]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Avoid keeping waitboost active for signaling threads
[mirror_ubuntu-bionic-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/dma-fence-array.h>
39 #include <linux/kthread.h>
40 #include <linux/reservation.h>
41 #include <linux/shmem_fs.h>
42 #include <linux/slab.h>
43 #include <linux/stop_machine.h>
44 #include <linux/swap.h>
45 #include <linux/pci.h>
46 #include <linux/dma-buf.h>
47
48 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49
50 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
51 {
52 if (obj->cache_dirty)
53 return false;
54
55 if (!obj->cache_coherent)
56 return true;
57
58 return obj->pin_display;
59 }
60
61 static int
62 insert_mappable_node(struct i915_ggtt *ggtt,
63 struct drm_mm_node *node, u32 size)
64 {
65 memset(node, 0, sizeof(*node));
66 return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
67 size, 0, I915_COLOR_UNEVICTABLE,
68 0, ggtt->mappable_end,
69 DRM_MM_INSERT_LOW);
70 }
71
72 static void
73 remove_mappable_node(struct drm_mm_node *node)
74 {
75 drm_mm_remove_node(node);
76 }
77
78 /* some bookkeeping */
79 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
80 u64 size)
81 {
82 spin_lock(&dev_priv->mm.object_stat_lock);
83 dev_priv->mm.object_count++;
84 dev_priv->mm.object_memory += size;
85 spin_unlock(&dev_priv->mm.object_stat_lock);
86 }
87
88 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
89 u64 size)
90 {
91 spin_lock(&dev_priv->mm.object_stat_lock);
92 dev_priv->mm.object_count--;
93 dev_priv->mm.object_memory -= size;
94 spin_unlock(&dev_priv->mm.object_stat_lock);
95 }
96
97 static int
98 i915_gem_wait_for_error(struct i915_gpu_error *error)
99 {
100 int ret;
101
102 might_sleep();
103
104 /*
105 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
106 * userspace. If it takes that long something really bad is going on and
107 * we should simply try to bail out and fail as gracefully as possible.
108 */
109 ret = wait_event_interruptible_timeout(error->reset_queue,
110 !i915_reset_backoff(error),
111 I915_RESET_TIMEOUT);
112 if (ret == 0) {
113 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
114 return -EIO;
115 } else if (ret < 0) {
116 return ret;
117 } else {
118 return 0;
119 }
120 }
121
122 int i915_mutex_lock_interruptible(struct drm_device *dev)
123 {
124 struct drm_i915_private *dev_priv = to_i915(dev);
125 int ret;
126
127 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
128 if (ret)
129 return ret;
130
131 ret = mutex_lock_interruptible(&dev->struct_mutex);
132 if (ret)
133 return ret;
134
135 return 0;
136 }
137
138 int
139 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
140 struct drm_file *file)
141 {
142 struct drm_i915_private *dev_priv = to_i915(dev);
143 struct i915_ggtt *ggtt = &dev_priv->ggtt;
144 struct drm_i915_gem_get_aperture *args = data;
145 struct i915_vma *vma;
146 u64 pinned;
147
148 pinned = ggtt->base.reserved;
149 mutex_lock(&dev->struct_mutex);
150 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
151 if (i915_vma_is_pinned(vma))
152 pinned += vma->node.size;
153 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
154 if (i915_vma_is_pinned(vma))
155 pinned += vma->node.size;
156 mutex_unlock(&dev->struct_mutex);
157
158 args->aper_size = ggtt->base.total;
159 args->aper_available_size = args->aper_size - pinned;
160
161 return 0;
162 }
163
164 static struct sg_table *
165 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166 {
167 struct address_space *mapping = obj->base.filp->f_mapping;
168 drm_dma_handle_t *phys;
169 struct sg_table *st;
170 struct scatterlist *sg;
171 char *vaddr;
172 int i;
173
174 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
175 return ERR_PTR(-EINVAL);
176
177 /* Always aligning to the object size, allows a single allocation
178 * to handle all possible callers, and given typical object sizes,
179 * the alignment of the buddy allocation will naturally match.
180 */
181 phys = drm_pci_alloc(obj->base.dev,
182 obj->base.size,
183 roundup_pow_of_two(obj->base.size));
184 if (!phys)
185 return ERR_PTR(-ENOMEM);
186
187 vaddr = phys->vaddr;
188 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
189 struct page *page;
190 char *src;
191
192 page = shmem_read_mapping_page(mapping, i);
193 if (IS_ERR(page)) {
194 st = ERR_CAST(page);
195 goto err_phys;
196 }
197
198 src = kmap_atomic(page);
199 memcpy(vaddr, src, PAGE_SIZE);
200 drm_clflush_virt_range(vaddr, PAGE_SIZE);
201 kunmap_atomic(src);
202
203 put_page(page);
204 vaddr += PAGE_SIZE;
205 }
206
207 i915_gem_chipset_flush(to_i915(obj->base.dev));
208
209 st = kmalloc(sizeof(*st), GFP_KERNEL);
210 if (!st) {
211 st = ERR_PTR(-ENOMEM);
212 goto err_phys;
213 }
214
215 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
216 kfree(st);
217 st = ERR_PTR(-ENOMEM);
218 goto err_phys;
219 }
220
221 sg = st->sgl;
222 sg->offset = 0;
223 sg->length = obj->base.size;
224
225 sg_dma_address(sg) = phys->busaddr;
226 sg_dma_len(sg) = obj->base.size;
227
228 obj->phys_handle = phys;
229 return st;
230
231 err_phys:
232 drm_pci_free(obj->base.dev, phys);
233 return st;
234 }
235
236 static void __start_cpu_write(struct drm_i915_gem_object *obj)
237 {
238 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
239 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
240 if (cpu_write_needs_clflush(obj))
241 obj->cache_dirty = true;
242 }
243
244 static void
245 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
246 struct sg_table *pages,
247 bool needs_clflush)
248 {
249 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
250
251 if (obj->mm.madv == I915_MADV_DONTNEED)
252 obj->mm.dirty = false;
253
254 if (needs_clflush &&
255 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
256 !obj->cache_coherent)
257 drm_clflush_sg(pages);
258
259 __start_cpu_write(obj);
260 }
261
262 static void
263 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
264 struct sg_table *pages)
265 {
266 __i915_gem_object_release_shmem(obj, pages, false);
267
268 if (obj->mm.dirty) {
269 struct address_space *mapping = obj->base.filp->f_mapping;
270 char *vaddr = obj->phys_handle->vaddr;
271 int i;
272
273 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
274 struct page *page;
275 char *dst;
276
277 page = shmem_read_mapping_page(mapping, i);
278 if (IS_ERR(page))
279 continue;
280
281 dst = kmap_atomic(page);
282 drm_clflush_virt_range(vaddr, PAGE_SIZE);
283 memcpy(dst, vaddr, PAGE_SIZE);
284 kunmap_atomic(dst);
285
286 set_page_dirty(page);
287 if (obj->mm.madv == I915_MADV_WILLNEED)
288 mark_page_accessed(page);
289 put_page(page);
290 vaddr += PAGE_SIZE;
291 }
292 obj->mm.dirty = false;
293 }
294
295 sg_free_table(pages);
296 kfree(pages);
297
298 drm_pci_free(obj->base.dev, obj->phys_handle);
299 }
300
301 static void
302 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
303 {
304 i915_gem_object_unpin_pages(obj);
305 }
306
307 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
308 .get_pages = i915_gem_object_get_pages_phys,
309 .put_pages = i915_gem_object_put_pages_phys,
310 .release = i915_gem_object_release_phys,
311 };
312
313 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
314
315 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 {
317 struct i915_vma *vma;
318 LIST_HEAD(still_in_list);
319 int ret;
320
321 lockdep_assert_held(&obj->base.dev->struct_mutex);
322
323 /* Closed vma are removed from the obj->vma_list - but they may
324 * still have an active binding on the object. To remove those we
325 * must wait for all rendering to complete to the object (as unbinding
326 * must anyway), and retire the requests.
327 */
328 ret = i915_gem_object_wait(obj,
329 I915_WAIT_INTERRUPTIBLE |
330 I915_WAIT_LOCKED |
331 I915_WAIT_ALL,
332 MAX_SCHEDULE_TIMEOUT,
333 NULL);
334 if (ret)
335 return ret;
336
337 i915_gem_retire_requests(to_i915(obj->base.dev));
338
339 while ((vma = list_first_entry_or_null(&obj->vma_list,
340 struct i915_vma,
341 obj_link))) {
342 list_move_tail(&vma->obj_link, &still_in_list);
343 ret = i915_vma_unbind(vma);
344 if (ret)
345 break;
346 }
347 list_splice(&still_in_list, &obj->vma_list);
348
349 return ret;
350 }
351
352 static long
353 i915_gem_object_wait_fence(struct dma_fence *fence,
354 unsigned int flags,
355 long timeout,
356 struct intel_rps_client *rps)
357 {
358 struct drm_i915_gem_request *rq;
359
360 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361
362 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
363 return timeout;
364
365 if (!dma_fence_is_i915(fence))
366 return dma_fence_wait_timeout(fence,
367 flags & I915_WAIT_INTERRUPTIBLE,
368 timeout);
369
370 rq = to_request(fence);
371 if (i915_gem_request_completed(rq))
372 goto out;
373
374 /* This client is about to stall waiting for the GPU. In many cases
375 * this is undesirable and limits the throughput of the system, as
376 * many clients cannot continue processing user input/output whilst
377 * blocked. RPS autotuning may take tens of milliseconds to respond
378 * to the GPU load and thus incurs additional latency for the client.
379 * We can circumvent that by promoting the GPU frequency to maximum
380 * before we wait. This makes the GPU throttle up much more quickly
381 * (good for benchmarks and user experience, e.g. window animations),
382 * but at a cost of spending more power processing the workload
383 * (bad for battery). Not all clients even want their results
384 * immediately and for them we should just let the GPU select its own
385 * frequency to maximise efficiency. To prevent a single client from
386 * forcing the clocks too high for the whole system, we only allow
387 * each client to waitboost once in a busy period.
388 */
389 if (rps) {
390 if (INTEL_GEN(rq->i915) >= 6)
391 gen6_rps_boost(rq, rps);
392 else
393 rps = NULL;
394 }
395
396 timeout = i915_wait_request(rq, flags, timeout);
397
398 out:
399 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
400 i915_gem_request_retire_upto(rq);
401
402 return timeout;
403 }
404
405 static long
406 i915_gem_object_wait_reservation(struct reservation_object *resv,
407 unsigned int flags,
408 long timeout,
409 struct intel_rps_client *rps)
410 {
411 unsigned int seq = __read_seqcount_begin(&resv->seq);
412 struct dma_fence *excl;
413 bool prune_fences = false;
414
415 if (flags & I915_WAIT_ALL) {
416 struct dma_fence **shared;
417 unsigned int count, i;
418 int ret;
419
420 ret = reservation_object_get_fences_rcu(resv,
421 &excl, &count, &shared);
422 if (ret)
423 return ret;
424
425 for (i = 0; i < count; i++) {
426 timeout = i915_gem_object_wait_fence(shared[i],
427 flags, timeout,
428 rps);
429 if (timeout < 0)
430 break;
431
432 dma_fence_put(shared[i]);
433 }
434
435 for (; i < count; i++)
436 dma_fence_put(shared[i]);
437 kfree(shared);
438
439 prune_fences = count && timeout >= 0;
440 } else {
441 excl = reservation_object_get_excl_rcu(resv);
442 }
443
444 if (excl && timeout >= 0) {
445 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
446 prune_fences = timeout >= 0;
447 }
448
449 dma_fence_put(excl);
450
451 /* Oportunistically prune the fences iff we know they have *all* been
452 * signaled and that the reservation object has not been changed (i.e.
453 * no new fences have been added).
454 */
455 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
456 if (reservation_object_trylock(resv)) {
457 if (!__read_seqcount_retry(&resv->seq, seq))
458 reservation_object_add_excl_fence(resv, NULL);
459 reservation_object_unlock(resv);
460 }
461 }
462
463 return timeout;
464 }
465
466 static void __fence_set_priority(struct dma_fence *fence, int prio)
467 {
468 struct drm_i915_gem_request *rq;
469 struct intel_engine_cs *engine;
470
471 if (!dma_fence_is_i915(fence))
472 return;
473
474 rq = to_request(fence);
475 engine = rq->engine;
476 if (!engine->schedule)
477 return;
478
479 engine->schedule(rq, prio);
480 }
481
482 static void fence_set_priority(struct dma_fence *fence, int prio)
483 {
484 /* Recurse once into a fence-array */
485 if (dma_fence_is_array(fence)) {
486 struct dma_fence_array *array = to_dma_fence_array(fence);
487 int i;
488
489 for (i = 0; i < array->num_fences; i++)
490 __fence_set_priority(array->fences[i], prio);
491 } else {
492 __fence_set_priority(fence, prio);
493 }
494 }
495
496 int
497 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
498 unsigned int flags,
499 int prio)
500 {
501 struct dma_fence *excl;
502
503 if (flags & I915_WAIT_ALL) {
504 struct dma_fence **shared;
505 unsigned int count, i;
506 int ret;
507
508 ret = reservation_object_get_fences_rcu(obj->resv,
509 &excl, &count, &shared);
510 if (ret)
511 return ret;
512
513 for (i = 0; i < count; i++) {
514 fence_set_priority(shared[i], prio);
515 dma_fence_put(shared[i]);
516 }
517
518 kfree(shared);
519 } else {
520 excl = reservation_object_get_excl_rcu(obj->resv);
521 }
522
523 if (excl) {
524 fence_set_priority(excl, prio);
525 dma_fence_put(excl);
526 }
527 return 0;
528 }
529
530 /**
531 * Waits for rendering to the object to be completed
532 * @obj: i915 gem object
533 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
534 * @timeout: how long to wait
535 * @rps: client (user process) to charge for any waitboosting
536 */
537 int
538 i915_gem_object_wait(struct drm_i915_gem_object *obj,
539 unsigned int flags,
540 long timeout,
541 struct intel_rps_client *rps)
542 {
543 might_sleep();
544 #if IS_ENABLED(CONFIG_LOCKDEP)
545 GEM_BUG_ON(debug_locks &&
546 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
547 !!(flags & I915_WAIT_LOCKED));
548 #endif
549 GEM_BUG_ON(timeout < 0);
550
551 timeout = i915_gem_object_wait_reservation(obj->resv,
552 flags, timeout,
553 rps);
554 return timeout < 0 ? timeout : 0;
555 }
556
557 static struct intel_rps_client *to_rps_client(struct drm_file *file)
558 {
559 struct drm_i915_file_private *fpriv = file->driver_priv;
560
561 return &fpriv->rps;
562 }
563
564 int
565 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
566 int align)
567 {
568 int ret;
569
570 if (align > obj->base.size)
571 return -EINVAL;
572
573 if (obj->ops == &i915_gem_phys_ops)
574 return 0;
575
576 if (obj->mm.madv != I915_MADV_WILLNEED)
577 return -EFAULT;
578
579 if (obj->base.filp == NULL)
580 return -EINVAL;
581
582 ret = i915_gem_object_unbind(obj);
583 if (ret)
584 return ret;
585
586 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
587 if (obj->mm.pages)
588 return -EBUSY;
589
590 GEM_BUG_ON(obj->ops != &i915_gem_object_ops);
591 obj->ops = &i915_gem_phys_ops;
592
593 ret = i915_gem_object_pin_pages(obj);
594 if (ret)
595 goto err_xfer;
596
597 return 0;
598
599 err_xfer:
600 obj->ops = &i915_gem_object_ops;
601 return ret;
602 }
603
604 static int
605 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
606 struct drm_i915_gem_pwrite *args,
607 struct drm_file *file)
608 {
609 void *vaddr = obj->phys_handle->vaddr + args->offset;
610 char __user *user_data = u64_to_user_ptr(args->data_ptr);
611
612 /* We manually control the domain here and pretend that it
613 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
614 */
615 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
616 if (copy_from_user(vaddr, user_data, args->size))
617 return -EFAULT;
618
619 drm_clflush_virt_range(vaddr, args->size);
620 i915_gem_chipset_flush(to_i915(obj->base.dev));
621
622 intel_fb_obj_flush(obj, ORIGIN_CPU);
623 return 0;
624 }
625
626 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
627 {
628 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
629 }
630
631 void i915_gem_object_free(struct drm_i915_gem_object *obj)
632 {
633 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
634 kmem_cache_free(dev_priv->objects, obj);
635 }
636
637 static int
638 i915_gem_create(struct drm_file *file,
639 struct drm_i915_private *dev_priv,
640 uint64_t size,
641 uint32_t *handle_p)
642 {
643 struct drm_i915_gem_object *obj;
644 int ret;
645 u32 handle;
646
647 size = roundup(size, PAGE_SIZE);
648 if (size == 0)
649 return -EINVAL;
650
651 /* Allocate the new object */
652 obj = i915_gem_object_create(dev_priv, size);
653 if (IS_ERR(obj))
654 return PTR_ERR(obj);
655
656 ret = drm_gem_handle_create(file, &obj->base, &handle);
657 /* drop reference from allocate - handle holds it now */
658 i915_gem_object_put(obj);
659 if (ret)
660 return ret;
661
662 *handle_p = handle;
663 return 0;
664 }
665
666 int
667 i915_gem_dumb_create(struct drm_file *file,
668 struct drm_device *dev,
669 struct drm_mode_create_dumb *args)
670 {
671 /* have to work out size/pitch and return them */
672 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
673 args->size = args->pitch * args->height;
674 return i915_gem_create(file, to_i915(dev),
675 args->size, &args->handle);
676 }
677
678 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
679 {
680 return !(obj->cache_level == I915_CACHE_NONE ||
681 obj->cache_level == I915_CACHE_WT);
682 }
683
684 /**
685 * Creates a new mm object and returns a handle to it.
686 * @dev: drm device pointer
687 * @data: ioctl data blob
688 * @file: drm file pointer
689 */
690 int
691 i915_gem_create_ioctl(struct drm_device *dev, void *data,
692 struct drm_file *file)
693 {
694 struct drm_i915_private *dev_priv = to_i915(dev);
695 struct drm_i915_gem_create *args = data;
696
697 i915_gem_flush_free_objects(dev_priv);
698
699 return i915_gem_create(file, dev_priv,
700 args->size, &args->handle);
701 }
702
703 static inline enum fb_op_origin
704 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
705 {
706 return (domain == I915_GEM_DOMAIN_GTT ?
707 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
708 }
709
710 static void
711 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
712 {
713 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
714
715 if (!(obj->base.write_domain & flush_domains))
716 return;
717
718 /* No actual flushing is required for the GTT write domain. Writes
719 * to it "immediately" go to main memory as far as we know, so there's
720 * no chipset flush. It also doesn't land in render cache.
721 *
722 * However, we do have to enforce the order so that all writes through
723 * the GTT land before any writes to the device, such as updates to
724 * the GATT itself.
725 *
726 * We also have to wait a bit for the writes to land from the GTT.
727 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
728 * timing. This issue has only been observed when switching quickly
729 * between GTT writes and CPU reads from inside the kernel on recent hw,
730 * and it appears to only affect discrete GTT blocks (i.e. on LLC
731 * system agents we cannot reproduce this behaviour).
732 */
733 wmb();
734
735 switch (obj->base.write_domain) {
736 case I915_GEM_DOMAIN_GTT:
737 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
738 if (intel_runtime_pm_get_if_in_use(dev_priv)) {
739 spin_lock_irq(&dev_priv->uncore.lock);
740 POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
741 spin_unlock_irq(&dev_priv->uncore.lock);
742 intel_runtime_pm_put(dev_priv);
743 }
744 }
745
746 intel_fb_obj_flush(obj,
747 fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
748 break;
749
750 case I915_GEM_DOMAIN_CPU:
751 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
752 break;
753
754 case I915_GEM_DOMAIN_RENDER:
755 if (gpu_write_needs_clflush(obj))
756 obj->cache_dirty = true;
757 break;
758 }
759
760 obj->base.write_domain = 0;
761 }
762
763 static inline int
764 __copy_to_user_swizzled(char __user *cpu_vaddr,
765 const char *gpu_vaddr, int gpu_offset,
766 int length)
767 {
768 int ret, cpu_offset = 0;
769
770 while (length > 0) {
771 int cacheline_end = ALIGN(gpu_offset + 1, 64);
772 int this_length = min(cacheline_end - gpu_offset, length);
773 int swizzled_gpu_offset = gpu_offset ^ 64;
774
775 ret = __copy_to_user(cpu_vaddr + cpu_offset,
776 gpu_vaddr + swizzled_gpu_offset,
777 this_length);
778 if (ret)
779 return ret + length;
780
781 cpu_offset += this_length;
782 gpu_offset += this_length;
783 length -= this_length;
784 }
785
786 return 0;
787 }
788
789 static inline int
790 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
791 const char __user *cpu_vaddr,
792 int length)
793 {
794 int ret, cpu_offset = 0;
795
796 while (length > 0) {
797 int cacheline_end = ALIGN(gpu_offset + 1, 64);
798 int this_length = min(cacheline_end - gpu_offset, length);
799 int swizzled_gpu_offset = gpu_offset ^ 64;
800
801 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
802 cpu_vaddr + cpu_offset,
803 this_length);
804 if (ret)
805 return ret + length;
806
807 cpu_offset += this_length;
808 gpu_offset += this_length;
809 length -= this_length;
810 }
811
812 return 0;
813 }
814
815 /*
816 * Pins the specified object's pages and synchronizes the object with
817 * GPU accesses. Sets needs_clflush to non-zero if the caller should
818 * flush the object from the CPU cache.
819 */
820 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
821 unsigned int *needs_clflush)
822 {
823 int ret;
824
825 lockdep_assert_held(&obj->base.dev->struct_mutex);
826
827 *needs_clflush = 0;
828 if (!i915_gem_object_has_struct_page(obj))
829 return -ENODEV;
830
831 ret = i915_gem_object_wait(obj,
832 I915_WAIT_INTERRUPTIBLE |
833 I915_WAIT_LOCKED,
834 MAX_SCHEDULE_TIMEOUT,
835 NULL);
836 if (ret)
837 return ret;
838
839 ret = i915_gem_object_pin_pages(obj);
840 if (ret)
841 return ret;
842
843 if (obj->cache_coherent || !static_cpu_has(X86_FEATURE_CLFLUSH)) {
844 ret = i915_gem_object_set_to_cpu_domain(obj, false);
845 if (ret)
846 goto err_unpin;
847 else
848 goto out;
849 }
850
851 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
852
853 /* If we're not in the cpu read domain, set ourself into the gtt
854 * read domain and manually flush cachelines (if required). This
855 * optimizes for the case when the gpu will dirty the data
856 * anyway again before the next pread happens.
857 */
858 if (!obj->cache_dirty &&
859 !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
860 *needs_clflush = CLFLUSH_BEFORE;
861
862 out:
863 /* return with the pages pinned */
864 return 0;
865
866 err_unpin:
867 i915_gem_object_unpin_pages(obj);
868 return ret;
869 }
870
871 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
872 unsigned int *needs_clflush)
873 {
874 int ret;
875
876 lockdep_assert_held(&obj->base.dev->struct_mutex);
877
878 *needs_clflush = 0;
879 if (!i915_gem_object_has_struct_page(obj))
880 return -ENODEV;
881
882 ret = i915_gem_object_wait(obj,
883 I915_WAIT_INTERRUPTIBLE |
884 I915_WAIT_LOCKED |
885 I915_WAIT_ALL,
886 MAX_SCHEDULE_TIMEOUT,
887 NULL);
888 if (ret)
889 return ret;
890
891 ret = i915_gem_object_pin_pages(obj);
892 if (ret)
893 return ret;
894
895 if (obj->cache_coherent || !static_cpu_has(X86_FEATURE_CLFLUSH)) {
896 ret = i915_gem_object_set_to_cpu_domain(obj, true);
897 if (ret)
898 goto err_unpin;
899 else
900 goto out;
901 }
902
903 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
904
905 /* If we're not in the cpu write domain, set ourself into the
906 * gtt write domain and manually flush cachelines (as required).
907 * This optimizes for the case when the gpu will use the data
908 * right away and we therefore have to clflush anyway.
909 */
910 if (!obj->cache_dirty) {
911 *needs_clflush |= CLFLUSH_AFTER;
912
913 /*
914 * Same trick applies to invalidate partially written
915 * cachelines read before writing.
916 */
917 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
918 *needs_clflush |= CLFLUSH_BEFORE;
919 }
920
921 out:
922 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
923 obj->mm.dirty = true;
924 /* return with the pages pinned */
925 return 0;
926
927 err_unpin:
928 i915_gem_object_unpin_pages(obj);
929 return ret;
930 }
931
932 static void
933 shmem_clflush_swizzled_range(char *addr, unsigned long length,
934 bool swizzled)
935 {
936 if (unlikely(swizzled)) {
937 unsigned long start = (unsigned long) addr;
938 unsigned long end = (unsigned long) addr + length;
939
940 /* For swizzling simply ensure that we always flush both
941 * channels. Lame, but simple and it works. Swizzled
942 * pwrite/pread is far from a hotpath - current userspace
943 * doesn't use it at all. */
944 start = round_down(start, 128);
945 end = round_up(end, 128);
946
947 drm_clflush_virt_range((void *)start, end - start);
948 } else {
949 drm_clflush_virt_range(addr, length);
950 }
951
952 }
953
954 /* Only difference to the fast-path function is that this can handle bit17
955 * and uses non-atomic copy and kmap functions. */
956 static int
957 shmem_pread_slow(struct page *page, int offset, int length,
958 char __user *user_data,
959 bool page_do_bit17_swizzling, bool needs_clflush)
960 {
961 char *vaddr;
962 int ret;
963
964 vaddr = kmap(page);
965 if (needs_clflush)
966 shmem_clflush_swizzled_range(vaddr + offset, length,
967 page_do_bit17_swizzling);
968
969 if (page_do_bit17_swizzling)
970 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
971 else
972 ret = __copy_to_user(user_data, vaddr + offset, length);
973 kunmap(page);
974
975 return ret ? - EFAULT : 0;
976 }
977
978 static int
979 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
980 bool page_do_bit17_swizzling, bool needs_clflush)
981 {
982 int ret;
983
984 ret = -ENODEV;
985 if (!page_do_bit17_swizzling) {
986 char *vaddr = kmap_atomic(page);
987
988 if (needs_clflush)
989 drm_clflush_virt_range(vaddr + offset, length);
990 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
991 kunmap_atomic(vaddr);
992 }
993 if (ret == 0)
994 return 0;
995
996 return shmem_pread_slow(page, offset, length, user_data,
997 page_do_bit17_swizzling, needs_clflush);
998 }
999
1000 static int
1001 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
1002 struct drm_i915_gem_pread *args)
1003 {
1004 char __user *user_data;
1005 u64 remain;
1006 unsigned int obj_do_bit17_swizzling;
1007 unsigned int needs_clflush;
1008 unsigned int idx, offset;
1009 int ret;
1010
1011 obj_do_bit17_swizzling = 0;
1012 if (i915_gem_object_needs_bit17_swizzle(obj))
1013 obj_do_bit17_swizzling = BIT(17);
1014
1015 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1016 if (ret)
1017 return ret;
1018
1019 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1020 mutex_unlock(&obj->base.dev->struct_mutex);
1021 if (ret)
1022 return ret;
1023
1024 remain = args->size;
1025 user_data = u64_to_user_ptr(args->data_ptr);
1026 offset = offset_in_page(args->offset);
1027 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1028 struct page *page = i915_gem_object_get_page(obj, idx);
1029 int length;
1030
1031 length = remain;
1032 if (offset + length > PAGE_SIZE)
1033 length = PAGE_SIZE - offset;
1034
1035 ret = shmem_pread(page, offset, length, user_data,
1036 page_to_phys(page) & obj_do_bit17_swizzling,
1037 needs_clflush);
1038 if (ret)
1039 break;
1040
1041 remain -= length;
1042 user_data += length;
1043 offset = 0;
1044 }
1045
1046 i915_gem_obj_finish_shmem_access(obj);
1047 return ret;
1048 }
1049
1050 static inline bool
1051 gtt_user_read(struct io_mapping *mapping,
1052 loff_t base, int offset,
1053 char __user *user_data, int length)
1054 {
1055 void *vaddr;
1056 unsigned long unwritten;
1057
1058 /* We can use the cpu mem copy function because this is X86. */
1059 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1060 unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1061 io_mapping_unmap_atomic(vaddr);
1062 if (unwritten) {
1063 vaddr = (void __force *)
1064 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1065 unwritten = copy_to_user(user_data, vaddr + offset, length);
1066 io_mapping_unmap(vaddr);
1067 }
1068 return unwritten;
1069 }
1070
1071 static int
1072 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1073 const struct drm_i915_gem_pread *args)
1074 {
1075 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1076 struct i915_ggtt *ggtt = &i915->ggtt;
1077 struct drm_mm_node node;
1078 struct i915_vma *vma;
1079 void __user *user_data;
1080 u64 remain, offset;
1081 int ret;
1082
1083 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1084 if (ret)
1085 return ret;
1086
1087 intel_runtime_pm_get(i915);
1088 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1089 PIN_MAPPABLE | PIN_NONBLOCK);
1090 if (!IS_ERR(vma)) {
1091 node.start = i915_ggtt_offset(vma);
1092 node.allocated = false;
1093 ret = i915_vma_put_fence(vma);
1094 if (ret) {
1095 i915_vma_unpin(vma);
1096 vma = ERR_PTR(ret);
1097 }
1098 }
1099 if (IS_ERR(vma)) {
1100 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1101 if (ret)
1102 goto out_unlock;
1103 GEM_BUG_ON(!node.allocated);
1104 }
1105
1106 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1107 if (ret)
1108 goto out_unpin;
1109
1110 mutex_unlock(&i915->drm.struct_mutex);
1111
1112 user_data = u64_to_user_ptr(args->data_ptr);
1113 remain = args->size;
1114 offset = args->offset;
1115
1116 while (remain > 0) {
1117 /* Operation in this page
1118 *
1119 * page_base = page offset within aperture
1120 * page_offset = offset within page
1121 * page_length = bytes to copy for this page
1122 */
1123 u32 page_base = node.start;
1124 unsigned page_offset = offset_in_page(offset);
1125 unsigned page_length = PAGE_SIZE - page_offset;
1126 page_length = remain < page_length ? remain : page_length;
1127 if (node.allocated) {
1128 wmb();
1129 ggtt->base.insert_page(&ggtt->base,
1130 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1131 node.start, I915_CACHE_NONE, 0);
1132 wmb();
1133 } else {
1134 page_base += offset & PAGE_MASK;
1135 }
1136
1137 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1138 user_data, page_length)) {
1139 ret = -EFAULT;
1140 break;
1141 }
1142
1143 remain -= page_length;
1144 user_data += page_length;
1145 offset += page_length;
1146 }
1147
1148 mutex_lock(&i915->drm.struct_mutex);
1149 out_unpin:
1150 if (node.allocated) {
1151 wmb();
1152 ggtt->base.clear_range(&ggtt->base,
1153 node.start, node.size);
1154 remove_mappable_node(&node);
1155 } else {
1156 i915_vma_unpin(vma);
1157 }
1158 out_unlock:
1159 intel_runtime_pm_put(i915);
1160 mutex_unlock(&i915->drm.struct_mutex);
1161
1162 return ret;
1163 }
1164
1165 /**
1166 * Reads data from the object referenced by handle.
1167 * @dev: drm device pointer
1168 * @data: ioctl data blob
1169 * @file: drm file pointer
1170 *
1171 * On error, the contents of *data are undefined.
1172 */
1173 int
1174 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1175 struct drm_file *file)
1176 {
1177 struct drm_i915_gem_pread *args = data;
1178 struct drm_i915_gem_object *obj;
1179 int ret;
1180
1181 if (args->size == 0)
1182 return 0;
1183
1184 if (!access_ok(VERIFY_WRITE,
1185 u64_to_user_ptr(args->data_ptr),
1186 args->size))
1187 return -EFAULT;
1188
1189 obj = i915_gem_object_lookup(file, args->handle);
1190 if (!obj)
1191 return -ENOENT;
1192
1193 /* Bounds check source. */
1194 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1195 ret = -EINVAL;
1196 goto out;
1197 }
1198
1199 trace_i915_gem_object_pread(obj, args->offset, args->size);
1200
1201 ret = i915_gem_object_wait(obj,
1202 I915_WAIT_INTERRUPTIBLE,
1203 MAX_SCHEDULE_TIMEOUT,
1204 to_rps_client(file));
1205 if (ret)
1206 goto out;
1207
1208 ret = i915_gem_object_pin_pages(obj);
1209 if (ret)
1210 goto out;
1211
1212 ret = i915_gem_shmem_pread(obj, args);
1213 if (ret == -EFAULT || ret == -ENODEV)
1214 ret = i915_gem_gtt_pread(obj, args);
1215
1216 i915_gem_object_unpin_pages(obj);
1217 out:
1218 i915_gem_object_put(obj);
1219 return ret;
1220 }
1221
1222 /* This is the fast write path which cannot handle
1223 * page faults in the source data
1224 */
1225
1226 static inline bool
1227 ggtt_write(struct io_mapping *mapping,
1228 loff_t base, int offset,
1229 char __user *user_data, int length)
1230 {
1231 void *vaddr;
1232 unsigned long unwritten;
1233
1234 /* We can use the cpu mem copy function because this is X86. */
1235 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1236 unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1237 user_data, length);
1238 io_mapping_unmap_atomic(vaddr);
1239 if (unwritten) {
1240 vaddr = (void __force *)
1241 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1242 unwritten = copy_from_user(vaddr + offset, user_data, length);
1243 io_mapping_unmap(vaddr);
1244 }
1245
1246 return unwritten;
1247 }
1248
1249 /**
1250 * This is the fast pwrite path, where we copy the data directly from the
1251 * user into the GTT, uncached.
1252 * @obj: i915 GEM object
1253 * @args: pwrite arguments structure
1254 */
1255 static int
1256 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1257 const struct drm_i915_gem_pwrite *args)
1258 {
1259 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1260 struct i915_ggtt *ggtt = &i915->ggtt;
1261 struct drm_mm_node node;
1262 struct i915_vma *vma;
1263 u64 remain, offset;
1264 void __user *user_data;
1265 int ret;
1266
1267 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1268 if (ret)
1269 return ret;
1270
1271 intel_runtime_pm_get(i915);
1272 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1273 PIN_MAPPABLE | PIN_NONBLOCK);
1274 if (!IS_ERR(vma)) {
1275 node.start = i915_ggtt_offset(vma);
1276 node.allocated = false;
1277 ret = i915_vma_put_fence(vma);
1278 if (ret) {
1279 i915_vma_unpin(vma);
1280 vma = ERR_PTR(ret);
1281 }
1282 }
1283 if (IS_ERR(vma)) {
1284 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1285 if (ret)
1286 goto out_unlock;
1287 GEM_BUG_ON(!node.allocated);
1288 }
1289
1290 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1291 if (ret)
1292 goto out_unpin;
1293
1294 mutex_unlock(&i915->drm.struct_mutex);
1295
1296 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1297
1298 user_data = u64_to_user_ptr(args->data_ptr);
1299 offset = args->offset;
1300 remain = args->size;
1301 while (remain) {
1302 /* Operation in this page
1303 *
1304 * page_base = page offset within aperture
1305 * page_offset = offset within page
1306 * page_length = bytes to copy for this page
1307 */
1308 u32 page_base = node.start;
1309 unsigned int page_offset = offset_in_page(offset);
1310 unsigned int page_length = PAGE_SIZE - page_offset;
1311 page_length = remain < page_length ? remain : page_length;
1312 if (node.allocated) {
1313 wmb(); /* flush the write before we modify the GGTT */
1314 ggtt->base.insert_page(&ggtt->base,
1315 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1316 node.start, I915_CACHE_NONE, 0);
1317 wmb(); /* flush modifications to the GGTT (insert_page) */
1318 } else {
1319 page_base += offset & PAGE_MASK;
1320 }
1321 /* If we get a fault while copying data, then (presumably) our
1322 * source page isn't available. Return the error and we'll
1323 * retry in the slow path.
1324 * If the object is non-shmem backed, we retry again with the
1325 * path that handles page fault.
1326 */
1327 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1328 user_data, page_length)) {
1329 ret = -EFAULT;
1330 break;
1331 }
1332
1333 remain -= page_length;
1334 user_data += page_length;
1335 offset += page_length;
1336 }
1337 intel_fb_obj_flush(obj, ORIGIN_CPU);
1338
1339 mutex_lock(&i915->drm.struct_mutex);
1340 out_unpin:
1341 if (node.allocated) {
1342 wmb();
1343 ggtt->base.clear_range(&ggtt->base,
1344 node.start, node.size);
1345 remove_mappable_node(&node);
1346 } else {
1347 i915_vma_unpin(vma);
1348 }
1349 out_unlock:
1350 intel_runtime_pm_put(i915);
1351 mutex_unlock(&i915->drm.struct_mutex);
1352 return ret;
1353 }
1354
1355 static int
1356 shmem_pwrite_slow(struct page *page, int offset, int length,
1357 char __user *user_data,
1358 bool page_do_bit17_swizzling,
1359 bool needs_clflush_before,
1360 bool needs_clflush_after)
1361 {
1362 char *vaddr;
1363 int ret;
1364
1365 vaddr = kmap(page);
1366 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1367 shmem_clflush_swizzled_range(vaddr + offset, length,
1368 page_do_bit17_swizzling);
1369 if (page_do_bit17_swizzling)
1370 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1371 length);
1372 else
1373 ret = __copy_from_user(vaddr + offset, user_data, length);
1374 if (needs_clflush_after)
1375 shmem_clflush_swizzled_range(vaddr + offset, length,
1376 page_do_bit17_swizzling);
1377 kunmap(page);
1378
1379 return ret ? -EFAULT : 0;
1380 }
1381
1382 /* Per-page copy function for the shmem pwrite fastpath.
1383 * Flushes invalid cachelines before writing to the target if
1384 * needs_clflush_before is set and flushes out any written cachelines after
1385 * writing if needs_clflush is set.
1386 */
1387 static int
1388 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1389 bool page_do_bit17_swizzling,
1390 bool needs_clflush_before,
1391 bool needs_clflush_after)
1392 {
1393 int ret;
1394
1395 ret = -ENODEV;
1396 if (!page_do_bit17_swizzling) {
1397 char *vaddr = kmap_atomic(page);
1398
1399 if (needs_clflush_before)
1400 drm_clflush_virt_range(vaddr + offset, len);
1401 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1402 if (needs_clflush_after)
1403 drm_clflush_virt_range(vaddr + offset, len);
1404
1405 kunmap_atomic(vaddr);
1406 }
1407 if (ret == 0)
1408 return ret;
1409
1410 return shmem_pwrite_slow(page, offset, len, user_data,
1411 page_do_bit17_swizzling,
1412 needs_clflush_before,
1413 needs_clflush_after);
1414 }
1415
1416 static int
1417 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1418 const struct drm_i915_gem_pwrite *args)
1419 {
1420 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1421 void __user *user_data;
1422 u64 remain;
1423 unsigned int obj_do_bit17_swizzling;
1424 unsigned int partial_cacheline_write;
1425 unsigned int needs_clflush;
1426 unsigned int offset, idx;
1427 int ret;
1428
1429 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1430 if (ret)
1431 return ret;
1432
1433 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1434 mutex_unlock(&i915->drm.struct_mutex);
1435 if (ret)
1436 return ret;
1437
1438 obj_do_bit17_swizzling = 0;
1439 if (i915_gem_object_needs_bit17_swizzle(obj))
1440 obj_do_bit17_swizzling = BIT(17);
1441
1442 /* If we don't overwrite a cacheline completely we need to be
1443 * careful to have up-to-date data by first clflushing. Don't
1444 * overcomplicate things and flush the entire patch.
1445 */
1446 partial_cacheline_write = 0;
1447 if (needs_clflush & CLFLUSH_BEFORE)
1448 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1449
1450 user_data = u64_to_user_ptr(args->data_ptr);
1451 remain = args->size;
1452 offset = offset_in_page(args->offset);
1453 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1454 struct page *page = i915_gem_object_get_page(obj, idx);
1455 int length;
1456
1457 length = remain;
1458 if (offset + length > PAGE_SIZE)
1459 length = PAGE_SIZE - offset;
1460
1461 ret = shmem_pwrite(page, offset, length, user_data,
1462 page_to_phys(page) & obj_do_bit17_swizzling,
1463 (offset | length) & partial_cacheline_write,
1464 needs_clflush & CLFLUSH_AFTER);
1465 if (ret)
1466 break;
1467
1468 remain -= length;
1469 user_data += length;
1470 offset = 0;
1471 }
1472
1473 intel_fb_obj_flush(obj, ORIGIN_CPU);
1474 i915_gem_obj_finish_shmem_access(obj);
1475 return ret;
1476 }
1477
1478 /**
1479 * Writes data to the object referenced by handle.
1480 * @dev: drm device
1481 * @data: ioctl data blob
1482 * @file: drm file
1483 *
1484 * On error, the contents of the buffer that were to be modified are undefined.
1485 */
1486 int
1487 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1488 struct drm_file *file)
1489 {
1490 struct drm_i915_gem_pwrite *args = data;
1491 struct drm_i915_gem_object *obj;
1492 int ret;
1493
1494 if (args->size == 0)
1495 return 0;
1496
1497 if (!access_ok(VERIFY_READ,
1498 u64_to_user_ptr(args->data_ptr),
1499 args->size))
1500 return -EFAULT;
1501
1502 obj = i915_gem_object_lookup(file, args->handle);
1503 if (!obj)
1504 return -ENOENT;
1505
1506 /* Bounds check destination. */
1507 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1508 ret = -EINVAL;
1509 goto err;
1510 }
1511
1512 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1513
1514 ret = -ENODEV;
1515 if (obj->ops->pwrite)
1516 ret = obj->ops->pwrite(obj, args);
1517 if (ret != -ENODEV)
1518 goto err;
1519
1520 ret = i915_gem_object_wait(obj,
1521 I915_WAIT_INTERRUPTIBLE |
1522 I915_WAIT_ALL,
1523 MAX_SCHEDULE_TIMEOUT,
1524 to_rps_client(file));
1525 if (ret)
1526 goto err;
1527
1528 ret = i915_gem_object_pin_pages(obj);
1529 if (ret)
1530 goto err;
1531
1532 ret = -EFAULT;
1533 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1534 * it would end up going through the fenced access, and we'll get
1535 * different detiling behavior between reading and writing.
1536 * pread/pwrite currently are reading and writing from the CPU
1537 * perspective, requiring manual detiling by the client.
1538 */
1539 if (!i915_gem_object_has_struct_page(obj) ||
1540 cpu_write_needs_clflush(obj))
1541 /* Note that the gtt paths might fail with non-page-backed user
1542 * pointers (e.g. gtt mappings when moving data between
1543 * textures). Fallback to the shmem path in that case.
1544 */
1545 ret = i915_gem_gtt_pwrite_fast(obj, args);
1546
1547 if (ret == -EFAULT || ret == -ENOSPC) {
1548 if (obj->phys_handle)
1549 ret = i915_gem_phys_pwrite(obj, args, file);
1550 else
1551 ret = i915_gem_shmem_pwrite(obj, args);
1552 }
1553
1554 i915_gem_object_unpin_pages(obj);
1555 err:
1556 i915_gem_object_put(obj);
1557 return ret;
1558 }
1559
1560 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1561 {
1562 struct drm_i915_private *i915;
1563 struct list_head *list;
1564 struct i915_vma *vma;
1565
1566 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1567 if (!i915_vma_is_ggtt(vma))
1568 break;
1569
1570 if (i915_vma_is_active(vma))
1571 continue;
1572
1573 if (!drm_mm_node_allocated(&vma->node))
1574 continue;
1575
1576 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1577 }
1578
1579 i915 = to_i915(obj->base.dev);
1580 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1581 list_move_tail(&obj->global_link, list);
1582 }
1583
1584 /**
1585 * Called when user space prepares to use an object with the CPU, either
1586 * through the mmap ioctl's mapping or a GTT mapping.
1587 * @dev: drm device
1588 * @data: ioctl data blob
1589 * @file: drm file
1590 */
1591 int
1592 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1593 struct drm_file *file)
1594 {
1595 struct drm_i915_gem_set_domain *args = data;
1596 struct drm_i915_gem_object *obj;
1597 uint32_t read_domains = args->read_domains;
1598 uint32_t write_domain = args->write_domain;
1599 int err;
1600
1601 /* Only handle setting domains to types used by the CPU. */
1602 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1603 return -EINVAL;
1604
1605 /* Having something in the write domain implies it's in the read
1606 * domain, and only that read domain. Enforce that in the request.
1607 */
1608 if (write_domain != 0 && read_domains != write_domain)
1609 return -EINVAL;
1610
1611 obj = i915_gem_object_lookup(file, args->handle);
1612 if (!obj)
1613 return -ENOENT;
1614
1615 /* Try to flush the object off the GPU without holding the lock.
1616 * We will repeat the flush holding the lock in the normal manner
1617 * to catch cases where we are gazumped.
1618 */
1619 err = i915_gem_object_wait(obj,
1620 I915_WAIT_INTERRUPTIBLE |
1621 (write_domain ? I915_WAIT_ALL : 0),
1622 MAX_SCHEDULE_TIMEOUT,
1623 to_rps_client(file));
1624 if (err)
1625 goto out;
1626
1627 /* Flush and acquire obj->pages so that we are coherent through
1628 * direct access in memory with previous cached writes through
1629 * shmemfs and that our cache domain tracking remains valid.
1630 * For example, if the obj->filp was moved to swap without us
1631 * being notified and releasing the pages, we would mistakenly
1632 * continue to assume that the obj remained out of the CPU cached
1633 * domain.
1634 */
1635 err = i915_gem_object_pin_pages(obj);
1636 if (err)
1637 goto out;
1638
1639 err = i915_mutex_lock_interruptible(dev);
1640 if (err)
1641 goto out_unpin;
1642
1643 if (read_domains & I915_GEM_DOMAIN_WC)
1644 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1645 else if (read_domains & I915_GEM_DOMAIN_GTT)
1646 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1647 else
1648 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1649
1650 /* And bump the LRU for this access */
1651 i915_gem_object_bump_inactive_ggtt(obj);
1652
1653 mutex_unlock(&dev->struct_mutex);
1654
1655 if (write_domain != 0)
1656 intel_fb_obj_invalidate(obj,
1657 fb_write_origin(obj, write_domain));
1658
1659 out_unpin:
1660 i915_gem_object_unpin_pages(obj);
1661 out:
1662 i915_gem_object_put(obj);
1663 return err;
1664 }
1665
1666 /**
1667 * Called when user space has done writes to this buffer
1668 * @dev: drm device
1669 * @data: ioctl data blob
1670 * @file: drm file
1671 */
1672 int
1673 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1674 struct drm_file *file)
1675 {
1676 struct drm_i915_gem_sw_finish *args = data;
1677 struct drm_i915_gem_object *obj;
1678
1679 obj = i915_gem_object_lookup(file, args->handle);
1680 if (!obj)
1681 return -ENOENT;
1682
1683 /* Pinned buffers may be scanout, so flush the cache */
1684 i915_gem_object_flush_if_display(obj);
1685 i915_gem_object_put(obj);
1686
1687 return 0;
1688 }
1689
1690 /**
1691 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1692 * it is mapped to.
1693 * @dev: drm device
1694 * @data: ioctl data blob
1695 * @file: drm file
1696 *
1697 * While the mapping holds a reference on the contents of the object, it doesn't
1698 * imply a ref on the object itself.
1699 *
1700 * IMPORTANT:
1701 *
1702 * DRM driver writers who look a this function as an example for how to do GEM
1703 * mmap support, please don't implement mmap support like here. The modern way
1704 * to implement DRM mmap support is with an mmap offset ioctl (like
1705 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1706 * That way debug tooling like valgrind will understand what's going on, hiding
1707 * the mmap call in a driver private ioctl will break that. The i915 driver only
1708 * does cpu mmaps this way because we didn't know better.
1709 */
1710 int
1711 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1712 struct drm_file *file)
1713 {
1714 struct drm_i915_gem_mmap *args = data;
1715 struct drm_i915_gem_object *obj;
1716 unsigned long addr;
1717
1718 if (args->flags & ~(I915_MMAP_WC))
1719 return -EINVAL;
1720
1721 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1722 return -ENODEV;
1723
1724 obj = i915_gem_object_lookup(file, args->handle);
1725 if (!obj)
1726 return -ENOENT;
1727
1728 /* prime objects have no backing filp to GEM mmap
1729 * pages from.
1730 */
1731 if (!obj->base.filp) {
1732 i915_gem_object_put(obj);
1733 return -EINVAL;
1734 }
1735
1736 addr = vm_mmap(obj->base.filp, 0, args->size,
1737 PROT_READ | PROT_WRITE, MAP_SHARED,
1738 args->offset);
1739 if (args->flags & I915_MMAP_WC) {
1740 struct mm_struct *mm = current->mm;
1741 struct vm_area_struct *vma;
1742
1743 if (down_write_killable(&mm->mmap_sem)) {
1744 i915_gem_object_put(obj);
1745 return -EINTR;
1746 }
1747 vma = find_vma(mm, addr);
1748 if (vma)
1749 vma->vm_page_prot =
1750 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1751 else
1752 addr = -ENOMEM;
1753 up_write(&mm->mmap_sem);
1754
1755 /* This may race, but that's ok, it only gets set */
1756 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1757 }
1758 i915_gem_object_put(obj);
1759 if (IS_ERR((void *)addr))
1760 return addr;
1761
1762 args->addr_ptr = (uint64_t) addr;
1763
1764 return 0;
1765 }
1766
1767 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1768 {
1769 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1770 }
1771
1772 /**
1773 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1774 *
1775 * A history of the GTT mmap interface:
1776 *
1777 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1778 * aligned and suitable for fencing, and still fit into the available
1779 * mappable space left by the pinned display objects. A classic problem
1780 * we called the page-fault-of-doom where we would ping-pong between
1781 * two objects that could not fit inside the GTT and so the memcpy
1782 * would page one object in at the expense of the other between every
1783 * single byte.
1784 *
1785 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1786 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1787 * object is too large for the available space (or simply too large
1788 * for the mappable aperture!), a view is created instead and faulted
1789 * into userspace. (This view is aligned and sized appropriately for
1790 * fenced access.)
1791 *
1792 * 2 - Recognise WC as a separate cache domain so that we can flush the
1793 * delayed writes via GTT before performing direct access via WC.
1794 *
1795 * Restrictions:
1796 *
1797 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1798 * hangs on some architectures, corruption on others. An attempt to service
1799 * a GTT page fault from a snoopable object will generate a SIGBUS.
1800 *
1801 * * the object must be able to fit into RAM (physical memory, though no
1802 * limited to the mappable aperture).
1803 *
1804 *
1805 * Caveats:
1806 *
1807 * * a new GTT page fault will synchronize rendering from the GPU and flush
1808 * all data to system memory. Subsequent access will not be synchronized.
1809 *
1810 * * all mappings are revoked on runtime device suspend.
1811 *
1812 * * there are only 8, 16 or 32 fence registers to share between all users
1813 * (older machines require fence register for display and blitter access
1814 * as well). Contention of the fence registers will cause the previous users
1815 * to be unmapped and any new access will generate new page faults.
1816 *
1817 * * running out of memory while servicing a fault may generate a SIGBUS,
1818 * rather than the expected SIGSEGV.
1819 */
1820 int i915_gem_mmap_gtt_version(void)
1821 {
1822 return 2;
1823 }
1824
1825 static inline struct i915_ggtt_view
1826 compute_partial_view(struct drm_i915_gem_object *obj,
1827 pgoff_t page_offset,
1828 unsigned int chunk)
1829 {
1830 struct i915_ggtt_view view;
1831
1832 if (i915_gem_object_is_tiled(obj))
1833 chunk = roundup(chunk, tile_row_pages(obj));
1834
1835 view.type = I915_GGTT_VIEW_PARTIAL;
1836 view.partial.offset = rounddown(page_offset, chunk);
1837 view.partial.size =
1838 min_t(unsigned int, chunk,
1839 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1840
1841 /* If the partial covers the entire object, just create a normal VMA. */
1842 if (chunk >= obj->base.size >> PAGE_SHIFT)
1843 view.type = I915_GGTT_VIEW_NORMAL;
1844
1845 return view;
1846 }
1847
1848 /**
1849 * i915_gem_fault - fault a page into the GTT
1850 * @vmf: fault info
1851 *
1852 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1853 * from userspace. The fault handler takes care of binding the object to
1854 * the GTT (if needed), allocating and programming a fence register (again,
1855 * only if needed based on whether the old reg is still valid or the object
1856 * is tiled) and inserting a new PTE into the faulting process.
1857 *
1858 * Note that the faulting process may involve evicting existing objects
1859 * from the GTT and/or fence registers to make room. So performance may
1860 * suffer if the GTT working set is large or there are few fence registers
1861 * left.
1862 *
1863 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1864 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1865 */
1866 int i915_gem_fault(struct vm_fault *vmf)
1867 {
1868 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1869 struct vm_area_struct *area = vmf->vma;
1870 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1871 struct drm_device *dev = obj->base.dev;
1872 struct drm_i915_private *dev_priv = to_i915(dev);
1873 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1874 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1875 struct i915_vma *vma;
1876 pgoff_t page_offset;
1877 unsigned int flags;
1878 int ret;
1879
1880 /* We don't use vmf->pgoff since that has the fake offset */
1881 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1882
1883 trace_i915_gem_object_fault(obj, page_offset, true, write);
1884
1885 /* Try to flush the object off the GPU first without holding the lock.
1886 * Upon acquiring the lock, we will perform our sanity checks and then
1887 * repeat the flush holding the lock in the normal manner to catch cases
1888 * where we are gazumped.
1889 */
1890 ret = i915_gem_object_wait(obj,
1891 I915_WAIT_INTERRUPTIBLE,
1892 MAX_SCHEDULE_TIMEOUT,
1893 NULL);
1894 if (ret)
1895 goto err;
1896
1897 ret = i915_gem_object_pin_pages(obj);
1898 if (ret)
1899 goto err;
1900
1901 intel_runtime_pm_get(dev_priv);
1902
1903 ret = i915_mutex_lock_interruptible(dev);
1904 if (ret)
1905 goto err_rpm;
1906
1907 /* Access to snoopable pages through the GTT is incoherent. */
1908 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1909 ret = -EFAULT;
1910 goto err_unlock;
1911 }
1912
1913 /* If the object is smaller than a couple of partial vma, it is
1914 * not worth only creating a single partial vma - we may as well
1915 * clear enough space for the full object.
1916 */
1917 flags = PIN_MAPPABLE;
1918 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1919 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1920
1921 /* Now pin it into the GTT as needed */
1922 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1923 if (IS_ERR(vma)) {
1924 /* Use a partial view if it is bigger than available space */
1925 struct i915_ggtt_view view =
1926 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1927
1928 /* Userspace is now writing through an untracked VMA, abandon
1929 * all hope that the hardware is able to track future writes.
1930 */
1931 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1932
1933 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1934 }
1935 if (IS_ERR(vma)) {
1936 ret = PTR_ERR(vma);
1937 goto err_unlock;
1938 }
1939
1940 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1941 if (ret)
1942 goto err_unpin;
1943
1944 ret = i915_vma_get_fence(vma);
1945 if (ret)
1946 goto err_unpin;
1947
1948 /* Mark as being mmapped into userspace for later revocation */
1949 assert_rpm_wakelock_held(dev_priv);
1950 if (list_empty(&obj->userfault_link))
1951 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1952
1953 /* Finally, remap it using the new GTT offset */
1954 ret = remap_io_mapping(area,
1955 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1956 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1957 min_t(u64, vma->size, area->vm_end - area->vm_start),
1958 &ggtt->mappable);
1959
1960 err_unpin:
1961 __i915_vma_unpin(vma);
1962 err_unlock:
1963 mutex_unlock(&dev->struct_mutex);
1964 err_rpm:
1965 intel_runtime_pm_put(dev_priv);
1966 i915_gem_object_unpin_pages(obj);
1967 err:
1968 switch (ret) {
1969 case -EIO:
1970 /*
1971 * We eat errors when the gpu is terminally wedged to avoid
1972 * userspace unduly crashing (gl has no provisions for mmaps to
1973 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1974 * and so needs to be reported.
1975 */
1976 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1977 ret = VM_FAULT_SIGBUS;
1978 break;
1979 }
1980 case -EAGAIN:
1981 /*
1982 * EAGAIN means the gpu is hung and we'll wait for the error
1983 * handler to reset everything when re-faulting in
1984 * i915_mutex_lock_interruptible.
1985 */
1986 case 0:
1987 case -ERESTARTSYS:
1988 case -EINTR:
1989 case -EBUSY:
1990 /*
1991 * EBUSY is ok: this just means that another thread
1992 * already did the job.
1993 */
1994 ret = VM_FAULT_NOPAGE;
1995 break;
1996 case -ENOMEM:
1997 ret = VM_FAULT_OOM;
1998 break;
1999 case -ENOSPC:
2000 case -EFAULT:
2001 ret = VM_FAULT_SIGBUS;
2002 break;
2003 default:
2004 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2005 ret = VM_FAULT_SIGBUS;
2006 break;
2007 }
2008 return ret;
2009 }
2010
2011 /**
2012 * i915_gem_release_mmap - remove physical page mappings
2013 * @obj: obj in question
2014 *
2015 * Preserve the reservation of the mmapping with the DRM core code, but
2016 * relinquish ownership of the pages back to the system.
2017 *
2018 * It is vital that we remove the page mapping if we have mapped a tiled
2019 * object through the GTT and then lose the fence register due to
2020 * resource pressure. Similarly if the object has been moved out of the
2021 * aperture, than pages mapped into userspace must be revoked. Removing the
2022 * mapping will then trigger a page fault on the next user access, allowing
2023 * fixup by i915_gem_fault().
2024 */
2025 void
2026 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2027 {
2028 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2029
2030 /* Serialisation between user GTT access and our code depends upon
2031 * revoking the CPU's PTE whilst the mutex is held. The next user
2032 * pagefault then has to wait until we release the mutex.
2033 *
2034 * Note that RPM complicates somewhat by adding an additional
2035 * requirement that operations to the GGTT be made holding the RPM
2036 * wakeref.
2037 */
2038 lockdep_assert_held(&i915->drm.struct_mutex);
2039 intel_runtime_pm_get(i915);
2040
2041 if (list_empty(&obj->userfault_link))
2042 goto out;
2043
2044 list_del_init(&obj->userfault_link);
2045 drm_vma_node_unmap(&obj->base.vma_node,
2046 obj->base.dev->anon_inode->i_mapping);
2047
2048 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2049 * memory transactions from userspace before we return. The TLB
2050 * flushing implied above by changing the PTE above *should* be
2051 * sufficient, an extra barrier here just provides us with a bit
2052 * of paranoid documentation about our requirement to serialise
2053 * memory writes before touching registers / GSM.
2054 */
2055 wmb();
2056
2057 out:
2058 intel_runtime_pm_put(i915);
2059 }
2060
2061 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2062 {
2063 struct drm_i915_gem_object *obj, *on;
2064 int i;
2065
2066 /*
2067 * Only called during RPM suspend. All users of the userfault_list
2068 * must be holding an RPM wakeref to ensure that this can not
2069 * run concurrently with themselves (and use the struct_mutex for
2070 * protection between themselves).
2071 */
2072
2073 list_for_each_entry_safe(obj, on,
2074 &dev_priv->mm.userfault_list, userfault_link) {
2075 list_del_init(&obj->userfault_link);
2076 drm_vma_node_unmap(&obj->base.vma_node,
2077 obj->base.dev->anon_inode->i_mapping);
2078 }
2079
2080 /* The fence will be lost when the device powers down. If any were
2081 * in use by hardware (i.e. they are pinned), we should not be powering
2082 * down! All other fences will be reacquired by the user upon waking.
2083 */
2084 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2085 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2086
2087 /* Ideally we want to assert that the fence register is not
2088 * live at this point (i.e. that no piece of code will be
2089 * trying to write through fence + GTT, as that both violates
2090 * our tracking of activity and associated locking/barriers,
2091 * but also is illegal given that the hw is powered down).
2092 *
2093 * Previously we used reg->pin_count as a "liveness" indicator.
2094 * That is not sufficient, and we need a more fine-grained
2095 * tool if we want to have a sanity check here.
2096 */
2097
2098 if (!reg->vma)
2099 continue;
2100
2101 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2102 reg->dirty = true;
2103 }
2104 }
2105
2106 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2107 {
2108 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2109 int err;
2110
2111 err = drm_gem_create_mmap_offset(&obj->base);
2112 if (likely(!err))
2113 return 0;
2114
2115 /* Attempt to reap some mmap space from dead objects */
2116 do {
2117 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2118 if (err)
2119 break;
2120
2121 i915_gem_drain_freed_objects(dev_priv);
2122 err = drm_gem_create_mmap_offset(&obj->base);
2123 if (!err)
2124 break;
2125
2126 } while (flush_delayed_work(&dev_priv->gt.retire_work));
2127
2128 return err;
2129 }
2130
2131 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2132 {
2133 drm_gem_free_mmap_offset(&obj->base);
2134 }
2135
2136 int
2137 i915_gem_mmap_gtt(struct drm_file *file,
2138 struct drm_device *dev,
2139 uint32_t handle,
2140 uint64_t *offset)
2141 {
2142 struct drm_i915_gem_object *obj;
2143 int ret;
2144
2145 obj = i915_gem_object_lookup(file, handle);
2146 if (!obj)
2147 return -ENOENT;
2148
2149 ret = i915_gem_object_create_mmap_offset(obj);
2150 if (ret == 0)
2151 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2152
2153 i915_gem_object_put(obj);
2154 return ret;
2155 }
2156
2157 /**
2158 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2159 * @dev: DRM device
2160 * @data: GTT mapping ioctl data
2161 * @file: GEM object info
2162 *
2163 * Simply returns the fake offset to userspace so it can mmap it.
2164 * The mmap call will end up in drm_gem_mmap(), which will set things
2165 * up so we can get faults in the handler above.
2166 *
2167 * The fault handler will take care of binding the object into the GTT
2168 * (since it may have been evicted to make room for something), allocating
2169 * a fence register, and mapping the appropriate aperture address into
2170 * userspace.
2171 */
2172 int
2173 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2174 struct drm_file *file)
2175 {
2176 struct drm_i915_gem_mmap_gtt *args = data;
2177
2178 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2179 }
2180
2181 /* Immediately discard the backing storage */
2182 static void
2183 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2184 {
2185 i915_gem_object_free_mmap_offset(obj);
2186
2187 if (obj->base.filp == NULL)
2188 return;
2189
2190 /* Our goal here is to return as much of the memory as
2191 * is possible back to the system as we are called from OOM.
2192 * To do this we must instruct the shmfs to drop all of its
2193 * backing pages, *now*.
2194 */
2195 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2196 obj->mm.madv = __I915_MADV_PURGED;
2197 obj->mm.pages = ERR_PTR(-EFAULT);
2198 }
2199
2200 /* Try to discard unwanted pages */
2201 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2202 {
2203 struct address_space *mapping;
2204
2205 lockdep_assert_held(&obj->mm.lock);
2206 GEM_BUG_ON(obj->mm.pages);
2207
2208 switch (obj->mm.madv) {
2209 case I915_MADV_DONTNEED:
2210 i915_gem_object_truncate(obj);
2211 case __I915_MADV_PURGED:
2212 return;
2213 }
2214
2215 if (obj->base.filp == NULL)
2216 return;
2217
2218 mapping = obj->base.filp->f_mapping,
2219 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2220 }
2221
2222 static void
2223 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2224 struct sg_table *pages)
2225 {
2226 struct sgt_iter sgt_iter;
2227 struct page *page;
2228
2229 __i915_gem_object_release_shmem(obj, pages, true);
2230
2231 i915_gem_gtt_finish_pages(obj, pages);
2232
2233 if (i915_gem_object_needs_bit17_swizzle(obj))
2234 i915_gem_object_save_bit_17_swizzle(obj, pages);
2235
2236 for_each_sgt_page(page, sgt_iter, pages) {
2237 if (obj->mm.dirty)
2238 set_page_dirty(page);
2239
2240 if (obj->mm.madv == I915_MADV_WILLNEED)
2241 mark_page_accessed(page);
2242
2243 put_page(page);
2244 }
2245 obj->mm.dirty = false;
2246
2247 sg_free_table(pages);
2248 kfree(pages);
2249 }
2250
2251 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2252 {
2253 struct radix_tree_iter iter;
2254 void **slot;
2255
2256 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2257 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2258 }
2259
2260 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2261 enum i915_mm_subclass subclass)
2262 {
2263 struct sg_table *pages;
2264
2265 if (i915_gem_object_has_pinned_pages(obj))
2266 return;
2267
2268 GEM_BUG_ON(obj->bind_count);
2269 if (!READ_ONCE(obj->mm.pages))
2270 return;
2271
2272 /* May be called by shrinker from within get_pages() (on another bo) */
2273 mutex_lock_nested(&obj->mm.lock, subclass);
2274 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2275 goto unlock;
2276
2277 /* ->put_pages might need to allocate memory for the bit17 swizzle
2278 * array, hence protect them from being reaped by removing them from gtt
2279 * lists early. */
2280 pages = fetch_and_zero(&obj->mm.pages);
2281 GEM_BUG_ON(!pages);
2282
2283 if (obj->mm.mapping) {
2284 void *ptr;
2285
2286 ptr = page_mask_bits(obj->mm.mapping);
2287 if (is_vmalloc_addr(ptr))
2288 vunmap(ptr);
2289 else
2290 kunmap(kmap_to_page(ptr));
2291
2292 obj->mm.mapping = NULL;
2293 }
2294
2295 __i915_gem_object_reset_page_iter(obj);
2296
2297 if (!IS_ERR(pages))
2298 obj->ops->put_pages(obj, pages);
2299
2300 unlock:
2301 mutex_unlock(&obj->mm.lock);
2302 }
2303
2304 static bool i915_sg_trim(struct sg_table *orig_st)
2305 {
2306 struct sg_table new_st;
2307 struct scatterlist *sg, *new_sg;
2308 unsigned int i;
2309
2310 if (orig_st->nents == orig_st->orig_nents)
2311 return false;
2312
2313 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2314 return false;
2315
2316 new_sg = new_st.sgl;
2317 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2318 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2319 /* called before being DMA mapped, no need to copy sg->dma_* */
2320 new_sg = sg_next(new_sg);
2321 }
2322 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2323
2324 sg_free_table(orig_st);
2325
2326 *orig_st = new_st;
2327 return true;
2328 }
2329
2330 static struct sg_table *
2331 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2332 {
2333 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2334 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2335 unsigned long i;
2336 struct address_space *mapping;
2337 struct sg_table *st;
2338 struct scatterlist *sg;
2339 struct sgt_iter sgt_iter;
2340 struct page *page;
2341 unsigned long last_pfn = 0; /* suppress gcc warning */
2342 unsigned int max_segment;
2343 gfp_t noreclaim;
2344 int ret;
2345
2346 /* Assert that the object is not currently in any GPU domain. As it
2347 * wasn't in the GTT, there shouldn't be any way it could have been in
2348 * a GPU cache
2349 */
2350 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2351 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2352
2353 max_segment = swiotlb_max_segment();
2354 if (!max_segment)
2355 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2356
2357 st = kmalloc(sizeof(*st), GFP_KERNEL);
2358 if (st == NULL)
2359 return ERR_PTR(-ENOMEM);
2360
2361 rebuild_st:
2362 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2363 kfree(st);
2364 return ERR_PTR(-ENOMEM);
2365 }
2366
2367 /* Get the list of pages out of our struct file. They'll be pinned
2368 * at this point until we release them.
2369 *
2370 * Fail silently without starting the shrinker
2371 */
2372 mapping = obj->base.filp->f_mapping;
2373 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2374 noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2375
2376 sg = st->sgl;
2377 st->nents = 0;
2378 for (i = 0; i < page_count; i++) {
2379 const unsigned int shrink[] = {
2380 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2381 0,
2382 }, *s = shrink;
2383 gfp_t gfp = noreclaim;
2384
2385 do {
2386 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2387 if (likely(!IS_ERR(page)))
2388 break;
2389
2390 if (!*s) {
2391 ret = PTR_ERR(page);
2392 goto err_sg;
2393 }
2394
2395 i915_gem_shrink(dev_priv, 2 * page_count, *s++);
2396 cond_resched();
2397
2398 /* We've tried hard to allocate the memory by reaping
2399 * our own buffer, now let the real VM do its job and
2400 * go down in flames if truly OOM.
2401 *
2402 * However, since graphics tend to be disposable,
2403 * defer the oom here by reporting the ENOMEM back
2404 * to userspace.
2405 */
2406 if (!*s) {
2407 /* reclaim and warn, but no oom */
2408 gfp = mapping_gfp_mask(mapping);
2409
2410 /* Our bo are always dirty and so we require
2411 * kswapd to reclaim our pages (direct reclaim
2412 * does not effectively begin pageout of our
2413 * buffers on its own). However, direct reclaim
2414 * only waits for kswapd when under allocation
2415 * congestion. So as a result __GFP_RECLAIM is
2416 * unreliable and fails to actually reclaim our
2417 * dirty pages -- unless you try over and over
2418 * again with !__GFP_NORETRY. However, we still
2419 * want to fail this allocation rather than
2420 * trigger the out-of-memory killer and for
2421 * this we want the future __GFP_MAYFAIL.
2422 */
2423 }
2424 } while (1);
2425
2426 if (!i ||
2427 sg->length >= max_segment ||
2428 page_to_pfn(page) != last_pfn + 1) {
2429 if (i)
2430 sg = sg_next(sg);
2431 st->nents++;
2432 sg_set_page(sg, page, PAGE_SIZE, 0);
2433 } else {
2434 sg->length += PAGE_SIZE;
2435 }
2436 last_pfn = page_to_pfn(page);
2437
2438 /* Check that the i965g/gm workaround works. */
2439 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2440 }
2441 if (sg) /* loop terminated early; short sg table */
2442 sg_mark_end(sg);
2443
2444 /* Trim unused sg entries to avoid wasting memory. */
2445 i915_sg_trim(st);
2446
2447 ret = i915_gem_gtt_prepare_pages(obj, st);
2448 if (ret) {
2449 /* DMA remapping failed? One possible cause is that
2450 * it could not reserve enough large entries, asking
2451 * for PAGE_SIZE chunks instead may be helpful.
2452 */
2453 if (max_segment > PAGE_SIZE) {
2454 for_each_sgt_page(page, sgt_iter, st)
2455 put_page(page);
2456 sg_free_table(st);
2457
2458 max_segment = PAGE_SIZE;
2459 goto rebuild_st;
2460 } else {
2461 dev_warn(&dev_priv->drm.pdev->dev,
2462 "Failed to DMA remap %lu pages\n",
2463 page_count);
2464 goto err_pages;
2465 }
2466 }
2467
2468 if (i915_gem_object_needs_bit17_swizzle(obj))
2469 i915_gem_object_do_bit_17_swizzle(obj, st);
2470
2471 return st;
2472
2473 err_sg:
2474 sg_mark_end(sg);
2475 err_pages:
2476 for_each_sgt_page(page, sgt_iter, st)
2477 put_page(page);
2478 sg_free_table(st);
2479 kfree(st);
2480
2481 /* shmemfs first checks if there is enough memory to allocate the page
2482 * and reports ENOSPC should there be insufficient, along with the usual
2483 * ENOMEM for a genuine allocation failure.
2484 *
2485 * We use ENOSPC in our driver to mean that we have run out of aperture
2486 * space and so want to translate the error from shmemfs back to our
2487 * usual understanding of ENOMEM.
2488 */
2489 if (ret == -ENOSPC)
2490 ret = -ENOMEM;
2491
2492 return ERR_PTR(ret);
2493 }
2494
2495 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2496 struct sg_table *pages)
2497 {
2498 lockdep_assert_held(&obj->mm.lock);
2499
2500 obj->mm.get_page.sg_pos = pages->sgl;
2501 obj->mm.get_page.sg_idx = 0;
2502
2503 obj->mm.pages = pages;
2504
2505 if (i915_gem_object_is_tiled(obj) &&
2506 to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2507 GEM_BUG_ON(obj->mm.quirked);
2508 __i915_gem_object_pin_pages(obj);
2509 obj->mm.quirked = true;
2510 }
2511 }
2512
2513 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2514 {
2515 struct sg_table *pages;
2516
2517 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2518
2519 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2520 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2521 return -EFAULT;
2522 }
2523
2524 pages = obj->ops->get_pages(obj);
2525 if (unlikely(IS_ERR(pages)))
2526 return PTR_ERR(pages);
2527
2528 __i915_gem_object_set_pages(obj, pages);
2529 return 0;
2530 }
2531
2532 /* Ensure that the associated pages are gathered from the backing storage
2533 * and pinned into our object. i915_gem_object_pin_pages() may be called
2534 * multiple times before they are released by a single call to
2535 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2536 * either as a result of memory pressure (reaping pages under the shrinker)
2537 * or as the object is itself released.
2538 */
2539 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2540 {
2541 int err;
2542
2543 err = mutex_lock_interruptible(&obj->mm.lock);
2544 if (err)
2545 return err;
2546
2547 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2548 err = ____i915_gem_object_get_pages(obj);
2549 if (err)
2550 goto unlock;
2551
2552 smp_mb__before_atomic();
2553 }
2554 atomic_inc(&obj->mm.pages_pin_count);
2555
2556 unlock:
2557 mutex_unlock(&obj->mm.lock);
2558 return err;
2559 }
2560
2561 /* The 'mapping' part of i915_gem_object_pin_map() below */
2562 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2563 enum i915_map_type type)
2564 {
2565 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2566 struct sg_table *sgt = obj->mm.pages;
2567 struct sgt_iter sgt_iter;
2568 struct page *page;
2569 struct page *stack_pages[32];
2570 struct page **pages = stack_pages;
2571 unsigned long i = 0;
2572 pgprot_t pgprot;
2573 void *addr;
2574
2575 /* A single page can always be kmapped */
2576 if (n_pages == 1 && type == I915_MAP_WB)
2577 return kmap(sg_page(sgt->sgl));
2578
2579 if (n_pages > ARRAY_SIZE(stack_pages)) {
2580 /* Too big for stack -- allocate temporary array instead */
2581 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_TEMPORARY);
2582 if (!pages)
2583 return NULL;
2584 }
2585
2586 for_each_sgt_page(page, sgt_iter, sgt)
2587 pages[i++] = page;
2588
2589 /* Check that we have the expected number of pages */
2590 GEM_BUG_ON(i != n_pages);
2591
2592 switch (type) {
2593 case I915_MAP_WB:
2594 pgprot = PAGE_KERNEL;
2595 break;
2596 case I915_MAP_WC:
2597 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2598 break;
2599 }
2600 addr = vmap(pages, n_pages, 0, pgprot);
2601
2602 if (pages != stack_pages)
2603 kvfree(pages);
2604
2605 return addr;
2606 }
2607
2608 /* get, pin, and map the pages of the object into kernel space */
2609 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2610 enum i915_map_type type)
2611 {
2612 enum i915_map_type has_type;
2613 bool pinned;
2614 void *ptr;
2615 int ret;
2616
2617 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2618
2619 ret = mutex_lock_interruptible(&obj->mm.lock);
2620 if (ret)
2621 return ERR_PTR(ret);
2622
2623 pinned = true;
2624 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2625 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2626 ret = ____i915_gem_object_get_pages(obj);
2627 if (ret)
2628 goto err_unlock;
2629
2630 smp_mb__before_atomic();
2631 }
2632 atomic_inc(&obj->mm.pages_pin_count);
2633 pinned = false;
2634 }
2635 GEM_BUG_ON(!obj->mm.pages);
2636
2637 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2638 if (ptr && has_type != type) {
2639 if (pinned) {
2640 ret = -EBUSY;
2641 goto err_unpin;
2642 }
2643
2644 if (is_vmalloc_addr(ptr))
2645 vunmap(ptr);
2646 else
2647 kunmap(kmap_to_page(ptr));
2648
2649 ptr = obj->mm.mapping = NULL;
2650 }
2651
2652 if (!ptr) {
2653 ptr = i915_gem_object_map(obj, type);
2654 if (!ptr) {
2655 ret = -ENOMEM;
2656 goto err_unpin;
2657 }
2658
2659 obj->mm.mapping = page_pack_bits(ptr, type);
2660 }
2661
2662 out_unlock:
2663 mutex_unlock(&obj->mm.lock);
2664 return ptr;
2665
2666 err_unpin:
2667 atomic_dec(&obj->mm.pages_pin_count);
2668 err_unlock:
2669 ptr = ERR_PTR(ret);
2670 goto out_unlock;
2671 }
2672
2673 static int
2674 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2675 const struct drm_i915_gem_pwrite *arg)
2676 {
2677 struct address_space *mapping = obj->base.filp->f_mapping;
2678 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2679 u64 remain, offset;
2680 unsigned int pg;
2681
2682 /* Before we instantiate/pin the backing store for our use, we
2683 * can prepopulate the shmemfs filp efficiently using a write into
2684 * the pagecache. We avoid the penalty of instantiating all the
2685 * pages, important if the user is just writing to a few and never
2686 * uses the object on the GPU, and using a direct write into shmemfs
2687 * allows it to avoid the cost of retrieving a page (either swapin
2688 * or clearing-before-use) before it is overwritten.
2689 */
2690 if (READ_ONCE(obj->mm.pages))
2691 return -ENODEV;
2692
2693 /* Before the pages are instantiated the object is treated as being
2694 * in the CPU domain. The pages will be clflushed as required before
2695 * use, and we can freely write into the pages directly. If userspace
2696 * races pwrite with any other operation; corruption will ensue -
2697 * that is userspace's prerogative!
2698 */
2699
2700 remain = arg->size;
2701 offset = arg->offset;
2702 pg = offset_in_page(offset);
2703
2704 do {
2705 unsigned int len, unwritten;
2706 struct page *page;
2707 void *data, *vaddr;
2708 int err;
2709
2710 len = PAGE_SIZE - pg;
2711 if (len > remain)
2712 len = remain;
2713
2714 err = pagecache_write_begin(obj->base.filp, mapping,
2715 offset, len, 0,
2716 &page, &data);
2717 if (err < 0)
2718 return err;
2719
2720 vaddr = kmap(page);
2721 unwritten = copy_from_user(vaddr + pg, user_data, len);
2722 kunmap(page);
2723
2724 err = pagecache_write_end(obj->base.filp, mapping,
2725 offset, len, len - unwritten,
2726 page, data);
2727 if (err < 0)
2728 return err;
2729
2730 if (unwritten)
2731 return -EFAULT;
2732
2733 remain -= len;
2734 user_data += len;
2735 offset += len;
2736 pg = 0;
2737 } while (remain);
2738
2739 return 0;
2740 }
2741
2742 static bool ban_context(const struct i915_gem_context *ctx)
2743 {
2744 return (i915_gem_context_is_bannable(ctx) &&
2745 ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2746 }
2747
2748 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2749 {
2750 ctx->guilty_count++;
2751 ctx->ban_score += CONTEXT_SCORE_GUILTY;
2752 if (ban_context(ctx))
2753 i915_gem_context_set_banned(ctx);
2754
2755 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2756 ctx->name, ctx->ban_score,
2757 yesno(i915_gem_context_is_banned(ctx)));
2758
2759 if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2760 return;
2761
2762 ctx->file_priv->context_bans++;
2763 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2764 ctx->name, ctx->file_priv->context_bans);
2765 }
2766
2767 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2768 {
2769 ctx->active_count++;
2770 }
2771
2772 struct drm_i915_gem_request *
2773 i915_gem_find_active_request(struct intel_engine_cs *engine)
2774 {
2775 struct drm_i915_gem_request *request, *active = NULL;
2776 unsigned long flags;
2777
2778 /* We are called by the error capture and reset at a random
2779 * point in time. In particular, note that neither is crucially
2780 * ordered with an interrupt. After a hang, the GPU is dead and we
2781 * assume that no more writes can happen (we waited long enough for
2782 * all writes that were in transaction to be flushed) - adding an
2783 * extra delay for a recent interrupt is pointless. Hence, we do
2784 * not need an engine->irq_seqno_barrier() before the seqno reads.
2785 */
2786 spin_lock_irqsave(&engine->timeline->lock, flags);
2787 list_for_each_entry(request, &engine->timeline->requests, link) {
2788 if (__i915_gem_request_completed(request,
2789 request->global_seqno))
2790 continue;
2791
2792 GEM_BUG_ON(request->engine != engine);
2793 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2794 &request->fence.flags));
2795
2796 active = request;
2797 break;
2798 }
2799 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2800
2801 return active;
2802 }
2803
2804 static bool engine_stalled(struct intel_engine_cs *engine)
2805 {
2806 if (!engine->hangcheck.stalled)
2807 return false;
2808
2809 /* Check for possible seqno movement after hang declaration */
2810 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2811 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2812 return false;
2813 }
2814
2815 return true;
2816 }
2817
2818 /*
2819 * Ensure irq handler finishes, and not run again.
2820 * Also return the active request so that we only search for it once.
2821 */
2822 struct drm_i915_gem_request *
2823 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
2824 {
2825 struct drm_i915_gem_request *request = NULL;
2826
2827 /* Prevent the signaler thread from updating the request
2828 * state (by calling dma_fence_signal) as we are processing
2829 * the reset. The write from the GPU of the seqno is
2830 * asynchronous and the signaler thread may see a different
2831 * value to us and declare the request complete, even though
2832 * the reset routine have picked that request as the active
2833 * (incomplete) request. This conflict is not handled
2834 * gracefully!
2835 */
2836 kthread_park(engine->breadcrumbs.signaler);
2837
2838 /* Prevent request submission to the hardware until we have
2839 * completed the reset in i915_gem_reset_finish(). If a request
2840 * is completed by one engine, it may then queue a request
2841 * to a second via its engine->irq_tasklet *just* as we are
2842 * calling engine->init_hw() and also writing the ELSP.
2843 * Turning off the engine->irq_tasklet until the reset is over
2844 * prevents the race.
2845 */
2846 tasklet_kill(&engine->irq_tasklet);
2847 tasklet_disable(&engine->irq_tasklet);
2848
2849 if (engine->irq_seqno_barrier)
2850 engine->irq_seqno_barrier(engine);
2851
2852 if (engine_stalled(engine)) {
2853 request = i915_gem_find_active_request(engine);
2854 if (request && request->fence.error == -EIO)
2855 request = ERR_PTR(-EIO); /* Previous reset failed! */
2856 }
2857
2858 return request;
2859 }
2860
2861 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2862 {
2863 struct intel_engine_cs *engine;
2864 struct drm_i915_gem_request *request;
2865 enum intel_engine_id id;
2866 int err = 0;
2867
2868 for_each_engine(engine, dev_priv, id) {
2869 request = i915_gem_reset_prepare_engine(engine);
2870 if (IS_ERR(request)) {
2871 err = PTR_ERR(request);
2872 continue;
2873 }
2874
2875 engine->hangcheck.active_request = request;
2876 }
2877
2878 i915_gem_revoke_fences(dev_priv);
2879
2880 return err;
2881 }
2882
2883 static void skip_request(struct drm_i915_gem_request *request)
2884 {
2885 void *vaddr = request->ring->vaddr;
2886 u32 head;
2887
2888 /* As this request likely depends on state from the lost
2889 * context, clear out all the user operations leaving the
2890 * breadcrumb at the end (so we get the fence notifications).
2891 */
2892 head = request->head;
2893 if (request->postfix < head) {
2894 memset(vaddr + head, 0, request->ring->size - head);
2895 head = 0;
2896 }
2897 memset(vaddr + head, 0, request->postfix - head);
2898
2899 dma_fence_set_error(&request->fence, -EIO);
2900 }
2901
2902 static void engine_skip_context(struct drm_i915_gem_request *request)
2903 {
2904 struct intel_engine_cs *engine = request->engine;
2905 struct i915_gem_context *hung_ctx = request->ctx;
2906 struct intel_timeline *timeline;
2907 unsigned long flags;
2908
2909 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2910
2911 spin_lock_irqsave(&engine->timeline->lock, flags);
2912 spin_lock(&timeline->lock);
2913
2914 list_for_each_entry_continue(request, &engine->timeline->requests, link)
2915 if (request->ctx == hung_ctx)
2916 skip_request(request);
2917
2918 list_for_each_entry(request, &timeline->requests, link)
2919 skip_request(request);
2920
2921 spin_unlock(&timeline->lock);
2922 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2923 }
2924
2925 /* Returns true if the request was guilty of hang */
2926 static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
2927 {
2928 /* Read once and return the resolution */
2929 const bool guilty = !i915_gem_request_completed(request);
2930
2931 /* The guilty request will get skipped on a hung engine.
2932 *
2933 * Users of client default contexts do not rely on logical
2934 * state preserved between batches so it is safe to execute
2935 * queued requests following the hang. Non default contexts
2936 * rely on preserved state, so skipping a batch loses the
2937 * evolution of the state and it needs to be considered corrupted.
2938 * Executing more queued batches on top of corrupted state is
2939 * risky. But we take the risk by trying to advance through
2940 * the queued requests in order to make the client behaviour
2941 * more predictable around resets, by not throwing away random
2942 * amount of batches it has prepared for execution. Sophisticated
2943 * clients can use gem_reset_stats_ioctl and dma fence status
2944 * (exported via sync_file info ioctl on explicit fences) to observe
2945 * when it loses the context state and should rebuild accordingly.
2946 *
2947 * The context ban, and ultimately the client ban, mechanism are safety
2948 * valves if client submission ends up resulting in nothing more than
2949 * subsequent hangs.
2950 */
2951
2952 if (guilty) {
2953 i915_gem_context_mark_guilty(request->ctx);
2954 skip_request(request);
2955 } else {
2956 i915_gem_context_mark_innocent(request->ctx);
2957 dma_fence_set_error(&request->fence, -EAGAIN);
2958 }
2959
2960 return guilty;
2961 }
2962
2963 void i915_gem_reset_engine(struct intel_engine_cs *engine,
2964 struct drm_i915_gem_request *request)
2965 {
2966 if (request && i915_gem_reset_request(request)) {
2967 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2968 engine->name, request->global_seqno);
2969
2970 /* If this context is now banned, skip all pending requests. */
2971 if (i915_gem_context_is_banned(request->ctx))
2972 engine_skip_context(request);
2973 }
2974
2975 /* Setup the CS to resume from the breadcrumb of the hung request */
2976 engine->reset_hw(engine, request);
2977 }
2978
2979 void i915_gem_reset(struct drm_i915_private *dev_priv)
2980 {
2981 struct intel_engine_cs *engine;
2982 enum intel_engine_id id;
2983
2984 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2985
2986 i915_gem_retire_requests(dev_priv);
2987
2988 for_each_engine(engine, dev_priv, id) {
2989 struct i915_gem_context *ctx;
2990
2991 i915_gem_reset_engine(engine, engine->hangcheck.active_request);
2992 ctx = fetch_and_zero(&engine->last_retired_context);
2993 if (ctx)
2994 engine->context_unpin(engine, ctx);
2995 }
2996
2997 i915_gem_restore_fences(dev_priv);
2998
2999 if (dev_priv->gt.awake) {
3000 intel_sanitize_gt_powersave(dev_priv);
3001 intel_enable_gt_powersave(dev_priv);
3002 if (INTEL_GEN(dev_priv) >= 6)
3003 gen6_rps_busy(dev_priv);
3004 }
3005 }
3006
3007 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3008 {
3009 tasklet_enable(&engine->irq_tasklet);
3010 kthread_unpark(engine->breadcrumbs.signaler);
3011 }
3012
3013 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3014 {
3015 struct intel_engine_cs *engine;
3016 enum intel_engine_id id;
3017
3018 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3019
3020 for_each_engine(engine, dev_priv, id) {
3021 engine->hangcheck.active_request = NULL;
3022 i915_gem_reset_finish_engine(engine);
3023 }
3024 }
3025
3026 static void nop_submit_request(struct drm_i915_gem_request *request)
3027 {
3028 dma_fence_set_error(&request->fence, -EIO);
3029 i915_gem_request_submit(request);
3030 intel_engine_init_global_seqno(request->engine, request->global_seqno);
3031 }
3032
3033 static void engine_set_wedged(struct intel_engine_cs *engine)
3034 {
3035 struct drm_i915_gem_request *request;
3036 unsigned long flags;
3037
3038 /* We need to be sure that no thread is running the old callback as
3039 * we install the nop handler (otherwise we would submit a request
3040 * to hardware that will never complete). In order to prevent this
3041 * race, we wait until the machine is idle before making the swap
3042 * (using stop_machine()).
3043 */
3044 engine->submit_request = nop_submit_request;
3045
3046 /* Mark all executing requests as skipped */
3047 spin_lock_irqsave(&engine->timeline->lock, flags);
3048 list_for_each_entry(request, &engine->timeline->requests, link)
3049 if (!i915_gem_request_completed(request))
3050 dma_fence_set_error(&request->fence, -EIO);
3051 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3052
3053 /* Mark all pending requests as complete so that any concurrent
3054 * (lockless) lookup doesn't try and wait upon the request as we
3055 * reset it.
3056 */
3057 intel_engine_init_global_seqno(engine,
3058 intel_engine_last_submit(engine));
3059
3060 /*
3061 * Clear the execlists queue up before freeing the requests, as those
3062 * are the ones that keep the context and ringbuffer backing objects
3063 * pinned in place.
3064 */
3065
3066 if (i915.enable_execlists) {
3067 struct execlist_port *port = engine->execlist_port;
3068 unsigned long flags;
3069 unsigned int n;
3070
3071 spin_lock_irqsave(&engine->timeline->lock, flags);
3072
3073 for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
3074 i915_gem_request_put(port_request(&port[n]));
3075 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
3076 engine->execlist_queue = RB_ROOT;
3077 engine->execlist_first = NULL;
3078
3079 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3080
3081 /* The port is checked prior to scheduling a tasklet, but
3082 * just in case we have suspended the tasklet to do the
3083 * wedging make sure that when it wakes, it decides there
3084 * is no work to do by clearing the irq_posted bit.
3085 */
3086 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
3087 }
3088 }
3089
3090 static int __i915_gem_set_wedged_BKL(void *data)
3091 {
3092 struct drm_i915_private *i915 = data;
3093 struct intel_engine_cs *engine;
3094 enum intel_engine_id id;
3095
3096 set_bit(I915_WEDGED, &i915->gpu_error.flags);
3097 for_each_engine(engine, i915, id)
3098 engine_set_wedged(engine);
3099
3100 return 0;
3101 }
3102
3103 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
3104 {
3105 stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3106 }
3107
3108 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3109 {
3110 struct i915_gem_timeline *tl;
3111 int i;
3112
3113 lockdep_assert_held(&i915->drm.struct_mutex);
3114 if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3115 return true;
3116
3117 /* Before unwedging, make sure that all pending operations
3118 * are flushed and errored out - we may have requests waiting upon
3119 * third party fences. We marked all inflight requests as EIO, and
3120 * every execbuf since returned EIO, for consistency we want all
3121 * the currently pending requests to also be marked as EIO, which
3122 * is done inside our nop_submit_request - and so we must wait.
3123 *
3124 * No more can be submitted until we reset the wedged bit.
3125 */
3126 list_for_each_entry(tl, &i915->gt.timelines, link) {
3127 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3128 struct drm_i915_gem_request *rq;
3129
3130 rq = i915_gem_active_peek(&tl->engine[i].last_request,
3131 &i915->drm.struct_mutex);
3132 if (!rq)
3133 continue;
3134
3135 /* We can't use our normal waiter as we want to
3136 * avoid recursively trying to handle the current
3137 * reset. The basic dma_fence_default_wait() installs
3138 * a callback for dma_fence_signal(), which is
3139 * triggered by our nop handler (indirectly, the
3140 * callback enables the signaler thread which is
3141 * woken by the nop_submit_request() advancing the seqno
3142 * and when the seqno passes the fence, the signaler
3143 * then signals the fence waking us up).
3144 */
3145 if (dma_fence_default_wait(&rq->fence, true,
3146 MAX_SCHEDULE_TIMEOUT) < 0)
3147 return false;
3148 }
3149 }
3150
3151 /* Undo nop_submit_request. We prevent all new i915 requests from
3152 * being queued (by disallowing execbuf whilst wedged) so having
3153 * waited for all active requests above, we know the system is idle
3154 * and do not have to worry about a thread being inside
3155 * engine->submit_request() as we swap over. So unlike installing
3156 * the nop_submit_request on reset, we can do this from normal
3157 * context and do not require stop_machine().
3158 */
3159 intel_engines_reset_default_submission(i915);
3160 i915_gem_contexts_lost(i915);
3161
3162 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3163 clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3164
3165 return true;
3166 }
3167
3168 static void
3169 i915_gem_retire_work_handler(struct work_struct *work)
3170 {
3171 struct drm_i915_private *dev_priv =
3172 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3173 struct drm_device *dev = &dev_priv->drm;
3174
3175 /* Come back later if the device is busy... */
3176 if (mutex_trylock(&dev->struct_mutex)) {
3177 i915_gem_retire_requests(dev_priv);
3178 mutex_unlock(&dev->struct_mutex);
3179 }
3180
3181 /* Keep the retire handler running until we are finally idle.
3182 * We do not need to do this test under locking as in the worst-case
3183 * we queue the retire worker once too often.
3184 */
3185 if (READ_ONCE(dev_priv->gt.awake)) {
3186 i915_queue_hangcheck(dev_priv);
3187 queue_delayed_work(dev_priv->wq,
3188 &dev_priv->gt.retire_work,
3189 round_jiffies_up_relative(HZ));
3190 }
3191 }
3192
3193 static void
3194 i915_gem_idle_work_handler(struct work_struct *work)
3195 {
3196 struct drm_i915_private *dev_priv =
3197 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3198 struct drm_device *dev = &dev_priv->drm;
3199 bool rearm_hangcheck;
3200
3201 if (!READ_ONCE(dev_priv->gt.awake))
3202 return;
3203
3204 /*
3205 * Wait for last execlists context complete, but bail out in case a
3206 * new request is submitted.
3207 */
3208 wait_for(intel_engines_are_idle(dev_priv), 10);
3209 if (READ_ONCE(dev_priv->gt.active_requests))
3210 return;
3211
3212 rearm_hangcheck =
3213 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3214
3215 if (!mutex_trylock(&dev->struct_mutex)) {
3216 /* Currently busy, come back later */
3217 mod_delayed_work(dev_priv->wq,
3218 &dev_priv->gt.idle_work,
3219 msecs_to_jiffies(50));
3220 goto out_rearm;
3221 }
3222
3223 /*
3224 * New request retired after this work handler started, extend active
3225 * period until next instance of the work.
3226 */
3227 if (work_pending(work))
3228 goto out_unlock;
3229
3230 if (dev_priv->gt.active_requests)
3231 goto out_unlock;
3232
3233 if (wait_for(intel_engines_are_idle(dev_priv), 10))
3234 DRM_ERROR("Timeout waiting for engines to idle\n");
3235
3236 intel_engines_mark_idle(dev_priv);
3237 i915_gem_timelines_mark_idle(dev_priv);
3238
3239 GEM_BUG_ON(!dev_priv->gt.awake);
3240 dev_priv->gt.awake = false;
3241 rearm_hangcheck = false;
3242
3243 if (INTEL_GEN(dev_priv) >= 6)
3244 gen6_rps_idle(dev_priv);
3245 intel_runtime_pm_put(dev_priv);
3246 out_unlock:
3247 mutex_unlock(&dev->struct_mutex);
3248
3249 out_rearm:
3250 if (rearm_hangcheck) {
3251 GEM_BUG_ON(!dev_priv->gt.awake);
3252 i915_queue_hangcheck(dev_priv);
3253 }
3254 }
3255
3256 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3257 {
3258 struct drm_i915_gem_object *obj = to_intel_bo(gem);
3259 struct drm_i915_file_private *fpriv = file->driver_priv;
3260 struct i915_vma *vma, *vn;
3261
3262 mutex_lock(&obj->base.dev->struct_mutex);
3263 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
3264 if (vma->vm->file == fpriv)
3265 i915_vma_close(vma);
3266
3267 vma = obj->vma_hashed;
3268 if (vma && vma->ctx->file_priv == fpriv)
3269 i915_vma_unlink_ctx(vma);
3270
3271 if (i915_gem_object_is_active(obj) &&
3272 !i915_gem_object_has_active_reference(obj)) {
3273 i915_gem_object_set_active_reference(obj);
3274 i915_gem_object_get(obj);
3275 }
3276 mutex_unlock(&obj->base.dev->struct_mutex);
3277 }
3278
3279 static unsigned long to_wait_timeout(s64 timeout_ns)
3280 {
3281 if (timeout_ns < 0)
3282 return MAX_SCHEDULE_TIMEOUT;
3283
3284 if (timeout_ns == 0)
3285 return 0;
3286
3287 return nsecs_to_jiffies_timeout(timeout_ns);
3288 }
3289
3290 /**
3291 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3292 * @dev: drm device pointer
3293 * @data: ioctl data blob
3294 * @file: drm file pointer
3295 *
3296 * Returns 0 if successful, else an error is returned with the remaining time in
3297 * the timeout parameter.
3298 * -ETIME: object is still busy after timeout
3299 * -ERESTARTSYS: signal interrupted the wait
3300 * -ENONENT: object doesn't exist
3301 * Also possible, but rare:
3302 * -EAGAIN: GPU wedged
3303 * -ENOMEM: damn
3304 * -ENODEV: Internal IRQ fail
3305 * -E?: The add request failed
3306 *
3307 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3308 * non-zero timeout parameter the wait ioctl will wait for the given number of
3309 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3310 * without holding struct_mutex the object may become re-busied before this
3311 * function completes. A similar but shorter * race condition exists in the busy
3312 * ioctl
3313 */
3314 int
3315 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3316 {
3317 struct drm_i915_gem_wait *args = data;
3318 struct drm_i915_gem_object *obj;
3319 ktime_t start;
3320 long ret;
3321
3322 if (args->flags != 0)
3323 return -EINVAL;
3324
3325 obj = i915_gem_object_lookup(file, args->bo_handle);
3326 if (!obj)
3327 return -ENOENT;
3328
3329 start = ktime_get();
3330
3331 ret = i915_gem_object_wait(obj,
3332 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3333 to_wait_timeout(args->timeout_ns),
3334 to_rps_client(file));
3335
3336 if (args->timeout_ns > 0) {
3337 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3338 if (args->timeout_ns < 0)
3339 args->timeout_ns = 0;
3340
3341 /*
3342 * Apparently ktime isn't accurate enough and occasionally has a
3343 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3344 * things up to make the test happy. We allow up to 1 jiffy.
3345 *
3346 * This is a regression from the timespec->ktime conversion.
3347 */
3348 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3349 args->timeout_ns = 0;
3350 }
3351
3352 i915_gem_object_put(obj);
3353 return ret;
3354 }
3355
3356 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3357 {
3358 int ret, i;
3359
3360 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3361 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3362 if (ret)
3363 return ret;
3364 }
3365
3366 return 0;
3367 }
3368
3369 static int wait_for_engine(struct intel_engine_cs *engine, int timeout_ms)
3370 {
3371 return wait_for(intel_engine_is_idle(engine), timeout_ms);
3372 }
3373
3374 static int wait_for_engines(struct drm_i915_private *i915)
3375 {
3376 struct intel_engine_cs *engine;
3377 enum intel_engine_id id;
3378
3379 for_each_engine(engine, i915, id) {
3380 if (GEM_WARN_ON(wait_for_engine(engine, 50))) {
3381 i915_gem_set_wedged(i915);
3382 return -EIO;
3383 }
3384
3385 GEM_BUG_ON(intel_engine_get_seqno(engine) !=
3386 intel_engine_last_submit(engine));
3387 }
3388
3389 return 0;
3390 }
3391
3392 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3393 {
3394 int ret;
3395
3396 /* If the device is asleep, we have no requests outstanding */
3397 if (!READ_ONCE(i915->gt.awake))
3398 return 0;
3399
3400 if (flags & I915_WAIT_LOCKED) {
3401 struct i915_gem_timeline *tl;
3402
3403 lockdep_assert_held(&i915->drm.struct_mutex);
3404
3405 list_for_each_entry(tl, &i915->gt.timelines, link) {
3406 ret = wait_for_timeline(tl, flags);
3407 if (ret)
3408 return ret;
3409 }
3410
3411 i915_gem_retire_requests(i915);
3412 GEM_BUG_ON(i915->gt.active_requests);
3413
3414 ret = wait_for_engines(i915);
3415 } else {
3416 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3417 }
3418
3419 return ret;
3420 }
3421
3422 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3423 {
3424 /*
3425 * We manually flush the CPU domain so that we can override and
3426 * force the flush for the display, and perform it asyncrhonously.
3427 */
3428 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3429 if (obj->cache_dirty)
3430 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3431 obj->base.write_domain = 0;
3432 }
3433
3434 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3435 {
3436 if (!READ_ONCE(obj->pin_display))
3437 return;
3438
3439 mutex_lock(&obj->base.dev->struct_mutex);
3440 __i915_gem_object_flush_for_display(obj);
3441 mutex_unlock(&obj->base.dev->struct_mutex);
3442 }
3443
3444 /**
3445 * Moves a single object to the WC read, and possibly write domain.
3446 * @obj: object to act on
3447 * @write: ask for write access or read only
3448 *
3449 * This function returns when the move is complete, including waiting on
3450 * flushes to occur.
3451 */
3452 int
3453 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3454 {
3455 int ret;
3456
3457 lockdep_assert_held(&obj->base.dev->struct_mutex);
3458
3459 ret = i915_gem_object_wait(obj,
3460 I915_WAIT_INTERRUPTIBLE |
3461 I915_WAIT_LOCKED |
3462 (write ? I915_WAIT_ALL : 0),
3463 MAX_SCHEDULE_TIMEOUT,
3464 NULL);
3465 if (ret)
3466 return ret;
3467
3468 if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
3469 return 0;
3470
3471 /* Flush and acquire obj->pages so that we are coherent through
3472 * direct access in memory with previous cached writes through
3473 * shmemfs and that our cache domain tracking remains valid.
3474 * For example, if the obj->filp was moved to swap without us
3475 * being notified and releasing the pages, we would mistakenly
3476 * continue to assume that the obj remained out of the CPU cached
3477 * domain.
3478 */
3479 ret = i915_gem_object_pin_pages(obj);
3480 if (ret)
3481 return ret;
3482
3483 flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3484
3485 /* Serialise direct access to this object with the barriers for
3486 * coherent writes from the GPU, by effectively invalidating the
3487 * WC domain upon first access.
3488 */
3489 if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
3490 mb();
3491
3492 /* It should now be out of any other write domains, and we can update
3493 * the domain values for our changes.
3494 */
3495 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3496 obj->base.read_domains |= I915_GEM_DOMAIN_WC;
3497 if (write) {
3498 obj->base.read_domains = I915_GEM_DOMAIN_WC;
3499 obj->base.write_domain = I915_GEM_DOMAIN_WC;
3500 obj->mm.dirty = true;
3501 }
3502
3503 i915_gem_object_unpin_pages(obj);
3504 return 0;
3505 }
3506
3507 /**
3508 * Moves a single object to the GTT read, and possibly write domain.
3509 * @obj: object to act on
3510 * @write: ask for write access or read only
3511 *
3512 * This function returns when the move is complete, including waiting on
3513 * flushes to occur.
3514 */
3515 int
3516 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3517 {
3518 int ret;
3519
3520 lockdep_assert_held(&obj->base.dev->struct_mutex);
3521
3522 ret = i915_gem_object_wait(obj,
3523 I915_WAIT_INTERRUPTIBLE |
3524 I915_WAIT_LOCKED |
3525 (write ? I915_WAIT_ALL : 0),
3526 MAX_SCHEDULE_TIMEOUT,
3527 NULL);
3528 if (ret)
3529 return ret;
3530
3531 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3532 return 0;
3533
3534 /* Flush and acquire obj->pages so that we are coherent through
3535 * direct access in memory with previous cached writes through
3536 * shmemfs and that our cache domain tracking remains valid.
3537 * For example, if the obj->filp was moved to swap without us
3538 * being notified and releasing the pages, we would mistakenly
3539 * continue to assume that the obj remained out of the CPU cached
3540 * domain.
3541 */
3542 ret = i915_gem_object_pin_pages(obj);
3543 if (ret)
3544 return ret;
3545
3546 flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3547
3548 /* Serialise direct access to this object with the barriers for
3549 * coherent writes from the GPU, by effectively invalidating the
3550 * GTT domain upon first access.
3551 */
3552 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3553 mb();
3554
3555 /* It should now be out of any other write domains, and we can update
3556 * the domain values for our changes.
3557 */
3558 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3559 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3560 if (write) {
3561 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3562 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3563 obj->mm.dirty = true;
3564 }
3565
3566 i915_gem_object_unpin_pages(obj);
3567 return 0;
3568 }
3569
3570 /**
3571 * Changes the cache-level of an object across all VMA.
3572 * @obj: object to act on
3573 * @cache_level: new cache level to set for the object
3574 *
3575 * After this function returns, the object will be in the new cache-level
3576 * across all GTT and the contents of the backing storage will be coherent,
3577 * with respect to the new cache-level. In order to keep the backing storage
3578 * coherent for all users, we only allow a single cache level to be set
3579 * globally on the object and prevent it from being changed whilst the
3580 * hardware is reading from the object. That is if the object is currently
3581 * on the scanout it will be set to uncached (or equivalent display
3582 * cache coherency) and all non-MOCS GPU access will also be uncached so
3583 * that all direct access to the scanout remains coherent.
3584 */
3585 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3586 enum i915_cache_level cache_level)
3587 {
3588 struct i915_vma *vma;
3589 int ret;
3590
3591 lockdep_assert_held(&obj->base.dev->struct_mutex);
3592
3593 if (obj->cache_level == cache_level)
3594 return 0;
3595
3596 /* Inspect the list of currently bound VMA and unbind any that would
3597 * be invalid given the new cache-level. This is principally to
3598 * catch the issue of the CS prefetch crossing page boundaries and
3599 * reading an invalid PTE on older architectures.
3600 */
3601 restart:
3602 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3603 if (!drm_mm_node_allocated(&vma->node))
3604 continue;
3605
3606 if (i915_vma_is_pinned(vma)) {
3607 DRM_DEBUG("can not change the cache level of pinned objects\n");
3608 return -EBUSY;
3609 }
3610
3611 if (i915_gem_valid_gtt_space(vma, cache_level))
3612 continue;
3613
3614 ret = i915_vma_unbind(vma);
3615 if (ret)
3616 return ret;
3617
3618 /* As unbinding may affect other elements in the
3619 * obj->vma_list (due to side-effects from retiring
3620 * an active vma), play safe and restart the iterator.
3621 */
3622 goto restart;
3623 }
3624
3625 /* We can reuse the existing drm_mm nodes but need to change the
3626 * cache-level on the PTE. We could simply unbind them all and
3627 * rebind with the correct cache-level on next use. However since
3628 * we already have a valid slot, dma mapping, pages etc, we may as
3629 * rewrite the PTE in the belief that doing so tramples upon less
3630 * state and so involves less work.
3631 */
3632 if (obj->bind_count) {
3633 /* Before we change the PTE, the GPU must not be accessing it.
3634 * If we wait upon the object, we know that all the bound
3635 * VMA are no longer active.
3636 */
3637 ret = i915_gem_object_wait(obj,
3638 I915_WAIT_INTERRUPTIBLE |
3639 I915_WAIT_LOCKED |
3640 I915_WAIT_ALL,
3641 MAX_SCHEDULE_TIMEOUT,
3642 NULL);
3643 if (ret)
3644 return ret;
3645
3646 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3647 cache_level != I915_CACHE_NONE) {
3648 /* Access to snoopable pages through the GTT is
3649 * incoherent and on some machines causes a hard
3650 * lockup. Relinquish the CPU mmaping to force
3651 * userspace to refault in the pages and we can
3652 * then double check if the GTT mapping is still
3653 * valid for that pointer access.
3654 */
3655 i915_gem_release_mmap(obj);
3656
3657 /* As we no longer need a fence for GTT access,
3658 * we can relinquish it now (and so prevent having
3659 * to steal a fence from someone else on the next
3660 * fence request). Note GPU activity would have
3661 * dropped the fence as all snoopable access is
3662 * supposed to be linear.
3663 */
3664 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3665 ret = i915_vma_put_fence(vma);
3666 if (ret)
3667 return ret;
3668 }
3669 } else {
3670 /* We either have incoherent backing store and
3671 * so no GTT access or the architecture is fully
3672 * coherent. In such cases, existing GTT mmaps
3673 * ignore the cache bit in the PTE and we can
3674 * rewrite it without confusing the GPU or having
3675 * to force userspace to fault back in its mmaps.
3676 */
3677 }
3678
3679 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3680 if (!drm_mm_node_allocated(&vma->node))
3681 continue;
3682
3683 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3684 if (ret)
3685 return ret;
3686 }
3687 }
3688
3689 list_for_each_entry(vma, &obj->vma_list, obj_link)
3690 vma->node.color = cache_level;
3691 obj->cache_level = cache_level;
3692 obj->cache_coherent = i915_gem_object_is_coherent(obj);
3693 obj->cache_dirty = true; /* Always invalidate stale cachelines */
3694
3695 return 0;
3696 }
3697
3698 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3699 struct drm_file *file)
3700 {
3701 struct drm_i915_gem_caching *args = data;
3702 struct drm_i915_gem_object *obj;
3703 int err = 0;
3704
3705 rcu_read_lock();
3706 obj = i915_gem_object_lookup_rcu(file, args->handle);
3707 if (!obj) {
3708 err = -ENOENT;
3709 goto out;
3710 }
3711
3712 switch (obj->cache_level) {
3713 case I915_CACHE_LLC:
3714 case I915_CACHE_L3_LLC:
3715 args->caching = I915_CACHING_CACHED;
3716 break;
3717
3718 case I915_CACHE_WT:
3719 args->caching = I915_CACHING_DISPLAY;
3720 break;
3721
3722 default:
3723 args->caching = I915_CACHING_NONE;
3724 break;
3725 }
3726 out:
3727 rcu_read_unlock();
3728 return err;
3729 }
3730
3731 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3732 struct drm_file *file)
3733 {
3734 struct drm_i915_private *i915 = to_i915(dev);
3735 struct drm_i915_gem_caching *args = data;
3736 struct drm_i915_gem_object *obj;
3737 enum i915_cache_level level;
3738 int ret = 0;
3739
3740 switch (args->caching) {
3741 case I915_CACHING_NONE:
3742 level = I915_CACHE_NONE;
3743 break;
3744 case I915_CACHING_CACHED:
3745 /*
3746 * Due to a HW issue on BXT A stepping, GPU stores via a
3747 * snooped mapping may leave stale data in a corresponding CPU
3748 * cacheline, whereas normally such cachelines would get
3749 * invalidated.
3750 */
3751 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3752 return -ENODEV;
3753
3754 level = I915_CACHE_LLC;
3755 break;
3756 case I915_CACHING_DISPLAY:
3757 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3758 break;
3759 default:
3760 return -EINVAL;
3761 }
3762
3763 obj = i915_gem_object_lookup(file, args->handle);
3764 if (!obj)
3765 return -ENOENT;
3766
3767 if (obj->cache_level == level)
3768 goto out;
3769
3770 ret = i915_gem_object_wait(obj,
3771 I915_WAIT_INTERRUPTIBLE,
3772 MAX_SCHEDULE_TIMEOUT,
3773 to_rps_client(file));
3774 if (ret)
3775 goto out;
3776
3777 ret = i915_mutex_lock_interruptible(dev);
3778 if (ret)
3779 goto out;
3780
3781 ret = i915_gem_object_set_cache_level(obj, level);
3782 mutex_unlock(&dev->struct_mutex);
3783
3784 out:
3785 i915_gem_object_put(obj);
3786 return ret;
3787 }
3788
3789 /*
3790 * Prepare buffer for display plane (scanout, cursors, etc).
3791 * Can be called from an uninterruptible phase (modesetting) and allows
3792 * any flushes to be pipelined (for pageflips).
3793 */
3794 struct i915_vma *
3795 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3796 u32 alignment,
3797 const struct i915_ggtt_view *view)
3798 {
3799 struct i915_vma *vma;
3800 int ret;
3801
3802 lockdep_assert_held(&obj->base.dev->struct_mutex);
3803
3804 /* Mark the pin_display early so that we account for the
3805 * display coherency whilst setting up the cache domains.
3806 */
3807 obj->pin_display++;
3808
3809 /* The display engine is not coherent with the LLC cache on gen6. As
3810 * a result, we make sure that the pinning that is about to occur is
3811 * done with uncached PTEs. This is lowest common denominator for all
3812 * chipsets.
3813 *
3814 * However for gen6+, we could do better by using the GFDT bit instead
3815 * of uncaching, which would allow us to flush all the LLC-cached data
3816 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3817 */
3818 ret = i915_gem_object_set_cache_level(obj,
3819 HAS_WT(to_i915(obj->base.dev)) ?
3820 I915_CACHE_WT : I915_CACHE_NONE);
3821 if (ret) {
3822 vma = ERR_PTR(ret);
3823 goto err_unpin_display;
3824 }
3825
3826 /* As the user may map the buffer once pinned in the display plane
3827 * (e.g. libkms for the bootup splash), we have to ensure that we
3828 * always use map_and_fenceable for all scanout buffers. However,
3829 * it may simply be too big to fit into mappable, in which case
3830 * put it anyway and hope that userspace can cope (but always first
3831 * try to preserve the existing ABI).
3832 */
3833 vma = ERR_PTR(-ENOSPC);
3834 if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3835 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3836 PIN_MAPPABLE | PIN_NONBLOCK);
3837 if (IS_ERR(vma)) {
3838 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3839 unsigned int flags;
3840
3841 /* Valleyview is definitely limited to scanning out the first
3842 * 512MiB. Lets presume this behaviour was inherited from the
3843 * g4x display engine and that all earlier gen are similarly
3844 * limited. Testing suggests that it is a little more
3845 * complicated than this. For example, Cherryview appears quite
3846 * happy to scanout from anywhere within its global aperture.
3847 */
3848 flags = 0;
3849 if (HAS_GMCH_DISPLAY(i915))
3850 flags = PIN_MAPPABLE;
3851 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3852 }
3853 if (IS_ERR(vma))
3854 goto err_unpin_display;
3855
3856 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3857
3858 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3859 __i915_gem_object_flush_for_display(obj);
3860 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3861
3862 /* It should now be out of any other write domains, and we can update
3863 * the domain values for our changes.
3864 */
3865 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3866
3867 return vma;
3868
3869 err_unpin_display:
3870 obj->pin_display--;
3871 return vma;
3872 }
3873
3874 void
3875 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3876 {
3877 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3878
3879 if (WARN_ON(vma->obj->pin_display == 0))
3880 return;
3881
3882 if (--vma->obj->pin_display == 0)
3883 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3884
3885 /* Bump the LRU to try and avoid premature eviction whilst flipping */
3886 i915_gem_object_bump_inactive_ggtt(vma->obj);
3887
3888 i915_vma_unpin(vma);
3889 }
3890
3891 /**
3892 * Moves a single object to the CPU read, and possibly write domain.
3893 * @obj: object to act on
3894 * @write: requesting write or read-only access
3895 *
3896 * This function returns when the move is complete, including waiting on
3897 * flushes to occur.
3898 */
3899 int
3900 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3901 {
3902 int ret;
3903
3904 lockdep_assert_held(&obj->base.dev->struct_mutex);
3905
3906 ret = i915_gem_object_wait(obj,
3907 I915_WAIT_INTERRUPTIBLE |
3908 I915_WAIT_LOCKED |
3909 (write ? I915_WAIT_ALL : 0),
3910 MAX_SCHEDULE_TIMEOUT,
3911 NULL);
3912 if (ret)
3913 return ret;
3914
3915 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3916
3917 /* Flush the CPU cache if it's still invalid. */
3918 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3919 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3920 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3921 }
3922
3923 /* It should now be out of any other write domains, and we can update
3924 * the domain values for our changes.
3925 */
3926 GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3927
3928 /* If we're writing through the CPU, then the GPU read domains will
3929 * need to be invalidated at next use.
3930 */
3931 if (write)
3932 __start_cpu_write(obj);
3933
3934 return 0;
3935 }
3936
3937 /* Throttle our rendering by waiting until the ring has completed our requests
3938 * emitted over 20 msec ago.
3939 *
3940 * Note that if we were to use the current jiffies each time around the loop,
3941 * we wouldn't escape the function with any frames outstanding if the time to
3942 * render a frame was over 20ms.
3943 *
3944 * This should get us reasonable parallelism between CPU and GPU but also
3945 * relatively low latency when blocking on a particular request to finish.
3946 */
3947 static int
3948 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3949 {
3950 struct drm_i915_private *dev_priv = to_i915(dev);
3951 struct drm_i915_file_private *file_priv = file->driver_priv;
3952 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3953 struct drm_i915_gem_request *request, *target = NULL;
3954 long ret;
3955
3956 /* ABI: return -EIO if already wedged */
3957 if (i915_terminally_wedged(&dev_priv->gpu_error))
3958 return -EIO;
3959
3960 spin_lock(&file_priv->mm.lock);
3961 list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3962 if (time_after_eq(request->emitted_jiffies, recent_enough))
3963 break;
3964
3965 if (target) {
3966 list_del(&target->client_link);
3967 target->file_priv = NULL;
3968 }
3969
3970 target = request;
3971 }
3972 if (target)
3973 i915_gem_request_get(target);
3974 spin_unlock(&file_priv->mm.lock);
3975
3976 if (target == NULL)
3977 return 0;
3978
3979 ret = i915_wait_request(target,
3980 I915_WAIT_INTERRUPTIBLE,
3981 MAX_SCHEDULE_TIMEOUT);
3982 i915_gem_request_put(target);
3983
3984 return ret < 0 ? ret : 0;
3985 }
3986
3987 struct i915_vma *
3988 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3989 const struct i915_ggtt_view *view,
3990 u64 size,
3991 u64 alignment,
3992 u64 flags)
3993 {
3994 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3995 struct i915_address_space *vm = &dev_priv->ggtt.base;
3996 struct i915_vma *vma;
3997 int ret;
3998
3999 lockdep_assert_held(&obj->base.dev->struct_mutex);
4000
4001 vma = i915_vma_instance(obj, vm, view);
4002 if (unlikely(IS_ERR(vma)))
4003 return vma;
4004
4005 if (i915_vma_misplaced(vma, size, alignment, flags)) {
4006 if (flags & PIN_NONBLOCK &&
4007 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
4008 return ERR_PTR(-ENOSPC);
4009
4010 if (flags & PIN_MAPPABLE) {
4011 /* If the required space is larger than the available
4012 * aperture, we will not able to find a slot for the
4013 * object and unbinding the object now will be in
4014 * vain. Worse, doing so may cause us to ping-pong
4015 * the object in and out of the Global GTT and
4016 * waste a lot of cycles under the mutex.
4017 */
4018 if (vma->fence_size > dev_priv->ggtt.mappable_end)
4019 return ERR_PTR(-E2BIG);
4020
4021 /* If NONBLOCK is set the caller is optimistically
4022 * trying to cache the full object within the mappable
4023 * aperture, and *must* have a fallback in place for
4024 * situations where we cannot bind the object. We
4025 * can be a little more lax here and use the fallback
4026 * more often to avoid costly migrations of ourselves
4027 * and other objects within the aperture.
4028 *
4029 * Half-the-aperture is used as a simple heuristic.
4030 * More interesting would to do search for a free
4031 * block prior to making the commitment to unbind.
4032 * That caters for the self-harm case, and with a
4033 * little more heuristics (e.g. NOFAULT, NOEVICT)
4034 * we could try to minimise harm to others.
4035 */
4036 if (flags & PIN_NONBLOCK &&
4037 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4038 return ERR_PTR(-ENOSPC);
4039 }
4040
4041 WARN(i915_vma_is_pinned(vma),
4042 "bo is already pinned in ggtt with incorrect alignment:"
4043 " offset=%08x, req.alignment=%llx,"
4044 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4045 i915_ggtt_offset(vma), alignment,
4046 !!(flags & PIN_MAPPABLE),
4047 i915_vma_is_map_and_fenceable(vma));
4048 ret = i915_vma_unbind(vma);
4049 if (ret)
4050 return ERR_PTR(ret);
4051 }
4052
4053 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4054 if (ret)
4055 return ERR_PTR(ret);
4056
4057 return vma;
4058 }
4059
4060 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4061 {
4062 /* Note that we could alias engines in the execbuf API, but
4063 * that would be very unwise as it prevents userspace from
4064 * fine control over engine selection. Ahem.
4065 *
4066 * This should be something like EXEC_MAX_ENGINE instead of
4067 * I915_NUM_ENGINES.
4068 */
4069 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4070 return 0x10000 << id;
4071 }
4072
4073 static __always_inline unsigned int __busy_write_id(unsigned int id)
4074 {
4075 /* The uABI guarantees an active writer is also amongst the read
4076 * engines. This would be true if we accessed the activity tracking
4077 * under the lock, but as we perform the lookup of the object and
4078 * its activity locklessly we can not guarantee that the last_write
4079 * being active implies that we have set the same engine flag from
4080 * last_read - hence we always set both read and write busy for
4081 * last_write.
4082 */
4083 return id | __busy_read_flag(id);
4084 }
4085
4086 static __always_inline unsigned int
4087 __busy_set_if_active(const struct dma_fence *fence,
4088 unsigned int (*flag)(unsigned int id))
4089 {
4090 struct drm_i915_gem_request *rq;
4091
4092 /* We have to check the current hw status of the fence as the uABI
4093 * guarantees forward progress. We could rely on the idle worker
4094 * to eventually flush us, but to minimise latency just ask the
4095 * hardware.
4096 *
4097 * Note we only report on the status of native fences.
4098 */
4099 if (!dma_fence_is_i915(fence))
4100 return 0;
4101
4102 /* opencode to_request() in order to avoid const warnings */
4103 rq = container_of(fence, struct drm_i915_gem_request, fence);
4104 if (i915_gem_request_completed(rq))
4105 return 0;
4106
4107 return flag(rq->engine->uabi_id);
4108 }
4109
4110 static __always_inline unsigned int
4111 busy_check_reader(const struct dma_fence *fence)
4112 {
4113 return __busy_set_if_active(fence, __busy_read_flag);
4114 }
4115
4116 static __always_inline unsigned int
4117 busy_check_writer(const struct dma_fence *fence)
4118 {
4119 if (!fence)
4120 return 0;
4121
4122 return __busy_set_if_active(fence, __busy_write_id);
4123 }
4124
4125 int
4126 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4127 struct drm_file *file)
4128 {
4129 struct drm_i915_gem_busy *args = data;
4130 struct drm_i915_gem_object *obj;
4131 struct reservation_object_list *list;
4132 unsigned int seq;
4133 int err;
4134
4135 err = -ENOENT;
4136 rcu_read_lock();
4137 obj = i915_gem_object_lookup_rcu(file, args->handle);
4138 if (!obj)
4139 goto out;
4140
4141 /* A discrepancy here is that we do not report the status of
4142 * non-i915 fences, i.e. even though we may report the object as idle,
4143 * a call to set-domain may still stall waiting for foreign rendering.
4144 * This also means that wait-ioctl may report an object as busy,
4145 * where busy-ioctl considers it idle.
4146 *
4147 * We trade the ability to warn of foreign fences to report on which
4148 * i915 engines are active for the object.
4149 *
4150 * Alternatively, we can trade that extra information on read/write
4151 * activity with
4152 * args->busy =
4153 * !reservation_object_test_signaled_rcu(obj->resv, true);
4154 * to report the overall busyness. This is what the wait-ioctl does.
4155 *
4156 */
4157 retry:
4158 seq = raw_read_seqcount(&obj->resv->seq);
4159
4160 /* Translate the exclusive fence to the READ *and* WRITE engine */
4161 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4162
4163 /* Translate shared fences to READ set of engines */
4164 list = rcu_dereference(obj->resv->fence);
4165 if (list) {
4166 unsigned int shared_count = list->shared_count, i;
4167
4168 for (i = 0; i < shared_count; ++i) {
4169 struct dma_fence *fence =
4170 rcu_dereference(list->shared[i]);
4171
4172 args->busy |= busy_check_reader(fence);
4173 }
4174 }
4175
4176 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4177 goto retry;
4178
4179 err = 0;
4180 out:
4181 rcu_read_unlock();
4182 return err;
4183 }
4184
4185 int
4186 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4187 struct drm_file *file_priv)
4188 {
4189 return i915_gem_ring_throttle(dev, file_priv);
4190 }
4191
4192 int
4193 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4194 struct drm_file *file_priv)
4195 {
4196 struct drm_i915_private *dev_priv = to_i915(dev);
4197 struct drm_i915_gem_madvise *args = data;
4198 struct drm_i915_gem_object *obj;
4199 int err;
4200
4201 switch (args->madv) {
4202 case I915_MADV_DONTNEED:
4203 case I915_MADV_WILLNEED:
4204 break;
4205 default:
4206 return -EINVAL;
4207 }
4208
4209 obj = i915_gem_object_lookup(file_priv, args->handle);
4210 if (!obj)
4211 return -ENOENT;
4212
4213 err = mutex_lock_interruptible(&obj->mm.lock);
4214 if (err)
4215 goto out;
4216
4217 if (obj->mm.pages &&
4218 i915_gem_object_is_tiled(obj) &&
4219 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4220 if (obj->mm.madv == I915_MADV_WILLNEED) {
4221 GEM_BUG_ON(!obj->mm.quirked);
4222 __i915_gem_object_unpin_pages(obj);
4223 obj->mm.quirked = false;
4224 }
4225 if (args->madv == I915_MADV_WILLNEED) {
4226 GEM_BUG_ON(obj->mm.quirked);
4227 __i915_gem_object_pin_pages(obj);
4228 obj->mm.quirked = true;
4229 }
4230 }
4231
4232 if (obj->mm.madv != __I915_MADV_PURGED)
4233 obj->mm.madv = args->madv;
4234
4235 /* if the object is no longer attached, discard its backing storage */
4236 if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4237 i915_gem_object_truncate(obj);
4238
4239 args->retained = obj->mm.madv != __I915_MADV_PURGED;
4240 mutex_unlock(&obj->mm.lock);
4241
4242 out:
4243 i915_gem_object_put(obj);
4244 return err;
4245 }
4246
4247 static void
4248 frontbuffer_retire(struct i915_gem_active *active,
4249 struct drm_i915_gem_request *request)
4250 {
4251 struct drm_i915_gem_object *obj =
4252 container_of(active, typeof(*obj), frontbuffer_write);
4253
4254 intel_fb_obj_flush(obj, ORIGIN_CS);
4255 }
4256
4257 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4258 const struct drm_i915_gem_object_ops *ops)
4259 {
4260 mutex_init(&obj->mm.lock);
4261
4262 INIT_LIST_HEAD(&obj->global_link);
4263 INIT_LIST_HEAD(&obj->userfault_link);
4264 INIT_LIST_HEAD(&obj->vma_list);
4265 INIT_LIST_HEAD(&obj->batch_pool_link);
4266
4267 obj->ops = ops;
4268
4269 reservation_object_init(&obj->__builtin_resv);
4270 obj->resv = &obj->__builtin_resv;
4271
4272 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4273 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4274
4275 obj->mm.madv = I915_MADV_WILLNEED;
4276 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4277 mutex_init(&obj->mm.get_page.lock);
4278
4279 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4280 }
4281
4282 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4283 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4284 I915_GEM_OBJECT_IS_SHRINKABLE,
4285
4286 .get_pages = i915_gem_object_get_pages_gtt,
4287 .put_pages = i915_gem_object_put_pages_gtt,
4288
4289 .pwrite = i915_gem_object_pwrite_gtt,
4290 };
4291
4292 struct drm_i915_gem_object *
4293 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4294 {
4295 struct drm_i915_gem_object *obj;
4296 struct address_space *mapping;
4297 gfp_t mask;
4298 int ret;
4299
4300 /* There is a prevalence of the assumption that we fit the object's
4301 * page count inside a 32bit _signed_ variable. Let's document this and
4302 * catch if we ever need to fix it. In the meantime, if you do spot
4303 * such a local variable, please consider fixing!
4304 */
4305 if (size >> PAGE_SHIFT > INT_MAX)
4306 return ERR_PTR(-E2BIG);
4307
4308 if (overflows_type(size, obj->base.size))
4309 return ERR_PTR(-E2BIG);
4310
4311 obj = i915_gem_object_alloc(dev_priv);
4312 if (obj == NULL)
4313 return ERR_PTR(-ENOMEM);
4314
4315 ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4316 if (ret)
4317 goto fail;
4318
4319 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4320 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4321 /* 965gm cannot relocate objects above 4GiB. */
4322 mask &= ~__GFP_HIGHMEM;
4323 mask |= __GFP_DMA32;
4324 }
4325
4326 mapping = obj->base.filp->f_mapping;
4327 mapping_set_gfp_mask(mapping, mask);
4328 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4329
4330 i915_gem_object_init(obj, &i915_gem_object_ops);
4331
4332 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4333 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4334
4335 if (HAS_LLC(dev_priv)) {
4336 /* On some devices, we can have the GPU use the LLC (the CPU
4337 * cache) for about a 10% performance improvement
4338 * compared to uncached. Graphics requests other than
4339 * display scanout are coherent with the CPU in
4340 * accessing this cache. This means in this mode we
4341 * don't need to clflush on the CPU side, and on the
4342 * GPU side we only need to flush internal caches to
4343 * get data visible to the CPU.
4344 *
4345 * However, we maintain the display planes as UC, and so
4346 * need to rebind when first used as such.
4347 */
4348 obj->cache_level = I915_CACHE_LLC;
4349 } else
4350 obj->cache_level = I915_CACHE_NONE;
4351
4352 obj->cache_coherent = i915_gem_object_is_coherent(obj);
4353 obj->cache_dirty = !obj->cache_coherent;
4354
4355 trace_i915_gem_object_create(obj);
4356
4357 return obj;
4358
4359 fail:
4360 i915_gem_object_free(obj);
4361 return ERR_PTR(ret);
4362 }
4363
4364 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4365 {
4366 /* If we are the last user of the backing storage (be it shmemfs
4367 * pages or stolen etc), we know that the pages are going to be
4368 * immediately released. In this case, we can then skip copying
4369 * back the contents from the GPU.
4370 */
4371
4372 if (obj->mm.madv != I915_MADV_WILLNEED)
4373 return false;
4374
4375 if (obj->base.filp == NULL)
4376 return true;
4377
4378 /* At first glance, this looks racy, but then again so would be
4379 * userspace racing mmap against close. However, the first external
4380 * reference to the filp can only be obtained through the
4381 * i915_gem_mmap_ioctl() which safeguards us against the user
4382 * acquiring such a reference whilst we are in the middle of
4383 * freeing the object.
4384 */
4385 return atomic_long_read(&obj->base.filp->f_count) == 1;
4386 }
4387
4388 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4389 struct llist_node *freed)
4390 {
4391 struct drm_i915_gem_object *obj, *on;
4392
4393 mutex_lock(&i915->drm.struct_mutex);
4394 intel_runtime_pm_get(i915);
4395 llist_for_each_entry(obj, freed, freed) {
4396 struct i915_vma *vma, *vn;
4397
4398 trace_i915_gem_object_destroy(obj);
4399
4400 GEM_BUG_ON(i915_gem_object_is_active(obj));
4401 list_for_each_entry_safe(vma, vn,
4402 &obj->vma_list, obj_link) {
4403 GEM_BUG_ON(i915_vma_is_active(vma));
4404 vma->flags &= ~I915_VMA_PIN_MASK;
4405 i915_vma_close(vma);
4406 }
4407 GEM_BUG_ON(!list_empty(&obj->vma_list));
4408 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4409
4410 list_del(&obj->global_link);
4411 }
4412 intel_runtime_pm_put(i915);
4413 mutex_unlock(&i915->drm.struct_mutex);
4414
4415 cond_resched();
4416
4417 llist_for_each_entry_safe(obj, on, freed, freed) {
4418 GEM_BUG_ON(obj->bind_count);
4419 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4420
4421 if (obj->ops->release)
4422 obj->ops->release(obj);
4423
4424 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4425 atomic_set(&obj->mm.pages_pin_count, 0);
4426 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4427 GEM_BUG_ON(obj->mm.pages);
4428
4429 if (obj->base.import_attach)
4430 drm_prime_gem_destroy(&obj->base, NULL);
4431
4432 reservation_object_fini(&obj->__builtin_resv);
4433 drm_gem_object_release(&obj->base);
4434 i915_gem_info_remove_obj(i915, obj->base.size);
4435
4436 kfree(obj->bit_17);
4437 i915_gem_object_free(obj);
4438 }
4439 }
4440
4441 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4442 {
4443 struct llist_node *freed;
4444
4445 freed = llist_del_all(&i915->mm.free_list);
4446 if (unlikely(freed))
4447 __i915_gem_free_objects(i915, freed);
4448 }
4449
4450 static void __i915_gem_free_work(struct work_struct *work)
4451 {
4452 struct drm_i915_private *i915 =
4453 container_of(work, struct drm_i915_private, mm.free_work);
4454 struct llist_node *freed;
4455
4456 /* All file-owned VMA should have been released by this point through
4457 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4458 * However, the object may also be bound into the global GTT (e.g.
4459 * older GPUs without per-process support, or for direct access through
4460 * the GTT either for the user or for scanout). Those VMA still need to
4461 * unbound now.
4462 */
4463
4464 while ((freed = llist_del_all(&i915->mm.free_list))) {
4465 __i915_gem_free_objects(i915, freed);
4466 if (need_resched())
4467 break;
4468 }
4469 }
4470
4471 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4472 {
4473 struct drm_i915_gem_object *obj =
4474 container_of(head, typeof(*obj), rcu);
4475 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4476
4477 /* We can't simply use call_rcu() from i915_gem_free_object()
4478 * as we need to block whilst unbinding, and the call_rcu
4479 * task may be called from softirq context. So we take a
4480 * detour through a worker.
4481 */
4482 if (llist_add(&obj->freed, &i915->mm.free_list))
4483 schedule_work(&i915->mm.free_work);
4484 }
4485
4486 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4487 {
4488 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4489
4490 if (obj->mm.quirked)
4491 __i915_gem_object_unpin_pages(obj);
4492
4493 if (discard_backing_storage(obj))
4494 obj->mm.madv = I915_MADV_DONTNEED;
4495
4496 /* Before we free the object, make sure any pure RCU-only
4497 * read-side critical sections are complete, e.g.
4498 * i915_gem_busy_ioctl(). For the corresponding synchronized
4499 * lookup see i915_gem_object_lookup_rcu().
4500 */
4501 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4502 }
4503
4504 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4505 {
4506 lockdep_assert_held(&obj->base.dev->struct_mutex);
4507
4508 GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4509 if (i915_gem_object_is_active(obj))
4510 i915_gem_object_set_active_reference(obj);
4511 else
4512 i915_gem_object_put(obj);
4513 }
4514
4515 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4516 {
4517 struct intel_engine_cs *engine;
4518 enum intel_engine_id id;
4519
4520 for_each_engine(engine, dev_priv, id)
4521 GEM_BUG_ON(engine->last_retired_context &&
4522 !i915_gem_context_is_kernel(engine->last_retired_context));
4523 }
4524
4525 void i915_gem_sanitize(struct drm_i915_private *i915)
4526 {
4527 /*
4528 * If we inherit context state from the BIOS or earlier occupants
4529 * of the GPU, the GPU may be in an inconsistent state when we
4530 * try to take over. The only way to remove the earlier state
4531 * is by resetting. However, resetting on earlier gen is tricky as
4532 * it may impact the display and we are uncertain about the stability
4533 * of the reset, so this could be applied to even earlier gen.
4534 */
4535 if (INTEL_GEN(i915) >= 5) {
4536 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4537 WARN_ON(reset && reset != -ENODEV);
4538 }
4539 }
4540
4541 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4542 {
4543 struct drm_device *dev = &dev_priv->drm;
4544 int ret;
4545
4546 intel_runtime_pm_get(dev_priv);
4547 intel_suspend_gt_powersave(dev_priv);
4548
4549 mutex_lock(&dev->struct_mutex);
4550
4551 /* We have to flush all the executing contexts to main memory so
4552 * that they can saved in the hibernation image. To ensure the last
4553 * context image is coherent, we have to switch away from it. That
4554 * leaves the dev_priv->kernel_context still active when
4555 * we actually suspend, and its image in memory may not match the GPU
4556 * state. Fortunately, the kernel_context is disposable and we do
4557 * not rely on its state.
4558 */
4559 ret = i915_gem_switch_to_kernel_context(dev_priv);
4560 if (ret)
4561 goto err_unlock;
4562
4563 ret = i915_gem_wait_for_idle(dev_priv,
4564 I915_WAIT_INTERRUPTIBLE |
4565 I915_WAIT_LOCKED);
4566 if (ret)
4567 goto err_unlock;
4568
4569 assert_kernel_context_is_current(dev_priv);
4570 i915_gem_contexts_lost(dev_priv);
4571 mutex_unlock(&dev->struct_mutex);
4572
4573 intel_guc_suspend(dev_priv);
4574
4575 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4576 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4577
4578 /* As the idle_work is rearming if it detects a race, play safe and
4579 * repeat the flush until it is definitely idle.
4580 */
4581 while (flush_delayed_work(&dev_priv->gt.idle_work))
4582 ;
4583
4584 /* Assert that we sucessfully flushed all the work and
4585 * reset the GPU back to its idle, low power state.
4586 */
4587 WARN_ON(dev_priv->gt.awake);
4588 WARN_ON(!intel_engines_are_idle(dev_priv));
4589
4590 /*
4591 * Neither the BIOS, ourselves or any other kernel
4592 * expects the system to be in execlists mode on startup,
4593 * so we need to reset the GPU back to legacy mode. And the only
4594 * known way to disable logical contexts is through a GPU reset.
4595 *
4596 * So in order to leave the system in a known default configuration,
4597 * always reset the GPU upon unload and suspend. Afterwards we then
4598 * clean up the GEM state tracking, flushing off the requests and
4599 * leaving the system in a known idle state.
4600 *
4601 * Note that is of the upmost importance that the GPU is idle and
4602 * all stray writes are flushed *before* we dismantle the backing
4603 * storage for the pinned objects.
4604 *
4605 * However, since we are uncertain that resetting the GPU on older
4606 * machines is a good idea, we don't - just in case it leaves the
4607 * machine in an unusable condition.
4608 */
4609 i915_gem_sanitize(dev_priv);
4610 goto out_rpm_put;
4611
4612 err_unlock:
4613 mutex_unlock(&dev->struct_mutex);
4614 out_rpm_put:
4615 intel_runtime_pm_put(dev_priv);
4616 return ret;
4617 }
4618
4619 void i915_gem_resume(struct drm_i915_private *dev_priv)
4620 {
4621 struct drm_device *dev = &dev_priv->drm;
4622
4623 WARN_ON(dev_priv->gt.awake);
4624
4625 mutex_lock(&dev->struct_mutex);
4626 i915_gem_restore_gtt_mappings(dev_priv);
4627
4628 /* As we didn't flush the kernel context before suspend, we cannot
4629 * guarantee that the context image is complete. So let's just reset
4630 * it and start again.
4631 */
4632 dev_priv->gt.resume(dev_priv);
4633
4634 mutex_unlock(&dev->struct_mutex);
4635 }
4636
4637 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4638 {
4639 if (INTEL_GEN(dev_priv) < 5 ||
4640 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4641 return;
4642
4643 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4644 DISP_TILE_SURFACE_SWIZZLING);
4645
4646 if (IS_GEN5(dev_priv))
4647 return;
4648
4649 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4650 if (IS_GEN6(dev_priv))
4651 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4652 else if (IS_GEN7(dev_priv))
4653 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4654 else if (IS_GEN8(dev_priv))
4655 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4656 else
4657 BUG();
4658 }
4659
4660 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4661 {
4662 I915_WRITE(RING_CTL(base), 0);
4663 I915_WRITE(RING_HEAD(base), 0);
4664 I915_WRITE(RING_TAIL(base), 0);
4665 I915_WRITE(RING_START(base), 0);
4666 }
4667
4668 static void init_unused_rings(struct drm_i915_private *dev_priv)
4669 {
4670 if (IS_I830(dev_priv)) {
4671 init_unused_ring(dev_priv, PRB1_BASE);
4672 init_unused_ring(dev_priv, SRB0_BASE);
4673 init_unused_ring(dev_priv, SRB1_BASE);
4674 init_unused_ring(dev_priv, SRB2_BASE);
4675 init_unused_ring(dev_priv, SRB3_BASE);
4676 } else if (IS_GEN2(dev_priv)) {
4677 init_unused_ring(dev_priv, SRB0_BASE);
4678 init_unused_ring(dev_priv, SRB1_BASE);
4679 } else if (IS_GEN3(dev_priv)) {
4680 init_unused_ring(dev_priv, PRB1_BASE);
4681 init_unused_ring(dev_priv, PRB2_BASE);
4682 }
4683 }
4684
4685 static int __i915_gem_restart_engines(void *data)
4686 {
4687 struct drm_i915_private *i915 = data;
4688 struct intel_engine_cs *engine;
4689 enum intel_engine_id id;
4690 int err;
4691
4692 for_each_engine(engine, i915, id) {
4693 err = engine->init_hw(engine);
4694 if (err)
4695 return err;
4696 }
4697
4698 return 0;
4699 }
4700
4701 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4702 {
4703 int ret;
4704
4705 dev_priv->gt.last_init_time = ktime_get();
4706
4707 /* Double layer security blanket, see i915_gem_init() */
4708 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4709
4710 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4711 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4712
4713 if (IS_HASWELL(dev_priv))
4714 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4715 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4716
4717 if (HAS_PCH_NOP(dev_priv)) {
4718 if (IS_IVYBRIDGE(dev_priv)) {
4719 u32 temp = I915_READ(GEN7_MSG_CTL);
4720 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4721 I915_WRITE(GEN7_MSG_CTL, temp);
4722 } else if (INTEL_GEN(dev_priv) >= 7) {
4723 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4724 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4725 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4726 }
4727 }
4728
4729 i915_gem_init_swizzling(dev_priv);
4730
4731 /*
4732 * At least 830 can leave some of the unused rings
4733 * "active" (ie. head != tail) after resume which
4734 * will prevent c3 entry. Makes sure all unused rings
4735 * are totally idle.
4736 */
4737 init_unused_rings(dev_priv);
4738
4739 BUG_ON(!dev_priv->kernel_context);
4740
4741 ret = i915_ppgtt_init_hw(dev_priv);
4742 if (ret) {
4743 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4744 goto out;
4745 }
4746
4747 /* Need to do basic initialisation of all rings first: */
4748 ret = __i915_gem_restart_engines(dev_priv);
4749 if (ret)
4750 goto out;
4751
4752 intel_mocs_init_l3cc_table(dev_priv);
4753
4754 /* We can't enable contexts until all firmware is loaded */
4755 ret = intel_uc_init_hw(dev_priv);
4756 if (ret)
4757 goto out;
4758
4759 out:
4760 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4761 return ret;
4762 }
4763
4764 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4765 {
4766 if (INTEL_INFO(dev_priv)->gen < 6)
4767 return false;
4768
4769 /* TODO: make semaphores and Execlists play nicely together */
4770 if (i915.enable_execlists)
4771 return false;
4772
4773 if (value >= 0)
4774 return value;
4775
4776 /* Enable semaphores on SNB when IO remapping is off */
4777 if (IS_GEN6(dev_priv) && intel_vtd_active())
4778 return false;
4779
4780 return true;
4781 }
4782
4783 int i915_gem_init(struct drm_i915_private *dev_priv)
4784 {
4785 int ret;
4786
4787 mutex_lock(&dev_priv->drm.struct_mutex);
4788
4789 dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4790
4791 if (!i915.enable_execlists) {
4792 dev_priv->gt.resume = intel_legacy_submission_resume;
4793 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4794 } else {
4795 dev_priv->gt.resume = intel_lr_context_resume;
4796 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4797 }
4798
4799 /* This is just a security blanket to placate dragons.
4800 * On some systems, we very sporadically observe that the first TLBs
4801 * used by the CS may be stale, despite us poking the TLB reset. If
4802 * we hold the forcewake during initialisation these problems
4803 * just magically go away.
4804 */
4805 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4806
4807 ret = i915_gem_init_userptr(dev_priv);
4808 if (ret)
4809 goto out_unlock;
4810
4811 ret = i915_gem_init_ggtt(dev_priv);
4812 if (ret)
4813 goto out_unlock;
4814
4815 ret = i915_gem_contexts_init(dev_priv);
4816 if (ret)
4817 goto out_unlock;
4818
4819 ret = intel_engines_init(dev_priv);
4820 if (ret)
4821 goto out_unlock;
4822
4823 ret = i915_gem_init_hw(dev_priv);
4824 if (ret == -EIO) {
4825 /* Allow engine initialisation to fail by marking the GPU as
4826 * wedged. But we only want to do this where the GPU is angry,
4827 * for all other failure, such as an allocation failure, bail.
4828 */
4829 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4830 i915_gem_set_wedged(dev_priv);
4831 ret = 0;
4832 }
4833
4834 out_unlock:
4835 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4836 mutex_unlock(&dev_priv->drm.struct_mutex);
4837
4838 return ret;
4839 }
4840
4841 void i915_gem_init_mmio(struct drm_i915_private *i915)
4842 {
4843 i915_gem_sanitize(i915);
4844 }
4845
4846 void
4847 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4848 {
4849 struct intel_engine_cs *engine;
4850 enum intel_engine_id id;
4851
4852 for_each_engine(engine, dev_priv, id)
4853 dev_priv->gt.cleanup_engine(engine);
4854 }
4855
4856 void
4857 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4858 {
4859 int i;
4860
4861 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4862 !IS_CHERRYVIEW(dev_priv))
4863 dev_priv->num_fence_regs = 32;
4864 else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4865 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4866 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4867 dev_priv->num_fence_regs = 16;
4868 else
4869 dev_priv->num_fence_regs = 8;
4870
4871 if (intel_vgpu_active(dev_priv))
4872 dev_priv->num_fence_regs =
4873 I915_READ(vgtif_reg(avail_rs.fence_num));
4874
4875 /* Initialize fence registers to zero */
4876 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4877 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4878
4879 fence->i915 = dev_priv;
4880 fence->id = i;
4881 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4882 }
4883 i915_gem_restore_fences(dev_priv);
4884
4885 i915_gem_detect_bit_6_swizzle(dev_priv);
4886 }
4887
4888 int
4889 i915_gem_load_init(struct drm_i915_private *dev_priv)
4890 {
4891 int err = -ENOMEM;
4892
4893 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4894 if (!dev_priv->objects)
4895 goto err_out;
4896
4897 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4898 if (!dev_priv->vmas)
4899 goto err_objects;
4900
4901 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4902 SLAB_HWCACHE_ALIGN |
4903 SLAB_RECLAIM_ACCOUNT |
4904 SLAB_TYPESAFE_BY_RCU);
4905 if (!dev_priv->requests)
4906 goto err_vmas;
4907
4908 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4909 SLAB_HWCACHE_ALIGN |
4910 SLAB_RECLAIM_ACCOUNT);
4911 if (!dev_priv->dependencies)
4912 goto err_requests;
4913
4914 dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
4915 if (!dev_priv->priorities)
4916 goto err_dependencies;
4917
4918 mutex_lock(&dev_priv->drm.struct_mutex);
4919 INIT_LIST_HEAD(&dev_priv->gt.timelines);
4920 err = i915_gem_timeline_init__global(dev_priv);
4921 mutex_unlock(&dev_priv->drm.struct_mutex);
4922 if (err)
4923 goto err_priorities;
4924
4925 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4926 init_llist_head(&dev_priv->mm.free_list);
4927 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4928 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4929 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4930 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4931 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4932 i915_gem_retire_work_handler);
4933 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4934 i915_gem_idle_work_handler);
4935 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4936 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4937
4938 init_waitqueue_head(&dev_priv->pending_flip_queue);
4939
4940 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4941
4942 spin_lock_init(&dev_priv->fb_tracking.lock);
4943
4944 return 0;
4945
4946 err_priorities:
4947 kmem_cache_destroy(dev_priv->priorities);
4948 err_dependencies:
4949 kmem_cache_destroy(dev_priv->dependencies);
4950 err_requests:
4951 kmem_cache_destroy(dev_priv->requests);
4952 err_vmas:
4953 kmem_cache_destroy(dev_priv->vmas);
4954 err_objects:
4955 kmem_cache_destroy(dev_priv->objects);
4956 err_out:
4957 return err;
4958 }
4959
4960 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4961 {
4962 i915_gem_drain_freed_objects(dev_priv);
4963 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4964 WARN_ON(dev_priv->mm.object_count);
4965
4966 mutex_lock(&dev_priv->drm.struct_mutex);
4967 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4968 WARN_ON(!list_empty(&dev_priv->gt.timelines));
4969 mutex_unlock(&dev_priv->drm.struct_mutex);
4970
4971 kmem_cache_destroy(dev_priv->priorities);
4972 kmem_cache_destroy(dev_priv->dependencies);
4973 kmem_cache_destroy(dev_priv->requests);
4974 kmem_cache_destroy(dev_priv->vmas);
4975 kmem_cache_destroy(dev_priv->objects);
4976
4977 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4978 rcu_barrier();
4979 }
4980
4981 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4982 {
4983 /* Discard all purgeable objects, let userspace recover those as
4984 * required after resuming.
4985 */
4986 i915_gem_shrink_all(dev_priv);
4987
4988 return 0;
4989 }
4990
4991 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4992 {
4993 struct drm_i915_gem_object *obj;
4994 struct list_head *phases[] = {
4995 &dev_priv->mm.unbound_list,
4996 &dev_priv->mm.bound_list,
4997 NULL
4998 }, **p;
4999
5000 /* Called just before we write the hibernation image.
5001 *
5002 * We need to update the domain tracking to reflect that the CPU
5003 * will be accessing all the pages to create and restore from the
5004 * hibernation, and so upon restoration those pages will be in the
5005 * CPU domain.
5006 *
5007 * To make sure the hibernation image contains the latest state,
5008 * we update that state just before writing out the image.
5009 *
5010 * To try and reduce the hibernation image, we manually shrink
5011 * the objects as well, see i915_gem_freeze()
5012 */
5013
5014 i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
5015 i915_gem_drain_freed_objects(dev_priv);
5016
5017 mutex_lock(&dev_priv->drm.struct_mutex);
5018 for (p = phases; *p; p++) {
5019 list_for_each_entry(obj, *p, global_link)
5020 __start_cpu_write(obj);
5021 }
5022 mutex_unlock(&dev_priv->drm.struct_mutex);
5023
5024 return 0;
5025 }
5026
5027 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5028 {
5029 struct drm_i915_file_private *file_priv = file->driver_priv;
5030 struct drm_i915_gem_request *request;
5031
5032 /* Clean up our request list when the client is going away, so that
5033 * later retire_requests won't dereference our soon-to-be-gone
5034 * file_priv.
5035 */
5036 spin_lock(&file_priv->mm.lock);
5037 list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5038 request->file_priv = NULL;
5039 spin_unlock(&file_priv->mm.lock);
5040 }
5041
5042 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5043 {
5044 struct drm_i915_file_private *file_priv;
5045 int ret;
5046
5047 DRM_DEBUG("\n");
5048
5049 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5050 if (!file_priv)
5051 return -ENOMEM;
5052
5053 file->driver_priv = file_priv;
5054 file_priv->dev_priv = i915;
5055 file_priv->file = file;
5056
5057 spin_lock_init(&file_priv->mm.lock);
5058 INIT_LIST_HEAD(&file_priv->mm.request_list);
5059
5060 file_priv->bsd_engine = -1;
5061
5062 ret = i915_gem_context_open(i915, file);
5063 if (ret)
5064 kfree(file_priv);
5065
5066 return ret;
5067 }
5068
5069 /**
5070 * i915_gem_track_fb - update frontbuffer tracking
5071 * @old: current GEM buffer for the frontbuffer slots
5072 * @new: new GEM buffer for the frontbuffer slots
5073 * @frontbuffer_bits: bitmask of frontbuffer slots
5074 *
5075 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5076 * from @old and setting them in @new. Both @old and @new can be NULL.
5077 */
5078 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5079 struct drm_i915_gem_object *new,
5080 unsigned frontbuffer_bits)
5081 {
5082 /* Control of individual bits within the mask are guarded by
5083 * the owning plane->mutex, i.e. we can never see concurrent
5084 * manipulation of individual bits. But since the bitfield as a whole
5085 * is updated using RMW, we need to use atomics in order to update
5086 * the bits.
5087 */
5088 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5089 sizeof(atomic_t) * BITS_PER_BYTE);
5090
5091 if (old) {
5092 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5093 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5094 }
5095
5096 if (new) {
5097 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5098 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5099 }
5100 }
5101
5102 /* Allocate a new GEM object and fill it with the supplied data */
5103 struct drm_i915_gem_object *
5104 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5105 const void *data, size_t size)
5106 {
5107 struct drm_i915_gem_object *obj;
5108 struct file *file;
5109 size_t offset;
5110 int err;
5111
5112 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5113 if (IS_ERR(obj))
5114 return obj;
5115
5116 GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5117
5118 file = obj->base.filp;
5119 offset = 0;
5120 do {
5121 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5122 struct page *page;
5123 void *pgdata, *vaddr;
5124
5125 err = pagecache_write_begin(file, file->f_mapping,
5126 offset, len, 0,
5127 &page, &pgdata);
5128 if (err < 0)
5129 goto fail;
5130
5131 vaddr = kmap(page);
5132 memcpy(vaddr, data, len);
5133 kunmap(page);
5134
5135 err = pagecache_write_end(file, file->f_mapping,
5136 offset, len, len,
5137 page, pgdata);
5138 if (err < 0)
5139 goto fail;
5140
5141 size -= len;
5142 data += len;
5143 offset += len;
5144 } while (size);
5145
5146 return obj;
5147
5148 fail:
5149 i915_gem_object_put(obj);
5150 return ERR_PTR(err);
5151 }
5152
5153 struct scatterlist *
5154 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5155 unsigned int n,
5156 unsigned int *offset)
5157 {
5158 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5159 struct scatterlist *sg;
5160 unsigned int idx, count;
5161
5162 might_sleep();
5163 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5164 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5165
5166 /* As we iterate forward through the sg, we record each entry in a
5167 * radixtree for quick repeated (backwards) lookups. If we have seen
5168 * this index previously, we will have an entry for it.
5169 *
5170 * Initial lookup is O(N), but this is amortized to O(1) for
5171 * sequential page access (where each new request is consecutive
5172 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5173 * i.e. O(1) with a large constant!
5174 */
5175 if (n < READ_ONCE(iter->sg_idx))
5176 goto lookup;
5177
5178 mutex_lock(&iter->lock);
5179
5180 /* We prefer to reuse the last sg so that repeated lookup of this
5181 * (or the subsequent) sg are fast - comparing against the last
5182 * sg is faster than going through the radixtree.
5183 */
5184
5185 sg = iter->sg_pos;
5186 idx = iter->sg_idx;
5187 count = __sg_page_count(sg);
5188
5189 while (idx + count <= n) {
5190 unsigned long exception, i;
5191 int ret;
5192
5193 /* If we cannot allocate and insert this entry, or the
5194 * individual pages from this range, cancel updating the
5195 * sg_idx so that on this lookup we are forced to linearly
5196 * scan onwards, but on future lookups we will try the
5197 * insertion again (in which case we need to be careful of
5198 * the error return reporting that we have already inserted
5199 * this index).
5200 */
5201 ret = radix_tree_insert(&iter->radix, idx, sg);
5202 if (ret && ret != -EEXIST)
5203 goto scan;
5204
5205 exception =
5206 RADIX_TREE_EXCEPTIONAL_ENTRY |
5207 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5208 for (i = 1; i < count; i++) {
5209 ret = radix_tree_insert(&iter->radix, idx + i,
5210 (void *)exception);
5211 if (ret && ret != -EEXIST)
5212 goto scan;
5213 }
5214
5215 idx += count;
5216 sg = ____sg_next(sg);
5217 count = __sg_page_count(sg);
5218 }
5219
5220 scan:
5221 iter->sg_pos = sg;
5222 iter->sg_idx = idx;
5223
5224 mutex_unlock(&iter->lock);
5225
5226 if (unlikely(n < idx)) /* insertion completed by another thread */
5227 goto lookup;
5228
5229 /* In case we failed to insert the entry into the radixtree, we need
5230 * to look beyond the current sg.
5231 */
5232 while (idx + count <= n) {
5233 idx += count;
5234 sg = ____sg_next(sg);
5235 count = __sg_page_count(sg);
5236 }
5237
5238 *offset = n - idx;
5239 return sg;
5240
5241 lookup:
5242 rcu_read_lock();
5243
5244 sg = radix_tree_lookup(&iter->radix, n);
5245 GEM_BUG_ON(!sg);
5246
5247 /* If this index is in the middle of multi-page sg entry,
5248 * the radixtree will contain an exceptional entry that points
5249 * to the start of that range. We will return the pointer to
5250 * the base page and the offset of this page within the
5251 * sg entry's range.
5252 */
5253 *offset = 0;
5254 if (unlikely(radix_tree_exception(sg))) {
5255 unsigned long base =
5256 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5257
5258 sg = radix_tree_lookup(&iter->radix, base);
5259 GEM_BUG_ON(!sg);
5260
5261 *offset = n - base;
5262 }
5263
5264 rcu_read_unlock();
5265
5266 return sg;
5267 }
5268
5269 struct page *
5270 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5271 {
5272 struct scatterlist *sg;
5273 unsigned int offset;
5274
5275 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5276
5277 sg = i915_gem_object_get_sg(obj, n, &offset);
5278 return nth_page(sg_page(sg), offset);
5279 }
5280
5281 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5282 struct page *
5283 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5284 unsigned int n)
5285 {
5286 struct page *page;
5287
5288 page = i915_gem_object_get_page(obj, n);
5289 if (!obj->mm.dirty)
5290 set_page_dirty(page);
5291
5292 return page;
5293 }
5294
5295 dma_addr_t
5296 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5297 unsigned long n)
5298 {
5299 struct scatterlist *sg;
5300 unsigned int offset;
5301
5302 sg = i915_gem_object_get_sg(obj, n, &offset);
5303 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5304 }
5305
5306 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5307 #include "selftests/scatterlist.c"
5308 #include "selftests/mock_gem_device.c"
5309 #include "selftests/huge_gem_object.c"
5310 #include "selftests/i915_gem_object.c"
5311 #include "selftests/i915_gem_coherency.c"
5312 #endif