
2307 }
2308
2309 __i915_gem_object_reset_page_iter(obj);
2310
2311 if (!IS_ERR(pages))
2312 obj->ops->put_pages(obj, pages);
2313
2314 obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2315
2316 unlock:
2317 mutex_unlock(&obj->mm.lock);
2318 }
2319
2320 static bool i915_sg_trim(struct sg_table *orig_st)
2321 {
2322 struct sg_table new_st;
2323 struct scatterlist *sg, *new_sg;
2324 unsigned int i;
2325
2326 if (orig_st->nents == orig_st->orig_nents)
2327 return false;
2328
2329 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2330 return false;
2331
2332 new_sg = new_st.sgl;
2333 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2334 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2335 /* called before being DMA mapped, no need to copy sg->dma_* */
2336 new_sg = sg_next(new_sg);
2337 }
2338 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2339
2340 sg_free_table(orig_st);
2341
2342 *orig_st = new_st;
2343 return true;
2344 }
2345
2346 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2347 {
2348 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2349 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2350 unsigned long i;
2351 struct address_space *mapping;
2352 struct sg_table *st;
2353 struct scatterlist *sg;
2354 struct sgt_iter sgt_iter;
2355 struct page *page;
2356 unsigned long last_pfn = 0; /* suppress gcc warning */
2357 unsigned int max_segment = i915_sg_segment_size();
2358 unsigned int sg_page_sizes;
2359 gfp_t noreclaim;
2360 int ret;
2361
2362 /* Assert that the object is not currently in any GPU domain. As it
2363 * wasn't in the GTT, there shouldn't be any way it could have been in
2364 * a GPU cache
2365 */
2366 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2367 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2368
2369 st = kmalloc(sizeof(*st), GFP_KERNEL);
2370 if (st == NULL)
2371 return -ENOMEM;
2372
2373 rebuild_st:
2374 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2375 kfree(st);
2376 return -ENOMEM;
2377 }
2378
2379 /* Get the list of pages out of our struct file. They'll be pinned
2380 * at this point until we release them.
2381 *
2382 * Fail silently without starting the shrinker
2383 */
2384 mapping = obj->base.filp->f_mapping;
2385 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2386 noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2387
2388 sg = st->sgl;
2389 st->nents = 0;
2390 sg_page_sizes = 0;
2391 for (i = 0; i < page_count; i++) {
2392 const unsigned int shrink[] = {
2393 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2394 0,
2395 }, *s = shrink;
2396 gfp_t gfp = noreclaim;
2397
2398 do {
2399 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2400 if (likely(!IS_ERR(page)))
2401 break;
2402
2403 if (!*s) {
2404 ret = PTR_ERR(page);
2405 goto err_sg;
2406 }
2407
2408 i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2409 cond_resched();
2410
2411 /* We've tried hard to allocate the memory by reaping
2412 * our own buffer, now let the real VM do its job and
2413 * go down in flames if truly OOM.
2414 *
2415 * However, since graphics tend to be disposable,
2416 * defer the oom here by reporting the ENOMEM back
2417 * to userspace.
2418 */
2419 if (!*s) {
2420 /* reclaim and warn, but no oom */
2421 gfp = mapping_gfp_mask(mapping);
2422
2423 /* Our bo are always dirty and so we require
2424 * kswapd to reclaim our pages (direct reclaim
2425 * does not effectively begin pageout of our
2426 * buffers on its own). However, direct reclaim
2427 * only waits for kswapd when under allocation
2428 * congestion. So as a result __GFP_RECLAIM is
2429 * unreliable and fails to actually reclaim our
2430 * dirty pages -- unless you try over and over
2431 * again with !__GFP_NORETRY. However, we still
2432 * want to fail this allocation rather than
2433 * trigger the out-of-memory killer and for
2434 * this we want __GFP_RETRY_MAYFAIL.
2435 */
2436 gfp |= __GFP_RETRY_MAYFAIL;
2437 }
2438 } while (1);
2439
2440 if (!i ||
2441 sg->length >= max_segment ||
2442 page_to_pfn(page) != last_pfn + 1) {
2443 if (i) {
2444 sg_page_sizes |= sg->length;
2445 sg = sg_next(sg);
2446 }
2447 st->nents++;
2448 sg_set_page(sg, page, PAGE_SIZE, 0);
2449 } else {
2450 sg->length += PAGE_SIZE;
2451 }
2452 last_pfn = page_to_pfn(page);
2453
2454 /* Check that the i965g/gm workaround works. */
2455 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2456 }
2457 if (sg) { /* loop terminated early; short sg table */
2458 sg_page_sizes |= sg->length;
2459 sg_mark_end(sg);
2460 }
2461
2462 /* Trim unused sg entries to avoid wasting memory. */
2463 i915_sg_trim(st);
2464
2465 ret = i915_gem_gtt_prepare_pages(obj, st);
2466 if (ret) {
2467 /* DMA remapping failed? One possible cause is that
2468 * it could not reserve enough large entries, asking
2469 * for PAGE_SIZE chunks instead may be helpful.
2470 */
2471 if (max_segment > PAGE_SIZE) {
2472 for_each_sgt_page(page, sgt_iter, st)
2473 put_page(page);
2474 sg_free_table(st);
2475
2476 max_segment = PAGE_SIZE;
2477 goto rebuild_st;
2478 } else {
2479 dev_warn(&dev_priv->drm.pdev->dev,
2480 "Failed to DMA remap %lu pages\n",
2481 page_count);
2482 goto err_pages;
2483 }
2484 }
2485
2486 if (i915_gem_object_needs_bit17_swizzle(obj))
2487 i915_gem_object_do_bit_17_swizzle(obj, st);
2488
2489 __i915_gem_object_set_pages(obj, st, sg_page_sizes);
2490
2491 return 0;
2492
2493 err_sg:
2494 sg_mark_end(sg);
2495 err_pages:
2496 for_each_sgt_page(page, sgt_iter, st)
2497 put_page(page);
2498 sg_free_table(st);
2499 kfree(st);
2500
2501 /* shmemfs first checks if there is enough memory to allocate the page
2502 * and reports ENOSPC should there be insufficient, along with the usual
2503 * ENOMEM for a genuine allocation failure.
2504 *
2505 * We use ENOSPC in our driver to mean that we have run out of aperture
2506 * space and so want to translate the error from shmemfs back to our
2507 * usual understanding of ENOMEM.
2508 */
2509 if (ret == -ENOSPC)
2510 ret = -ENOMEM;
2511
2512 return ret;
2513 }
2514
2515 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2516 struct sg_table *pages,
2517 unsigned int sg_page_sizes)
2518 {
2519 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2520 unsigned long supported = INTEL_INFO(i915)->page_sizes;
2521 int i;
2522
2523 lockdep_assert_held(&obj->mm.lock);
2524
2525 obj->mm.get_page.sg_pos = pages->sgl;
2526 obj->mm.get_page.sg_idx = 0;
2527
2528 obj->mm.pages = pages;
2529
2530 if (i915_gem_object_is_tiled(obj) &&
2531 i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2532 GEM_BUG_ON(obj->mm.quirked);
2533 __i915_gem_object_pin_pages(obj);
2534 obj->mm.quirked = true;
2535 }
2536
2537 GEM_BUG_ON(!sg_page_sizes);
2538 obj->mm.page_sizes.phys = sg_page_sizes;
2539
2540 /*
2541 * Calculate the supported page-sizes which fit into the given
2542 * sg_page_sizes. This will give us the page-sizes which we may be able
2543 * to use opportunistically when later inserting into the GTT. For
2544 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2545 * 64K or 4K pages, although in practice this will depend on a number of
2546 * other factors.
2547 */
2548 obj->mm.page_sizes.sg = 0;
2549 for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2550 if (obj->mm.page_sizes.phys & ~0u << i)
2551 obj->mm.page_sizes.sg |= BIT(i);
2552 }
2553 GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2554
2555 spin_lock(&i915->mm.obj_lock);
2556 list_add(&obj->mm.link, &i915->mm.unbound_list);
2557 spin_unlock(&i915->mm.obj_lock);
2558 }
2559
2560 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2561 {
2562 int err;
2563
2564 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2565 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2566 return -EFAULT;
2567 }
2568
2569 err = obj->ops->get_pages(obj);
2570 GEM_BUG_ON(!err && IS_ERR_OR_NULL(obj->mm.pages));
2571
2572 return err;
2573 }
2574
2575 /* Ensure that the associated pages are gathered from the backing storage
2576 * and pinned into our object. i915_gem_object_pin_pages() may be called
2577 * multiple times before they are released by a single call to
2578 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2579 * either as a result of memory pressure (reaping pages under the shrinker)
2580 * or as the object is itself released.
2581 */
2582 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2583 {
2584 int err;
2585
2586 err = mutex_lock_interruptible(&obj->mm.lock);
2587 if (err)
2588 return err;
2589
2590 if (unlikely(!i915_gem_object_has_pages(obj))) {
2591 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2592
2593 err = ____i915_gem_object_get_pages(obj);
2594 if (err)
2595 goto unlock;
2596
2597 smp_mb__before_atomic();
2598 }
2599 atomic_inc(&obj->mm.pages_pin_count);
2600
2601 unlock:
2602 mutex_unlock(&obj->mm.lock);
2603 return err;
2604 }
2605
2606 /* The 'mapping' part of i915_gem_object_pin_map() below */
2607 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2608 enum i915_map_type type)
2609 {
2610 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2611 struct sg_table *sgt = obj->mm.pages;
2612 struct sgt_iter sgt_iter;
2613 struct page *page;
2614 struct page *stack_pages[32];
2615 struct page **pages = stack_pages;
2616 unsigned long i = 0;
2617 pgprot_t pgprot;
2618 void *addr;
2619
2620 /* A single page can always be kmapped */
2621 if (n_pages == 1 && type == I915_MAP_WB)
2622 return kmap(sg_page(sgt->sgl));
2623
2624 if (n_pages > ARRAY_SIZE(stack_pages)) {
2625 /* Too big for stack -- allocate temporary array instead */
2626 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2627 if (!pages)
2628 return NULL;
2629 }
2630
2631 for_each_sgt_page(page, sgt_iter, sgt)
2632 pages[i++] = page;
2633
2634 /* Check that we have the expected number of pages */
2635 GEM_BUG_ON(i != n_pages);
2636
2637 switch (type) {
2638 default:
2639 MISSING_CASE(type);
2640 /* fallthrough to use PAGE_KERNEL anyway */
2641 case I915_MAP_WB:
2642 pgprot = PAGE_KERNEL;
2643 break;
2644 case I915_MAP_WC:
2645 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2646 break;
2647 }
2648 addr = vmap(pages, n_pages, 0, pgprot);
2649
2650 if (pages != stack_pages)
2651 kvfree(pages);
2652
2653 return addr;
2654 }
2655
2656 /* get, pin, and map the pages of the object into kernel space */
2657 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2658 enum i915_map_type type)
2659 {
2660 enum i915_map_type has_type;
2661 bool pinned;
2662 void *ptr;
2663 int ret;
2664
2665 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2666
2667 ret = mutex_lock_interruptible(&obj->mm.lock);
2668 if (ret)
2669 return ERR_PTR(ret);
2670
2671 pinned = !(type & I915_MAP_OVERRIDE);
2672 type &= ~I915_MAP_OVERRIDE;
2673
2674 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2675 if (unlikely(!i915_gem_object_has_pages(obj))) {
2676 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2677
2678 ret = ____i915_gem_object_get_pages(obj);
2679 if (ret)
2680 goto err_unlock;
2681
2682 smp_mb__before_atomic();
2683 }
2684 atomic_inc(&obj->mm.pages_pin_count);
2685 pinned = false;
2686 }
2687 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2688
2689 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2690 if (ptr && has_type != type) {
2691 if (pinned) {
2692 ret = -EBUSY;
2693 goto err_unpin;
2694 }
2695
2696 if (is_vmalloc_addr(ptr))
2697 vunmap(ptr);
2698 else
2699 kunmap(kmap_to_page(ptr));
2700
2701 ptr = obj->mm.mapping = NULL;
2702 }
2703
2704 if (!ptr) {
2705 ptr = i915_gem_object_map(obj, type);
2706 if (!ptr) {
2707 ret = -ENOMEM;
2708 goto err_unpin;
2709 }
2710
2711 obj->mm.mapping = page_pack_bits(ptr, type);
2712 }
2713
2714 out_unlock:
2715 mutex_unlock(&obj->mm.lock);
2716 return ptr;
2717
2718 err_unpin:
2719 atomic_dec(&obj->mm.pages_pin_count);
2720 err_unlock:
2721 ptr = ERR_PTR(ret);
2722 goto out_unlock;
2723 }
2724
2725 static int
2726 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2727 const struct drm_i915_gem_pwrite *arg)
2728 {
2729 struct address_space *mapping = obj->base.filp->f_mapping;
2730 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2731 u64 remain, offset;
2732 unsigned int pg;
2733
2734 /* Before we instantiate/pin the backing store for our use, we
2735 * can prepopulate the shmemfs filp efficiently using a write into
2736 * the pagecache. We avoid the penalty of instantiating all the
2737 * pages, important if the user is just writing to a few and never
2738 * uses the object on the GPU, and using a direct write into shmemfs
2739 * allows it to avoid the cost of retrieving a page (either swapin
2740 * or clearing-before-use) before it is overwritten.
2741 */
2742 if (i915_gem_object_has_pages(obj))
2743 return -ENODEV;
2744
2745 if (obj->mm.madv != I915_MADV_WILLNEED)
2746 return -EFAULT;
2747
2748 /* Before the pages are instantiated the object is treated as being
2749 * in the CPU domain. The pages will be clflushed as required before
2750 * use, and we can freely write into the pages directly. If userspace
2751 * races pwrite with any other operation; corruption will ensue -
2752 * that is userspace's prerogative!
2753 */
2754
2755 remain = arg->size;
2756 offset = arg->offset;
2757 pg = offset_in_page(offset);
2758
2759 do {
2760 unsigned int len, unwritten;
2761 struct page *page;
2762 void *data, *vaddr;
2763 int err;
2764
2765 len = PAGE_SIZE - pg;
2766 if (len > remain)
2767 len = remain;
2768
2769 err = pagecache_write_begin(obj->base.filp, mapping,
2770 offset, len, 0,
2771 &page, &data);
2772 if (err < 0)
2773 return err;
2774
2775 vaddr = kmap(page);
2776 unwritten = copy_from_user(vaddr + pg, user_data, len);
2777 kunmap(page);
2778
2779 err = pagecache_write_end(obj->base.filp, mapping,
2780 offset, len, len - unwritten,
2781 page, data);
2782 if (err < 0)
2783 return err;
2784
2785 if (unwritten)
2786 return -EFAULT;
2787
2788 remain -= len;
2789 user_data += len;
2790 offset += len;
2791 pg = 0;
2792 } while (remain);
2793
2794 return 0;
2795 }
2796
2797 static bool ban_context(const struct i915_gem_context *ctx,
2798 unsigned int score)
2799 {
2800 return (i915_gem_context_is_bannable(ctx) &&
2801 score >= CONTEXT_SCORE_BAN_THRESHOLD);
2802 }
2803
2804 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2805 {
2806 unsigned int score;
2807 bool banned;
2808
2809 atomic_inc(&ctx->guilty_count);
2810
2811 score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
2812 banned = ban_context(ctx, score);
2813 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2814 ctx->name, score, yesno(banned));
2815 if (!banned)
2816 return;
2817
2818 i915_gem_context_set_banned(ctx);
2819 if (!IS_ERR_OR_NULL(ctx->file_priv)) {
2820 atomic_inc(&ctx->file_priv->context_bans);
2821 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2822 ctx->name, atomic_read(&ctx->file_priv->context_bans));
2823 }
2824 }
2825
2826 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2827 {
2828 atomic_inc(&ctx->active_count);
2829 }
2830
2831 struct drm_i915_gem_request *
2832 i915_gem_find_active_request(struct intel_engine_cs *engine)
2833 {
2834 struct drm_i915_gem_request *request, *active = NULL;
2835 unsigned long flags;
2836
2837 /* We are called by the error capture and reset at a random
2838 * point in time. In particular, note that neither is crucially
2839 * ordered with an interrupt. After a hang, the GPU is dead and we
2840 * assume that no more writes can happen (we waited long enough for
2841 * all writes that were in transaction to be flushed) - adding an
2842 * extra delay for a recent interrupt is pointless. Hence, we do
2843 * not need an engine->irq_seqno_barrier() before the seqno reads.
2844 */
2845 spin_lock_irqsave(&engine->timeline->lock, flags);
2846 list_for_each_entry(request, &engine->timeline->requests, link) {
2847 if (__i915_gem_request_completed(request,
2848 request->global_seqno))
2849 continue;
2850
2851 GEM_BUG_ON(request->engine != engine);
2852 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2853 &request->fence.flags));
2854
2855 active = request;
2856 break;
2857 }
2858 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2859
2860 return active;
2861 }
2862
2863 static bool engine_stalled(struct intel_engine_cs *engine)
2864 {
2865 if (!engine->hangcheck.stalled)
2866 return false;
2867
2868 /* Check for possible seqno movement after hang declaration */
2869 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2870 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2871 return false;
2872 }
2873
2874 return true;
2875 }
2876
2877 /*
2878 * Ensure irq handler finishes, and not run again.
2879 * Also return the active request so that we only search for it once.
2880 */
2881 struct drm_i915_gem_request *
2882 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
2883 {
2884 struct drm_i915_gem_request *request = NULL;
2885
2886 /*
2887 * During the reset sequence, we must prevent the engine from
2888 * entering RC6. As the context state is undefined until we restart
2889 * the engine, if it does enter RC6 during the reset, the state
2890 * written to the powercontext is undefined and so we may lose
2891 * GPU state upon resume, i.e. fail to restart after a reset.
2892 */
2893 intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
2894
2895 /*
2896 * Prevent the signaler thread from updating the request
2897 * state (by calling dma_fence_signal) as we are processing
2898 * the reset. The write from the GPU of the seqno is
2899 * asynchronous and the signaler thread may see a different
2900 * value to us and declare the request complete, even though
2901 * the reset routine have picked that request as the active
2902 * (incomplete) request. This conflict is not handled
2903 * gracefully!
2904 */
2905 kthread_park(engine->breadcrumbs.signaler);
2906
2907 /*
2908 * Prevent request submission to the hardware until we have
2909 * completed the reset in i915_gem_reset_finish(). If a request
2910 * is completed by one engine, it may then queue a request
2911 * to a second via its engine->irq_tasklet *just* as we are
2912 * calling engine->init_hw() and also writing the ELSP.
2913 * Turning off the engine->irq_tasklet until the reset is over
2914 * prevents the race.
2915 */
2916 tasklet_kill(&engine->execlists.irq_tasklet);
2917 tasklet_disable(&engine->execlists.irq_tasklet);
2918
2919 if (engine->irq_seqno_barrier)
2920 engine->irq_seqno_barrier(engine);
2921
2922 request = i915_gem_find_active_request(engine);
2923 if (request && request->fence.error == -EIO)
2924 request = ERR_PTR(-EIO); /* Previous reset failed! */
2925
2926 return request;
2927 }
2928
2929 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2930 {
2931 struct intel_engine_cs *engine;
2932 struct drm_i915_gem_request *request;
2933 enum intel_engine_id id;
2934 int err = 0;
2935
2936 for_each_engine(engine, dev_priv, id) {
2937 request = i915_gem_reset_prepare_engine(engine);
2938 if (IS_ERR(request)) {
2939 err = PTR_ERR(request);
2940 continue;
2941 }
2942
2943 engine->hangcheck.active_request = request;
2944 }
2945
2946 i915_gem_revoke_fences(dev_priv);
2947
2948 return err;
2949 }
2950
2951 static void skip_request(struct drm_i915_gem_request *request)
2952 {
2953 void *vaddr = request->ring->vaddr;
2954 u32 head;
2955
2956 /* As this request likely depends on state from the lost
2957 * context, clear out all the user operations leaving the
2958 * breadcrumb at the end (so we get the fence notifications).
2959 */
2960 head = request->head;
2961 if (request->postfix < head) {
2962 memset(vaddr + head, 0, request->ring->size - head);
2963 head = 0;
2964 }
2965 memset(vaddr + head, 0, request->postfix - head);
2966
2967 dma_fence_set_error(&request->fence, -EIO);
2968 }
2969
2970 static void engine_skip_context(struct drm_i915_gem_request *request)
2971 {
2972 struct intel_engine_cs *engine = request->engine;
2973 struct i915_gem_context *hung_ctx = request->ctx;
2974 struct intel_timeline *timeline;
2975 unsigned long flags;
2976
2977 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2978
2979 spin_lock_irqsave(&engine->timeline->lock, flags);
2980 spin_lock(&timeline->lock);
2981
2982 list_for_each_entry_continue(request, &engine->timeline->requests, link)
2983 if (request->ctx == hung_ctx)
2984 skip_request(request);
2985
2986 list_for_each_entry(request, &timeline->requests, link)
2987 skip_request(request);
2988
2989 spin_unlock(&timeline->lock);
2990 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2991 }
2992
2993 /* Returns the request if it was guilty of the hang */
2994 static struct drm_i915_gem_request *
2995 i915_gem_reset_request(struct intel_engine_cs *engine,
2996 struct drm_i915_gem_request *request)
2997 {
2998 /* The guilty request will get skipped on a hung engine.
2999 *
3000 * Users of client default contexts do not rely on logical
3001 * state preserved between batches so it is safe to execute
3002 * queued requests following the hang. Non default contexts
3003 * rely on preserved state, so skipping a batch loses the
3004 * evolution of the state and it needs to be considered corrupted.
3005 * Executing more queued batches on top of corrupted state is
3006 * risky. But we take the risk by trying to advance through
3007 * the queued requests in order to make the client behaviour
3008 * more predictable around resets, by not throwing away random
3009 * amount of batches it has prepared for execution. Sophisticated
3010 * clients can use gem_reset_stats_ioctl and dma fence status
3011 * (exported via sync_file info ioctl on explicit fences) to observe
3012 * when it loses the context state and should rebuild accordingly.
3013 *
3014 * The context ban, and ultimately the client ban, mechanism are safety
3015 * valves if client submission ends up resulting in nothing more than
3016 * subsequent hangs.
3017 */
3018
3019 if (engine_stalled(engine)) {
3020 i915_gem_context_mark_guilty(request->ctx);
3021 skip_request(request);
3022
3023 /* If this context is now banned, skip all pending requests. */
3024 if (i915_gem_context_is_banned(request->ctx))
3025 engine_skip_context(request);
3026 } else {
3027 /*
3028 * Since this is not the hung engine, it may have advanced
3029 * since the hang declaration. Double check by refinding
3030 * the active request at the time of the reset.
3031 */
3032 request = i915_gem_find_active_request(engine);
3033 if (request) {
3034 i915_gem_context_mark_innocent(request->ctx);
3035 dma_fence_set_error(&request->fence, -EAGAIN);
3036
3037 /* Rewind the engine to replay the incomplete rq */
3038 spin_lock_irq(&engine->timeline->lock);
3039 request = list_prev_entry(request, link);
3040 if (&request->link == &engine->timeline->requests)
3041 request = NULL;
3042 spin_unlock_irq(&engine->timeline->lock);
3043 }
3044 }
3045
3046 return request;
3047 }
3048
3049 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3050 struct drm_i915_gem_request *request)
3051 {
3052 engine->irq_posted = 0;
3053
3054 if (request)
3055 request = i915_gem_reset_request(engine, request);
3056
3057 if (request) {
3058 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
3059 engine->name, request->global_seqno);
3060 }
3061
3062 /* Setup the CS to resume from the breadcrumb of the hung request */
3063 engine->reset_hw(engine, request);
3064 }
3065
3066 void i915_gem_reset(struct drm_i915_private *dev_priv)
3067 {
3068 struct intel_engine_cs *engine;
3069 enum intel_engine_id id;
3070
3071 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3072
3073 i915_gem_retire_requests(dev_priv);
3074
3075 for_each_engine(engine, dev_priv, id) {
3076 struct i915_gem_context *ctx;
3077
3078 i915_gem_reset_engine(engine, engine->hangcheck.active_request);
3079 ctx = fetch_and_zero(&engine->last_retired_context);
3080 if (ctx)
3081 engine->context_unpin(engine, ctx);
3082 }
3083
3084 i915_gem_restore_fences(dev_priv);
3085
3086 if (dev_priv->gt.awake) {
3087 intel_sanitize_gt_powersave(dev_priv);
3088 intel_enable_gt_powersave(dev_priv);
3089 if (INTEL_GEN(dev_priv) >= 6)
3090 gen6_rps_busy(dev_priv);
3091 }
3092 }
3093
3094 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3095 {
3096 tasklet_enable(&engine->execlists.irq_tasklet);
3097 kthread_unpark(engine->breadcrumbs.signaler);
3098
3099 intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3100 }
3101
3102 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3103 {
3104 struct intel_engine_cs *engine;
3105 enum intel_engine_id id;
3106
3107 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3108
3109 for_each_engine(engine, dev_priv, id) {
3110 engine->hangcheck.active_request = NULL;
3111 i915_gem_reset_finish_engine(engine);
3112 }
3113 }
3114
3115 static void nop_submit_request(struct drm_i915_gem_request *request)
3116 {
3117 dma_fence_set_error(&request->fence, -EIO);
3118
3119 i915_gem_request_submit(request);
3120 }
3121
3122 static void nop_complete_submit_request(struct drm_i915_gem_request *request)
3123 {
3124 unsigned long flags;
3125
3126 dma_fence_set_error(&request->fence, -EIO);
3127
3128 spin_lock_irqsave(&request->engine->timeline->lock, flags);
3129 __i915_gem_request_submit(request);
3130 intel_engine_init_global_seqno(request->engine, request->global_seqno);
3131 spin_unlock_irqrestore(&request->engine->timeline->lock, flags);
3132 }
3133
3134 void i915_gem_set_wedged(struct drm_i915_private *i915)
3135 {
3136 struct intel_engine_cs *engine;
3137 enum intel_engine_id id;
3138
3139 /*
3140 * First, stop submission to hw, but do not yet complete requests by
3141 * rolling the global seqno forward (since this would complete requests
3142 * for which we haven't set the fence error to EIO yet).
3143 */
3144 for_each_engine(engine, i915, id)
3145 engine->submit_request = nop_submit_request;
3146
3147 /*
3148 * Make sure no one is running the old callback before we proceed with
3149 * cancelling requests and resetting the completion tracking. Otherwise
3150 * we might submit a request to the hardware which never completes.
3151 */
3152 synchronize_rcu();
3153
3154 for_each_engine(engine, i915, id) {
3155 /* Mark all executing requests as skipped */
3156 engine->cancel_requests(engine);
3157
3158 /*
3159 * Only once we've force-cancelled all in-flight requests can we
3160 * start to complete all requests.
3161 */
3162 engine->submit_request = nop_complete_submit_request;
3163 }
3164
3165 /*
3166 * Make sure no request can slip through without getting completed by
3167 * either this call here to intel_engine_init_global_seqno, or the one
3168 * in nop_complete_submit_request.
3169 */
3170 synchronize_rcu();
3171
3172 for_each_engine(engine, i915, id) {
3173 unsigned long flags;
3174
3175 /* Mark all pending requests as complete so that any concurrent
3176 * (lockless) lookup doesn't try and wait upon the request as we
3177 * reset it.
3178 */
3179 spin_lock_irqsave(&engine->timeline->lock, flags);
3180 intel_engine_init_global_seqno(engine,
3181 intel_engine_last_submit(engine));
3182 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3183 }
3184
3185 set_bit(I915_WEDGED, &i915->gpu_error.flags);
3186 wake_up_all(&i915->gpu_error.reset_queue);
3187 }
3188
3189 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3190 {
3191 struct i915_gem_timeline *tl;
3192 int i;
3193
3194 lockdep_assert_held(&i915->drm.struct_mutex);
3195 if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3196 return true;
3197
3198 /* Before unwedging, make sure that all pending operations
3199 * are flushed and errored out - we may have requests waiting upon
3200 * third party fences. We marked all inflight requests as EIO, and
3201 * every execbuf since returned EIO, for consistency we want all
3202 * the currently pending requests to also be marked as EIO, which
3203 * is done inside our nop_submit_request - and so we must wait.
3204 *
3205 * No more can be submitted until we reset the wedged bit.
3206 */
3207 list_for_each_entry(tl, &i915->gt.timelines, link) {
3208 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3209 struct drm_i915_gem_request *rq;
3210
3211 rq = i915_gem_active_peek(&tl->engine[i].last_request,
3212 &i915->drm.struct_mutex);
3213 if (!rq)
3214 continue;
3215
3216 /* We can't use our normal waiter as we want to
3217 * avoid recursively trying to handle the current
3218 * reset. The basic dma_fence_default_wait() installs
3219 * a callback for dma_fence_signal(), which is
3220 * triggered by our nop handler (indirectly, the
3221 * callback enables the signaler thread which is
3222 * woken by the nop_submit_request() advancing the seqno
3223 * and when the seqno passes the fence, the signaler
3224 * then signals the fence waking us up).
3225 */
3226 if (dma_fence_default_wait(&rq->fence, true,
3227 MAX_SCHEDULE_TIMEOUT) < 0)
3228 return false;
3229 }
3230 }
3231
3232 /* Undo nop_submit_request. We prevent all new i915 requests from
3233 * being queued (by disallowing execbuf whilst wedged) so having
3234 * waited for all active requests above, we know the system is idle
3235 * and do not have to worry about a thread being inside
3236 * engine->submit_request() as we swap over. So unlike installing
3237 * the nop_submit_request on reset, we can do this from normal
3238 * context and do not require stop_machine().
3239 */
3240 intel_engines_reset_default_submission(i915);
3241 i915_gem_contexts_lost(i915);
3242
3243 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3244 clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3245
3246 return true;
3247 }
3248
3249 static void
3250 i915_gem_retire_work_handler(struct work_struct *work)
3251 {
3252 struct drm_i915_private *dev_priv =
3253 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3254 struct drm_device *dev = &dev_priv->drm;
3255
3256 /* Come back later if the device is busy... */
3257 if (mutex_trylock(&dev->struct_mutex)) {
3258 i915_gem_retire_requests(dev_priv);
3259 mutex_unlock(&dev->struct_mutex);
3260 }
3261
3262 /* Keep the retire handler running until we are finally idle.
3263 * We do not need to do this test under locking as in the worst-case
3264 * we queue the retire worker once too often.
3265 */
3266 if (READ_ONCE(dev_priv->gt.awake)) {
3267 i915_queue_hangcheck(dev_priv);
3268 queue_delayed_work(dev_priv->wq,
3269 &dev_priv->gt.retire_work,
3270 round_jiffies_up_relative(HZ));
3271 }
3272 }
3273
3274 static void
3275 i915_gem_idle_work_handler(struct work_struct *work)
3276 {
3277 struct drm_i915_private *dev_priv =
3278 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3279 struct drm_device *dev = &dev_priv->drm;
3280 bool rearm_hangcheck;
3281
3282 if (!READ_ONCE(dev_priv->gt.awake))
3283 return;
3284
3285 /*
3286 * Wait for last execlists context complete, but bail out in case a
3287 * new request is submitted.
3288 */
3289 wait_for(intel_engines_are_idle(dev_priv), 10);
3290 if (READ_ONCE(dev_priv->gt.active_requests))
3291 return;
3292
3293 rearm_hangcheck =
3294 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3295
3296 if (!mutex_trylock(&dev->struct_mutex)) {
3297 /* Currently busy, come back later */
3298 mod_delayed_work(dev_priv->wq,
3299 &dev_priv->gt.idle_work,
3300 msecs_to_jiffies(50));
3301 goto out_rearm;
3302 }
3303
3304 /*
3305 * New request retired after this work handler started, extend active
3306 * period until next instance of the work.
3307 */
3308 if (work_pending(work))
3309 goto out_unlock;
3310
3311 if (dev_priv->gt.active_requests)
3312 goto out_unlock;
3313
3314 if (wait_for(intel_engines_are_idle(dev_priv), 10))
3315 DRM_ERROR("Timeout waiting for engines to idle\n");
3316
3317 intel_engines_mark_idle(dev_priv);
3318 i915_gem_timelines_mark_idle(dev_priv);
3319
3320 GEM_BUG_ON(!dev_priv->gt.awake);
3321 dev_priv->gt.awake = false;
3322 rearm_hangcheck = false;
3323
3324 if (INTEL_GEN(dev_priv) >= 6)
3325 gen6_rps_idle(dev_priv);
3326 intel_runtime_pm_put(dev_priv);
3327 out_unlock:
3328 mutex_unlock(&dev->struct_mutex);
3329
3330 out_rearm:
3331 if (rearm_hangcheck) {
3332 GEM_BUG_ON(!dev_priv->gt.awake);
3333 i915_queue_hangcheck(dev_priv);
3334 }
3335 }
3336
3337 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3338 {
3339 struct drm_i915_private *i915 = to_i915(gem->dev);
3340 struct drm_i915_gem_object *obj = to_intel_bo(gem);
3341 struct drm_i915_file_private *fpriv = file->driver_priv;
3342 struct i915_lut_handle *lut, *ln;
3343
3344 mutex_lock(&i915->drm.struct_mutex);
3345
3346 list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3347 struct i915_gem_context *ctx = lut->ctx;
3348 struct i915_vma *vma;
3349
3350 GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3351 if (ctx->file_priv != fpriv)
3352 continue;
3353
3354 vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3355 GEM_BUG_ON(vma->obj != obj);
3356
3357 /* We allow the process to have multiple handles to the same
3358 * vma, in the same fd namespace, by virtue of flink/open.
3359 */
3360 GEM_BUG_ON(!vma->open_count);
3361 if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3362 i915_vma_close(vma);
3363
3364 list_del(&lut->obj_link);
3365 list_del(&lut->ctx_link);
3366
3367 kmem_cache_free(i915->luts, lut);
3368 __i915_gem_object_release_unless_active(obj);
3369 }
3370
3371 mutex_unlock(&i915->drm.struct_mutex);
3372 }
3373
3374 static unsigned long to_wait_timeout(s64 timeout_ns)
3375 {
3376 if (timeout_ns < 0)
3377 return MAX_SCHEDULE_TIMEOUT;
3378
3379 if (timeout_ns == 0)
3380 return 0;
3381
3382 return nsecs_to_jiffies_timeout(timeout_ns);
3383 }
3384
3385 /**
3386 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3387 * @dev: drm device pointer
3388 * @data: ioctl data blob
3389 * @file: drm file pointer
3390 *
3391 * Returns 0 if successful, else an error is returned with the remaining time in
3392 * the timeout parameter.
3393 * -ETIME: object is still busy after timeout
3394 * -ERESTARTSYS: signal interrupted the wait
3395 * -ENONENT: object doesn't exist
3396 * Also possible, but rare:
3397 * -EAGAIN: incomplete, restart syscall
3398 * -ENOMEM: damn
3399 * -ENODEV: Internal IRQ fail
3400 * -E?: The add request failed
3401 *
3402 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3403 * non-zero timeout parameter the wait ioctl will wait for the given number of
3404 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3405 * without holding struct_mutex the object may become re-busied before this
3406 * function completes. A similar but shorter * race condition exists in the busy
3407 * ioctl
3408 */
3409 int
3410 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3411 {
3412 struct drm_i915_gem_wait *args = data;
3413 struct drm_i915_gem_object *obj;
3414 ktime_t start;
3415 long ret;
3416
3417 if (args->flags != 0)
3418 return -EINVAL;
3419
3420 obj = i915_gem_object_lookup(file, args->bo_handle);
3421 if (!obj)
3422 return -ENOENT;
3423
3424 start = ktime_get();
3425
3426 ret = i915_gem_object_wait(obj,
3427 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3428 to_wait_timeout(args->timeout_ns),
3429 to_rps_client(file));
3430
3431 if (args->timeout_ns > 0) {
3432 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3433 if (args->timeout_ns < 0)
3434 args->timeout_ns = 0;
3435
3436 /*
3437 * Apparently ktime isn't accurate enough and occasionally has a
3438 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3439 * things up to make the test happy. We allow up to 1 jiffy.
3440 *
3441 * This is a regression from the timespec->ktime conversion.
3442 */
3443 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3444 args->timeout_ns = 0;
3445
3446 /* Asked to wait beyond the jiffie/scheduler precision? */
3447 if (ret == -ETIME && args->timeout_ns)
3448 ret = -EAGAIN;
3449 }
3450
3451 i915_gem_object_put(obj);
3452 return ret;
3453 }
3454
3455 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3456 {
3457 int ret, i;
3458
3459 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3460 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3461 if (ret)
3462 return ret;
3463 }
3464
3465 return 0;
3466 }
3467
3468 static int wait_for_engines(struct drm_i915_private *i915)
3469 {
3470 if (wait_for(intel_engines_are_idle(i915), 50)) {
3471 DRM_ERROR("Failed to idle engines, declaring wedged!\n");
3472 i915_gem_set_wedged(i915);
3473 return -EIO;
3474 }
3475
3476 return 0;
3477 }
3478
3479 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3480 {
3481 int ret;
3482
3483 /* If the device is asleep, we have no requests outstanding */
3484 if (!READ_ONCE(i915->gt.awake))
3485 return 0;
3486
3487 if (flags & I915_WAIT_LOCKED) {
3488 struct i915_gem_timeline *tl;
3489
3490 lockdep_assert_held(&i915->drm.struct_mutex);
3491
3492 list_for_each_entry(tl, &i915->gt.timelines, link) {
3493 ret = wait_for_timeline(tl, flags);
3494 if (ret)
3495 return ret;
3496 }
3497
3498 i915_gem_retire_requests(i915);
3499 GEM_BUG_ON(i915->gt.active_requests);
3500
3501 ret = wait_for_engines(i915);
3502 } else {
3503 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3504 }
3505
3506 return ret;
3507 }
3508
3509 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3510 {
3511 /*
3512 * We manually flush the CPU domain so that we can override and
3513 * force the flush for the display, and perform it asyncrhonously.
3514 */
3515 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3516 if (obj->cache_dirty)
3517 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3518 obj->base.write_domain = 0;
3519 }
3520
3521 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3522 {
3523 if (!READ_ONCE(obj->pin_global))
3524 return;
3525
3526 mutex_lock(&obj->base.dev->struct_mutex);
3527 __i915_gem_object_flush_for_display(obj);
3528 mutex_unlock(&obj->base.dev->struct_mutex);
3529 }
3530
3531 /**
3532 * Moves a single object to the WC read, and possibly write domain.
3533 * @obj: object to act on
3534 * @write: ask for write access or read only
3535 *
3536 * This function returns when the move is complete, including waiting on
3537 * flushes to occur.
3538 */
3539 int
3540 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3541 {
3542 int ret;
3543
3544 lockdep_assert_held(&obj->base.dev->struct_mutex);
3545
3546 ret = i915_gem_object_wait(obj,
3547 I915_WAIT_INTERRUPTIBLE |
3548 I915_WAIT_LOCKED |
3549 (write ? I915_WAIT_ALL : 0),
3550 MAX_SCHEDULE_TIMEOUT,
3551 NULL);
3552 if (ret)
3553 return ret;
3554
3555 if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
3556 return 0;
3557
3558 /* Flush and acquire obj->pages so that we are coherent through
3559 * direct access in memory with previous cached writes through
3560 * shmemfs and that our cache domain tracking remains valid.
3561 * For example, if the obj->filp was moved to swap without us
3562 * being notified and releasing the pages, we would mistakenly
3563 * continue to assume that the obj remained out of the CPU cached
3564 * domain.
3565 */
3566 ret = i915_gem_object_pin_pages(obj);
3567 if (ret)
3568 return ret;
3569
3570 flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3571
3572 /* Serialise direct access to this object with the barriers for
3573 * coherent writes from the GPU, by effectively invalidating the
3574 * WC domain upon first access.
3575 */
3576 if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
3577 mb();
3578
3579 /* It should now be out of any other write domains, and we can update
3580 * the domain values for our changes.
3581 */
3582 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3583 obj->base.read_domains |= I915_GEM_DOMAIN_WC;
3584 if (write) {
3585 obj->base.read_domains = I915_GEM_DOMAIN_WC;
3586 obj->base.write_domain = I915_GEM_DOMAIN_WC;
3587 obj->mm.dirty = true;
3588 }
3589
3590 i915_gem_object_unpin_pages(obj);
3591 return 0;
3592 }
3593
3594 /**
3595 * Moves a single object to the GTT read, and possibly write domain.
3596 * @obj: object to act on
3597 * @write: ask for write access or read only
3598 *
3599 * This function returns when the move is complete, including waiting on
3600 * flushes to occur.
3601 */
3602 int
3603 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3604 {
3605 int ret;
3606
3607 lockdep_assert_held(&obj->base.dev->struct_mutex);
3608
3609 ret = i915_gem_object_wait(obj,
3610 I915_WAIT_INTERRUPTIBLE |
3611 I915_WAIT_LOCKED |
3612 (write ? I915_WAIT_ALL : 0),
3613 MAX_SCHEDULE_TIMEOUT,
3614 NULL);
3615 if (ret)
3616 return ret;
3617
3618 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3619 return 0;
3620
3621 /* Flush and acquire obj->pages so that we are coherent through
3622 * direct access in memory with previous cached writes through
3623 * shmemfs and that our cache domain tracking remains valid.
3624 * For example, if the obj->filp was moved to swap without us
3625 * being notified and releasing the pages, we would mistakenly
3626 * continue to assume that the obj remained out of the CPU cached
3627 * domain.
3628 */
3629 ret = i915_gem_object_pin_pages(obj);
3630 if (ret)
3631 return ret;
3632
3633 flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3634
3635 /* Serialise direct access to this object with the barriers for
3636 * coherent writes from the GPU, by effectively invalidating the
3637 * GTT domain upon first access.
3638 */
3639 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3640 mb();
3641
3642 /* It should now be out of any other write domains, and we can update
3643 * the domain values for our changes.
3644 */
3645 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3646 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3647 if (write) {
3648 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3649 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3650 obj->mm.dirty = true;
3651 }
3652
3653 i915_gem_object_unpin_pages(obj);
3654 return 0;
3655 }
3656
3657 /**
3658 * Changes the cache-level of an object across all VMA.
3659 * @obj: object to act on
3660 * @cache_level: new cache level to set for the object
3661 *
3662 * After this function returns, the object will be in the new cache-level
3663 * across all GTT and the contents of the backing storage will be coherent,
3664 * with respect to the new cache-level. In order to keep the backing storage
3665 * coherent for all users, we only allow a single cache level to be set
3666 * globally on the object and prevent it from being changed whilst the
3667 * hardware is reading from the object. That is if the object is currently
3668 * on the scanout it will be set to uncached (or equivalent display
3669 * cache coherency) and all non-MOCS GPU access will also be uncached so
3670 * that all direct access to the scanout remains coherent.
3671 */
3672 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3673 enum i915_cache_level cache_level)
3674 {
3675 struct i915_vma *vma;
3676 int ret;
3677
3678 lockdep_assert_held(&obj->base.dev->struct_mutex);
3679
3680 if (obj->cache_level == cache_level)
3681 return 0;
3682
3683 /* Inspect the list of currently bound VMA and unbind any that would
3684 * be invalid given the new cache-level. This is principally to
3685 * catch the issue of the CS prefetch crossing page boundaries and
3686 * reading an invalid PTE on older architectures.
3687 */
3688 restart:
3689 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3690 if (!drm_mm_node_allocated(&vma->node))
3691 continue;
3692
3693 if (i915_vma_is_pinned(vma)) {
3694 DRM_DEBUG("can not change the cache level of pinned objects\n");
3695 return -EBUSY;
3696 }
3697
3698 if (i915_gem_valid_gtt_space(vma, cache_level))
3699 continue;
3700
3701 ret = i915_vma_unbind(vma);
3702 if (ret)
3703 return ret;
3704
3705 /* As unbinding may affect other elements in the
3706 * obj->vma_list (due to side-effects from retiring
3707 * an active vma), play safe and restart the iterator.
3708 */
3709 goto restart;
3710 }
3711
3712 /* We can reuse the existing drm_mm nodes but need to change the
3713 * cache-level on the PTE. We could simply unbind them all and
3714 * rebind with the correct cache-level on next use. However since
3715 * we already have a valid slot, dma mapping, pages etc, we may as
3716 * rewrite the PTE in the belief that doing so tramples upon less
3717 * state and so involves less work.
3718 */
3719 if (obj->bind_count) {
3720 /* Before we change the PTE, the GPU must not be accessing it.
3721 * If we wait upon the object, we know that all the bound
3722 * VMA are no longer active.
3723 */
3724 ret = i915_gem_object_wait(obj,
3725 I915_WAIT_INTERRUPTIBLE |
3726 I915_WAIT_LOCKED |
3727 I915_WAIT_ALL,
3728 MAX_SCHEDULE_TIMEOUT,
3729 NULL);
3730 if (ret)
3731 return ret;
3732
3733 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3734 cache_level != I915_CACHE_NONE) {
3735 /* Access to snoopable pages through the GTT is
3736 * incoherent and on some machines causes a hard
3737 * lockup. Relinquish the CPU mmaping to force
3738 * userspace to refault in the pages and we can
3739 * then double check if the GTT mapping is still
3740 * valid for that pointer access.
3741 */
3742 i915_gem_release_mmap(obj);
3743
3744 /* As we no longer need a fence for GTT access,
3745 * we can relinquish it now (and so prevent having
3746 * to steal a fence from someone else on the next
3747 * fence request). Note GPU activity would have
3748 * dropped the fence as all snoopable access is
3749 * supposed to be linear.
3750 */
3751 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3752 ret = i915_vma_put_fence(vma);
3753 if (ret)
3754 return ret;
3755 }
3756 } else {
3757 /* We either have incoherent backing store and
3758 * so no GTT access or the architecture is fully
3759 * coherent. In such cases, existing GTT mmaps
3760 * ignore the cache bit in the PTE and we can
3761 * rewrite it without confusing the GPU or having
3762 * to force userspace to fault back in its mmaps.
3763 */
3764 }
3765
3766 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3767 if (!drm_mm_node_allocated(&vma->node))
3768 continue;
3769
3770 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3771 if (ret)
3772 return ret;
3773 }
3774 }
3775
3776 list_for_each_entry(vma, &obj->vma_list, obj_link)
3777 vma->node.color = cache_level;
3778 i915_gem_object_set_cache_coherency(obj, cache_level);
3779 obj->cache_dirty = true; /* Always invalidate stale cachelines */
3780
3781 return 0;
3782 }
3783
3784 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3785 struct drm_file *file)
3786 {
3787 struct drm_i915_gem_caching *args = data;
3788 struct drm_i915_gem_object *obj;
3789 int err = 0;
3790
3791 rcu_read_lock();
3792 obj = i915_gem_object_lookup_rcu(file, args->handle);
3793 if (!obj) {
3794 err = -ENOENT;
3795 goto out;
3796 }
3797
3798 switch (obj->cache_level) {
3799 case I915_CACHE_LLC:
3800 case I915_CACHE_L3_LLC:
3801 args->caching = I915_CACHING_CACHED;
3802 break;
3803
3804 case I915_CACHE_WT:
3805 args->caching = I915_CACHING_DISPLAY;
3806 break;
3807
3808 default:
3809 args->caching = I915_CACHING_NONE;
3810 break;
3811 }
3812 out:
3813 rcu_read_unlock();
3814 return err;
3815 }
3816
3817 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3818 struct drm_file *file)
3819 {
3820 struct drm_i915_private *i915 = to_i915(dev);
3821 struct drm_i915_gem_caching *args = data;
3822 struct drm_i915_gem_object *obj;
3823 enum i915_cache_level level;
3824 int ret = 0;
3825
3826 switch (args->caching) {
3827 case I915_CACHING_NONE:
3828 level = I915_CACHE_NONE;
3829 break;
3830 case I915_CACHING_CACHED:
3831 /*
3832 * Due to a HW issue on BXT A stepping, GPU stores via a
3833 * snooped mapping may leave stale data in a corresponding CPU
3834 * cacheline, whereas normally such cachelines would get
3835 * invalidated.
3836 */
3837 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3838 return -ENODEV;
3839
3840 level = I915_CACHE_LLC;
3841 break;
3842 case I915_CACHING_DISPLAY:
3843 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3844 break;
3845 default:
3846 return -EINVAL;
3847 }
3848
3849 obj = i915_gem_object_lookup(file, args->handle);
3850 if (!obj)
3851 return -ENOENT;
3852
3853 if (obj->cache_level == level)
3854 goto out;
3855
3856 ret = i915_gem_object_wait(obj,
3857 I915_WAIT_INTERRUPTIBLE,
3858 MAX_SCHEDULE_TIMEOUT,
3859 to_rps_client(file));
3860 if (ret)
3861 goto out;
3862
3863 ret = i915_mutex_lock_interruptible(dev);
3864 if (ret)
3865 goto out;
3866
3867 ret = i915_gem_object_set_cache_level(obj, level);
3868 mutex_unlock(&dev->struct_mutex);
3869
3870 out:
3871 i915_gem_object_put(obj);
3872 return ret;
3873 }
3874
3875 /*
3876 * Prepare buffer for display plane (scanout, cursors, etc).
3877 * Can be called from an uninterruptible phase (modesetting) and allows
3878 * any flushes to be pipelined (for pageflips).
3879 */
3880 struct i915_vma *
3881 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3882 u32 alignment,
3883 const struct i915_ggtt_view *view)
3884 {
3885 struct i915_vma *vma;
3886 int ret;
3887
3888 lockdep_assert_held(&obj->base.dev->struct_mutex);
3889
3890 /* Mark the global pin early so that we account for the
3891 * display coherency whilst setting up the cache domains.
3892 */
3893 obj->pin_global++;
3894
3895 /* The display engine is not coherent with the LLC cache on gen6. As
3896 * a result, we make sure that the pinning that is about to occur is
3897 * done with uncached PTEs. This is lowest common denominator for all
3898 * chipsets.
3899 *
3900 * However for gen6+, we could do better by using the GFDT bit instead
3901 * of uncaching, which would allow us to flush all the LLC-cached data
3902 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3903 */
3904 ret = i915_gem_object_set_cache_level(obj,
3905 HAS_WT(to_i915(obj->base.dev)) ?
3906 I915_CACHE_WT : I915_CACHE_NONE);
3907 if (ret) {
3908 vma = ERR_PTR(ret);
3909 goto err_unpin_global;
3910 }
3911
3912 /* As the user may map the buffer once pinned in the display plane
3913 * (e.g. libkms for the bootup splash), we have to ensure that we
3914 * always use map_and_fenceable for all scanout buffers. However,
3915 * it may simply be too big to fit into mappable, in which case
3916 * put it anyway and hope that userspace can cope (but always first
3917 * try to preserve the existing ABI).
3918 */
3919 vma = ERR_PTR(-ENOSPC);
3920 if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3921 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3922 PIN_MAPPABLE | PIN_NONBLOCK);
3923 if (IS_ERR(vma)) {
3924 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3925 unsigned int flags;
3926
3927 /* Valleyview is definitely limited to scanning out the first
3928 * 512MiB. Lets presume this behaviour was inherited from the
3929 * g4x display engine and that all earlier gen are similarly
3930 * limited. Testing suggests that it is a little more
3931 * complicated than this. For example, Cherryview appears quite
3932 * happy to scanout from anywhere within its global aperture.
3933 */
3934 flags = 0;
3935 if (HAS_GMCH_DISPLAY(i915))
3936 flags = PIN_MAPPABLE;
3937 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3938 }
3939 if (IS_ERR(vma))
3940 goto err_unpin_global;
3941
3942 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3943
3944 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3945 __i915_gem_object_flush_for_display(obj);
3946 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3947
3948 /* It should now be out of any other write domains, and we can update
3949 * the domain values for our changes.
3950 */
3951 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3952
3953 return vma;
3954
3955 err_unpin_global:
3956 obj->pin_global--;
3957 return vma;
3958 }
3959
3960 void
3961 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3962 {
3963 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3964
3965 if (WARN_ON(vma->obj->pin_global == 0))
3966 return;
3967
3968 if (--vma->obj->pin_global == 0)
3969 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3970
3971 /* Bump the LRU to try and avoid premature eviction whilst flipping */
3972 i915_gem_object_bump_inactive_ggtt(vma->obj);
3973
3974 i915_vma_unpin(vma);
3975 }
3976
3977 /**
3978 * Moves a single object to the CPU read, and possibly write domain.
3979 * @obj: object to act on
3980 * @write: requesting write or read-only access
3981 *
3982 * This function returns when the move is complete, including waiting on
3983 * flushes to occur.
3984 */
3985 int
3986 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3987 {
3988 int ret;
3989
3990 lockdep_assert_held(&obj->base.dev->struct_mutex);
3991
3992 ret = i915_gem_object_wait(obj,
3993 I915_WAIT_INTERRUPTIBLE |
3994 I915_WAIT_LOCKED |
3995 (write ? I915_WAIT_ALL : 0),
3996 MAX_SCHEDULE_TIMEOUT,
3997 NULL);
3998 if (ret)
3999 return ret;
4000
4001 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4002
4003 /* Flush the CPU cache if it's still invalid. */
4004 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4005 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4006 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4007 }
4008
4009 /* It should now be out of any other write domains, and we can update
4010 * the domain values for our changes.
4011 */
4012 GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
4013
4014 /* If we're writing through the CPU, then the GPU read domains will
4015 * need to be invalidated at next use.
4016 */
4017 if (write)
4018 __start_cpu_write(obj);
4019
4020 return 0;
4021 }
4022
4023 /* Throttle our rendering by waiting until the ring has completed our requests
4024 * emitted over 20 msec ago.
4025 *
4026 * Note that if we were to use the current jiffies each time around the loop,
4027 * we wouldn't escape the function with any frames outstanding if the time to
4028 * render a frame was over 20ms.
4029 *
4030 * This should get us reasonable parallelism between CPU and GPU but also
4031 * relatively low latency when blocking on a particular request to finish.
4032 */
4033 static int
4034 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4035 {
4036 struct drm_i915_private *dev_priv = to_i915(dev);
4037 struct drm_i915_file_private *file_priv = file->driver_priv;
4038 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4039 struct drm_i915_gem_request *request, *target = NULL;
4040 long ret;
4041
4042 /* ABI: return -EIO if already wedged */
4043 if (i915_terminally_wedged(&dev_priv->gpu_error))
4044 return -EIO;
4045
4046 spin_lock(&file_priv->mm.lock);
4047 list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4048 if (time_after_eq(request->emitted_jiffies, recent_enough))
4049 break;
4050
4051 if (target) {
4052 list_del(&target->client_link);
4053 target->file_priv = NULL;
4054 }
4055
4056 target = request;
4057 }
4058 if (target)
4059 i915_gem_request_get(target);
4060 spin_unlock(&file_priv->mm.lock);
4061
4062 if (target == NULL)
4063 return 0;
4064
4065 ret = i915_wait_request(target,
4066 I915_WAIT_INTERRUPTIBLE,
4067 MAX_SCHEDULE_TIMEOUT);
4068 i915_gem_request_put(target);
4069
4070 return ret < 0 ? ret : 0;
4071 }
4072
4073 struct i915_vma *
4074 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4075 const struct i915_ggtt_view *view,
4076 u64 size,
4077 u64 alignment,
4078 u64 flags)
4079 {
4080 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4081 struct i915_address_space *vm = &dev_priv->ggtt.base;
4082 struct i915_vma *vma;
4083 int ret;
4084
4085 lockdep_assert_held(&obj->base.dev->struct_mutex);
4086
4087 if (!view && flags & PIN_MAPPABLE) {
4088 /* If the required space is larger than the available
4089 * aperture, we will not able to find a slot for the
4090 * object and unbinding the object now will be in
4091 * vain. Worse, doing so may cause us to ping-pong
4092 * the object in and out of the Global GTT and
4093 * waste a lot of cycles under the mutex.
4094 */
4095 if (obj->base.size > dev_priv->ggtt.mappable_end)
4096 return ERR_PTR(-E2BIG);
4097
4098 /* If NONBLOCK is set the caller is optimistically
4099 * trying to cache the full object within the mappable
4100 * aperture, and *must* have a fallback in place for
4101 * situations where we cannot bind the object. We
4102 * can be a little more lax here and use the fallback
4103 * more often to avoid costly migrations of ourselves
4104 * and other objects within the aperture.
4105 *
4106 * Half-the-aperture is used as a simple heuristic.
4107 * More interesting would to do search for a free
4108 * block prior to making the commitment to unbind.
4109 * That caters for the self-harm case, and with a
4110 * little more heuristics (e.g. NOFAULT, NOEVICT)
4111 * we could try to minimise harm to others.
4112 */
4113 if (flags & PIN_NONBLOCK &&
4114 obj->base.size > dev_priv->ggtt.mappable_end / 2)
4115 return ERR_PTR(-ENOSPC);
4116 }
4117
4118 vma = i915_vma_instance(obj, vm, view);
4119 if (unlikely(IS_ERR(vma)))
4120 return vma;
4121
4122 if (i915_vma_misplaced(vma, size, alignment, flags)) {
4123 if (flags & PIN_NONBLOCK) {
4124 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4125 return ERR_PTR(-ENOSPC);
4126
4127 if (flags & PIN_MAPPABLE &&
4128 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4129 return ERR_PTR(-ENOSPC);
4130 }
4131
4132 WARN(i915_vma_is_pinned(vma),
4133 "bo is already pinned in ggtt with incorrect alignment:"
4134 " offset=%08x, req.alignment=%llx,"
4135 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4136 i915_ggtt_offset(vma), alignment,
4137 !!(flags & PIN_MAPPABLE),
4138 i915_vma_is_map_and_fenceable(vma));
4139 ret = i915_vma_unbind(vma);
4140 if (ret)
4141 return ERR_PTR(ret);
4142 }
4143
4144 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4145 if (ret)
4146 return ERR_PTR(ret);
4147
4148 return vma;
4149 }
4150
4151 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4152 {
4153 /* Note that we could alias engines in the execbuf API, but
4154 * that would be very unwise as it prevents userspace from
4155 * fine control over engine selection. Ahem.
4156 *
4157 * This should be something like EXEC_MAX_ENGINE instead of
4158 * I915_NUM_ENGINES.
4159 */
4160 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4161 return 0x10000 << id;
4162 }
4163
4164 static __always_inline unsigned int __busy_write_id(unsigned int id)
4165 {
4166 /* The uABI guarantees an active writer is also amongst the read
4167 * engines. This would be true if we accessed the activity tracking
4168 * under the lock, but as we perform the lookup of the object and
4169 * its activity locklessly we can not guarantee that the last_write
4170 * being active implies that we have set the same engine flag from
4171 * last_read - hence we always set both read and write busy for
4172 * last_write.
4173 */
4174 return id | __busy_read_flag(id);
4175 }
4176
4177 static __always_inline unsigned int
4178 __busy_set_if_active(const struct dma_fence *fence,
4179 unsigned int (*flag)(unsigned int id))
4180 {
4181 struct drm_i915_gem_request *rq;
4182
4183 /* We have to check the current hw status of the fence as the uABI
4184 * guarantees forward progress. We could rely on the idle worker
4185 * to eventually flush us, but to minimise latency just ask the
4186 * hardware.
4187 *
4188 * Note we only report on the status of native fences.
4189 */
4190 if (!dma_fence_is_i915(fence))
4191 return 0;
4192
4193 /* opencode to_request() in order to avoid const warnings */
4194 rq = container_of(fence, struct drm_i915_gem_request, fence);
4195 if (i915_gem_request_completed(rq))
4196 return 0;
4197
4198 return flag(rq->engine->uabi_id);
4199 }
4200
4201 static __always_inline unsigned int
4202 busy_check_reader(const struct dma_fence *fence)
4203 {
4204 return __busy_set_if_active(fence, __busy_read_flag);
4205 }
4206
4207 static __always_inline unsigned int
4208 busy_check_writer(const struct dma_fence *fence)
4209 {
4210 if (!fence)
4211 return 0;
4212
4213 return __busy_set_if_active(fence, __busy_write_id);
4214 }
4215
4216 int
4217 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4218 struct drm_file *file)
4219 {
4220 struct drm_i915_gem_busy *args = data;
4221 struct drm_i915_gem_object *obj;
4222 struct reservation_object_list *list;
4223 unsigned int seq;
4224 int err;
4225
4226 err = -ENOENT;
4227 rcu_read_lock();
4228 obj = i915_gem_object_lookup_rcu(file, args->handle);
4229 if (!obj)
4230 goto out;
4231
4232 /* A discrepancy here is that we do not report the status of
4233 * non-i915 fences, i.e. even though we may report the object as idle,
4234 * a call to set-domain may still stall waiting for foreign rendering.
4235 * This also means that wait-ioctl may report an object as busy,
4236 * where busy-ioctl considers it idle.
4237 *
4238 * We trade the ability to warn of foreign fences to report on which
4239 * i915 engines are active for the object.
4240 *
4241 * Alternatively, we can trade that extra information on read/write
4242 * activity with
4243 * args->busy =
4244 * !reservation_object_test_signaled_rcu(obj->resv, true);
4245 * to report the overall busyness. This is what the wait-ioctl does.
4246 *
4247 */
4248 retry:
4249 seq = raw_read_seqcount(&obj->resv->seq);
4250
4251 /* Translate the exclusive fence to the READ *and* WRITE engine */
4252 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4253
4254 /* Translate shared fences to READ set of engines */
4255 list = rcu_dereference(obj->resv->fence);
4256 if (list) {
4257 unsigned int shared_count = list->shared_count, i;
4258
4259 for (i = 0; i < shared_count; ++i) {
4260 struct dma_fence *fence =
4261 rcu_dereference(list->shared[i]);
4262
4263 args->busy |= busy_check_reader(fence);
4264 }
4265 }
4266
4267 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4268 goto retry;
4269
4270 err = 0;
4271 out:
4272 rcu_read_unlock();
4273 return err;
4274 }
4275
4276 int
4277 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4278 struct drm_file *file_priv)
4279 {
4280 return i915_gem_ring_throttle(dev, file_priv);
4281 }
4282
4283 int
4284 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4285 struct drm_file *file_priv)
4286 {
4287 struct drm_i915_private *dev_priv = to_i915(dev);
4288 struct drm_i915_gem_madvise *args = data;
4289 struct drm_i915_gem_object *obj;
4290 int err;
4291
4292 switch (args->madv) {
4293 case I915_MADV_DONTNEED:
4294 case I915_MADV_WILLNEED:
4295 break;
4296 default:
4297 return -EINVAL;
4298 }
4299
4300 obj = i915_gem_object_lookup(file_priv, args->handle);
4301 if (!obj)
4302 return -ENOENT;
4303
4304 err = mutex_lock_interruptible(&obj->mm.lock);
4305 if (err)
4306 goto out;
4307
4308 if (i915_gem_object_has_pages(obj) &&
4309 i915_gem_object_is_tiled(obj) &&
4310 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4311 if (obj->mm.madv == I915_MADV_WILLNEED) {
4312 GEM_BUG_ON(!obj->mm.quirked);
4313 __i915_gem_object_unpin_pages(obj);
4314 obj->mm.quirked = false;
4315 }
4316 if (args->madv == I915_MADV_WILLNEED) {
4317 GEM_BUG_ON(obj->mm.quirked);
4318 __i915_gem_object_pin_pages(obj);
4319 obj->mm.quirked = true;
4320 }
4321 }
4322
4323 if (obj->mm.madv != __I915_MADV_PURGED)
4324 obj->mm.madv = args->madv;
4325
4326 /* if the object is no longer attached, discard its backing storage */
4327 if (obj->mm.madv == I915_MADV_DONTNEED &&
4328 !i915_gem_object_has_pages(obj))
4329 i915_gem_object_truncate(obj);
4330
4331 args->retained = obj->mm.madv != __I915_MADV_PURGED;
4332 mutex_unlock(&obj->mm.lock);
4333
4334 out:
4335 i915_gem_object_put(obj);
4336 return err;
4337 }
4338
4339 static void
4340 frontbuffer_retire(struct i915_gem_active *active,
4341 struct drm_i915_gem_request *request)
4342 {
4343 struct drm_i915_gem_object *obj =
4344 container_of(active, typeof(*obj), frontbuffer_write);
4345
4346 intel_fb_obj_flush(obj, ORIGIN_CS);
4347 }
4348
4349 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4350 const struct drm_i915_gem_object_ops *ops)
4351 {
4352 mutex_init(&obj->mm.lock);
4353
4354 INIT_LIST_HEAD(&obj->vma_list);
4355 INIT_LIST_HEAD(&obj->lut_list);
4356 INIT_LIST_HEAD(&obj->batch_pool_link);
4357
4358 obj->ops = ops;
4359
4360 reservation_object_init(&obj->__builtin_resv);
4361 obj->resv = &obj->__builtin_resv;
4362
4363 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4364 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4365
4366 obj->mm.madv = I915_MADV_WILLNEED;
4367 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4368 mutex_init(&obj->mm.get_page.lock);
4369
4370 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4371 }
4372
4373 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4374 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4375 I915_GEM_OBJECT_IS_SHRINKABLE,
4376
4377 .get_pages = i915_gem_object_get_pages_gtt,
4378 .put_pages = i915_gem_object_put_pages_gtt,
4379
4380 .pwrite = i915_gem_object_pwrite_gtt,
4381 };
4382
4383 static int i915_gem_object_create_shmem(struct drm_device *dev,
4384 struct drm_gem_object *obj,
4385 size_t size)
4386 {
4387 struct drm_i915_private *i915 = to_i915(dev);
4388 unsigned long flags = VM_NORESERVE;
4389 struct file *filp;
4390
4391 drm_gem_private_object_init(dev, obj, size);
4392
4393 if (i915->mm.gemfs)
4394 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4395 flags);
4396 else
4397 filp = shmem_file_setup("i915", size, flags);
4398
4399 if (IS_ERR(filp))
4400 return PTR_ERR(filp);
4401
4402 obj->filp = filp;
4403
4404 return 0;
4405 }
4406
4407 struct drm_i915_gem_object *
4408 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4409 {
4410 struct drm_i915_gem_object *obj;
4411 struct address_space *mapping;
4412 unsigned int cache_level;
4413 gfp_t mask;
4414 int ret;
4415
4416 /* There is a prevalence of the assumption that we fit the object's
4417 * page count inside a 32bit _signed_ variable. Let's document this and
4418 * catch if we ever need to fix it. In the meantime, if you do spot
4419 * such a local variable, please consider fixing!
4420 */
4421 if (size >> PAGE_SHIFT > INT_MAX)
4422 return ERR_PTR(-E2BIG);
4423
4424 if (overflows_type(size, obj->base.size))
4425 return ERR_PTR(-E2BIG);
4426
4427 obj = i915_gem_object_alloc(dev_priv);
4428 if (obj == NULL)
4429 return ERR_PTR(-ENOMEM);
4430
4431 ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4432 if (ret)
4433 goto fail;
4434
4435 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4436 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4437 /* 965gm cannot relocate objects above 4GiB. */
4438 mask &= ~__GFP_HIGHMEM;
4439 mask |= __GFP_DMA32;
4440 }
4441
4442 mapping = obj->base.filp->f_mapping;
4443 mapping_set_gfp_mask(mapping, mask);
4444 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4445
4446 i915_gem_object_init(obj, &i915_gem_object_ops);
4447
4448 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4449 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4450
4451 if (HAS_LLC(dev_priv))
4452 /* On some devices, we can have the GPU use the LLC (the CPU
4453 * cache) for about a 10% performance improvement
4454 * compared to uncached. Graphics requests other than
4455 * display scanout are coherent with the CPU in
4456 * accessing this cache. This means in this mode we
4457 * don't need to clflush on the CPU side, and on the
4458 * GPU side we only need to flush internal caches to
4459 * get data visible to the CPU.
4460 *
4461 * However, we maintain the display planes as UC, and so
4462 * need to rebind when first used as such.
4463 */
4464 cache_level = I915_CACHE_LLC;
4465 else
4466 cache_level = I915_CACHE_NONE;
4467
4468 i915_gem_object_set_cache_coherency(obj, cache_level);
4469
4470 trace_i915_gem_object_create(obj);
4471
4472 return obj;
4473
4474 fail:
4475 i915_gem_object_free(obj);
4476 return ERR_PTR(ret);
4477 }
4478
4479 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4480 {
4481 /* If we are the last user of the backing storage (be it shmemfs
4482 * pages or stolen etc), we know that the pages are going to be
4483 * immediately released. In this case, we can then skip copying
4484 * back the contents from the GPU.
4485 */
4486
4487 if (obj->mm.madv != I915_MADV_WILLNEED)
4488 return false;
4489
4490 if (obj->base.filp == NULL)
4491 return true;
4492
4493 /* At first glance, this looks racy, but then again so would be
4494 * userspace racing mmap against close. However, the first external
4495 * reference to the filp can only be obtained through the
4496 * i915_gem_mmap_ioctl() which safeguards us against the user
4497 * acquiring such a reference whilst we are in the middle of
4498 * freeing the object.
4499 */
4500 return atomic_long_read(&obj->base.filp->f_count) == 1;
4501 }
4502
4503 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4504 struct llist_node *freed)
4505 {
4506 struct drm_i915_gem_object *obj, *on;
4507
4508 intel_runtime_pm_get(i915);
4509 llist_for_each_entry_safe(obj, on, freed, freed) {
4510 struct i915_vma *vma, *vn;
4511
4512 trace_i915_gem_object_destroy(obj);
4513
4514 mutex_lock(&i915->drm.struct_mutex);
4515
4516 GEM_BUG_ON(i915_gem_object_is_active(obj));
4517 list_for_each_entry_safe(vma, vn,
4518 &obj->vma_list, obj_link) {
4519 GEM_BUG_ON(i915_vma_is_active(vma));
4520 vma->flags &= ~I915_VMA_PIN_MASK;
4521 i915_vma_close(vma);
4522 }
4523 GEM_BUG_ON(!list_empty(&obj->vma_list));
4524 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4525
4526 /* This serializes freeing with the shrinker. Since the free
4527 * is delayed, first by RCU then by the workqueue, we want the
4528 * shrinker to be able to free pages of unreferenced objects,
4529 * or else we may oom whilst there are plenty of deferred
4530 * freed objects.
4531 */
4532 if (i915_gem_object_has_pages(obj)) {
4533 spin_lock(&i915->mm.obj_lock);
4534 list_del_init(&obj->mm.link);
4535 spin_unlock(&i915->mm.obj_lock);
4536 }
4537
4538 mutex_unlock(&i915->drm.struct_mutex);
4539
4540 GEM_BUG_ON(obj->bind_count);
4541 GEM_BUG_ON(obj->userfault_count);
4542 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4543 GEM_BUG_ON(!list_empty(&obj->lut_list));
4544
4545 if (obj->ops->release)
4546 obj->ops->release(obj);
4547
4548 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4549 atomic_set(&obj->mm.pages_pin_count, 0);
4550 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4551 GEM_BUG_ON(i915_gem_object_has_pages(obj));
4552
4553 if (obj->base.import_attach)
4554 drm_prime_gem_destroy(&obj->base, NULL);
4555
4556 reservation_object_fini(&obj->__builtin_resv);
4557 drm_gem_object_release(&obj->base);
4558 i915_gem_info_remove_obj(i915, obj->base.size);
4559
4560 kfree(obj->bit_17);
4561 i915_gem_object_free(obj);
4562
4563 if (on)
4564 cond_resched();
4565 }
4566 intel_runtime_pm_put(i915);
4567 }
4568
4569 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4570 {
4571 struct llist_node *freed;
4572
4573 /* Free the oldest, most stale object to keep the free_list short */
4574 freed = NULL;
4575 if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4576 /* Only one consumer of llist_del_first() allowed */
4577 spin_lock(&i915->mm.free_lock);
4578 freed = llist_del_first(&i915->mm.free_list);
4579 spin_unlock(&i915->mm.free_lock);
4580 }
4581 if (unlikely(freed)) {
4582 freed->next = NULL;
4583 __i915_gem_free_objects(i915, freed);
4584 }
4585 }
4586
4587 static void __i915_gem_free_work(struct work_struct *work)
4588 {
4589 struct drm_i915_private *i915 =
4590 container_of(work, struct drm_i915_private, mm.free_work);
4591 struct llist_node *freed;
4592
4593 /* All file-owned VMA should have been released by this point through
4594 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4595 * However, the object may also be bound into the global GTT (e.g.
4596 * older GPUs without per-process support, or for direct access through
4597 * the GTT either for the user or for scanout). Those VMA still need to
4598 * unbound now.
4599 */
4600
4601 spin_lock(&i915->mm.free_lock);
4602 while ((freed = llist_del_all(&i915->mm.free_list))) {
4603 spin_unlock(&i915->mm.free_lock);
4604
4605 __i915_gem_free_objects(i915, freed);
4606 if (need_resched())
4607 return;
4608
4609 spin_lock(&i915->mm.free_lock);
4610 }
4611 spin_unlock(&i915->mm.free_lock);
4612 }
4613
4614 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4615 {
4616 struct drm_i915_gem_object *obj =
4617 container_of(head, typeof(*obj), rcu);
4618 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4619
4620 /* We can't simply use call_rcu() from i915_gem_free_object()
4621 * as we need to block whilst unbinding, and the call_rcu
4622 * task may be called from softirq context. So we take a
4623 * detour through a worker.
4624 */
4625 if (llist_add(&obj->freed, &i915->mm.free_list))
4626 schedule_work(&i915->mm.free_work);
4627 }
4628
4629 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4630 {
4631 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4632
4633 if (obj->mm.quirked)
4634 __i915_gem_object_unpin_pages(obj);
4635
4636 if (discard_backing_storage(obj))
4637 obj->mm.madv = I915_MADV_DONTNEED;
4638
4639 /* Before we free the object, make sure any pure RCU-only
4640 * read-side critical sections are complete, e.g.
4641 * i915_gem_busy_ioctl(). For the corresponding synchronized
4642 * lookup see i915_gem_object_lookup_rcu().
4643 */
4644 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4645 }
4646
4647 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4648 {
4649 lockdep_assert_held(&obj->base.dev->struct_mutex);
4650
4651 if (!i915_gem_object_has_active_reference(obj) &&
4652 i915_gem_object_is_active(obj))
4653 i915_gem_object_set_active_reference(obj);
4654 else
4655 i915_gem_object_put(obj);
4656 }
4657
4658 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4659 {
4660 struct intel_engine_cs *engine;
4661 enum intel_engine_id id;
4662
4663 for_each_engine(engine, dev_priv, id)
4664 GEM_BUG_ON(engine->last_retired_context &&
4665 !i915_gem_context_is_kernel(engine->last_retired_context));
4666 }
4667
4668 void i915_gem_sanitize(struct drm_i915_private *i915)
4669 {
4670 if (i915_terminally_wedged(&i915->gpu_error)) {
4671 mutex_lock(&i915->drm.struct_mutex);
4672 i915_gem_unset_wedged(i915);
4673 mutex_unlock(&i915->drm.struct_mutex);
4674 }
4675
4676 /*
4677 * If we inherit context state from the BIOS or earlier occupants
4678 * of the GPU, the GPU may be in an inconsistent state when we
4679 * try to take over. The only way to remove the earlier state
4680 * is by resetting. However, resetting on earlier gen is tricky as
4681 * it may impact the display and we are uncertain about the stability
4682 * of the reset, so this could be applied to even earlier gen.
4683 */
4684 if (INTEL_GEN(i915) >= 5) {
4685 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4686 WARN_ON(reset && reset != -ENODEV);
4687 }
4688 }
4689
4690 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4691 {
4692 struct drm_device *dev = &dev_priv->drm;
4693 int ret;
4694
4695 intel_runtime_pm_get(dev_priv);
4696 intel_suspend_gt_powersave(dev_priv);
4697
4698 mutex_lock(&dev->struct_mutex);
4699
4700 /* We have to flush all the executing contexts to main memory so
4701 * that they can saved in the hibernation image. To ensure the last
4702 * context image is coherent, we have to switch away from it. That
4703 * leaves the dev_priv->kernel_context still active when
4704 * we actually suspend, and its image in memory may not match the GPU
4705 * state. Fortunately, the kernel_context is disposable and we do
4706 * not rely on its state.
4707 */
4708 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
4709 ret = i915_gem_switch_to_kernel_context(dev_priv);
4710 if (ret)
4711 goto err_unlock;
4712
4713 ret = i915_gem_wait_for_idle(dev_priv,
4714 I915_WAIT_INTERRUPTIBLE |
4715 I915_WAIT_LOCKED);
4716 if (ret && ret != -EIO)
4717 goto err_unlock;
4718
4719 assert_kernel_context_is_current(dev_priv);
4720 }
4721 i915_gem_contexts_lost(dev_priv);
4722 mutex_unlock(&dev->struct_mutex);
4723
4724 intel_guc_suspend(dev_priv);
4725
4726 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4727 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4728
4729 /* As the idle_work is rearming if it detects a race, play safe and
4730 * repeat the flush until it is definitely idle.
4731 */
4732 drain_delayed_work(&dev_priv->gt.idle_work);
4733
4734 /* Assert that we sucessfully flushed all the work and
4735 * reset the GPU back to its idle, low power state.
4736 */
4737 WARN_ON(dev_priv->gt.awake);
4738 if (WARN_ON(!intel_engines_are_idle(dev_priv)))
4739 i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
4740
4741 /*
4742 * Neither the BIOS, ourselves or any other kernel
4743 * expects the system to be in execlists mode on startup,
4744 * so we need to reset the GPU back to legacy mode. And the only
4745 * known way to disable logical contexts is through a GPU reset.
4746 *
4747 * So in order to leave the system in a known default configuration,
4748 * always reset the GPU upon unload and suspend. Afterwards we then
4749 * clean up the GEM state tracking, flushing off the requests and
4750 * leaving the system in a known idle state.
4751 *
4752 * Note that is of the upmost importance that the GPU is idle and
4753 * all stray writes are flushed *before* we dismantle the backing
4754 * storage for the pinned objects.
4755 *
4756 * However, since we are uncertain that resetting the GPU on older
4757 * machines is a good idea, we don't - just in case it leaves the
4758 * machine in an unusable condition.
4759 */
4760 i915_gem_sanitize(dev_priv);
4761
4762 intel_runtime_pm_put(dev_priv);
4763 return 0;
4764
4765 err_unlock:
4766 mutex_unlock(&dev->struct_mutex);
4767 intel_runtime_pm_put(dev_priv);
4768 return ret;
4769 }
4770
4771 void i915_gem_resume(struct drm_i915_private *dev_priv)
4772 {
4773 struct drm_device *dev = &dev_priv->drm;
4774
4775 WARN_ON(dev_priv->gt.awake);
4776
4777 mutex_lock(&dev->struct_mutex);
4778 i915_gem_restore_gtt_mappings(dev_priv);
4779 i915_gem_restore_fences(dev_priv);
4780
4781 /* As we didn't flush the kernel context before suspend, we cannot
4782 * guarantee that the context image is complete. So let's just reset
4783 * it and start again.
4784 */
4785 dev_priv->gt.resume(dev_priv);
4786
4787 mutex_unlock(&dev->struct_mutex);
4788 }
4789
4790 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4791 {
4792 if (INTEL_GEN(dev_priv) < 5 ||
4793 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4794 return;
4795
4796 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4797 DISP_TILE_SURFACE_SWIZZLING);
4798
4799 if (IS_GEN5(dev_priv))
4800 return;
4801
4802 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4803 if (IS_GEN6(dev_priv))
4804 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4805 else if (IS_GEN7(dev_priv))
4806 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4807 else if (IS_GEN8(dev_priv))
4808 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4809 else
4810 BUG();
4811 }
4812
4813 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4814 {
4815 I915_WRITE(RING_CTL(base), 0);
4816 I915_WRITE(RING_HEAD(base), 0);
4817 I915_WRITE(RING_TAIL(base), 0);
4818 I915_WRITE(RING_START(base), 0);
4819 }
4820
4821 static void init_unused_rings(struct drm_i915_private *dev_priv)
4822 {
4823 if (IS_I830(dev_priv)) {
4824 init_unused_ring(dev_priv, PRB1_BASE);
4825 init_unused_ring(dev_priv, SRB0_BASE);
4826 init_unused_ring(dev_priv, SRB1_BASE);
4827 init_unused_ring(dev_priv, SRB2_BASE);
4828 init_unused_ring(dev_priv, SRB3_BASE);
4829 } else if (IS_GEN2(dev_priv)) {
4830 init_unused_ring(dev_priv, SRB0_BASE);
4831 init_unused_ring(dev_priv, SRB1_BASE);
4832 } else if (IS_GEN3(dev_priv)) {
4833 init_unused_ring(dev_priv, PRB1_BASE);
4834 init_unused_ring(dev_priv, PRB2_BASE);
4835 }
4836 }
4837
4838 static int __i915_gem_restart_engines(void *data)
4839 {
4840 struct drm_i915_private *i915 = data;
4841 struct intel_engine_cs *engine;
4842 enum intel_engine_id id;
4843 int err;
4844
4845 for_each_engine(engine, i915, id) {
4846 err = engine->init_hw(engine);
4847 if (err)
4848 return err;
4849 }
4850
4851 return 0;
4852 }
4853
4854 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4855 {
4856 int ret;
4857
4858 dev_priv->gt.last_init_time = ktime_get();
4859
4860 /* Double layer security blanket, see i915_gem_init() */
4861 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4862
4863 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4864 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4865
4866 if (IS_HASWELL(dev_priv))
4867 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4868 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4869
4870 if (HAS_PCH_NOP(dev_priv)) {
4871 if (IS_IVYBRIDGE(dev_priv)) {
4872 u32 temp = I915_READ(GEN7_MSG_CTL);
4873 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4874 I915_WRITE(GEN7_MSG_CTL, temp);
4875 } else if (INTEL_GEN(dev_priv) >= 7) {
4876 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4877 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4878 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4879 }
4880 }
4881
4882 i915_gem_init_swizzling(dev_priv);
4883
4884 /*
4885 * At least 830 can leave some of the unused rings
4886 * "active" (ie. head != tail) after resume which
4887 * will prevent c3 entry. Makes sure all unused rings
4888 * are totally idle.
4889 */
4890 init_unused_rings(dev_priv);
4891
4892 BUG_ON(!dev_priv->kernel_context);
4893 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
4894 ret = -EIO;
4895 goto out;
4896 }
4897
4898 ret = i915_ppgtt_init_hw(dev_priv);
4899 if (ret) {
4900 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4901 goto out;
4902 }
4903
4904 /* Need to do basic initialisation of all rings first: */
4905 ret = __i915_gem_restart_engines(dev_priv);
4906 if (ret)
4907 goto out;
4908
4909 intel_mocs_init_l3cc_table(dev_priv);
4910
4911 /* We can't enable contexts until all firmware is loaded */
4912 ret = intel_uc_init_hw(dev_priv);
4913 if (ret)
4914 goto out;
4915
4916 out:
4917 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4918 return ret;
4919 }
4920
4921 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4922 {
4923 if (INTEL_INFO(dev_priv)->gen < 6)
4924 return false;
4925
4926 /* TODO: make semaphores and Execlists play nicely together */
4927 if (i915_modparams.enable_execlists)
4928 return false;
4929
4930 if (value >= 0)
4931 return value;
4932
4933 /* Enable semaphores on SNB when IO remapping is off */
4934 if (IS_GEN6(dev_priv) && intel_vtd_active())
4935 return false;
4936
4937 return true;
4938 }
4939
4940 int i915_gem_init(struct drm_i915_private *dev_priv)
4941 {
4942 int ret;
4943
4944 /*
4945 * We need to fallback to 4K pages since gvt gtt handling doesn't
4946 * support huge page entries - we will need to check either hypervisor
4947 * mm can support huge guest page or just do emulation in gvt.
4948 */
4949 if (intel_vgpu_active(dev_priv))
4950 mkwrite_device_info(dev_priv)->page_sizes =
4951 I915_GTT_PAGE_SIZE_4K;
4952
4953 dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4954
4955 if (!i915_modparams.enable_execlists) {
4956 dev_priv->gt.resume = intel_legacy_submission_resume;
4957 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4958 } else {
4959 dev_priv->gt.resume = intel_lr_context_resume;
4960 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4961 }
4962
4963 ret = i915_gem_init_userptr(dev_priv);
4964 if (ret)
4965 return ret;
4966
4967 /* This is just a security blanket to placate dragons.
4968 * On some systems, we very sporadically observe that the first TLBs
4969 * used by the CS may be stale, despite us poking the TLB reset. If
4970 * we hold the forcewake during initialisation these problems
4971 * just magically go away.
4972 */
4973 mutex_lock(&dev_priv->drm.struct_mutex);
4974 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4975
4976 ret = i915_gem_init_ggtt(dev_priv);
4977 if (ret)
4978 goto out_unlock;
4979
4980 ret = i915_gem_contexts_init(dev_priv);
4981 if (ret)
4982 goto out_unlock;
4983
4984 ret = intel_engines_init(dev_priv);
4985 if (ret)
4986 goto out_unlock;
4987
4988 ret = i915_gem_init_hw(dev_priv);
4989 if (ret == -EIO) {
4990 /* Allow engine initialisation to fail by marking the GPU as
4991 * wedged. But we only want to do this where the GPU is angry,
4992 * for all other failure, such as an allocation failure, bail.
4993 */
4994 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
4995 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4996 i915_gem_set_wedged(dev_priv);
4997 }
4998 ret = 0;
4999 }
5000
5001 out_unlock:
5002 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5003 mutex_unlock(&dev_priv->drm.struct_mutex);
5004
5005 return ret;
5006 }
5007
5008 void i915_gem_init_mmio(struct drm_i915_private *i915)
5009 {
5010 i915_gem_sanitize(i915);
5011 }
5012
5013 void
5014 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5015 {
5016 struct intel_engine_cs *engine;
5017 enum intel_engine_id id;
5018
5019 for_each_engine(engine, dev_priv, id)
5020 dev_priv->gt.cleanup_engine(engine);
5021 }
5022
5023 void
5024 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5025 {
5026 int i;
5027
5028 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5029 !IS_CHERRYVIEW(dev_priv))
5030 dev_priv->num_fence_regs = 32;
5031 else if (INTEL_INFO(dev_priv)->gen >= 4 ||
5032 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5033 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5034 dev_priv->num_fence_regs = 16;
5035 else
5036 dev_priv->num_fence_regs = 8;
5037
5038 if (intel_vgpu_active(dev_priv))
5039 dev_priv->num_fence_regs =
5040 I915_READ(vgtif_reg(avail_rs.fence_num));
5041
5042 /* Initialize fence registers to zero */
5043 for (i = 0; i < dev_priv->num_fence_regs; i++) {
5044 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5045
5046 fence->i915 = dev_priv;
5047 fence->id = i;
5048 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5049 }
5050 i915_gem_restore_fences(dev_priv);
5051
5052 i915_gem_detect_bit_6_swizzle(dev_priv);
5053 }
5054
5055 int
5056 i915_gem_load_init(struct drm_i915_private *dev_priv)
5057 {
5058 int err = -ENOMEM;
5059
5060 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5061 if (!dev_priv->objects)
5062 goto err_out;
5063
5064 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5065 if (!dev_priv->vmas)
5066 goto err_objects;
5067
5068 dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5069 if (!dev_priv->luts)
5070 goto err_vmas;
5071
5072 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
5073 SLAB_HWCACHE_ALIGN |
5074 SLAB_RECLAIM_ACCOUNT |
5075 SLAB_TYPESAFE_BY_RCU);
5076 if (!dev_priv->requests)
5077 goto err_luts;
5078
5079 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5080 SLAB_HWCACHE_ALIGN |
5081 SLAB_RECLAIM_ACCOUNT);
5082 if (!dev_priv->dependencies)
5083 goto err_requests;
5084
5085 dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5086 if (!dev_priv->priorities)
5087 goto err_dependencies;
5088
5089 mutex_lock(&dev_priv->drm.struct_mutex);
5090 INIT_LIST_HEAD(&dev_priv->gt.timelines);
5091 err = i915_gem_timeline_init__global(dev_priv);
5092 mutex_unlock(&dev_priv->drm.struct_mutex);
5093 if (err)
5094 goto err_priorities;
5095
5096 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
5097
5098 spin_lock_init(&dev_priv->mm.obj_lock);
5099 spin_lock_init(&dev_priv->mm.free_lock);
5100 init_llist_head(&dev_priv->mm.free_list);
5101 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5102 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5103 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5104 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
5105
5106 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5107 i915_gem_retire_work_handler);
5108 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5109 i915_gem_idle_work_handler);
5110 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5111 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5112
5113 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5114
5115 spin_lock_init(&dev_priv->fb_tracking.lock);
5116
5117 err = i915_gemfs_init(dev_priv);
5118 if (err)
5119 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5120
5121 return 0;
5122
5123 err_priorities:
5124 kmem_cache_destroy(dev_priv->priorities);
5125 err_dependencies:
5126 kmem_cache_destroy(dev_priv->dependencies);
5127 err_requests:
5128 kmem_cache_destroy(dev_priv->requests);
5129 err_luts:
5130 kmem_cache_destroy(dev_priv->luts);
5131 err_vmas:
5132 kmem_cache_destroy(dev_priv->vmas);
5133 err_objects:
5134 kmem_cache_destroy(dev_priv->objects);
5135 err_out:
5136 return err;
5137 }
5138
5139 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
5140 {
5141 i915_gem_drain_freed_objects(dev_priv);
5142 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
5143 WARN_ON(dev_priv->mm.object_count);
5144
5145 mutex_lock(&dev_priv->drm.struct_mutex);
5146 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
5147 WARN_ON(!list_empty(&dev_priv->gt.timelines));
5148 mutex_unlock(&dev_priv->drm.struct_mutex);
5149
5150 kmem_cache_destroy(dev_priv->priorities);
5151 kmem_cache_destroy(dev_priv->dependencies);
5152 kmem_cache_destroy(dev_priv->requests);
5153 kmem_cache_destroy(dev_priv->luts);
5154 kmem_cache_destroy(dev_priv->vmas);
5155 kmem_cache_destroy(dev_priv->objects);
5156
5157 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5158 rcu_barrier();
5159
5160 i915_gemfs_fini(dev_priv);
5161 }
5162
5163 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5164 {
5165 /* Discard all purgeable objects, let userspace recover those as
5166 * required after resuming.
5167 */
5168 i915_gem_shrink_all(dev_priv);
5169
5170 return 0;
5171 }
5172
5173 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5174 {
5175 struct drm_i915_gem_object *obj;
5176 struct list_head *phases[] = {
5177 &dev_priv->mm.unbound_list,
5178 &dev_priv->mm.bound_list,
5179 NULL
5180 }, **p;
5181
5182 /* Called just before we write the hibernation image.
5183 *
5184 * We need to update the domain tracking to reflect that the CPU
5185 * will be accessing all the pages to create and restore from the
5186 * hibernation, and so upon restoration those pages will be in the
5187 * CPU domain.
5188 *
5189 * To make sure the hibernation image contains the latest state,
5190 * we update that state just before writing out the image.
5191 *
5192 * To try and reduce the hibernation image, we manually shrink
5193 * the objects as well, see i915_gem_freeze()
5194 */
5195
5196 i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5197 i915_gem_drain_freed_objects(dev_priv);
5198
5199 spin_lock(&dev_priv->mm.obj_lock);
5200 for (p = phases; *p; p++) {
5201 list_for_each_entry(obj, *p, mm.link)
5202 __start_cpu_write(obj);
5203 }
5204 spin_unlock(&dev_priv->mm.obj_lock);
5205
5206 return 0;
5207 }
5208
5209 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5210 {
5211 struct drm_i915_file_private *file_priv = file->driver_priv;
5212 struct drm_i915_gem_request *request;
5213
5214 /* Clean up our request list when the client is going away, so that
5215 * later retire_requests won't dereference our soon-to-be-gone
5216 * file_priv.
5217 */
5218 spin_lock(&file_priv->mm.lock);
5219 list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5220 request->file_priv = NULL;
5221 spin_unlock(&file_priv->mm.lock);
5222 }
5223
5224 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5225 {
5226 struct drm_i915_file_private *file_priv;
5227 int ret;
5228
5229 DRM_DEBUG("\n");
5230
5231 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5232 if (!file_priv)
5233 return -ENOMEM;
5234
5235 file->driver_priv = file_priv;
5236 file_priv->dev_priv = i915;
5237 file_priv->file = file;
5238
5239 spin_lock_init(&file_priv->mm.lock);
5240 INIT_LIST_HEAD(&file_priv->mm.request_list);
5241
5242 file_priv->bsd_engine = -1;
5243
5244 ret = i915_gem_context_open(i915, file);
5245 if (ret)
5246 kfree(file_priv);
5247
5248 return ret;
5249 }
5250
5251 /**
5252 * i915_gem_track_fb - update frontbuffer tracking
5253 * @old: current GEM buffer for the frontbuffer slots
5254 * @new: new GEM buffer for the frontbuffer slots
5255 * @frontbuffer_bits: bitmask of frontbuffer slots
5256 *
5257 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5258 * from @old and setting them in @new. Both @old and @new can be NULL.
5259 */
5260 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5261 struct drm_i915_gem_object *new,
5262 unsigned frontbuffer_bits)
5263 {
5264 /* Control of individual bits within the mask are guarded by
5265 * the owning plane->mutex, i.e. we can never see concurrent
5266 * manipulation of individual bits. But since the bitfield as a whole
5267 * is updated using RMW, we need to use atomics in order to update
5268 * the bits.
5269 */
5270 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5271 sizeof(atomic_t) * BITS_PER_BYTE);
5272
5273 if (old) {
5274 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5275 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5276 }
5277
5278 if (new) {
5279 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5280 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5281 }
5282 }
5283
5284 /* Allocate a new GEM object and fill it with the supplied data */
5285 struct drm_i915_gem_object *
5286 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5287 const void *data, size_t size)
5288 {
5289 struct drm_i915_gem_object *obj;
5290 struct file *file;
5291 size_t offset;
5292 int err;
5293
5294 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5295 if (IS_ERR(obj))
5296 return obj;
5297
5298 GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5299
5300 file = obj->base.filp;
5301 offset = 0;
5302 do {
5303 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5304 struct page *page;
5305 void *pgdata, *vaddr;
5306
5307 err = pagecache_write_begin(file, file->f_mapping,
5308 offset, len, 0,
5309 &page, &pgdata);
5310 if (err < 0)
5311 goto fail;
5312
5313 vaddr = kmap(page);
5314 memcpy(vaddr, data, len);
5315 kunmap(page);
5316
5317 err = pagecache_write_end(file, file->f_mapping,
5318 offset, len, len,
5319 page, pgdata);
5320 if (err < 0)
5321 goto fail;
5322
5323 size -= len;
5324 data += len;
5325 offset += len;
5326 } while (size);
5327
5328 return obj;
5329
5330 fail:
5331 i915_gem_object_put(obj);
5332 return ERR_PTR(err);
5333 }
5334
5335 struct scatterlist *
5336 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5337 unsigned int n,
5338 unsigned int *offset)
5339 {
5340 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5341 struct scatterlist *sg;
5342 unsigned int idx, count;
5343
5344 might_sleep();
5345 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5346 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5347
5348 /* As we iterate forward through the sg, we record each entry in a
5349 * radixtree for quick repeated (backwards) lookups. If we have seen
5350 * this index previously, we will have an entry for it.
5351 *
5352 * Initial lookup is O(N), but this is amortized to O(1) for
5353 * sequential page access (where each new request is consecutive
5354 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5355 * i.e. O(1) with a large constant!
5356 */
5357 if (n < READ_ONCE(iter->sg_idx))
5358 goto lookup;
5359
5360 mutex_lock(&iter->lock);
5361
5362 /* We prefer to reuse the last sg so that repeated lookup of this
5363 * (or the subsequent) sg are fast - comparing against the last
5364 * sg is faster than going through the radixtree.
5365 */
5366
5367 sg = iter->sg_pos;
5368 idx = iter->sg_idx;
5369 count = __sg_page_count(sg);
5370
5371 while (idx + count <= n) {
5372 unsigned long exception, i;
5373 int ret;
5374
5375 /* If we cannot allocate and insert this entry, or the
5376 * individual pages from this range, cancel updating the
5377 * sg_idx so that on this lookup we are forced to linearly
5378 * scan onwards, but on future lookups we will try the
5379 * insertion again (in which case we need to be careful of
5380 * the error return reporting that we have already inserted
5381 * this index).
5382 */
5383 ret = radix_tree_insert(&iter->radix, idx, sg);
5384 if (ret && ret != -EEXIST)
5385 goto scan;
5386
5387 exception =
5388 RADIX_TREE_EXCEPTIONAL_ENTRY |
5389 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5390 for (i = 1; i < count; i++) {
5391 ret = radix_tree_insert(&iter->radix, idx + i,
5392 (void *)exception);
5393 if (ret && ret != -EEXIST)
5394 goto scan;
5395 }
5396
5397 idx += count;
5398 sg = ____sg_next(sg);
5399 count = __sg_page_count(sg);
5400 }
5401
5402 scan:
5403 iter->sg_pos = sg;
5404 iter->sg_idx = idx;
5405
5406 mutex_unlock(&iter->lock);
5407
5408 if (unlikely(n < idx)) /* insertion completed by another thread */
5409 goto lookup;
5410
5411 /* In case we failed to insert the entry into the radixtree, we need
5412 * to look beyond the current sg.
5413 */
5414 while (idx + count <= n) {
5415 idx += count;
5416 sg = ____sg_next(sg);
5417 count = __sg_page_count(sg);
5418 }
5419
5420 *offset = n - idx;
5421 return sg;
5422
5423 lookup:
5424 rcu_read_lock();
5425
5426 sg = radix_tree_lookup(&iter->radix, n);
5427 GEM_BUG_ON(!sg);
5428
5429 /* If this index is in the middle of multi-page sg entry,
5430 * the radixtree will contain an exceptional entry that points
5431 * to the start of that range. We will return the pointer to
5432 * the base page and the offset of this page within the
5433 * sg entry's range.
5434 */
5435 *offset = 0;
5436 if (unlikely(radix_tree_exception(sg))) {
5437 unsigned long base =
5438 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5439
5440 sg = radix_tree_lookup(&iter->radix, base);
5441 GEM_BUG_ON(!sg);
5442
5443 *offset = n - base;
5444 }
5445
5446 rcu_read_unlock();
5447
5448 return sg;
5449 }
5450
5451 struct page *
5452 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5453 {
5454 struct scatterlist *sg;
5455 unsigned int offset;
5456
5457 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5458
5459 sg = i915_gem_object_get_sg(obj, n, &offset);
5460 return nth_page(sg_page(sg), offset);
5461 }
5462
5463 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5464 struct page *
5465 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5466 unsigned int n)
5467 {
5468 struct page *page;
5469
5470 page = i915_gem_object_get_page(obj, n);
5471 if (!obj->mm.dirty)
5472 set_page_dirty(page);
5473
5474 return page;
5475 }
5476
5477 dma_addr_t
5478 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5479 unsigned long n)
5480 {
5481 struct scatterlist *sg;
5482 unsigned int offset;
5483
5484 sg = i915_gem_object_get_sg(obj, n, &offset);
5485 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5486 }
5487
5488 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
5489 {
5490 struct sg_table *pages;
5491 int err;
5492
5493 if (align > obj->base.size)
5494 return -EINVAL;
5495
5496 if (obj->ops == &i915_gem_phys_ops)
5497 return 0;
5498
5499 if (obj->ops != &i915_gem_object_ops)
5500 return -EINVAL;
5501
5502 err = i915_gem_object_unbind(obj);
5503 if (err)
5504 return err;
5505
5506 mutex_lock(&obj->mm.lock);
5507
5508 if (obj->mm.madv != I915_MADV_WILLNEED) {
5509 err = -EFAULT;
5510 goto err_unlock;
5511 }
5512
5513 if (obj->mm.quirked) {
5514 err = -EFAULT;
5515 goto err_unlock;
5516 }
5517
5518 if (obj->mm.mapping) {
5519 err = -EBUSY;
5520 goto err_unlock;
5521 }
5522
5523 pages = fetch_and_zero(&obj->mm.pages);
5524 if (pages) {
5525 struct drm_i915_private *i915 = to_i915(obj->base.dev);
5526
5527 __i915_gem_object_reset_page_iter(obj);
5528
5529 spin_lock(&i915->mm.obj_lock);
5530 list_del(&obj->mm.link);
5531 spin_unlock(&i915->mm.obj_lock);
5532 }
5533
5534 obj->ops = &i915_gem_phys_ops;
5535
5536 err = ____i915_gem_object_get_pages(obj);
5537 if (err)
5538 goto err_xfer;
5539
5540 /* Perma-pin (until release) the physical set of pages */
5541 __i915_gem_object_pin_pages(obj);
5542
5543 if (!IS_ERR_OR_NULL(pages))
5544 i915_gem_object_ops.put_pages(obj, pages);
5545 mutex_unlock(&obj->mm.lock);
5546 return 0;
5547
5548 err_xfer:
5549 obj->ops = &i915_gem_object_ops;
5550 obj->mm.pages = pages;
5551 err_unlock:
5552 mutex_unlock(&obj->mm.lock);
5553 return err;
5554 }
5555
5556 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5557 #include "selftests/scatterlist.c"
5558 #include "selftests/mock_gem_device.c"
5559 #include "selftests/huge_gem_object.c"
5560 #include "selftests/huge_pages.c"
5561 #include "selftests/i915_gem_object.c"
5562 #include "selftests/i915_gem_coherency.c"
5563 #endif