]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/gpu/drm/i915/i915_gem.c
Merge tag 'iommu-fixes-v4.10-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-zesty-kernel.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_frontbuffer.h"
36 #include "intel_mocs.h"
37 #include <linux/dma-fence-array.h>
38 #include <linux/reservation.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/pci.h>
43 #include <linux/dma-buf.h>
44
45 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
46 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
47 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
48
49 static bool cpu_cache_is_coherent(struct drm_device *dev,
50 enum i915_cache_level level)
51 {
52 return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
53 }
54
55 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56 {
57 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
58 return false;
59
60 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
61 return true;
62
63 return obj->pin_display;
64 }
65
66 static int
67 insert_mappable_node(struct i915_ggtt *ggtt,
68 struct drm_mm_node *node, u32 size)
69 {
70 memset(node, 0, sizeof(*node));
71 return drm_mm_insert_node_in_range_generic(&ggtt->base.mm, node,
72 size, 0, -1,
73 0, ggtt->mappable_end,
74 DRM_MM_SEARCH_DEFAULT,
75 DRM_MM_CREATE_DEFAULT);
76 }
77
78 static void
79 remove_mappable_node(struct drm_mm_node *node)
80 {
81 drm_mm_remove_node(node);
82 }
83
84 /* some bookkeeping */
85 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
86 u64 size)
87 {
88 spin_lock(&dev_priv->mm.object_stat_lock);
89 dev_priv->mm.object_count++;
90 dev_priv->mm.object_memory += size;
91 spin_unlock(&dev_priv->mm.object_stat_lock);
92 }
93
94 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
95 u64 size)
96 {
97 spin_lock(&dev_priv->mm.object_stat_lock);
98 dev_priv->mm.object_count--;
99 dev_priv->mm.object_memory -= size;
100 spin_unlock(&dev_priv->mm.object_stat_lock);
101 }
102
103 static int
104 i915_gem_wait_for_error(struct i915_gpu_error *error)
105 {
106 int ret;
107
108 might_sleep();
109
110 if (!i915_reset_in_progress(error))
111 return 0;
112
113 /*
114 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
115 * userspace. If it takes that long something really bad is going on and
116 * we should simply try to bail out and fail as gracefully as possible.
117 */
118 ret = wait_event_interruptible_timeout(error->reset_queue,
119 !i915_reset_in_progress(error),
120 I915_RESET_TIMEOUT);
121 if (ret == 0) {
122 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
123 return -EIO;
124 } else if (ret < 0) {
125 return ret;
126 } else {
127 return 0;
128 }
129 }
130
131 int i915_mutex_lock_interruptible(struct drm_device *dev)
132 {
133 struct drm_i915_private *dev_priv = to_i915(dev);
134 int ret;
135
136 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
137 if (ret)
138 return ret;
139
140 ret = mutex_lock_interruptible(&dev->struct_mutex);
141 if (ret)
142 return ret;
143
144 return 0;
145 }
146
147 int
148 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
149 struct drm_file *file)
150 {
151 struct drm_i915_private *dev_priv = to_i915(dev);
152 struct i915_ggtt *ggtt = &dev_priv->ggtt;
153 struct drm_i915_gem_get_aperture *args = data;
154 struct i915_vma *vma;
155 size_t pinned;
156
157 pinned = 0;
158 mutex_lock(&dev->struct_mutex);
159 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
160 if (i915_vma_is_pinned(vma))
161 pinned += vma->node.size;
162 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
163 if (i915_vma_is_pinned(vma))
164 pinned += vma->node.size;
165 mutex_unlock(&dev->struct_mutex);
166
167 args->aper_size = ggtt->base.total;
168 args->aper_available_size = args->aper_size - pinned;
169
170 return 0;
171 }
172
173 static struct sg_table *
174 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
175 {
176 struct address_space *mapping = obj->base.filp->f_mapping;
177 drm_dma_handle_t *phys;
178 struct sg_table *st;
179 struct scatterlist *sg;
180 char *vaddr;
181 int i;
182
183 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
184 return ERR_PTR(-EINVAL);
185
186 /* Always aligning to the object size, allows a single allocation
187 * to handle all possible callers, and given typical object sizes,
188 * the alignment of the buddy allocation will naturally match.
189 */
190 phys = drm_pci_alloc(obj->base.dev,
191 obj->base.size,
192 roundup_pow_of_two(obj->base.size));
193 if (!phys)
194 return ERR_PTR(-ENOMEM);
195
196 vaddr = phys->vaddr;
197 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
198 struct page *page;
199 char *src;
200
201 page = shmem_read_mapping_page(mapping, i);
202 if (IS_ERR(page)) {
203 st = ERR_CAST(page);
204 goto err_phys;
205 }
206
207 src = kmap_atomic(page);
208 memcpy(vaddr, src, PAGE_SIZE);
209 drm_clflush_virt_range(vaddr, PAGE_SIZE);
210 kunmap_atomic(src);
211
212 put_page(page);
213 vaddr += PAGE_SIZE;
214 }
215
216 i915_gem_chipset_flush(to_i915(obj->base.dev));
217
218 st = kmalloc(sizeof(*st), GFP_KERNEL);
219 if (!st) {
220 st = ERR_PTR(-ENOMEM);
221 goto err_phys;
222 }
223
224 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
225 kfree(st);
226 st = ERR_PTR(-ENOMEM);
227 goto err_phys;
228 }
229
230 sg = st->sgl;
231 sg->offset = 0;
232 sg->length = obj->base.size;
233
234 sg_dma_address(sg) = phys->busaddr;
235 sg_dma_len(sg) = obj->base.size;
236
237 obj->phys_handle = phys;
238 return st;
239
240 err_phys:
241 drm_pci_free(obj->base.dev, phys);
242 return st;
243 }
244
245 static void
246 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
247 struct sg_table *pages,
248 bool needs_clflush)
249 {
250 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
251
252 if (obj->mm.madv == I915_MADV_DONTNEED)
253 obj->mm.dirty = false;
254
255 if (needs_clflush &&
256 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
257 !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
258 drm_clflush_sg(pages);
259
260 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
261 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
262 }
263
264 static void
265 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
266 struct sg_table *pages)
267 {
268 __i915_gem_object_release_shmem(obj, pages, false);
269
270 if (obj->mm.dirty) {
271 struct address_space *mapping = obj->base.filp->f_mapping;
272 char *vaddr = obj->phys_handle->vaddr;
273 int i;
274
275 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
276 struct page *page;
277 char *dst;
278
279 page = shmem_read_mapping_page(mapping, i);
280 if (IS_ERR(page))
281 continue;
282
283 dst = kmap_atomic(page);
284 drm_clflush_virt_range(vaddr, PAGE_SIZE);
285 memcpy(dst, vaddr, PAGE_SIZE);
286 kunmap_atomic(dst);
287
288 set_page_dirty(page);
289 if (obj->mm.madv == I915_MADV_WILLNEED)
290 mark_page_accessed(page);
291 put_page(page);
292 vaddr += PAGE_SIZE;
293 }
294 obj->mm.dirty = false;
295 }
296
297 sg_free_table(pages);
298 kfree(pages);
299
300 drm_pci_free(obj->base.dev, obj->phys_handle);
301 }
302
303 static void
304 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
305 {
306 i915_gem_object_unpin_pages(obj);
307 }
308
309 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
310 .get_pages = i915_gem_object_get_pages_phys,
311 .put_pages = i915_gem_object_put_pages_phys,
312 .release = i915_gem_object_release_phys,
313 };
314
315 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 {
317 struct i915_vma *vma;
318 LIST_HEAD(still_in_list);
319 int ret;
320
321 lockdep_assert_held(&obj->base.dev->struct_mutex);
322
323 /* Closed vma are removed from the obj->vma_list - but they may
324 * still have an active binding on the object. To remove those we
325 * must wait for all rendering to complete to the object (as unbinding
326 * must anyway), and retire the requests.
327 */
328 ret = i915_gem_object_wait(obj,
329 I915_WAIT_INTERRUPTIBLE |
330 I915_WAIT_LOCKED |
331 I915_WAIT_ALL,
332 MAX_SCHEDULE_TIMEOUT,
333 NULL);
334 if (ret)
335 return ret;
336
337 i915_gem_retire_requests(to_i915(obj->base.dev));
338
339 while ((vma = list_first_entry_or_null(&obj->vma_list,
340 struct i915_vma,
341 obj_link))) {
342 list_move_tail(&vma->obj_link, &still_in_list);
343 ret = i915_vma_unbind(vma);
344 if (ret)
345 break;
346 }
347 list_splice(&still_in_list, &obj->vma_list);
348
349 return ret;
350 }
351
352 static long
353 i915_gem_object_wait_fence(struct dma_fence *fence,
354 unsigned int flags,
355 long timeout,
356 struct intel_rps_client *rps)
357 {
358 struct drm_i915_gem_request *rq;
359
360 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361
362 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
363 return timeout;
364
365 if (!dma_fence_is_i915(fence))
366 return dma_fence_wait_timeout(fence,
367 flags & I915_WAIT_INTERRUPTIBLE,
368 timeout);
369
370 rq = to_request(fence);
371 if (i915_gem_request_completed(rq))
372 goto out;
373
374 /* This client is about to stall waiting for the GPU. In many cases
375 * this is undesirable and limits the throughput of the system, as
376 * many clients cannot continue processing user input/output whilst
377 * blocked. RPS autotuning may take tens of milliseconds to respond
378 * to the GPU load and thus incurs additional latency for the client.
379 * We can circumvent that by promoting the GPU frequency to maximum
380 * before we wait. This makes the GPU throttle up much more quickly
381 * (good for benchmarks and user experience, e.g. window animations),
382 * but at a cost of spending more power processing the workload
383 * (bad for battery). Not all clients even want their results
384 * immediately and for them we should just let the GPU select its own
385 * frequency to maximise efficiency. To prevent a single client from
386 * forcing the clocks too high for the whole system, we only allow
387 * each client to waitboost once in a busy period.
388 */
389 if (rps) {
390 if (INTEL_GEN(rq->i915) >= 6)
391 gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
392 else
393 rps = NULL;
394 }
395
396 timeout = i915_wait_request(rq, flags, timeout);
397
398 out:
399 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
400 i915_gem_request_retire_upto(rq);
401
402 if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
403 /* The GPU is now idle and this client has stalled.
404 * Since no other client has submitted a request in the
405 * meantime, assume that this client is the only one
406 * supplying work to the GPU but is unable to keep that
407 * work supplied because it is waiting. Since the GPU is
408 * then never kept fully busy, RPS autoclocking will
409 * keep the clocks relatively low, causing further delays.
410 * Compensate by giving the synchronous client credit for
411 * a waitboost next time.
412 */
413 spin_lock(&rq->i915->rps.client_lock);
414 list_del_init(&rps->link);
415 spin_unlock(&rq->i915->rps.client_lock);
416 }
417
418 return timeout;
419 }
420
421 static long
422 i915_gem_object_wait_reservation(struct reservation_object *resv,
423 unsigned int flags,
424 long timeout,
425 struct intel_rps_client *rps)
426 {
427 struct dma_fence *excl;
428
429 if (flags & I915_WAIT_ALL) {
430 struct dma_fence **shared;
431 unsigned int count, i;
432 int ret;
433
434 ret = reservation_object_get_fences_rcu(resv,
435 &excl, &count, &shared);
436 if (ret)
437 return ret;
438
439 for (i = 0; i < count; i++) {
440 timeout = i915_gem_object_wait_fence(shared[i],
441 flags, timeout,
442 rps);
443 if (timeout <= 0)
444 break;
445
446 dma_fence_put(shared[i]);
447 }
448
449 for (; i < count; i++)
450 dma_fence_put(shared[i]);
451 kfree(shared);
452 } else {
453 excl = reservation_object_get_excl_rcu(resv);
454 }
455
456 if (excl && timeout > 0)
457 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
458
459 dma_fence_put(excl);
460
461 return timeout;
462 }
463
464 static void __fence_set_priority(struct dma_fence *fence, int prio)
465 {
466 struct drm_i915_gem_request *rq;
467 struct intel_engine_cs *engine;
468
469 if (!dma_fence_is_i915(fence))
470 return;
471
472 rq = to_request(fence);
473 engine = rq->engine;
474 if (!engine->schedule)
475 return;
476
477 engine->schedule(rq, prio);
478 }
479
480 static void fence_set_priority(struct dma_fence *fence, int prio)
481 {
482 /* Recurse once into a fence-array */
483 if (dma_fence_is_array(fence)) {
484 struct dma_fence_array *array = to_dma_fence_array(fence);
485 int i;
486
487 for (i = 0; i < array->num_fences; i++)
488 __fence_set_priority(array->fences[i], prio);
489 } else {
490 __fence_set_priority(fence, prio);
491 }
492 }
493
494 int
495 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
496 unsigned int flags,
497 int prio)
498 {
499 struct dma_fence *excl;
500
501 if (flags & I915_WAIT_ALL) {
502 struct dma_fence **shared;
503 unsigned int count, i;
504 int ret;
505
506 ret = reservation_object_get_fences_rcu(obj->resv,
507 &excl, &count, &shared);
508 if (ret)
509 return ret;
510
511 for (i = 0; i < count; i++) {
512 fence_set_priority(shared[i], prio);
513 dma_fence_put(shared[i]);
514 }
515
516 kfree(shared);
517 } else {
518 excl = reservation_object_get_excl_rcu(obj->resv);
519 }
520
521 if (excl) {
522 fence_set_priority(excl, prio);
523 dma_fence_put(excl);
524 }
525 return 0;
526 }
527
528 /**
529 * Waits for rendering to the object to be completed
530 * @obj: i915 gem object
531 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
532 * @timeout: how long to wait
533 * @rps: client (user process) to charge for any waitboosting
534 */
535 int
536 i915_gem_object_wait(struct drm_i915_gem_object *obj,
537 unsigned int flags,
538 long timeout,
539 struct intel_rps_client *rps)
540 {
541 might_sleep();
542 #if IS_ENABLED(CONFIG_LOCKDEP)
543 GEM_BUG_ON(debug_locks &&
544 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
545 !!(flags & I915_WAIT_LOCKED));
546 #endif
547 GEM_BUG_ON(timeout < 0);
548
549 timeout = i915_gem_object_wait_reservation(obj->resv,
550 flags, timeout,
551 rps);
552 return timeout < 0 ? timeout : 0;
553 }
554
555 static struct intel_rps_client *to_rps_client(struct drm_file *file)
556 {
557 struct drm_i915_file_private *fpriv = file->driver_priv;
558
559 return &fpriv->rps;
560 }
561
562 int
563 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
564 int align)
565 {
566 int ret;
567
568 if (align > obj->base.size)
569 return -EINVAL;
570
571 if (obj->ops == &i915_gem_phys_ops)
572 return 0;
573
574 if (obj->mm.madv != I915_MADV_WILLNEED)
575 return -EFAULT;
576
577 if (obj->base.filp == NULL)
578 return -EINVAL;
579
580 ret = i915_gem_object_unbind(obj);
581 if (ret)
582 return ret;
583
584 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
585 if (obj->mm.pages)
586 return -EBUSY;
587
588 obj->ops = &i915_gem_phys_ops;
589
590 return i915_gem_object_pin_pages(obj);
591 }
592
593 static int
594 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
595 struct drm_i915_gem_pwrite *args,
596 struct drm_file *file)
597 {
598 struct drm_device *dev = obj->base.dev;
599 void *vaddr = obj->phys_handle->vaddr + args->offset;
600 char __user *user_data = u64_to_user_ptr(args->data_ptr);
601 int ret;
602
603 /* We manually control the domain here and pretend that it
604 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
605 */
606 lockdep_assert_held(&obj->base.dev->struct_mutex);
607 ret = i915_gem_object_wait(obj,
608 I915_WAIT_INTERRUPTIBLE |
609 I915_WAIT_LOCKED |
610 I915_WAIT_ALL,
611 MAX_SCHEDULE_TIMEOUT,
612 to_rps_client(file));
613 if (ret)
614 return ret;
615
616 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
617 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
618 unsigned long unwritten;
619
620 /* The physical object once assigned is fixed for the lifetime
621 * of the obj, so we can safely drop the lock and continue
622 * to access vaddr.
623 */
624 mutex_unlock(&dev->struct_mutex);
625 unwritten = copy_from_user(vaddr, user_data, args->size);
626 mutex_lock(&dev->struct_mutex);
627 if (unwritten) {
628 ret = -EFAULT;
629 goto out;
630 }
631 }
632
633 drm_clflush_virt_range(vaddr, args->size);
634 i915_gem_chipset_flush(to_i915(dev));
635
636 out:
637 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
638 return ret;
639 }
640
641 void *i915_gem_object_alloc(struct drm_device *dev)
642 {
643 struct drm_i915_private *dev_priv = to_i915(dev);
644 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
645 }
646
647 void i915_gem_object_free(struct drm_i915_gem_object *obj)
648 {
649 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
650 kmem_cache_free(dev_priv->objects, obj);
651 }
652
653 static int
654 i915_gem_create(struct drm_file *file,
655 struct drm_device *dev,
656 uint64_t size,
657 uint32_t *handle_p)
658 {
659 struct drm_i915_gem_object *obj;
660 int ret;
661 u32 handle;
662
663 size = roundup(size, PAGE_SIZE);
664 if (size == 0)
665 return -EINVAL;
666
667 /* Allocate the new object */
668 obj = i915_gem_object_create(dev, size);
669 if (IS_ERR(obj))
670 return PTR_ERR(obj);
671
672 ret = drm_gem_handle_create(file, &obj->base, &handle);
673 /* drop reference from allocate - handle holds it now */
674 i915_gem_object_put(obj);
675 if (ret)
676 return ret;
677
678 *handle_p = handle;
679 return 0;
680 }
681
682 int
683 i915_gem_dumb_create(struct drm_file *file,
684 struct drm_device *dev,
685 struct drm_mode_create_dumb *args)
686 {
687 /* have to work out size/pitch and return them */
688 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
689 args->size = args->pitch * args->height;
690 return i915_gem_create(file, dev,
691 args->size, &args->handle);
692 }
693
694 /**
695 * Creates a new mm object and returns a handle to it.
696 * @dev: drm device pointer
697 * @data: ioctl data blob
698 * @file: drm file pointer
699 */
700 int
701 i915_gem_create_ioctl(struct drm_device *dev, void *data,
702 struct drm_file *file)
703 {
704 struct drm_i915_gem_create *args = data;
705
706 i915_gem_flush_free_objects(to_i915(dev));
707
708 return i915_gem_create(file, dev,
709 args->size, &args->handle);
710 }
711
712 static inline int
713 __copy_to_user_swizzled(char __user *cpu_vaddr,
714 const char *gpu_vaddr, int gpu_offset,
715 int length)
716 {
717 int ret, cpu_offset = 0;
718
719 while (length > 0) {
720 int cacheline_end = ALIGN(gpu_offset + 1, 64);
721 int this_length = min(cacheline_end - gpu_offset, length);
722 int swizzled_gpu_offset = gpu_offset ^ 64;
723
724 ret = __copy_to_user(cpu_vaddr + cpu_offset,
725 gpu_vaddr + swizzled_gpu_offset,
726 this_length);
727 if (ret)
728 return ret + length;
729
730 cpu_offset += this_length;
731 gpu_offset += this_length;
732 length -= this_length;
733 }
734
735 return 0;
736 }
737
738 static inline int
739 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
740 const char __user *cpu_vaddr,
741 int length)
742 {
743 int ret, cpu_offset = 0;
744
745 while (length > 0) {
746 int cacheline_end = ALIGN(gpu_offset + 1, 64);
747 int this_length = min(cacheline_end - gpu_offset, length);
748 int swizzled_gpu_offset = gpu_offset ^ 64;
749
750 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
751 cpu_vaddr + cpu_offset,
752 this_length);
753 if (ret)
754 return ret + length;
755
756 cpu_offset += this_length;
757 gpu_offset += this_length;
758 length -= this_length;
759 }
760
761 return 0;
762 }
763
764 /*
765 * Pins the specified object's pages and synchronizes the object with
766 * GPU accesses. Sets needs_clflush to non-zero if the caller should
767 * flush the object from the CPU cache.
768 */
769 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
770 unsigned int *needs_clflush)
771 {
772 int ret;
773
774 lockdep_assert_held(&obj->base.dev->struct_mutex);
775
776 *needs_clflush = 0;
777 if (!i915_gem_object_has_struct_page(obj))
778 return -ENODEV;
779
780 ret = i915_gem_object_wait(obj,
781 I915_WAIT_INTERRUPTIBLE |
782 I915_WAIT_LOCKED,
783 MAX_SCHEDULE_TIMEOUT,
784 NULL);
785 if (ret)
786 return ret;
787
788 ret = i915_gem_object_pin_pages(obj);
789 if (ret)
790 return ret;
791
792 i915_gem_object_flush_gtt_write_domain(obj);
793
794 /* If we're not in the cpu read domain, set ourself into the gtt
795 * read domain and manually flush cachelines (if required). This
796 * optimizes for the case when the gpu will dirty the data
797 * anyway again before the next pread happens.
798 */
799 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
800 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
801 obj->cache_level);
802
803 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
804 ret = i915_gem_object_set_to_cpu_domain(obj, false);
805 if (ret)
806 goto err_unpin;
807
808 *needs_clflush = 0;
809 }
810
811 /* return with the pages pinned */
812 return 0;
813
814 err_unpin:
815 i915_gem_object_unpin_pages(obj);
816 return ret;
817 }
818
819 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
820 unsigned int *needs_clflush)
821 {
822 int ret;
823
824 lockdep_assert_held(&obj->base.dev->struct_mutex);
825
826 *needs_clflush = 0;
827 if (!i915_gem_object_has_struct_page(obj))
828 return -ENODEV;
829
830 ret = i915_gem_object_wait(obj,
831 I915_WAIT_INTERRUPTIBLE |
832 I915_WAIT_LOCKED |
833 I915_WAIT_ALL,
834 MAX_SCHEDULE_TIMEOUT,
835 NULL);
836 if (ret)
837 return ret;
838
839 ret = i915_gem_object_pin_pages(obj);
840 if (ret)
841 return ret;
842
843 i915_gem_object_flush_gtt_write_domain(obj);
844
845 /* If we're not in the cpu write domain, set ourself into the
846 * gtt write domain and manually flush cachelines (as required).
847 * This optimizes for the case when the gpu will use the data
848 * right away and we therefore have to clflush anyway.
849 */
850 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
851 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
852
853 /* Same trick applies to invalidate partially written cachelines read
854 * before writing.
855 */
856 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
857 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
858 obj->cache_level);
859
860 if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
861 ret = i915_gem_object_set_to_cpu_domain(obj, true);
862 if (ret)
863 goto err_unpin;
864
865 *needs_clflush = 0;
866 }
867
868 if ((*needs_clflush & CLFLUSH_AFTER) == 0)
869 obj->cache_dirty = true;
870
871 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
872 obj->mm.dirty = true;
873 /* return with the pages pinned */
874 return 0;
875
876 err_unpin:
877 i915_gem_object_unpin_pages(obj);
878 return ret;
879 }
880
881 static void
882 shmem_clflush_swizzled_range(char *addr, unsigned long length,
883 bool swizzled)
884 {
885 if (unlikely(swizzled)) {
886 unsigned long start = (unsigned long) addr;
887 unsigned long end = (unsigned long) addr + length;
888
889 /* For swizzling simply ensure that we always flush both
890 * channels. Lame, but simple and it works. Swizzled
891 * pwrite/pread is far from a hotpath - current userspace
892 * doesn't use it at all. */
893 start = round_down(start, 128);
894 end = round_up(end, 128);
895
896 drm_clflush_virt_range((void *)start, end - start);
897 } else {
898 drm_clflush_virt_range(addr, length);
899 }
900
901 }
902
903 /* Only difference to the fast-path function is that this can handle bit17
904 * and uses non-atomic copy and kmap functions. */
905 static int
906 shmem_pread_slow(struct page *page, int offset, int length,
907 char __user *user_data,
908 bool page_do_bit17_swizzling, bool needs_clflush)
909 {
910 char *vaddr;
911 int ret;
912
913 vaddr = kmap(page);
914 if (needs_clflush)
915 shmem_clflush_swizzled_range(vaddr + offset, length,
916 page_do_bit17_swizzling);
917
918 if (page_do_bit17_swizzling)
919 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
920 else
921 ret = __copy_to_user(user_data, vaddr + offset, length);
922 kunmap(page);
923
924 return ret ? - EFAULT : 0;
925 }
926
927 static int
928 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
929 bool page_do_bit17_swizzling, bool needs_clflush)
930 {
931 int ret;
932
933 ret = -ENODEV;
934 if (!page_do_bit17_swizzling) {
935 char *vaddr = kmap_atomic(page);
936
937 if (needs_clflush)
938 drm_clflush_virt_range(vaddr + offset, length);
939 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
940 kunmap_atomic(vaddr);
941 }
942 if (ret == 0)
943 return 0;
944
945 return shmem_pread_slow(page, offset, length, user_data,
946 page_do_bit17_swizzling, needs_clflush);
947 }
948
949 static int
950 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
951 struct drm_i915_gem_pread *args)
952 {
953 char __user *user_data;
954 u64 remain;
955 unsigned int obj_do_bit17_swizzling;
956 unsigned int needs_clflush;
957 unsigned int idx, offset;
958 int ret;
959
960 obj_do_bit17_swizzling = 0;
961 if (i915_gem_object_needs_bit17_swizzle(obj))
962 obj_do_bit17_swizzling = BIT(17);
963
964 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
965 if (ret)
966 return ret;
967
968 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
969 mutex_unlock(&obj->base.dev->struct_mutex);
970 if (ret)
971 return ret;
972
973 remain = args->size;
974 user_data = u64_to_user_ptr(args->data_ptr);
975 offset = offset_in_page(args->offset);
976 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
977 struct page *page = i915_gem_object_get_page(obj, idx);
978 int length;
979
980 length = remain;
981 if (offset + length > PAGE_SIZE)
982 length = PAGE_SIZE - offset;
983
984 ret = shmem_pread(page, offset, length, user_data,
985 page_to_phys(page) & obj_do_bit17_swizzling,
986 needs_clflush);
987 if (ret)
988 break;
989
990 remain -= length;
991 user_data += length;
992 offset = 0;
993 }
994
995 i915_gem_obj_finish_shmem_access(obj);
996 return ret;
997 }
998
999 static inline bool
1000 gtt_user_read(struct io_mapping *mapping,
1001 loff_t base, int offset,
1002 char __user *user_data, int length)
1003 {
1004 void *vaddr;
1005 unsigned long unwritten;
1006
1007 /* We can use the cpu mem copy function because this is X86. */
1008 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1009 unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1010 io_mapping_unmap_atomic(vaddr);
1011 if (unwritten) {
1012 vaddr = (void __force *)
1013 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1014 unwritten = copy_to_user(user_data, vaddr + offset, length);
1015 io_mapping_unmap(vaddr);
1016 }
1017 return unwritten;
1018 }
1019
1020 static int
1021 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1022 const struct drm_i915_gem_pread *args)
1023 {
1024 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1025 struct i915_ggtt *ggtt = &i915->ggtt;
1026 struct drm_mm_node node;
1027 struct i915_vma *vma;
1028 void __user *user_data;
1029 u64 remain, offset;
1030 int ret;
1031
1032 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1033 if (ret)
1034 return ret;
1035
1036 intel_runtime_pm_get(i915);
1037 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1038 PIN_MAPPABLE | PIN_NONBLOCK);
1039 if (!IS_ERR(vma)) {
1040 node.start = i915_ggtt_offset(vma);
1041 node.allocated = false;
1042 ret = i915_vma_put_fence(vma);
1043 if (ret) {
1044 i915_vma_unpin(vma);
1045 vma = ERR_PTR(ret);
1046 }
1047 }
1048 if (IS_ERR(vma)) {
1049 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1050 if (ret)
1051 goto out_unlock;
1052 GEM_BUG_ON(!node.allocated);
1053 }
1054
1055 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1056 if (ret)
1057 goto out_unpin;
1058
1059 mutex_unlock(&i915->drm.struct_mutex);
1060
1061 user_data = u64_to_user_ptr(args->data_ptr);
1062 remain = args->size;
1063 offset = args->offset;
1064
1065 while (remain > 0) {
1066 /* Operation in this page
1067 *
1068 * page_base = page offset within aperture
1069 * page_offset = offset within page
1070 * page_length = bytes to copy for this page
1071 */
1072 u32 page_base = node.start;
1073 unsigned page_offset = offset_in_page(offset);
1074 unsigned page_length = PAGE_SIZE - page_offset;
1075 page_length = remain < page_length ? remain : page_length;
1076 if (node.allocated) {
1077 wmb();
1078 ggtt->base.insert_page(&ggtt->base,
1079 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1080 node.start, I915_CACHE_NONE, 0);
1081 wmb();
1082 } else {
1083 page_base += offset & PAGE_MASK;
1084 }
1085
1086 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1087 user_data, page_length)) {
1088 ret = -EFAULT;
1089 break;
1090 }
1091
1092 remain -= page_length;
1093 user_data += page_length;
1094 offset += page_length;
1095 }
1096
1097 mutex_lock(&i915->drm.struct_mutex);
1098 out_unpin:
1099 if (node.allocated) {
1100 wmb();
1101 ggtt->base.clear_range(&ggtt->base,
1102 node.start, node.size);
1103 remove_mappable_node(&node);
1104 } else {
1105 i915_vma_unpin(vma);
1106 }
1107 out_unlock:
1108 intel_runtime_pm_put(i915);
1109 mutex_unlock(&i915->drm.struct_mutex);
1110
1111 return ret;
1112 }
1113
1114 /**
1115 * Reads data from the object referenced by handle.
1116 * @dev: drm device pointer
1117 * @data: ioctl data blob
1118 * @file: drm file pointer
1119 *
1120 * On error, the contents of *data are undefined.
1121 */
1122 int
1123 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1124 struct drm_file *file)
1125 {
1126 struct drm_i915_gem_pread *args = data;
1127 struct drm_i915_gem_object *obj;
1128 int ret;
1129
1130 if (args->size == 0)
1131 return 0;
1132
1133 if (!access_ok(VERIFY_WRITE,
1134 u64_to_user_ptr(args->data_ptr),
1135 args->size))
1136 return -EFAULT;
1137
1138 obj = i915_gem_object_lookup(file, args->handle);
1139 if (!obj)
1140 return -ENOENT;
1141
1142 /* Bounds check source. */
1143 if (args->offset > obj->base.size ||
1144 args->size > obj->base.size - args->offset) {
1145 ret = -EINVAL;
1146 goto out;
1147 }
1148
1149 trace_i915_gem_object_pread(obj, args->offset, args->size);
1150
1151 ret = i915_gem_object_wait(obj,
1152 I915_WAIT_INTERRUPTIBLE,
1153 MAX_SCHEDULE_TIMEOUT,
1154 to_rps_client(file));
1155 if (ret)
1156 goto out;
1157
1158 ret = i915_gem_object_pin_pages(obj);
1159 if (ret)
1160 goto out;
1161
1162 ret = i915_gem_shmem_pread(obj, args);
1163 if (ret == -EFAULT || ret == -ENODEV)
1164 ret = i915_gem_gtt_pread(obj, args);
1165
1166 i915_gem_object_unpin_pages(obj);
1167 out:
1168 i915_gem_object_put(obj);
1169 return ret;
1170 }
1171
1172 /* This is the fast write path which cannot handle
1173 * page faults in the source data
1174 */
1175
1176 static inline bool
1177 ggtt_write(struct io_mapping *mapping,
1178 loff_t base, int offset,
1179 char __user *user_data, int length)
1180 {
1181 void *vaddr;
1182 unsigned long unwritten;
1183
1184 /* We can use the cpu mem copy function because this is X86. */
1185 vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1186 unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1187 user_data, length);
1188 io_mapping_unmap_atomic(vaddr);
1189 if (unwritten) {
1190 vaddr = (void __force *)
1191 io_mapping_map_wc(mapping, base, PAGE_SIZE);
1192 unwritten = copy_from_user(vaddr + offset, user_data, length);
1193 io_mapping_unmap(vaddr);
1194 }
1195
1196 return unwritten;
1197 }
1198
1199 /**
1200 * This is the fast pwrite path, where we copy the data directly from the
1201 * user into the GTT, uncached.
1202 * @obj: i915 GEM object
1203 * @args: pwrite arguments structure
1204 */
1205 static int
1206 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1207 const struct drm_i915_gem_pwrite *args)
1208 {
1209 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1210 struct i915_ggtt *ggtt = &i915->ggtt;
1211 struct drm_mm_node node;
1212 struct i915_vma *vma;
1213 u64 remain, offset;
1214 void __user *user_data;
1215 int ret;
1216
1217 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1218 if (ret)
1219 return ret;
1220
1221 intel_runtime_pm_get(i915);
1222 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1223 PIN_MAPPABLE | PIN_NONBLOCK);
1224 if (!IS_ERR(vma)) {
1225 node.start = i915_ggtt_offset(vma);
1226 node.allocated = false;
1227 ret = i915_vma_put_fence(vma);
1228 if (ret) {
1229 i915_vma_unpin(vma);
1230 vma = ERR_PTR(ret);
1231 }
1232 }
1233 if (IS_ERR(vma)) {
1234 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1235 if (ret)
1236 goto out_unlock;
1237 GEM_BUG_ON(!node.allocated);
1238 }
1239
1240 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1241 if (ret)
1242 goto out_unpin;
1243
1244 mutex_unlock(&i915->drm.struct_mutex);
1245
1246 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1247
1248 user_data = u64_to_user_ptr(args->data_ptr);
1249 offset = args->offset;
1250 remain = args->size;
1251 while (remain) {
1252 /* Operation in this page
1253 *
1254 * page_base = page offset within aperture
1255 * page_offset = offset within page
1256 * page_length = bytes to copy for this page
1257 */
1258 u32 page_base = node.start;
1259 unsigned int page_offset = offset_in_page(offset);
1260 unsigned int page_length = PAGE_SIZE - page_offset;
1261 page_length = remain < page_length ? remain : page_length;
1262 if (node.allocated) {
1263 wmb(); /* flush the write before we modify the GGTT */
1264 ggtt->base.insert_page(&ggtt->base,
1265 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1266 node.start, I915_CACHE_NONE, 0);
1267 wmb(); /* flush modifications to the GGTT (insert_page) */
1268 } else {
1269 page_base += offset & PAGE_MASK;
1270 }
1271 /* If we get a fault while copying data, then (presumably) our
1272 * source page isn't available. Return the error and we'll
1273 * retry in the slow path.
1274 * If the object is non-shmem backed, we retry again with the
1275 * path that handles page fault.
1276 */
1277 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1278 user_data, page_length)) {
1279 ret = -EFAULT;
1280 break;
1281 }
1282
1283 remain -= page_length;
1284 user_data += page_length;
1285 offset += page_length;
1286 }
1287 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1288
1289 mutex_lock(&i915->drm.struct_mutex);
1290 out_unpin:
1291 if (node.allocated) {
1292 wmb();
1293 ggtt->base.clear_range(&ggtt->base,
1294 node.start, node.size);
1295 remove_mappable_node(&node);
1296 } else {
1297 i915_vma_unpin(vma);
1298 }
1299 out_unlock:
1300 intel_runtime_pm_put(i915);
1301 mutex_unlock(&i915->drm.struct_mutex);
1302 return ret;
1303 }
1304
1305 static int
1306 shmem_pwrite_slow(struct page *page, int offset, int length,
1307 char __user *user_data,
1308 bool page_do_bit17_swizzling,
1309 bool needs_clflush_before,
1310 bool needs_clflush_after)
1311 {
1312 char *vaddr;
1313 int ret;
1314
1315 vaddr = kmap(page);
1316 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1317 shmem_clflush_swizzled_range(vaddr + offset, length,
1318 page_do_bit17_swizzling);
1319 if (page_do_bit17_swizzling)
1320 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1321 length);
1322 else
1323 ret = __copy_from_user(vaddr + offset, user_data, length);
1324 if (needs_clflush_after)
1325 shmem_clflush_swizzled_range(vaddr + offset, length,
1326 page_do_bit17_swizzling);
1327 kunmap(page);
1328
1329 return ret ? -EFAULT : 0;
1330 }
1331
1332 /* Per-page copy function for the shmem pwrite fastpath.
1333 * Flushes invalid cachelines before writing to the target if
1334 * needs_clflush_before is set and flushes out any written cachelines after
1335 * writing if needs_clflush is set.
1336 */
1337 static int
1338 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1339 bool page_do_bit17_swizzling,
1340 bool needs_clflush_before,
1341 bool needs_clflush_after)
1342 {
1343 int ret;
1344
1345 ret = -ENODEV;
1346 if (!page_do_bit17_swizzling) {
1347 char *vaddr = kmap_atomic(page);
1348
1349 if (needs_clflush_before)
1350 drm_clflush_virt_range(vaddr + offset, len);
1351 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1352 if (needs_clflush_after)
1353 drm_clflush_virt_range(vaddr + offset, len);
1354
1355 kunmap_atomic(vaddr);
1356 }
1357 if (ret == 0)
1358 return ret;
1359
1360 return shmem_pwrite_slow(page, offset, len, user_data,
1361 page_do_bit17_swizzling,
1362 needs_clflush_before,
1363 needs_clflush_after);
1364 }
1365
1366 static int
1367 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1368 const struct drm_i915_gem_pwrite *args)
1369 {
1370 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1371 void __user *user_data;
1372 u64 remain;
1373 unsigned int obj_do_bit17_swizzling;
1374 unsigned int partial_cacheline_write;
1375 unsigned int needs_clflush;
1376 unsigned int offset, idx;
1377 int ret;
1378
1379 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1380 if (ret)
1381 return ret;
1382
1383 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1384 mutex_unlock(&i915->drm.struct_mutex);
1385 if (ret)
1386 return ret;
1387
1388 obj_do_bit17_swizzling = 0;
1389 if (i915_gem_object_needs_bit17_swizzle(obj))
1390 obj_do_bit17_swizzling = BIT(17);
1391
1392 /* If we don't overwrite a cacheline completely we need to be
1393 * careful to have up-to-date data by first clflushing. Don't
1394 * overcomplicate things and flush the entire patch.
1395 */
1396 partial_cacheline_write = 0;
1397 if (needs_clflush & CLFLUSH_BEFORE)
1398 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1399
1400 user_data = u64_to_user_ptr(args->data_ptr);
1401 remain = args->size;
1402 offset = offset_in_page(args->offset);
1403 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1404 struct page *page = i915_gem_object_get_page(obj, idx);
1405 int length;
1406
1407 length = remain;
1408 if (offset + length > PAGE_SIZE)
1409 length = PAGE_SIZE - offset;
1410
1411 ret = shmem_pwrite(page, offset, length, user_data,
1412 page_to_phys(page) & obj_do_bit17_swizzling,
1413 (offset | length) & partial_cacheline_write,
1414 needs_clflush & CLFLUSH_AFTER);
1415 if (ret)
1416 break;
1417
1418 remain -= length;
1419 user_data += length;
1420 offset = 0;
1421 }
1422
1423 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1424 i915_gem_obj_finish_shmem_access(obj);
1425 return ret;
1426 }
1427
1428 /**
1429 * Writes data to the object referenced by handle.
1430 * @dev: drm device
1431 * @data: ioctl data blob
1432 * @file: drm file
1433 *
1434 * On error, the contents of the buffer that were to be modified are undefined.
1435 */
1436 int
1437 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1438 struct drm_file *file)
1439 {
1440 struct drm_i915_gem_pwrite *args = data;
1441 struct drm_i915_gem_object *obj;
1442 int ret;
1443
1444 if (args->size == 0)
1445 return 0;
1446
1447 if (!access_ok(VERIFY_READ,
1448 u64_to_user_ptr(args->data_ptr),
1449 args->size))
1450 return -EFAULT;
1451
1452 obj = i915_gem_object_lookup(file, args->handle);
1453 if (!obj)
1454 return -ENOENT;
1455
1456 /* Bounds check destination. */
1457 if (args->offset > obj->base.size ||
1458 args->size > obj->base.size - args->offset) {
1459 ret = -EINVAL;
1460 goto err;
1461 }
1462
1463 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1464
1465 ret = i915_gem_object_wait(obj,
1466 I915_WAIT_INTERRUPTIBLE |
1467 I915_WAIT_ALL,
1468 MAX_SCHEDULE_TIMEOUT,
1469 to_rps_client(file));
1470 if (ret)
1471 goto err;
1472
1473 ret = i915_gem_object_pin_pages(obj);
1474 if (ret)
1475 goto err;
1476
1477 ret = -EFAULT;
1478 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1479 * it would end up going through the fenced access, and we'll get
1480 * different detiling behavior between reading and writing.
1481 * pread/pwrite currently are reading and writing from the CPU
1482 * perspective, requiring manual detiling by the client.
1483 */
1484 if (!i915_gem_object_has_struct_page(obj) ||
1485 cpu_write_needs_clflush(obj))
1486 /* Note that the gtt paths might fail with non-page-backed user
1487 * pointers (e.g. gtt mappings when moving data between
1488 * textures). Fallback to the shmem path in that case.
1489 */
1490 ret = i915_gem_gtt_pwrite_fast(obj, args);
1491
1492 if (ret == -EFAULT || ret == -ENOSPC) {
1493 if (obj->phys_handle)
1494 ret = i915_gem_phys_pwrite(obj, args, file);
1495 else
1496 ret = i915_gem_shmem_pwrite(obj, args);
1497 }
1498
1499 i915_gem_object_unpin_pages(obj);
1500 err:
1501 i915_gem_object_put(obj);
1502 return ret;
1503 }
1504
1505 static inline enum fb_op_origin
1506 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1507 {
1508 return (domain == I915_GEM_DOMAIN_GTT ?
1509 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1510 }
1511
1512 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1513 {
1514 struct drm_i915_private *i915;
1515 struct list_head *list;
1516 struct i915_vma *vma;
1517
1518 list_for_each_entry(vma, &obj->vma_list, obj_link) {
1519 if (!i915_vma_is_ggtt(vma))
1520 continue;
1521
1522 if (i915_vma_is_active(vma))
1523 continue;
1524
1525 if (!drm_mm_node_allocated(&vma->node))
1526 continue;
1527
1528 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1529 }
1530
1531 i915 = to_i915(obj->base.dev);
1532 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1533 list_move_tail(&obj->global_link, list);
1534 }
1535
1536 /**
1537 * Called when user space prepares to use an object with the CPU, either
1538 * through the mmap ioctl's mapping or a GTT mapping.
1539 * @dev: drm device
1540 * @data: ioctl data blob
1541 * @file: drm file
1542 */
1543 int
1544 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1545 struct drm_file *file)
1546 {
1547 struct drm_i915_gem_set_domain *args = data;
1548 struct drm_i915_gem_object *obj;
1549 uint32_t read_domains = args->read_domains;
1550 uint32_t write_domain = args->write_domain;
1551 int err;
1552
1553 /* Only handle setting domains to types used by the CPU. */
1554 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1555 return -EINVAL;
1556
1557 /* Having something in the write domain implies it's in the read
1558 * domain, and only that read domain. Enforce that in the request.
1559 */
1560 if (write_domain != 0 && read_domains != write_domain)
1561 return -EINVAL;
1562
1563 obj = i915_gem_object_lookup(file, args->handle);
1564 if (!obj)
1565 return -ENOENT;
1566
1567 /* Try to flush the object off the GPU without holding the lock.
1568 * We will repeat the flush holding the lock in the normal manner
1569 * to catch cases where we are gazumped.
1570 */
1571 err = i915_gem_object_wait(obj,
1572 I915_WAIT_INTERRUPTIBLE |
1573 (write_domain ? I915_WAIT_ALL : 0),
1574 MAX_SCHEDULE_TIMEOUT,
1575 to_rps_client(file));
1576 if (err)
1577 goto out;
1578
1579 /* Flush and acquire obj->pages so that we are coherent through
1580 * direct access in memory with previous cached writes through
1581 * shmemfs and that our cache domain tracking remains valid.
1582 * For example, if the obj->filp was moved to swap without us
1583 * being notified and releasing the pages, we would mistakenly
1584 * continue to assume that the obj remained out of the CPU cached
1585 * domain.
1586 */
1587 err = i915_gem_object_pin_pages(obj);
1588 if (err)
1589 goto out;
1590
1591 err = i915_mutex_lock_interruptible(dev);
1592 if (err)
1593 goto out_unpin;
1594
1595 if (read_domains & I915_GEM_DOMAIN_GTT)
1596 err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1597 else
1598 err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1599
1600 /* And bump the LRU for this access */
1601 i915_gem_object_bump_inactive_ggtt(obj);
1602
1603 mutex_unlock(&dev->struct_mutex);
1604
1605 if (write_domain != 0)
1606 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1607
1608 out_unpin:
1609 i915_gem_object_unpin_pages(obj);
1610 out:
1611 i915_gem_object_put(obj);
1612 return err;
1613 }
1614
1615 /**
1616 * Called when user space has done writes to this buffer
1617 * @dev: drm device
1618 * @data: ioctl data blob
1619 * @file: drm file
1620 */
1621 int
1622 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1623 struct drm_file *file)
1624 {
1625 struct drm_i915_gem_sw_finish *args = data;
1626 struct drm_i915_gem_object *obj;
1627 int err = 0;
1628
1629 obj = i915_gem_object_lookup(file, args->handle);
1630 if (!obj)
1631 return -ENOENT;
1632
1633 /* Pinned buffers may be scanout, so flush the cache */
1634 if (READ_ONCE(obj->pin_display)) {
1635 err = i915_mutex_lock_interruptible(dev);
1636 if (!err) {
1637 i915_gem_object_flush_cpu_write_domain(obj);
1638 mutex_unlock(&dev->struct_mutex);
1639 }
1640 }
1641
1642 i915_gem_object_put(obj);
1643 return err;
1644 }
1645
1646 /**
1647 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1648 * it is mapped to.
1649 * @dev: drm device
1650 * @data: ioctl data blob
1651 * @file: drm file
1652 *
1653 * While the mapping holds a reference on the contents of the object, it doesn't
1654 * imply a ref on the object itself.
1655 *
1656 * IMPORTANT:
1657 *
1658 * DRM driver writers who look a this function as an example for how to do GEM
1659 * mmap support, please don't implement mmap support like here. The modern way
1660 * to implement DRM mmap support is with an mmap offset ioctl (like
1661 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1662 * That way debug tooling like valgrind will understand what's going on, hiding
1663 * the mmap call in a driver private ioctl will break that. The i915 driver only
1664 * does cpu mmaps this way because we didn't know better.
1665 */
1666 int
1667 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1668 struct drm_file *file)
1669 {
1670 struct drm_i915_gem_mmap *args = data;
1671 struct drm_i915_gem_object *obj;
1672 unsigned long addr;
1673
1674 if (args->flags & ~(I915_MMAP_WC))
1675 return -EINVAL;
1676
1677 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1678 return -ENODEV;
1679
1680 obj = i915_gem_object_lookup(file, args->handle);
1681 if (!obj)
1682 return -ENOENT;
1683
1684 /* prime objects have no backing filp to GEM mmap
1685 * pages from.
1686 */
1687 if (!obj->base.filp) {
1688 i915_gem_object_put(obj);
1689 return -EINVAL;
1690 }
1691
1692 addr = vm_mmap(obj->base.filp, 0, args->size,
1693 PROT_READ | PROT_WRITE, MAP_SHARED,
1694 args->offset);
1695 if (args->flags & I915_MMAP_WC) {
1696 struct mm_struct *mm = current->mm;
1697 struct vm_area_struct *vma;
1698
1699 if (down_write_killable(&mm->mmap_sem)) {
1700 i915_gem_object_put(obj);
1701 return -EINTR;
1702 }
1703 vma = find_vma(mm, addr);
1704 if (vma)
1705 vma->vm_page_prot =
1706 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1707 else
1708 addr = -ENOMEM;
1709 up_write(&mm->mmap_sem);
1710
1711 /* This may race, but that's ok, it only gets set */
1712 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1713 }
1714 i915_gem_object_put(obj);
1715 if (IS_ERR((void *)addr))
1716 return addr;
1717
1718 args->addr_ptr = (uint64_t) addr;
1719
1720 return 0;
1721 }
1722
1723 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1724 {
1725 u64 size;
1726
1727 size = i915_gem_object_get_stride(obj);
1728 size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;
1729
1730 return size >> PAGE_SHIFT;
1731 }
1732
1733 /**
1734 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1735 *
1736 * A history of the GTT mmap interface:
1737 *
1738 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1739 * aligned and suitable for fencing, and still fit into the available
1740 * mappable space left by the pinned display objects. A classic problem
1741 * we called the page-fault-of-doom where we would ping-pong between
1742 * two objects that could not fit inside the GTT and so the memcpy
1743 * would page one object in at the expense of the other between every
1744 * single byte.
1745 *
1746 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1747 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1748 * object is too large for the available space (or simply too large
1749 * for the mappable aperture!), a view is created instead and faulted
1750 * into userspace. (This view is aligned and sized appropriately for
1751 * fenced access.)
1752 *
1753 * Restrictions:
1754 *
1755 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1756 * hangs on some architectures, corruption on others. An attempt to service
1757 * a GTT page fault from a snoopable object will generate a SIGBUS.
1758 *
1759 * * the object must be able to fit into RAM (physical memory, though no
1760 * limited to the mappable aperture).
1761 *
1762 *
1763 * Caveats:
1764 *
1765 * * a new GTT page fault will synchronize rendering from the GPU and flush
1766 * all data to system memory. Subsequent access will not be synchronized.
1767 *
1768 * * all mappings are revoked on runtime device suspend.
1769 *
1770 * * there are only 8, 16 or 32 fence registers to share between all users
1771 * (older machines require fence register for display and blitter access
1772 * as well). Contention of the fence registers will cause the previous users
1773 * to be unmapped and any new access will generate new page faults.
1774 *
1775 * * running out of memory while servicing a fault may generate a SIGBUS,
1776 * rather than the expected SIGSEGV.
1777 */
1778 int i915_gem_mmap_gtt_version(void)
1779 {
1780 return 1;
1781 }
1782
1783 /**
1784 * i915_gem_fault - fault a page into the GTT
1785 * @area: CPU VMA in question
1786 * @vmf: fault info
1787 *
1788 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1789 * from userspace. The fault handler takes care of binding the object to
1790 * the GTT (if needed), allocating and programming a fence register (again,
1791 * only if needed based on whether the old reg is still valid or the object
1792 * is tiled) and inserting a new PTE into the faulting process.
1793 *
1794 * Note that the faulting process may involve evicting existing objects
1795 * from the GTT and/or fence registers to make room. So performance may
1796 * suffer if the GTT working set is large or there are few fence registers
1797 * left.
1798 *
1799 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1800 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1801 */
1802 int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1803 {
1804 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1805 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1806 struct drm_device *dev = obj->base.dev;
1807 struct drm_i915_private *dev_priv = to_i915(dev);
1808 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1809 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1810 struct i915_vma *vma;
1811 pgoff_t page_offset;
1812 unsigned int flags;
1813 int ret;
1814
1815 /* We don't use vmf->pgoff since that has the fake offset */
1816 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1817
1818 trace_i915_gem_object_fault(obj, page_offset, true, write);
1819
1820 /* Try to flush the object off the GPU first without holding the lock.
1821 * Upon acquiring the lock, we will perform our sanity checks and then
1822 * repeat the flush holding the lock in the normal manner to catch cases
1823 * where we are gazumped.
1824 */
1825 ret = i915_gem_object_wait(obj,
1826 I915_WAIT_INTERRUPTIBLE,
1827 MAX_SCHEDULE_TIMEOUT,
1828 NULL);
1829 if (ret)
1830 goto err;
1831
1832 ret = i915_gem_object_pin_pages(obj);
1833 if (ret)
1834 goto err;
1835
1836 intel_runtime_pm_get(dev_priv);
1837
1838 ret = i915_mutex_lock_interruptible(dev);
1839 if (ret)
1840 goto err_rpm;
1841
1842 /* Access to snoopable pages through the GTT is incoherent. */
1843 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1844 ret = -EFAULT;
1845 goto err_unlock;
1846 }
1847
1848 /* If the object is smaller than a couple of partial vma, it is
1849 * not worth only creating a single partial vma - we may as well
1850 * clear enough space for the full object.
1851 */
1852 flags = PIN_MAPPABLE;
1853 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1854 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1855
1856 /* Now pin it into the GTT as needed */
1857 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1858 if (IS_ERR(vma)) {
1859 struct i915_ggtt_view view;
1860 unsigned int chunk_size;
1861
1862 /* Use a partial view if it is bigger than available space */
1863 chunk_size = MIN_CHUNK_PAGES;
1864 if (i915_gem_object_is_tiled(obj))
1865 chunk_size = roundup(chunk_size, tile_row_pages(obj));
1866
1867 memset(&view, 0, sizeof(view));
1868 view.type = I915_GGTT_VIEW_PARTIAL;
1869 view.params.partial.offset = rounddown(page_offset, chunk_size);
1870 view.params.partial.size =
1871 min_t(unsigned int, chunk_size,
1872 vma_pages(area) - view.params.partial.offset);
1873
1874 /* If the partial covers the entire object, just create a
1875 * normal VMA.
1876 */
1877 if (chunk_size >= obj->base.size >> PAGE_SHIFT)
1878 view.type = I915_GGTT_VIEW_NORMAL;
1879
1880 /* Userspace is now writing through an untracked VMA, abandon
1881 * all hope that the hardware is able to track future writes.
1882 */
1883 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1884
1885 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1886 }
1887 if (IS_ERR(vma)) {
1888 ret = PTR_ERR(vma);
1889 goto err_unlock;
1890 }
1891
1892 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1893 if (ret)
1894 goto err_unpin;
1895
1896 ret = i915_vma_get_fence(vma);
1897 if (ret)
1898 goto err_unpin;
1899
1900 /* Mark as being mmapped into userspace for later revocation */
1901 assert_rpm_wakelock_held(dev_priv);
1902 if (list_empty(&obj->userfault_link))
1903 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1904
1905 /* Finally, remap it using the new GTT offset */
1906 ret = remap_io_mapping(area,
1907 area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
1908 (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1909 min_t(u64, vma->size, area->vm_end - area->vm_start),
1910 &ggtt->mappable);
1911
1912 err_unpin:
1913 __i915_vma_unpin(vma);
1914 err_unlock:
1915 mutex_unlock(&dev->struct_mutex);
1916 err_rpm:
1917 intel_runtime_pm_put(dev_priv);
1918 i915_gem_object_unpin_pages(obj);
1919 err:
1920 switch (ret) {
1921 case -EIO:
1922 /*
1923 * We eat errors when the gpu is terminally wedged to avoid
1924 * userspace unduly crashing (gl has no provisions for mmaps to
1925 * fail). But any other -EIO isn't ours (e.g. swap in failure)
1926 * and so needs to be reported.
1927 */
1928 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1929 ret = VM_FAULT_SIGBUS;
1930 break;
1931 }
1932 case -EAGAIN:
1933 /*
1934 * EAGAIN means the gpu is hung and we'll wait for the error
1935 * handler to reset everything when re-faulting in
1936 * i915_mutex_lock_interruptible.
1937 */
1938 case 0:
1939 case -ERESTARTSYS:
1940 case -EINTR:
1941 case -EBUSY:
1942 /*
1943 * EBUSY is ok: this just means that another thread
1944 * already did the job.
1945 */
1946 ret = VM_FAULT_NOPAGE;
1947 break;
1948 case -ENOMEM:
1949 ret = VM_FAULT_OOM;
1950 break;
1951 case -ENOSPC:
1952 case -EFAULT:
1953 ret = VM_FAULT_SIGBUS;
1954 break;
1955 default:
1956 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1957 ret = VM_FAULT_SIGBUS;
1958 break;
1959 }
1960 return ret;
1961 }
1962
1963 /**
1964 * i915_gem_release_mmap - remove physical page mappings
1965 * @obj: obj in question
1966 *
1967 * Preserve the reservation of the mmapping with the DRM core code, but
1968 * relinquish ownership of the pages back to the system.
1969 *
1970 * It is vital that we remove the page mapping if we have mapped a tiled
1971 * object through the GTT and then lose the fence register due to
1972 * resource pressure. Similarly if the object has been moved out of the
1973 * aperture, than pages mapped into userspace must be revoked. Removing the
1974 * mapping will then trigger a page fault on the next user access, allowing
1975 * fixup by i915_gem_fault().
1976 */
1977 void
1978 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1979 {
1980 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1981
1982 /* Serialisation between user GTT access and our code depends upon
1983 * revoking the CPU's PTE whilst the mutex is held. The next user
1984 * pagefault then has to wait until we release the mutex.
1985 *
1986 * Note that RPM complicates somewhat by adding an additional
1987 * requirement that operations to the GGTT be made holding the RPM
1988 * wakeref.
1989 */
1990 lockdep_assert_held(&i915->drm.struct_mutex);
1991 intel_runtime_pm_get(i915);
1992
1993 if (list_empty(&obj->userfault_link))
1994 goto out;
1995
1996 list_del_init(&obj->userfault_link);
1997 drm_vma_node_unmap(&obj->base.vma_node,
1998 obj->base.dev->anon_inode->i_mapping);
1999
2000 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2001 * memory transactions from userspace before we return. The TLB
2002 * flushing implied above by changing the PTE above *should* be
2003 * sufficient, an extra barrier here just provides us with a bit
2004 * of paranoid documentation about our requirement to serialise
2005 * memory writes before touching registers / GSM.
2006 */
2007 wmb();
2008
2009 out:
2010 intel_runtime_pm_put(i915);
2011 }
2012
2013 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2014 {
2015 struct drm_i915_gem_object *obj, *on;
2016 int i;
2017
2018 /*
2019 * Only called during RPM suspend. All users of the userfault_list
2020 * must be holding an RPM wakeref to ensure that this can not
2021 * run concurrently with themselves (and use the struct_mutex for
2022 * protection between themselves).
2023 */
2024
2025 list_for_each_entry_safe(obj, on,
2026 &dev_priv->mm.userfault_list, userfault_link) {
2027 list_del_init(&obj->userfault_link);
2028 drm_vma_node_unmap(&obj->base.vma_node,
2029 obj->base.dev->anon_inode->i_mapping);
2030 }
2031
2032 /* The fence will be lost when the device powers down. If any were
2033 * in use by hardware (i.e. they are pinned), we should not be powering
2034 * down! All other fences will be reacquired by the user upon waking.
2035 */
2036 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2037 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2038
2039 if (WARN_ON(reg->pin_count))
2040 continue;
2041
2042 if (!reg->vma)
2043 continue;
2044
2045 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2046 reg->dirty = true;
2047 }
2048 }
2049
2050 /**
2051 * i915_gem_get_ggtt_size - return required global GTT size for an object
2052 * @dev_priv: i915 device
2053 * @size: object size
2054 * @tiling_mode: tiling mode
2055 *
2056 * Return the required global GTT size for an object, taking into account
2057 * potential fence register mapping.
2058 */
2059 u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
2060 u64 size, int tiling_mode)
2061 {
2062 u64 ggtt_size;
2063
2064 GEM_BUG_ON(size == 0);
2065
2066 if (INTEL_GEN(dev_priv) >= 4 ||
2067 tiling_mode == I915_TILING_NONE)
2068 return size;
2069
2070 /* Previous chips need a power-of-two fence region when tiling */
2071 if (IS_GEN3(dev_priv))
2072 ggtt_size = 1024*1024;
2073 else
2074 ggtt_size = 512*1024;
2075
2076 while (ggtt_size < size)
2077 ggtt_size <<= 1;
2078
2079 return ggtt_size;
2080 }
2081
2082 /**
2083 * i915_gem_get_ggtt_alignment - return required global GTT alignment
2084 * @dev_priv: i915 device
2085 * @size: object size
2086 * @tiling_mode: tiling mode
2087 * @fenced: is fenced alignment required or not
2088 *
2089 * Return the required global GTT alignment for an object, taking into account
2090 * potential fence register mapping.
2091 */
2092 u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
2093 int tiling_mode, bool fenced)
2094 {
2095 GEM_BUG_ON(size == 0);
2096
2097 /*
2098 * Minimum alignment is 4k (GTT page size), but might be greater
2099 * if a fence register is needed for the object.
2100 */
2101 if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
2102 tiling_mode == I915_TILING_NONE)
2103 return 4096;
2104
2105 /*
2106 * Previous chips need to be aligned to the size of the smallest
2107 * fence register that can contain the object.
2108 */
2109 return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2110 }
2111
2112 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2113 {
2114 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2115 int err;
2116
2117 err = drm_gem_create_mmap_offset(&obj->base);
2118 if (!err)
2119 return 0;
2120
2121 /* We can idle the GPU locklessly to flush stale objects, but in order
2122 * to claim that space for ourselves, we need to take the big
2123 * struct_mutex to free the requests+objects and allocate our slot.
2124 */
2125 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2126 if (err)
2127 return err;
2128
2129 err = i915_mutex_lock_interruptible(&dev_priv->drm);
2130 if (!err) {
2131 i915_gem_retire_requests(dev_priv);
2132 err = drm_gem_create_mmap_offset(&obj->base);
2133 mutex_unlock(&dev_priv->drm.struct_mutex);
2134 }
2135
2136 return err;
2137 }
2138
2139 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2140 {
2141 drm_gem_free_mmap_offset(&obj->base);
2142 }
2143
2144 int
2145 i915_gem_mmap_gtt(struct drm_file *file,
2146 struct drm_device *dev,
2147 uint32_t handle,
2148 uint64_t *offset)
2149 {
2150 struct drm_i915_gem_object *obj;
2151 int ret;
2152
2153 obj = i915_gem_object_lookup(file, handle);
2154 if (!obj)
2155 return -ENOENT;
2156
2157 ret = i915_gem_object_create_mmap_offset(obj);
2158 if (ret == 0)
2159 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2160
2161 i915_gem_object_put(obj);
2162 return ret;
2163 }
2164
2165 /**
2166 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2167 * @dev: DRM device
2168 * @data: GTT mapping ioctl data
2169 * @file: GEM object info
2170 *
2171 * Simply returns the fake offset to userspace so it can mmap it.
2172 * The mmap call will end up in drm_gem_mmap(), which will set things
2173 * up so we can get faults in the handler above.
2174 *
2175 * The fault handler will take care of binding the object into the GTT
2176 * (since it may have been evicted to make room for something), allocating
2177 * a fence register, and mapping the appropriate aperture address into
2178 * userspace.
2179 */
2180 int
2181 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2182 struct drm_file *file)
2183 {
2184 struct drm_i915_gem_mmap_gtt *args = data;
2185
2186 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2187 }
2188
2189 /* Immediately discard the backing storage */
2190 static void
2191 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2192 {
2193 i915_gem_object_free_mmap_offset(obj);
2194
2195 if (obj->base.filp == NULL)
2196 return;
2197
2198 /* Our goal here is to return as much of the memory as
2199 * is possible back to the system as we are called from OOM.
2200 * To do this we must instruct the shmfs to drop all of its
2201 * backing pages, *now*.
2202 */
2203 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2204 obj->mm.madv = __I915_MADV_PURGED;
2205 }
2206
2207 /* Try to discard unwanted pages */
2208 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2209 {
2210 struct address_space *mapping;
2211
2212 lockdep_assert_held(&obj->mm.lock);
2213 GEM_BUG_ON(obj->mm.pages);
2214
2215 switch (obj->mm.madv) {
2216 case I915_MADV_DONTNEED:
2217 i915_gem_object_truncate(obj);
2218 case __I915_MADV_PURGED:
2219 return;
2220 }
2221
2222 if (obj->base.filp == NULL)
2223 return;
2224
2225 mapping = obj->base.filp->f_mapping,
2226 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2227 }
2228
2229 static void
2230 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2231 struct sg_table *pages)
2232 {
2233 struct sgt_iter sgt_iter;
2234 struct page *page;
2235
2236 __i915_gem_object_release_shmem(obj, pages, true);
2237
2238 i915_gem_gtt_finish_pages(obj, pages);
2239
2240 if (i915_gem_object_needs_bit17_swizzle(obj))
2241 i915_gem_object_save_bit_17_swizzle(obj, pages);
2242
2243 for_each_sgt_page(page, sgt_iter, pages) {
2244 if (obj->mm.dirty)
2245 set_page_dirty(page);
2246
2247 if (obj->mm.madv == I915_MADV_WILLNEED)
2248 mark_page_accessed(page);
2249
2250 put_page(page);
2251 }
2252 obj->mm.dirty = false;
2253
2254 sg_free_table(pages);
2255 kfree(pages);
2256 }
2257
2258 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2259 {
2260 struct radix_tree_iter iter;
2261 void **slot;
2262
2263 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2264 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2265 }
2266
2267 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2268 enum i915_mm_subclass subclass)
2269 {
2270 struct sg_table *pages;
2271
2272 if (i915_gem_object_has_pinned_pages(obj))
2273 return;
2274
2275 GEM_BUG_ON(obj->bind_count);
2276 if (!READ_ONCE(obj->mm.pages))
2277 return;
2278
2279 /* May be called by shrinker from within get_pages() (on another bo) */
2280 mutex_lock_nested(&obj->mm.lock, subclass);
2281 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2282 goto unlock;
2283
2284 /* ->put_pages might need to allocate memory for the bit17 swizzle
2285 * array, hence protect them from being reaped by removing them from gtt
2286 * lists early. */
2287 pages = fetch_and_zero(&obj->mm.pages);
2288 GEM_BUG_ON(!pages);
2289
2290 if (obj->mm.mapping) {
2291 void *ptr;
2292
2293 ptr = ptr_mask_bits(obj->mm.mapping);
2294 if (is_vmalloc_addr(ptr))
2295 vunmap(ptr);
2296 else
2297 kunmap(kmap_to_page(ptr));
2298
2299 obj->mm.mapping = NULL;
2300 }
2301
2302 __i915_gem_object_reset_page_iter(obj);
2303
2304 obj->ops->put_pages(obj, pages);
2305 unlock:
2306 mutex_unlock(&obj->mm.lock);
2307 }
2308
2309 static unsigned int swiotlb_max_size(void)
2310 {
2311 #if IS_ENABLED(CONFIG_SWIOTLB)
2312 return rounddown(swiotlb_nr_tbl() << IO_TLB_SHIFT, PAGE_SIZE);
2313 #else
2314 return 0;
2315 #endif
2316 }
2317
2318 static void i915_sg_trim(struct sg_table *orig_st)
2319 {
2320 struct sg_table new_st;
2321 struct scatterlist *sg, *new_sg;
2322 unsigned int i;
2323
2324 if (orig_st->nents == orig_st->orig_nents)
2325 return;
2326
2327 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2328 return;
2329
2330 new_sg = new_st.sgl;
2331 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2332 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2333 /* called before being DMA mapped, no need to copy sg->dma_* */
2334 new_sg = sg_next(new_sg);
2335 }
2336
2337 sg_free_table(orig_st);
2338
2339 *orig_st = new_st;
2340 }
2341
2342 static struct sg_table *
2343 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2344 {
2345 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2346 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2347 unsigned long i;
2348 struct address_space *mapping;
2349 struct sg_table *st;
2350 struct scatterlist *sg;
2351 struct sgt_iter sgt_iter;
2352 struct page *page;
2353 unsigned long last_pfn = 0; /* suppress gcc warning */
2354 unsigned int max_segment;
2355 int ret;
2356 gfp_t gfp;
2357
2358 /* Assert that the object is not currently in any GPU domain. As it
2359 * wasn't in the GTT, there shouldn't be any way it could have been in
2360 * a GPU cache
2361 */
2362 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2363 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2364
2365 max_segment = swiotlb_max_size();
2366 if (!max_segment)
2367 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2368
2369 st = kmalloc(sizeof(*st), GFP_KERNEL);
2370 if (st == NULL)
2371 return ERR_PTR(-ENOMEM);
2372
2373 rebuild_st:
2374 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2375 kfree(st);
2376 return ERR_PTR(-ENOMEM);
2377 }
2378
2379 /* Get the list of pages out of our struct file. They'll be pinned
2380 * at this point until we release them.
2381 *
2382 * Fail silently without starting the shrinker
2383 */
2384 mapping = obj->base.filp->f_mapping;
2385 gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2386 gfp |= __GFP_NORETRY | __GFP_NOWARN;
2387 sg = st->sgl;
2388 st->nents = 0;
2389 for (i = 0; i < page_count; i++) {
2390 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2391 if (IS_ERR(page)) {
2392 i915_gem_shrink(dev_priv,
2393 page_count,
2394 I915_SHRINK_BOUND |
2395 I915_SHRINK_UNBOUND |
2396 I915_SHRINK_PURGEABLE);
2397 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2398 }
2399 if (IS_ERR(page)) {
2400 /* We've tried hard to allocate the memory by reaping
2401 * our own buffer, now let the real VM do its job and
2402 * go down in flames if truly OOM.
2403 */
2404 page = shmem_read_mapping_page(mapping, i);
2405 if (IS_ERR(page)) {
2406 ret = PTR_ERR(page);
2407 goto err_sg;
2408 }
2409 }
2410 if (!i ||
2411 sg->length >= max_segment ||
2412 page_to_pfn(page) != last_pfn + 1) {
2413 if (i)
2414 sg = sg_next(sg);
2415 st->nents++;
2416 sg_set_page(sg, page, PAGE_SIZE, 0);
2417 } else {
2418 sg->length += PAGE_SIZE;
2419 }
2420 last_pfn = page_to_pfn(page);
2421
2422 /* Check that the i965g/gm workaround works. */
2423 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2424 }
2425 if (sg) /* loop terminated early; short sg table */
2426 sg_mark_end(sg);
2427
2428 /* Trim unused sg entries to avoid wasting memory. */
2429 i915_sg_trim(st);
2430
2431 ret = i915_gem_gtt_prepare_pages(obj, st);
2432 if (ret) {
2433 /* DMA remapping failed? One possible cause is that
2434 * it could not reserve enough large entries, asking
2435 * for PAGE_SIZE chunks instead may be helpful.
2436 */
2437 if (max_segment > PAGE_SIZE) {
2438 for_each_sgt_page(page, sgt_iter, st)
2439 put_page(page);
2440 sg_free_table(st);
2441
2442 max_segment = PAGE_SIZE;
2443 goto rebuild_st;
2444 } else {
2445 dev_warn(&dev_priv->drm.pdev->dev,
2446 "Failed to DMA remap %lu pages\n",
2447 page_count);
2448 goto err_pages;
2449 }
2450 }
2451
2452 if (i915_gem_object_needs_bit17_swizzle(obj))
2453 i915_gem_object_do_bit_17_swizzle(obj, st);
2454
2455 return st;
2456
2457 err_sg:
2458 sg_mark_end(sg);
2459 err_pages:
2460 for_each_sgt_page(page, sgt_iter, st)
2461 put_page(page);
2462 sg_free_table(st);
2463 kfree(st);
2464
2465 /* shmemfs first checks if there is enough memory to allocate the page
2466 * and reports ENOSPC should there be insufficient, along with the usual
2467 * ENOMEM for a genuine allocation failure.
2468 *
2469 * We use ENOSPC in our driver to mean that we have run out of aperture
2470 * space and so want to translate the error from shmemfs back to our
2471 * usual understanding of ENOMEM.
2472 */
2473 if (ret == -ENOSPC)
2474 ret = -ENOMEM;
2475
2476 return ERR_PTR(ret);
2477 }
2478
2479 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2480 struct sg_table *pages)
2481 {
2482 lockdep_assert_held(&obj->mm.lock);
2483
2484 obj->mm.get_page.sg_pos = pages->sgl;
2485 obj->mm.get_page.sg_idx = 0;
2486
2487 obj->mm.pages = pages;
2488
2489 if (i915_gem_object_is_tiled(obj) &&
2490 to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2491 GEM_BUG_ON(obj->mm.quirked);
2492 __i915_gem_object_pin_pages(obj);
2493 obj->mm.quirked = true;
2494 }
2495 }
2496
2497 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2498 {
2499 struct sg_table *pages;
2500
2501 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2502
2503 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2504 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2505 return -EFAULT;
2506 }
2507
2508 pages = obj->ops->get_pages(obj);
2509 if (unlikely(IS_ERR(pages)))
2510 return PTR_ERR(pages);
2511
2512 __i915_gem_object_set_pages(obj, pages);
2513 return 0;
2514 }
2515
2516 /* Ensure that the associated pages are gathered from the backing storage
2517 * and pinned into our object. i915_gem_object_pin_pages() may be called
2518 * multiple times before they are released by a single call to
2519 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2520 * either as a result of memory pressure (reaping pages under the shrinker)
2521 * or as the object is itself released.
2522 */
2523 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2524 {
2525 int err;
2526
2527 err = mutex_lock_interruptible(&obj->mm.lock);
2528 if (err)
2529 return err;
2530
2531 if (unlikely(!obj->mm.pages)) {
2532 err = ____i915_gem_object_get_pages(obj);
2533 if (err)
2534 goto unlock;
2535
2536 smp_mb__before_atomic();
2537 }
2538 atomic_inc(&obj->mm.pages_pin_count);
2539
2540 unlock:
2541 mutex_unlock(&obj->mm.lock);
2542 return err;
2543 }
2544
2545 /* The 'mapping' part of i915_gem_object_pin_map() below */
2546 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2547 enum i915_map_type type)
2548 {
2549 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2550 struct sg_table *sgt = obj->mm.pages;
2551 struct sgt_iter sgt_iter;
2552 struct page *page;
2553 struct page *stack_pages[32];
2554 struct page **pages = stack_pages;
2555 unsigned long i = 0;
2556 pgprot_t pgprot;
2557 void *addr;
2558
2559 /* A single page can always be kmapped */
2560 if (n_pages == 1 && type == I915_MAP_WB)
2561 return kmap(sg_page(sgt->sgl));
2562
2563 if (n_pages > ARRAY_SIZE(stack_pages)) {
2564 /* Too big for stack -- allocate temporary array instead */
2565 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2566 if (!pages)
2567 return NULL;
2568 }
2569
2570 for_each_sgt_page(page, sgt_iter, sgt)
2571 pages[i++] = page;
2572
2573 /* Check that we have the expected number of pages */
2574 GEM_BUG_ON(i != n_pages);
2575
2576 switch (type) {
2577 case I915_MAP_WB:
2578 pgprot = PAGE_KERNEL;
2579 break;
2580 case I915_MAP_WC:
2581 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2582 break;
2583 }
2584 addr = vmap(pages, n_pages, 0, pgprot);
2585
2586 if (pages != stack_pages)
2587 drm_free_large(pages);
2588
2589 return addr;
2590 }
2591
2592 /* get, pin, and map the pages of the object into kernel space */
2593 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2594 enum i915_map_type type)
2595 {
2596 enum i915_map_type has_type;
2597 bool pinned;
2598 void *ptr;
2599 int ret;
2600
2601 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2602
2603 ret = mutex_lock_interruptible(&obj->mm.lock);
2604 if (ret)
2605 return ERR_PTR(ret);
2606
2607 pinned = true;
2608 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2609 if (unlikely(!obj->mm.pages)) {
2610 ret = ____i915_gem_object_get_pages(obj);
2611 if (ret)
2612 goto err_unlock;
2613
2614 smp_mb__before_atomic();
2615 }
2616 atomic_inc(&obj->mm.pages_pin_count);
2617 pinned = false;
2618 }
2619 GEM_BUG_ON(!obj->mm.pages);
2620
2621 ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2622 if (ptr && has_type != type) {
2623 if (pinned) {
2624 ret = -EBUSY;
2625 goto err_unpin;
2626 }
2627
2628 if (is_vmalloc_addr(ptr))
2629 vunmap(ptr);
2630 else
2631 kunmap(kmap_to_page(ptr));
2632
2633 ptr = obj->mm.mapping = NULL;
2634 }
2635
2636 if (!ptr) {
2637 ptr = i915_gem_object_map(obj, type);
2638 if (!ptr) {
2639 ret = -ENOMEM;
2640 goto err_unpin;
2641 }
2642
2643 obj->mm.mapping = ptr_pack_bits(ptr, type);
2644 }
2645
2646 out_unlock:
2647 mutex_unlock(&obj->mm.lock);
2648 return ptr;
2649
2650 err_unpin:
2651 atomic_dec(&obj->mm.pages_pin_count);
2652 err_unlock:
2653 ptr = ERR_PTR(ret);
2654 goto out_unlock;
2655 }
2656
2657 static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2658 {
2659 unsigned long elapsed;
2660
2661 if (ctx->hang_stats.banned)
2662 return true;
2663
2664 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2665 if (ctx->hang_stats.ban_period_seconds &&
2666 elapsed <= ctx->hang_stats.ban_period_seconds) {
2667 DRM_DEBUG("context hanging too fast, banning!\n");
2668 return true;
2669 }
2670
2671 return false;
2672 }
2673
2674 static void i915_set_reset_status(struct i915_gem_context *ctx,
2675 const bool guilty)
2676 {
2677 struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2678
2679 if (guilty) {
2680 hs->banned = i915_context_is_banned(ctx);
2681 hs->batch_active++;
2682 hs->guilty_ts = get_seconds();
2683 } else {
2684 hs->batch_pending++;
2685 }
2686 }
2687
2688 struct drm_i915_gem_request *
2689 i915_gem_find_active_request(struct intel_engine_cs *engine)
2690 {
2691 struct drm_i915_gem_request *request;
2692
2693 /* We are called by the error capture and reset at a random
2694 * point in time. In particular, note that neither is crucially
2695 * ordered with an interrupt. After a hang, the GPU is dead and we
2696 * assume that no more writes can happen (we waited long enough for
2697 * all writes that were in transaction to be flushed) - adding an
2698 * extra delay for a recent interrupt is pointless. Hence, we do
2699 * not need an engine->irq_seqno_barrier() before the seqno reads.
2700 */
2701 list_for_each_entry(request, &engine->timeline->requests, link) {
2702 if (__i915_gem_request_completed(request))
2703 continue;
2704
2705 return request;
2706 }
2707
2708 return NULL;
2709 }
2710
2711 static void reset_request(struct drm_i915_gem_request *request)
2712 {
2713 void *vaddr = request->ring->vaddr;
2714 u32 head;
2715
2716 /* As this request likely depends on state from the lost
2717 * context, clear out all the user operations leaving the
2718 * breadcrumb at the end (so we get the fence notifications).
2719 */
2720 head = request->head;
2721 if (request->postfix < head) {
2722 memset(vaddr + head, 0, request->ring->size - head);
2723 head = 0;
2724 }
2725 memset(vaddr + head, 0, request->postfix - head);
2726 }
2727
2728 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2729 {
2730 struct drm_i915_gem_request *request;
2731 struct i915_gem_context *incomplete_ctx;
2732 struct intel_timeline *timeline;
2733 unsigned long flags;
2734 bool ring_hung;
2735
2736 if (engine->irq_seqno_barrier)
2737 engine->irq_seqno_barrier(engine);
2738
2739 request = i915_gem_find_active_request(engine);
2740 if (!request)
2741 return;
2742
2743 ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2744 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine))
2745 ring_hung = false;
2746
2747 i915_set_reset_status(request->ctx, ring_hung);
2748 if (!ring_hung)
2749 return;
2750
2751 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2752 engine->name, request->global_seqno);
2753
2754 /* Setup the CS to resume from the breadcrumb of the hung request */
2755 engine->reset_hw(engine, request);
2756
2757 /* Users of the default context do not rely on logical state
2758 * preserved between batches. They have to emit full state on
2759 * every batch and so it is safe to execute queued requests following
2760 * the hang.
2761 *
2762 * Other contexts preserve state, now corrupt. We want to skip all
2763 * queued requests that reference the corrupt context.
2764 */
2765 incomplete_ctx = request->ctx;
2766 if (i915_gem_context_is_default(incomplete_ctx))
2767 return;
2768
2769 timeline = i915_gem_context_lookup_timeline(incomplete_ctx, engine);
2770
2771 spin_lock_irqsave(&engine->timeline->lock, flags);
2772 spin_lock(&timeline->lock);
2773
2774 list_for_each_entry_continue(request, &engine->timeline->requests, link)
2775 if (request->ctx == incomplete_ctx)
2776 reset_request(request);
2777
2778 list_for_each_entry(request, &timeline->requests, link)
2779 reset_request(request);
2780
2781 spin_unlock(&timeline->lock);
2782 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2783 }
2784
2785 void i915_gem_reset(struct drm_i915_private *dev_priv)
2786 {
2787 struct intel_engine_cs *engine;
2788 enum intel_engine_id id;
2789
2790 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2791
2792 i915_gem_retire_requests(dev_priv);
2793
2794 for_each_engine(engine, dev_priv, id)
2795 i915_gem_reset_engine(engine);
2796
2797 i915_gem_restore_fences(dev_priv);
2798
2799 if (dev_priv->gt.awake) {
2800 intel_sanitize_gt_powersave(dev_priv);
2801 intel_enable_gt_powersave(dev_priv);
2802 if (INTEL_GEN(dev_priv) >= 6)
2803 gen6_rps_busy(dev_priv);
2804 }
2805 }
2806
2807 static void nop_submit_request(struct drm_i915_gem_request *request)
2808 {
2809 i915_gem_request_submit(request);
2810 intel_engine_init_global_seqno(request->engine, request->global_seqno);
2811 }
2812
2813 static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
2814 {
2815 engine->submit_request = nop_submit_request;
2816
2817 /* Mark all pending requests as complete so that any concurrent
2818 * (lockless) lookup doesn't try and wait upon the request as we
2819 * reset it.
2820 */
2821 intel_engine_init_global_seqno(engine,
2822 intel_engine_last_submit(engine));
2823
2824 /*
2825 * Clear the execlists queue up before freeing the requests, as those
2826 * are the ones that keep the context and ringbuffer backing objects
2827 * pinned in place.
2828 */
2829
2830 if (i915.enable_execlists) {
2831 unsigned long flags;
2832
2833 spin_lock_irqsave(&engine->timeline->lock, flags);
2834
2835 i915_gem_request_put(engine->execlist_port[0].request);
2836 i915_gem_request_put(engine->execlist_port[1].request);
2837 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2838 engine->execlist_queue = RB_ROOT;
2839 engine->execlist_first = NULL;
2840
2841 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2842 }
2843 }
2844
2845 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2846 {
2847 struct intel_engine_cs *engine;
2848 enum intel_engine_id id;
2849
2850 lockdep_assert_held(&dev_priv->drm.struct_mutex);
2851 set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2852
2853 i915_gem_context_lost(dev_priv);
2854 for_each_engine(engine, dev_priv, id)
2855 i915_gem_cleanup_engine(engine);
2856 mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2857
2858 i915_gem_retire_requests(dev_priv);
2859 }
2860
2861 static void
2862 i915_gem_retire_work_handler(struct work_struct *work)
2863 {
2864 struct drm_i915_private *dev_priv =
2865 container_of(work, typeof(*dev_priv), gt.retire_work.work);
2866 struct drm_device *dev = &dev_priv->drm;
2867
2868 /* Come back later if the device is busy... */
2869 if (mutex_trylock(&dev->struct_mutex)) {
2870 i915_gem_retire_requests(dev_priv);
2871 mutex_unlock(&dev->struct_mutex);
2872 }
2873
2874 /* Keep the retire handler running until we are finally idle.
2875 * We do not need to do this test under locking as in the worst-case
2876 * we queue the retire worker once too often.
2877 */
2878 if (READ_ONCE(dev_priv->gt.awake)) {
2879 i915_queue_hangcheck(dev_priv);
2880 queue_delayed_work(dev_priv->wq,
2881 &dev_priv->gt.retire_work,
2882 round_jiffies_up_relative(HZ));
2883 }
2884 }
2885
2886 static void
2887 i915_gem_idle_work_handler(struct work_struct *work)
2888 {
2889 struct drm_i915_private *dev_priv =
2890 container_of(work, typeof(*dev_priv), gt.idle_work.work);
2891 struct drm_device *dev = &dev_priv->drm;
2892 struct intel_engine_cs *engine;
2893 enum intel_engine_id id;
2894 bool rearm_hangcheck;
2895
2896 if (!READ_ONCE(dev_priv->gt.awake))
2897 return;
2898
2899 /*
2900 * Wait for last execlists context complete, but bail out in case a
2901 * new request is submitted.
2902 */
2903 wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
2904 intel_execlists_idle(dev_priv), 10);
2905
2906 if (READ_ONCE(dev_priv->gt.active_requests))
2907 return;
2908
2909 rearm_hangcheck =
2910 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2911
2912 if (!mutex_trylock(&dev->struct_mutex)) {
2913 /* Currently busy, come back later */
2914 mod_delayed_work(dev_priv->wq,
2915 &dev_priv->gt.idle_work,
2916 msecs_to_jiffies(50));
2917 goto out_rearm;
2918 }
2919
2920 /*
2921 * New request retired after this work handler started, extend active
2922 * period until next instance of the work.
2923 */
2924 if (work_pending(work))
2925 goto out_unlock;
2926
2927 if (dev_priv->gt.active_requests)
2928 goto out_unlock;
2929
2930 if (wait_for(intel_execlists_idle(dev_priv), 10))
2931 DRM_ERROR("Timeout waiting for engines to idle\n");
2932
2933 for_each_engine(engine, dev_priv, id)
2934 i915_gem_batch_pool_fini(&engine->batch_pool);
2935
2936 GEM_BUG_ON(!dev_priv->gt.awake);
2937 dev_priv->gt.awake = false;
2938 rearm_hangcheck = false;
2939
2940 if (INTEL_GEN(dev_priv) >= 6)
2941 gen6_rps_idle(dev_priv);
2942 intel_runtime_pm_put(dev_priv);
2943 out_unlock:
2944 mutex_unlock(&dev->struct_mutex);
2945
2946 out_rearm:
2947 if (rearm_hangcheck) {
2948 GEM_BUG_ON(!dev_priv->gt.awake);
2949 i915_queue_hangcheck(dev_priv);
2950 }
2951 }
2952
2953 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2954 {
2955 struct drm_i915_gem_object *obj = to_intel_bo(gem);
2956 struct drm_i915_file_private *fpriv = file->driver_priv;
2957 struct i915_vma *vma, *vn;
2958
2959 mutex_lock(&obj->base.dev->struct_mutex);
2960 list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2961 if (vma->vm->file == fpriv)
2962 i915_vma_close(vma);
2963
2964 if (i915_gem_object_is_active(obj) &&
2965 !i915_gem_object_has_active_reference(obj)) {
2966 i915_gem_object_set_active_reference(obj);
2967 i915_gem_object_get(obj);
2968 }
2969 mutex_unlock(&obj->base.dev->struct_mutex);
2970 }
2971
2972 static unsigned long to_wait_timeout(s64 timeout_ns)
2973 {
2974 if (timeout_ns < 0)
2975 return MAX_SCHEDULE_TIMEOUT;
2976
2977 if (timeout_ns == 0)
2978 return 0;
2979
2980 return nsecs_to_jiffies_timeout(timeout_ns);
2981 }
2982
2983 /**
2984 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2985 * @dev: drm device pointer
2986 * @data: ioctl data blob
2987 * @file: drm file pointer
2988 *
2989 * Returns 0 if successful, else an error is returned with the remaining time in
2990 * the timeout parameter.
2991 * -ETIME: object is still busy after timeout
2992 * -ERESTARTSYS: signal interrupted the wait
2993 * -ENONENT: object doesn't exist
2994 * Also possible, but rare:
2995 * -EAGAIN: GPU wedged
2996 * -ENOMEM: damn
2997 * -ENODEV: Internal IRQ fail
2998 * -E?: The add request failed
2999 *
3000 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3001 * non-zero timeout parameter the wait ioctl will wait for the given number of
3002 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3003 * without holding struct_mutex the object may become re-busied before this
3004 * function completes. A similar but shorter * race condition exists in the busy
3005 * ioctl
3006 */
3007 int
3008 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3009 {
3010 struct drm_i915_gem_wait *args = data;
3011 struct drm_i915_gem_object *obj;
3012 ktime_t start;
3013 long ret;
3014
3015 if (args->flags != 0)
3016 return -EINVAL;
3017
3018 obj = i915_gem_object_lookup(file, args->bo_handle);
3019 if (!obj)
3020 return -ENOENT;
3021
3022 start = ktime_get();
3023
3024 ret = i915_gem_object_wait(obj,
3025 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3026 to_wait_timeout(args->timeout_ns),
3027 to_rps_client(file));
3028
3029 if (args->timeout_ns > 0) {
3030 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3031 if (args->timeout_ns < 0)
3032 args->timeout_ns = 0;
3033 }
3034
3035 i915_gem_object_put(obj);
3036 return ret;
3037 }
3038
3039 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3040 {
3041 int ret, i;
3042
3043 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3044 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3045 if (ret)
3046 return ret;
3047 }
3048
3049 return 0;
3050 }
3051
3052 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3053 {
3054 int ret;
3055
3056 if (flags & I915_WAIT_LOCKED) {
3057 struct i915_gem_timeline *tl;
3058
3059 lockdep_assert_held(&i915->drm.struct_mutex);
3060
3061 list_for_each_entry(tl, &i915->gt.timelines, link) {
3062 ret = wait_for_timeline(tl, flags);
3063 if (ret)
3064 return ret;
3065 }
3066 } else {
3067 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3068 if (ret)
3069 return ret;
3070 }
3071
3072 return 0;
3073 }
3074
3075 void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3076 bool force)
3077 {
3078 /* If we don't have a page list set up, then we're not pinned
3079 * to GPU, and we can ignore the cache flush because it'll happen
3080 * again at bind time.
3081 */
3082 if (!obj->mm.pages)
3083 return;
3084
3085 /*
3086 * Stolen memory is always coherent with the GPU as it is explicitly
3087 * marked as wc by the system, or the system is cache-coherent.
3088 */
3089 if (obj->stolen || obj->phys_handle)
3090 return;
3091
3092 /* If the GPU is snooping the contents of the CPU cache,
3093 * we do not need to manually clear the CPU cache lines. However,
3094 * the caches are only snooped when the render cache is
3095 * flushed/invalidated. As we always have to emit invalidations
3096 * and flushes when moving into and out of the RENDER domain, correct
3097 * snooping behaviour occurs naturally as the result of our domain
3098 * tracking.
3099 */
3100 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3101 obj->cache_dirty = true;
3102 return;
3103 }
3104
3105 trace_i915_gem_object_clflush(obj);
3106 drm_clflush_sg(obj->mm.pages);
3107 obj->cache_dirty = false;
3108 }
3109
3110 /** Flushes the GTT write domain for the object if it's dirty. */
3111 static void
3112 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3113 {
3114 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3115
3116 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3117 return;
3118
3119 /* No actual flushing is required for the GTT write domain. Writes
3120 * to it "immediately" go to main memory as far as we know, so there's
3121 * no chipset flush. It also doesn't land in render cache.
3122 *
3123 * However, we do have to enforce the order so that all writes through
3124 * the GTT land before any writes to the device, such as updates to
3125 * the GATT itself.
3126 *
3127 * We also have to wait a bit for the writes to land from the GTT.
3128 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3129 * timing. This issue has only been observed when switching quickly
3130 * between GTT writes and CPU reads from inside the kernel on recent hw,
3131 * and it appears to only affect discrete GTT blocks (i.e. on LLC
3132 * system agents we cannot reproduce this behaviour).
3133 */
3134 wmb();
3135 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3136 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3137
3138 intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3139
3140 obj->base.write_domain = 0;
3141 trace_i915_gem_object_change_domain(obj,
3142 obj->base.read_domains,
3143 I915_GEM_DOMAIN_GTT);
3144 }
3145
3146 /** Flushes the CPU write domain for the object if it's dirty. */
3147 static void
3148 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3149 {
3150 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3151 return;
3152
3153 i915_gem_clflush_object(obj, obj->pin_display);
3154 intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3155
3156 obj->base.write_domain = 0;
3157 trace_i915_gem_object_change_domain(obj,
3158 obj->base.read_domains,
3159 I915_GEM_DOMAIN_CPU);
3160 }
3161
3162 /**
3163 * Moves a single object to the GTT read, and possibly write domain.
3164 * @obj: object to act on
3165 * @write: ask for write access or read only
3166 *
3167 * This function returns when the move is complete, including waiting on
3168 * flushes to occur.
3169 */
3170 int
3171 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3172 {
3173 uint32_t old_write_domain, old_read_domains;
3174 int ret;
3175
3176 lockdep_assert_held(&obj->base.dev->struct_mutex);
3177
3178 ret = i915_gem_object_wait(obj,
3179 I915_WAIT_INTERRUPTIBLE |
3180 I915_WAIT_LOCKED |
3181 (write ? I915_WAIT_ALL : 0),
3182 MAX_SCHEDULE_TIMEOUT,
3183 NULL);
3184 if (ret)
3185 return ret;
3186
3187 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3188 return 0;
3189
3190 /* Flush and acquire obj->pages so that we are coherent through
3191 * direct access in memory with previous cached writes through
3192 * shmemfs and that our cache domain tracking remains valid.
3193 * For example, if the obj->filp was moved to swap without us
3194 * being notified and releasing the pages, we would mistakenly
3195 * continue to assume that the obj remained out of the CPU cached
3196 * domain.
3197 */
3198 ret = i915_gem_object_pin_pages(obj);
3199 if (ret)
3200 return ret;
3201
3202 i915_gem_object_flush_cpu_write_domain(obj);
3203
3204 /* Serialise direct access to this object with the barriers for
3205 * coherent writes from the GPU, by effectively invalidating the
3206 * GTT domain upon first access.
3207 */
3208 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3209 mb();
3210
3211 old_write_domain = obj->base.write_domain;
3212 old_read_domains = obj->base.read_domains;
3213
3214 /* It should now be out of any other write domains, and we can update
3215 * the domain values for our changes.
3216 */
3217 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3218 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3219 if (write) {
3220 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3221 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3222 obj->mm.dirty = true;
3223 }
3224
3225 trace_i915_gem_object_change_domain(obj,
3226 old_read_domains,
3227 old_write_domain);
3228
3229 i915_gem_object_unpin_pages(obj);
3230 return 0;
3231 }
3232
3233 /**
3234 * Changes the cache-level of an object across all VMA.
3235 * @obj: object to act on
3236 * @cache_level: new cache level to set for the object
3237 *
3238 * After this function returns, the object will be in the new cache-level
3239 * across all GTT and the contents of the backing storage will be coherent,
3240 * with respect to the new cache-level. In order to keep the backing storage
3241 * coherent for all users, we only allow a single cache level to be set
3242 * globally on the object and prevent it from being changed whilst the
3243 * hardware is reading from the object. That is if the object is currently
3244 * on the scanout it will be set to uncached (or equivalent display
3245 * cache coherency) and all non-MOCS GPU access will also be uncached so
3246 * that all direct access to the scanout remains coherent.
3247 */
3248 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3249 enum i915_cache_level cache_level)
3250 {
3251 struct i915_vma *vma;
3252 int ret;
3253
3254 lockdep_assert_held(&obj->base.dev->struct_mutex);
3255
3256 if (obj->cache_level == cache_level)
3257 return 0;
3258
3259 /* Inspect the list of currently bound VMA and unbind any that would
3260 * be invalid given the new cache-level. This is principally to
3261 * catch the issue of the CS prefetch crossing page boundaries and
3262 * reading an invalid PTE on older architectures.
3263 */
3264 restart:
3265 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3266 if (!drm_mm_node_allocated(&vma->node))
3267 continue;
3268
3269 if (i915_vma_is_pinned(vma)) {
3270 DRM_DEBUG("can not change the cache level of pinned objects\n");
3271 return -EBUSY;
3272 }
3273
3274 if (i915_gem_valid_gtt_space(vma, cache_level))
3275 continue;
3276
3277 ret = i915_vma_unbind(vma);
3278 if (ret)
3279 return ret;
3280
3281 /* As unbinding may affect other elements in the
3282 * obj->vma_list (due to side-effects from retiring
3283 * an active vma), play safe and restart the iterator.
3284 */
3285 goto restart;
3286 }
3287
3288 /* We can reuse the existing drm_mm nodes but need to change the
3289 * cache-level on the PTE. We could simply unbind them all and
3290 * rebind with the correct cache-level on next use. However since
3291 * we already have a valid slot, dma mapping, pages etc, we may as
3292 * rewrite the PTE in the belief that doing so tramples upon less
3293 * state and so involves less work.
3294 */
3295 if (obj->bind_count) {
3296 /* Before we change the PTE, the GPU must not be accessing it.
3297 * If we wait upon the object, we know that all the bound
3298 * VMA are no longer active.
3299 */
3300 ret = i915_gem_object_wait(obj,
3301 I915_WAIT_INTERRUPTIBLE |
3302 I915_WAIT_LOCKED |
3303 I915_WAIT_ALL,
3304 MAX_SCHEDULE_TIMEOUT,
3305 NULL);
3306 if (ret)
3307 return ret;
3308
3309 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3310 cache_level != I915_CACHE_NONE) {
3311 /* Access to snoopable pages through the GTT is
3312 * incoherent and on some machines causes a hard
3313 * lockup. Relinquish the CPU mmaping to force
3314 * userspace to refault in the pages and we can
3315 * then double check if the GTT mapping is still
3316 * valid for that pointer access.
3317 */
3318 i915_gem_release_mmap(obj);
3319
3320 /* As we no longer need a fence for GTT access,
3321 * we can relinquish it now (and so prevent having
3322 * to steal a fence from someone else on the next
3323 * fence request). Note GPU activity would have
3324 * dropped the fence as all snoopable access is
3325 * supposed to be linear.
3326 */
3327 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3328 ret = i915_vma_put_fence(vma);
3329 if (ret)
3330 return ret;
3331 }
3332 } else {
3333 /* We either have incoherent backing store and
3334 * so no GTT access or the architecture is fully
3335 * coherent. In such cases, existing GTT mmaps
3336 * ignore the cache bit in the PTE and we can
3337 * rewrite it without confusing the GPU or having
3338 * to force userspace to fault back in its mmaps.
3339 */
3340 }
3341
3342 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3343 if (!drm_mm_node_allocated(&vma->node))
3344 continue;
3345
3346 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3347 if (ret)
3348 return ret;
3349 }
3350 }
3351
3352 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3353 cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3354 obj->cache_dirty = true;
3355
3356 list_for_each_entry(vma, &obj->vma_list, obj_link)
3357 vma->node.color = cache_level;
3358 obj->cache_level = cache_level;
3359
3360 return 0;
3361 }
3362
3363 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3364 struct drm_file *file)
3365 {
3366 struct drm_i915_gem_caching *args = data;
3367 struct drm_i915_gem_object *obj;
3368 int err = 0;
3369
3370 rcu_read_lock();
3371 obj = i915_gem_object_lookup_rcu(file, args->handle);
3372 if (!obj) {
3373 err = -ENOENT;
3374 goto out;
3375 }
3376
3377 switch (obj->cache_level) {
3378 case I915_CACHE_LLC:
3379 case I915_CACHE_L3_LLC:
3380 args->caching = I915_CACHING_CACHED;
3381 break;
3382
3383 case I915_CACHE_WT:
3384 args->caching = I915_CACHING_DISPLAY;
3385 break;
3386
3387 default:
3388 args->caching = I915_CACHING_NONE;
3389 break;
3390 }
3391 out:
3392 rcu_read_unlock();
3393 return err;
3394 }
3395
3396 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3397 struct drm_file *file)
3398 {
3399 struct drm_i915_private *i915 = to_i915(dev);
3400 struct drm_i915_gem_caching *args = data;
3401 struct drm_i915_gem_object *obj;
3402 enum i915_cache_level level;
3403 int ret;
3404
3405 switch (args->caching) {
3406 case I915_CACHING_NONE:
3407 level = I915_CACHE_NONE;
3408 break;
3409 case I915_CACHING_CACHED:
3410 /*
3411 * Due to a HW issue on BXT A stepping, GPU stores via a
3412 * snooped mapping may leave stale data in a corresponding CPU
3413 * cacheline, whereas normally such cachelines would get
3414 * invalidated.
3415 */
3416 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3417 return -ENODEV;
3418
3419 level = I915_CACHE_LLC;
3420 break;
3421 case I915_CACHING_DISPLAY:
3422 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3423 break;
3424 default:
3425 return -EINVAL;
3426 }
3427
3428 ret = i915_mutex_lock_interruptible(dev);
3429 if (ret)
3430 return ret;
3431
3432 obj = i915_gem_object_lookup(file, args->handle);
3433 if (!obj) {
3434 ret = -ENOENT;
3435 goto unlock;
3436 }
3437
3438 ret = i915_gem_object_set_cache_level(obj, level);
3439 i915_gem_object_put(obj);
3440 unlock:
3441 mutex_unlock(&dev->struct_mutex);
3442 return ret;
3443 }
3444
3445 /*
3446 * Prepare buffer for display plane (scanout, cursors, etc).
3447 * Can be called from an uninterruptible phase (modesetting) and allows
3448 * any flushes to be pipelined (for pageflips).
3449 */
3450 struct i915_vma *
3451 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3452 u32 alignment,
3453 const struct i915_ggtt_view *view)
3454 {
3455 struct i915_vma *vma;
3456 u32 old_read_domains, old_write_domain;
3457 int ret;
3458
3459 lockdep_assert_held(&obj->base.dev->struct_mutex);
3460
3461 /* Mark the pin_display early so that we account for the
3462 * display coherency whilst setting up the cache domains.
3463 */
3464 obj->pin_display++;
3465
3466 /* The display engine is not coherent with the LLC cache on gen6. As
3467 * a result, we make sure that the pinning that is about to occur is
3468 * done with uncached PTEs. This is lowest common denominator for all
3469 * chipsets.
3470 *
3471 * However for gen6+, we could do better by using the GFDT bit instead
3472 * of uncaching, which would allow us to flush all the LLC-cached data
3473 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3474 */
3475 ret = i915_gem_object_set_cache_level(obj,
3476 HAS_WT(to_i915(obj->base.dev)) ?
3477 I915_CACHE_WT : I915_CACHE_NONE);
3478 if (ret) {
3479 vma = ERR_PTR(ret);
3480 goto err_unpin_display;
3481 }
3482
3483 /* As the user may map the buffer once pinned in the display plane
3484 * (e.g. libkms for the bootup splash), we have to ensure that we
3485 * always use map_and_fenceable for all scanout buffers. However,
3486 * it may simply be too big to fit into mappable, in which case
3487 * put it anyway and hope that userspace can cope (but always first
3488 * try to preserve the existing ABI).
3489 */
3490 vma = ERR_PTR(-ENOSPC);
3491 if (view->type == I915_GGTT_VIEW_NORMAL)
3492 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3493 PIN_MAPPABLE | PIN_NONBLOCK);
3494 if (IS_ERR(vma)) {
3495 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3496 unsigned int flags;
3497
3498 /* Valleyview is definitely limited to scanning out the first
3499 * 512MiB. Lets presume this behaviour was inherited from the
3500 * g4x display engine and that all earlier gen are similarly
3501 * limited. Testing suggests that it is a little more
3502 * complicated than this. For example, Cherryview appears quite
3503 * happy to scanout from anywhere within its global aperture.
3504 */
3505 flags = 0;
3506 if (HAS_GMCH_DISPLAY(i915))
3507 flags = PIN_MAPPABLE;
3508 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3509 }
3510 if (IS_ERR(vma))
3511 goto err_unpin_display;
3512
3513 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3514
3515 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3516 if (obj->cache_dirty) {
3517 i915_gem_clflush_object(obj, true);
3518 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
3519 }
3520
3521 old_write_domain = obj->base.write_domain;
3522 old_read_domains = obj->base.read_domains;
3523
3524 /* It should now be out of any other write domains, and we can update
3525 * the domain values for our changes.
3526 */
3527 obj->base.write_domain = 0;
3528 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3529
3530 trace_i915_gem_object_change_domain(obj,
3531 old_read_domains,
3532 old_write_domain);
3533
3534 return vma;
3535
3536 err_unpin_display:
3537 obj->pin_display--;
3538 return vma;
3539 }
3540
3541 void
3542 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3543 {
3544 lockdep_assert_held(&vma->vm->dev->struct_mutex);
3545
3546 if (WARN_ON(vma->obj->pin_display == 0))
3547 return;
3548
3549 if (--vma->obj->pin_display == 0)
3550 vma->display_alignment = 0;
3551
3552 /* Bump the LRU to try and avoid premature eviction whilst flipping */
3553 if (!i915_vma_is_active(vma))
3554 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3555
3556 i915_vma_unpin(vma);
3557 }
3558
3559 /**
3560 * Moves a single object to the CPU read, and possibly write domain.
3561 * @obj: object to act on
3562 * @write: requesting write or read-only access
3563 *
3564 * This function returns when the move is complete, including waiting on
3565 * flushes to occur.
3566 */
3567 int
3568 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3569 {
3570 uint32_t old_write_domain, old_read_domains;
3571 int ret;
3572
3573 lockdep_assert_held(&obj->base.dev->struct_mutex);
3574
3575 ret = i915_gem_object_wait(obj,
3576 I915_WAIT_INTERRUPTIBLE |
3577 I915_WAIT_LOCKED |
3578 (write ? I915_WAIT_ALL : 0),
3579 MAX_SCHEDULE_TIMEOUT,
3580 NULL);
3581 if (ret)
3582 return ret;
3583
3584 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3585 return 0;
3586
3587 i915_gem_object_flush_gtt_write_domain(obj);
3588
3589 old_write_domain = obj->base.write_domain;
3590 old_read_domains = obj->base.read_domains;
3591
3592 /* Flush the CPU cache if it's still invalid. */
3593 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3594 i915_gem_clflush_object(obj, false);
3595
3596 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3597 }
3598
3599 /* It should now be out of any other write domains, and we can update
3600 * the domain values for our changes.
3601 */
3602 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3603
3604 /* If we're writing through the CPU, then the GPU read domains will
3605 * need to be invalidated at next use.
3606 */
3607 if (write) {
3608 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3609 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3610 }
3611
3612 trace_i915_gem_object_change_domain(obj,
3613 old_read_domains,
3614 old_write_domain);
3615
3616 return 0;
3617 }
3618
3619 /* Throttle our rendering by waiting until the ring has completed our requests
3620 * emitted over 20 msec ago.
3621 *
3622 * Note that if we were to use the current jiffies each time around the loop,
3623 * we wouldn't escape the function with any frames outstanding if the time to
3624 * render a frame was over 20ms.
3625 *
3626 * This should get us reasonable parallelism between CPU and GPU but also
3627 * relatively low latency when blocking on a particular request to finish.
3628 */
3629 static int
3630 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3631 {
3632 struct drm_i915_private *dev_priv = to_i915(dev);
3633 struct drm_i915_file_private *file_priv = file->driver_priv;
3634 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3635 struct drm_i915_gem_request *request, *target = NULL;
3636 long ret;
3637
3638 /* ABI: return -EIO if already wedged */
3639 if (i915_terminally_wedged(&dev_priv->gpu_error))
3640 return -EIO;
3641
3642 spin_lock(&file_priv->mm.lock);
3643 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3644 if (time_after_eq(request->emitted_jiffies, recent_enough))
3645 break;
3646
3647 /*
3648 * Note that the request might not have been submitted yet.
3649 * In which case emitted_jiffies will be zero.
3650 */
3651 if (!request->emitted_jiffies)
3652 continue;
3653
3654 target = request;
3655 }
3656 if (target)
3657 i915_gem_request_get(target);
3658 spin_unlock(&file_priv->mm.lock);
3659
3660 if (target == NULL)
3661 return 0;
3662
3663 ret = i915_wait_request(target,
3664 I915_WAIT_INTERRUPTIBLE,
3665 MAX_SCHEDULE_TIMEOUT);
3666 i915_gem_request_put(target);
3667
3668 return ret < 0 ? ret : 0;
3669 }
3670
3671 struct i915_vma *
3672 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3673 const struct i915_ggtt_view *view,
3674 u64 size,
3675 u64 alignment,
3676 u64 flags)
3677 {
3678 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3679 struct i915_address_space *vm = &dev_priv->ggtt.base;
3680 struct i915_vma *vma;
3681 int ret;
3682
3683 lockdep_assert_held(&obj->base.dev->struct_mutex);
3684
3685 vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3686 if (IS_ERR(vma))
3687 return vma;
3688
3689 if (i915_vma_misplaced(vma, size, alignment, flags)) {
3690 if (flags & PIN_NONBLOCK &&
3691 (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3692 return ERR_PTR(-ENOSPC);
3693
3694 if (flags & PIN_MAPPABLE) {
3695 u32 fence_size;
3696
3697 fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
3698 i915_gem_object_get_tiling(obj));
3699 /* If the required space is larger than the available
3700 * aperture, we will not able to find a slot for the
3701 * object and unbinding the object now will be in
3702 * vain. Worse, doing so may cause us to ping-pong
3703 * the object in and out of the Global GTT and
3704 * waste a lot of cycles under the mutex.
3705 */
3706 if (fence_size > dev_priv->ggtt.mappable_end)
3707 return ERR_PTR(-E2BIG);
3708
3709 /* If NONBLOCK is set the caller is optimistically
3710 * trying to cache the full object within the mappable
3711 * aperture, and *must* have a fallback in place for
3712 * situations where we cannot bind the object. We
3713 * can be a little more lax here and use the fallback
3714 * more often to avoid costly migrations of ourselves
3715 * and other objects within the aperture.
3716 *
3717 * Half-the-aperture is used as a simple heuristic.
3718 * More interesting would to do search for a free
3719 * block prior to making the commitment to unbind.
3720 * That caters for the self-harm case, and with a
3721 * little more heuristics (e.g. NOFAULT, NOEVICT)
3722 * we could try to minimise harm to others.
3723 */
3724 if (flags & PIN_NONBLOCK &&
3725 fence_size > dev_priv->ggtt.mappable_end / 2)
3726 return ERR_PTR(-ENOSPC);
3727 }
3728
3729 WARN(i915_vma_is_pinned(vma),
3730 "bo is already pinned in ggtt with incorrect alignment:"
3731 " offset=%08x, req.alignment=%llx,"
3732 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3733 i915_ggtt_offset(vma), alignment,
3734 !!(flags & PIN_MAPPABLE),
3735 i915_vma_is_map_and_fenceable(vma));
3736 ret = i915_vma_unbind(vma);
3737 if (ret)
3738 return ERR_PTR(ret);
3739 }
3740
3741 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3742 if (ret)
3743 return ERR_PTR(ret);
3744
3745 return vma;
3746 }
3747
3748 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3749 {
3750 /* Note that we could alias engines in the execbuf API, but
3751 * that would be very unwise as it prevents userspace from
3752 * fine control over engine selection. Ahem.
3753 *
3754 * This should be something like EXEC_MAX_ENGINE instead of
3755 * I915_NUM_ENGINES.
3756 */
3757 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3758 return 0x10000 << id;
3759 }
3760
3761 static __always_inline unsigned int __busy_write_id(unsigned int id)
3762 {
3763 /* The uABI guarantees an active writer is also amongst the read
3764 * engines. This would be true if we accessed the activity tracking
3765 * under the lock, but as we perform the lookup of the object and
3766 * its activity locklessly we can not guarantee that the last_write
3767 * being active implies that we have set the same engine flag from
3768 * last_read - hence we always set both read and write busy for
3769 * last_write.
3770 */
3771 return id | __busy_read_flag(id);
3772 }
3773
3774 static __always_inline unsigned int
3775 __busy_set_if_active(const struct dma_fence *fence,
3776 unsigned int (*flag)(unsigned int id))
3777 {
3778 struct drm_i915_gem_request *rq;
3779
3780 /* We have to check the current hw status of the fence as the uABI
3781 * guarantees forward progress. We could rely on the idle worker
3782 * to eventually flush us, but to minimise latency just ask the
3783 * hardware.
3784 *
3785 * Note we only report on the status of native fences.
3786 */
3787 if (!dma_fence_is_i915(fence))
3788 return 0;
3789
3790 /* opencode to_request() in order to avoid const warnings */
3791 rq = container_of(fence, struct drm_i915_gem_request, fence);
3792 if (i915_gem_request_completed(rq))
3793 return 0;
3794
3795 return flag(rq->engine->exec_id);
3796 }
3797
3798 static __always_inline unsigned int
3799 busy_check_reader(const struct dma_fence *fence)
3800 {
3801 return __busy_set_if_active(fence, __busy_read_flag);
3802 }
3803
3804 static __always_inline unsigned int
3805 busy_check_writer(const struct dma_fence *fence)
3806 {
3807 if (!fence)
3808 return 0;
3809
3810 return __busy_set_if_active(fence, __busy_write_id);
3811 }
3812
3813 int
3814 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3815 struct drm_file *file)
3816 {
3817 struct drm_i915_gem_busy *args = data;
3818 struct drm_i915_gem_object *obj;
3819 struct reservation_object_list *list;
3820 unsigned int seq;
3821 int err;
3822
3823 err = -ENOENT;
3824 rcu_read_lock();
3825 obj = i915_gem_object_lookup_rcu(file, args->handle);
3826 if (!obj)
3827 goto out;
3828
3829 /* A discrepancy here is that we do not report the status of
3830 * non-i915 fences, i.e. even though we may report the object as idle,
3831 * a call to set-domain may still stall waiting for foreign rendering.
3832 * This also means that wait-ioctl may report an object as busy,
3833 * where busy-ioctl considers it idle.
3834 *
3835 * We trade the ability to warn of foreign fences to report on which
3836 * i915 engines are active for the object.
3837 *
3838 * Alternatively, we can trade that extra information on read/write
3839 * activity with
3840 * args->busy =
3841 * !reservation_object_test_signaled_rcu(obj->resv, true);
3842 * to report the overall busyness. This is what the wait-ioctl does.
3843 *
3844 */
3845 retry:
3846 seq = raw_read_seqcount(&obj->resv->seq);
3847
3848 /* Translate the exclusive fence to the READ *and* WRITE engine */
3849 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3850
3851 /* Translate shared fences to READ set of engines */
3852 list = rcu_dereference(obj->resv->fence);
3853 if (list) {
3854 unsigned int shared_count = list->shared_count, i;
3855
3856 for (i = 0; i < shared_count; ++i) {
3857 struct dma_fence *fence =
3858 rcu_dereference(list->shared[i]);
3859
3860 args->busy |= busy_check_reader(fence);
3861 }
3862 }
3863
3864 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
3865 goto retry;
3866
3867 err = 0;
3868 out:
3869 rcu_read_unlock();
3870 return err;
3871 }
3872
3873 int
3874 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3875 struct drm_file *file_priv)
3876 {
3877 return i915_gem_ring_throttle(dev, file_priv);
3878 }
3879
3880 int
3881 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3882 struct drm_file *file_priv)
3883 {
3884 struct drm_i915_private *dev_priv = to_i915(dev);
3885 struct drm_i915_gem_madvise *args = data;
3886 struct drm_i915_gem_object *obj;
3887 int err;
3888
3889 switch (args->madv) {
3890 case I915_MADV_DONTNEED:
3891 case I915_MADV_WILLNEED:
3892 break;
3893 default:
3894 return -EINVAL;
3895 }
3896
3897 obj = i915_gem_object_lookup(file_priv, args->handle);
3898 if (!obj)
3899 return -ENOENT;
3900
3901 err = mutex_lock_interruptible(&obj->mm.lock);
3902 if (err)
3903 goto out;
3904
3905 if (obj->mm.pages &&
3906 i915_gem_object_is_tiled(obj) &&
3907 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
3908 if (obj->mm.madv == I915_MADV_WILLNEED) {
3909 GEM_BUG_ON(!obj->mm.quirked);
3910 __i915_gem_object_unpin_pages(obj);
3911 obj->mm.quirked = false;
3912 }
3913 if (args->madv == I915_MADV_WILLNEED) {
3914 GEM_BUG_ON(obj->mm.quirked);
3915 __i915_gem_object_pin_pages(obj);
3916 obj->mm.quirked = true;
3917 }
3918 }
3919
3920 if (obj->mm.madv != __I915_MADV_PURGED)
3921 obj->mm.madv = args->madv;
3922
3923 /* if the object is no longer attached, discard its backing storage */
3924 if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
3925 i915_gem_object_truncate(obj);
3926
3927 args->retained = obj->mm.madv != __I915_MADV_PURGED;
3928 mutex_unlock(&obj->mm.lock);
3929
3930 out:
3931 i915_gem_object_put(obj);
3932 return err;
3933 }
3934
3935 static void
3936 frontbuffer_retire(struct i915_gem_active *active,
3937 struct drm_i915_gem_request *request)
3938 {
3939 struct drm_i915_gem_object *obj =
3940 container_of(active, typeof(*obj), frontbuffer_write);
3941
3942 intel_fb_obj_flush(obj, true, ORIGIN_CS);
3943 }
3944
3945 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3946 const struct drm_i915_gem_object_ops *ops)
3947 {
3948 mutex_init(&obj->mm.lock);
3949
3950 INIT_LIST_HEAD(&obj->global_link);
3951 INIT_LIST_HEAD(&obj->userfault_link);
3952 INIT_LIST_HEAD(&obj->obj_exec_link);
3953 INIT_LIST_HEAD(&obj->vma_list);
3954 INIT_LIST_HEAD(&obj->batch_pool_link);
3955
3956 obj->ops = ops;
3957
3958 reservation_object_init(&obj->__builtin_resv);
3959 obj->resv = &obj->__builtin_resv;
3960
3961 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
3962 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
3963
3964 obj->mm.madv = I915_MADV_WILLNEED;
3965 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
3966 mutex_init(&obj->mm.get_page.lock);
3967
3968 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
3969 }
3970
3971 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3972 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
3973 I915_GEM_OBJECT_IS_SHRINKABLE,
3974 .get_pages = i915_gem_object_get_pages_gtt,
3975 .put_pages = i915_gem_object_put_pages_gtt,
3976 };
3977
3978 /* Note we don't consider signbits :| */
3979 #define overflows_type(x, T) \
3980 (sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))
3981
3982 struct drm_i915_gem_object *
3983 i915_gem_object_create(struct drm_device *dev, u64 size)
3984 {
3985 struct drm_i915_private *dev_priv = to_i915(dev);
3986 struct drm_i915_gem_object *obj;
3987 struct address_space *mapping;
3988 gfp_t mask;
3989 int ret;
3990
3991 /* There is a prevalence of the assumption that we fit the object's
3992 * page count inside a 32bit _signed_ variable. Let's document this and
3993 * catch if we ever need to fix it. In the meantime, if you do spot
3994 * such a local variable, please consider fixing!
3995 */
3996 if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
3997 return ERR_PTR(-E2BIG);
3998
3999 if (overflows_type(size, obj->base.size))
4000 return ERR_PTR(-E2BIG);
4001
4002 obj = i915_gem_object_alloc(dev);
4003 if (obj == NULL)
4004 return ERR_PTR(-ENOMEM);
4005
4006 ret = drm_gem_object_init(dev, &obj->base, size);
4007 if (ret)
4008 goto fail;
4009
4010 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4011 if (IS_CRESTLINE(dev_priv) || IS_BROADWATER(dev_priv)) {
4012 /* 965gm cannot relocate objects above 4GiB. */
4013 mask &= ~__GFP_HIGHMEM;
4014 mask |= __GFP_DMA32;
4015 }
4016
4017 mapping = obj->base.filp->f_mapping;
4018 mapping_set_gfp_mask(mapping, mask);
4019
4020 i915_gem_object_init(obj, &i915_gem_object_ops);
4021
4022 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4023 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4024
4025 if (HAS_LLC(dev_priv)) {
4026 /* On some devices, we can have the GPU use the LLC (the CPU
4027 * cache) for about a 10% performance improvement
4028 * compared to uncached. Graphics requests other than
4029 * display scanout are coherent with the CPU in
4030 * accessing this cache. This means in this mode we
4031 * don't need to clflush on the CPU side, and on the
4032 * GPU side we only need to flush internal caches to
4033 * get data visible to the CPU.
4034 *
4035 * However, we maintain the display planes as UC, and so
4036 * need to rebind when first used as such.
4037 */
4038 obj->cache_level = I915_CACHE_LLC;
4039 } else
4040 obj->cache_level = I915_CACHE_NONE;
4041
4042 trace_i915_gem_object_create(obj);
4043
4044 return obj;
4045
4046 fail:
4047 i915_gem_object_free(obj);
4048 return ERR_PTR(ret);
4049 }
4050
4051 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4052 {
4053 /* If we are the last user of the backing storage (be it shmemfs
4054 * pages or stolen etc), we know that the pages are going to be
4055 * immediately released. In this case, we can then skip copying
4056 * back the contents from the GPU.
4057 */
4058
4059 if (obj->mm.madv != I915_MADV_WILLNEED)
4060 return false;
4061
4062 if (obj->base.filp == NULL)
4063 return true;
4064
4065 /* At first glance, this looks racy, but then again so would be
4066 * userspace racing mmap against close. However, the first external
4067 * reference to the filp can only be obtained through the
4068 * i915_gem_mmap_ioctl() which safeguards us against the user
4069 * acquiring such a reference whilst we are in the middle of
4070 * freeing the object.
4071 */
4072 return atomic_long_read(&obj->base.filp->f_count) == 1;
4073 }
4074
4075 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4076 struct llist_node *freed)
4077 {
4078 struct drm_i915_gem_object *obj, *on;
4079
4080 mutex_lock(&i915->drm.struct_mutex);
4081 intel_runtime_pm_get(i915);
4082 llist_for_each_entry(obj, freed, freed) {
4083 struct i915_vma *vma, *vn;
4084
4085 trace_i915_gem_object_destroy(obj);
4086
4087 GEM_BUG_ON(i915_gem_object_is_active(obj));
4088 list_for_each_entry_safe(vma, vn,
4089 &obj->vma_list, obj_link) {
4090 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4091 GEM_BUG_ON(i915_vma_is_active(vma));
4092 vma->flags &= ~I915_VMA_PIN_MASK;
4093 i915_vma_close(vma);
4094 }
4095 GEM_BUG_ON(!list_empty(&obj->vma_list));
4096 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4097
4098 list_del(&obj->global_link);
4099 }
4100 intel_runtime_pm_put(i915);
4101 mutex_unlock(&i915->drm.struct_mutex);
4102
4103 llist_for_each_entry_safe(obj, on, freed, freed) {
4104 GEM_BUG_ON(obj->bind_count);
4105 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4106
4107 if (obj->ops->release)
4108 obj->ops->release(obj);
4109
4110 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4111 atomic_set(&obj->mm.pages_pin_count, 0);
4112 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4113 GEM_BUG_ON(obj->mm.pages);
4114
4115 if (obj->base.import_attach)
4116 drm_prime_gem_destroy(&obj->base, NULL);
4117
4118 reservation_object_fini(&obj->__builtin_resv);
4119 drm_gem_object_release(&obj->base);
4120 i915_gem_info_remove_obj(i915, obj->base.size);
4121
4122 kfree(obj->bit_17);
4123 i915_gem_object_free(obj);
4124 }
4125 }
4126
4127 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4128 {
4129 struct llist_node *freed;
4130
4131 freed = llist_del_all(&i915->mm.free_list);
4132 if (unlikely(freed))
4133 __i915_gem_free_objects(i915, freed);
4134 }
4135
4136 static void __i915_gem_free_work(struct work_struct *work)
4137 {
4138 struct drm_i915_private *i915 =
4139 container_of(work, struct drm_i915_private, mm.free_work);
4140 struct llist_node *freed;
4141
4142 /* All file-owned VMA should have been released by this point through
4143 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4144 * However, the object may also be bound into the global GTT (e.g.
4145 * older GPUs without per-process support, or for direct access through
4146 * the GTT either for the user or for scanout). Those VMA still need to
4147 * unbound now.
4148 */
4149
4150 while ((freed = llist_del_all(&i915->mm.free_list)))
4151 __i915_gem_free_objects(i915, freed);
4152 }
4153
4154 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4155 {
4156 struct drm_i915_gem_object *obj =
4157 container_of(head, typeof(*obj), rcu);
4158 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4159
4160 /* We can't simply use call_rcu() from i915_gem_free_object()
4161 * as we need to block whilst unbinding, and the call_rcu
4162 * task may be called from softirq context. So we take a
4163 * detour through a worker.
4164 */
4165 if (llist_add(&obj->freed, &i915->mm.free_list))
4166 schedule_work(&i915->mm.free_work);
4167 }
4168
4169 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4170 {
4171 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4172
4173 if (obj->mm.quirked)
4174 __i915_gem_object_unpin_pages(obj);
4175
4176 if (discard_backing_storage(obj))
4177 obj->mm.madv = I915_MADV_DONTNEED;
4178
4179 /* Before we free the object, make sure any pure RCU-only
4180 * read-side critical sections are complete, e.g.
4181 * i915_gem_busy_ioctl(). For the corresponding synchronized
4182 * lookup see i915_gem_object_lookup_rcu().
4183 */
4184 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4185 }
4186
4187 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4188 {
4189 lockdep_assert_held(&obj->base.dev->struct_mutex);
4190
4191 GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4192 if (i915_gem_object_is_active(obj))
4193 i915_gem_object_set_active_reference(obj);
4194 else
4195 i915_gem_object_put(obj);
4196 }
4197
4198 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4199 {
4200 struct intel_engine_cs *engine;
4201 enum intel_engine_id id;
4202
4203 for_each_engine(engine, dev_priv, id)
4204 GEM_BUG_ON(engine->last_context != dev_priv->kernel_context);
4205 }
4206
4207 int i915_gem_suspend(struct drm_device *dev)
4208 {
4209 struct drm_i915_private *dev_priv = to_i915(dev);
4210 int ret;
4211
4212 intel_suspend_gt_powersave(dev_priv);
4213
4214 mutex_lock(&dev->struct_mutex);
4215
4216 /* We have to flush all the executing contexts to main memory so
4217 * that they can saved in the hibernation image. To ensure the last
4218 * context image is coherent, we have to switch away from it. That
4219 * leaves the dev_priv->kernel_context still active when
4220 * we actually suspend, and its image in memory may not match the GPU
4221 * state. Fortunately, the kernel_context is disposable and we do
4222 * not rely on its state.
4223 */
4224 ret = i915_gem_switch_to_kernel_context(dev_priv);
4225 if (ret)
4226 goto err;
4227
4228 ret = i915_gem_wait_for_idle(dev_priv,
4229 I915_WAIT_INTERRUPTIBLE |
4230 I915_WAIT_LOCKED);
4231 if (ret)
4232 goto err;
4233
4234 i915_gem_retire_requests(dev_priv);
4235 GEM_BUG_ON(dev_priv->gt.active_requests);
4236
4237 assert_kernel_context_is_current(dev_priv);
4238 i915_gem_context_lost(dev_priv);
4239 mutex_unlock(&dev->struct_mutex);
4240
4241 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4242 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4243 flush_delayed_work(&dev_priv->gt.idle_work);
4244 flush_work(&dev_priv->mm.free_work);
4245
4246 /* Assert that we sucessfully flushed all the work and
4247 * reset the GPU back to its idle, low power state.
4248 */
4249 WARN_ON(dev_priv->gt.awake);
4250 WARN_ON(!intel_execlists_idle(dev_priv));
4251
4252 /*
4253 * Neither the BIOS, ourselves or any other kernel
4254 * expects the system to be in execlists mode on startup,
4255 * so we need to reset the GPU back to legacy mode. And the only
4256 * known way to disable logical contexts is through a GPU reset.
4257 *
4258 * So in order to leave the system in a known default configuration,
4259 * always reset the GPU upon unload and suspend. Afterwards we then
4260 * clean up the GEM state tracking, flushing off the requests and
4261 * leaving the system in a known idle state.
4262 *
4263 * Note that is of the upmost importance that the GPU is idle and
4264 * all stray writes are flushed *before* we dismantle the backing
4265 * storage for the pinned objects.
4266 *
4267 * However, since we are uncertain that resetting the GPU on older
4268 * machines is a good idea, we don't - just in case it leaves the
4269 * machine in an unusable condition.
4270 */
4271 if (HAS_HW_CONTEXTS(dev_priv)) {
4272 int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
4273 WARN_ON(reset && reset != -ENODEV);
4274 }
4275
4276 return 0;
4277
4278 err:
4279 mutex_unlock(&dev->struct_mutex);
4280 return ret;
4281 }
4282
4283 void i915_gem_resume(struct drm_device *dev)
4284 {
4285 struct drm_i915_private *dev_priv = to_i915(dev);
4286
4287 WARN_ON(dev_priv->gt.awake);
4288
4289 mutex_lock(&dev->struct_mutex);
4290 i915_gem_restore_gtt_mappings(dev_priv);
4291
4292 /* As we didn't flush the kernel context before suspend, we cannot
4293 * guarantee that the context image is complete. So let's just reset
4294 * it and start again.
4295 */
4296 dev_priv->gt.resume(dev_priv);
4297
4298 mutex_unlock(&dev->struct_mutex);
4299 }
4300
4301 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4302 {
4303 if (INTEL_GEN(dev_priv) < 5 ||
4304 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4305 return;
4306
4307 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4308 DISP_TILE_SURFACE_SWIZZLING);
4309
4310 if (IS_GEN5(dev_priv))
4311 return;
4312
4313 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4314 if (IS_GEN6(dev_priv))
4315 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4316 else if (IS_GEN7(dev_priv))
4317 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4318 else if (IS_GEN8(dev_priv))
4319 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4320 else
4321 BUG();
4322 }
4323
4324 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4325 {
4326 I915_WRITE(RING_CTL(base), 0);
4327 I915_WRITE(RING_HEAD(base), 0);
4328 I915_WRITE(RING_TAIL(base), 0);
4329 I915_WRITE(RING_START(base), 0);
4330 }
4331
4332 static void init_unused_rings(struct drm_i915_private *dev_priv)
4333 {
4334 if (IS_I830(dev_priv)) {
4335 init_unused_ring(dev_priv, PRB1_BASE);
4336 init_unused_ring(dev_priv, SRB0_BASE);
4337 init_unused_ring(dev_priv, SRB1_BASE);
4338 init_unused_ring(dev_priv, SRB2_BASE);
4339 init_unused_ring(dev_priv, SRB3_BASE);
4340 } else if (IS_GEN2(dev_priv)) {
4341 init_unused_ring(dev_priv, SRB0_BASE);
4342 init_unused_ring(dev_priv, SRB1_BASE);
4343 } else if (IS_GEN3(dev_priv)) {
4344 init_unused_ring(dev_priv, PRB1_BASE);
4345 init_unused_ring(dev_priv, PRB2_BASE);
4346 }
4347 }
4348
4349 int
4350 i915_gem_init_hw(struct drm_device *dev)
4351 {
4352 struct drm_i915_private *dev_priv = to_i915(dev);
4353 struct intel_engine_cs *engine;
4354 enum intel_engine_id id;
4355 int ret;
4356
4357 dev_priv->gt.last_init_time = ktime_get();
4358
4359 /* Double layer security blanket, see i915_gem_init() */
4360 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4361
4362 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4363 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4364
4365 if (IS_HASWELL(dev_priv))
4366 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4367 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4368
4369 if (HAS_PCH_NOP(dev_priv)) {
4370 if (IS_IVYBRIDGE(dev_priv)) {
4371 u32 temp = I915_READ(GEN7_MSG_CTL);
4372 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4373 I915_WRITE(GEN7_MSG_CTL, temp);
4374 } else if (INTEL_GEN(dev_priv) >= 7) {
4375 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4376 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4377 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4378 }
4379 }
4380
4381 i915_gem_init_swizzling(dev_priv);
4382
4383 /*
4384 * At least 830 can leave some of the unused rings
4385 * "active" (ie. head != tail) after resume which
4386 * will prevent c3 entry. Makes sure all unused rings
4387 * are totally idle.
4388 */
4389 init_unused_rings(dev_priv);
4390
4391 BUG_ON(!dev_priv->kernel_context);
4392
4393 ret = i915_ppgtt_init_hw(dev_priv);
4394 if (ret) {
4395 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4396 goto out;
4397 }
4398
4399 /* Need to do basic initialisation of all rings first: */
4400 for_each_engine(engine, dev_priv, id) {
4401 ret = engine->init_hw(engine);
4402 if (ret)
4403 goto out;
4404 }
4405
4406 intel_mocs_init_l3cc_table(dev);
4407
4408 /* We can't enable contexts until all firmware is loaded */
4409 ret = intel_guc_setup(dev);
4410 if (ret)
4411 goto out;
4412
4413 out:
4414 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4415 return ret;
4416 }
4417
4418 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4419 {
4420 if (INTEL_INFO(dev_priv)->gen < 6)
4421 return false;
4422
4423 /* TODO: make semaphores and Execlists play nicely together */
4424 if (i915.enable_execlists)
4425 return false;
4426
4427 if (value >= 0)
4428 return value;
4429
4430 #ifdef CONFIG_INTEL_IOMMU
4431 /* Enable semaphores on SNB when IO remapping is off */
4432 if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4433 return false;
4434 #endif
4435
4436 return true;
4437 }
4438
4439 int i915_gem_init(struct drm_device *dev)
4440 {
4441 struct drm_i915_private *dev_priv = to_i915(dev);
4442 int ret;
4443
4444 mutex_lock(&dev->struct_mutex);
4445
4446 if (!i915.enable_execlists) {
4447 dev_priv->gt.resume = intel_legacy_submission_resume;
4448 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4449 } else {
4450 dev_priv->gt.resume = intel_lr_context_resume;
4451 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4452 }
4453
4454 /* This is just a security blanket to placate dragons.
4455 * On some systems, we very sporadically observe that the first TLBs
4456 * used by the CS may be stale, despite us poking the TLB reset. If
4457 * we hold the forcewake during initialisation these problems
4458 * just magically go away.
4459 */
4460 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4461
4462 i915_gem_init_userptr(dev_priv);
4463
4464 ret = i915_gem_init_ggtt(dev_priv);
4465 if (ret)
4466 goto out_unlock;
4467
4468 ret = i915_gem_context_init(dev);
4469 if (ret)
4470 goto out_unlock;
4471
4472 ret = intel_engines_init(dev);
4473 if (ret)
4474 goto out_unlock;
4475
4476 ret = i915_gem_init_hw(dev);
4477 if (ret == -EIO) {
4478 /* Allow engine initialisation to fail by marking the GPU as
4479 * wedged. But we only want to do this where the GPU is angry,
4480 * for all other failure, such as an allocation failure, bail.
4481 */
4482 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4483 i915_gem_set_wedged(dev_priv);
4484 ret = 0;
4485 }
4486
4487 out_unlock:
4488 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4489 mutex_unlock(&dev->struct_mutex);
4490
4491 return ret;
4492 }
4493
4494 void
4495 i915_gem_cleanup_engines(struct drm_device *dev)
4496 {
4497 struct drm_i915_private *dev_priv = to_i915(dev);
4498 struct intel_engine_cs *engine;
4499 enum intel_engine_id id;
4500
4501 for_each_engine(engine, dev_priv, id)
4502 dev_priv->gt.cleanup_engine(engine);
4503 }
4504
4505 void
4506 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4507 {
4508 int i;
4509
4510 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4511 !IS_CHERRYVIEW(dev_priv))
4512 dev_priv->num_fence_regs = 32;
4513 else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4514 IS_I945GM(dev_priv) || IS_G33(dev_priv))
4515 dev_priv->num_fence_regs = 16;
4516 else
4517 dev_priv->num_fence_regs = 8;
4518
4519 if (intel_vgpu_active(dev_priv))
4520 dev_priv->num_fence_regs =
4521 I915_READ(vgtif_reg(avail_rs.fence_num));
4522
4523 /* Initialize fence registers to zero */
4524 for (i = 0; i < dev_priv->num_fence_regs; i++) {
4525 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4526
4527 fence->i915 = dev_priv;
4528 fence->id = i;
4529 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4530 }
4531 i915_gem_restore_fences(dev_priv);
4532
4533 i915_gem_detect_bit_6_swizzle(dev_priv);
4534 }
4535
4536 int
4537 i915_gem_load_init(struct drm_device *dev)
4538 {
4539 struct drm_i915_private *dev_priv = to_i915(dev);
4540 int err = -ENOMEM;
4541
4542 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4543 if (!dev_priv->objects)
4544 goto err_out;
4545
4546 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4547 if (!dev_priv->vmas)
4548 goto err_objects;
4549
4550 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4551 SLAB_HWCACHE_ALIGN |
4552 SLAB_RECLAIM_ACCOUNT |
4553 SLAB_DESTROY_BY_RCU);
4554 if (!dev_priv->requests)
4555 goto err_vmas;
4556
4557 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4558 SLAB_HWCACHE_ALIGN |
4559 SLAB_RECLAIM_ACCOUNT);
4560 if (!dev_priv->dependencies)
4561 goto err_requests;
4562
4563 mutex_lock(&dev_priv->drm.struct_mutex);
4564 INIT_LIST_HEAD(&dev_priv->gt.timelines);
4565 err = i915_gem_timeline_init__global(dev_priv);
4566 mutex_unlock(&dev_priv->drm.struct_mutex);
4567 if (err)
4568 goto err_dependencies;
4569
4570 INIT_LIST_HEAD(&dev_priv->context_list);
4571 INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4572 init_llist_head(&dev_priv->mm.free_list);
4573 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4574 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4575 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4576 INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4577 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4578 i915_gem_retire_work_handler);
4579 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4580 i915_gem_idle_work_handler);
4581 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4582 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4583
4584 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4585
4586 init_waitqueue_head(&dev_priv->pending_flip_queue);
4587
4588 dev_priv->mm.interruptible = true;
4589
4590 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4591
4592 spin_lock_init(&dev_priv->fb_tracking.lock);
4593
4594 return 0;
4595
4596 err_dependencies:
4597 kmem_cache_destroy(dev_priv->dependencies);
4598 err_requests:
4599 kmem_cache_destroy(dev_priv->requests);
4600 err_vmas:
4601 kmem_cache_destroy(dev_priv->vmas);
4602 err_objects:
4603 kmem_cache_destroy(dev_priv->objects);
4604 err_out:
4605 return err;
4606 }
4607
4608 void i915_gem_load_cleanup(struct drm_device *dev)
4609 {
4610 struct drm_i915_private *dev_priv = to_i915(dev);
4611
4612 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4613
4614 mutex_lock(&dev_priv->drm.struct_mutex);
4615 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4616 WARN_ON(!list_empty(&dev_priv->gt.timelines));
4617 mutex_unlock(&dev_priv->drm.struct_mutex);
4618
4619 kmem_cache_destroy(dev_priv->dependencies);
4620 kmem_cache_destroy(dev_priv->requests);
4621 kmem_cache_destroy(dev_priv->vmas);
4622 kmem_cache_destroy(dev_priv->objects);
4623
4624 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4625 rcu_barrier();
4626 }
4627
4628 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4629 {
4630 intel_runtime_pm_get(dev_priv);
4631
4632 mutex_lock(&dev_priv->drm.struct_mutex);
4633 i915_gem_shrink_all(dev_priv);
4634 mutex_unlock(&dev_priv->drm.struct_mutex);
4635
4636 intel_runtime_pm_put(dev_priv);
4637
4638 return 0;
4639 }
4640
4641 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4642 {
4643 struct drm_i915_gem_object *obj;
4644 struct list_head *phases[] = {
4645 &dev_priv->mm.unbound_list,
4646 &dev_priv->mm.bound_list,
4647 NULL
4648 }, **p;
4649
4650 /* Called just before we write the hibernation image.
4651 *
4652 * We need to update the domain tracking to reflect that the CPU
4653 * will be accessing all the pages to create and restore from the
4654 * hibernation, and so upon restoration those pages will be in the
4655 * CPU domain.
4656 *
4657 * To make sure the hibernation image contains the latest state,
4658 * we update that state just before writing out the image.
4659 *
4660 * To try and reduce the hibernation image, we manually shrink
4661 * the objects as well.
4662 */
4663
4664 mutex_lock(&dev_priv->drm.struct_mutex);
4665 i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4666
4667 for (p = phases; *p; p++) {
4668 list_for_each_entry(obj, *p, global_link) {
4669 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4670 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4671 }
4672 }
4673 mutex_unlock(&dev_priv->drm.struct_mutex);
4674
4675 return 0;
4676 }
4677
4678 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4679 {
4680 struct drm_i915_file_private *file_priv = file->driver_priv;
4681 struct drm_i915_gem_request *request;
4682
4683 /* Clean up our request list when the client is going away, so that
4684 * later retire_requests won't dereference our soon-to-be-gone
4685 * file_priv.
4686 */
4687 spin_lock(&file_priv->mm.lock);
4688 list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4689 request->file_priv = NULL;
4690 spin_unlock(&file_priv->mm.lock);
4691
4692 if (!list_empty(&file_priv->rps.link)) {
4693 spin_lock(&to_i915(dev)->rps.client_lock);
4694 list_del(&file_priv->rps.link);
4695 spin_unlock(&to_i915(dev)->rps.client_lock);
4696 }
4697 }
4698
4699 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4700 {
4701 struct drm_i915_file_private *file_priv;
4702 int ret;
4703
4704 DRM_DEBUG("\n");
4705
4706 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4707 if (!file_priv)
4708 return -ENOMEM;
4709
4710 file->driver_priv = file_priv;
4711 file_priv->dev_priv = to_i915(dev);
4712 file_priv->file = file;
4713 INIT_LIST_HEAD(&file_priv->rps.link);
4714
4715 spin_lock_init(&file_priv->mm.lock);
4716 INIT_LIST_HEAD(&file_priv->mm.request_list);
4717
4718 file_priv->bsd_engine = -1;
4719
4720 ret = i915_gem_context_open(dev, file);
4721 if (ret)
4722 kfree(file_priv);
4723
4724 return ret;
4725 }
4726
4727 /**
4728 * i915_gem_track_fb - update frontbuffer tracking
4729 * @old: current GEM buffer for the frontbuffer slots
4730 * @new: new GEM buffer for the frontbuffer slots
4731 * @frontbuffer_bits: bitmask of frontbuffer slots
4732 *
4733 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4734 * from @old and setting them in @new. Both @old and @new can be NULL.
4735 */
4736 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4737 struct drm_i915_gem_object *new,
4738 unsigned frontbuffer_bits)
4739 {
4740 /* Control of individual bits within the mask are guarded by
4741 * the owning plane->mutex, i.e. we can never see concurrent
4742 * manipulation of individual bits. But since the bitfield as a whole
4743 * is updated using RMW, we need to use atomics in order to update
4744 * the bits.
4745 */
4746 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4747 sizeof(atomic_t) * BITS_PER_BYTE);
4748
4749 if (old) {
4750 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4751 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4752 }
4753
4754 if (new) {
4755 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4756 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4757 }
4758 }
4759
4760 /* Allocate a new GEM object and fill it with the supplied data */
4761 struct drm_i915_gem_object *
4762 i915_gem_object_create_from_data(struct drm_device *dev,
4763 const void *data, size_t size)
4764 {
4765 struct drm_i915_gem_object *obj;
4766 struct sg_table *sg;
4767 size_t bytes;
4768 int ret;
4769
4770 obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4771 if (IS_ERR(obj))
4772 return obj;
4773
4774 ret = i915_gem_object_set_to_cpu_domain(obj, true);
4775 if (ret)
4776 goto fail;
4777
4778 ret = i915_gem_object_pin_pages(obj);
4779 if (ret)
4780 goto fail;
4781
4782 sg = obj->mm.pages;
4783 bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4784 obj->mm.dirty = true; /* Backing store is now out of date */
4785 i915_gem_object_unpin_pages(obj);
4786
4787 if (WARN_ON(bytes != size)) {
4788 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4789 ret = -EFAULT;
4790 goto fail;
4791 }
4792
4793 return obj;
4794
4795 fail:
4796 i915_gem_object_put(obj);
4797 return ERR_PTR(ret);
4798 }
4799
4800 struct scatterlist *
4801 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
4802 unsigned int n,
4803 unsigned int *offset)
4804 {
4805 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4806 struct scatterlist *sg;
4807 unsigned int idx, count;
4808
4809 might_sleep();
4810 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
4811 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4812
4813 /* As we iterate forward through the sg, we record each entry in a
4814 * radixtree for quick repeated (backwards) lookups. If we have seen
4815 * this index previously, we will have an entry for it.
4816 *
4817 * Initial lookup is O(N), but this is amortized to O(1) for
4818 * sequential page access (where each new request is consecutive
4819 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
4820 * i.e. O(1) with a large constant!
4821 */
4822 if (n < READ_ONCE(iter->sg_idx))
4823 goto lookup;
4824
4825 mutex_lock(&iter->lock);
4826
4827 /* We prefer to reuse the last sg so that repeated lookup of this
4828 * (or the subsequent) sg are fast - comparing against the last
4829 * sg is faster than going through the radixtree.
4830 */
4831
4832 sg = iter->sg_pos;
4833 idx = iter->sg_idx;
4834 count = __sg_page_count(sg);
4835
4836 while (idx + count <= n) {
4837 unsigned long exception, i;
4838 int ret;
4839
4840 /* If we cannot allocate and insert this entry, or the
4841 * individual pages from this range, cancel updating the
4842 * sg_idx so that on this lookup we are forced to linearly
4843 * scan onwards, but on future lookups we will try the
4844 * insertion again (in which case we need to be careful of
4845 * the error return reporting that we have already inserted
4846 * this index).
4847 */
4848 ret = radix_tree_insert(&iter->radix, idx, sg);
4849 if (ret && ret != -EEXIST)
4850 goto scan;
4851
4852 exception =
4853 RADIX_TREE_EXCEPTIONAL_ENTRY |
4854 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
4855 for (i = 1; i < count; i++) {
4856 ret = radix_tree_insert(&iter->radix, idx + i,
4857 (void *)exception);
4858 if (ret && ret != -EEXIST)
4859 goto scan;
4860 }
4861
4862 idx += count;
4863 sg = ____sg_next(sg);
4864 count = __sg_page_count(sg);
4865 }
4866
4867 scan:
4868 iter->sg_pos = sg;
4869 iter->sg_idx = idx;
4870
4871 mutex_unlock(&iter->lock);
4872
4873 if (unlikely(n < idx)) /* insertion completed by another thread */
4874 goto lookup;
4875
4876 /* In case we failed to insert the entry into the radixtree, we need
4877 * to look beyond the current sg.
4878 */
4879 while (idx + count <= n) {
4880 idx += count;
4881 sg = ____sg_next(sg);
4882 count = __sg_page_count(sg);
4883 }
4884
4885 *offset = n - idx;
4886 return sg;
4887
4888 lookup:
4889 rcu_read_lock();
4890
4891 sg = radix_tree_lookup(&iter->radix, n);
4892 GEM_BUG_ON(!sg);
4893
4894 /* If this index is in the middle of multi-page sg entry,
4895 * the radixtree will contain an exceptional entry that points
4896 * to the start of that range. We will return the pointer to
4897 * the base page and the offset of this page within the
4898 * sg entry's range.
4899 */
4900 *offset = 0;
4901 if (unlikely(radix_tree_exception(sg))) {
4902 unsigned long base =
4903 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
4904
4905 sg = radix_tree_lookup(&iter->radix, base);
4906 GEM_BUG_ON(!sg);
4907
4908 *offset = n - base;
4909 }
4910
4911 rcu_read_unlock();
4912
4913 return sg;
4914 }
4915
4916 struct page *
4917 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
4918 {
4919 struct scatterlist *sg;
4920 unsigned int offset;
4921
4922 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
4923
4924 sg = i915_gem_object_get_sg(obj, n, &offset);
4925 return nth_page(sg_page(sg), offset);
4926 }
4927
4928 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
4929 struct page *
4930 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
4931 unsigned int n)
4932 {
4933 struct page *page;
4934
4935 page = i915_gem_object_get_page(obj, n);
4936 if (!obj->mm.dirty)
4937 set_page_dirty(page);
4938
4939 return page;
4940 }
4941
4942 dma_addr_t
4943 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
4944 unsigned long n)
4945 {
4946 struct scatterlist *sg;
4947 unsigned int offset;
4948
4949 sg = i915_gem_object_get_sg(obj, n, &offset);
4950 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
4951 }